
Engineering Data Reduction and
Expansion Rules for the Maximum
Weight Independent Set Problem

Konrad Straube

March 27, 2024

3606810

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Advisor:
Ernestine Großmann

ii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Christian Schulz,
as well as my co-advisor, Ernestine Großmann, for their expertise, patience, guidance, and
unwavering support throughout this project. I am also thankful to my friend Jonathan for
his emotional support, feedback, and additional proofreading.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, March 27, 2024

Konrad Straube

iii

iv

Abstract

In this thesis, we study a data reduction concept for the NP-hard Maximum Weight In-
dependent Set problem. We examine the idea of applying not only decreasing, but also
increasing transformations to a graph in order to better solve the problem. We present a
number of so-called backward reduction rules which we analyze and then integrate into a
new pre-processing algorithm. We demonstrate through the results of our experiments on
a dataset containing a large number of real-life graphs, that by using this algorithm, we
are able to improve the quality of solutions computed with several state-of-the-art solvers.
Thereby, we show the effectiveness of the newly developed backward rules.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 General Definitions . 5

2.1.1 Vertex-Weighted Graphs . 5
2.1.2 Problem Definition . 7
2.1.3 Data Reductions . 8

3 Related Work 9
3.1 Cyclic Reduction Algorithms . 10

4 Cyclic Reduction Algorithm 11
4.1 Weighted Forward Reduction Rules . 11

4.1.1 Sufficient Conditions for Inclusion 11
4.1.2 Sufficient Conditions for Removal 13
4.1.3 Simultaneous Set Merging . 14
4.1.4 Alternative Sets . 15
4.1.5 Other Reductions Based on Degree-2 Vertices 16

4.2 Struction Reductions . 18
4.3 Edge Deletion Reductions . 19
4.4 Backward Reduction Rules . 20

4.4.1 Weight Generation . 20
4.4.2 Backward V-Shape Mid Reductions 21
4.4.3 Backward Rules Based on Alternative Sets 24
4.4.4 Expansion of a Single Edge . 24
4.4.5 Backward Reductions Introducing Removable Vertices 25
4.4.6 Adding Simplicial Vertices . 27

vii

Contents

4.4.7 Translation between Solutions . 28
4.5 Decreasing Phase . 28
4.6 Increasing Phase . 30
4.7 The Complete Algorithm . 31

5 Experimental Evaluation 35
5.1 Computing Environment . 35
5.2 Parameter Tuning . 35

5.2.1 Preparing the Tuning Dataset . 35
5.2.2 Backward Rule Tuning . 36
5.2.3 Rejecting Underperforming Backward Reduction Rules 37

5.3 Comparison with State-of-the-Art Solvers 39
5.3.1 Intermediary Results after Pre-Processing 41
5.3.2 Experiments Using Pre-Processed Instances 42
5.3.3 Comparison Disabling our Contributions 46

5.4 Discussion . 47

6 Conclusion 53
6.1 Conclusion . 53
6.2 Future Work . 54

A Implementation Details 55

B Parameter Tuning Dataset 57

C Evaluation Dataset 59

Abstract (German) 65

Bibliography 67

viii

CHAPTER 1
Introduction

This thesis is concerned with developing a new algorithm based on data reductions for
simplifying or solving the Maximum Weight Independent Set problem on large and
sparse vertex-weighted graphs. The core question that we seek to answer is if we can use
backward reduction rules, which are transformations increasing the problem size, in order
to ultimately make it easier to solve the problem.

1.1 Motivation

The Role of Data Reductions. Data reductions are known as an important and fre-
quently effective tool that enables solving the MWIS problem on many real-life graph
instances. They change the problem instance in some way, typically decreasing its size,
while still allowing us to find an optimal solution for problem on the original graph. Their
effectiveness can vary greatly from graph to graph, with there also being many examples
of complex instances where reduction rules are entirely ineffective in shrinking the graph.
Assuming P ̸= NP , we recognize that the MWIS problem, as an NP -hard problem, cannot
be expected to be solvable by polynomial-time data reductions alone in the general case.
Typically, data reductions play a role as a pre-processing step for some other solver, or are
integrated into a sub-routine of a branch-and-reduce solver.

