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Abstract

In [19] Veldt introduces the NeighbourCover algorithm and shows that it is a proba-
bilistic 2-approximation for the NP hard vertex cover problem, in both the weighted
and unweighted case. Furthermore, they extend this approach to design probabilistic
2-approximation algorithms for 3 additional problems, namely minimum delete to match-
ing, DAG edge deletion and edge-colored hypergraph clustering. In this work we introduce
buffered versions of NeighbourCover for all the stated problems. Moreover, we introduce
further buffered algorithms for these problems by modifying existing offline algorithms.
We show that buffered NeighbourCovers solution quality is on average 15% better for min-
imum weighted vertex cover, 5% better for DAG edge deletion and 24% better for colored
edge clustering, than the compared algorithms.
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CHAPTER 1
Introduction

Graphs can be used as a model in a plethora of different use cases. Some examples that
can be represented by a graph are street networks, social networks, data dependency in
applications or the design of application specific integrated circuits. Since the information
we gather tends to increase, graphs can often be huge and require large amounts of memory.
This is why calculating a solution requires an effective algorithm that not only takes into
account the specific problem, but also the machine it is computed on.

1.1 Motivation

When designing an algorithm, you have to consider the three factors running time, solution
quality and memory usage. There are several models like the offline, buffered streaming
and streaming algorithms that prioritize different factors. The offline model loads the entire
graph into memory. This provides algorithms which return high quality solutions, but
when working on huge graphs they also need a lot of memory. Therefore, if working on a
machine with enough memory is not possible, an offline algorithm is not an option. Instead,
a buffered streaming or streaming approach is necessary, because they only have a fraction
of the graph in memory at a time. They require less memory and usually execute faster at
the cost of solution quality.
The NeighbourCover algorithm was introduced by [19] from Veldt. It is an offline proba-
bilistic 2-approximation algorithm for both NP hard problems of unweighted and weighted
vertex cover. In the same paper Veldt also adapts the algorithm to design offline probabilis-
tic 2-approximation algorithms for minimum delete to matching, directed acyclic graph
(DAG) edge deletion and edge-colored hypergraph clustering. Since all of these algorithms
are offline algorithms, they require a machine with a lot of memory, for large graphs. Most
people do not have access to expensive machines, which is why versions of the algorithms
which need less memory are of interest. For this purpose, we introduce a buffered stream-
ing version for each of the NeighbourCover algorithms.
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1 Introduction

1.2 Our Contribution

We expand the original paper [19] by Veldt by converting the NeighbourCover algorithms
from an offline, to a buffered streaming approach. Furthermore, we introduce other stream-
ing or buffered streaming algorithms for the same problems, which are based on offline
algorithms. We then implement all the algorithms and compare them on a benchmark set
of graphs. This allows us to find out how well the NeighbourCover algorithms translate to a
buffered approach in comparison to other algorithms. In our experiments we show that for
minimum vertex cover, DAG edge deletion and colored edge clustering the buffered Neigh-
bourCover algorithms will achieve a higher quality than their competitors, at the cost of a
higher running time. In particular their solution quality is on average 15% better for mini-
mum weighted vertex cover, 5% better for DAG edge deletion and 24% better for colored
edge clustering, than the compared algorithms.

1.3 Structure

The remainder of this thesis is organized as follows. Chapter 2 contains the basic terms and
it explains the problems the algorithms work on. Chapter 3 explains all algorithms in their
basic form. The explanation of how the algorithms were modified can be found in Chapter
4. Lastly, Chapter 6 explains the setup of our experiments and shows our results. Lastly in
Chapter 7 we discuss our findings and present our conclusion.
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CHAPTER 2
Fundamentals

This chapter is meant to introduce the fundamental concepts needed to understand this
thesis. It is split into two separate sections. Section 2.1 gives definitions needed for later
chapters. Section 2.2 defines the different problems the algorithms are designed for.

2.1 General Definitions

This section provides the definitions for nontrivial concepts needed to
understand this thesis.

Offline Algorithm. An offline algorithm loads the entire graph into memory. This is
different to online algorithms which at any given point only have a fraction of the graph in
memory. Online models are for example streaming, semi streaming and buffered streaming.

Buffered Streaming Algorithm. A buffered algorithm has a buffer of a fixed size. It
reads in the graph sequentially and stores it in the buffer until it is full. Then it can use the
stored data for computation. After it is done with the current batch, the batch is cleared
and the next part of the graph is loaded. A buffered streaming algorithm is limited to O(n)
space.

Streaming Algorithm. A streaming algorithm sequentially receives only one node and
its neighbourhood at a time. It is limited to O(n) space.

Semi Streaming Algorithm. A semi streaming algorithm sequentially receives only
one node and its neighbourhood at a time. It is limited to O(n polylog n) space. This model
was proposed by Feighenbaum et al. [10].

3



2 Fundamentals

Approximation Algorithm. An approximation algorithm has an approximation
factor ρ. For each possible input I the solution provided by the algorithm f(I) is within
factor ρ of the optimal solution OPT . Formally this can be defined as follows:

f(I)/OPT ≥ ρ, if ρ > 1

f(I)/OPT ≤ ρ, if ρ < 1

A probabilistic approximation algorithm is a generalization of an approximation algorithm,
where only the expected value of the algorithm has to be within factor ρ of OPT.

Undirected Graph. A graph G = (V,E) is defined by a finite set of nodes V and
its edges E. An intuitive way to think about an edge is as a line connecting two nodes.
Formally the set of edges can be defined as :

E ⊆ V × V

Line Graph. The line graph L(G) can be constructed out of an unweighted graph G in
the following way: In the line graph create a corresponding node for every edge of G. Two
nodes of the line graph are connected by an edge, if the edges in G they correspond to, have
a node in common.

Directed Graph. A directed graph D(V,A) is defined by its set of nodes V and its
directed edges A. The difference to an undirected graph is that the edges now have a
direction. An intuitive way to think about an edge in a directed graph is as an arrow starting
at one node and pointing to another. This means the edges are defined as an ordered pair
of nodes, instead of a set. We will commonly refer to the first node as start node and the
second as target node. Formally, the set of edges of a directed graph can be defined as:

A ⊆ {(x, y)|x, y ∈ V }

Weighted Graph. An undirected graph G = (V,E) can be node weighted, edge
weighted or both. It is node weighted if it has a weight function Wv : V → N that as-
signs every node v ∈ V a weight wv. Similarly, in an edge weighted graph a weight
function We : E → N assigns every edge e ∈ E a weight we. The concept of a weighted
graph can be defined analogously for directed graphs and hypergraphs.

