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Abstract

The graph partitioning problem asks for dividing a graph into k blocks of vertices
while minimizing the size of the edge cut and while maintaining a balance constraint
on the block size. Graph partitioning is relevant for many real world applications
such as reducing complexity of a traffic network[4, 16] or enabling parallel processing
of a certain graph.

Real world graphs, such as social networks, often count millions of vertices and
edges and are, thus, too large to compute a direct solution. Moreover, the problem
of partitioning a graph exactly is NP complete and no constant factor approximation
algorithms exist. Consequently, heuristics like multilevel graph partitioning[11] are
used. A state-of-the-art multilevel partitioning framework is provided by Karlsruhe
High Quality Partitioning (KaHIP)[11, 27]. This multilevel scheme consists of three
main phases. In the coarsening phase the graph is reduced by iteratively contracting
edges while maintaining the overall structure of the graph and without effecting the
size of the cut of the final partitioning too much. In the initial partitioning phase
the graph is small enough to be directly partitioned. In the uncoarsening phase the
previously contracted edges are uncontracted.

We engineer new coarsening algorithms using KaHIP as a partitioning framework.
Our coarsening methods build on the CAPFOREST (CF)[21, 22] algorithm devel-
oped by Nagamochi-Ono-Ibaraki (NOI). CF calculates an edge rating that acts as a
heuristic to determine whether the eligible edge can be contracted without effecting
the minimum cut size. We incorporate this edge rating into a coarsening procedure,
which we, thus, refer to as NOI-Coarsening. We develop four variants of NOI-
Coarsening. Three of them directly contract edges based on the calculated CF edge
rating. The fourth variant incorporates the CF edge rating into the Size-Constraint
Label Propagation (SCLaP) algorithm[19].

We evaluate our coarsening algorithms by performing parameter tuning and com-
paring them with KaHIP’s state-of-the-art partitioner. For benchmarking we parti-
tion a set containing social network and web graphs as well as a set of more tradi-
tional meshlike graphs from technical and physics applications. We evaluate both,
quality and running time. In general, NOI-Coarsening methods do not improve over
state-of-the-art performance on social networks and web graphs but fall behind to
some degree. On high k partitionings (k = 64) our best method comes as close as a
median 8 percent difference in terms of quality. On the set of rather meshlike graphs
we achieve state-of-the-art bipartitioning at only half the running time.
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Zusammenfassung

Das Graphpartitionierungsproblem besteht darin einen Graphen in k Blöcke zu
teilen, wobei die Größe des Kantenschnitts minimal sein soll und eine Gleichgewichts-
bedingung in Bezug auf die Blockgröße eingehalten werden muss. Graphpartition-
ierung ist darüber hinaus für viele reale Anwendungen relevant. Beispielsweise
um die Komplexität von Verkehrsnetzen[4, 16] zu reduzieren oder um das parallele
Prozessieren eines bestimmten Graphen zu ermöglichen.

Graphen aus realen Anwendungen, wie sozialen Netzwerke, bestehen oftmals aus
Millionen Knoten und Kanten und sind somit zu groß um eine direkte Lösung zu
berechnen. Darüber hinaus ist das Graphpartitionierungsproblem NP-vollständig
und es existiert dafür kein Näherungsalgorithmus mit konstantem Faktor. Folglich
müssen Heuristiken wie Multilevel-Graphpartitionierung[11] verwendet werden. Ein
solches Multilevel-Graphpartitionierungs-Framework nach modernstem Stand wird
etwa im Karlsruhe High Quality Partitionin (KaHIP) Softwarepaket[11, 27] verwen-
det. Dieses Multilevel-Schema besteht aus drei Hauptphasen. In der Coarsening-
Phase wird der Graph durch das iterative Kontrahieren von Kanten geschrumpft,
während die grobe Struktur des Graphen beibehalten werden soll und ohne dabei
die Größe des Kantenschnitts der letztendlichen Partitionierung zu stark zu beein-
flussen. In der sogenannten Initial Partitioning-Phase ist der Graph bereits klein
genug um direkt partitioniert zu werden. In der Uncoarsening-Phase werden die
zuvor kontrahierten Kanten wieder dekontrahiert.

Wir entwickeln neue Coarsening-Algorithmen, wobei wir KaHIP als Partitionier-
ungs-Framework verwenden. Unsere Coarsening-Methoden bauen auf CAPFOREST
(CF) [21, 22] auf - einem Algorithmus von Nagamochi-Ono-Ibaraki (NOI). CF berech-
net eine Kantenbewertung, die als Heuristik dient um zu entscheiden ob eine Kante
kontrahiert werden kann ohne dabei den minimalen Kantenschnitts zu vergrößern.
Wir beziehen diese Kantenbewertung in ein Coarsening-Schema ein, das wir daher
als NOI-Coarsening bezeichnen. Insgesamt entwickeln wir vier Varianten von NOI-
Coarsening, drei davon kontrahieren direkt basierend auf der Kantenbewertung. Die
vierte Variante basiert auf dem Size-Constraint Label Propagation (SCLaP) Algo-
rithmus[19], inkludiert jedoch die CF-Kantenbewertung.

Wir evaluieren unsere Coarsening-Algorithmen, indem wir die Parameter opti-
mieren und die Algorithmen mit KaHIPs State-of-the-art-Partitionierungsprogramm
vergleichen. Als Benchmark partitionieren wir einen Satz an Sozialen Netzwerk-
und Webgraphen, sowie einen Satz an traditionelleren mehr gitterartigen Graphen
aus technischen und physikalischen Anwendungsbereichen. Wir evaluieren sowohl
Qualität als auch Ausführungszeit. Im Allgemeinen kommen die NOI-Methoden bei
den sozialen Netzwerk- und Webgraphen nicht über die State-of-the-art-Performance
hinaus, sondern fallen eher etwas zurück. Bei Partitionierung mit hohem k-Wert
(k = 64) kommt unsere beste Methode im Median bis auf 8 Prozent Unterschied
heran, was die Schnittqualität betrifft. Auf dem Satz an gitterartigen Graphen
erreichen wir bei der Bipartitionierung State-of-the-art-Performance in Bezug auf
Qualität bei nur halber Ausführungszeit.
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1 Introduction

1.1 Motivation

Many real world problems can be modeled as graphs. Prominent examples are social
networks [23], traffic networks [4, 16] and circuit design [14] but also molecular inter-
actions in biological systems [34] can be represented as graphs. In fact there can be
found a plethora of instances in nature, technology and abstract concepts, such as
language, that yield graph-like structures. By abstracting physical or conceptual in-
stances to graphs, actual application problems can be solved using computer science
and mathematics. Such real world instances very often are too large to compute a
solution directly. In order to handle such graphs, graph partitioning is performed to
reduce complexity or to parallelize the actual problem solving step.

In general, graph partitioning solves the fundamental mathematical problem of
dividing a graph into smaller roughly equally sized pieces that are inter-connected
as loosely as possible. A typical example where this is needed is route planning
[4, 16]. Without partitioning the road network first, route calculation would take
significantly longer for more distant destinations. Moreover, from computational
science perspective scientific simulations [28, 30] make thorough use of graph parti-
tioning. Probably most importantly, partitioning enables efficient parallel and load
balanced processing of graphs. Imagine we want to process a graph on a multi-
processor system with k processing elements (PEs). By partitioning the graph, we
divide the graph into k blocks of about equal size. Thus, the single blocks fit into
the RAM and the CPU load is balanced. The particular PE (blocks) have minimum
communication (edges) to other PE, so the parallelization overhead is minimized.

Since graphs involved in real world applications become extremely large (social
networks consist of up to millions of nodes and billions of edges [15]) computation-
ally efficient and scalable graph partitioning is highly relevant. Since the problem is
NP-complete and there is no constant factor approximation algorithm [1, 2], heuris-
tics like multilevel graph partitioning are used in known software packages such as
KaHIP [11, 27], METIS [13, 29] and SCOTCH [3] The overall scheme for multilevel
partitioning, as it is used in Karlsruhe High Quality Partitioning (KaHIP), is de-
picted in figure 1.1. This approach consists of three main phases. In the contraction
(coarsening) phase (which is the phase this thesis will focus on) we take the input
graph G := (V,E) and identify a subset M ⊆ E that presumably can be contracted
while still maintaining the overall global structure of the graph and without effecting
the final cut size by a large margin. The identified edges in M are contracted and
the procedure is repeated until the number of nodes |V | falls below a pre-defined

1



1 Introduction

input
graph

match

... ...
local improvement

uncontractcontract

output
partition

part.

initial

Figure 1.1: Multilevel Graph Partitioning [11]

threshold. Contraction should quickly reduce the size of the input and each com-
puted level should reflect the global structure of the input network. In particular,
nodes should represent densely connected subgraphs. In the second phase the graph
is small enough to be directly partitioned, which otherwise would be computation-
ally very expensive. After the initial partitioning phase, the previously contracted
edges are iteratively uncontracted. In this refinement (uncoarsening) phase, after
each uncontraction iteration, nodes are moved between blocks to improve the cut
size or balance of the partitioning. A more detailed outline of how KaHIP works is
given in [11].

Coarsening via graph clustering algorithms, namely Size-Constraint Label Propa-
gation (SCLaP) with ensemble clustering, achieves state-of-the-art performance [19]

when partitioning social networks. Due to the promising results of this approach
we engineer a cluster coarsening algorithm that uses a more complex edge rating in-
corporating information about the connectedness of two clusters beyond one single
edge.

1.2 Contribution

Within the scope of this thesis we engineer a cluster coarsening algorithm based
on the edge rating provided by CAPFOREST (CF)[21, 22] algorithm using KaHIP
[11, 27] as framework. We refer to the method as Nagamochi-Ono-Ibaraki (NOI)-
coarsening. In each level CF does a breadth-first-search (BFS) calculating a lower
bound q(e) for the connectivity λ(e) of each edge in the graph. A high value of
q(e) suggests a high probability that this edge can be contracted (i.e the incident
nodes were assigned to the same block) safely without effecting the cut size of the
partitioning. Both, CF and SCLaP find clusters of strongly connected nodes. With
a complexity of O(m + n log n) with significantly lower run times in practice, CF
is also promising run time performance wise, even though label propagation has a
complexity of only O(m+ n)[19].

The evaluation shows that NOI-Coarsening does not improve quality over state-
of-the-art methods in general. For social network graphs we come close (median

2



1.3 Thesis Structure

8 percent) to state-of-the-art performance when performing high k partitioning
(k = 64). On rather traditional meshlike graphs we improve state-of-the-art run
time performance while being on par in terms of quality. Also noteworthy is that
NOI-Coarsening can achieve very fast coarsening on social network graphs when k
is high. Our benchmarks showed a 1.2 to 4 times faster running time for this NOI
configuration while finding a 50 percent larger cut in the worst case.

1.3 Thesis Structure

In the following chapter (2) we will define preliminary concepts of graph theory
and provide the necessary notation. In Chapter 3 we will give an overview over
related work and explain relevant concepts. In Chapter 4 we present the theory
of the engineered NOI-coarsening algorithms. In Chapter 5 we will present the
experimental results. In Chapter 6 we draw conclusions on the findings within this
work and give an outlook for future work. At the end of this thesis you find the
appendices containing algorithms closer to actual implementations and additional
results.

3





2 Fundamentals

In this chapter we will introduce the reader to the basic concepts of graph theory with
focus on graph partitioning. Moreover, we provide the notation used throughout this
thesis.

2.1 Concepts of Graph Theory

A graph G is defined by a set of nodes or vertices V and a set of edges E, where
each edge e is denoted as the pair of nodes {u, v} ⊆ V that is connected by the
edge. For an undirected graph it holds that e = {u, v} = {v, u}, i.e. all edges are
bidirectional. A weighted graph generalizes the presented definition by the mappings
c : V → N assigning a weight c(v) to each node v and ω : E → N∗ assigning a weight
ω(e) to each edge e. We can extend ω(·) to sets by defining ω(E′) :=

∑
e∈E′ ω(e),

where E′ ⊆ E. Analogous to edge weights we can extend c(·) to sets by defining
c(V ′) :=

∑
v∈V ′ c(v), where V ′ ⊆ V . An unweighted graph can be considered as a

special case where each edge and vertex has a weight of one.

We denote a weighted graph as G := (V,E, c, ω). The neighborhood Γ(v) of a
vertex v is the set of nodes adjacent to v, i.e. Γ(v) := {u : {u, v} ∈ E}. The number
of incident edges (or number of neighbors) of a vertex v is called degree of v, formally
deg(v) := |Γ(v)|. The weighted degree adds up the weights of the incident edges:
deg(v) := ω({{u, v} ∈ E}). If not stated otherwise, the reader can assume that
deg denotes the weighted version throughout this text. The smallest resp. largest
weighted degree out of all vertices within a graph is called minimum degree resp.
maximum degree. The average degree is calculated by 2|E|

|V | .

A sequence of edges ({v1, v2}, . . . , {vi, vi+1}, . . . {vn−1, vn}) with the correspond-
ing sequence of vertices ({v1, . . . , vn}) is called a path if all vertices (as well as all
edges) are pairwise distinct. We refer to a cyclic path when we only require pairwise
distinctness for edges. We speak of a path in a graph G := (V,E) if all edges (and
vertices) of the path lie in E (and V ). A graph G := (V,E) is called connected if
every vertex v ∈ V is reachable from each other vertex u ∈ V \ {v} by traversing
edges. A subgraph of a graph G := (V,E) is a graph G′ := (V ′, E′) with V ′ ⊆ V
and E′ ⊆ E. A connected component is a subgraph with vertex set U ⊆ V that
is connected and where there is no larger connected subgraph W for that holds
U ⊂ W ⊆ V . A connected graph has only one component. A tree is a connected
graph without cyclic paths. Based on this, a forest is defined as a graph where each
connected component is a tree. A spanning tree (or forest) of a graph is a subgraph
that is a tree (or forest) and that covers all vertices of the graph. Such a spanning
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2 Fundamentals

tree is said to be maximal if it covers all vertices of the graph. Edge-disjoint maxi-
mum spanning trees (or forests) refers to a set of trees (or forests) that do not share
a common edge and cover (when combined) all vertices of the graph.

A matching is a set of edges M ⊆ E within a graph G := (V,E) where there is
no pair of edges {ei, ej} in M whose edges ei and ej are adjacent to each other. A
maximum matching refers to the set M ⊆ E with the largest weight c(M).

Contracting an edge e = {u, v} means that the vertices of the edge e are replaced
by a new vertex w, this vertex has the combined weight c(w) = c(u) + c(v) of the
original vertices. If by merging such two vertices, there are produced parallel edges
e1 and e2, these are also replaced by a new edge f that has their combined weight
c(f) = c(e1) + c(e2). When speaking of contracting a block of vertices Vi ⊆ V , we
refer to contracting all edges within that block, resulting in a single super vertex.

A cut of a graph G := (V,E) is a bipartition C = {S, V \ S} of the vertex set V .
The cut implies a set of edges F = {e = {s, t} | s ∈ S ∧ t ∈ V \ S} that one has to
remove (or ”cut through”) to render two intra-connected (but not inter-connected)
components. We define ω : V → N such that ω(S) = ω(F ) (combined weight of
the cut edges) and refer to this as capacity or simply the size of the cut. The cut
with the smallest possible capacity is called minimum cut Cmin = minS⊂V ω(S).
The edge-connectivity (or connectivity) λ(G) of a graph is the size of the minimum
cut whereas the (edge-)connectivity of a pair of vertices {s, t} can be defined as the
weight of the smallest set of edges whose removal yields a cut {S, V \S} with s ∈ S
and t ∈ V \ S. Formally: λ({u, v}) = min

s∈S∧t∈V \S
ω(S).

2.2 Graph Partitioning

Similar to the minimum cut problem, where we want to find a bipartition of the
graph that is minimal in the sense of cut size, within graph partitioning the problem
is generalized to a k-partition, where k ∈ N∗. Moreover, balancing of the partition
is of interest.

