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Abstract

A common feature of many scalable algorithms that work on graphs for various applica-
tions is that they require the graphs to be partitioned. This means that the nodes of a graph
should be divided into k blocks of roughly equal size while minimizing the sum of the
weights of the edges running between these blocks. However, the applicable algorithm to
solve this partitioning problem highly depends on the available memory of the machine.
Due to the growing size of many real-world graphs, in-memory partitioners often strug-
gle to partition large networks on machines with low computational resources. For this
reason, there has been an interest recently in using streaming algorithms for graph parti-
tioning, which have a low memory usage but typically yield only low-quality solutions.
In this work, we tackle this quality issue by proposing a new algorithm that uses an ex-
tended streaming model, with which we are allowed to perform all node assignments after
having streamed the entire graph. To achieve this, we sample only a subset of the edges
of every streamed node, enabling us to represent a sampled version of the input graph us-
ing O(n) memory. We further simplify the graph by contracting twins, i.e. nodes that share
the same neighbourhood. The resulting contracted graph is then partitioned by an under-
lying in-memory multilevel algorithm. During the last step, we undo the twin contractions
and make the final node assignments. Our proposed streaming algorithm overall outper-
forms current state-of-the-art competitors on graphs from scientific applications in terms
of edge-cut quality and running time.
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CHAPTER 1
Introduction

1.1 Motivation

In our everyday life, we use many tools and technologies that rely on large complex systems
such as social networks, biological systems or road networks. To make the analysis on these
systems feasible, the usual way is to model them as graphs. A common feature of many
scalable algorithms, that work on these graphs for various applications, is that they require
the graphs to be partitioned. One generally differentiates between edge-based and vertex-
based partitioning [36], but we only focus on the latter formulation, which is also simply
referred to as balanced graph partitioning [1] or k-way partitioning [8]. More specifically,
for a given (strictly) positive integer k, the goal is to divide the nodes of the graph into k
disjoint blocks of roughly equal size. In addition, the partition must most often minimize
the edge-cut, which is the sum of the weights of all edges running between different blocks.
There exists a large number of applications where the partition of the graph is required
as a preprocessing step [8]. Scientific simulations for example use graph partitioning to
balance the load over the processing elements (PEs) of a supercomputer while minimizing
the communication between these PEs [15]. Another application is the use of partitioned
graphs in the precomputation phase of route planning algorithms [10].
Since the problem for k = 2, which is also called the minimum bisection problem, is
already NP-complete [17] and since there does not exist a polynomial-time approximation
algorithm with a constant factor for any k [1], the usual approach is to construct algorithms
that are based on heuristics. The most commonly used heuristic is the multilevel scheme,
which serves as a basis for the currently most well-known in-memory tools like Metis [21],
Scotch [27] or KaHIP [31, 32, 35]. Those algorithms manage to compute high quality
partitions, but they usually require the input graph to fit entirely into the main memory of
a single machine. Thus, they often struggle to partition large networks on machines with
low computational resources. Besides, in-memory partitioners are not applicable in online
scenarios where the graph is not directly available but arrives piece-by-piece.
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1 Introduction

For the reasons above, there has been an interest recently in using streaming algorithms
for graph partitioning [8], which are the focus of this thesis. The most common streaming
model is the one-pass model, where the nodes of the input graph are streamed together
with their edges one after the other and directly and permanently assigned to a block. The
advantage of streaming algorithms is that they use little memory, because the set of edges
of the graph does not have to fit entirely into the main memory, but they typically yield
only low-quality solutions since they do not have a global view on the graph.
Our interest lies in combining the best of both worlds. We strive to construct a new stream-
ing algorithm that manages to yield a partition quality that comes close to existing in-
memory multilevel algorithms. At the same time, our algorithm should still be as fast and
memory-efficient as current state-of-the-art streaming algorithms.

1.2 Our Contribution

In this thesis, we propose a new streaming algorithm for the balanced graph partitioning
problem, together with an extension of the well-known one-pass model. More specifically,
we introduce the notion of budget edge sampling to the streaming case, meaning that we
sample for every streamed node v a budget bv of its edges. This allows us to represent
a sampled version of the input graph using O(n) memory, which gives us the possibility
to make all node assignments only after having streamed the whole graph. With the help
of tuning experiments, we observe that the best sampling approach is to use the same low
constant budget b for every node. Tuning this parameter b allows us to perform a feasible
time-quality trade-off, which enables us to adjust our algorithm to specific use cases.
We also introduce twin contractions to the balanced graph partitioning problem. In detail,
we argue that contracting true twins, i.e. nodes that have the same closed neighbourhood,
in a preprocessing step to further simplify the graph is an effective heuristic in most cases.
This is confirmed by our tuning experiments, where we also observe that contracting false
twins, i.e. nodes that have the same open neighbourhood, turns out to be mostly ineffec-
tive. The resulting contracted graph is partitioned by an underlying in-memory multilevel
algorithm, which is in our case KaFFPa. After that, we uncontract the twins and make the
permanent assignments of the nodes to the blocks.
In comparison to current state-of-the-art competitors, our algorithm yields promising re-
sults on graphs from scientific applications, where it manages to achieve our goal of fur-
ther closing the current gap between high-quality in-memory multilevel algorithms and
fast streaming approaches. Regarding social networks, our algorithm still has room for
improvement in terms of solution quality, because it even falls short of matching the edge-
cut quality of the one-pass algorithm Fennel. Since our proposed algorithm introduces
several new techniques to the streaming graph partitioning problem, we outline multiple
approaches to further refine these techniques in future work.
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1.3 Structure

1.3 Structure

The remainder of this thesis is organized as follows. In Chapter 2, we first state general
definitions and notations that we use throughout the rest of this thesis. Moreover, we shortly
go over the different phases of the multilevel scheme, which is the most common heuristic
for the graph partitioning problem. Afterwards, we describe in Chapter 3 previous work
that is related to this thesis. In detail, we start with the in-memory partitioners, where we
outline the program KaFFPa, which builds the basis for our proposed streaming algorithm.
We then move on to describe the field of research for the streaming graph partitioning
problem, where we especially highlight Fennel and HeiStream. We close the chapter by
briefly describing whether there exists previous work using budget edge sampling for graph
partitioning. Next, we propose our new streaming algorithm in Chapter 4. This includes
explaining our extended streaming model as well as outlining the two main parts of our
algorithm, which are budget edge sampling and twin contraction. At the end of the chapter,
we give a description of the implementation details. In Chapter 5, we determine the best
values for the parameters of our algorithm in the tuning experiments before comparing the
final configuration to the state-of-the-art competitors in the test experiments. Chapter 6
contains the conclusion from our experiments as well as an outlook to possible approaches
and improvements in future work.
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CHAPTER 2
Fundamentals

In this chapter, we first give general definitions and notations used throughout this thesis.
Afterwards, we briefly explain the different phases of the multilevel scheme, which is the
most commonly used heuristic for the graph partitioning problem.

2.1 General Definitions

Let G = (V,E) be an undirected graph with V = {0, 1, ..., n − 1} being the set of nodes
and E ⊆ V × V being the set of edges. The graph G is required to be simple, meaning
that it does not contain any multiple or self edges. We denote n = |V | as the number of
nodes and m = |E| as the number of edges. Let c : V → R>0 be a node-weight function
and let ω : E → R>0 be an edge-weight function. The functions c and ω are generalized to
sets, such that c(V ′) =

∑
v∈V ′ c(v) for V ′ ⊆ V and w(E ′) =

∑
e∈E′ ω(e) for E ′ ⊆ E. The

input graphs in this thesis are always unweighted, which is the same as setting unit node
and edge weights, i.e. ∀v ∈ V : c(v) = 1 and ∀e ∈ E : ω(e) = 1.
We define N(v) = {u : {u, v} ∈ E} as the open neighbourhood and N [v] = N(v) ∪ {v}
as the closed neighbourhood of a node v ∈ V . Let d(v) = |N(v)| be the degree of v.
Two nodes u, v ∈ V are called true twins if they share the same closed neighbourhood,
i.e. N [u] = N [v], and they are called false twins if they share the same open neighbour-
hood, i.e. N(u) = N(v). Figure 2.1 visualizes true and false twins.
A path in G is a (finite) sequence of pairwise distinct edges. Two nodes u, v ∈ V are
called connected if there exists a path between u and v. In a connected graph, every pair
of nodes in the graph is connected. A graph S = (V ′, E ′) is an subgraph of G = (V,E)
if V ′ ⊆ V and E ′ ⊆ E. We call S an induced subgraph of G if E ′ = E ∩ (V ′ × V ′).
A matching M ⊆ E is a (sub)set of edges that do not share any common node, meaning
that ∀e, e′ ∈M : e ∩ e′ = ∅.
The balanced graph partitioning or k-way partitioning problem consists of dividing, for a
given (strictly) positive integer k, the nodes of G into k disjoint blocks V1 ∪ ... ∪ Vk = V

5
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u

v

u

v

Figure 2.1: A visualization of two twins u and v. On the left side, both nodes are true twins
because they share the same closed neighbourhood. On the right side, both nodes are
false twins because they share the same open neighbourhood. The main difference is
that true twins share a common edge in contrast to false twins.

with ∀ 1 ≤ i < j ≤ k : Vi ∩ Vj = ∅. Note that for k = 2 we speak of a bipartition. In
addition, the partition must optimize a given objective function. Most often, the so-called
edge-cut must be minimized, which is the sum of the weights of all edges running between
different blocks:∑

1≤i<j≤k

ω(Eij) with Eij = {{u, v} ∈ E : u ∈ Vi ∧ v ∈ Vj} (2.1)

There exist also other objective functions that go beyond the scope of this thesis. The so-
called balance constraint requires the weights of the blocks to be below a certain thresh-
old Lmax for a given imbalance ϵ:

∀ 1 ≤ i ≤ k : c(Vi) ≤ Lmax = (1 + ϵ) ·
⌈
c(V )

k

⌉
(2.2)

There exist instances for which Equation 2.2 can never be fulfilled, i.e. graphs where
only one node has an extremely large weight. To guarantee solvability, one must
add maxv∈V c(v) to the equation. Increasing the second parameter ϵ generally allows to
find smaller edge-cuts. For the extreme case ϵ = 0, the graph is said to be perfectly bal-
anced. Note that the perfect balance may sometimes not be achievable for the weighted
case. A cluster is similar to a partition with the difference that there does not exist an
overall balance constraint and that the number k of clusters is not given in advance.
The quotient graph Q of a partitioned graph G considers every block Vi as a node i of Q
with a weight of c(Vi). Two nodes i and j of the quotient graph are connected by an edge
if there exist two nodes u ∈ Vi and v ∈ Vj so that {u, v} ∈ E. Two blocks are said to be
neighbouring blocks if they are connected by at least one edge in the quotient graph. We
call a node v ∈ Vi a boundary node if it has a neighbour u ∈ Vj with i ̸= j.
The general idea of streaming models is to use little memory. The most common streaming
model is the one-pass model, where the nodes of the input graph G are streamed together
with their edges one after the other. In this model, a streamed node must be directly and
permanently assigned to a block before streaming the next node.
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Figure 2.2: A visualization of the three phases that are used in the multilevel scheme. Figure taken
from [13] (modified).

2.2 Multilevel Scheme

The most common heuristic for the graph partitioning problem is the multilevel scheme.
The idea behind the multilevel scheme can be split up into three phases, which are depicted
in Figure 2.2. First, the size of the input graph G is recursively reduced in the coarsening
or contraction phase until the graph is small enough. Then, a partition of the coarsest
graph is obtained in the initial partitioning phase. Finally, the contractions are undone
in the uncoarsening or refinement phase while applying local search algorithms or even
more advanced methods at every level to improve the existing partition obtained from the
coarser level. We now go over these three phases to outline their most important steps.