Directed Paths and Directed Trails. In a directed graph D(V,A) a sequence of
edges e1, e2, ..., en−1 ∈ A is a directed path of length (n − 1), if there is a sequence of
distinct nodes v1, v2, ..., vn ∈ V such that the following holds:

∀ i ∈ {1, ..., n− 1} : ei = (vi, vi+1)

4



2.1 General Definitions

A directed trail of length (n − 1) is a relaxed version of a path, where the edges
e1, e2, ..., en−1 ∈ A need to be distinct, but the nodes v1, v2, ..., vn ∈ V do not. In this
work we will usually refer to directed paths or directed trails as paths or trails.

Directed Cycles. In a directed graph D(V,A) if there is a trail e1, e2, ..., en ∈ A with
node sequence v1, v2, ..., vn, v1 ∈ V and the only repeating node is v1, then we call it a
directed cycle. In this work we will usually refer to directed cycles as cycles.

Directed Acyclic Graph (DAG). A directed graph which does not contain any directed
cycles is called a directed acyclic graph or in short DAG.

Hypergraph. A hypergraph H(V, E) is defined by its set of nodes V and its hyper-
edges E . Unlike a normal edge that contains exactly two nodes, a hyperedge can contain
an arbitrary amount of pairwise distinct nodes. Formally, the set of hyperedges of a
hypergraph can be defined as:

E ⊆ {h|h ⊆ V }

Colored Hypergraph. Let H(V, E , l, k) be a colored hypergraph. The number of dif-
ferent colors is denoted by k and l : E → {1, 2, ..., k} is the function that assigns each edge
one of those k colors.

Weighted Shuffle. A weighted shuffle is performed on a set of n elements
X = {x1, ..., xn} with weights wi > 0 : ∀i = 1, ..., n assigned to them. It gener-
ates a permutation of the elements by repeating a weighted sample without replacement
n times. Let U be the set of elements which were not sampled yet and s the sequence
which will become our permutation. We start with U containing all elements and s being
empty. The weighted sample picks one of the undecided elements in U with probability
p(xi) = wi/(

∑
j:xj∈U wj), removes it from U and adds it to the end of sequence s. After

repeating the weighted sample n times there are no undecided nodes left and the sequence
s is a permutation of all elements in X .

Independent Set On an undirected Graph G = (V,E) a subset of nodes I ⊆ V is
an independent set, if no two nodes in I are connected by an edge. Formally this can
be defined as:

¬∃ e = {u, v} ∈ V : u ∈ I ∧ v ∈ I

5



2 Fundamentals

2.2 Problem Definitions

This section provides a definition for the 4 different problems we designed our algorithms
for. Namely minimum vertex cover, minimum delete to matching, DAG edge deletion with
parameter k and colored edge clustering.

Minimum Vertex Cover (VC). Given an undirected graph G = (V,E), a set of the
nodes C ⊆ V is a vertex cover if:

∀uv ∈ E ⇒ u ∈ C ∨ v ∈ C

That means for every edge, there is at least one endpoint that is contained in C. In the case
of an unweighted graph, a minimum vertex cover is a cover C, with the lowest possible
cardinality. If the graph is node weighted, a minimum vertex cover is a cover C, where the
sum of all node weights in C is minimized. The complement of a vertex cover is always an
independent set.

Minimum Delete to Matching (MinD2M). Given an undirected graph G = (V,E), a
set of edges M ⊆ E is a matching, if all edges e = {u, v} are disjoint. Formally, this can
be defined as:

∀ei, ej ∈M : i ̸= j ⇒ ei ∩ ej = ∅

MinD2M is an abbreviation for Minimum Delete to Matching. Given an undirected edge
weighted graph G = (V,E,We), the goal is to find a minimum weight subset of edges
D ⊆ E to delete, such that the remaining edges in the graph form a matching. Conversely,
we can formulate the goal as maximizing the weight of the edges in the matching.

DAG Edge Deletion with Parameter k (DED-k). Let D(V,A,We) be an edge
weighted DAG. The goal of DED-k is to find a minimum weight subset of edges D ⊆ A to
delete, such that in the remaining graph there are no paths of length k left. In our case we
will always choose parameter k = 2.

Colored Edge Clustering (ColorEC). Let H(V, E , l, k,We) be a colored edge
weighted hypergraph. We can assign each node a color. An edge is considered unsat-
isfied if not every node in the edge has the same color as the edge. The objective is to
minimize the weight of unsatisfied edges.

6



CHAPTER 3
Related Work

This chapter is split into two sections. Section 3.1 explains the NeighbourCover algorithms
from Veldt [19]. Section 3.2 summarizes the algorithms we compare NeighbourCover
against.

3.1 NeighbourCover Algorithms

In [19] Veldt introduces the NeighbourCover algorithm. It is a probabilistic
2-approximation algorithm for the minimum weight vertex cover problem. Furthermore,
Veldt proposes algorithms for minimum delete to matching, directed acyclic graph edge
deletion with the parameter k=2 and colored hypergraph edge clustering. All of these algo-
rithms are based on the NeighbourCover algorithm and are probabilistic 2-approximations
for their respective problems. Every NeighbourCover version uses a weighted shuffle as a
sub step. When implementing the weighted shuffle for our algorithms we used the version
from Wong and Easton [21].

3.1.1 NeighborCoverVC Algorithm
The NeighbourCover algorithm works on an undirected node weighted graph. It is a
2-approximation algorithm for minimum vertex cover (2.2).

Algorithm. Given an undirected node weighted graph G = (V,E,Wv). The Neighbour-
CoverVC algorithm first assigns all nodes to the undecided node set U while leaving the
independent set I and cover C empty. Algorithm 1 provides pseudocode.