Recall that a k-partition P of a set S, divides the set into k sets Si with following
properties:

S =
⋃k

i=1
Si ∀i ∈ {1, . . . , k} (2.1)

Si ∩ Sj ∀i 6= j ∈ {1, . . . , k} (2.2)

Si 6= ∅ ∀i ∈ {1, . . . , k} (2.3)

The partition then is denoted as

P = {S1, . . . , Sk}. (2.4)

Graph partitioning refers to the process of dividing a graph into k subgraphs.
Therefore, the set of vertices V is partitioned into k blocks of vertices. Meeting
property 2.2, the vertex blocks are mutually exclusive. Edges that run between

6



2.2 Graph Partitioning

vertices of the same block are referred to as intra-edges while edges with ends in
different blocks are called inter-edges. Goal of solving the graph partitioning problem
is to find the k-partitioning that minimizes the combined weight of all inter-edges
while maintaining the balance of the block sizes. I.e. the blocks should have similar
or equal combined weight of vertices. For this, we express a balance constraint L that
determines the allowed deviation of a block weight from the average. The overall
scheme can be summed up as follows. We take in a weighted graph G := (V,E, c, ω),
number of blocks k and balance parameter ε. We then find the partition

P = {V1, . . . , Vi, . . . , Vk} (2.5)

that minimizes the cut size ω(F ), where F denotes the set of inter-edges

F = {{v, w} ∈ E | ∃i 6= j : v ∈ Vi ∧ w ∈ Vj}, (2.6)

while maintaining the balance constraint

c(Vi) ≤ L := (1 + ε)

⌈
c(V )

k

⌉
∀i ∈ {1, . . . , k}. (2.7)

Here, parameter ε ∈ R≥0 is the allowed deviation as proportion of the average block
weight.

It is well known that the graph partitioning problem can also be formulated dif-
ferently like with other objective functions instead of minimizing the cut size. More-
over, the number of blocks as well as balance can be handled dynamically depending
on the gain on the objective functions. Within this thesis we will always refer to
the version formulated above (Equation 2.5-2.7). More general, in graph partition-
ing the goal is to identify strongly intra-connected blocks within a graph that are,
hopefully, rather independent, i.e. only loosely connected to other identified blocks.
This allows, for example, to process a network-like structure on multiple processing
elements (PE), where each PE processes a block of roughly equal size, having only
few dependencies to the other PEs. Graph partitioning is an NP-complete [12, 30]

problem, thus for general graphs no constant factor approximation algorithms are
available [1, 2, 30] making heuristics for processing large graphs indispensible.
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3 Related Work

In the following we outline the most relevant research that this thesis is based on. We
will give an overview on multilevel partitioning and cluster coarsening. Moreover,
we will explain the CAPFOREST algorithm in detail.

3.1 Multilevel Graph Partitioning Scheme

An approach that has proven [11] itself to handle partitioning of large real world
graphs is multilevel graph partitioning [11]. It is used by partitioning software pack-
ages such as Karlsruhe High Quality Partitioning (KaHIP) [11, 27], METIS [13, 29]

and SCOTCH [3]. The multilevel approach comes down to three levels. As visualized
in Figure 3.1, we take in a graph as input coarsen it to a smaller graph, that then can
be partitioned in the initial partitioning phase. In the third stage, the refinement
phase, the previously coarsened graph is uncoarsened and locally improved towards
the objective function. The final output is the partitioned graph.

input
graph

match

... ...
local improvement

uncontractcontract

output
partition

part.

initial

Figure 3.1: Multilevel Graph Partitioning [11]

The algorithm engineered within our work is embedded into the uncoarsening
phase of the KaHIP framework. KaHIP’s [11, 27] implementation guarantees bal-
ance and a fixed number of blocks in the partition. KaHIP comes in different vari-
ants focusing on either higher quality (”strong” variant), high run time performance
(”fast”) or a compromise (”eco”). These variants differ in the choice of the match-
ing algorithm, optimization parameters, refinement strategies and the multilevel
iteration scheme. All three variants also come in a ”social” version, where cluster
coarsening is applied to address social network graphs, i.e. graphs with an extreme
high number of edges.
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3 Related Work

In the following we will outline all three main phases of the used multilevel scheme.
For a more detailed overview we refer to [11].

3.1.1 Coarsening

In order to make the partitioning task less complex, a relatively large instance
G := (V,E) is reduced to a smaller graph G′ := (V ′, E′). Coarsening describes the
process of iteratively reducing the graph by identifying sets of edges M ⊆ E, which
are then contracted to reduce the size of the graph. At the end of each iteration,
the graph should reflect the global structure of the graph. I.e. contraction should
take place in regions of the graph that are densely connected while edges between
those dense clusters of vertices should be left untouched. Such, initial partitioning
of the coarse graph can assign strongly connected nodes to the same partition.

One way to establish a quantitative measure of whether an edge is eligible for
contraction are edge ratings[11]. The simplest way to rate an edge e, is using the
weight of an edge ω(e). By contracting edges with large weight, the cut size tends
to be reduced. However, more sophisticated ratings are applicable. For instance,
such that punish contraction of heavy nodes, for better maintaining of balance, or
contraction of edges with many out going edges, whose contraction tends to increase
the cut size. Traditionally [11], matchings are then calculated, maximizing the sum
over the edge rating r(e). Applicable algorithms are, for instance, Sorted Heavy
Edge Matching (SHEM) [29], Greedy Matching and Global Path Algorithm (GPA)
[18]. A parallel matching algorithm used by KaHIP is bisection matching [11, 17].

The calculated maximum matchings M are then contracted until the graph is small
enough for initial partitioning, i.e. till |V | falls below some threshold.[11]

An alternative approach that has been applied within KaHIP is to perform a
clustering, such as Size-Constraint Label Propagation (SCLaP) [19] (cf. Section
3.2.1). The clustering algorithm identifies blocks of vertices Vi ⊆ V consisting of
densely connected nodes. These blocks Vi are then contracted to super vertices. In
a similar fashion as with matchings, this is iterated till the graph is shrunk to a
manageable size.

3.1.2 Initial Partitioning

Within the initial partitioning phase, the coarsened graph is small enough to be
quickly partitioned. The partitioning therefore can be repeated with different seeds
to further improve the result.[11]

3.1.3 Refinement

During the refinement (or uncoarsening) phase, the edges contracted in the coarsen-
ing phase are iteratively uncontracted. After each iteration, local search algorithms
are applied to further improve the cut while maintaining the balance. I.e. nodes
are moved between the boundaries of the partition blocks such that the cut size is
decreased or balance is increased.[11]
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At the end of the multi-level process, the original graph is restored with vertex
set V partitioned as stated in Equations 2.1-2.3.

3.1.4 Multilevel Iterations

To further increase the quality, the whole multilevel partitioning can be repeated [26,

32, 33]. Such iterations are called V-cycles in reference to the shape of the multilevel
scheme depicted in figure 3.1. For more global search strategies used in multi-level
partitioning, we refer to [26].

3.1.5 KaHIP

3.2 Cluster-based Coarsening

For the coarsening phase within multilevel graph partitioning (cf. Section 3.1.1)
clustering algorithms can be used to achieve a fast reduction of the graph.[19] Within
KaHIP, SCLaP is used in combination with Ensemble Clustering.

3.2.1 Size-Constrained Label Propagation

SCLaP [19] extends the Label Propagation Algorithm (LPA) proposed in [25] by a
constraint on block sizes. Basically, Label Propagation iterated over the graph in
a random fashion while at each step the currently visited vertex v is assigned the
label of the cluster its most strongly connected to. In the size-constraint variant, the
label is only assigned if the corresponding cluster is not exceeding a defined upper
bound. This is done iteratively till convergence or till some stopping criterion is met
(convergence is not guaranteed [19]).

Algorithm 1 shows more thoroughly how SCLaP works. We take in a graph, upper
block bound b and a fixed number of runs m (instead of a stopping criterion). First,
we initialize blocks (or clusters) as singletons. I.e. every cluster consists of a single
vertex. We then perform the label iterations (lines 2-9). Within each iteration,
we mark all vertices as unvisited. We then traverse the whole graph (lines 4-9) by
iteratively picking a random unvisited vertex u. The vertex is then moved (line 8)
to the cluster its most strongly connected to, but only if the size-constraint in line
7 is met. The strength of the connection to a vertex Vi is measured by

ω
({
{u,w} | w ∈ Γ(u) ∩ Vi)

})
. (3.1)

Expression 3.1 sums up the weight over all incident edges between the currently
visited vertex u and adjacent vertices of a specific block Vi. Vertex u is then marked
as visited. When all vertices where visited and all label iterations are performed,
each one of the blocks of the produced clustering are contracted to a super vertex
in the coarsened graph G′ := (V ′, E′).

By using a size-constraint the balance is maintained throughout the coarsening
process. The value of the upper bound b can be defined by L

l , where L is the upper
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Algorithm 1: SCLaP

Input: undirected weighted graph G = (V,E, c, ω), block upper bound b,
number of runs m

Output: clustering {V1, . . . , Vk}
1 initialize blocks Vi as singletons {v} ∀v ∈ V, i ∈ I, where I = {1, . . . , |V |}
2 foreach label iteration 1 to m do
3 label all vertices v ∈ V as unvisited
4 while there is an unvisited vertex do
5 u← pick a random unvisited vertex v ∈ V
6 Vi ← pick a block that maximizes ω

({
{u,w} | w ∈ Γ(u) ∩ Vi)

})
7 if c(Vi) + c(u) ≤ b then
8 move u to the block Vi

9 mark u as visited

10 remove empty blocks from clustering and update index set I accordingly

bound for the balance constraint (Equation 2.7) and l is the coarsening factor. This
coarsening factor determines by which factor the size of the graph shall be reduces
at most in one coarsening iteration.

3.2.2 Ensemble Clustering

Ensemble Clustering [19, 24] combines multiple weak clusterings to one strong clus-
tering. Within multi level graph partitioning, Ensemble Clustering is used [19] to
combine multiple SCLaP clusterings to one overlay clustering of higher quality. Ba-
sically, Ensemble Clustering assigns two nodes to the same block in the overlay
clustering O only if these two nodes are found within the same cluster in all input
clusterings Ci. This principle is illustrated in figure 3.2.

Figure 3.2: Ensemble Clustering [19]
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3.3 CAPFOREST

3.3 CAPFOREST

An algorithm, crucial for this work, was proposed by Nagamochi et al. in [21] and
later optimized in [22]. This algorithm called CAPFOREST (CF)1 was originally
developed with the goal to provide an efficient exact minimum cut algorithm. Its
capability of finding edges that do not affect the minimum cut makes the algorithm
also a powerful tool for graph partitioning.

To give some intuition [7], imagine an (for sake of simplicity) unweighted and
connected undirected graph G whose minimum cut has capacity, say, λ = 2. We then
compute a maximum spanning forest onG. Since this spanning forest is maximal and
the graph is connected, it is also a tree. This spanning tree, by definition, contains
at least one edge of the minimum cut. Removing this tree from the graph G, the
remaining graph G′ contains still up to one edge of the minimum cut. Moreover, G′

is possibly disconnected. Now calculating a maximum spanning forest on G′, this
spanning forest contains the remaining edge of the minimum cut if it was not already
removed with the first maximum spanning forest. Removing the second spanning
forest, we now can be sure that the remainder of the graph G′′ does not contain the
minimum cut edges and, thus, these edges can be safely contracted without affecting
the minimum cut. Similarly, if we know that threre is a cut with capacity λ̄ = 3,
but we do not know if it is a minimal cut, then we can use the described procedure
as a mean for contracting edges that do not affect cuts strictly smaller than λ.

Formulated more generally, given some known cut capacity λ̄, computing the
first λ̄− 1 edge-disjoint maximum spanning forests, edges that are not within these
spanning forests can be contracted without affecting any cut-edge of a strictly smaller
cut. What is left, is to find an initial cut and its capacity. A trivial approach would
be to remove some vertex v which yields the cut {G\{v}} with capacity λ̄ = deg(v).

CF extends this idea to weighted graphs G := (V,E, c, ω) by not directly comput-
ing all spanning forests but calculating lower bounds q(e) on the connectivity λ(e)
of each edge e ∈ E. The set of edges with the same q-value forms a forest Eqi = {e ∈
E | q(e) = qi}. The partition of E into such forests {Eq1 , . . . , Eqi , . . . , Eqk} forms an
edge-disjoint maximum spanning forest. More precisely, the set Eqi corresponds to
a maximum spanning forest after removing all forests with smaller q values from the
original graph G. I.e. Eqi induces a maximum spanning forest on G′(V,E′), where
E′ = E \ (Eq1 ∪ . . . ∪ Eqi−1).

In Algorithm 2 we see the concrete procedure. The algorithm takes in an undi-
rected weighted graph G := (V,E, c, ω). At the beginning every vertex is labeled as
unvisited and assigned an r-value of zero. We then perform a breadth-first-search
(BFS) (line 4-10) that traverses the whole graph in a particular order. Within each
iteration we visit a vertex with largest r-value. We then scan (line 4-10) all incident

1The name stems from capacitated forest because of computing forests within capacitated (i.e.
weighted) graphs. It is also the extended version of Nagamochi et al.’s unweighted pendent
FOREST [21].
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edges that lead to an unvisited vertex2 w. The r-value of the regarded vertex w is
then increased by the weight of the scanned edge e. Moreover the current r-value
is assigned to e. This q(e) represents a lower bound on the connectivity λ(e) of
that edge (proven in [21]). After all incident edges are scanned, the currently visited
vertex u is marked as such. CF’s output are the lower bounds q(e). CF has a run
time complexity of O(m+ n log n) [21].

Algorithm 2: CAPFOREST

Input: undirected weighted graph G = (V,E, c, ω)
Output: lower bounds q(e) on λ(e), where e ∈ E

1 label all vertices v ∈ V as unvisited
2 r(v) := 0 ∀v ∈ V
3 q(e) := 0 ∀e ∈ E
4 while there is an unvisited vertex do
5 u← pick unvisited vertex with largest r
6 foreach incident edge e = {u,w}, where w ∈ V do
7 if w is unvisited then
8 r(w) := r(w) + ω(e)
9 q(e) := r(w)

10 mark u as visited

After running Algorithm 2, given a known cut with capacity λ̄, edges with q(e) ≥ λ̄
can again be safely contracted without affecting any strictly smaller cut. To make
this more clear, recall that the connectivity of an edge e = {u,w} is the size of
the smallest possible cut that places u and v on different sides of the cut. With
q(e) being a lower bound for this connectivity, we know that an edge with q(e) ≥ λ̄
cannot be part of a cut with a size strictly smaller than λ̄.

Nagamochi et al. provide an algorithm [21] to compute the minimum cut by
performing CF multiple times. The idea is to start off of a known cut and to
iteratively improve the cut while contracting the graph. As initial cut size λ̄ serves
the minimum degree min

v∈V
deg(v), which is the capacity of the trivial cut {{v}, V \

{v}}. After calling CF, all edges with q(e) ≥ λ̄ are contracted and the smallest
known capacity λ̄ is then updated by setting it to λ̄ = min(min

v∈V ′
deg(v), λ̄), where V ′

is the set of vertices of the contracted graph. This process is iterated until size of the
graph is reduced to |V | < 3. In each at least one edge is contracted, the algorithm
thus terminates and the final λ̄ is the size of a minimum cut of the original graph
G.[21, 22]

In [22] Nagamochi et al. modify this algorithm such that within each CF BFS
they compute a forest of contractible edges, more precisely edges where q(e) > λ̂.

2Note that this is equivalent to scanning all unscanned edges, like it is stated in the original papers
[21, 22] by Nagamochi et al.
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This forest is then contracted in each iteration of the minimum cut algorithm. A
state of the art minimum cut solver that uses this optimized version of the algorithm
is Vienna Minimum Cuts (VieCut) [6, 7, 8, 9, 10].

In context of coarsening we can think of CF’s lower bounds q resp. its r-values
as edge ratings that can be used as a heuristic for the connectivity of an edge (cf.
Section 3.1.1). In the following we will refer to methods based on CF as Nagamochi-
Ono-Ibaraki (NOI)-methods.3

3In reference to the authors of [22].
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4.1 Overview

The Nagamochi-Ono-Ibaraki (NOI) coarsening algorithm engineered within this
work aims to make the multilevel graph partitioning, implemented in Karlsruhe
High Quality Partitioning (KaHIP)[11, 19, 27], of large graphs and social networks
more efficient. KaHIP, basically, takes a graph and parameters specifying number
of partition blocks and balancing of the block sizes as input. The program provides
a number of partitioning algorithms that iteratively solves the partitioning problem
while aiming for the lowest possible cut size, or an approximation to that, under
the given constraints. The output is the partitioned graph. For efficiency reasons
the partitioning is achieved in a multilevel approach for which the overall scheme is
depicted in Section 3.1.