Coarsening or contraction. The goal of this phase is to reduce the size of the original
graph by constructing a series of coarser graphs, so that the initial partitioning can be
applied on a simplified graph [43]. Typically, such a coarser graph is constructed by
finding and contracting a matching of the graph, i.e. a subset of edges that do not share
a common endpoint. Contracting a matching means to merge the two endpoints u and v
of every edge {u, v} in the matching to a new node w so that c(w) = c(u) + c(v)
and N(w) = (N(u)\{v}) ∪ (N(v)\{u}). In the case where merging the endpoints
produces parallel edges, they are then unified to a new edge whose weight is the sum of the
weights of these parallel edges. This ensures that a partition of the coarsest graph yields the
same balance and edge-cut when being applied directly on the original graph [8]. Finding
and contracting a matching is done repeatedly until the size of the graph is small enough,
meaning that the number of nodes in the graph goes below a certain threshold. Ideally, the
most important features of the original graph are preserved during the coarsening phase.
For social network graphs, it is more suitable to use a label propagation algorithm to
directly form and contract clusters of nodes instead of contracting a matching, because it
is more aggressive. The contraction of matchings fails to reduce the size of social network
graphs efficiently due to its irregular structure [8].

7



2 Fundamentals

Initial partitioning. This phase applies one (or multiple) initial partitioning algorithms
on the coarsest graph. In the case where multiple algorithms are applied, the partition with
the best edge-cut quality is chosen [8]. Since the coarsest graph has considerably fewer
nodes than the original graph, even slow algorithms are still relatively quick.

Uncoarsening or refinement. After the initial partition has been computed, the coarsest
graph is reverted back to the original graph by repeatedly undoing the contractions in the
reversed order as they were applied during coarsening phase. At every level, local improve-
ments are performed to further refine the quality of the partition [31]. The idea behind this
approach is that, when moving a node on a coarser level to a different block, this translates
to moving an entire set of nodes of the original graph to this block. Thus, the local improve-
ment algorithms benefit from a global view on the graph, since they are applied on coarser
versions of the original graph [35]. Note that, in general, the applied local improvement
algorithms guarantee to not worsen the quality of the existing partition.

8



CHAPTER 3
Related Work

The field of research for the graph partitioning problem is very active and mainly focuses on
constructing algorithms that are based on heuristics such as local search, spectral partition-
ing or flow computations. We refer the reader to several sources that give either a general
overview of the used heuristics [5, 34] or that outline recent advances in the field [7, 8],
which include many techniques and approaches that are not topic of this thesis. Some of
these techniques are for example evolutionary algorithms, which invest a lot of resources
to obtain even better quality, or the use of GPUs to accelerate the computations.
We focus on the well-known multilevel scheme heuristic, which we defined in Section 2.2.
It was proposed by Hendrickson and Leland [18] in 1995. The multilevel scheme serves
as a basis for the currently most well-known in-memory tools like Metis [21], Scotch [27]
or KaHIP [31, 32, 35]. Since the work in this thesis is based on the latter tool and more
specifically on one of its programs named KaFFPa, we use Section 3.1 to explain KaFFPa
in detail. Note that we stay in the sequential context of the multilevel scheme, even though
it can also be used in the context of parallelization [43, 19, 8], where it typically performs
worse, since parallel algorithms do not have a global view on the graph [8].
In Section 3.2, we look at streaming algorithms, which are the focus of this thesis and which
usually stream the nodes one by one together with their edges, instead of loading the entire
graph at once. Streaming algorithms have the advantage of using little memory, but they
typically yield a lower quality compared to in-memory approaches. Section 3.3 describes
whether there exists previous work using budget edge sampling for graph partitioning.

3.1 KaFFPa

KaFFPa (Karlsruhe Fast Flow Partitioner) is one of the programs of KaHIP, which
comes with several improvements to the existing multilevel graph partitioning ap-
proach [35, 31, 33]. A particularity of KaFFPa is that before searching for a matching in
the graph, the edges are rated based on local information to estimate how suitable an edge

9
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is for being contracted [31]. The matching algorithm then tries to maximize the sum of
the edge ratings. KaFFPa implements its own initial partitioning algorithm that uses the
multilevel recursive bisection scheme [35]. Regarding the uncoarsening phase, we outline
below the two most important types of local improvement schemes that are implemented
by KaFFPa.

Quotient graph style refinement. For this local improvement scheme, instead of looking
directly at the graph of the current level, KaFFPa considers its quotient graph. The idea
is that two-way local search can be applied between two connected nodes i and j of
the quotient graph to improve the bipartition between the blocks Vi and Vj sharing a
non-empty boundary. For this, KaFFPa uses a variant of the Fiduccia-Mattheyses (FM)
algorithm [14] that maintains for every pass two priority queues based on the so-called
gain of a node, which is the reduction in the edge-cut when moving the node to the other
block. The node with the highest gain is moved to the other block, whilst respecting the
balance constraint. The FM algorithm runs in linear time and typically needs only a small
number of passes [14]. KaFFPa also applies a different, more advanced technique called
adaptive flow iterations [31, 35], which again looks repeatedly at bipartitions between two
blocks Vi and Vj and improves its quality by constructing a max-flow min-cut problem.
Since the max-flow min-cut algorithm finds the minimum edge-cut between the two blocks,
the bipartition can never get worse [33]. This method is extremely effective when trying to
produce high-quality partitions [8].

Global k-way local search. This second improvement scheme is also based on the
FM algorithm [14]. A first method is the classic k-way search, which in contrast to the
FM algorithm keeps a more global view. A node can be moved to any other block and
not only to one fix neighbouring block as before. The gain of a node v is now given
by g(v) = maxP{gP (v)}, meaning that for every node v, KaFFPa looks for the block P
that causes the highest gain when moving v to P [31]. KaFFPa further extends this notion
with the so-called multi-try k-way local search [35, 31], which is a more localized variant
of the classic k-way search. One of the advantages of this extension is that it has a higher
chance to escape local minima.

As previously described, KaFFPa introduces several improvements to the existing multi-
level graph partitioning approach, which usually results in a higher partition quality. We
outline these extensions briefly in the following.

Label propagation with size constraints. For social network graphs, it is more suitable
to use a label propagation algorithm in the coarsening phase to directly form and contract
clusters of nodes. The reason is that the usual approach of contracting matchings cannot
efficiently reduce the size of a social network graph due to its irregular structure. Con-
tracting the clusters however reduces the size of a graph far more aggressively [8]. The
label propagation clustering algorithm was originally proposed by Raghavan et al. [28].

10



3.1 KaFFPa

Figure 3.1: A V-cycle, a W-cycle and a F-cycle from left to right. Figure taken from [31].

KaFFPa extends this notion by applying a size-constraint to the clusters [24]. The main
reason for this is that it would be impossible to find a feasible initial partition of the graph
that still respects the balance constraint if there existed a cluster of size greater than Lmax.
Note that label propagation can also be used as a local improvement algorithm during the
uncoarsening phase [33].

Iterated multilevel scheme. The principle of the multilevel scheme can be extended by
repeating it with different random seeds for the coarsening and the uncoarsening phase.
This is the so-called iterated multilevel scheme, which was introduced by Walshaw [42]
in 2004. When repeating the multilevel scheme, there exists already a partition from the
previous iteration that can directly be used as the initial partition of the next iteration. Since
the improvement algorithms in the uncoarsening phase usually do not worsen the initial
partition, the iterated multilevel scheme is helpful for finding high-quality solutions [33].
A single iteration of the iterated multilevel scheme is called V-cycle, since its behaviour of
going down from the original graph to the coarsest graph and then coming back up to the
original graph resembles the shape of the letter V. Sanders and Schulz [31, 35] define for
KaFFPa two different types of cycles, namely W-cycles and F-cycles. Figure 3.1 visualizes
all three types of cycles.

KaFFPa comes in three different variants, which use other parameters and techniques.
Choosing between these three variants roughly relates to performing a time-quality
trade-off. We list these variants below.

Strong. This variant tries to achieve the best partition quality. The running time plays
a less important role. It performs 64

log(k)
tries of initial partitioning and uses k-way local

search as well as quotient graph style refinement. The multilevel scheme is repeated in the
form of two F-cycles.

Eco. The eco variant fills the gap between the variants strong and fast, meaning that it
tries to give good partitions in a reasonable amount of time. It still tries multiple initial
partitioning algorithms but uses different parameters than the strong variant. Besides, the
multilevel scheme is not repeated iteratively, i.e. a single V-cycle is used.

Fast. The goal of this variant is to compute the partition as fast as possible while still trying
to beat other fast competitors in terms of quality. It only uses a single initial partitioning
algorithm and does not use flow-based algorithms during the uncoarsening phase.

11
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Note that for all three variants one can take the first letter of the name and append the
suffix -social (i.e. fsocial, esocial and ssocial) to use the label propagation algorithm with
the size-constraint cluster contraction in the coarsening phase. This is more effective for
social network graphs than the usual matching contraction.

3.2 Streaming Graph Partitioning

Apart from the classical in-memory algorithms, there has been an interest recently in using
streaming algorithms for graph partitioning [8], which are the focus of this thesis. They
were first proposed by Stanton and Kliot [38] in 2012. More specifically, the authors use
the one-pass model, where the nodes of the input graph G are streamed together with their
edges one after the other and directly and permanently assigned to a block. The advantage
of streaming algorithms is that they use little memory. However, they typically yield only
low-quality solutions, since they do not have a global view on the graph.
Stanton and Kliot [38] introduce many one-pass heuristics for the graph partitioning prob-
lem such as Chunking, Hashing or Linear Deterministic Greedy (LDG). The latter one
is generally being preferred over the other heuristics, even though its time complexity
of O(m + nk) is worse than e.g. the time complexity O(n) of Hashing. The reason is
that LDG produces a far better edge-cut quality than the other proposed heuristics [12].
Nonetheless, LDG still produces low-quality partitions in comparison to in-memory algo-
rithms like KaFFPa. In detail, LDG greedily and permanently assigns a streamed node v to
the block Vi that holds the most of its already streamed neighbours while penalizing larger
blocks with a linear penalty function p, meaning that:

i = argmax
1≤j≤k

{|N(v) ∩ Vj| · p(j)} with p(j) =

(
1− |Vj|)

n
k

)
(3.1)

In case of ties, LDG assigns the node to the block with the smallest size. Note that we here
only describe the unweighted case, since we only deal with unweighted graphs.
Tsourakakis et al. [41] propose another one-pass heuristic named Fennel, which in contrast
to LDG uses a penalty function that is additive and non-linear instead of multiplicative and
linear. The objective function of Fennel interpolates between the attraction to blocks with
more neighbours on the one hand and the repulsion from blocks with more non-neighbours
on the other hand. We outline this heuristic in detail in Section 3.2.1.
Nishimura and Ugander [25] introduce restreaming algorithms to the graph partitioning
problem. These algorithms perform multiple passes through the entire input graph G and
hence allow an iterative improvement of the partition. They successfully expand LDG and
Fennel respectively to their restreaming variants ReLDG and ReFennel.
Eyubov et al. [11] propose FREIGHT, which is an adaptation of Fennel for the hypergraph
partitioning problem. In fact, the mathematical definitions of FREIGHT and Fennel are the
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same, but the implementation of FREIGHT is significantly faster theoretically and empir-
ically. The authors manage to reduce the time complexity for finding the best block for a
streamed node by using a data structure that keeps all blocks sorted by cardinality.
In the context of parallelization, Faraj and Schulz [12] perform recursive multi-sections on
the fly. More specifically, their shared-memory streaming algorithm uses multiple passes
to partition the graph based on a given hierarchy sequence. Their algorithm is mainly used
for process mapping, but it can also be applied on the graph partitioning problem.
Likewise, Battaglino et al. [4] also extend the restreaming notion for the context of par-
allelization but with the difference that they used distributed memory for their proposed
streaming algorithm GraSP. After every pass, the partition information of the just finished
pass is communicated between all processors.
Awadelkarim and Ugander [2] analyse how the order of (re)streaming the nodes affects
the quality of the computed partition in both the sequential and the parallel context.
They introduce so-called prioritized (re)streaming algorithms which either statically or
dynamically (re)stream the nodes. Static (re)streaming means that the order of the nodes
is based only on the properties of the input graph and does not need to be updated between
iterations. Examples would be BFS, DFS or random ordering. Dynamic (re)streaming
reorders the nodes after every iteration based on some priority.