Reduction Rule Order Matters. Even in graphs where reduction rules are generally
effective, the order in which they are applied can significantly affect the outcome. Most
substantial is the effect on running time: In [8], the authors reported an increase in av-
erage running time of a factor of up to 4.78 when changing the order of reduction rules.
Additionally, the solution quality can also be influenced significantly by the chosen order
of reductions [8][6]. Whenever a reduction rule is applied to a part of a graph, it might
prevent other reduction rules from being applied in that region. In many cases, a kernel
which can no longer be shrunk any further by decreasing reduction rules could be smaller

1

1 Introduction

if reduction rules had been applied in a different order. Unfortunately, there is no known
way to efficiently predict which choice of reduction rule would lead to the most favourable
outcome.

The Value of Increasing the Graph Size. Since our goal is ultimately to decrease
the size of the graph as much as possible, in order to allow branch-and-reduce algorithms
to compute a solution more effectively, it might appear nonsensical to use increasing trans-
formations. However, as described in the previous paragraph, a reducible graph might be
reducible in multiple ways, and one way may be preferable over the other for enabling
further reductions in the future. Therefore, the idea at the core of increasing transforma-
tions is to take one step back to then take two steps forward. An example of this can be
seen in Figure 1.1: Through an increasing transformation, the graph G was changed to
become larger, but since it also allowed us to remove some edges, the modified graph G′

is now structurally simpler. Before the transformation, no decreasing transformation was
applicable to G, but on the larger graph G′, multiple different reductions can be utilized.

Simplification via Size Increase

x

38

u3 27

y

12

u1

29
u2

47

u4

21

(a) Unreducible graph G with nG = 6

x

38

u3 27

y

54

u1

29
u2

47

u4

21

v
42

(b) Reducible, inflated graph G′ with nG′ = 7

Figure 1.1: An example application of a data expansion rule in the MWIS problem. The graph G
in (a) is a graph which cannot be reduced further by previously known reduction rules.
In (b), a data expansion rule has been applied that increased the number of vertices,
but also changed the weights and neighborhoods of some vertices.

1.2 Our Contribution

Our contribution to the topic of reducing MWIS problem instances is the development
and evaluation of backward reduction rules. Like regular reduction rules, they are mod-
ifications to a graph instance G which result in a different but equivalent instance G′ of
the MWIS problem. However, instead of generally reducing the size of they graph, they

2

1.3 Structure

instead increase it. From the inflated instance G′, different forward reductions might be
applicable, which can then ultimately lead to an instance G′′ that is even smaller than G.

The concept of increasing the size of a graph to then ultimately decrease it further, ap-
plied to the MWIS problem, has already been explored by Gellner et al. [7], who made use
of new variants of WEIGHTED STRUCTION reductions, which have the capability to both
decrease and increase the graph size.

In this thesis, we present a number of new graph modifications which are specifically
defined to only increase the number of vertices in the graph. They are derived from previ-
ously known forward reduction rules, and essentially reverse changes that could be made
to a graph by such forward rules.

Additionally, we contribute three new simple reduction rules which do not affect the
number of vertices in a graph G, but instead allow us to decrease the number of edges.

1.3 Structure

The remainder of this thesis is organized as follows: In Chapter 2, we define the terms and
notation used throughout the thesis, and give an exact description of the problem we are
aiming to solve. In Chapter 3, we give an overview of previously developed methods for
solving the MWIS problem, with a focus on work based on reduction rules and cyclic rou-
tines. Chapter 4 represents the main body of our work. First we restate the definitions of
previously developed forward reduction rules in Section 4.1, as well as the special STRUC-
TION reductions, which can be used both for increasing and decreasing graph instances, in
Section 4.2. In Section 4.3, we briefly describe reductions for deleting a number of edges
from the graph before presenting the backward reductions, our main focus, in Section 4.4.
In the remainder of Chapter 4, we present our cyclic reduction algorithm which makes use
of all the previously mentioned reduction rules. In Chapter 5, we first improve our cyclic
algorithm through parameter tuning, and then analyze the performance of our algorithm in
comparison with various state-of-the-art solvers. Lastly, we reflect on our contributions in
Chapter 6 and provide input for future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

In this chapter, we provide definitions for graphs, the problem we are trying to solve, and
the notation we use throughout this thesis.

2.1 General Definitions

2.1.1 Vertex-Weighted Graphs

A graph G is a data structure (V,E), consisting of the set of vertices V and the set of edges
E, and conceptually represents some sort of network.