This approach consists of three main phases. In the contraction (coarsening) phase
(which is the phase, this thesis focuses on) we identify a subset M ⊆ E containing
edges that presumably can be contracted while still maintaining the overall global
structure of the graph and without effecting the final cut size by a large margin.
The edges in M are contracted and the procedure is repeated until the number of
nodes |V | falls below a pre-defined threshold. Contraction should quickly reduce
the size of the input and each computed level should reflect the global structure
of the input network. In particular, nodes should represent densely connected sub-
graphs. In the second phase the graph is small enough to be directly partitioned,
which otherwise would be computationally very expensive. After the initial par-
titioning phase, the previously contracted edges are iteratively uncontracted. In
this refinement (uncoarsening) phase, after each uncontraction iteration, nodes are
moved between blocks to improve the cut size or balance of the partitioning. A more
detailed outline of how KaHIP works is given in [11].

The scope of this thesis involves implementing the CAPFOREST (CF) algorithm
by Nagamochi et al. [21][22] into the Size-Constraint Label Propagation (SCLaP)[19]

coarsening of KaHIP. SCLaP is a clustering algorithm that iterates, in random order,
over all nodes in the graph. For each node the neighbors are scanned and the label
of the most strongly connected cluster is assigned to the current node, given that
the cluster size does not exceed a pre-defined size constraint. Each cluster is then
joint to a super vertex. To build the multilevel hierarchy, we repeat the computing
and contracting of the clustering recursively until the number of nodes falls below an
empirically found threshold criterion. In the scope of the thesis we use this procedure
as framework but substitute the label propagation routine with the CF algorithm.
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In each level this algorithm does a breadth-first-search (BFS) calculating a lower
bound q(e) for the connectivity λ(e) of each edge in the graph. A high value of q(e)
suggests a high probability that this edge can be contracted safely without effecting
the cut size of the partitioning (i.e the incident nodes were assigned to the same
block). We present multiple variants using CF’s lower bounds on the connectivity
as a heuristic to decide whether an edge shall be contracted or not.

The implementation of CF itself within this work is based off the exact minimum
cut framework Vienna Minimum Cuts (VieCut)[6, 7, 8, 9, 10].

4.2 NOI-Coarsening

Hiroshi Nagamochi et al. originally proposed[21, 22] CF within the context of the
exact minimum cut problem. Within a minimum cut solver, CF is used as a mean
to find edges that can be contracted while maintaining at least one minimum cut.
Within coarsening of multilevel graph partitioning, we try to achieve a similar goal:
preserving low-connectivity edges that have a higher chance of being inter-block
edges in the final partitioning. This is utterly important since when contracting
such edges, the cut size is already increased before the initial partitioning even
takes place. In order to find such edges, NOI’s algorithm[22] runs CF iteratively (cf.
Section 3.3). It starts with the minimum degree as the smallest known cut λ̄. In each
iteration CF finds edges that can be safely contracted. After the contraction λ̄ is
updated if a smaller cut is found. Since in each execution of CF at least one[22] edge
is contracted without affecting the minimum cut, the algorithm finds the minimum
cut within O(n) runs of CF. Overall, the implementation presented by NOI comes
with a run time complexity of O(mn+ n2 log n)[22].

Due to the nature of graph partitioning, however, the contraction scheme looks
entirely different for coarsening. First of all we have to take the balance constraint
into account so we have to consider the block sizes before contracting any edge. This
also makes the order of contractions relevant. Since once a block is full, incident
edges cannot be contracted any more. Furthermore, a highly scalable multilevel
approach comes with other demands performance wise and making approximations
is a necessity instead of solving the problem exactly. To be competitive we have to
have a runtime complexity similar to SCLaP (O(m + n))[19, 25]. Apart from that,
instances we are interested in, are usually very large graphs that can have a very low
minimum degree and minimum cut, both even can be zero. Thus, the central idea
of the minimum cut contraction scheme of iteratively decreasing the lower bound
for the minimum cut is not applicable to coarsening.

Instead, we are interested in a greedy approach where we run CF only one time (or
a constant number of times) using the lower bound q(e) as a heuristic for connectivity
in order to decide whether an edge is eligible for contraction and/or in which order
edges shall be contracted. By this, we follow the idea of a cluster coarsening scheme
that aims to combine strongly connected groups of vertices. By traversing the graph
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only once via the BFS of CF (cf. algorithm 2), the run time complexity is O(m +
n log n)[21].

Algorithm 3 shows how the NOI-coarsening routine works. The input of the algo-
rithm is an undirected weighted graph together with an upper bound b for the block
size. We start by labeling all vertices as unvisited and all edges as uncontractible.
Moreover, we set the rating function r(·) to zero for all vertices and initialize our
blocks (or clusters) as singletons. I.e each block consists of only one single vertex at
the beginning. We then iterate over the whole graph analogous to the original CF
routine (alg. 2) by Nagamochi et al.[21, 22]. In each iteration of the BFS (line 5 to
13), we pick the unvisited vertex u with the largest rating r(u) (ties are randomly
broken). For this vertex, we scan all incident edges that lead to an unvisited vertex
and decide whether this edge shall be contracted or not. The predicate used here is
left for optimization (cf. Section 4.3). Most importantly, however, we have to guar-
antee that the contraction does not exceed the block sizes implied by the balance
constraint and the coarsening factor (line 9). Therefore we only mark an edge {u,w}
for later contraction if the combined node weight of the blocks, containing u resp. w,
does not exceed the upper bound b if the eligible edge is eventually contracted. The
blocks containing the nodes of the regarded edge are then merged together. As in
algorithm 2, in every BFS iteration, the r-values for the unvisited adjacent vertices
are updated by adding the weight of the respective incident edge (line 12).

Algorithm 3: NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 label all vertices v ∈ V as unvisited
2 label all edges e ∈ E as uncontractible
3 r(v) := 0 ∀v ∈ V
4 initialize blocks as singletons {v} ∀v ∈ V
5 while there is an unvisited vertex do
6 u← pick unvisited vertex with largest r
7 foreach incident edge e = {u,w}, where w ∈ V do
8 if w is unvisited then
9 if combined block weight ≤ b then

10 mark e as contractible
11 merge block containing u and block containing w

12 r(w) = r(w) + ω(e)

13 mark u as visited

14 contract all contractible edges

So far, executing the algorithm without any optimization will just add single
vertices to a block (line 11) till the block is full, i.e. until the upper bound is hit.
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The ”intelligence” of the algorithm only comes from the order of how the vertices
are visited, which is determined by the edge1 rating r. The procedure propagates
contractions along the path of highest r values, which in theory should tend towards
the pursued goal of contracting primarily high connectivity edges. However, along
those paths any adjacent edge is also contracted regardless of its r-value. This
comes as a major caveat since this is likely to negatively influence the final cut of
the partitioning. Nevertheless, this bare version of NOI-Coarsening will serve as a
basis for engineering a more mature coarsening algorithm in the following sections.

4.3 Optimizations

Starting from algorithm 3, an effective way of changing how edges are contracted is
to add a predicate, which has to be fulfilled before an edge is marked as contractible.
Nagamochi et al., in their papers ([21, 22]) introduce the predicate r(w) + ω(e) ≥
min
v∈V

deg(v) in the context of their contraction scheme for finding the minimum cut.

They show[21, 22] that contracting such edges does not effect the minimum cut
(cf. Section 3.3 for intuition). Generally speaking, within coarsening this is not as
powerful as within the exact minimum cut problem as there is no strict guarantee
that excluding edges not fulfilling the predicate will improve the solution (in terms
of the quality of the partitioning). However, by not contracting edges that are of
relatively low weight, it should increase the likelihood of a good partitioning due
to more high connectivity edges within the partition blocks. Another restriction
in comparison to the minimum cut problem is that we also have to handle graphs
with a minimum degree of zero in which case the predicate has no effect at all.
Nevertheless, it is an optimization that comes almost for free, run time performance
wise, and that, theoretically, should have a significant impact when the minimum
degree is relatively large.

In other words, one can imagine this approach as one strategy to set a threshold on
the edge rating r that determines if an edge is contracted. Another way would be to
simply set an empirical threshold or to define a rule. As an example by establishing
the rule that in each BFS iteration of algorithm 3 only the edge with the highest
r-value is contracted, we eliminate the problem of contracting low connectivity edges
along a path of high connectivity edges (as described in previous section).

Analyzing early experiments, we see that a major caveat of our NOI coarsening
implementation is that it tends to produce many blocks with size close to the up-
per bound at first, yielding small isolated blocks primarily consisting of low degree
vertices afterwards.

To tackle this problem, we have to get rid of the low degree vertices. One way is
to preprocess the graph before performing the CF procedure. For this we set a fixed
empirical threshold d for the degree of a vertex. As formulated in algorithm 4, we
iterate over the whole graph and mark a random edge incident to a low degree vertex

1Recall that although r(·) is a function on the set of vertices here, within the specific iteration,
r(w) rates the currently scanned edge {u,w}.
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as contractible. That way, the low degree vertex is guaranteed to be contracted in
the coarsening process.

Algorithm 4: ContractLowDegreeVertices()

Input: G := (V,E, c, ω), blocks, block upper bound b, degree threshold d
Output: partially coarsened graph G′ := (V ′, E′, c′, ω′)

1 forall vertices v ∈ V do
2 if deg(v) ≤ d then
3 Pick a random edge e = {v, w} incident to v
4 if combined block weight ≤ b then
5 mark e as contractible
6 merge block containing u and block containing w

7 contract contractible edges

Another way is to resolve the issue of islands of low degree blocks after performing
CF. Since SCLaP seems not to suffer from this problem, it makes sense to combine
the two approaches. For this purpose we simply perform CF first and perform
SCLaP on the result.

These amongst other considerations that are explained below, lead to the final
variants described in the following section.

4.4 Variants

In order to engineer a NOI-based coarsening algorithm that aims for either state of
the art quality or run time performance or both, different strategies are applied to
optimize and extend the core algorithm outlined in Section 4.2.

4.4.1 Basic-NOI-Coarsening

Algorithm 5 describes the most bare bone variant with only small changes compared
to algorithm 3. We combine the NOI-Coarsening routine as in algorithm 3 with the
optimization in form of the predicate (line 10) mentioned in the previous section.
Additionally, we also incorporate algorithm 4 as preprocessing step in line 5. Thus,
our algorithm takes an empiric threshold d for the degree cut off, until to which we
want to preprocess vertices, as an additional input.

In contrast to algorithm 3, Basic-NOI-Coarsening does not necessarily contract
all edges that are scanned. This comes with the aforementioned desired effect of
potentially preserving low connectivity edges as long as the minimum degree is
not close to zero. However, as soon as we do not immediately mark an edge as
contractible when scanning it, line 13 gets somewhat more complex implementation
wise. Reason for this is that executing algorithm 5 does not simply add single
vertices to a block till the block is full. Imagine that within the CF BFS the currently
visited node has only incident edges that do not fulfill the predicate. With the next
visited node starting to grow a different block, it can eventually happen that an edge
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Algorithm 5: Basic-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 label all vertices v ∈ V as unvisited
2 label all edges e ∈ E as uncontractible
3 r(v) := 0 ∀v ∈ V
4 initialize blocks as singletons {v} ∀v ∈ V
5 ContractLowDegreeVertices(G,T, b, d) // Execute algorithm 4

6 while there is an unvisited vertex do
7 u← pick unvisited vertex with largest r
8 for each edge e = {u,w} incident to u do
9 if vertex w is unvisited then

10 if r(w) + ω(e) ≥ min
v∈V

deg(v) then

11 if combined block weight ≤ b then
12 mark e as contractible
13 merge block containing u and block containing w

14 r(w) = r(w) + ω(e)

15 mark w as visited

16 contract all contractible edges
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between two large blocks is marked for contraction. When merging the two blocks,
where each can consist of multiple nodes, all the affected vertices must be remapped
to the new combined block. A data structure making such merging more efficient
is Union Find , where we extend the data structure to also track the node weight of
the blocks (necessary due to line 11). For a more detailed version of the algorithm
making use of abstract data structures we refer to algorithm 12 in the appendices.

4.4.2 Pre-Sort-NOI-Coarsening

The goal of cluster coarsening algorithms is to contract edges of high connectivity.
In NOI coarsening every contraction is finite - once the blocks are merged (especially
with Union Find), the decision to contract this edge cannot be undone. Applying
algorithm 5 it happens that a high connectivity edge is not contracted since com-
bining the respective blocks would result into exceeding the defined upper bound
block size. The likelihood for this to happen can be reduced by contracting edges
of high connectivity first. Since the edge rating r(v) is a heuristic measure for the
connectivity, it makes sense to sort the edges according to their r-value first and
contract them starting with the highest r-value afterwards. This results in blocks
growing from the locally highest r-value edges. In other words, the contractions are
propagated along the path of the highest r-values until the respective blocks are full.

Algorithm 6 is built in a similar way as the Basic-NOI variant (algorithm 5). Here,
however, the CF routine functions as a pre-sorting of the edges. For this, we define
r : E → N∗ such that it is a direct relation between an edge and its edge rating and
initialize it to zero for all edges (line 4). Within the CF BFS, in line 11, we just
assign the edge rating r(w) directly to the edge.

In the second part (from line 13 on) we iteratively pick the edge with highest
rating r and then check if its eligible for contraction. Eventually the selected edges
are contracted.

4.4.3 Multi-Run-NOI-Coarsening

Another caveat of CF, which pre-sorting alone does not resolve, is that the edge
rating heuristic depends on the order of how the graph is traversed. I.e. runs
with different starting nodes yield different r-values on the same edges. In order to
mitigate this effect, we perform multiple runs and calculate the average edge rating.

The Multi-Run variant shown in algorithm 7 extends the Pre-Sort variant by an
outer for loop that runs the CF routine n times, where n is an additional empiric
input parameter. The edge rating is added up (line 12) for the respective edge in
each run (line 3 to 13). Note that calculating the sum of the r-values is equivalent
to averaging the values since we are only interested in the priority of the edges to
each other. As in algorithm 6, we end up with a sorting that determines the order
of the subsequent contractions.
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Algorithm 6: Pre-Sort-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 label all vertices v ∈ V as unvisited
2 label all edges e ∈ E as uncontractible
3 r(v) := 0 ∀v ∈ V
4 r(e) := 0 ∀e ∈ E
5 ContractLowDegreeVertices(G,T, b, d) // Execute algorithm 4

6 while there is an unvisited vertex do
7 u← pick unvisited vertex u with largest r(u)
8 for each edge e = {u,w} incident to u do
9 if vertex w is unvisited then

10 r(w) = r(w) + ω(e)
11 r(e) = r(w)

12 mark w as visited

13 while there is an uncontractible edge do
14 e← pick uncontractible edge e = {u,w} with largest r(e)
15 if combined block weight ≤ b then
16 mark e as contractible
17 merge block containing u and block containing w

18 contract all contractible edges
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Algorithm 7: Multi-Run-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d, number of runs n

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 ContractLowDegreeVertices(G,T, b, d) // Execute algorithm 4

2 R(e) := 0 ∀e ∈ E
3 for iteration 1 to n do
4 label all vertices v ∈ V as unvisited
5 label all edges e ∈ E as uncontractible
6 r(v) := 0 ∀v ∈ V
7 while there is an unvisited vertex do
8 u← pick unvisited vertex u with largest r(u)
9 for each edge e = {u,w} incident to u do

10 if vertex w is unvisited then
11 r(w) = r(w) + ω(e)
12 R(e) = R(e) + r(w)

13 mark w as visited

14 while there is an uncontractible edge do
15 e← pick uncontractible edge e = {u,w} with largest r(e)
16 if combined block weight ≤ b then
17 mark e as contractible
18 merge block containing u and block containing w

19 contract all contractible edges
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4.4.4 SCLaP-NOI-Coarsening

SCLaP[19, 25] (cf. Section 3.2.1) finds clusters of vertices of high connectivity simply
by assigning random vertices iteratively to the cluster the respective vertex is most
strongly connected to. How strong a connection is, is determined by the sum of the
edge weights connecting the regarded vertex and the respective cluster. Since CF’s
edge rating r(·) is also a heuristic measure for the connectivity and thereby takes
into account the edge weight along multiple edges, it seems promising to combine
the propagation scheme of SCLaP with the more sophisticated heuristic of CF.