In this thesis, we introduce a new streaming model which is different from the described
one-pass model. In fact, other streaming models have been used in previous work be-
sides the one-pass model to solve the graph partitioning problem. For example, Patwary et
al. [26] propose WStream, which is a greedy streaming algorithm that uses a sliding win-
dow of the most recently streamed nodes. The size of the sliding window can be adjusted,
but it generally is in the order of a few hundred nodes.
Jafari et al. [20] propose another streaming model in the context of parallelization by intro-
ducing a shared-memory streaming algorithm that combines the multilevel paradigm with
the buffered approach, meaning that, instead of streaming every node after the other, they
load a batch of nodes into a buffer.
Similarly, Faraj and Schulz [13] come up with HeiStream, which is a streaming algorithm
that also combines the multilevel paradigm with buffering. In contrast to the algorithm
proposed by by Jafari et al. [20], they stay in the sequential context, they construct a model
instead of processing the nodes of the buffer directly and they base their multilevel scheme
on Fennel and not on LDG. We outline HeiStream more in detail in Section 3.2.2.

3.2.1 Fennel

Fennel is a heuristic that tries to bridge the gap between algorithms that are based on precise
mathematical work but do not scale well in practice and heuristics that are often used in
practice but have no mathematical base [41]. We here only describe the unweighted case,
since we deal only with unweighted graphs.
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The main idea of Fennel is to formulate a single objective function that simultaneously
accounts for the cost of the cutting edges on the one hand and for the cost of imbalanced
block sizes on the other hand. Similar to LDG, Fennel assigns a streamed node v directly
and permanently to the block Vi that holds the most of its already streamed neighbours
while penalizing larger blocks with a penalty function p. The difference to LDG is that the
penalty function of Fennel is additive and non-linear instead of multiplicative and linear,
meaning that:

i = argmax
1≤j≤k

{|N(v) ∩ Vj| − p(j)} with p(j) = α · γ · |Vj|γ−1 (3.2)

Note that the assignment is only performed if the overall balance constraint can be re-
spected, otherwise the next best block is considered. The penalty function p(j) can also
be interpreted as the marginal cost of increasing the block Vj by one additional node. The
authors of Fennel choose α = m · kγ−1

nγ while stating that this is a good and natural choice
but it may not be the most optimal [41].
The parameter γ can be chosen freely in the range [1, 2] and hence the objective function
interpolates between the attraction to blocks with more neighbours on the one hand and the
repulsion from blocks with more non-neighbours on the other hand. More specifically, γ
controls how much a large block will be penalized. Choosing the extreme case γ = 1 causes
the penalty function to be constant, meaning that large blocks will not be penalized at all.
Therefore, the objective function can be simplified to |N(v) ∩ Vj|, meaning that nodes
are attracted to blocks with more neighbours. Choosing the other extreme case γ = 2,
large blocks will be penalized linearly. In this case, nodes are repelled from blocks with
more non-neighbours. This becomes clearer if one assumes α = 1

2
, because then the

objective function is simplified to |N(v) ∩ Vj| − |Vj|. This is exactly the negative number
of non-neighbours in the block Vj , which can be maximized if the block contains no non-
neighbours. However, this repulsion is valid for every value of α, since the penalty function
gets only weighted differently for other values of α. After analysing the parameter γ, the
authors fix γ = 3

2
, since it yields the best performance pointwise.

The authors claim that Fennel has a time complexity of O(m+n), since they assume that k
is constant. More generally however, Fennel has a time complexity of O(m+nk), because
Fennel iterates over all k blocks for every streamed node.

3.2.2 HeiStream
HeiStream tries to fill a different gap than Fennel, which lies also more in the focus of
this thesis. More specifically, HeiStream is a compromise between existing sampling
algorithms that are fast and use little memory but have a low partition quality on the one
hand and offline multilevel algorithms that yield a good partition quality but need a lot of
time and memory on the other hand [13]. To achieve this, HeiStream uses the buffered
streaming model.
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HeiStream first streams a batch of δ nodes together with their edges. Then a model graph B
is built, which represents the nodes of the current batch and the already assigned nodes from
previous batches. In fact, HeiStream can build two different models to allow a time-quality
trade-off. The basic model favours time over quality and is the subgraph of the input
graph G induced by the nodes in the current batch. For every iteration except the very
first one, the model contains k artificial nodes representing the k different blocks holding
the already assigned nodes from previous batches. In our context of unweighted graphs,
we have c(ai) = |Vi| for an artificial node ai. A node v of the current batch is connected
in the model B to the artificial node ai if v has a neighbour that was part of the previous
batch and that got assigned to Vi. Parallel edges will be combined to a single new edge
whose weight is the number of parallel edges. The extended model considers so-called
ghost edges to ghost nodes, i.e. edges to nodes that will be streamed in future batches.
To avoid overloading the memory, these ghost nodes are randomly contracted with one of
their neighbours in the current batch. Since the extended model contains more information
about G, it usually yields a better partition quality. In this thesis, we only use the extended
model of HeiStream.
HeiStream applies the multilevel scheme onto the constructed model graph B. The coarsen-
ing phase uses a label propagation algorithm to contract size-constraint clusters. Artificial
nodes are ignored and not contracted further, since they each represent an entire block.
HeiStream uses the objective function of Fennel for the initial partitioning. Since the al-
gorithm builds a weighted graph as a preprocessing step to the multilevel scheme, Faraj
and Schulz had to adjust the objective function of Fennel to the weighted case [13]. In the
uncoarsening phase, the same label propagation algorithm is used. The difference is that a
node v is moved to the neighbouring block that maximises the Fennel objective and not to
the neighbouring block that holds the most neighbours, which would be the usual case. As
in the coarsening phase, artificial nodes will be ignored and hence not moved, but they will
be considered when computing the Fennel function for other nodes.
After partitioning the model, the nodes from the current batch are permanently assigned
to the blocks that were determined by the multilevel scheme. Afterwards, if there are still
nodes left that were not streamed yet, the algorithm loads the next batch of nodes and
continues the process.
Overall, the running time of HeiStream is O(n + m). Generally speaking, HeiStream
outperforms all competitors (Fennel, LDG, Hashing) with regards to partition quality for
the majority of instances and especially for huge graphs [13].

3.3 Sampling-Based Graph Partitioning

The algorithm that we propose in this thesis is an edge sampling algorithm, meaning that
it only uses a selected subset or sample of the edges of the initial graph G. Generally
speaking, there exist also node sampling algorithms [44] that are beyond the focus
of this thesis.
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The idea of using edge sampling in the streaming context has previously been used for
other problems. For example, Lim and Kang [23] apply edge sampling in their one-pass
algorithm MASCOT to count local triangles in graphs by sampling the edges at random
with a fixed probability p. In contrast, our algorithm samples the edges of the graph by
using a budget per node, meaning that every node v samples min{bv, d(v)} of its edges.
This budget sampling approach is not totally new and has already been analysed in a similar
form under the name of kN sampling by Sadhanala et al. [30] in the context of Laplacian
Smoothing. The main differences are that they consider weighted and not unweighted
graphs and that their algorithm is not designed for the streaming context. In addition, they
handle the case of sampling the same edge multiple times by summing up the edge weights
appropriately, while we simply keep one of these samples and discard the rest. Sadhanala
et al. conclude that kN sampling shows strong empirical performance for their problem. To
the best of our knowledge, budget edge sampling has never been used before in the context
of streaming graph partitioning.
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CHAPTER 4
Streaming Sampling Partitioning

In this chapter we propose a new streaming algorithm for the balanced graph partitioning
problem. Our goal is to close the current gap between high-quality in-memory multilevel
algorithms and fast streaming approaches. This means that in the best case we manage
to obtain a balance and a partition quality that comes close to existing in-memory multi-
level algorithms while still being as fast and memory-efficient as current state-of-the-art
streaming algorithms.
Our approach does not use the well-known one-pass model, but comes along with a new
streaming model that bases on budget edge sampling. Hence, we refer to our algorithm as
SSP (Streaming Sampling Partitioner). First, we use Section 4.1 to explain our extended
streaming model. Then, we outline the overall structure of our algorithm in Section 4.2 by
briefly describing the different phases. In Section 4.3, we describe the overall notion of
budget edge sampling and define two different sampling methods. Section 4.4 introduces
the idea of contracting twins to the (streaming) graph partitioning problem. More specifi-
cally, we describe why applying twin contractions as a preprocessing step seems to be good
heuristic. Finally, we give a detailed description about the implementation of our algorithm
in Section 4.5.

4.1 Extended Streaming Model

In our streaming model, as in the one-pass model, we iterate over the nodes of the input
graph G once in sequential order by streaming the nodes one by one together with their
edges. We are only allowed to keep O(n) memory and thus cannot load the whole graph
into the main memory. However, contrary to the one-pass model, we are not required to
make decisions on the fly, i.e. we do not have to assign a node permanently to a block before
streaming the next node. We can make all assignment decisions after having streamed the
whole graph. To guarantee that we still use only O(n) memory, we perform budget edge
sampling while streaming the nodes, which we describe in Section 4.3.
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4 Streaming Sampling Partitioning

Figure 4.1: A visualization of the four phases of our algorithm. From left to right, we have the
following phases: budget edge sampling, twin contraction, partitioning and finally
uncontraction with permanent assignment. The sampled edges are marked in green
and the blocks in blue.

4.2 Overall Structure

The overall structure of our algorithm can be divided in four different phases, which are
visualized in Figure 4.1. First, we apply budget edge sampling to the streamed nodes in
order to obtain a simplified sampled graph GS that only uses memory O(n) and that still
preserves the most important features of the initial graph G. In the second phase, we can
further simplify the graph by identifying twins in the original graph G and contracting
them after having sampled the edges. This means that we perform the twin contractions
on the sampled graph GS to obtain the contracted graph GSC . The idea of this novel
approach is described in Section 4.4, but in short we assume that twins should be put into
the same block, since they share the same neighbourhood and are located very closely in G.
Afterwards, the contracted graph GSC is partitioned by an offline in-memory multilevel
algorithm. After having undone the twin contractions in the last phase, the partition of GSC

serves as a partition of the initial graph G.
In this thesis, we use the state-of-the-art partitioner KaFFPa as the underlying in-memory
multilevel algorithm, because it produces partitions that are superior in terms of quality
compared to competitors like Metis or Scotch. However, this choice is non-binding and
one could replace KaFFPa with any other graph partitioning algorithm.

4.3 Sampling

As usual, our algorithm streams the nodes of the input graph G one after the other along
with their edges. For every streamed node, we sample only a subset of its edges. As
mentioned, the goal of this approach is to obtain a simplified subgraph GS with size O(n)
that still preserves the most important features of the initial graph G. More specifically,
every streamed node v has a budget bv that indicates the number of edges that will be
sampled for v. Note that if v has fewer than bv edges, we simply sample all of them. So,
the total number of edges sampled s(v) is:

s(v) = min{d(v), bv} (4.1)
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4.3 Sampling

For every streamed node v, SSP performs edge sampling by repeatedly picking among the
edges of v until the number of edges sampled equals s(v). The edges are selected ran-
domly and independently. For the randomisation, we use a uniform distribution, meaning
that every edge of v is equally likely to get picked. Already picked edges are not con-
sidered for the next picks. After having sampled the edges for every node, we construct
the subgraph GS , which is simply the initial graph G but with only the sampled edges.
Note that the overall number of edges sampled is always upper bounded by the overall
budget B =

∑
v∈V bv. Thus the size of the sampled graph GS lies in O(n + B). Due to

practical reasons, we introduce unit node and edge weights to GS , meaning that every node
and every edge in GS obtains a weight of one. This simplifies the optional twin contraction
that we describe in Section 4.4.
Note that every edge may be sampled twice, because it can happen that an edge is sam-
pled independently by both of its endpoints. We handle this case by keeping only one of
these two samples, i.e. we sample every edge at most once. This avoids that we obtain
multiedges. As a consequence, the real number of edges sampled may be smaller than the
overall budget B, because a doubly sampled edge decreases the budgets of both endpoints
by one, but we keep only one of the two samples.
SSP can be used with two different sampling methods which differ in the way that they
define the budget bv for a given node v. The default sampling method treats every node
identically by using the same constant budget for every node. As an alternative, instead
of using the same one-size-fits-all budget for all nodes, we can weigh the budget of every
node by its degree. We outline both sampling methods in the following.