Vertices. Vertices1 are the finite-size set of points in the graph. Each vertex is labelled
with a unique nominal identifier (V ⊂ N≥1), and the number of vertices in the graph is
denoted by n = |V |.

Edges. Edges are links between pairs of vertices, and the edge set is denoted by E ⊆
V × V , with the size of the edge set denoted as m = |E|. In this thesis, we are considering
simple graphs, where the two vertices u and x may not have more than one edge between
them (as opposed to multigraphs, where there can be multiple edges with the same two
endpoints). The edge between two vertices u and x is written as e(u, x). Two vertices
u and x are called adjacent iff there exists an edge with the endpoints u and x, i.e., iff
e(u, x) ∈ E. In an undirected graph, the adjacency relationship is symmetrical, meaning
e(u, x) and e(x, u) are considered one and the same edge. An edge from and to the same
vertex x (i.e., an edge e(x, x)) is called a self-loop, however, this thesis is only concerned
with graphs which do not contain any self-loops.

1Vertices are also known as nodes.

5

2 Fundamentals

Neighborhoods. For any vertex u, the set of vertices that u is adjacent to is called
the neighborhood of u and denoted by N(u) = {x ∈ V : e(u, x) ∈ E}. For a set
of vertices S ⊆ V , N(S) denotes the union of neighborhoods of the individual vertices
in S but excluding S itself, meaning N(S) = ∪x∈SN(x) \ S. Additionally, the closed
neighborhood is denoted with square brackets and defined as N [u] = N(u) ∪ {u} and
similarly, N [S] = N(S) ∪ S. The number of neighbors of u is called the degree of u and
denoted by d(u) = |N(u)|.

Paths and Cycles. Paths are sequences of vertices (v1, v2, . . . , vk, vk+1) ∈ V k+1 such
that there exists an edge connecting each pair of successive vertices in the sequence, i.e.,
∀i ∈ {1, 2, . . . , k}, there is e(vi, vi+1) ∈ E. A path consisting of k edges is a k-path.

Similarly, cycles are also sequences of vertices (v1, v2, . . . , vk) ∈ V k where each pair of
successive vertices is adjacent, but additionally, the first and last vertices v1 and vk are also
adjacent. A cycle consisting of k vertices is a k-cycle.

Different Graphs. When discussing different graphs, say G and H , we use subscript
notation to clarify which graph an element belongs to, e.g., VG refers to the vertex set of G
and NH(u) for a vertex u ∈ H refers to {x ∈ VH : e(u, x) ∈ EH}.

Subgraphs. A graph H is called a subgraph of G iff the vertex and edge sets of H are
subsets of the vertex and edge sets of G, i.e., VH ⊆ VG and EH ⊆ EG ∩ (VH × VH).

Induced Subgraphs. A subgraph of G induced by S, denoted by G[S], is a special
type of subgraph of G. S ⊆ VG is called the inducing subset, and forms the vertex set of
G[S]. The edge set EG[S] is not missing any edge in EG that is between two vertices in
S (i.e., G[S] contains every edge that is present in G, where S contains both endpoints:
EG[S] = {e(u, x) ∈ EG : {u, x} ⊆ S}).

Independent Sets. A set of vertices I ∈ V is called an independent set2 iff no two
vertices in I are adjacent to each other. For an independent set I of G, the induced subgraph
G[I] contains no edges.

Complement Graphs. The complement graph G of a graph G is the graph with the
same set of vertices as G and the inverted edge set of G. Two vertices u and x are adjacent
in G iff they are not adjacent in G.

2Independent sets are also known as stable sets.

6

2.1 General Definitions

Cliques. A set of vertices C ∈ VG is called a clique in G iff EG contains an edge between
each pair of two distinct vertices {u, x} ⊆ C. A clique containing k = |C| vertices is called
a k-clique. For a k-clique C, the induced subgraph G[C] contains all k(k−1)

2
possible edges.

A k-clique C is called maximal if it cannot be extended by another vertex, i.e., there is
no v ∈ N(C) such that C ∪ {v} is a (k + 1)-clique. A graph that consists exclusively
of a single clique is called a complete graph. A clique in G is an independent set in the
complement graph G.

Vertex-Weights. A vertex-weighted graph is a graph with an additional weight function
ω : V → N≥1 (i.e., a data structure (V,E, ω)).