Starting off of algorithm 7, in algorithm 8, we perform multiple CF-iterations for
the same reason as stated in the Multi-Run variant (Section 4.4.3). The ratings
R(e) then are all we need for the label propagation scheme that follows in line
14. We initialize our blocks (or clusters) as singletons of V . I.e., at the start each
block consists of only one vertex. We perform multiple label iterations (line 15)
which yields more stable results. Within the while loop in line 17 the actual label
propagation takes place. Starting at some random node, we move the regarded
node u to the block its most strongly connected to by means of the CF-rating, more
formally we move it to the block Vi that maximizes∑

e∈{{u,w}|w∈Γ(u)∩Vi)}

R(e). (4.1)

The sum in Expression 4.1, adds up the R-values of all edges that are running
between the current node u and a particular block Vi. The block that has the
highest sum value, is the one u is moved2 to. Eventually, each cluster is contracted
to a single super vertex in the coarsened graph.

For a more detailed procedure, that elaborates on how to find the block that
maximizes the sum in Expression 4.1, we refer to algorithm 15 in the appendices.

2Sticking to the terms orginally used in [25] and [19], node u is assigned the label of that block.
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4.4 Variants

Algorithm 8: SCLaP-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d, number of CAPFOREST iterations n,
number of SCLaP iterations m

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 R(e) := 0 ∀e ∈ E
2 for CF iteration 1 to n do
3 label all vertices v ∈ V as unvisited
4 label all edges e ∈ E as uncontractible
5 r(v) := 0 ∀v ∈ V
6 ContractLowDegreeVertices(G,T, b, d) // Execute algorithm 4

7 while there is an unvisited vertex do
8 u← pick unvisited vertex u with largest r(u)
9 for each edge e = {u,w} incident to u do

10 if vertex w is unvisited then
11 r(w) = r(w) + ω(e)
12 R(e) = R(e) + r(w)

13 Mark w as visited

14 initialize blocks Vi as singletons {v} ∀v ∈ V , i ∈ I, where I is a suitable
index set

15 for SCLaP iteration 1 to m do
16 label all vertices v ∈ V as unvisited
17 while there is an unvisited vertex do
18 u← pick a random vertex v ∈ V
19 if c(Vi) + c(u) ≤ b then
20 move u to the block Vi that maximizes

∑
e∈{{u,w}|w∈Γ(u)∩Vi)}

R(e)

21 mark u as visited

22 contract block Vi to a single super vertex v ∈ V ′ ∀i ∈ I
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5 Experimental Evaluation

In this chapter we evaluate our algorithms which we described in the previous chap-
ter. In 5.1 we describe the experimental setup including environment and method-
ology used for the experiments. In Section 5.2 we explain the choice of parameters.
Section 5.3 compares quality and run time performance of our algorithms with ex-
isting algorithms.

5.1 Experimental Setup

5.1.1 Implementation Details

The algorithms within this thesis were implemented within the graph partition-
ing framework of Karlsruhe High Quality Partitioning (KaHIP)[11, 27] version 2.10
called KaFFPa. All algorithms discussed in Section 4.4 have been implemented with
C++11. The Algorithms Section in the appendices, gives some more insight on how
the implementation looks like.

5.1.2 Environment

The experiments discussed in the following sections are performed on a machine
with four AMD Opteron 6174 CPUs with 12 cores each. The machine comes with
48 cores in total, each one of it running at a clock speed of 2.2 GHz, and 252 GB
of RAM. The machine runs on Ubuntu 18.04 with Linux kernel version 4.15. The
source code is compiled with gcc version 7.5.0 with g++ compile optimization level
-O3 and run sequentially on a single core.

5.1.3 Methodology

The experiments are performed on the graphs from Walshaw’s benchmark archive
[31] listed in table 5.2 and mostly larger social network graphs shown in table 5.1
ranging up to approximately 1.4 million nodes and 14 million edges.

For the social network benchmarks KaFFPa offers three social configurations, one
prioritizes running time (fastsocial), one quality (strongsocial) and one a compromise
between the two (ecosocial). These configurations use cluster based coarsening, more
precisely Size-Constraint Label Propagation (SCLaP) with Ensemble-Clustering, by
default. This makes it possible to shrink highly irregular graphs more effectively than
the matching based approach used in other configurations. Moreover, the multi-level
framework is tuned particularly towards complex social networks and web graphs
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5 Experimental Evaluation

Graph |V | |E| Max. deg. Avg. deg. Type

p2p-Gnutella04 6 405 29 215 103 9 Peer to peer network
wordassociation-2011 10 617 63 788 332 12 Word associations
PGPgiantcompo 10 680 24 316 205 5 PGP users network
email-EuAll 16 805 60 260 3 282 7 Email connections
as-22july06 22 963 48 436 2 390 4 Router connections
soc-Slashdot0902 28 550 379 445 2 272 27 News social network
loc-brightkite 56 739 212 945 1 134 8 Social network
enron 69 244 254 449 1 634 7 Email connections
loc-gowalla 196 591 950 327 14 730 10 Social network
coAuthorsCiteseer 227 320 814 134 1 372 7 Citation network
wiki-Talk 232 314 1 458 806 100 029 13 User interactions
citationCiteseer 268 495 1 156 647 1 318 9 Citation network
coAuthorsDBLP 299 067 977 676 336 7 Citation network
cnr-2000 325 557 2 738 969 18 236 17 Web graph
web-Google 356 648 2 093 324 5 235 12 Web graph
coPapersCiteseer 434 102 16 036 720 1 188 74 Citation network
coPapersDBLP 540 486 15 245 729 3 299 56 Citation network
as-skitter 554 930 5 797 663 29 874 21 Internet topology graph
amazon-2008 735 323 3 523 472 1 077 10 Product similarity graph
eu-2005 862 664 16 138 468 68 963 37 Web graph
in-2004 1 382 908 13 591 473 21 869 20 Web graph

Table 5.1: Large social network graphs used for experimental evalu-
ation sorted w.r.t. their size |V |.[20][19]

(cf. [19]). We use the less CPU-intensive fastsocial and ecosocial frameworks for the
evaluation of the graphs in table 5.1.

For the Walshaw benchmark configurations we use fast, eco and strong. These
framework configurations target traditional meshlike graphs, which are typically
more regular in terms of degree distribution. Here, the default coarsening scheme is
matching-based (random matchings resp. Global Path Algorithm (GPA) computed
matchings) (cf. [26]). Within the parameter tuning section we present only results
performed with configuration ecosocial for social network graphs resp. eco for Wal-
shaw’s benchmark archive graph collection. We perform partitionings aiming for a
bipartition, k = 16 resp. k = 64 blocks and a balance constraint of three percent
allowed imbalance. For parameter tuning we present the case of k = 16. Each com-
putation is performed 5 times with different random seeds per instance using the
same configuration.
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5.1 Experimental Setup

5.1.4 Performance profiles

In order to compare different methods and to assess their quality and running time,
we use performance profiles[5] (cf. Figure 5.1 to 5.14). Sticking to the notation
originally used by Dolan et al.[5], we use performance profiles to represent the per-
formance of a partitioning method s ∈ S applied onto a set of graph instances P
with respect to the running time t (resp. cut size λ). The performance ratio

rp,s =
tp,s

min {tp,s : s ∈ S}
(5.1)

is the ratio of the performance achieved by a specific method on a particular instance
to the best performance of any method on this particular instance. The lower the
ratio, the better is the partition of graph instance p found by method s. The
best possible performance ratio is 1 being equally good as the best method. For a
particular method we then calculate the cumulative distribution function

ρs(τ) =
1

np
|{p ∈ P : rp,s ≤ τ}|, (5.2)

where for any given threshold τ ∈ R the number of graph instances for which the
performance ratio lies below (or equals) the threshold are counted and divided by
the total number of graph instances np within the test set P. The resulting number
ρs(τ) is the probability that the performance ratio of method s lies within a factor
τ of the ratio of the best method. We plot the probabilities

ρs(τ) : [1, x]→ [0, 1] (5.3)

for each benchmarked method with respect to threshold τ capping its range at a
certain cutoff x.

By comparing the monotonously increasing line plots for different methods, usu-
ally one quickly sees which method performs best. Higher lines indicate higher
performance. There are a few practical ways to look at these plots that help in-
terpreting performance profiles. Firstly, the highest probability at τ = 1 shows the
method that has the most wins based on all instances. Note that intuitively, one
could think that the probabilities at τ = 1 must add up to 1, however, this is not the
case if ties occur, i.e. if there is more than one winner per instance (cf. 5.12 (a) for
an extreme example). Secondly, if we require the method to solve the most instances
within a factor of, say 5, to the best method, we pick at the method that has the
highest probability at τ = 5. In the following sections we highlight the respective
τ values discussed throughout the text by a blue vertical line in the corresponding
plot. Conversely, we can ask for a method that solves, say, 75 percent of the in-
stances efficiently, where efficient means lying within the respective factor of τ . In
this case we look at the y-axis and pick the method which reaches 0.75 first. Such
would be highlighted by a blue horizontal line at P (τ) = 0.75. Last but not least,
as long as a line is highest for some τ , we can derive that the method is the most
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5 Experimental Evaluation

optimal one in some sense. Put even more simply, plotted lines in the top left show
the best results.

5.2 Parameter Tuning

The engineered algorithms (Algorithm 5 to 8) discussed within Section 4.4 contain
iteration numbers and a threshold d for the ContractLowDegreeVertices optimization
(cf. Algorithm 4) as parameters.

All variants contain threshold d as parameter. We only present threshold tuning
for Basic-NOI-Coarsening and SCLaP-NOI-Coarsening since these two variants are
working in an entirely different manner while Pre-Sort-NOI-Coarsening and Multi-
Run-NOI-Coarsening behave similar to Basic-NOI-Coarsing with respect to how the
algorithm traverses the graph. The tuning is performed with KaFFPa’s ecosocial
resp. eco configuration and k = 16 since these settings act as a compromise between
run time performance and quality and representing a more general partitioning than
k = 2 or k = 64. Preliminary testing with other configurations show no surprising
differences with respect to the impact of the tuned parameters.

Multi-Run-NOI-Coarsening and SCLaP-NOI-Coarsening contain iteration num-
bers. Both take in the number of CAPFOREST (CF) runs n, the SCLaP-NOI
variant additionally takes the number of label propagation runs m as input. The
latter parameter is not tuned however since KaFFPa’s default method for social
networks, SCLaP, sets this parameter to 10 by default. For sake of comparability,
we choose m = 10 in our SCLaP-NOI method.

Both parameters to be tuned, threshold d and CF-iterations n, are largely inde-
pendent from each other, we therefore treat them individually by setting d = 0 for
the iteration tuning and n = 10 for the threshold tuning.

5.2.1 Social networks

Number of CF-iterations

Performing partitionings with the Multi-Run-NOI-Coarsening method shows (cf.
Figure 5.1 (a)) that increasing iteration number n tends to increase the quality of the
cut slightly. This can be seen by observing that the lines for 10 (pink) and 5 (purple)
iterations are found in the top left. The pink line shows consistent performance over
all instances, the worst instance only measuring a 13 percent larger cut than the
best result. Whereas the purple line only tops at τ = 1.45, which means that even
with 5 iterations the ”unlucky” case of the CF-breadth-first-search (BFS) traversing
the graph in an unideal order (cf. Subsection 4.4.3 for the theoretical background)
occurs from time to time1 yielding a 45 percent worse cut size than the best result.

From Figure 5.1 (b), we can see that the impact of performing multiple runs on the
overall running time is significant. While for 80 percent of instances, the achieved
running time of the algorithm performing 10 iterations is still within 60 percent

1Remember, we use 5 random seeds for each configuration.
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(c) SCLaP-NOI-Coarsening - Quality
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(d) SCLaP-NOI-Coarsening - Running time

Figure 5.1: Performance profiles comparing different CF-iteration numbers n on social net-
work graphs with KaFFPa’s ecosocial configuration, k=16 and allowed imbalance
of 3%.

of the algorithm performing only one iteration, the partitioning of a few instances
takes 3.5 to 4.5 times as long. Since the Multi-Run variant aims for high quality
by distinguishing itself from the Basic variant by performing multiple iterations
and because we want to diminish the risk of suboptimal graph traversal, we choose
n = 10 for this method.

As for the SCLaP-NOI-Coarsening method, Subfigure 5.1 (c) shows a slightly
smaller impact of increasing the iteration number than in the Multi-Run case (Sub-
figure (a)). A quality performance decrease of about 10 percent has to be expected
due to suboptimal graph traversal. Furthermore, the influence on the running time
is more drastic in the SCLaP-NOI case. More precisely Subfigure (d) shows that
only 60 percent of instances lie within a running time increase of factor 2.5 for the
10 iteration configuration and at least all instances are solved within this factor for
the 3 iteration configuration (orange). Due to the minor cut size decrease but steep
increase in running time, we settle for n = 3 mitigating the occurrence of ”unlucky”
graph traversals while the running time increase is still within reasonable bounds.

ContractLowDegreeVertices threshold

Within all variants (cf. Algorithm 5 to 8) contracting low degree vertices is per-
formed at a certain threshold d for the vertex degree. Subfigure 5.2 (a) and (c) show
that contracting low degree vertices does not significantly improve cut performance.
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Looking at the raw numbers (not shown) for each instance reveals that a significant
cut performance gain is only seen with the loc-brightkite instance (cf. table 5.1).
However, these results are not surprising since the optimization is based on analyzing
this particular graph showing loosely connected areas in the graph structure.

It stands out that the optimization yields a large increase in run time performance
for the Basic-NOI-Coarsening variant. Contracting the nodes being within the lowest
0.1% percentile of node degree results in the best run time performance within a
factor 1.5 for all instances and outperforms the method without this optimization
(d = 0) by a factor of up to 4.2 on some instances as can be seen in Subfigure
5.2 (b). The more than significant running time decrease can be observed on several
actual social network graphs and email connection networks. Apparently, several of
these social network graphs contain low degree structure elements, where our Basic-
NOI routine (and the related Pre-Sort and Muti-Run variant) hold up longer before
finding a similar good cut than without the optimization. The lines in Subfigure (a)
are mostly coinciding from τ = 1.1 onwards. Thus, we expect performance decrease
to be bounded within a 10 percent margin.

As the Basic variant aims for maximum speed, a threshold of 0.1 percent (i.e
d = 0.001) is chosen for Basic-NOI-Coarsening. However, since some variants do
not benefit from this optimization and 60 percent of graph instances display a cut
performance decrease (cf. values at τ = 1.0 in Subfigure (a) and (c)), we set the
threshold to zero for the remaining variants.

5.2.2 Walshaw benchmark graphs

Number of CF-iterations

Comparing different iteration numbers n on Walshaw instances shows similar results
like on the social network graphs. The cut performance differences are mostly within
a 10 percent margin. However, the increase is more clearly visible than in the social
network case (compare Subfigures 5.3 (a) and (c) with Subfigures 5.1 (a) and (c)).
The running time increase is very similar as can be seen comparing Subfigures 5.3
(b) and (d) with Subfigures 5.1 (b) and (d). We, thus, come to same conclusions as
before and set n = 10 for the Multi-Run variant and n = 3 for the SCLaP method.

ContractLowDegreeVertices threshold

In contrast to the observations regarding threshold tuning for the collection of social
network instances in the previous subsection, running the Walshaw experiments with
a high threshold d consistently decreases the cut found by Basic-NOI-Coarsening
(Subfigure 5.4 (a)). Not only do partitionings with higher threshold d show better
cut performance on most instances (see τ=1) but also their performance is consistent
- e.g. the d = 10 configuration is always best within a 10 percent margin. Runs with
low contraction threshold appear to have problems to find a good cut on some in-
stances. On one particular graph, finan512, low threshold methods yield a 50 to 100
percent worse cut (not shown in Subfigure (a) since we cut off at τ = 1.25). This is
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(c) SCLaP-NOI-Coarsening - Quality
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Figure 5.2: Performance profiles comparing different thresholds for the ContractLowDe-
greeVertices optimization on social network graphs with KaFFPa’s ecosocial
configuration, k=16 and allowed imbalance of 3%.

caused rather by the high variance the Basic-NOI method yields on this graph than
setting a specific threshold as raw data imply. The graph is further discussed in the
next section. Looking at Subfigure (b), we see that the higher threshold methods
tend to be faster. Although this is not as clear as in the social network case, it can
be observed at τ = 1 and the point where they top out (P (τ) = 1). Again, lower
threshold methods have problems finding the cut being almost 3 times slower (not
shown due to the cut off). We believe that there is a different reason for the de-
scribed improvements using the ContractLowDegreeVertices optimization than the
ones seen in the social network case. The LowDegreeVertexOptimization is origi-
nally designed for graphs with dense areas and few low degree vertex areas that we
can contract without distorting the larger clusterings. We find this structure rather
in social network graphs than in Walshaw’s collection that contains mostly graphs
from technical and physics applications, which are far less organized in clusters but
show meshlike structures. However, some Walshaw graphs appear to be coarsened
more effectively by aggressively contracting portions of the graph.