4.3.1 Constant Budget

For the default sampling method of our algorithm we define the budget as a single con-
stant value, meaning that every streamed node has the same constant budget b. Thus, for
every node v, we can simplify Equation 4.1 by setting bv = b. This means that most
of the nodes sample the same constant number b of edges with the exception that low-
degree nodes might sample fewer edges. In fact, a constant budget implies that the al-
gorithm always samples all of the edges of nodes with a degree equal or below the con-
stant threshold b. When summing up over all nodes, the overall budget B of the entire
graph can be denoted as B = bn. Thus regarding the memory usage of the sampled
graph GS , we achieve our previously stated goal of O(n) because b is a constant and
therefore O(n+B) = O(n+ bn) = O(n).
Tweaking the constant budget b allows us to perform a time-quality trade-off, because
increasing b results in sampling more and more edges of the initial graph G. A higher
number of edges sampled causes GS to be a better representation of G and therefore the
partition of GS should still maintain a high quality when being applied directly to G. In the
most extreme case, the constant budget b is higher than the highest node degree of the input
graph G, which then means that GS = G. In this case, SSP would be identical to directly
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using the underlying in-memory partitioner on G (if no twin contractions are performed).
Increasing the constant budget b most probably comes not only at the cost of higher time
usage but also at the cost of higher memory usage.

4.3.2 Weighted Budget

The second sampling method can be considered as a weighted case of the first sampling
approach, because it also aims for B = bn where B is the overall budget of the graph
and b is a (constant) parameter. Note that we can therefore also guarantee a memory usage
of O(n+B) = O(n+ bn) = O(n) for the second sampling method. However, the overall
budget B is not distributed evenly over the nodes as in the first approach. Instead, B is
divided among the nodes in proportion to their degrees, meaning that every node v obtains
its own budget bv weighted by its degree. The intuition behind this approach is that ev-
ery node samples the same fix fraction of its edges, as we explain at the very end of this
section. This should generally maintain the degree distribution of the original graph bet-
ter. More specifically, we assign to a node v a budget bv that is weighted with respect to
its degree d(v):

bv =

⌈
bn · d(v)

2m

⌉
(4.2)

Note that bv is defined as the ceiling of a weighted division. The reason for rounding up
is that the budget must be an integer value. Rounding down would imply that we assign a
budget of zero to nodes that have a very low degree relative to the total number of edges in
the graph, which would mean that we would sample none of their edges. Note that without
rounding, the overall budget B exactly matches our desired value bn, because:

B =
∑
v∈V

bv =
∑
v∈V

bn · d(v)
2m

=
bn ·

∑
v∈V d(v)

2m
=

bn · 2m
2m

= bn (4.3)

Thus, we would have the exact same overall budget for both sampling methods. However,
since the budget of every node is rounded up, the overall budget B of the weighted budget
method is in practice slightly larger than bn:

Theorem 4.1
When using the weighted budget method, we get the following estimation for the overall
budget B:

bn ≤ B ≤ (b+ 1)n (4.4)

Proof of Theorem 4.1
The first inequation bn ≤ B directly follows from Equation 4.3:

B =
∑
v∈V

bv =
∑
v∈V

⌈
bn · d(v)

2m

⌉
≥
∑
v∈V

bn · d(v)
2m

= bn
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The second inequation B ≤ (b+ 1)n comes from the following observation:

B =
∑
v∈V

bv =
∑
v∈V

⌈
bn · d(v)

2m

⌉
≤
∑
v∈V

(
bn · d(v)

2m
+ 1

)
= bn+ n = (b+ 1)n

Thus we get overall bn ≤ B ≤ (b+ 1)n. □

This means that, when we use the same value of b for both sampling methods, the weighted
case has a slightly larger overall budget than the constant case. Since b can be chosen freely
and independently for both sampling methods, this can easily be adapted if necessary.
For example, we can simply decrease b by one for the weighted case, because then we
have a slightly smaller overall budget compared to the constant case. For a mathematical
comparison of both sampling methods, we refer to Section A.2 of the appendix.
Another way of interpreting Equation 4.2 is that we sample for every node v the same fixed
fraction bn

2m
of its edges. Generally speaking, the fraction lies in [0, 1] for most graphs and

thus the weighted case samples a fixed percentage of the edges of every streamed node.
Note that the minimum number of edges sampled for a node with a non-zero degree is
always one.

4.4 Twin Contraction

SSP can optionally perform twin contractions to further decrease the size of the graph
before passing it down to the underlying in-memory multilevel algorithm. One typically
differentiates between true and false twins (see Section 2.1). The intuition behind perform-
ing twin contractions is that we expect that twins should be put into the same block in a
good partition of a graph. A key factor of this assumption is their locality or closeness, i.e.
twins are distant by at most two edges and thus located very closely in G. In combination
with the fact that twins share the same open/closed neighbourhood, putting them into the
same block seems to be a reasonable heuristic. This may violate the balance constraint,
but we tackle this by introducing a size constraint to the twin clusters, which we explain
later in detail. Our algorithm contracts either only true twins or only false twins or both.
Note that we identify the twins based on their neighbourhood in the original input graph G.
The reason is that we want to perform the sampling as well as the twin identification on
the original graph, because we try to preserve the most important features of G as good as
possible. The contraction is applied after having sampled the edges, meaning that we per-
form the twin contractions on the sampled graph GS , even if the nodes might not be twins
anymore in GS . Note that we denote the resulting contracted graph by GSC , which can be
understood as the quotient-graph of GS with respect to the constructed twin clusters.
In detail, we contract every set of twins into a new node. To ensure that the underlying
in-memory multilevel algorithm still manages to maintain a good balance for the partition,
the weight of the contracted node is set to the sum of the weights of the contracted twins.
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Since every node in GS has a weight of one, the weight of the cluster node is exactly
the number of contracted twins. In addition, the neighbourhood of the cluster node is set
to N(t1)\{t : t ∈ T ∧ t ̸= t1}where T ⊆ V is the set of contracted twins and t1 ∈ T is any
one of the contracted nodes. If the contraction forms parallel edges, then we replace them
with a new edge whose weight is the sum of the weights of the parallel edges. Again, since
every edge has a weight of one, the weight of the new edge is equal to the number of con-
tracted parallel edges. This is necessary because it guarantees that the computed partition
for the contracted graph GSC has the same edge-cut when being applied directly to GS .
Note that if we contract false twins (or both twin types), every isolated node has the same
empty open neighbourhood and should per definition be put in the same cluster. However,
since this may be counterproductive, we treat isolated nodes separately by making sure that
they stay isolated and are not part of any twin contraction. After partitioning the contracted
graph GSC with the underlying in-memory multilevel algorithm, we must undo the twin
contractions before we can apply the computed partition to the input graph G.
An important detail is that we must introduce a size constraint to the number of twins
contracted together, meaning that we define an upper bound to the weight of a contracted
node. If a contracted node exceeds this upper bound, it is split up into multiple smaller
nodes whose weights are exactly equal to the upper bound except for the last, which sim-
ply obtains the remaining weight. The reason for applying a size constraint to the con-
tracted nodes is the same as described in Section 3.1 for the label propagation algorithm
of KaFFPa. In detail, the underlying in-memory multilevel algorithm cannot find a fea-
sible partition that still respects the balance constraint if the size of a cluster is greater
than (1 + ϵ) · ⌈ c(V )

k
⌉. To ensure that there is still enough freedom to assign the clusters to

the different blocks, we define the upper bound as ⌊5% · (1 + ϵ) · c(V )
k
⌋.

When opting for the third mode (which is the contraction of true and false twins), the
order in which true and false twins are contracted does not matter and we can even contract
both twin types at the same time. This is a consequence of the observation that a node
can never simultaneously have true and false twins (see Claim 4.1). This means that the
true twin clusters and the false twin clusters never intersect and hence can be contracted
independently at the same time.

Claim 4.1
There exists no node v in any undirected graph G that has true and false twins at the
same time.

Proof of Claim 4.1
First assume that the node v has a true twin u and a false twin w, meaning
that N [v] = N [u] and N(v) = N(w). The latter equation means that v and w share
the exact same (open) neighbourhood. In particular, w is also connected to u. However,
from the definition of false twins we get that w is not connected to v. This contradicts our
assumption that v and u are true twins, since w /∈ N [v] ∧ w ∈ N [u]⇒ N [v] ̸= N [u]. □
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4.5 Implementation Details

4.5.1 Metis File Format
Our algorithm accepts the Metis File Format, which is the same format used by
KaFFPa [33] and Metis [21]. It has also been used during the 10th DIMACS Implemen-
tation Challenge on Graph Clustering and Partitioning [3]. In detail, the format stores a
graph with n nodes and m edges in n + 1 non-comment lines. The very first line contains
two integers n and m, which respectively indicate the number of nodes and the number
of (undirected) edges. There exists a third optional integer f for the first line, which in-
dicates whether the graph has node and/or edge weights. We specifically only focus on
undirected and unweighted graphs without multiple or self edges. Thus, in our case, the
optional integer f is always either omitted or set to zero, which means that no weights are
assigned. The remaining n lines store the structure of the graph. When excluding the very
first line as well as comments, the ith line contains the list of the neighbouring nodes of
the ith node. For undirected graphs, the common approach is to represent every undirected
edge between two nodes u and w as two opposite directed edges (u,w) and (w, u). Thus w
is included in the list of u and vice versa. However, the integer m in the first line of the
format always indicates the number of undirected edges, meaning that (u,w) and (w, u)
are counted as one single edge and not separately.

4.5.2 Sampling
SSP comes with two streaming modes. The first streaming mode directly streams the nodes
of the input graph one after the other from the hard disk, meaning that it follows the default
behaviour of common streaming algorithms. The second streaming mode allows reading
the entire input graph first into the main memory and then streaming the nodes one after
the other from there. This is especially useful when testing the algorithm or when running
experiments, because the required IO time is usually lower.
When we stream a node v from the input graph G along with its edges, then we actually
only stream the outgoing edges of v and their endpoints, but not their respective opposed
incoming edges. This means that the budget edge sampling is only performed on the outgo-
ing edges of v. However, when picking such an outgoing edge, we also sample directly its
respective opposite incoming edge. Note that the incoming edge can be quickly constructed
by flipping the outgoing edge. This means that we sample pairs of opposite directed edges.
The reason is that the sampled graph GS should be a subgraph of the input G and therefore
in particular it should be also undirected. Figure 4.2 gives an example on how we sample
the edge pairs for a streamed node.
The sampled edge pairs are first stored in an adjacency list, i.e. every node stores a list
of its sampled outgoing edges. The idea behind this approach is that for every streamed
node v, we can first append to its list all of its outgoing edges. If d(v) ≤ bv, we are already
done and we only have to sample all of the respective incoming edges. Otherwise, we
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v

Figure 4.2: A visualization of streaming a node v along with its outgoing edges and their end-
points (in black), but not with the respective opposed incoming edges (in grey). The
sampled pairs of outgoing and incoming edges are marked in green. Here we assume
that bv = 3 ∧ d(v) = 5.

generate a random index of the last d(v)− j elements using a uniform distribution, where j
is the number of edges already sampled. The edge at the generated index i is considered
as sampled and swapped with the edge at the last (d(v) − j)-th position. After the swap,
we increment j by one. We repeat this process until the budget bv is full. At the end, the
non-picked edges are eliminated from the list, which are exactly the last d(v)−bv elements.
This approach can also be seen in the lines 9 to 15 of Algorithm 1. After having streamed
all nodes, we use the adjacency list to build the internal graph structure.