7



3 Related Work

Algorithm 1 NeighbourCoverVC
C ← ∅, I ← ∅, U ← V
nodePermutation←WEIGHTEDSHUFFLE(w1, w2, ..., w|V |)
for v in nodePermutation do

if v ∈ U then
U ← U\({v} ∪N(v))
I ← I ∪ v
C ← C ∪N(v)

return C

3.1.2 NeighbourCoverMinD2M
NeighbourCoverMinD2M works on an undirected edge weighted graph. It is a proba-
bilistic 2-approximation algorithm for minimum delete to matching (2.2). The idea of the
algorithm is, that the MinD2M objective has the same results as finding a maximum in-
dependent set of the line graph of G. This means, forming the line graph and then using
NeighbourCover on it, already leads to a 2-approximation algorithm. A line graph L can
be constructed out of the original graph G(V,E,We) in the following way: For all edges
e ∈ E of the original graph create a vertex in L. Two vertices in L are connected, if their
corresponding edges in G share a vertex. An example of forming the line graph out of
the original graph can be found in Figure 3.1. However, this approach takes O(|E|2) time,
since it is necessary to explicitly form the line graph. NeighbourCoverMinD2M improves
on this idea, by implicitly iterating through all the vertices of the line graph and keeping
track of the nodes VM , which have already been matched in the original graph. Thereby,
it achieves a time complexity of O(|E| log |E|) in the weighted case and O(|E|) in the
unweighted case.

Algorithm. Given an undirected edge weighted graph G = (V,E,We), the algorithm
keeps track of all deleted edges D and the vertices of the matched edges VM . Both of the
sets D and VM start empty. Algorithm 2 provides pseudocode.

Algorithm 2 NeighbourCoverMinD2M
D ← ∅, VM ← ∅
edgePermutation←WEIGHTEDSHUFFLE(w1, w2, ..., w|E|)
for e = {u, v} in edgePermutation do

if v ∈ VM or u ∈ VM then
D ← D ∪ {e}

else
VM ← VM ∪ {u, v}

return D

8



3.1 NeighbourCover Algorithms

Figure 3.1: Transformation graph to line graph. Reprinted from [19].

3.1.3 NeighbourCoverDED2
NeighbourCoverDED2 works on a DAG. It is a probabilistic 2-approximation algorithm
for DED-2 (2.2). We can transform the given edge weighted DAG D(V,A,We) into an
undirected node weighted graph G(V,E,Wv). This is done by transforming each directed
edge e in D into a vertex ve in G. Two vertices ve and vf in G are connected, if their
corresponding edges e and f in D form a directed path. An example of such a transforma-
tion can be found in Figure 3.2. Finding a maximum independent set on G has the same
results as solving DED-2 on D. This means, forming G and then using NeighbourCover
on it leads to a 2-approximation. NeighbourCoverDED2 improves on this idea by only
implicitly iterating over the vertices in G and keeping track of the nodes Vhead and Vtail,
which are head/tail vertices of kept edges respectively. This allows for a time complexity
of O(|A| log |A|) in the weighted case and O(|A|) in the unweighted case.

Algorithm. Given an edge weighted DAG D = (V,A,We). The algorithm keeps track
of all deleted edges D and the head and tail vertices of kept edges Vhead and Vtail. All the
sets D, Vhead and Vtail start empty. Algorithm 3 provides pseudocode.

Algorithm 3 NeighbourCoverDED2
D ← ∅, Vhead ← ∅, Vtail ← ∅
edgePermutation←WEIGHTEDSHUFFLE(w1, w2, ..., w|E|)
for e = (u, v) in edgePermutation do

if u ∈ Vhead or v ∈ Vtail then
D ← D ∪ {e}

else
Vhead ← Vhead ∪ {v}
Vtail ← Vtail ∪ {u}

return D

9



3 Related Work

Figure 3.2: Transformation DAG to undirected node weighted graph. Reprinted from [19].

3.1.4 NeighbourCoverColorEC
NeighbourCoverColorEC works on a colored edge weighted hypergraph. It is a proba-
bilistic 2-approximation for colored edge clustering (2.2). We can transform the given col-
ored edge weighted hypergraph H(V, E , l, k,We) into an undirected node weighted graph
G = (V,E,Wv). This is done by transforming each edge e ∈ E into a vertex in G. Two
vertices ve and vf in G are connected, if their corresponding edges e, f ∈ E overlap at
one or more vertices v ∈ V . An example of such a transformation can be found in Fig-
ure 3.3. The idea is, that finding a maximal independent set in G, is equivalent to finding
a maximal set of satisfied edges in H . This means forming G and using NeighbourCover
on it, leads to a 2-approximation. NeighbourCoverColorEC uses an improved version of
this approach by only iterating through G implicitly. This yields a time complexity of
O(|E| ∗ log |E|+

∑
e∈E |e|) in the weighted case and O(

∑
e∈E |e|) in the unweighted case.

Algorithm. Given a colored edge weighted hypergraph H(V, E , l, k,We). The algorithm
keeps track of all the colors of the nodes. All nodes start as uncolored. Algorithm 4
provides pseudocode.

Figure 3.3: Transformation from colored edge weighted hypergraph to undirected node weighted
graph. Reprinted from [19].
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3.2 Competing Algorithms

Algorithm 4 NeighbourCoverColorEC
nodeColor← array of size |V | filled with zeros (uncolored)
edgePermutation←WEIGHTEDSHUFFLE(w1, w2, ..., w|E|)
for e in edgePermutation do

edgeColor← l(e)
edgeSatisfiable← true
for node in e do

if nodeColor[node] != edgeColor or nodeColor[node] != 0 then
edgeSatisfiable← false
break

if edgeSatisfiable then
for node in e do

nodeColor[node] = edgeColor

If a node still has nodeColor zero, assign it a random color
return nodeColor

3.2 Competing Algorithms

This section contains other algorithms which work on the same problems as the Neighbour-
Cover algorithms. These are the basic versions of the algorithms. Any adaptations made
before the evaluation can be found in Section 5.2.

MatchingVC. Both Gavril and Yannakakis are credited with the development of the
MatchingVC algorithm (see [11] and [17]). It iterates through the edges of the graph. If
both endpoints of the current edge are not covered yet, MatchingVC puts them in the cover.

PittVC. The algorithm from Pitt [16] iterates through the edges of a node weighted
graph. If it encounters an edge where both endpoints are not covered, it decides to cover
one of them with a random decision weighted by the node weights.