This means that there is a positive integer weight value mapped to every vertex. For
a vertex v ∈ V , we write ω(v) to refer to this weight. For any set of vertices U ⊆ V ,
we write ω(U) to denote the sum of weights

∑
v∈U ω(v). If H is a subgraph of G, then

ωH(v) = ωG(v) for each v ∈ VH .
Other works deal with edge-weighted graphs, where values are assigned to each edge.

This thesis however does not, and therefore all other references to weights refer to vertex-
weights only.

2.1.2 Problem Definition

We are now giving the definition for our problem of interest, Maximum Weight Indepen-
dent Set, and its classic special case Maximum Independent Set.

Maximum Independent Set. Given an undirected, unweighted graph G = (V,E),
the Maximum Independent Set (MIS) problem (stated as an optimization problem) asks
to find an independent set I ∈ V , such that no larger independent set S ∈ G exists with
|S| > |I|.

The MIS problem is a classic problem that has been extensively studied. It is one of the
21 original NP-hard problems proven by Karp [11], meaning that unless P = NP , one
cannot expect to develop an algorithm that solves the problem efficiently in the general
case.

Maximum Weight Independent Set. The Maximum Weight Independent Set
(MWIS) problem is a generalization of MIS, applicable to vertex-weighted graphs G =
(V,E, ω). Instead of an independent set with maximum size, MWIS asks to find an in-
dependent set I ⊆ V with maximum weight, such that no independent set S ⊆ V exists
with ω(S) > ω(I), i.e. no other independent set in G has a greater sum of weights. An
independent set which fulfills this condition is called a maximum weight independent set of
G, or MWIS(G) for short.

Such a solution set does not necessarily have to be unique. We denote the weight of
every MWIS(G) with αω(G). An acceptable solution to the MWIS problem is any optimal

7

2 Fundamentals

solution set MWIS(G), it is not one of our objectives to list more than one independent set
with the same optimal weight αω(G).

2.1.3 Data Reductions
Data Reduction Rules are polynomial-time algorithms which transform one problem in-
stance into another problem instance, equivalent to the original. If a solution is found for
the modified instance, it can be transformed into a solution to the original problem in poly-
nomial time. Problem instances for MWIS are graphs G = {V,E, ω}. Reduction rules
applied to G produce a modified graph instance G′, as well as instructions for translating a
solution set for G′ into a solution for G. Graph instances where no reduction rule can be
applied to decrease n are called unreducible kernels.

8

CHAPTER 3
Related Work

Since MWIS is known to be NP-hard , making exhaustive search infeasible for large in-
stances, a lot of collective work has gone into developing methods to systematically ex-
plore and prune the search space. Such a method is called branch-and-bound. Combining
branch-and-bound techniques with data reduction results in a framework called branch-
and-reduce. This framework is widely used in algorithms that aim to solve the MWIS prob-
lem. It is based on data reduction rules, which are typically used to identify certain patterns
in subgraphs of the problem instance, which allows us to simplify or remove them.

Weighted Reduction Rules. In recent years, a number of reduction rules for the
MWIS problem have been introduced, after the approach of data reduction has found wide
use in methods for solving the Vertex Cover and MIS problems [13].

In 2007, Butenko et al. [2] proposed the CRITICAL WEIGHTED INDEPENDENT SET

REDUCTION, which allows us to remove an independent set fulfilling certain conditions
as well as its neighborhood from the graph. Xiao et al. [21] introduced the concept of
confinedness for the MIS problem in 2013, and adapted it to the MWIS problem in [20].
In 2019, Lamm et al. [13] developed a number of reduction rules for the MWIS problem,
including many adapted from the MIS problem, and applied them in the first branch-and-
reduce algorithm for MWIS. In 2020, Zheng et al. [22] presented the TWO-VERTEX RE-
DUCTION. Huang et al. [10] developed a number of reduction rules, many of which are
based on degree-2 vertices.

Other Methods. For solving the problem inexactly, local search is widely used, includ-
ing the Hybrid Iterated Local Search (HILS) algorithm by Nogueira et al. [15]. Reduction-
based heuristic algorithms include ReduMIS by Lamm et al. [12], HtWIS by Gu et al. [9]
and m2wis by Großmann et al. [8].

9

3 Related Work

3.1 Cyclic Reduction Algorithms

There are a few works which deal with methods that temporarily increase the size of the
problem instance, in order to later decrease it even more, as is also the goal for our project.