4.5.3 Twin Contraction

To identify the twins in the input graph G, we assign to every streamed node v a true
twin id Tt(v) and/or a false twin id Tf (v). In fact, we only need both twin ids when we
choose the third contraction mode, which simultaneously contracts true and false twins.
Otherwise, we only need the appropriate twin id. In practice, we compute and sum up the
squares of the ids of the nodes in the open/closed neighbourhood of v:

Tt(v) =
∑

u∈N [v]

h(u) Tf (v) =
∑

u∈N(v)

h(u) with h(u) = u2 (4.5)

The nodes that have the same twin ids are contracted together after having sampled the
edges, meaning that we contract the nodes in the sampled graph GS . This is done by
first remapping the discrete twin ids of the nodes to continuous cluster ids starting at zero.
In detail, we iterate through the nodes and check for every node v if we have already
seen a node u with the same discrete twin id. If this is the case, then we assign v to
the existing cluster of its twin u, otherwise we assign v to a new cluster that obtains the
next continuous cluster id. For this purpose, we use a dense_hash_map from Google1.
More specifically, every time we cannot find a twin for a node, we create an entry in the

1https://github.com/sparsehash/sparsehash.
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4.5 Implementation Details

hash map. The key of the hash map is the discrete twin id and as a value we store three
different properties, namely the assigned continuous cluster id, the size of the cluster and
the parent node that created the cluster. The size of the cluster is necessary for applying the
size-constraint as explained in Section 4.4. Thus, if the addition of a node v to an existing
twin cluster exceeds the size constraint, we create a new cluster and replace the values
stored in the hash map. This means that for the given hash key we replace the cluster id,
we set the size back to one and we set the parent of the cluster to v.
When contracting true and false twins simultaneously, we use two different hash maps, one
for the true twins and one for the false twins, to avoid unnecessary collisions between both
twin types. This means that if we find neither a true twin nor a false twin for a node, we
create an entry in both hash maps with the same values. As a consequence of Claim 4.1,
where we proved that there does not exist a node that has true and false twins at the same
time, we can make a subtle optimization by removing the entry of the cluster parent from
the true twin hash map when we find its first false twin and vice versa. Again, this avoids
unnecessary hash collisions between both twin types. The lines 23 to 36 of Algorithm 1
give a schematic overview of this approach.
After having remapped every node to its respective continuous cluster id, we perform the
actual contraction by computing the quotient graph of GS with respect to the computed
cluster ids. For this, we use an existing internal contraction method of KaFFPa that is
capable of computing the quotient graph.

4.5.4 Pseudocode
Algorithm 1 describes the different preprocessing steps of SSP before passing the graph
down to KaFFPa. For simplicity, we only focus on the third contraction mode, meaning that
we contract true and false twins simultaneously. Assuming that the underlying partitioning
algorithm needs O(bn) time and assuming that the parameter b is constant, the overall time
complexity of our algorithm lies in:

O

(∑
v∈V

(d(v) + bv) + bn

)
= O(2m+ bn+ bn) = O(m+ n) (4.6)

When streaming the graph directly from the hard disk, the memory usage lies in O(n),
because we stream every node after the other and we keep only O(n) overall sampled
edges. When streaming from the main memory, we use O(n + m), because the entire
graph is loaded into the main memory.
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4 Streaming Sampling Partitioning

Algorithm 1: Preprocessing steps of SSP
Data: graph G = (V,E), b > 0, k > 0, imbalance ϵ > 0
Result: sampled and contracted graph GSC

1 foreach v ∈ V do // stream nodes → O(n)

2 h← 0
3 foreach u ∈ N(v) do // iterate over edges → O(d(v))

4 append u to adjList[v] and set h← h+ u2

5 Tf (v)← h ∧ Tt(v)← h+ v2

6 if d(v) ≤ bv then // sample all edges → O(d(v))

7 foreach u ∈ N(v) do append v to adjList[u]
8 else
9 j ← 0

10 while j < bv do // randomly sample edges → O(bv)

11 i← random index of one of the last d(v)− j elements of adjList[v]
12 t← adjList[v].size − (d(v)− j)
13 swap adjList[v][i] with adjList[v][t]
14 increase j by one and append v to adjList[adjList[v][t]]

15 remove the last d(v)− bv elements of adjList[v] // → O(d(v))

16 build GS from adjList by filtering out doubly sampled edges // → O(bn)

17 c← ⌊5% ∗ (1 + ϵ) · c(V )
k
⌋ // size constraint of clusters

18 falseMap← ∅ ∧ trueMap← ∅
19 foreach v ∈ V do // remap to continuous cluster ids → O(n)

20 if d(v) = 0 then // treat isolated nodes separately

21 assign v to a new cluster
22 else
23 if Tt(v) in trueMap then // found true twin → O(1)

24 if trueMap[Tt(v)].size < c then
25 assign v to the cluster with id trueMap[Tt(v)].cluster_id
26 increment trueMap[Tt(v)].size by one
27 remove Tf (trueMap[Tt(v)].parent) from falseMap
28 else
29 assign v to a new cluster with id l
30 trueMap[Tt(v)]← {cluster_id: l, size: 1, parent: v}

31 else if Tf (v) in falseMap then // found false twin → O(1)

32 ... // analogous to the lines 24 - 30 but for false twins

33 else // no twins found → O(1)

34 assign v to a new cluster with id l
35 trueMap[Tt(v)]← {cluster_id: l, size: 1, parent: v}
36 falseMap[Tf (v)]← {cluster_id: l, size: 1, parent: v}

37 build GSC by contracting GS with respect to the remapped cluster ids // → O(bn)
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CHAPTER 5
Experimental Evaluation

In this chapter, we tune our proposed algorithm and compare it to existing state-of-the-art
algorithms based on some empirical experiments. We start by outlining the hardware of the
machine on which we are running our experiments. Afterwards, we describe our method-
ology. Then, we indicate the data sets that we use. Finally, we perform the experiments
and analyse their results.

5.1 Hardware

We run each instance of our experiments on a single core of a machine that contains
an Intel(R) Xeon(R) Silver 4216 CPU and that has 93 GB of available RAM.
The CPU contains 16 cores that each can handle two threads. The clock speed has a base
of 2.1 GHz and can reach a minimum of 0.8 GHz as well as a maximum of 3.2 GHz. The
machine contains an L2-Cache of 16 MiB and is based on the x86_64 architecture. It
runs Ubuntu 20.04.1 LTS with the Linux kernel version 5.4.0-152-generic.

5.2 Methodology

We divide our experiments into two different phases. First, we perform a series of tun-
ing experiments, to find appropriate configurations of our algorithm. In the second phase,
we then compare our algorithm to the current state-of-the-art competitors. For the tuning
phase, we start with a base configuration of SSP that uses the constant budget, performs no
twin contraction and calls the fast/fsocial variant of KaFFPa. Note that the parameter b is
not fixed for our base configuration, as it is determined in the very first tuning experiment.
Afterwards, we try to find an appropriate configuration for the remaining parameters. More
specifically, we analyse how switching to the eco/esocial variant of KaFFPa influences the
behaviour of our algorithm. Then, we determine whether a constant or a weighted bud-
get yields better results. Finally, we compare the effects of the different twin contraction
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5 Experimental Evaluation

modes. In the second phase, we compare SSP to the following competitors: KaFFPa [32],
HeiStream [13] and Fennel [41]. For the first two algorithms, we take the original imple-
mentation from the authors. KaFFPa is preconfigured with the fast/fsocial variant. For
HeiStream, we use the extended model with a buffer size of 128 · 1024 = 131072. Since
there does not exist any publicly available version of Fennel, we use an implementation
from Faraj and Schulz [13]. They mention that they reproduce the results presented in the
original paper of Fennel [41] and that their implementation is optimized for running time
as much as possible. We describe the used command-line arguments for all competitors in
Section A.1 of the appendix.
All algorithms are written in C++. More specifically, all competitors use C++11, whereas
our proposed algorithm uses C++14. Furthermore, all algorithms got compiled with g++
version 9.4.0 using full optimization (-O3). Every instance of an experiment is repeated
three times using different seeds. The streaming algorithms load the entire graph first into
the main memory and then stream the graph from there, because this speeds up the experi-
ments. We exclude the IO time and only focus on the partition time. In total, we measure
for every instance the edge-cut of the partition, the balance, the running time and the peak
memory usage. For the latter, we use /usr/bin/time and extract the maximum resi-
dent set size, which is given in kilobytes. Note that the peak memory usage should only
be interpreted as a rough indication, because the actual memory usage of streaming algo-
rithms can only be measured when we stream the graphs directly from the hard disk. For
all experiments, we allow an imbalance ϵ of 3% and we use k ∈ {4, 16, 64, 256, 1024}.
With GNU Parallel [39], we independently run seven instances in parallel on our ma-
chine. The only exception is the huge graph arabic-2005, for which we only run three
instances in parallel.
Regarding the evaluation, we plot the results most often in the form of a performance pro-
file. This type of plot is widely used to compare different objectives such as the edge-cut,
the running time or the peak memory usage. For every algorithm A, we plot a line on a 2D
graph where the y-axis indicates a fraction of all the instances of this algorithm A, most
often expressed in percentage, while the x-axis represents an increasing variable τ starting
from one. Every point (f, τ) on the plotted line of algorithm A indicates the fraction f of
instances of A whose objective is smaller or equal to τ times the objective of the best al-
gorithm for the same instance. Note that the instances may have different best algorithms.
Thus, the point (f, τ) indicates that algorithm A is for a fraction f of its instances never
more than τ times worse than the best algorithm on a per-instance level. Figure 5.1 visu-
alizes an example plot. Performance profiles give a broader view on the results and may
sometimes lead to other conclusions compared to only looking for example at the geometric
mean of the values.
Nonetheless, we use the geometric mean for the generation of so-called k-improvement
plots, which allow us to compare an algorithm A to a base algorithm B for increasing k
with respect to a specific objective. In detail, we first compute the mean of the objective
for every algorithm respectively over the three seeds and then we compute the geometric
mean gk over these mean values for every k. Then, we create a plot that contains the
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Figure 5.1: A visualization of an example of a performance profile, which was taken from [8].
Four algorithms are plotted in different colours. The algorithm plotted in blue is the
best for 40% of the instances and 90% of its instances are no more than 1.1 times
worse than the best algorithm on a per-instance level.

improvement 100 · (gk of B
gk of A

− 1) on the y-axis and the respective k on the x-axis. Again,
the objective can be the edge-cut or the peak memory. For the running time, we rather use
the k-speed-up plot, which has the exact same structure except for the y-axis, where we
use the speed-up gk of B

gk of A
. Whenever we speak of improvement or speedup in the following,

we use the just described approach. Note that the geometric mean has the advantage of
minimizing the influence of extreme outliers.
For some results, we include the balance value plots, which visualize for every algorithm
the balance of the partition of every instance in increasing order. In detail, the x-axis
indicates the balance for every instance. The instances are sorted with respect to their
balance and the y-axis indicates the index of every instance within this sorted order. More
specifically, the balance bi of an instance i is given as:

bi =
max
1≤j≤k

{c(Vj)}⌈
c(V )
k

⌉ (5.1)

Regarding the naming scheme in our plots, we include the chosen configuration in the
name of our algorithm. For example, the name SSP_fast_B3_Tnone_Sdefault
indicates that our proposed algorithm uses the fast variant of KaFFPa with b = 3 and
no twin contraction. The suffix _Sdefault indicates that we use the default sampling
mode, which is the constant budget approach. Another possible configuration would
be SSP_fsocial_B2_Ttrue_Sweighted, which uses the fsocial variant of KaFFPa
with b = 2, true twin contraction and the weighted budget approach.
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5 Experimental Evaluation

5.3 Data Sets

We focus on undirected and unweighted graphs with no multiple or self edges. In addition,
we only use graphs with a certain minimum density, i.e. m ≥ 20n. The idea behind this
choice is that for sparser graphs, we would sample a fairly large portion of the edges even
for low values of b, meaning that our algorithm would behave very similar to the direct
application of our underlying partitioner. In other words, we would not benefit from the
budget sampling performed in the preprocessing step of our algorithm.
We use two different data sets. We dedicate one set to the tuning experiments and the
other set to the final test experiments. The tuning set contains five non-social graphs and
five social graphs. The test set contains ten non-social and ten social graphs. Most of the
graphs were already used in previous work on graph partitioning and originate from various
sources [29, 16, 37, 3, 9, 22, 6, 40]. If necessary, we converted the graphs in the Metis File
Format, we eliminated existing multiple or self edges and we dropped the edge weights.
A complete list of all graphs can be found in Table 5.1. Note that we exclude the huge
graph arabic-2005 for the KaFFPa variant tuning, because otherwise the experiments
for the esocial variant would take too long.
Regarding the social graphs, we use KaGen [16] to create one artificial 2D random geomet-
ric graph (RGG2D). A RGG2D is generated by randomly placing nodes into the unit square
of the Euclidean space. Two nodes are connected by an edge if their distance is smaller
or equal to a previously defined radius r. For our graph rgg2d_25, we choose 1 000 000
nodes and a desired total number of 225 edges, meaning that the radius r is automatically
approximated by using a naïve approach of Newton’s method. In addition, we generated
one artificial 2D random hyperbolic graph (RHG2D) with KaGen. A RHG2D is a gener-
alization of a RGG2D, because its nodes are placed into a hyperbolic space instead of an
Euclidean space. For our graph rhg2d_128, we choose 1 000 000 nodes and a desired
average node degree of 128. We use the default value for the power-law exponent γ = 2.6,
meaning that we get α = 0.8.
Since the fsocial variant of KaFFPa is specifically designed for social networks, we use this
variant for the social graphs of both data sets. For the remaining graphs, we use the fast
variant. The same goes for SSP. HeiStream and Fennel have no particular configuration for
social graphs, thus we use the same version across all graphs.