As can be seen in Subfigure 5.4 (c), increasing the threshold for the SCLaP-NOI
method tends to decrease quality of the cut noticeably (cf. τ = 1) even for smaller
thresholds with barely significant differences in running time (Subfigure (d)). Only
the improvement on the worst case instances discussed in the previous paragraph
can also be observed for the SCLaP-NOI variant.
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(c) SCLaP-NOI-Coarsening - Quality
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Figure 5.3: Performance profiles comparing different CF-iteration numbers n on Walshaw
graphs with KaFFPa’s eco configuration, k=16 and allowed imbalance of 3%.

Concluding, on Walshaw instances we set d = 0.1 (we contract the lowest 10 per-
cent percentile of nodes with respect to their degree) for the Basic-NOI variant
and its related variants (Pre-Sort-NOI and Multi-Run-NOI). For the SCLaP-NOI
method we do not use the optimization, i.e. we set d = 0.

5.3 Comparison with Existing Algorithms

We assess quality and run time performance by comparing our coarsening variants
presented in Section 4.4 and letting them compete with KaFFPa’s default coarsening
method on both social networks and smaller meshlike graphs from Walshaw’s bench-
mark archive. Since our coarsening methods are implemented within the KaFFPa
framework, we can compare cut size and running time of the coarsening methods
within each of the respective framework configurations. The results are presented as
performance profiles, the raw cut size and running time data can be found in the ap-
pendices in Section B. There we include all cut sizes and running time measurements
for the social network instances - due to the vast amount of data on the Walshaw
archive graphs, we show the raw data only for the high quality configuration strong.
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Figure 5.4: Performance profiles comparing different thresholds for the ContractLowDe-
greeVertices optimization on Walshaw graphs with KaFFPa’s eco configuration,
k=16 and allowed imbalance of 3%.

5.3.1 Social networks

k = 2

As we can see from Figure 5.5, SCLaP-NOI-Coarsening clearly shows the best bi-
partitioning quality out of our own methods but overall, the algorithm does not
reach the cut performance of the state-of-the-art coarsening (default). Looking at
τ = 1 in the fastsocial benchmark (Subfigure (a)), we see that for around 83 percent
of instances KaFFPa’s default method finds the smallest cut whereas for around
10 percent of instances our SCLaP-NOI-Coarsening method finds the smallest cut.
Pre-Sort-NOI-Coarsening is best on a few instances while Basic-NOI-Coarsening and
Multi-Run-Coarsening never find the smallest cut.

Using the ecosocial framework, Subfigure (b) shows a similar picture but SCLaP-
NOI-Coarsening method comes closer to state-of-the-art by achieving always the
best cut within a factor of 2.3. For both configurations, fastsocial and ecosocial, it
stands out that the Pre-Sort and Multi-Run variant do not show any significant cut
performance increase over the simpler Basic-NOI-Coarsening method. It appears
that the order in which CF-BFS traverses the graph does not matter. This is al-
ready indicated to some extent by the observations in the parameter tuning section,
where varying the number of CF-iterations shows little impact on the cut size (cf.
Subsection 5.2.1). SCLaP-NOI has a somewhat larger cut than KaFFPa’s default
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Figure 5.5: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on social network graphs with k=2 and al-
lowed imbalance of 3%.

method most of the times. On a few graphs found in table 5.1 the two methods are
on par. There can be seen no particular pattern as to why, except that all of those
are rather smaller less dense graphs. One instance stands out - on the Email con-
nection network graph enron the SCLaP-NOI variant finds a 33 percent smaller cut
using the fsocial configuration (see table 2). Otherwise the graph shows no extreme
irregularities.

It strikes that in general the more complex SCLaP-NOI coarsening, using the CF
rating, does not beat the more straight forward SCLaP (KaFFPa default) approach.
However, from theory perspective the CF rating heuristic has no strict advantage
in the general decision process of the SCLaP routine (cf. Sections 3.2.1, 3.3 and
Chapter 4 for more theoretical background). The strength of the CF heuristic is
rather that the rating contains information on the connectedness over a distance
greater than one. A possible explanation for the underwhelming performance on
the exclusively unweighted benchmark graphs could, thus, be that CF cannot play
to his strength in the unweighted case since the impact of the far distance connect-
edness can be much higher in (edge-)weighted structures. It is plausible that in
the unweighted case less complex approaches like adding the processed vertex to
the largest block, as it is done by SCLaP, yield better results. We did some initial
testings on a very small weighted example graph. In this instance the test results
(not shown) are in favor of the SCLaP-NOI method, which finds a smaller cut than
SCLaP in the default configuration. The result is very consistent with a standard
deviation of zero for the performed NOI runs. For any conclusive statement proper
evaluation of weighted graphs is needed. We leave this for future work and focus on
the presented benchmark graphs within the scope of this thesis.

Figure 5.6 shows mixed results for NOI-Coarsening with respect to running time.
On the one hand Basic-NOI-Coarsening is faster than KaFFPa’s state-of-the-art
coarsening on about 70 percent (cf. τ = 1 in (a)) of instances using the fastsocial
framework, on the other hand KaFFPa’s default method is more consistent never
exceeding double the running time of Basic-NOI-Coarsening while the more sophis-
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Figure 5.6: Performance profiles comparing running time of engineered variants and KaFFPa
state-of-the-art coarsening (default) on social network graphs with k=2 and al-
lowed imbalance of 3%.

ticated NOI variants run much slower overall. Moreover, all NOI methods perform
vastly slower on certain social network graphs, which in extreme cases results in
a running time difference of factor 100 or more. But only for methods without
the LowDegreeVertexOptimization (cf. discussion in Subsection 5.2.1). Out of our
methods Basic-NOI-Coarsening is the fastest most of the time. This is expected
since it is the only variant with the said optimization. Further testing shows that
the LowDegreeVertexOptimization yields a run time performance increase as large
by a factor of almost 90 for the social network instance loc-gowalla.

k = 16

The quality benchmarking results of solving the partitioning problem with k = 16
in Figure 5.7 show the same tendencies as with k = 2 (compare Figure 5.5), the
performance throughout the different methods is much more similar though. SCLaP-
NOI-Coarsening finds the smallest cut for all instances within a margin of 50 percent
using the fastsocial configuration and only a margin of 30 percent for the ecosocial
configuration.

Similar can be said for comparing the run time performance of the k = 16 parti-
tioning in Figure 5.8 with the analogous k = 2 experiments (Figure 5.6). This means
worst case performance is bounded by a somewhat smaller factor than in the bipar-
titioning case. However, KaFFPa’s default method is even a bit more dominant.
While for the fast social configuration Basic-NOI-Coarsening is still competitive,
using the ecosocial configuration, SCLaP is fastest on most instances. Interestingly,
for the ecosocial configuration the SCLaP-NOI variant tends to be the fastest out
of the NOI-Coarsening methods.

k = 64

In Subfigure 5.9 we see that cut performance differences between the default method
and SCLaP-NOI-Coarsening are within an 18 percent margin at maximum. Still,
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Figure 5.7: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on social network graphs with k=16 and
allowed imbalance of 3%.
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Figure 5.8: Performance profiles comparing running time of engineered variants and KaFFPa
state-of-the-art coarsening (default) on social network graphs with k=16 and
allowed imbalance of 3%.

KaFFPa’s default yields the better cut on most instances. Furthermore, the other
three methods show less extreme cut sizes but the order of which solver is best
and which is worst remains the same. Overall, we conclude that with increasing k,
results get more similar quality wise.

Also in terms of running time differences are less extreme. However, Basic-NOI-
Coarsening falls behind the SCLaP-based methods also with the fastsocial configu-
ration.

5.3.2 Walshaw benchmark graphs

k = 2

Comparing the cut performance on Walshaw’s benchmark instances of the different
coarsening methods (cf. Figure 5.11) shows that as in the social network case SCLaP-
NOI-Coarsening is clearly the best out of our own variants. SCLaP-NOI-Coarsening
is competing with KaFFPa’s state-of-the-art solver with each of the three tested
framework configurations. Both find the best cut about 50 percent of the time for the
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Figure 5.9: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on social network graphs with k=64 and
allowed imbalance of 3%.
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Figure 5.10: Performance profiles comparing running time of engineered variants and
KaFFPa state-of-the-art coarsening (default) on social network graphs with
k=64 and allowed imbalance of 3%.

eco configuration while for fast SCLaP has a slight advantage. With configuration
strong, both competing methods find the best cut more often than not. At τ = 1
(Subfigure (a)), we see that the fractions do not add up to 1 but exceed 1. This
is due to both methods finding the same best (possibly minimum) cut on the same
instances. For 90 percent of instances the other three variants solve the partitioning
with maximally double the cut size independent of configuration.

A particular instance, however, seems to be solved very poorly quality wise by
the Basic, Pre-Sort and Multi-Run method but only with fast configuration. This
instance, finan512, is a financial portfolio optimization graph that shows no extreme
irregularities. Oddly, while with fast configuration Basic-NOI-Coarsening is 14 times
slower than SCLaP-NOI and default, with eco and strong configuration Basic-NOI
catches up to factor 2 and Multi-Run-NOI and Pre-Sort-NOI even find the best
cut (cf. Table 1 in the appendices). Comparing the different methods in the raw
data (not shown), it strikes that the standard deviation is extremely high for the
Basic variant. Pre-Sort and Multi-Run are much more stable and achieve an average
standard deviation of zero in eco and strong. This trend can be seen, even though to
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Figure 5.11: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on Walshaw graphs with k=2 and allowed
imbalance of 3%.

a lesser extent, on several other Walshaw instances. Apparently, in contrast to the
social network experiments, order of graph traversal during the CF-BFS matters a
lot with these smaller meshlike graphs. More general, highly regular graphs like cti
and fe square show good results for all methods. Only with increased irregularity,
SCLaP-NOI coarsening and the matching based default coarsening stand out.

In terms of running time, the three benchmarked framework configurations show
slightly different results. Subfigure 5.12 (a) shows that KaFFPa’s default method is
the fastest most of the times, followed by Basic-NOI-Coarsening and Pre-Sort-NOI-
Coarsening - SCLaP-NOI-Coarsening and Multi-Run-Coarsening are much slower
when using the fast configuration. Since with the fast configuration smaller instances
are solved within a very short time close to measuring accuracy, values at τ = 1
are less meaningful. Moreover, many ties occur at the smallest measured running
times, thus values at τ = 1 add up to more than 1. Looking at Subfigure (b), we
see that Basic-NOI-Coarsenings run time performance is on par with the default
method, otherwise the order remains the same. Using the strong variant (Subfigure
(c)), all NOI variants except Multi-Run excel. It stands out that for the strong
configuration SCLaP-NOI-Coarsening performs neck-at-neck with state-of-the-art
quality wise while solving the partitioning consistently in half the time.

Unexpectedly, the outlier instance that can be seen in 5.12 (c) for Basic-NOI-
Coarsening is the highly regular graph fe sphere. Although Basic-NOI finds the
best cut (ex aequo with SCLaP-NOI and default), it takes 20 times faster than
the fastest method, which is SCLaP-NOI. While with social network graphs poor
run time performance often goes hand in hand with a poor cut, for the Walshaw
experiments, this is not the case. More general, we have to note that Basic-NOI-
Coarsening is rather unstable.
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Figure 5.12: Performance profiles comparing running time of engineered variants and
KaFFPa state-of-the-art coarsening (default) on Walshaw graphs with k=2 and
allowed imbalance of 3%.
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Figure 5.13: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on Walshaw graphs with k=16 and allowed
imbalance of 3%.

k = 16

Partitioning into 16 blocks shows a similar picture (cf. 5.13) as with bipartition-
ing, with the difference being however that KaFFPa’s default method performs
marginally better quality wise than SCLaP-NOI. For all three configurations this
difference amounts to about 10 percent at maximum in 90 percent of instances.

Run-time-wise (cf. 5.14), Basic-NOI-Coarsening and Pre-Sort-NOI-Coarsening
are even more dominant than in the k = 2 case being always faster than the de-
fault method. Interestingly, SCLaP-NOI variant performs very well with the strong
framework (Subfigure (c)) while the Basic and the Pre-Sort variant fall somewhat
behind.
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Figure 5.14: Performance profiles comparing running time of engineered variants and
KaFFPa state-of-the-art coarsening (default) on Walshaw graphs with k=16
and allowed imbalance of 3%.
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Figure 5.15: Performance profiles comparing cut size of engineered variants and KaFFPa
state-of-the-art coarsening (default) on Walshaw graphs with k=64 and allowed
imbalance of 3%.

Again, as with k = 2, Basic-NOI-Coarsening underperforms on the same graphs
as in the k = 2 graph, which shows that it is not a random outlier, even though the
performance difference is not as extreme as in the bipartitioning case.

k = 64

As within the social network experiments, we also see a trend here towards more
similar results when further increasing k. For k = 64, the cut performance difference
between SCLaP-NOI and default method is less than 10 percent on most instances
(cf. Figure 5.15). The overall order of the methods in terms of quality is very similar
to the k = 16 case. Looking at the running time in Figure 5.16 we find almost the
same image as with k = 16.
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Figure 5.16: Performance profiles comparing running time of engineered variants and
KaFFPa state-of-the-art coarsening (default) on Walshaw graphs with k=64
and allowed imbalance of 3%.
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Graph Number of Nodes |V | Number of Edges |E| Max. degree Avg. degree

add20 2 395 7 462 123 6
data 2 851 15 093 17 11
3elt 4 720 13 722 9 6
uk 4 824 6 837 3 3
add32 4 960 9 462 31 4
bcsstk33 8 738 291 583 140 67
whitaker3 9 800 28 989 8 6
crack 10 240 30 380 9 6
wing nodal 10 937 75 488 28 14
fe 4elt2 11 143 32 818 12 6
vibrobox 12 328 165 250 120 27
bcsstk29 13 992 302 748 70 43
4elt 15 606 45 878 10 6
fe sphere 16 386 49 152 6 6
cti 16 840 48 232 6 6
memplus 17 758 54 196 573 6
cs4 22 499 43 858 4 4
bcsstk30 28 924 1 007 284 218 70
bcsstk31 35 588 572 914 188 32
fe pwt 36 519 144 794 15 8
bcsstk32 44 609 985 046 215 44
fe body 45 087 163 734 28 7
t60k 60 005 89 440 3 3
wing 62 032 121 544 4 4
brack2 62 631 366 559 32 12
finan512 74 752 261 120 54 7
fe tooth 78 136 452 591 39 12
fe rotor 99 617 662 431 125 13
598a 110 971 741 934 26 13
fe ocean 143 437 409 593 6 6
144 144 649 1 074 393 26 15
wave 156 317 1 059 331 44 14
m14b 214 765 1 679 018 40 16
auto 448 695 3 314 611 37 15

Table 5.2: Walshaw benchmark graphs sorted w.r.t to their size
|V |.[31]
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6 Discussion

6.1 Conclusion

During this thesis we engineered four Nagamochi-Ono-Ibaraki (NOI) based coars-
ening algorithms following two different approaches. The first one in its most ba-
sic version directly contracts edges during the NOI routine. The second approach
followed the idea of providing a NOI based edge rating for Size-Constraint Label
Propagation (SCLaP) algorithm.

Out of the methods following the first approach (Basic-NOI, Pre-Sort-NOI and
Multi-Run-NOI), the Basic-NOI-Coarsening variant is the most promising. The
enhancements in the other two variants did not improve the size of the cut signif-
icantly enough to justify the running time increase. Basic-NOI-Coarsening showed
promising results in terms of running time in faster configurations of KaFFPa while
SCLaP-NOI-Coarsening showed much higher cut performance than our other meth-
ods.