LocalRatioVC. The LocalRatioVC algorithm from Bar-Yehuda and Even [4, 5] keeps
track of the residual weight of each node. In the beginning of the algorithm the residual
node weight is equal to the normal weight of the node. Then, the algorithm iterates through
the edges of the graph. For each edge the algorithm checks which endpoint has the lower
residual weight. It then reduces the residual weight of both nodes by that value. At the end
of the algorithm all nodes with residual weight zero are in the vertex cover.

11



3 Related Work

GreedyMIS. The GreedyMIS algorithm [19] generates a random uniform node permu-
tation and all nodes start as undecided. Then, it iterates through the nodes in the order of the
permutation. If the current node is undecided the algorithm assigns it to the independent
set and all its undecided neighbours to the vertex cover.

GreedyMatching The GreedyMatching algorithm [8] picks the edge with the highest
edge weight in the graph. Then, it puts it into the matching and deletes all adjacent edges.
It repeats this until all edges are either in the matching or deleted.

SemiStreamingMatching. The SemiStreamingMatching algorithm from Paz and
Schwartzman [18] for constant α > 1, is a single-pass (2α) approximation for maximum
weight matching (MWM). It adapts the local-ratio MWM algorithm to the Semi-Streaming
model. For the exact workings of the algorithm we refer to the original paper [18]. By us-
ing the Semi-Streaming model, it may use O(n polylog n) space instead of being restricted
to O(n) space like normal streaming algorithms.

LocalRatio. The LocalRatio Algorithm [15] for DED2 is a polynomial time
2-approximation. While there are still paths of length 2 remaining it repeats the follow-
ing: Find a path of length 2 and then reduce the weight of all of its edges by the smallest
edge weight in the path. Should an edge be reduced to zero by this, it is deleted.

12



CHAPTER 4
Buffered Approach To NeighbourCover

When trying to convert the NeighbourCover algorithms [19] to a buffered approach, we
did not find a way to keep both the quality guarantee and the complexity the same as
the original. Instead, bNeighbourCoverVC keeps the quality guarantee the same, but it
restreams the graph, which leads to a worse theoretical time complexity.
For the remaining algorithms bNeighbourCoverMinD2M, bNeighbourCoverDED2 and
bNeighbourCoverColorEC we use another strategy, ensuring that the time complexity of
the algorithms is better than the offline approach. The drawback is that the quality is no
longer a 2-approximation of the solution. These two strategies will be explained in more
detail in the following sections.

4.1 Buffered NeighbourCoverVC

Pseudocode for bNeighbourCoverVC can be found in Algorithm 5. This approach is de-
signed to deliver exactly the same solution as NeighbourCoverVC. Since it delivers the
same solution, naturally the quality guarantee stays the same. The first step is to get a per-
mutation of all nodes in the graph via a weighted shuffle. We then assign a priority to all
nodes depending on their place in the permutation. If a node comes first in the permutation,
it has a higher priority than a node that comes later in the permutation.
Normally, NeighbourCoverVC [19] would visit and assign the nodes in the order decided
by the weighted shuffle. Since we only have access to a limited part of the graph, strictly
following this order is inefficient. Often, we would have to restream the graph an additional
time, to find the batch which contains the exact node we are looking for. This is why we use
another strategy which lets us make decisions quicker, while still providing the same result.
For each batch we look through all the undecided nodes in order of their priority, from high
to low. Then, if a nodes priority is bigger than all the undecided nodes in its neighbourhood,
it can be assigned to the independent set I and all its undecided neighbours are assigned
to C. This is exactly how offline NeighbourCoverVC would assign the nodes if it visited

13



4 Buffered Approach To NeighbourCover

an undecided node. We can do this decision out of the normal permutation order, because
the higher priority of our current node guarantees, that it also would be visited before its
neighbours in the permutation order. At most, it is possible that a neighbouring node would
already be in C, when this decision is normally made. This makes no difference since the
neighbours are assigned to C either way. By going through the nodes in the batches in
descending order, we allow for the chance of an earlier decision in the batch to make
another decision in the same batch possible. If we passed through the entire graph and
there are still undecided nodes left, the graph is restreamed, and we go through all batches
again.

In the worst case the algorithm needs to be restreamed n times which leads to a complexity
of O(n log(n) + n2). For this worst case to happen though, the nodes have to be arranged
in a very particular way in accordance to the permutation created by the weighted shuffle.
Also, in that case the performance could be improved by running the algorithm with another
seed. In practice, the performance was never close to the worst case for our benchmarks.
At most a graph was restreamed four times, which includes one stream to get all the node
weights.

Algorithm 5 bNeighbourCoverVC
C ← ∅, I ← ∅, U ← V
go through the all batches once and save the node weights w1, w2, ..., w|V |
restartStream()
permutation←WEIGHTEDSHUFFLE(w1, w2, ..., w|V |)
nodePriority[v]← numberOfNodes - permutation.index_of(v)
while U ̸= ∅ do

//Stream the graph. Restart stream if necessary.
if currentBatch = lastBatch then

restartStream()
currentBatch← loadNextBatch()
//Go through the undecided nodes in the batch from hightest to lowest priority.
currentBatch.sortByPriority()
for currentNode in currentBatch do

localMax← true
for x ∈ N(currentNode) ∩ U do

if nodePriority[currentNode] < nodePriority[x] then
localMax← false

if localMax then
remove the currentNode from U and add it to I
remove all undecided neighbours of the currentNode from U
assign all neighbours of the currentNode to C

return C

14



4.2 Buffered NeighbourCover variants for MinD2M, DED2 and ColorEC

4.2 Buffered NeighbourCover variants for MinD2M,
DED2 and ColorEC

Pseudocode for these variants can be found in Algorithm 6. The NeighbourCover algo-
rithms for MinD2M, DED2 and ColorEC all calculate a permutation of the edges of the
input graph. Since we are restricted to only use O(n) space, this is not feasible for our
buffered approach. Instead, we opt to only permutate the order of the edges in each batch
via a weighted shuffle. Then, we use the permutation of the batch to execute the standard
logic of the respective NeighbourCover adaptation.
For each subgraph induced by a batch, this method produces an expected 2-approximation.
For the overall graph this approximation does not hold. Only the edges in the batches are
shuffled. This means unlike in the original NeighbourCover algorithms not every edge
permutation is possible. Therefore, it is possible that for one or more decisions, there are
only permutations that lead to a suboptimal choice. Thus, the algorithm is lower bounded
by the permutation allowing the worst choice to be taken at every decision.
On the other hand, the time complexity is reduced with a smaller buffer size. For
NeighbourCoverMinD2M and NeighbourCoverDED2, the complexity is O(|E| log |E|)
and O(|E| log |E|+