5.4 Tuning Experiments

Starting from a base configuration of SSP, where we use the constant budget, perform no
twin contraction and call the fast/fsocial variant of KaFFPa, we perform several experi-
ments to tune the parameters of our algorithm. After having determined the best choice for
a specific parameter, we continue with this choice for the subsequent experiments.
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Graph n m Kind Source(s)

Non-Social Tuning Graphs

bcsstk30 28 924 1 007 284 Stiffness [37]
pdb1HYS 36 417 2 154 174 Protein [9]
GaAsH6 61 349 1 660 230 Chemistry [9]
cant 62 208 1 972 466 Meshes [9]
shipsec5 179 860 4 966 618 Meshes [9]

Social Tuning Graphs

Texas80 31 560 1 219 650 Social Network [40]
kron_g500-simple-logn20 1 048 576 44 619 402 Artificial [3]
hollywood-2011 2 180 759 114 492 816 Collaboration [6]
enwiki-2013 4 206 785 91 939 728 Wikipedia [6]
arabic-20051 22 744 080 553 903 073 Web [6]

Non-Social Test Graphs

smt 25 710 1 863 737 Meshes [9]
bcsstk32 44 609 985 046 Stiffness [37]
Ga3As3H12 61 349 2 954 799 Chemistry [9]
crankseg_2 63 838 7 042 510 Meshes [9]
boneS01 127 224 3 293 964 Misc [9]
bmwcra_1 148 770 5 247 616 Meshes [9]
audikw1 943 695 38 354 076 Meshes [9, 3]
ldoor 952 203 22 785 136 Misc [9, 3]
Flan_1565 1 564 794 57 920 625 Meshes [9]
Bump_2911 2 852 430 62 409 240 Meshes [9]

Social Test Graphs

Texas84 36 371 1 590 655 Social Network [40]
Penn94 41 554 1 362 229 Social Network [40]
livemocha 104 103 2 193 083 Social Network [22]
libimseti-sorted 220 970 17 233 144 Social Network [22]
actor-collaboration 382 219 15 038 083 Collaboration [22]
rhg2d_128 1 000 000 58 906 226 Artificial [16]
rgg2d_25 1 000 000 33 563 554 Artificial [16]
dewiki-2013 1 532 354 33 093 029 Wikipedia [6]
kron_g500-simple-logn21 2 097 152 91 040 932 Artificial [3]
orkut 3 072 441 117 185 082 Social Network [29]

Table 5.1: Graphs of the tuning set and the test set

1 We exclude this graph for the KaFFPa variant tuning, because otherwise the running
time for the esocial variant would be too long.
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5.4.1 Budget Value
We first start by selecting the right value for the constant budget b. For this, we are evalu-
ating the base configuration of SSP with five different budget values b ∈ {1, 2, 3, 4, 5}. In
particular, we want to verify our statement of Section 4.3.1, which said that tweaking the
constant budget b comes with a time-quality trade-off. More specifically, we assume that a
higher value of b yields a better solution quality but comes with a worse running time and
a higher memory usage.
Figure 5.2 shows the results of our experiments. For reference, we also add the balance
of directly applying KaFFPa on the graphs in the balance value plots. The figure does not
contain the performance profiles for the peak memory usage, because we do not stream
directly from the hard disk and thus this metric should only be interpreted as a rough
indication. Nonetheless, we include these plots in Figure A.2 of the appendix. Note that
we remove the results for b = 1 from all plots, because this configuration returns unfeasible
results, as it is always the fastest, but at the same time it yields an edge-cut that is up to a
factor of 40 worse than the best configuration.
When analysing the results, we first observe that all configurations fail to stay below the
maximum imbalance of 3% on most non-social instances with k = 1024. For the social
graphs, only a few instances cannot maintain the balance constraint for large k. However,
the imbalance never exceeds 7% regardless of the graph and the chosen budget. In fact, this
behaviour can also be observed when directly applying KaFFPa on the graphs. Since our
algorithm exceeds the balance constraint in fewer non-social instances compared to the di-
rect application of KaFFPa and since these exceeding imbalances are also less pronounced,
we deduce that this behaviour can be attributed to the underlying KaFFPa algorithm. In par-
ticular, we assume that switching to the eco/esocial variant would most probably improve
the balance, which can be verified with the next tuning experiments.
Besides, we see that our statement about the time-quality trade-off turns out to be true for
the non-social as well as for the social graphs. Increasing the constant budget b results in a
better edge-cut and a worse running time. Thus, b = 5 yields the best solution quality for
about 85% and 92% of the instances when using the fast or the fsocial variant respectively.
On the other hand, we obtain with b = 2 the best running time for 98% of the instances
on the non-social graphs and for 93% of the instances on the social graphs. The time-
quality trade-off is more pronounced for low budget values, meaning that the difference
between b = 2 and b = 3 is larger than between b = 4 and b = 5. For this reason, b = 3
seems to be the most robust choice, since it is the second fastest configuration on most
instances and it yields at the same time a solution quality that lies most often closer to b = 5
than to b = 2. Furthermore, it has the second-best memory usage on all instances. For this
reason, we choose b = 3 for the following experiments. However, we keep in mind that
tuning the budget allows us to perform a feasible time-quality trade-off.
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(d) Cut quality for the social graphs.
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(f) Running time for the social graphs.

Figure 5.2: Balance value plots as well as cut quality and running time performance profiles for
the budget value tuning.
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(f) Running time for the social graphs.

Figure 5.3: Balance value plots as well as cut quality and running time performance profiles for
the KaFFPa variant tuning.
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5.4.2 KaFFPa Variant
In our second tuning experiment, we want to analyse the variant of the underlying KaFFPa
algorithm. On the one hand, we are interested in verifying if switching to the eco/esocial
variant for the same constant budget b = 3 increases the solution quality while still main-
taining a competitive running time. On the other hand, we want to validate our statement
from the first tuning experiments, where we assumed that the imbalance of at most 3% is
respected when using a stronger variant of KaFFPa. Note that we exclude the huge social
graph arabic-2005 for this tuning experiment, because otherwise the running time for
the esocial variant would be too long. For a similar reason, we do not include the strong/s-
social variant of KaFFPa in our experiments, because this variant would take extremely
long, even with budget edge sampling. Figure 5.3 shows the results of our experiments.
We add the performance profiles for the peak memory in Figure A.3 of the appendix. For
reference, we also include the results of SSP with the fast/fsocial variant and a constant
budget b = 5 in the plots.
First, we observe that the eco/esocial variant of KaFFPa manages to maintain an imbalance
of at most 3% for all instances. Thus, our assumption is confirmed for the non-social
as well as for the social graphs, because we can improve the balance of the partition by
using a stronger variant of KaFFPa. However, besides maintaining the balance constraint,
switching to the eco/esocial variant is not a good option. In detail, the eco/esocial variant
for b = 3 always yields a better edge-cut than its fast/fsocial counterpart. When comparing
it to the fast/fsocial variant with b = 5, we see that the latter configuration manages to
return in about 80% of the non-social and social instances the better solution quality. At
the same time, it is still by far faster than the eco/esocial configuration, especially for the
social graphs. Thus, it would even be possible to further improve the solution quality by
increasing the constant budget b while still being faster than the eco/esocial configuration.
We conclude that tuning the constant budget b is a better option than switching to the
eco/esocial variant. Therefore, we continue with the fast/fsocial variant for the following
experiments. However, if the balance constraint is highly important and the running time
is negligible, then the eco/esocial variant might be an option.

5.4.3 Sampling Mode
Next, we want to determine the best sampling mode for our algorithm. For this, we analyse
how switching to the weighted budget approach compares to our base configuration, which
uses the constant budget. For both sampling modes, we stick with b = 3 as well as with the
fast/fsocial variant. Figure 5.4 shows the results of our experiments. We mainly focus on
the edge-cut quality and the running time. Hence, we add the performance profiles for the
peak memory and the balance value plots in Figure A.4 of the appendix. For reference, we
also include the results of SSP with a constant budget b = 4 in the plots.
Focusing on the non-social results, the use of the weighted budget yields on most instances
a slightly better edge-cut compared to its constant budget counterpart. However, for 90%
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(a) Cut quality for the non-social graphs.
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(b) Cut quality for the social graphs.
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(c) Running time for the non-social graphs.
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(d) Running time for the social graphs.

Figure 5.4: Cut quality and running time performance profiles for the sampling mode tuning.

of the instances, the constant budget is never more than 6% worse than the weighted budget
in terms of solution quality. In return, the weighted budget needs about 11% more time in
the median and has always a slightly worse peak memory. When comparing the weighted
budget for b = 3 to the constant budget with b = 4, we observe that now the weighted
budget is slightly faster and uses less memory on most instances but yields also a slightly
worse edge-cut quality. Thus, we deduce that using a weighted budget with b = 3 is a
compromise between the constant budgets b = 3 and b = 4. This observation validates the
proof in Section 4.3.2, which said that the use of the weighted sampling mode yields an
overall budget B with bn ≤ B ≤ (b + 1)n. More specifically, we can conclude that the
change in the sampling mode has no significant effect and that the observed time-quality
trade-off only originates from the fact that we sample different numbers of edges.
A similar observation can be made for the social graphs. In detail, the improvement in the
edge-cut quality is slightly more pronounced when switching for b = 3 from a constant to a
weighted budget, except for the huge graph arabic-2005, where the solution quality is
up to a factor of about 1.65 worse. At the same time, the loss in terms of running time and
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memory efficiency is also larger. In fact, when excluding the huge graph arabic-2005,
the weighted budget with b = 3 is more comparable to the constant budget b = 4 than to
the constant budget b = 3. Nonetheless, we come to the same conclusion, that switching
to a weighted budget has no significant positive impact on the results other than the fact
that we sample a different number of edges. Especially for the social graphs, we can see
that increasing the constant budget is a much better choice than switching to the weighted
budget. Thus, we stick with the constant budget for the following experiments.

5.4.4 Contraction Mode
Finally, we compare the four different twin contraction modes while keeping all other pa-
rameters fix, meaning that we still use the fast/fsocial variant as well as a constant bud-
get b = 3. For simplicity, we use the terms Tnone, Ttrue, Tfalse and Tboth to refer
to no, only true, only false and both twin types contraction respectively. Figure 5.5 shows
the results of our experiments. We add the performance profiles for the peak memory in
Figure A.5 of the appendix. We there also include the k-improvement plots for the edge-cut
quality and the k-speed-up plots to give a better understanding of the results.
For the non-social graphs, we observe that the pairs Tboth and Ttrue as well as Tnone
and Tfalse behave very similarly, whereas the first two configurations yield overall bet-
ter results in terms of edge-cut quality and running time. The latter two configurations
are up to a factor of 2.5 slower for some instances. This pairwise similarity can be ex-
plained by analysing for every graph how much the number of nodes n is reduced when
contracting true or false twins as shown in Table 5.2. Nearly all non-social graphs are not
affected by the false twin contraction. This explains why the pairs Tboth and Ttrue as
well as Tnone and Tfalse behave extremely similarly. Nonetheless, the results for the
non-social graphs validate our statement in Section 4.4, where we assumed that perform-
ing twin contractions as a preprocessing step is a good heuristic. In fact, we deduce that
contracting at least true twins improves the algorithm for any k in terms of solution quality
and running time as shown by the k-improvement plots and the k-speed-up plots of the
non-social graphs in the appendix.
Regarding the social graphs, Tboth and Ttrue have no clear dominance over the other
two configurations. This can again be explained with the help of Table 5.2, because most
social graphs are barely reduced by the true twin contraction. The only exception is the
graph hollywood-11, for which Tboth and Ttrue are the most dominant in terms of
edge-cut quality and running time. Therefore, we can assume that if a graph can be highly
reduced by the true twin contraction, it makes most sense to apply Tboth or Ttrue.
Even if this is not the case, the latter two configurations can usually keep up with Tnone.
The only exception is the huge graph arabic-2005, for which the true twin contraction
speeds up the computation, but in return we obtain a worse edge-cut up to a factor of
about 2.1. Surprisingly, even if the number of nodes of this huge graph can be reduced
to 69.47% of its original size when applying false twin contraction, Tfalse is never the
fastest configuration for this graph regardless of k and it also yields for most k a worse
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(a) Balance for the non-social graphs.
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(b) Balance for the social graphs.
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(c) Cut quality for the non-social graphs.
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(d) Cut quality for the social graphs.
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(e) Running time for the non-social graphs.
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(f) Running time for the social graphs.