On social network and web graphs Basic-NOI-Coarsening cannot compete with
state-of-the-art in terms of quality though finding cuts in the same amount of time
and being much faster than our other methods. On the more traditional graphs of
Walshaw’s benchmark archive, Basic-NOI-Coarsening finds a faster cut than state-
of-the-art on all instances for high k partitioning (k = 64) when using the fast
KaFFPa framework configuration. The running time advantage ranges from 20
percent to a factor of 4. The cut size lies always within a 50 percent margin of
the state-of-the-art cut. On lower k partitionings performance for both, quality and
running time, decreases relatively.

SCLaP-NOI-Coarsening routine could not improve state-of-the-art results on so-
cial network and web graphs. On high k partitionings (k = 64) our algorithm yields
a cut that is 7 to 8 percent larger at the median and 16 to 18 percent larger in the
worst case depending on the configuration. The algorithm takes significantly longer
to find the cut. On lower k partitionings worst case performance is further away
from state-of-the-art performance.

For traditional rather meshlike graphs our SCLaP-NOI algorithm is competitive.
Bipartitioning with the high quality configuration of KaFFPa’s framework is neck-at-
neck with KaFFPa’s state-of-the-art algorithm while our method achieves a median
performance improvement of approximately 100 percent in terms of running time.
For higher k partitionings our algorithm falls behind a few percent (approx. 10
percent at maximum) quality wise while still partitioning instances two times faster.
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6 Discussion

6.2 Future Work

Our most promising coarsening algorithms Basic-NOI-Coarsening and SCLaP-NOI-
Coarsening still leave room for improvement. The former is interesting in terms
of finding cuts in a short amount of CPU time. Further optimizations and analy-
sis should, thus, focus towards fast execution time. SCLaP-NOI-Coarsening needs
proper evaluation on weighted graphs in order to verify if the NOI rating can im-
prove conventional SCLaP-Coarsening. Initial testing showed promising first results.
Moreover, both, NOI and SCLaP-routine, can be parallelized to further improve run
time performance.

Furthermore, during the course of this thesis we tried to optimize our algorithms.
Our LowDegreeVertexOptimization improved Basic-NOI-Coarsening performance
for both, more irregular mostly larger social network graphs as well as for smaller
meshlike graphs. Thus, incorporating this optimization within state-of-the-art al-
gorithms could potentially further improve partitioning performance. For SCLaP-
NOI-Coarsening the optimization improved the performance only on graphs with few
low density areas that get isolated during the coarsening process. Further analysis
is needed as to how to avoid isolating these structure elements without impacting
performance on other graphs.
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Acronyms

BFS breadth-first-search
CF CAPFOREST
GPA Global Path Algorithm
KaHIP Karlsruhe High Quality Partitioning
LPA Label Propagation Algorithm
NOI Nagamochi-Ono-Ibaraki
PE processing elements
SCLaP Size-Constraint Label Propagation
SHEM Sorted Heavy Edge Matching
VieCut Vienna Minimum Cuts
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Glossary

adjacent Two nodes v and u are adjacent to each other if there is an
edge e = {u, v} connecting them. Two edges e and f are
called adjacent if they share the same node, i.e. e ∩ f 6= ∅.

balance constraint Within graph partitioning, a balance constraint L defines
the allowed deviation of the weight of a block Vi from the av-
erage block weight. Formally, c(Vi) ≤ L := (1+ε) c(V )

k ∀i ∈
{1, . . . , k}, where ε ∈ R≥0.

capacity The capacity ω(S) is the combined weight of the cut edges
determined by a cut C = {S, V \ S}. It is the size of the
cut. Formally, ω(S) =

∑
e∈{{u,v}|u∈S,v∈V \S}

ω(e).

coarsening Coarsening a graph means reducing a graph to an instance
of smaller size. This is achieved by finding edges that can
be contracted by calculating a matching. Another approach
is to perform a clustering, where clusters are eventually con-
tracted to super vertices. In context of multi level partition-
ing this is repeated till the graph is small enough for initial
partitioning.

connected A connected graph is a graph where all vertices are con-
nected with each other by paths (any amount of edges).

connected component A (connected) component is a sub graph where all vertices
are connected with each other by paths.

contraction The contraction of an edge e = {u, v} can be defined as
replacing the vertices of the edge e by a new vertex w, this
vertex has the combined weight c(w) = c(u) + c(v) of the
original vertices. Expressed more intuitively, the vertices are
merged. If by merging such two vertices, there are produced
parallel edges e1 and e2, these are merged too, i.e. replaced
by a new edge f that has their combined weight c(f) =
c(e1) + c(e2).

cut A cut of a graph G := (V,E) is a bipartition C = {S, V \S}
of the vertex set V . The cut implies a set of edges F = {e =
s, t|s ∈ S ∧ t ∈ V \ S} that connect the two sets. The name
”cut” refers to ”cutting through” these edges.

cyclic A cyclic path is a path that allows equal nodes in the se-
quence of vertices. If this is the case, we say the path (and
its graph) contains cycles.
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Glossary

degree The degree of a vertex v is the number of incident edges.
Equivalently, it is also the number of neighbors, formally
deg(v) := |{u : {u, v} ∈ E}|.

edge An edge connects two (except in hyper graphs) nodes in a
graph G := (E, V ) and can be represented as a pair of nodes
e = {u, v}, where e ∈ E and u, v ∈ V .

edge-connectivity The edge-connectivity or just connectivity λ(G) of a graph
G is the cut size of the mincut, i.e. λ(G) = min

S⊂V
ω(S). The

edge-connectivity (or just connectivity) of two vertices s, t
refers to the the {S, V \S} with s ∈ S and t ∈ T . Formally:
λ({u, v}) = min

s∈S∧t∈V \S
ω(S).

edge-disjoint Edge-disjoint sub graphs do not share a common edge. Edge
disjoint maximum spanning trees cover all vertices of the
graph while each pair of trees does not have a shared edge.

forest A forest is a graph where each connected component is a
tree.

graph A graph G consists of a set of nodes V and a set of edges
E, the nodes can be connected by edges e = {u, v}, where
e ∈ E and u, v ∈ V .

graph partitioning A graph partitioning devides a graph into k blocks where
each block should be of similar or equal size.

incident A vertex v and an edge e = {u,w} are considered incident
if e is connected to v, i.e v = u ∨ v = w.

initial partitioning Initial partitioning refers to the phase in multilevel parti-
tioning, where the actual partitioning takes place.

inter-edge In context of coarsening, clustering or partitioning, we deal
with multiple vertex blocks Vi. An edge {v, w} running be-
tween two different blocks is called inter-edge. I.e. for such
edges holds v ∈ Vi =⇒ w /∈ Vi.

intra-edge In context of coarsening, clustering or partitioning, we deal
with multiple vertex blocks Vi. An edge {v, w} running
within one and the same block is called intra-edge. I.e. for
such edges holds v ∈ Vi =⇒ w ∈ Vi.

matching A matching within a graph G := (V,E) is a set of edges
M ⊆ E for that holds that any two edges within M are not
adjacent to each other, i.e do not share a vertex.

maximum degree Largest degree in the graph, i.e. max
v∈V

deg(v).

minimum cut The minimum cut refers to (one of) the smallest possible
cut(s), i.e Cmin = min

S⊂V

∑
e∈{{u,v}|u∈S∧v∈V \S}
ω(e).

minimum degree Smallest degree in the graph, i.e. min
v∈V

deg(v).
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Glossary

neighborhood The neighborhood of a vertex v is defined as
Γ(v) = {u : {u, v} ∈ E} which denotes the set of nodes
adjacent to the vertex v.

node A node or vertex v is a unit in a graph G := (V,E) that can
have multiple edges e = {u, v} (where e ∈ E and u, v ∈ V )
connecting it to other nodes.

path A path is a sequence of edges (e1 = {v1, v2}, . . . , ei =
{vi, vi+1}, . . . en−1 = {vn−1, vn}) that determines a corre-
sponding sequence of vertices ({v1, . . . , vi, . . . , vn}) where
any vi and vj and in consequence also any ei and ej within
the sequences are pairwise distinct. We speak of a path
in a graph G := (V,E) if for all edges holds ei ∈ E with
i ∈ {1 . . . n− 1}.

refinement Within multilevel graph partitioning, during refinement, the
previously contracted edges are iteratively uncontracted and
quality of the partitioning is improved (refined) in each it-
eration.

spanning tree A spanning tree of a graph G := (V,E) is a subgraph G′ :
(V,E′) that is a tree and contains every vertex of V .

subgraph A subgraph of a graph G := (V,E) is a graph G′ := (V ′, E′)
with V ′ ⊆ V and E′ ⊆ E.

tree A tree is a connected graph without cyclic paths.
undirected An undirected graph is a graph in which the edges have no

direction (or both directions). I.e. formally it then holds for
an edge e = {u, v} = {v, u}.

Union Find An abstract data structure for managing set partitions.
V-cycle Performing multiple iterations of multilevel graph partition-

ing, one iteration is called a V-cycle.
vertex Vertex is used interchangeably with node.
weighted A weighted graph G := (V,E, c, ω) has a weight c(v) as-

signed to each vertex v ∈ V , where c : V → N. Each edge
e ∈ E is assigned a weight ω(e), where ω : E → N∗.
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Halldórsson. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 469–
480. isbn: 978-3-642-23719-5.

27. P. Sanders and C. Schulz. “Think Locally, Act Globally: Highly Balanced
Graph Partitioning”. In: Proceedings of the 12th International Symposium on
Experimental Algorithms (SEA’13). Vol. 7933. LNCS. Springer, 2013, pp. 164–
175.

28. K. Schloegel, G. Karypis, and V. Kumar. “Graph Partitioning for High-Performance
Scientific Simulations”. In: Sourcebook of Parallel Computing. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2003, pp. 491–541. isbn: 1558608710.

29. K. Schloegel, G. Karypis, V. Kumar, J. Dongarra, I. Foster, G. Fox, K. Kennedy,
A. White, and M. Kaufmann. “Graph Partitioning for High Performance Sci-
entific Simulations”, 2000.

30. C. Schulz. “High Quality Graph Partitioning”. PhD thesis. Karlsruher Instituts
für Technologie, 2013.

31. A. J. Soper, C. Walshaw, and M. Cross. “A combined evolutionary search and
multilevel optimisation approach to graph-partitioning”. Journal of Global Op-
timization 29:2, 2004, pp. 225–241.

32. M. Toulouse, K. Thulasiraman, and F. Glover. “Multi-level Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Application to Graph
Partitioning”. In: Euro-Par’99 Parallel Processing. Ed. by P. Amestoy, P.
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Appendices

A Algorithms

Procedure ContractLowDegreeVertices

Input: undirected weighted graph G := (V,E, c, ω), block upper bound b,
Union Find partition S, degree threshold d

Output: Union Find data set S
1 forall vertices v ∈ V do
2 if deg(v) ≤ d then
3 Pick a random edge e = {v, w} adjacent to v
4 if UnionFind.Size(S, v) + UnionFind.Size(S,w) ≤ b then
5 unionFind.Union(e)

6 return S

Algorithm 9: CAPFOREST

Input: undirected weighted graph G := (V,E, c, ω)
Output: lower bounds q(e) on λ(e), where e ∈ E

1 Vunv := V // label all vertices as unvisited

2 r(v) := 0 ∀v ∈ V
3 while Vunv 6= ∅ do
4 u := argmax

v∈Vunv

r(v) // pick unvisited vertex with largest r

5 foreach e = {u,w}, where w ∈ V do
6 if w ∈ Vunv then
7 r(w) := r(w) + ω(e)
8 q(e) := r(w)

9 Vunv = Vunv \ {u} // mark u as visited
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Appendices

Algorithm 10: NOI-based coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 Vunv := V // label all vertices as unvisited

2 Econ := ∅
3 r(v) := 0 ∀v ∈ V
4 Block(v) := {v} ∀v ∈ V // initialize blocks as singletons

5 while Vunv 6= ∅ do
6 u := argmax

v∈Vunv

r(v) // pick unvisited vertex with largest r

7 foreach e = {u,w}, where w ∈ V do
8 if w ∈ Vunv then
9 if ω(Block(u)) + ω(Block(w)) ≤ b then

10 Econ = Econ ∪ {e} // mark e as contractible

// combine blocks of u and w

11 Block(v) = Block(u) ∪Block(w) ∀v ∈ Block(u) ∪Block(w)

12 r(w) = r(w) + ω(e)

13 Vunv = Vunv \ {u} // mark u as visited

14 Contract(Econ) // contract all contractible edges
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A Algorithms

Algorithm 11: NOI-based coarsening using Priority Queue and Union Find

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 Label all vertices v ∈ V as unvisited
2 Label all vertices v ∈ V as unseen
3 r(v) := 0 ∀v ∈ V
4 UnionFind.Init(S, V ) // Initialize Union Find structure with each

vertex v ∈ V representing its own class in set S
5 while there is an unvisited vertex do
6 PriorityQueue.Init(S, r) // Initialize a Priority Queue using

rating function r(·) as priority key

7 Pick random unvisited vertex v as starting node
8 PriorityQueue.Insert(S, v, 0) // Insert vertex v with key r(v) = 0

into the priority queue

9 while S is not empty do
10 u := PriorityQueue.ExtractMax(S) // Get the vertex with the

largest r and remove it from the priority queue

11 foreach e = {u,w}, w ∈ V do
12 if vertex w is unvisited then
13 if UnionFind.Size(S, u) + UnionFind.Size(S,w) ≤ b then
14 UnionFind.Union(S, u,w) // Union the partition

sets containing u and v

15 r(w) = r(w) + ω(e)
16 if vertex w is seen then
17 PriorityQueue.IncreaseKey(S,w, r(w)) // Update the

key of vertex w to the current value of r(w)

18 else
19 mark vertex w as seen
20 PriorityQueue.Push(S,w, r(w)) // Put vertex w onto

the priority queue

21 Mark w as visited

22 Contract(S)
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Appendices

Algorithm 12: Basic-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 Label all vertices v ∈ V as unvisited
2 Label all vertices v ∈ V as unseen
3 r(v) := 0 ∀v ∈ V
4 UnionFind.Init(T, V ) // Initialize Union Find structure with each

vertex v ∈ V representing its own class

5 UnionLowDegreeV ertices(G,T, b, d) // Call procedure

ContractLowDegreeVertices

6 while there is an unvisited vertex do
7 PriorityQueue.Init(S, r) // Initialize a Priority Queue using

rating function r(·) as priority key

8 Pick random unvisited vertex v as starting node
9 PriorityQueue.Insert(S, v, 0) // Insert vertex v with priority

r(v) = 0 into the priority queue

10 while S is not empty do
11 u := PriorityQueue.ExtractMax() // Get the vertex with the

largest r and remove it from the priority queue

12 for each edge e = {u,w} adjacent to u do
13 if vertex w is unvisited then
14 if r(w) + ω(e) ≥ min

v∈V
deg(v) then

15 if UnionFind.Size(T, u) + UnionFind.Size(T,w) ≤ b
then

16 UnionFind.Union(T, u, w) // Union the partition

sets containing u and v

17 r(w) = r(w) + ω(e)
18 if vertex w is seen then
19 PriorityQueue.IncreaseKey(S,w, r(w)) // Update

the key of vertex w to the current value of

r(w)

20 else
21 mark vertex w as seen
22 PriorityQueue.Insert(S,w, r(w)) // Put vertex w

onto the priority queue

23 Mark w as visited

24 Contract(S) // contract Union Find partition
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A Algorithms

Algorithm 13: Pre-Sort-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block
size, degree threshold d

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 Label all vertices v ∈ V as unvisited
2 Label all vertices v ∈ V as unseen
3 r(v) := 0 ∀v ∈ V
4 PriorityQueue.Init(R, r) // Initialize a Priority Queue using

rating function r(·) as priority key

5 UnionFind.Init(T, V ) // Initialize Union Find structure with each

vertex v ∈ V representing its own class

6 UnionLowDegreeV ertices(G,T, b, d) // Call procedure

ContractLowDegreeVertices

7 while there is an unvisited vertex do
8 PriorityQueue.Init(S, r) // Initialize a Priority Queue using

rating function r(·) as priority key

9 Pick random unvisited vertex v as starting node
10 PriorityQueue.Insert(S, v, 0) // Insert vertex v with priority

r(v) = 0 into the heap

11 while heap is not empty do
12 u := PriorityQueue.ExtractMax(S) // Get the vertex with the

largest r and remove it from the heap

13 for each edge e = {u,w} adjacent to u do
14 if vertex w is unvisited then
15 r(w) = r(w) + ω(e)
16 PriorityQueue.Insert(S, e, r(w)) // Push edge onto the

priority queue

17 if vertex w is seen then
18 PriorityQueue.IncreaseKey(S,w, r(w)) // Update the

key of vertex w to the current value of r(w)