Backward Reductions for Vertex Cover. The core idea of this thesis is inspired by
the work of Figiel et al. [6], who developed an algorithm making use of backward reduction
rules for solving the Vertex Cover problem.

Struction Reductions. Similar to our algorithm presented here, Lamm et al. [13] de-
veloped a cyclic algorithm making use of increasing and decreasing variants of so-called
STRUCTION reductions to solve the MWIS problem.

10

CHAPTER 4
Cyclic Reduction Algorithm

This thesis describes a cyclic algorithm for transforming an instance for the MWIS prob-
lem into an equivalent, smaller one. This chapter will present the details of this cyclic
reduction algorithm. The algorithm consists of two main phases, the decreasing phase and
the increasing phase.

The decreasing phase mainly utilizes forward reduction rules, which are the focus of
Section 4.1.

The increasing phase makes use of their inversions, the backward reduction rules, which
are detailed in Section 4.4. Both phases additionally make use of STRUCTION transforma-
tions, which are explained in Section 4.2. A description of the procedures for the decreasing
and the increasing phases is given in Sections 4.5 and 4.6, respectively. Finally, details of
the complete cyclic algorithm are given in Section 4.7.

4.1 Weighted Forward Reduction Rules

A forward reduction rule is a transformation which shrinks the problem instance, trans-
forming a graph G into an equivalent smaller graph G′, i.e., nG′ < nG.

A large number of weighted reduction rules for the MWIS problem have been developed
by different authors. This section lists the subset of rules that is used in our algorithm, and
does not attempt to be an exhaustive list of all known reduction rules.

4.1.1 Sufficient Conditions for Inclusion

Certain reductions identify simple parts of the problem instance, where for a vertex v ∈ VG,
a decision to include it in the solution set MWIS(G) can be made directly.

Heavy Vertices. The authors of [20] define the concept of a heavy vertex:

11

4 Cyclic Reduction Algorithm

Definition 1 (Heavy Vertex [10][20])
A vertex v ∈ V is called a heavy vertex iff for any independent set I in the induced
subgraph G[N(v)], it holds that ω(v) ≥ ω(I).

If a vertex v ∈ VG is a heavy vertex, then at least one MWIS(G) I with v ∈ I is
guaranteed to exist. Therefore, we can shrink G by removing the heavy vertex v alongside
its entire neighborhood.

Unfortunately, determining if a vertex v of arbitrary degree is a heavy vertex can be
as complex as solving the MWIS problem itself in the general case. If the degree of v is
bounded by a constant, however, it is possible to determine if it is a heavy vertex in constant
time [10].

Section 4.2 will provide the definition for two STRUCTION rules, which are applied to
vertices up to a fixed degree and which, as part of their routine, identify heavy vertices.

A cheaper way to determine with certainty that a vertex v is a heavy vertex is to test if an
upper bound to αω(G[N(v)]) does not exceed ω(v). The most simple such upper bound is
just the sum of weights ω(N(v)), as is used in the NEIGHBORHOOD REMOVAL reduction1:

Reduction 1 (Neighborhood Removal [13][22])
For any v ∈ V , if ω(v) ≥ ω(N(v)), then v is a heavy vertex and thus guaranteed to be in
some MWIS(G). Let G′ = G[VG \ NG[v]] and MWIS(G) = MWIS(G′) ∪ {v}. It holds
that αω(G) = αω(G

′) + ωG(v).

Extension to 2 Vertices. In [22], the authors introduce a similar reduction that can be
applied specifically when NEIGHBORHOOD REMOVAL has been performed on G:

Reduction 2 (Two-Vertex [22])
Let {u, v} ⊆ V be 2-hop-neighbors, i.e., nonadjacent vertices sharing at least one neighbor:
e(u, v) /∈ E, |N(u) ∪ N(v)| ≥ 1. If ω(u) < ω(N(u)) and ω(v) < ω(N(u)), but ω(u) +
ω(v) ≥ ω(N(u)∪N(v)), then we can obtain G′ by removing N [{u, v}]. It then holds that
MWIS(G) = MWIS(G′) ∪ {u, v} and αω(G) = αω(G

′) + ωG(u) + ωG(v).