∑
e∈E |e|) for NeighbourCoverColorEC. The term of |E| log |E| stems

from the weighted shuffle over all edges. The rest of the algorithm only takes O(|E|)
time or rather O(|E|+

∑
e∈E |e|) for NeighbourCoverColorEC. Since the buffered Neigh-

bourCover algorithms only shuffle each buffer, the overall time needed for shuffling
is O(|E| log |E|

b
), where b is the amount of batches. That means the new time com-

plexity for bNeighbourCoverMinD2M and bNeighbourCoverDED2 is O(|E| log |E|
b
) and

O(|E| log( |E|
b
) +

∑
e∈E |e|) for bNeighbourCoverColorEC.

Algorithm 6 General Algorithm Structure
(bNeighbourCoverMinD2M, bNeighbourCoverDED2, bNeighbourCoverColorEC)
while !lastBatchReached() do

currentBatch← loadNextBatch()
σ ←WEIGHTEDSHUFFLE(we|e ∈ currentBatch)

for currentEdge← eσ(1), eσ(2), ..., eσ(bufferSize) do
//Apply the logic for the specific problem here
solution← problemSpecificLogic()

return solution
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CHAPTER 5
Competing Algorithms

This chapter is split into two sections. Section 5.1 contains a simple greedy algorithm,
which to the best of our knowledge was not formalized by any other paper. Section 5.2
lists the modifications to the already existing algorithms specified in Section 3.2, to convert
them to a streaming or buffered streaming approach.

5.1 Original Algorithms

This section contains a simple greedy algorithm, which to the best of our knowledge was
not formalized by any other paper. The prefix “s” signifies that it is a streaming algorithm.

sGreedyColorEC. The sGreedyColorEC algorithm streams through all hyperedges of
the graph. If it encounters a hyperedge which contains no node of a color other than its own,
it is deemed satisfiable. In this case the algorithm satisfies it by assigning each contained
node the color of the hyperedge. To the best of our knowledge no other paper has explicitly
formalized this algorithm.

5.2 Modifications on Competing Algorithms

The algorithms in this section are a modification of previous work. The authors and a
short description of the original algorithms can be found in Section 3.2. We add prefixes
to their original names, in order to easily distinguish buffered streaming and streaming
approaches. Buffered streaming algorithms have “b” as prefix and streaming algorithms
have “s” as prefix.
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5 Competing Algorithms

sMatchingVC. MatchingVC can easily be used as a streaming approach since it only
makes decisions for one edge at a time. When streaming the edges of the graph, no mod-
ification is necessary. The algorithm runs in O(E) time and is a 2-approximation for un-
weighted VC.

sPittVC. We need to know the weight of the nodes to make the random weighted de-
cisions. For a streaming approach, this makes it necessary to stream through the graph
once in the beginning. Otherwise, it would be possible that the required node weights are
not known yet. In the re-stream all weights are known. During the re-stream no addi-
tional modification is necessary. The algorithm runs in O(E) time and is a randomized
2-approximation for weighted VC.

sLocalRatioVC. When converting the algorithm to a buffered approach, it is necessary
to stream over the graph once in the beginning, to set all residual node weights. In the re-
stream when the residual node weights are known, no additional modification is necessary.
The algorithm runs in O(E) time and is a 2-approximation for weighted VC.

bGreedyMIS. When trying to convert GreedyMIS to a buffered approach iterating
through the vertices in order of the permutation poses a problem. Because of that we
do not shuffle the order of all nodes and instead just shuffle each batch. The rest of the
algorithm can be applied to each batch normally. The algorithm runs in O(E) time.

bGreedyMatching. The bGreedyMatching algorithm remembers for every node if an
adjacent edge has been matched. It iterates through each batch from highest to lowest edge
weight. If it encounters an edge where neither endpoint has an adjacent matched edge, it
adds it to the matching. The endpoints are then marked as next to a matched edge. The
algorithm runs in O(E) time and is a 2-approximation for maximum unweighted matching.

SemiStreamingMatching. The SemiStreamingMatching was not modified.

18



5.2 Modifications on Competing Algorithms

bLocalRatioDED2. When trying to convert LocalRatioDED2 into a buffered approach
we encounter the following problem: We are restricted to O(n) memory, but we would
need O(m) memory to keep track of the residual edge weights of all edges. This is
why for each node, we choose to keep track of the summed up weights of outgoing
edges instead. We then iterate through the edges as follows: For each edge reduce
the outgoing edge weights of the endpoints by MIN(outgoingEdgeWeights(startNode),
outgoingEdgeWeights(targetNode), edgeWeight). If the edge weight was the minimum,
delete the edge immediately. After iterating through all edges, delete all edges that have a
start node with outgoing edge weight zero.

Theorem 1
The bLocalRatioDED2 algorithm returns a valid solution for the DED2 problem.

Proof: A solution is correct if no edge in the remaining graph can be extended to a path of
length 2. In the following we will show that the algorithm guarantees this for each edge.
When looking at an edge there are three possibilities:

1. The outgoing edge weight of the start node is the lowest. That means it will be
reduced to zero. Since that means we delete all its outgoing edges, the current edge
will be deleted and therefore cannot be extended to a path of length 2.

2. The outgoing edge weight of the target node is the lowest. That means it will be
reduced to zero. Since that means we delete all of its outgoing edges, the target node
no longer has outgoing edges. Therefore, the current edge cannot be extended to a
path of length 2.

3. The edge weight of the current edge is lowest. That means we delete the current
edge. Therefore, it can not be extended to a path of length 2.

At the end of the algorithm it has visited each edge once, which means there is no way to
extend any edge to a path of length 2. □

Theorem 2
The bLocalRatioDED2 algorithm has a time complexity of O(|E|).