Figure 5.5: Balance value plots as well as cut quality and running time performance profiles for
the contraction mode tuning.
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Graph n rt rf

Non-Social Graphs

bcsstk30 28 924 32.12% 99.75%
pdb1HYS 36 417 33.91% 100.00%
GaAsH6 61 349 100.00% 100.00%
cant 62 208 99.55% 100.00%
shipsec5 179 860 16.92% 100.00%

Social Graphs

Texas80 31 560 99.94% 99.93%
kron_g500-simple-logn20 1 048 576 99.98% 93.41%
hollywood-2011 2 180 759 54.24% 99.94%
enwiki-2013 4 206 785 99.90% 95.12%
arabic-2005 22 744 080 92.00% 69.47%

Table 5.2: The values rt and rf indicate the percentage of n that remains after having performed
respectively true or false twin contraction. Note that the twins are identified based
on our implementation as described by Equation 4.5. In addition, we apply the size-
constraint on the twin clusters with k = 64, as outlined in Section 4.4.

solution quality than Tnone. Thus, we cannot make the same conclusion for Tfalse
as for Ttrue, because false twin contraction seems to be never a good choice for any
of the circumstances.
When comparing Tboth and Ttrue, we cannot observe any huge differences. Tboth
yields a slightly better balance on non-social graphs and Ttrue typically performs slightly
better for low values of k. In fact, when looking at the k-improvement plots and the k-
speed-up plots, Ttrue seems to be overall more robust. In addition, its loss in edge-cut
quality for arabic-2005 is less pronounced. Combined with the fact that we could
not find any convincing argument for contracting false twins, we decide to prefer Ttrue
over Tboth. In comparison to Tnone, Ttrue performs clearly better for the non-social
graphs. Ttrue is also a better overall choice for social graphs, except for low k and
for the huge graph arabic-2005. Note that the peak memory is overall slightly bet-
ter for Tnone, but the improvement is negligible. Therefore, we conclude that the best
sampling mode amongst all graphs is to only contract true twins, which we also use for
the following test experiments. Nonetheless, we keep in mind that there may be scenarios
where no twin contraction might be clearly better in terms of edge-cut quality, as we have
seen for the huge graph arabic-2005.
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5.5 Test Experiments

We now compare the final configuration of our algorithm to the state-of-the-art competitors.
More specifically, we configure SSP with the fast/fsocial variant of KaFFPa, a constant
budget b = 3 and the true twin contraction. For the competitors, we select KaFFPa, Fennel
and HeiStream. Before analysing the test experiments, our expectation is that KaFFPa
should yield the best solution quality on most instances while being generally the slowest.
Fennel should be the best in terms of running time, but it should return the worst edge-cuts.
HeiStream is expected to be a compromise between these two algorithms and we strive to
beat HeiStream with our algorithm. Figure 5.6 shows the results of our experiments. We
add the performance profiles for the peak memory in Figure A.6 of the appendix. For a
better understanding of the results, we also include the k-improvement plots for the edge-
cut quality and the k-speed-up plots in Figure 5.7.
First of all, we observe that SSP fails to stay below the maximum imbalance of 3% for
about 23% of the non-social instances with k = 256 and for about 60% of the non-social
instances with k = 1024. All these unbalanced instances belong to the six smallest non-
social graphs in the data set in terms of number of nodes n. All instances of the largest four
graphs maintain the balance constraint for any k. A similar behaviour can be observed for
KaFFPa, however the imbalances are more pronounced. Thus, the preprocessing of SSP
helps to improve the balance for the underlying KaFFPa algorithm. For the social graphs,
SSP manages to respect the balance constraint for all instances and KaFFPa only exceeds
the maximum imbalance of 3% in one single case.
Regarding the non-social graphs, KaFFPa yields as expected the best edge-cut for nearly all
instances, but it is overall the slowest. Fennel is the fastest algorithm for about 65.33% of all
non-social instances but performs the worst in terms of edge-cut quality. The results show
that SSP manages to be overall better than HeiStream for the non-social graphs, especially
for low k. In detail, SSP is never more than 15% worse than KaFFPa in terms of solution
quality for about 80% of the instances. The remaining 20% are mostly for k = 4 with some
few instances being for k = 16. We can validate these observations when looking at the
cut k-improvement plot in Figure 5.7. There, we can also see that SSP has an improvement
up to about 200% over the edge-cut quality of HeiStream for low k, which diminishes
for large k, since the solution qualities of KaFFPa and HeiStream approach each other for
increasing k. SSP yields in about 87.33% of the instances a better edge-cut than HeiStream.
All remaining instances where HeiStream beats SSP belong to graphs with less than 65 000
nodes. The median edge-cut quality of HeiStream is about 43.66% worse than that of SSP.
In terms of running time, SSP and HeiStream are each the fastest for about 17.33% of the
instances. Compared to the other algorithms, HeiStream is especially fast for k = 1024,
which can also be verified when looking at the k-speedup plot. In contrast, SSP is the fastest
on the three largest non-social graphs with k = 64 or k = 246. The dominance of Fennel
in terms of running time diminishes for increasing k, whereas the speedup of HeiStream
and SSP increases. In direct comparison, SSP is faster than HeiStream for about 64% of
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(a) Balance for the non-social graphs.
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(d) Cut quality for the social graphs.
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(e) Running time for the non-social graphs.
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(f) Running time for the social graphs.

Figure 5.6: Balance value plots as well as cut quality and running time performance profiles for
the final test experiments.
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(a) Cut k-improvement for the non-social graphs.
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(b) Cut k-improvement for the social graphs.
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(c) Time k-speed-up for the non-social graphs.
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Figure 5.7: k-improvement and time k-speed-up plots for the final test experiments.

all non-social instances. Note that SSP performs the worst in terms of edge-cut quality and
running time on the graph Ga3As3H12, which is also the only non-social graph where
the true twin contraction has no effect, as indicated by Table 5.3. Since SSP dominates
HeiStream the most on the non-social graph ldoor, which is the graph with the highest
true twin reduction, it seems that a good performance of SSP is directly correlated to the
reduction effect of the true twin contraction.
For the social graphs, we get a different picture. KaFFPa still yields overall the best edge-
cut quality, but the improvement is less pronounced and KaFFPa is far slower than the
streaming algorithms. Fennel is even more dominant in terms of running time compared
to the non-social graphs, since it is the fastest for about 87.33% of all social instances and
the gap to the other competitors is also larger. SSP and HeiStream are the fastest for 9.3%
and 4% respectively. The k-speedup plot of Figure 5.7 indicates again that HeiStream
and SSP have the best relative speedup for k = 1024, whereas the dominance of Fennel in
terms of running time decreases for high k. However, the most surprising observation is that
Fennel yields a better edge-cut quality than SSP for 61.33% of the instances. The biggest
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5.5 Test Experiments

Graph n rt

Non-Social Graphs

smt 25 710 28.90%
bcsstk32 44 609 33.22%
Ga3As3H12 61 349 100.00%
crankseg_2 63 838 18.80%
boneS01 127 224 31.18%
bmwcra_1 148 770 36.21%
audikw1 943 695 33.31%
ldoor 952 203 14.45%
Flan_1565 1 564 794 33.33%
Bump_2911 2 852 430 34.08%

Graph n rt

Social Graphs

Texas84 36 371 99.98%
Penn94 41 554 99.96%
livemocha 104 103 99.99%
libimseti-sorted 220 970 100.00%
actor-collaboration 382 219 50.70%
rhg2d_128 1 000 000 97.50%
rgg2d_25 1 000 000 99.07%
dewiki-2013 1 532 354 99.92%
kron_g500-simple-logn21 2 097 152 99.96%
orkut 3 072 441 99.94%

Table 5.3: The value rt indicates the percentage of n that remains after having performed true
twin contraction. Note that the twins are identified based on our implementation as
described by Equation 4.5. In addition, we apply the size-constraint on the twin clusters
with k = 64, as outlined in Section 4.4.

exceptions are the two artificial graphs rhg2d_128 and rgg2d_25, where Fennel is up
to a factor of 55 worse. Similarly, the solution quality of HeiStream is always better than
that of SSP except for the two artificial graphs, where it is up to a factor of four worse.
When excluding these two artificial graphs, SSP yields an edge-cut that is on average 17%
worse than HeiStream and 7% worse than Fennel. Therefore, SSP is overall dominated by
Fennel on the social graphs, which is a huge difference to the behaviour observed for the
non-social graphs. There exist two potential reasons for this observation. On the one hand,
the dominance of KaFFPa in terms of solution quality is far less pronounced for social
graphs, which has also a negative effect on SSP. On the other hand, in contrast to the non-
social graphs, most social graphs are barely affected by the true twin contraction, as shown
in Table 5.3. Even the most reduced graph actor-collaboration is less reduced
than nine out of the ten non-social graphs. Nonetheless, SSP still keeps up with HeiStream
in terms of running time, since it is faster for exactly 50% of the social instances, which
mostly have a low k.
As mentioned, the peak memory usage plots in the appendix only serve as an indication,
because we load for all streaming algorithms the entire graph into the main memory. We
observe a similar behaviour for the non-social and the social graphs. Fennel uses the
least memory on all instances. HeiStream beats SSP on the largest two non-social and
social graphs respectively, but it performs much worse on the smaller graphs, where it even
uses more memory than KaFFPa. In contrast, SSP is always more memory efficient than
KaFFPa. With the help of the peak memory k-improvement plot, we observe that Fennel
and SSP improve for large k in terms of memory efficiency in comparison to HeiStream.
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CHAPTER 6
Discussion

6.1 Conclusion
In this work, we introduce a new streaming model for the graph partitioning problem that
first reduces the size of the input graph G to O(n) by applying budget edge sampling on the
streamed nodes and then further simplifies the graph by contracting twins. The resulting
graph is partitioned by an underlying in-memory multilevel algorithm, which is in our case
KaFFPa, before making the final node assignments during the uncontraction.
Based on our tuning experiments, we conclude that using the same low constant budget b
for every node yields the best results. Tuning this parameter b allows us to perform a fea-
sible time-quality trade-off, which enables us to adjust our algorithm to specific use cases.
Besides, we provide evidence that performing true twin contraction as a preprocessing step
is an effective heuristic in most cases. However, the same cannot be said for false twin con-
traction. We also conclude that stronger versions of the underlying in-memory multilevel
partitioner need much more time in return for little edge-cut improvement, meaning that it
is best to stick to the fastest version.
In comparison to current state-of-the-art competitors, our algorithm yields promising re-
sults on graphs from scientific applications. More specifically, SSP beats HeiStream on
most instances of the selected data set in terms of solution quality, running time and peak
memory. Thus, we manage to achieve our goal of further closing the current gap between
high-quality in-memory multilevel algorithms and fast streaming approaches. Note that
HeiStream is overall better than SSP for k = 1024, especially because it is better in re-
specting the balance constraint. On social networks, we obtain a different picture, because
SSP underperforms compared to the competitors in terms of edge-cut quality. There are
two reasons for this observation. On the one hand, the dominance of KaFFPa in terms of
solution quality is less pronounced on social networks. This has also a negative influence
on SSP, since it highly depends on KaFFPa as its in-memory partitioner. On the other
hand, the social networks of our data set were barely affected by the true twin contrac-
tion. SSP performs in general the best when the graph is strongly reduced by the true twin
contraction. Besides, SSP generally favours high k and large, but not huge graphs.
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6 Discussion