Critical Weighted Independent Set. A more complex rule to identify vertices that
can be directly included in the solution set was introduced by [2] in form of the CRITICAL

WEIGHTED INDEPENDENT SET (CWIS) reduction:

Definition 2 (Critical Weighted Independent Set [2])
An independent set IC ⊆ V is called a critical weighted independent set iff ω(IC) −
ω(N(IC)) = max{ω(U)− ω(N(U)) : U ⊆ V is an independent set}.

The CRITICAL WEIGHTED INDEPENDENT SET reduction is the only global reduction
used in our algorithm, as the critical weighted independent set IC is computed for the
entire graph. This set IC can be found in polynomial time via various methods [2]. In our

1Called Single-Vertex Reduction in [22]

12

4.1 Weighted Forward Reduction Rules

implementation, we find them by constructing a bipartite flow graph from G and solving
the Max-Flow-Min-Cut problem on this flow graph.

Reduction 3 (Critical Weighted Independent Set [2])
Let IC ⊆ V be a critical weighted independent set. Then there exists at least one
MWIS(G) I∗ such that IC ⊆ I∗. Thus, G′ is obtained by removing N [IC] from G.
It holds that MWIS(G) = MWIS(G′) ∪ IC and αω(G) = αω(G

′) + ωG(IC).

4.1.2 Sufficient Conditions for Removal
While reductions like NEIGHBORHOOD REMOVAL can shrink the graph when a vertex can
be shown to be included in at least one solution set MWIS(G), another way to directly
remove parts of the graph is to identify a vertex which is absent in at least one solution set
MWIS(G).

Definition 3 (Removable Vertices [10])
A vertex v ∈ VG is called removable iff there is at least one MWIS(G) that does not
include v. For a removable vertex v in G, it holds that αω(G[V \ {v}]) = αω(G).

Again, no efficient algorithm exists to decide whether any given vertex is removable in
the general case. Otherwise, a solution for the MWIS problem as a whole could be found
efficiently by process of elimination. There are, however, several useful reductions which
check if a sufficient condition for the removal of a vertex is met.

Basic Single-Edge. The following reduction, BASIC SINGLE-EDGE, was introduced
in [9] and directly compares two adjacent vertices v and x, testing if v is always at least as
good of a choice for inclusion in the solution as x is.

In the context of this reduction, the term ω(N(v) \ N [x]) + ω(x) serves as an upper
bound for the weight of an independent subset Ix ⊆ N(v) which includes x ∈ Ix.

Intuitively, if this upper bound does not exceed ω(v), then v can be selected instead of
such a set Ix. Therefore, at least one optimal solution does not include x, and G can be
simplified by removing x.

Reduction 4 (Basic Single-Edge [9])
Given an edge e(v, x) ∈ E, if ω(v) ≥ ω(N(v) \ N [x]) + ω(x), then G′ = G[V \ {x}] is
obtained by deleting the removable vertex x, and αω(G) = αω(G

′).

Extended Single-Edge. Another reduction which can potentially identify multiple re-
movable vertices at once is the following:

Reduction 5 (Extended Single-Edge [9])
Let {u, v} ⊆ V be two adjacent vertices, and let C = N(u) ∩ N(v). If ω(u) + ω(v) ≥
min{ω(N(u)), ω(N(v))}, then the common neighbors C are removable and αω(G) =
αω(G[VG \ C]).

13

4 Cyclic Reduction Algorithm

Unconfined Vertices. Another way to identify removable vertices is through the no-
tion of unconfined vertices, defined for weighted graphs in [10] and [20]. According to
[20], "the idea of UNCONFINED is that we first assume a vertex v is in all MWIS(G), and
then try to find some contradictions. If there are some contradictions found, then the vertex
v is not in some MWIS(G) and we can delete it from the graph."

Definition 4 (Child, Extending Child, Satellite)
Let S ⊆ V be an independent set. A vertex u ∈ N(S) is called a child of S iff ω(u) ≥
ω(S ∩ N(u)). A child u is called an extending child of S if |N(u) \ N [S]| = 1, and the
vertex v ∈ N(u) \N [S], which is adjacent to u, is called a satellite of S.

Definition 5 (Confinedness [10])
Let v ∈ V be some vertex. The following procedure determines if v is confined or uncon-
fined:

(1) Let S ← {v}.
(2) If S has at least one extending child in N(S), then let S ′ be the set of satellites

corresponding to the extending children of S. Update S ← S ∪ S ′.
(3) If S is no longer independent or if there is a child u of S such that N(u)\N [S] = {},

then we halt and conclude that v is unconfined.
(4) If S has no extending child (i.e., |N(u) \N [S]| ≥ 2 for all children u ∈ N(S)), then

we halt and conclude that v is confined by S.