Proof: The algorithm needs to stream the graph three times. The first stream is done to set
the weights of outgoing edges for each node, which can be done in O(|E|). The second
stream reduces these weights and deletes edges if necessary which also takes O(|E|) time.
The third stream deletes all edges which start at a node with outgoing edge weight zero,
which again takes O(|E|) time. This means overall the algorithm has a time complexity of
O(|E|). □
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5 Competing Algorithms

Theorem 3
The bLocalRatioDED2 algorithm is a 2-approximation algorithm for DED2.

Proof: This proof is done analogous to the quality proof of LocalRatioDED2 in [15]. Let
Opt ⊆ E be an optimal solution and S ⊆ E the solution of bLocalRatioDED2. An edge is
only deleted and therefore in S in the following cases:

1. Its edge weight is smaller than the outgoing edge weights of its start and target node.
In this case the outgoing edge weights of both endpoints get reduced by the weight
of the node.

2. The outgoing edge weights of the start point have been reduced to zero.

This means the weight of the deleted edges is upper bounded by the total reduction of the
outgoing edge weight of nodes. Each iteration of the buffered approach is equal to looking
at paths of length 2 starting with the current edge e = (u, v) and reducing the outgoing edge
weight of u and v by the minimum weight edge, until there is no path left starting with e.
For each of these implicit paths the reduction is at most equal to 2 times the minimum
weight edge. Since in each path there is at least one edge d that is in OPT we can charge
the weight reduction to the weight of d. Then, the weight of d decreases by at least the
factor 1/2 of what is charged, and cannot decrease beyond 0. This is why the weight of S
is within a factor 2 of the weight of OPT . □
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CHAPTER 6
Experimental Evaluation

6.1 Setup

The machine used for all tests, has an Intel-Core I7-7500U CPU @2.70GHz and 8GB
of main memory. The operating system is Ubuntu 22.04.3 LTS and the kernel version is
5.15.0-83-generic. For the evaluation regular graphs were chosen from the 10th DIMACS
implementation challenge [3]. Hypergraphs were taken from the DAC2012 benchmark
suite [20] and the ISPD98 Circiut benchmark suite [2, 13]. More information on the graphs
can be found in Table 6.1 and Table 6.2.
These graphs are all undirected and unweighted. Since the minimum vertex cover problem
requires node weighted graphs and all other problems require edge weighted graphs these
values are generated before applying the algorithms. This was done by assigning each node
a weight equal to (ID modulo 100) + 1. Edge weights are assigned uniformly at random
between 1 and 100, to avoid the weight of edges incident to a node to be in a continuous
interval. For ColorEC each edge was assigned one of ten colors, by setting the edge color
equal to (ID modulo 10) + 1. Lastly DED2 works on DAGs. In this case the graphs were
converted by generating a random uniform permutation of the node ID’s and assigning them
to the nodes as direction ID’s. Then, we remove all edges whose start node has a higher
direction ID than their target node. All algorithms were compared in terms of running time
and solution quality. For the purpose of our experiments the time to read in the graphs or
to generate additional graph data, like weight, color or direction is not counted towards the
runtime.
In the experiments we will use the following methodology: The algorithms which are
dependent on another criterion than just the input data are tweaked on a subset of all the
test graphs first. After we have compared the algorithms against themselves with different
criterions and have found the versions we want to use, we move on to the next step. Here,
we use the full set of test graphs. We then compare all algorithms which solve the same
problem. Additionally, we run all non-deterministic algorithms ten times with different
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6 Experimental Evaluation

seeds. The resulting score will be the arithmetic mean of all results on the same test graph.
The quality of the algorithms is determined as follows: The VC algorithms are compared
in terms of the weight of the cover, meaning lower is better. The matching algorithms are
compared on the weight of the matching, meaning higher is better. The DED2 algorithms
are compared in terms of the weight of deleted edges, meaning lower is better. Lastly, the
ColorEC algorithms are compared in terms of weight of satisfied edges, meaning higher is
better.
We present our results as performance profiles [9]. A performance profile compares dif-
ferent algorithms on a set of instances. For every instance it determines the best solution
provided by one of the algorithms. Then, for factor f it plots the fraction of instances on
which a given algorithm is only factor f away from the best compared solution. This means
an algorithm is better the higher its fraction within factor f of the best algorithm.

Type Name n m sources

Citation Network

CoAuthorsCiteseer 227 320 814 134 [20, 12]
CoPapersCiteseer 434 102 16 036 720 [20, 12]
citationCiteseer 268 495 1 156 647 [20, 12]
CoAuthorsDBLP 299 067 977 676 [20, 12]
CoPapersDBLP 540 486 15 245 729 [20, 12]

Clustering Instance
cnr2000 325 557 2 738 969 [20, 7, 6]
eu2005 862 664 16 138 468 [20, 7, 6]
in2004 1 382 908 13 591 473 [20, 7, 6]

Delanauy Graphs

delanauy_n19 524 288 1 572 823 [20, 14]
delanauy_n20 1 048 576 3 145 686 [20, 14]
delanauy_n18 262 144 786 396 [20, 14]
delanauy_n21 2 097 152 6 291 408 [20, 14]

Random Geometric

rgg_n_2_19_s0 524 288 3 269 766 [20, 14]
rgg_n_2_20_s0 1 048 576 6 891 620 [20, 14]
rgg_n_2_18_s0 262 144 1 547 283 [20, 14]
rgg_n_2_21_s0 2 097 152 14 487 995 [20, 14]

Street Network

belgium.osm 1 441 295 1 549 970 [20, 1]
netherlands.osm 2 216 688 2 441 238 [20, 1]
great-britain.osm 7 733 822 8 156 517 [20, 1]
italy.osm 6 686 493 7 013 978 [20, 1]

Table 6.1: Information for graphs from 10th DIMACS implementation challenge. Graphs with
bold names are only used in the extended benchmark set.
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6.1 Setup