19 else
20 mark vertex w as seen
21 PriorityQueue.Insert(S,w, r(w)) // Put vertex w

onto the heap

22 Mark w as visited

23 while R is not empty do
24 e := PriorityQueue.ExtractMax(R) UnionFind.Union(T, e)

25 Contract(T )
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Algorithm 14: Multi-Run-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block size,
degree threshold d, number of runs n

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 PriorityQueue.Init(R, r) // Initialize a Priority Queue using rating

function r(·) as priority key

2 UnionFind.Init(T, V ) // Initialize Union Find structure with each

vertex v ∈ V representing its own class

3 UnionLowDegreeV ertices(G,T, b, d) // Call procedure

ContractLowDegreeVertices

4 for iteration 1 to n do
5 Label all vertices v ∈ V as unvisited
6 Label all vertices v ∈ V as unseen
7 r(v) := 0 ∀v ∈ V
8 while there is an unvisited vertex do
9 PriorityQueue.Init(S, r) // Initialize a Priority Queue using

rating function r(·) as priority key

10 Pick random unvisited vertex v as starting node
11 PriorityQueue.Insert(S, v, 0) // Insert vertex v with priority

r(v) = 0 into the heap

12 while heap is not empty do
13 u := PriorityQueue.ExtractMax(S) // Get the vertex with the

largest r and remove it from the heap

14 for each edge e = {u,w} adjacent to u do
15 if vertex w is unvisited then
16 r(w) = r(w) + ω(e)
17 if m == 1 then
18 PriorityQueue.Insert(R, e, r(w)) // Push edge onto the

priority queue

19 else
20 PriorityQueue.IncreaseKeyBy(R, e, r(w)) // Add r(w) to

the value of the key

21 if vertex w is seen then
22 PriorityQueue.IncreaseKey(S,w, r(w)) // Update the

key of vertex w to the current value of r(w)

23 else
24 mark vertex w as seen
25 PriorityQueue.Insert(S,w, r(w)) // Put vertex w onto

the heap

26 Mark w as visited

27 while R is not empty do
28 e := PriorityQueue.ExtractMax(R) UnionFind.Union(T, e)

29 Contract(T ) // contract unioned partition sets of V
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Algorithm 15: SCLaP-NOI-Coarsening

Input: undirected weighted graph G := (V,E, c, ω), upper bound b for block size,
degree threshold d, number of CAPFOREST iterations n, number of SCLaP
iterations m

Output: coarsened graph G′ := (V ′, E′, c′, ω′)
1 R(e) := 0 ∀e ∈ E
2 for run 1 to n do
3 Label all vertices v ∈ V as unvisited
4 Label all vertices v ∈ V as unseen
5 r(v) := 0 ∀v ∈ V
6 UnionLowDegreeV ertices(G,T, b, d) // Call procedure

ContractLowDegreeVertices

7 Contract(T )
8 while there is an unvisited vertex do
9 PriorityQueue.Init(S, r) // Initialize a Priority Queue using

rating function r(·) as priority key

10 Pick random unvisited vertex v as starting node
11 PriorityQueue.Insert(S, v, 0) // Insert vertex v with priority

r(v) = 0 into the heap

12 while S is not empty do
13 u := PriorityQueue.ExtractMax(S) // Get the vertex with the

largest r and remove it from the heap

14 for each edge e = {u,w} adjacent to u do
15 if vertex w is unvisited then
16 if r(w) + ω(e) ≥ min

v∈V
deg(v) then

17 r(w) = r(w) + ω(e)
18 R(e) = R(e) + r(w)
19 if vertex w is seen then
20 PriorityQueue.IncreaseKey(S,w, r(w)) // Update the

key of vertex w to the current value of r(w)

21 else
22 mark vertex w as seen
23 PriorityQueue.Insert(S,w, r(w)) // Put vertex w

onto the heap

24 Mark w as visited

25 Cluster(v) := v ∀v ∈ V
26 Ω(v) := ω(v) ∀v ∈ V
27 L(v) := 0 ∀v ∈ V
28 for SCLaP iteration 1 to m do
29 Label all vertices as unpicked while there is an unpicked vertex v ∈ V do
30 pick a random vertex v from V
31 mark v as picked block := Cluster(v)
32 l := 0
33 foreach adjacent edge e = u,w of vertex v do
34 L(Cluster(w)) = L(Cluster(w)) +R(e)
35 if L(Cluster(w)) > l then
36 if Ω(v) + ω(v) ≤ b then
37 block = Cluster(w)
38 l = L(w)

39 L(v) = 0

40 Cluster(v) = Cluster(w)
41 Ω(block) = Ω(block) + ω(v)
42 Ω(v) = Ω(v)− ω(w)

43 Contract(Cluster)

65



Appendices

B Results

KaFFPa: strong

Coarsening: Basic-NOI Pre-Sort-NOI Multi-Run-NOI SCLaP-NOI Default

Graph k Cut t Cut t Cut t Cut t Cut t

crack 2 192 0,170 186 0,201 190 0,467 184 0,201 185 0,359
crack 16 1 251 1,63 1 280 2,01 1 236 2,19 1 169 0,855 1 134 1,83
crack 64 2 709 3,15 2 743 4,21 2 751 4,91 2 685 2,68 2 654 4,10
uk 2 21 0,074 24 0,089 23 0,158 21 0,094 19 0,165
uk 16 164 0,307 175 0,394 172 0,547 163 0,395 156 0,817
uk 64 455 0,832 466 0,985 462 1,36 449 1,10 439 2,24
whitaker3 2 126 0,128 126 0,151 126 0,405 126 0,189 126 0,334
whitaker3 16 1 168 1,24 1 149 1,69 1 188 2,64 1 141 1,11 1 119 1,75
whitaker3 64 2 655 3,23 2 644 4,72 2 631 5,37 2 605 2,71 2 589 5,68
fe ocean 2 311 1,25 311 1,71 617 7,20 311 2,86 311 6,54
fe ocean 16 8 829 9,95 10 665 17,9 10 556 27,6 8 415 12,0 8 123 28,3
fe ocean 64 21 889 27,5 23 951 65,5 22 787 60,3 21 691 29,2 20 705 99,2
fe 4elt2 2 130 0,117 130 0,132 130 0,387 130 0,183 130 0,332
fe 4elt2 16 1 127 1,23 1 152 1,48 1 096 1,80 1 036 0,914 1 014 1,78
fe 4elt2 64 2 635 2,98 2 651 3,73 2 646 4,68 2 601 2,57 2 566 4,32
t60k 2 85 0,867 79 1,17 86 2,08 76 0,952 74 1,53
t60k 16 879 4,79 861 4,18 859 5,51 860 2,98 837 5,03
t60k 64 2 200 12,0 2 243 12,7 2 262 14,5 2 202 8,23 2 184 14,3
m14b 2 4 494 12,1 4 576 13,5 4 467 49,8 3 823 11,7 3 823 25,2
m14b 16 49 724 134 49 559 165 48 406 190 43 909 79,8 43 064 135
m14b 64 106 270 321 103 839 393 101 927 408 100 200 180 98 939 309
bcsstk30 2 6 251 2,37 9 508 4,11 10 385 34,9 6 251 4,14 6 251 7,34
bcsstk30 16 79 124 14,8 79 807 17,9 82 319 44,7 74 298 11,3 73 648 18,7
bcsstk30 64 185 539 29,6 186 796 32,4 188 947 62,6 180 522 23,0 178 422 47,0
fe rotor 2 2 437 5,26 2 108 6,50 2 227 18,5 1 959 4,28 1 959 8,74
fe rotor 16 23 298 48,1 22 440 45,8 22 155 60,0 21 521 28,2 21 126 44,3
fe rotor 64 50 364 141 48 948 123 49 185 162 48 857 60,5 47 246 126
bcsstk29 2 2 818 0,734 2 818 1,28 2 818 7,58 2 818 1,15 2 818 1,81
bcsstk29 16 24 912 4,31 25 218 4,67 24 801 11,0 23 673 3,31 23 247 6,67
bcsstk29 64 59 945 7,13 59 629 9,02 58 536 14,6 58 477 7,18 57 727 16,9
bcsstk32 2 5 694 3,20 6 661 3,11 5 651 22,9 4 667 3,18 4 820 6,52
bcsstk32 16 42 959 18,1 44 668 18,4 45 596 36,8 39 008 12,8 37 602 19,8
bcsstk32 64 104 870 32,5 105 845 35,7 103 634 56,2 98 371 23,2 95 432 40,0
vibrobox 2 16 348 1,18 17 612 1,37 13 601 4,98 11 936 0,915 11 958 1,87
vibrobox 16 36 557 16,3 37 341 18,3 36 442 20,1 34 479 8,11 34 170 18,1
vibrobox 64 49 915 52,0 49 007 56,2 49 526 63,1 49 913 32,9 49 925 59,5
data 2 209 0,072 220 0,083 209 0,205 194 0,097 194 0,185
data 16 1 239 0,369 1 468 0,520 1 405 0,753 1 236 0,433 1 174 0,972
data 64 3 107 1,24 3 121 1,21 3 105 1,95 3 045 1,41 3 016 3,20
fe sphere 2 384 6,12 396 0,337 410 0,782 384 0,285 384 0,492
fe sphere 16 1 793 10,7 3 052 5,47 1 852 6,07 1 778 3,90 1 782 5,04
fe sphere 64 3 671 12,7 3 768 12,3 3 837 13,3 3 700 6,74 3 717 11,1
memplus 2 6 874 2,47 7 003 2,74 7 085 6,71 6 417 1,83 5 949 5,56
memplus 16 13 819 19,6 13 889 18,5 13 681 24,6 15 636 6,11 14 247 24,5
memplus 64 16 885 86,8 16 884 90,2 17 053 96,1 18 295 14,0 17 668 148
cs4 2 391 0,486 421 0,774 400 1,31 387 0,573 369 0,916
cs4 16 2 222 4,76 2 199 6,32 2 228 7,20 2 196 4,33 2 150 7,64
cs4 64 4 212 17,0 4 210 20,2 4 192 21,0 4 192 12,9 4 143 21,2
cti 2 351 0,202 449 0,266 339 0,580 338 0,323 342 0,697
cti 16 3 480 3,38 3 579 3,09 3 541 3,58 3 295 2,12 2 905 5,41
cti 64 6 568 10,3 7 262 13,0 6 746 12,4 6 368 7,60 5 941 16,9
fe body 2 357 0,944 370 1,03 380 3,62 285 1,22 285 1,72
fe body 16 2 062 3,08 2 221 5,11 2 316 7,62 1 984 3,74 1 865 5,30
fe body 64 5 303 6,65 5 827 12,1 5 467 12,4 5 166 6,41 5 028 11,9
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auto 2 11 943 62,4 14 482 78,3 11 229 170 9 812 40,5 9 766 89,8
auto 16 89 096 600 92 379 785 85 159 738 79 532 301 77 169 432
auto 64 184 461 1 030 183 148 1 100 177 549 1 300 176 163 529 173 658 784
bcsstk31 2 3 294 2,10 2 995 2,78 3 198 14,0 2 881 2,56 2 754 4,46
bcsstk31 16 27 955 14,0 28 201 15,7 28 976 30,0 24 928 8,66 24 762 14,2
bcsstk31 64 64 723 28,8 63 580 32,7 64 320 43,7 60 795 19,7 60 365 38,2
3elt 2 110 0,089 111 0,103 92 0,201 91 0,114 87 0,212
3elt 16 658 0,555 695 0,733 678 0,971 608 0,561 581 1,20
3elt 64 1 657 1,42 1 668 1,95 1 656 2,45 1 610 1,50 1 599 3,66
add20 2 772 0,277 810 0,225 718 0,357 656 0,365 699 0,640
add20 16 2 362 1,70 2 373 1,59 2 345 2,14 2 255 0,627 2 281 2,70
add20 64 3 365 7,14 3 317 7,77 3 363 8,21 3 374 5,13 3 158 5,23
fe tooth 2 4 282 6,70 4 194 6,96 4 259 15,1 3 897 4,47 3 898 7,62
fe tooth 16 19 051 38,9 18 475 38,8 18 616 40,0 18 543 18,0 17 965 38,2
fe tooth 64 36 459 91,5 36 612 81,5 36 616 99,1 36 182 52,6 35 431 81,9
bcsstk33 2 12 266 0,797 14 261 0,953 12 447 9,80 10 160 1,12 10 749 2,14
bcsstk33 16 56 871 4,53 59 119 7,85 58 301 16,2 56 618 4,76 56 799 11,5
bcsstk33 64 111 967 13,2 111 416 19,6 109 794 29,9 110 071 14,1 110 396 41,7
4elt 2 144 0,200 159 0,229 156 0,635 146 0,262 141 0,463
4elt 16 1 067 1,92 1 091 1,90 1 046 2,65 1 001 1,27 951 2,36
4elt 64 2 801 3,75 2 827 5,37 2 848 6,30 2 701 3,23 2 653 6,02
brack2 2 698 2,81 692 2,51 785 8,60 696 2,69 702 5,12
brack2 16 12 964 14,7 13 250 16,8 12 712 22,0 12 260 10,5 11 835 16,2
brack2 64 28 062 40,3 27 923 48,6 27 746 51,6 27 093 24,4 26 572 46,6
add32 2 16 0,083 17 0,092 18 0,687 10 0,086 10 0,151
add32 16 172 0,277 152 0,273 154 0,938 120 0,375 117 0,896
add32 64 563 0,748 534 0,763 554 1,82 545 1,04 523 2,44
wing nodal 2 1 946 0,561 1 761 0,752 1 798 1,73 1 822 0,567 1 714 1,02
wing nodal 16 8 753 3,65 8 909 5,58 8 973 6,30 8 608 3,38 8 525 6,25
wing nodal 64 16 612 9,45 16 450 14,8 16 360 14,8 16 424 8,37 16 397 14,8
144 2 7 928 9,50 7 582 16,8 8 071 43,6 6 489 8,55 6 471 17,6
144 16 43 413 83,4 41 570 121 40 878 132 39 002 73,2 39 307 110
144 64 83 086 184 83 233 307 82 170 309 80 794 131 80 281 217
wave 2 10 014 12,4 10 272 16,7 8 717 38,3 8 691 11,5 8 723 20,7
wave 16 49 346 146 50 245 180 47 890 171 44 906 92,7 43 340 140
wave 64 91 185 309 93 131 469 89 991 405 87 528 164 85 801 288
598a 2 2 368 5,52 3 005 7,99 2 372 29,9 2 371 6,38 2 369 12,0
598a 16 27 823 65,6 27 439 65,6 27 226 88,9 27 217 38,2 26 585 55,0
598a 64 59 677 138 59 016 180 59 894 213 58 249 92,0 58 208 149
finan512 2 248 1,77 162 1,56 162 5,79 162 1,50 162 3,12
finan512 16 1 426 2,54 1 409 2,73 1 393 7,16 1 377 2,49 1 328 5,57
finan512 64 11 337 12,3 14 292 19,9 16 178 28,3 11 049 8,30 10 799 18,1
wing 2 809 1,10 803 2,01 805 4,65 795 1,52 788 2,89
wing 16 4 150 20,5 4 081 30,7 4 107 27,7 4 082 14,3 3 973 23,2
wing 64 7 975 61,9 7 978 88,7 7 925 78,3 7 948 47,1 7 842 79,4
fe pwt 2 357 0,292 345 0,358 343 1,81 345 0,637 346 1,20
fe pwt 16 2 916 1,05 3 091 1,58 3 117 2,67 2 879 1,59 2 872 3,14
fe pwt 64 9 848 6,34 10 376 9,41 11 054 8,48 8 434 11,4 8 368 17,0