Repeat (2) until (3) or (4) holds.

This check for confinedness can be performed in polynomial time [10]. Showing that
a vertex v is unconfined means that v is absent in at least one MWIS(G) and is hence
removable:

Reduction 6 (Unconfined [10] [20])
For any vertex v ∈ V , if v is determined to be unconfined via the above procedure, then we
obtain G′ = G[VG \ {v}] by removing v from G. It holds that MWIS(G) = MWIS(G′)
and αω(G) = αω(G

′).

4.1.3 Simultaneous Set Merging
In some cases, it can be determined for a set of vertices S that all of S simultaneously is
either included or excluded in some MWIS(G). The following reduction covers one such
case:

Reduction 7 (Twin [13][20])
If two nonadjacent vertices {x, y} ⊆ V have the same neighbor set (i.e., N(x) = N(y)),
then they can be merged. We obtain G′ by removing x and v and adding a new vertex v∗

with ωG′(v∗) ← ωG(x) + ωG(y) and NG′(v∗) ← NG(x). It holds that αω(G
′) = αω(G)

and {x, y} ∈MWIS(G) iff v∗ ∈MWIS(G′).

14

4.1 Weighted Forward Reduction Rules

4.1.4 Alternative Sets

The concept of alternative sets for weighted graphs was defined in [20]:

Definition 6 (Alternative Set [20])
Let IA ⊆ V be an independent set in G. If there is at least one MWIS(G) which contains
either all of IA or all of N(IA), then IA is called an alternative set.

Let the graph G contain an alternative set IA. Since either IA or N(IA) must be con-
tained in some MWIS(G), there is a binary decision to be made. Therefore N [IA] =
IA ∪ N(IA) can be replaced by a single vertex v∗ (and can be said to be folded into v∗),
representing exactly this binary decision.

In the following, the reductions DEGREE-1 FOLD and V-SHAPE MAX (Reductions 8
and 9) are presented, which are reductions based on alternative sets and vertex folding.

Low-Degree Reductions. Vertices with low degree frequently allow for reductions to
be applied. A degree-1 vertex v ∈ V with N(v) = {u} can be removed via the NEIGH-
BORHOOD REMOVAL rule (Reduction 1) if ω(v) ≥ ω(u).

Otherwise (i.e., if ω(v) < ω(u)), the DEGREE-1 FOLD reduction defined below applies.
In such a case, the vertex v is an example of an alternative set: Either {v} or N({v}) = {u}
must be a subset of every MWIS(G).

Reduction 8 (Degree-1 Fold [9])
Let v ∈ V be a degree-1 vertex with N(v) = {u} and ω(v) < ω(u). Update G′ = G[VG \
{v}] and set ωG′(u) ← ωG(u) − ωG(v). From an MWIS(G′) I ′, we get an MWIS(G) I
as follows: If u ∈ I, then I = I ′, otherwise I = I ′ ∪ {v}. It holds that αω(G) =
αω(G

′) + ωG(v).

V-Shape. A v-shape is a 2-path (x, v, y) ∈ V 3 where d(v) = 2 with N(v) = {x, y}. x
and y are not adjacent. In other words, a v-shape is present when there is a degree-2 vertex
v, and N [v] does not form a 3-clique, also known as a triangle. Our algorithm makes use
of several reductions involving v-shape patterns, including V-SHAPE MAX2:

Reduction 9 (V-Shape Max [9][13])
Let v ∈ V be a degree-2 vertex with N(v) = {x, y}, such that e(x, y) /∈ E and
max(ω(x), ω(y)) ≤ ω(v) < ω(x) + ω(y). Then G′ is obtained by removing the vertices v,
x and y and replacing them with a new vertex v′, with ωG′(v′)← ωG(x) + ωG(y)− ωG(v)
and NG′(v′)← NG(x)∪NG(y). From an MWIS(G′) I ′, we obtain the MWIS(G) I as fol-
lows: If v′ ∈ I ′, then {x, y} ⊆ I, otherwise v ∈ I. It holds that αω(G) = αω(G

′)+ωG(v).