Type Name n m sources

ASIC Design

superblue3 3 110 509 898 001 [20]
superblue7 4 935 083 1 340 418 [20]
superblue9 2 898 853 833 808 [20]
superlbue14 2 049 691 619 815 [20]
supberblue16 2 280 931 697 458 [20]
superblue19 1 714 351 511 685 [20]
superblue6 3 401 199 1 006 629 [20]
superblue11 3 071 940 935 731 [20]
superblue12 4 774 069 1 293 436 [20]
ISPD98_ibm14 147 605 152 772 [2, 13]
ISPD98_ibm15 161 570 186 608 [2, 13]
ISPD98_ibm16 183 484 190 048 [2, 13]
ISPD98_ibm17 185 495 189 581 [2, 13]
ISPD98_ibm18 210 613 201 920 [2, 13]

Table 6.2: Information for hypergraphs from DAC2012 benchmark suite. Graphs with bold names
are only used in the extended benchmark set.
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6 Experimental Evaluation

6.2 Determining Parameters for VC Algorithms

bNeighbourCoverVC. For bNeighbourCoverVC we only consider running time
(see 6.1), because the quality stays exactly the same regardless of buffer size. The of-
fline version of the algorithm is the fastest. This is expected, since there is some overhead
introduced by the need to sort the nodes of each batch by priority. We can also see that
with lower buffer size the algorithm generally performs faster. This can be explained by
the fact that it is easier to sort multiple small batches instead of fewer large batches. For the
smallest buffer size of 10 000 one graph takes longer than in all other compared versions.
Likely this is due to an additional restream that is necessary on that graph with the smaller
buffer size. Due to this data we will be using the bNeighbourCoverVC of buffer size 50 000
to compare with the other algorithms. It is faster than the larger buffer sizes while avoiding
additional restreams which could happen with lower buffer sizes.
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6.2 Determining Parameters for VC Algorithms

bGreedyMIS. When comparing the running time for different buffer sizes of
bGreedyMIS (see 6.2a), one can observe that a smaller buffer correlates with a faster run-
ning time. The biggest buffer size of 100 000 is at least 10% slower than buffer size 10 000
on all instances. Unlike for bNeighbourCoverVC we shuffle each batch separately, which
means there is no additional overhead for traversing each batch. On the contrary, only
having to shuffle smaller batches is less complex and reduces running time. In most cases
the quality of the algorithm does not change significantly with varying buffer size. 90%
of all instances do not differ more than 1% in quality, regardless of buffer size. But for
the remaining graphs, an additional loss in quality between roughly 1% to 4% occurs each
time the buffer size is lowered. For this reason we have chosen the buffer size of 100 000 to
compare against the other algorithms. It provides a reasonable speedup for running time,
while still being within 5% of the best quality of compared algorithms.
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Figure 6.2
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6 Experimental Evaluation

6.3 VC Algorithms Comparison

Figure 6.3a compares the running time of all algorithms we implemented for minimum
weighted vertex cover. The figure shows that bNeighbourCover is the slowest amongst
all compared algorithms. In the best case it takes roughly 7 times longer than the fastest
algorithm and in the worst case it can even take about 28 times longer. The bGreedyMIS
algorithm achieves the lowest running time in 65% of all instances and sMatchingVC is the
fastest in all other cases. It is noteable that bGreedyMIS seems to be the most consistent,
being at most a factor of 2 away from the best time in all instances.
Figure 6.3b compares the solution quality for the different algorithms. In this category
bNeighbourCoverVC performs best in all instances. Second best is bGreedyMIS, at worst
being 11% worse than bNeighbourCover. Despite its good performance in terms of time,
sMatchingVC has the worst results in quality. In some cases it can even have a solution
that is more than a factor of 1.7 away from bNeighbourCoverVC.
Overall, bGreedyMIS seems to perform best with a good running time and a comparably
good quality. On the other hand, bNeighbourCover consistently provides a better quality.
If the solution quality is critical, it might be a better choice in spite of its longer running
time.
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6.4 Determining Parameters for Matching Algorithms

6.4 Determining Parameters for Matching
Algorithms

bNeighbourCoverMinD2M. Figure 6.4a compares the running time of Neighbour-
CoverMinD2M and bNeighbourCoverMinD2M for varying buffer sizes. Generally, for
a lower buffer size the algorithm executes faster. For the buffer size of 10 000 Neighbour-
CoverMinD2M is slower than bNeighbourCoverMinD2M by at least a factor of 1.7. In one
case the factor even grows to 2.5.
Figure 6.4b compares the solution quality of NeighbourCoverMinD2M and bNeighbour-
CoverMinD2M for varying buffer sizes. Here, the results are more similar. The biggest
gap of quality is less than 2%. We chose the buffer size of 10 000 to compare against the
other algorithms, because it provides a significant speedup for a small loss in quality.
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6 Experimental Evaluation

bGreedyMatching. In Figure 6.5a you can see that bGreedyMatching executes faster
for lower buffer sizes. The bGreedyMatching algorithm sorts the edges of each batch by
weight. As already mentioned, it is easier to sort multiple smaller batches, which leads to
the faster running times for smaller buffers.
The difference in solution quality (see 6.5b) is generally very low for different buffer sizes.
For all buffer sizes the quality never differs more than 2.5%. Because the quality seems
stable even for small sizes, we have chosen the buffer size of 10 000 to compare against
other algorithms. On all instances it has the fastest running time, while still providing a
comparatively good quality.
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SemiStreamingMatching. Figure 6.6a compares the running time of SemiStreaming-
Matching for different constants α > 1. For α = 1.1 the algorithm executes the fastest
followed by α = 1.05 which is only about 3% slower in all cases. When setting α even
lower we experience a more significant running time increase for some instances. In one
particular instance the algorithm is approximately 27% slower for α = 1.01.
Figure 6.6b compares the solution quality for the different values for α. The best quality
is achieved by α = 1.01 and the lowest quality by α = 1.1. Even for these the maximum
difference in quality is under 1.75%. Because the quality is so similar for all α we choose
α = 1.05. This ensures a good quality while avoiding the more volatile running times that
coincide with lower values of α.
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6.5 Matching Algorithms Comparison