Table 1: Results of the evaluation of our coarsening algorithms using KaFFPa’s strong con-
figuration and a balance constraint of 3% compared to KaFFPa’s state-of-the-art
coarsening (default) with equal configuration. Size of the found cut and execution
time t are averaged over 5 seeds and best result is highlighted for each instance.
The used instances stem from Walshaws benchmark archive[31] (cf. Table 5.2).
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KaFFPa configuration: fastsocial

Coarsening algorithm: Basic-NOI Pre-Sort-NOI Multi-Run-NOI SCLaP-NOI Default

Graph k Cut t Cut t Cut t Cut t Cut t

loc-brightkite edges 2 29 284 0,277 30 068 21,1 29 788 24,1 26 005 1,05 20 851 0,380
loc-brightkite edges 16 77 709 1,20 86 113 24,9 87 262 31,3 66 481 2,07 57 670 0,892
loc-brightkite edges 64 99 990 2,10 104 178 20,7 103 236 29,1 87 407 2,65 79 572 1,28
soc-Slashdot0902 2 137 158 0,410 111 781 1,81 118 666 8,53 95 841 2,31 124 593 0,368
soc-Slashdot0902 16 285 327 2,29 264 915 6,64 268 013 16,0 274 195 5,50 279 216 1,46
soc-Slashdot0902 64 317 014 5,21 311 484 7,18 310 957 32,4 309 985 8,17 309 848 4,03
p2p-Gnutella04 2 8 146 0,035 8 265 0,045 8 318 0,234 8 309 0,209 8 051 0,061
p2p-Gnutella04 16 18 401 0,386 18 130 0,407 18 203 1,46 17 799 0,505 17 740 0,272
p2p-Gnutella04 64 20 430 0,483 20 394 0,584 20 282 1,67 20 016 0,660 19 982 0,476
amazon-2008 2 134 076 3,11 166 835 28,3 222 259 89,8 89 514 13,3 77 394 5,28
amazon-2008 16 457 901 5,22 495 314 414 471 009 617 288 065 31,6 256 779 10,3
amazon-2008 64 612 238 10,1 597 439 450 573 636 682 398 524 31,2 374 556 11,1
loc-gowalla edges 2 99 294 0,944 124 236 206 121 082 267 69 857 6,44 69 475 1,01
loc-gowalla edges 16 314 283 3,25 365 881 337 366 070 408 279 256 15,0 250 868 3,62
loc-gowalla edges 64 409 045 6,45 452 638 226 450 380 252 374 761 17,7 353 315 5,87
PGPgiantcompo 2 755 0,062 651 0,199 637 0,363 428 0,074 383 0,031
PGPgiantcompo 16 2 254 0,142 2 327 0,567 2 169 1,07 1 734 0,191 1 732 0,099
PGPgiantcompo 64 3 840 0,219 3 863 0,611 3 665 1,26 3 371 0,307 3 273 0,193
email-EuAll 2 1 175 0,281 2 780 3,29 2 236 4,80 2 191 0,884 743 0,325
email-EuAll 16 32 066 1,40 23 458 4,09 22 609 6,19 24 932 2,79 25 121 0,933
email-EuAll 64 41 272 1,45 38 790 3,99 38 595 7,29 37 716 4,02 36 467 1,06
enron 2 19 125 0,845 15 827 51,8 14 129 66,3 7 892 1,04 11 850 0,186
enron 16 100 479 1,27 77 705 72,4 78 283 87,8 88 504 1,98 79 086 0,590
enron 64 123 217 3,89 120 790 71,7 119 034 89,4 117 076 4,11 104 972 1,52
web-Google 2 30 654 1,69 59 287 19,0 53 924 48,1 15 026 8,60 11 182 2,87
web-Google 16 91 595 2,58 99 725 39,7 90 796 71,0 33 924 13,3 25 290 3,68
web-Google 64 121 890 3,87 110 922 34,7 102 404 69,6 49 991 13,9 42 853 4,13
in-2004 2 37 033 5,63 35 884 81,7 41 372 632 6 224 162 3 829 6,46
in-2004 16 89 075 5,23 75 956 170 80 231 745 25 634 172 19 979 7,96
in-2004 64 183 414 6,55 148 498 204 140 538 896 49 824 158 51 749 8,97
coPapersCiteseer 2 466 057 3,51 403 157 8,68 383 914 540 315 782 33,4 288 939 6,34
coPapersCiteseer 16 1 644 421 4,57 1 451 814 13,8 1 412 508 548 984 822 34,6 830 879 7,34
coPapersCiteseer 64 1 966 165 5,10 1 655 847 14,3 1 620 734 554 1 228 207 37,7 1 097 656 7,75
coAuthorsCiteseer 2 38 089 1,56 43 500 65,1 40 858 86,7 26 169 3,05 22 248 1,06
coAuthorsCiteseer 16 98 021 2,09 97 762 138 97 408 179 73 504 7,19 58 526 2,27
coAuthorsCiteseer 64 115 374 4,67 112 377 116 112 506 150 86 700 7,31 73 890 2,54
wordassociation-2011 2 12 119 0,055 15 623 0,454 16 420 1,05 11 990 0,171 11 350 0,067
wordassociation-2011 16 38 417 0,577 39 905 0,986 39 276 2,49 35 041 0,530 32 121 0,314
wordassociation-2011 64 43 466 0,709 44 730 1,22 44 507 3,88 42 277 0,932 39 147 0,575
wiki-Talk 2 294 185 61,0 99 593 2 980 122 461 3 020 144 493 242 145 592 42,4
wiki-Talk 16 1 018 775 164 637 376 2 660 637 612 2 920 817 536 362 863 243 151
wiki-Talk 64 1 203 653 219 986 513 2 430 1 005 938 2 120 1 007 000 425 1 095 698 116
eu-2005 2 328 212 5,00 195 753 28,8 244 924 343 52 416 430 21 408 7,18
eu-2005 16 1 470 410 6,59 1 196 232 501 1 104 709 823 471 028 493 359 489 9,38
eu-2005 64 3 229 735 16,3 2 659 893 561 2 597 620 953 2 121 652 502 2 161 365 12,6
cnr-2000 2 3 525 0,880 2 570 9,93 3 459 47,0 291 74,7 288 1,36
cnr-2000 16 53 103 1,22 29 721 21,0 37 342 68,2 6 724 78,8 9 593 1,80
cnr-2000 64 791 458 4,54 741 991 50,8 743 305 122 705 196 82,9 718 523 2,70
citationCiteseer 2 69 925 1,92 137 731 64,1 107 492 78,9 36 094 5,72 33 987 1,78
citationCiteseer 16 241 769 3,99 389 374 322 390 312 371 174 383 10,9 152 886 2,81
citationCiteseer 64 362 083 7,37 477 096 259 461 147 322 281 915 12,0 243 858 3,48
coPapersDBLP 2 783 865 4,54 767 697 10,7 778 390 344 643 531 30,0 531 097 8,18
coPapersDBLP 16 2 550 105 5,97 2 528 345 27,8 2 504 902 370 1 746 393 37,9 1 480 202 10,6
coPapersDBLP 64 2 954 971 9,05 2 862 281 29,0 2 861 508 388 2 238 065 37,0 1 949 482 10,9
as-skitter 2 476 014 4,92 647 145 494 637 228 638 328 999 112 264 582 5,50
as-skitter 16 1 447 872 9,33 2 077 814 854 1 979 407 1 070 1 193 238 121 1 015 514 7,52
as-skitter 64 2 217 021 30,0 2 519 487 785 2 511 361 960 1 974 508 137 1 771 772 9,31
coAuthorsDBLP 2 88 056 18,6 101 213 347 101 622 344 67 074 5,26 49 626 1,89
coAuthorsDBLP 16 203 224 4,94 253 474 403 264 649 435 166 424 13,0 129 569 3,95
coAuthorsDBLP 64 235 127 10,5 298 102 288 294 215 317 190 914 12,8 161 453 4,24
as-22july06 2 5 433 0,061 7 417 15,4 6 938 11,0 6 015 0,337 3 579 0,068
as-22july06 16 16 726 1,14 21 703 14,3 22 622 11,9 17 573 2,40 14 836 0,887
as-22july06 64 21 852 2,16 27 553 9,83 27 725 11,5 22 744 3,82 20 410 1,51

Table 2: Results of the evaluation of our coarsening algorithms using KaFFPa’s fastsocial
configuration and a balance constraint of 3% compared to KaFFPa’s state-of-the-art
coarsening (default) with equal configuration. Size of the found cut and execution
time t are averaged over 5 seeds and best result is highlighted for each instance.
The used instances[20] comprise mostly social network graphs (cf. Table 5.1).
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KaFFPa configuration: ecosocial

Coarsening algorithm: Basic-NOI Pre-Sort-NOI Multi-Run-NOI SCLaP-NOI Default

Graph k Cut t Cut t Cut t Cut t Cut t

loc-brightkite edges 2 29 100 0,960 30 443 22,6 30 297 30,1 25 406 2,49 20 217 0,891
loc-brightkite edges 16 68 372 9,54 85 514 34,5 85 578 45,8 63 373 8,25 54 976 6,81
loc-brightkite edges 64 82 970 55,1 90 299 82,6 89 811 96,8 80 736 36,2 74 016 34,2
soc-Slashdot0902 2 137 334 1,83 77 544 2,87 64 055 21,3 89 969 5,35 123 832 1,42
soc-Slashdot0902 16 291 782 24,9 283 324 22,1 280 335 40,3 265 911 20,9 265 523 14,4
soc-Slashdot0902 64 311 134 205 311 946 198 310 858 234 305 961 108 304 787 131
p2p-Gnutella04 2 7 729 0,112 8 374 0,133 8 271 0,608 8 237 0,350 7 878 0,158
p2p-Gnutella04 16 17 751 1,71 17 954 3,10 17 595 4,63 17 442 1,89 17 350 1,84
p2p-Gnutella04 64 19 576 12,3 20 141 24,5 20 095 23,7 19 409 11,8 19 379 11,8
amazon-2008 2 119 154 19,0 210 814 64,0 241 330 217 86 935 41,6 75 973 17,4
amazon-2008 16 370 241 347 530 112 751 503 176 1 050 273 249 212 243 069 154
amazon-2008 64 470 278 1 040 589 492 1 810 557 004 2 060 375 773 524 357 177 462
loc-gowalla edges 2 115 198 8,98 128 884 217 123 880 308 67 361 21,5 67 262 5,44
loc-gowalla edges 16 330 122 104 356 148 391 355 899 487 266 102 70,1 243 948 62,6
loc-gowalla edges 64 388 248 428 411 351 612 414 668 674 361 449 182 338 615 172
PGPgiantcompo 2 537 0,095 780 0,247 693 0,619 425 0,166 372 0,066
PGPgiantcompo 16 1 955 0,477 2 310 1,01 2 472 1,82 1 640 0,452 1 653 0,334
PGPgiantcompo 64 3 541 0,986 4 331 1,64 4 371 2,44 3 048 0,834 3 040 0,700
email-EuAll 2 1 283 0,373 3 532 3,80 2 108 6,77 1 685 1,29 733 0,457
email-EuAll 16 30 210 3,34 23 874 6,23 24 186 8,81 24 343 3,88 23 002 1,81
email-EuAll 64 38 222 12,6 40 591 12,7 39 648 17,9 37 008 8,28 34 576 6,10
enron 2 17 913 1,54 16 057 55,1 15 151 76,0 7 300 3,07 7 577 0,652
enron 16 92 331 10,4 93 164 82,8 87 516 102 80 363 8,40 70 426 8,81
enron 64 111 590 45,7 128 396 109 124 657 139 111 177 23,0 98 835 31,0
web-Google 2 33 169 8,38 65 358 29,4 69 086 110 15 334 26,2 11 249 10,1
web-Google 16 49 466 229 82 776 311 71 230 401 29 839 76,9 24 960 31,7
web-Google 64 74 985 348 91 207 453 81 341 529 45 583 178 39 264 127
in-2004 2 22 582 346 28 084 322 29 448 1 830 5 157 466 3 524 28,8
in-2004 16 103 052 1 400 78 813 1 110 68 525 2 700 23 824 718 19 627 223
in-2004 64 196 907 1 230 180 841 1 520 154 107 3 340 48 982 810 46 137 285
coPapersCiteseer 2 410 772 14,8 401 777 28,7 442 127 1 620 320 510 105 283 863 21,5
coPapersCiteseer 16 1 468 874 301 1 455 448 193 1 442 222 1 790 935 175 173 813 353 112
coPapersCiteseer 64 1 587 476 1 370 1 623 337 1 270 1 631 819 2 940 1 184 233 736 1 066 286 630
coAuthorsCiteseer 2 31 639 4,16 45 418 69,8 45 518 112 24 057 8,83 20 904 3,45
coAuthorsCiteseer 16 81 347 77,6 104 359 201 98 427 259 65 814 33,3 56 042 23,2
coAuthorsCiteseer 64 90 490 147 103 609 299 102 777 377 80 126 84,3 70 687 53,8
wordassociation-2011 2 11 461 0,181 12 455 0,652 14 472 1,94 11 286 0,425 11 079 0,183
wordassociation-2011 16 33 677 2,59 41 954 3,54 41 088 5,53 33 689 2,00 31 319 1,71
wordassociation-2011 64 38 955 32,0 40 013 41,5 39 758 37,6 39 961 19,9 37 642 17,3
wiki-Talk 2 158 903 162 117 752 3 490 152 375 3 530 162 547 485 90 865 101
wiki-Talk 16 1 101 769 620 724 493 3 660 723 275 3 560 793 724 764 813 466 449
wiki-Talk 64 1 173 412 1 930 1 063 649 3 230 1 056 336 3 220 982 834 928 1 071 756 639
eu-2005 2 271 690 233 370 374 86,5 344 267 1 010 43 038 1 310 20 705 50,6
eu-2005 16 1 214 824 1 440 1 103 418 1 590 1 074 643 2 540 390 826 1 810 333 862 442
eu-2005 64 2 995 324 3 840 2 692 259 3 240 2 637 076 4 500 2 001 034 2 360 2 026 402 1 250
cnr-2000 2 1 709 50,4 2 244 61,9 2 999 170 317 225 291 13,2
cnr-2000 16 59 105 94,1 35 576 84,3 34 774 201 6 711 250 6 373 17,1
cnr-2000 64 750 833 183 755 537 223 750 560 366 690 489 289 697 059 80,1
citationCiteseer 2 61 965 8,44 151 994 84,4 159 660 133 35 589 18,2 33 249 6,37
citationCiteseer 16 211 957 94,5 373 897 404 390 729 491 156 759 67,7 143 879 52,5
citationCiteseer 64 283 233 349 386 312 773 391 417 793 252 209 175 229 131 177
coPapersDBLP 2 813 098 23,5 815 794 37,2 814 895 1 030 645 090 95,8 520 158 30,4
coPapersDBLP 16 2 491 240 201 2 523 143 226 2 546 747 1 230 1 625 213 186 1 457 767 124
coPapersDBLP 64 2 655 144 1 400 2 847 545 1 420 2 810 537 2 450 2 124 552 749 1 908 572 653
as-skitter 2 599 433 99,7 624 201 562 642 487 913 325 066 344 252 091 21,1
as-skitter 16 1 398 298 860 1 877 706 2 730 1 879 191 2 800 1 093 905 629 964 291 239
as-skitter 64 1 999 135 2 340 2 234 653 3 470 2 241 030 3 810 1 870 227 1 210 1 671 851 749
coAuthorsDBLP 2 79 970 24,6 105 859 363 103 661 387 66 531 15,3 47 385 7,13
coAuthorsDBLP 16 172 685 79,9 240 183 493 237 889 565 147 717 51,7 120 480 45,2
coAuthorsDBLP 64 194 736 266 235 965 665 233 478 713 179 207 150 154 008 110
as-22july06 2 5 023 0,306 7 011 16,4 6 563 12,3 5 586 0,816 3 516 0,212
as-22july06 16 15 633 4,32 20 278 16,9 19 931 14,8 16 619 4,07 14 409 2,53
as-22july06 64 20 889 13,7 25 641 16,1 25 587 18,6 21 693 9,40 19 821 7,46

Table 3: Results of the evaluation of our coarsening algorithms using KaFFPa’s ecosocial
configuration and a balance constraint of 3% compared to KaFFPa’s state-of-the-art
coarsening (default) with equal configuration. Size of the found cut and execution
time t are averaged over 5 seeds and best result is highlighted for each instance.
The used instances[20] comprise mostly social network graphs (cf. Table 5.1).
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