6.2 Future Work

The introduction of budget edge sampling to the streaming context of the graph partitioning
problem as well as the establishment of the twin contraction heuristic cover, to the best of
our knowledge, previously untouched parts of the research field. Thus, there exist many
new approaches to further refine our proposed algorithm. Since SSP falls short on social
networks in terms of solution quality, a first tackling point is to improve the edge-cut of the
partition on those graphs.
Starting with the sampling phase, one can come up with other sampling methods, such as
the use of an amortized budget that allows other nodes to sample more than b edges, if
there exist nodes sampling less than b edges due to their low degree. With this approach,
we would still respect the overall budget constraint, but we would sample more efficiently,
since we would not waste budget on low-degree nodes. Another idea is to introduce the
buffered streaming approach to our algorithm, meaning that one streams δ nodes simulta-
neously and samples δ · b edges among their union of edges. Instead of randomly sampling
the edges, we could use the local information of the streamed buffer to determine which
edges might be better suited for being sampled. Here, the main focus lies in finding the
right value for δ. Since the weighted budget case described in Section 4.3.2 did not per-
form much differently from the default constant budget case other than sampling a different
number of edges, a more experimental idea is to take the opposite approach of weighting
the budget of a node by the inverse of its degree. This intentionally disadvantages high
degree nodes and concentrates the overall budget on low degree structures. However, it
remains to be analysed whether this approach will lead to a measurable improvement in
solution quality.
Regarding the contraction phase, the most promising improvement is to use a better hash
function for determining true and false twins. The current implementation of summing up
the squares of the node ids may lead to nodes being falsely contracted together. Reducing
the hash collisions most probably has a direct impact on the solution quality. To guarantee
perfect twin contraction, one could also verify the correctness of the computed twin ids
by restreaming the graph. Another idea to improve the solution quality is to first apply
the twin contraction on the input graph and then perform the budget edge sampling on the
contracted graph. However, the most challenging part of this approach is to maintain O(n)
memory, which most probably requires also restreaming the graph.
In terms of running time, a simple improvement is to handle isolated nodes separately.
Since it is irrelevant to which block these nodes are assigned, one can simplify the problem
by removing them from the input graph and then assigning them to any block after the
partitioning, while still respecting the balance constraint. We can proceed similarly for
nodes of extremely large degree. In contrast to isolated nodes, it is not completely irrelevant
to which block these nodes are assigned, because it is often optimal to put them in the block
with the smallest size. However, assigning them to any block does not really affect the
edge-cut, since all blocks have roughly the same size due to the existing balance constraint.
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APPENDIX A
Appendix

A.1 Command-Line Arguments

We list below the used command-line arguments of every competitor during the final test
experiments. Note that [GRAPH], <k>, <seed> and <variant> are placeholders and
get replaced with the respective configuration of every instance.

$ ./SSP_mem_Ttrue [GRAPH] --variant=<variant> --budget=3 --k=<k>
↪→ --seed=<seed>

$ ./kaffpa [GRAPH] --preconfiguration=<variant> --k=<k>
↪→ --seed=<seed>

$ ./heistream [GRAPH] --k=<k> --seed=<seed> --stream_buffer=131072
↪→ --stream_allow_ghostnodes --ram_stream

$ ./onepasspartition [GRAPH] --one_pass_algorithm=fennel --k=<k>
↪→ --seed=<seed> --ram_stream

A.2 Sampling Modes Comparison

We already observed in Section 4.3.2 that, when choosing the same value of b for both sam-
pling methods, the weighted case has a slightly larger overall budget B than the constant
case. However, we want to further compare both sampling methods to better understand
their effects in different scenarios. More specifically, we want to mathematically define for
both sampling methods the expected sampled degree ds(v) of a given node v, which is the
expected number of edges sampled that have one endpoint in v. For this, we first define for
every edge e ∈ E the binary variable xe as follows:

∀e ∈ E : xe =

{
1 if e is sampled
0 otherwise

(A.1)
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This means that we can set ds(v) =
∑

e={v,u}∧u∈V xe for a given node v. Note that if v
is a low-degree node with d(v) ≤ bv, we trivially get ds(v) = d(v) for both sampling
methods. Thus, in the following, we assume that d(v) > bv. For similar reasons, we
assume that ∀u ∈ N(v) : d(u) > bu. For simplicity, we omit the rounding for the weighted
case, i.e. we assume that the result of the weighted division is already always integer.

Theorem A.1
For a given parameter b and given node v ∈ V with d(v) > bv ∧ ∀u ∈ N(v) : d(u) > bu,
the expected value for the sampled degree ds(v) is:

E[ds(v)] =

b ·
(
1 +

∑
u∈N(v)

d(v)−b
d(v)d(u)

)
for the constant budget

d(v) · bn
m
·
(
1− bn

4m

)
for the weighted budget

(A.2)

Proof of Theorem A.1
First of all, because of the linearity of expectation, we can write:

E[ds(v)] = E

 ∑
e={v,u}∧u∈V

xe

 =
∑

e={v,u}∧u∈V

E[xe] =
∑

e={v,u}∧u∈V

P (xe)

Note that P (xe) is the probability of sampling the edge e = {v, u} at least once. For further
simplification, we differentiate between Pv(e) and Pu(e), where Pv(e) is the probability of
sampling the edge e when streaming v and Pu(e) is the probability of sampling the edge e
when streaming u. With the help of basic combinatorial rules, we get:

P (xe) = Pv(xe) + Pu(xe)− Pv(xe) · Pu(xe) =
(d(v)−1

bv−1 )
(d(v)bv

)
+

(d(u)−1
bu−1 )
(d(u)bu

)
− (d(v)−1

bv−1 )
(d(v)bv

)
· (

d(u)−1
bu−1 )
(d(u)bu

)

= bv
d(v)

+ bu
d(u)
− bv

d(v)
· bu
d(u)

We first focus on the constant budget. Since every node has the same budget b, we can say
that P (xe) =

b
d(v)

+ b
d(u)
− b2

d(v)d(u)
. Thus we get for the expected value:

E[ds(v)] =
∑

e={v,u}∧u∈V
P (e) =

∑
u∈N(v)

(
b

d(v)
+ b

d(u)
− b2

d(v)d(u)

)
= b ·

(
1 +

∑
u∈N(v)

d(v)−b
d(v)d(u)

)
For the weighted case, we can insert Equation 4.2 while omitting the rounding, meaning
that we get P (xe) =

bn
m
−
(

bn
2m

)2. The expected value can therefore be written as:

E[ds(v)] =
∑

e={v,u}∧u∈V
P (e) =

∑
u∈N(v)

(
bn
m
−
(

bn
2m

)2)
= d(v) · bn

m
·
(
1− bn

4m

)
□
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v

Figure A.1: A visualization of sampling the edges of a star node v with leaves of degree two and a
constant budget per node b ≥ 2. Edges sampled while streaming one of the leaf nodes
are green and edges sampled while streaming v are blue.

Theorem A.1 indicates that the expected value of edges sampled for a node v is inversely
proportional to the degree of its neighbours when using the constant budget. In contrast,
when using the weighted budget, the expected value only depends proportionally on the de-
gree of v. To give a more intuitive example for this observation, let us consider the extreme
scenario of a (large) clique with c + 1 nodes. Thus, every node in the clique has a degree
of c. Again, we assume that c > b. This means we get E[ds(v)] = b ·

(
1 + c−b

c

)
< 2b when

using the constant budget. Thus, the inverse proportionality to the degree of the neigh-
bouring nodes has a negative effect in this scenario, because the expected number of edges
sampled for a node in the clique is always below 2b. This is independent of the size of the
clique and therefore the constant budget fails to properly sample large cliques. In contrast,
we get E[ds(v)] = c · bn

m
·
(
1− bn

4m

)
for the weighted case, i.e. the expected number of

edges sampled for a node in the clique increases proportionally with c.
On the other hand, if the degree of the neighbours is extremely low, as for example in
the case of a star node v, then the use of a constant budget actually yields a higher ex-
pected number of edges sampled. Let us consider that ∀u ∈ N(v) : d(u) ≤ b but we
have d(v) > b. Then we sample all of the edges of v when using the constant budget, since
all neighbouring nodes sample all of their edges. An example of this scenario is visual-
ized in Figure A.1. In contrast, the expected number of edges sampled for the node v is
completely independent of the degrees of the neighbouring nodes when using the weighted
budget, with the exception that every leaf samples at least one edge.
Another consequence of Theorem A.1 is that E[ds(v)] > b when using the constant budget,
meaning that we always sample at least b edges. Thus, the constant budget is better in
maintaining the connectivity of the input graph G, because low-degree structures with an
overall degree less or equal to b are sampled entirely. In contrast, using the weighted
budget, we do not have such a constant lower bound. It is only because of the rounding
that we sample a minimum of one edge per node. Therefore, sampling with the weighted
budget may break low-degree structures like paths into many different pieces.
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A.3 Further Results
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Figure A.2: Peak memory performance profiles for the budget value tuning.
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Figure A.3: Peak memory performance profiles for the KaFFPa variant tuning.
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Figure A.4: Peak memory performance profiles and balance plots for the sampling mode tuning.
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(d) Cut k-improvement for the social graphs.
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(f) Peak memory for the social graphs.

Figure A.5: Peak memory performance profiles as well as cut k-improvement and time k-speed-
up plots for the contraction mode tuning.
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(a) Peak memory for the non-social graphs.
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(b) Peak memory for the social graphs.
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(c) Mem. k-improvement for the non-social graphs.
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(d) Mem. k-improvement for the social graphs.

Figure A.6: Peak memory performance profiles as well as peak memory k-improvement plots for
the final test experiments.
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Zusammenfassung

Ein gemeinsames Merkmal vieler skalierbarer Algorithmen, welche auf Graphen für die
unterschiedlichsten Anwendungen arbeiten, besteht darin, dass sie eine Partitionierung der
Graphen voraussetzen. Dies bedeutet, dass die Knoten eines Graphen in k Blöcke von
ungefähr gleicher Größe aufgeteilt werden sollen, wobei die Summe der Gewichte der
zwischen diesen Blöcken verlaufenden Kanten zu minimieren ist. Der geeignete Algorith-
mus zur Lösung dieses Partitionierungsproblems hängt jedoch stark vom verfügbaren Spe-
icher des Rechners ab. Aufgrund der wachsenden Größe vieler realer Graphen haben spe-
icherinterne Partitionierer oft Schwierigkeiten, große Netzwerke auf Rechnern mit gerin-
gen Speicherkapazitäten zu partitionieren. Aus diesem Grund steigt in letzter Zeit das
Interesse an der Verwendung von strömenden Algorithmen für die Graphenpartitionierung,
welche einen geringen Speicherbedarf haben, aber typischerweise nur Lösungen von
geringer Qualität liefern. In dieser Arbeit gehen wir dieses Qualitätsproblem an, indem wir
einen neuen Algorithmus vorschlagen, der ein erweitertes Strömungsmodell verwendet, bei
dem alle Knotenzuweisungen erst nach der Strömung des gesamten Graphen durchgeführt
werden. Um dies zu erreichen, wird nur eine Teilmenge der Kanten jedes Knotens verwen-
det, so dass wir eine vereinfachte Version des Eingabegraphen mit O(n) Speicher darstellen
können. Wir vereinfachen den Graphen weiter, indem wir Zwillinge, d.h. Knoten mit gle-
icher Nachbarschaft, kontrahieren. Der daraus resultierende, kontrahierte Graph wird dann
durch einen mehrstufigen speicherinternen Algorithmus partitioniert. In dem letzten Schritt
werden die Zwillingskontraktionen aufgehoben und die endgültigen Knotenzuweisungen
vorgenommen. Der von uns vorgeschlagene strömende Algorithmus übertrifft den ak-
tuellen Stand der Technik für Graphen aus wissenschaftlichen Anwendungen in Bezug auf
die Qualität der Kantenschnitte und die Laufzeit.
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