Figure 6.7a compares the running time of all algorithms we implemented for matching.
In 75% of all instances bGreedyMatching performs best and SemiStreamingMatching per-
forms best in the remaining cases. The running time of bNeighbourCoverMinD2M is never
the fastest, but in 55% of all instances it performs very similar to SemiStreaming matching,
being equally good or even slightly better.
Figure 6.7b compares the solution quality for the different algorithms. In 70% of all in-
stances SemiStreamingMatching provides the best quality and bGreedyMatching provides
the best quality in the remaining cases. The results of bNeighbourCoverMinD2M are al-
ways more than 15% away from the best compared algorithm.
Overall, bGreedyMatching seems like the best algorithm with both good running times
and quality. Although, bNeighbourCoverMinD2M is often close in running time to
SemiStreaming, it loses in solution quality.
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6.6 Determining Parameters for DED2 Algorithms

bNeighbourCoverDED2. Figure 6.8a compares the running time of Neighbour-
CoverDED2 and bNeighbourCoverDED2 for varying buffer sizes. The algorithm executes
faster for lower buffer sizes. When comparing bNeighbourCoverDED2 with buffer size
10 000 with NeighbourCoverDED2 (offline), the running time of NeighbourCoverDED2 is
higher by a factor of 1.6 on all instances.
When comparing the quality of the solutions in Figure 6.8b we can see that the versions
with a higher buffer size also produce higher quality solutions. For up to 80% of the tested
graphs, the solution quality of all versions is within a factor of 1.1. The remaining graphs
have a more volatile reaction to a decrease in buffer size. In one instance, the algorithm
with buffer size equal to 10 000 has a 30% lower solution quality than the best algorithm.
In order to achieve a stable quality across all graphs we choose the biggest buffer size of
200 000.
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6.7 DED2 Algorithms Comparison

Figure 6.9a compares the running time of both algorithms we implemented for DED2.
Here, bNeighbourCoverDED2 is slower than bLocalRatioDED2. The difference in runtime
ranges from factor 2 up to factor 13.
Figure 6.9b compares the solution quality for the algorithms. Here, bNeighbour-
CoverDED2 has the best solution in 70% of all instances. At worst bNeighbourCoverDED2
is about 10% away from the best compared solution. Its competitor bLocalRatioDED2 can
be up to roughly 17.5% worse.
Overall, there is a trade-off between speed and quality between the two algorithms. While
bLocalRatioDED2 wins in speed, bNeighbourCoverDED2 provides the best solution more
often. Even in the cases in which it does not provide the best solution they are less than
10% apart.
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6.8 Determining Parameters for ColorEC Algorithms

6.8 Determining Parameters for ColorEC Algorithms

NeighbourCoverColorEC. We did not test for buffer size 200 000 because some
graphs in the extended benchmark have less than 200 000 edges. Figure 6.10a compares
the running time of NeighbourCoverColorEC and bNeighbourCoverColorEC for varying
buffer sizes. Generally, the algorithm executes faster for lower buffer sizes. Therefore, the
fastest version has the lowest buffer size of 10 000. NeighbourCoverColorEC (offline) is
slower by at least the factor of 1.7 on all instances.
When comparing the quality of the solutions in Figure 6.10b, we observe that algorithms
with a higher buffer size also produce solutions of a better quality. The lowest quality is
achieved by the buffer size of 10 000. For 60% of the graphs the solution quality is only 6%
lower than the solution of the best algorithm. But for the remaining graphs it is worse by
10% to 12%. We choose the version with buffer size 100 000, because it has decent results
in both running time and solution quality.
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6 Experimental Evaluation

6.9 ColorEC Algorithms Comparison

Figure 6.11a compares the running time of both algorithms we implemented for ColorEC.
In this category bNeighbourCover is worse, being slower by a factor between roughly
6.5 and 8.5.
Figure 6.11b compares the solution quality for the algorithms. In this category bNeighbour-
CoverColorEC provides the best solution on all instances. The solution of sGreedyColorEC
is worse by at least 12% and at most 27%.
Overall, it is very clear which algorithm you should pick, depending on the metric that is
most important to you. If running time is more important sGreedyColorEC is superior but
for solution quality bNeighbourCoverColorEC is better.
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CHAPTER 7
Discussion

7.1 Conclusion

In this thesis we engineer buffered streaming approaches for the NeighbourCover algo-
rithms introduced in [19] by Veldt. Furthermore, we modify other algorithms solving the
same problems, so that they can be used in a streaming or buffered streaming approach
too. We then move on and test on our graph set which parameters work best for these algo-
rithms. Finally, we test all algorithms on the extended graph set and compare their runtime
and solution quality for their respective problems.
For minimum weighted vertex cover and colored edge clustering the buffered Neighbour-
Cover algorithms produce the best quality solution on all instances. For DAG edge deletion
with parameter k = 2 bNeighbourCoverDED2 delivers the best solution quality on 70% of
all instances. Conversely, in terms of running time the bufferedNeighbourCover algorithms
are the slowest. Overall, they offer a trade-off between solution quality and running time.
Only for the matching problem bNeighbourCoverMinD2M does not perform well in terms
of quality and is also slightly worse in terms of running time.

7.2 Future Work

Because bNeighbourCoverMinD2M performs poorly for the matching problem, it could
be of interest to look into ways to further improve the algorithm. One idea in particular
could be to use the semi streaming model. With a memory constraint less strict than the
streaming approach, an increase in solution quality could be feasible.
Another point of interest may be the weighted shuffle as it is responsible for the majority
of the running time. A more efficient implementation could benefit the running times.
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7 Discussion
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7.2 Future Work

Zusammenfassung

In [19] führt Veldt den NeighbourCover Algorithmus ein und zeigt, dass dieser sowohl
im gewichteten, als auch im ungewichteten Fall, eine probabilistische 2-approximation für
das NP harte vertex cover Problem ist. Zusätzlich weiten sie die Idee aus, um probabilis-
tische 2-approximationen für minimum delete to matching, DAG edge deletion und edge
colored hypergraph clustering, zu erstellen. In dieser Arbeit stellen wir buffered streaming
Versionen von NeighbourCover für alle genannten Problemstellungen vor. Desweiteren
erstellen wir weitere buffered Algorithmen, indem wir existierende offline Algorithmen
modifizieren. Wir zeigen, dass die Qualität der buffered NeighbourCover Algorithmen, im
Vergleich zu den anderen implementierten Algorithmen im Durchschnitt 15% besser ist für
minimum weighted vertex cover, 5% besser für DAG edge deletion und 24% besser für
colored edge clustering.
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