With max(ω(x), ω(y)) ≤ ω(v) < ω(x) + ω(y), there must be at least one optimal
solution MWIS(G) I where either {x, y} ⊆ I or v ∈ I. This binary decision can be

2Also called VERTEX FOLDING in [13].

15

4 Cyclic Reduction Algorithm

represented by just one vertex, the folded vertex v′. In this way, {v} is another example of
an alternative set.

4.1.5 Other Reductions Based on Degree-2 Vertices
Let there be a v-shape structure with degree-2 vertex v and its nonadjacent neighbors x and
y such that ω(x) ≤ ω(v) < ω(y).

For the subset of these three vertices that is included in an optimal solution, S =
{v, x, y} ∩MWIS(G), we only need to consider the three options S = {v}, S = {x, y}
and S = {y}. S = {} is not an option, because there is no reason not to include at least
v, since it is not connected to any other vertices. The option S = {x} can be disregarded
because {v} is at least as good. All other combinations are not independent sets.

The V-SHAPE MID reduction exploits the fact that only these three options are possible,
as this information can be compressed into just 2 vertices.

Reduction 10 (V-Shape Mid [9])
Let v ∈ V be a degree-2 vertex with N(v) = {x, y}, such that e(x, y) /∈ E and ω(x) ≤
ω(v) < ω(y). Then G′ is obtained by removing the vertex v and updating ωG′(y) ←
ωG(y)− ωG(v) and NG′(x)← NG(x) ∪NG(y).

Let I ′ be a solution MWIS(G′). I ′∩{x, y} can be one of {x, y}, {y} or {}, but not {x},
because NG′(x) ⊇ NG′(y). We obtain MWIS(G) I as follows: If neither {x, y} ⊆ I ′ nor
{y} ⊆ I ′, then I = I ′ ∪ {v}, otherwise I = I ′. It holds that αω(G) = αω(G

′) + ωG(v).

In [10], Huang et al. present several other reduction rules involving multiple degree-2
vertices:

Reduction 11 (3-Path [10])
Let there be a 3-path (v1, v2, v3, v4) such that d(v2) = d(v3) = 2 and ω(v4) ≤ ω(v3) ≤
ω(v2) ≤ ω(v1). Then G′ is obtained by removing v2 and v3, adding e(v1, v4) if it did not
already exist, and updating ωG′(v1)← ωG(v1)+ωG(v3)−ωG(v2). If v1 ∈MWIS(G′) then
MWIS(G) = MWIS(G′) ∪ {v3}, otherwise MWIS(G) = MWIS(G′) ∪ {v2}. It holds
that αω(G) = αω(G

′) + ωG(v2).

Reduction 12 (4-Cycle [10])
Let there be a 4-cycle (v1, v2, v3, v4) such that d(v2) = d(v3) = 2 and ω(v3) ≤ ω(v2) ≤
ω(v1). Then G′ is obtained by removing v2 and v3, and updating ωG′(v1) ← ωG(v1) +
ωG(v3) − ωG(v2). If v1 ∈ MWIS(G′) then MWIS(G) = MWIS(G′) ∪ {v3}, otherwise
MWIS(G) = MWIS(G′) ∪ {v2}. It holds that αω(G) = αω(G

′) + ωG(v2).

Reduction 13 (4-Path [10])
Let there be a 4-path (v1, v2, v3, v4, v5) such that d(v2) = d(v3) = d(v4) = 2, ω(v3) ≤
ω(v2) ≤ ω(v1) and ω(v3) ≤ ω(v4) ≤ ω(v5). Then G′ is obtained by the following:
Remove v2 and v4, add edges e(v1, v3) and e(v3, v5), and update ωG′(v1) ← ωG(v1) +
ωG(v3)− ωG(v2) and ωG′(v5)← ωG(v5) + ωG(v3)− ωG(v4).

16

4.1 Weighted Forward Reduction Rules

We obtain MWIS(G) I from an MWIS(G′) I ′ in the following way:

If I ′ contains neither v1 nor v5, then I = (I ′ \ {v3}) ∪ {v2, v4}.
If I ′ contains both v1 and v5, then I = I ′ ∪ {v3}.
If I ′ contains v1 but not v5, then I = I ′ ∪ {v4}.
If I ′ contains v5 but not v1, then I = I ′ ∪ {v2}.

Additionally, it holds that αω(G) = αω(G
′) + ωG(v2) + ωG(v4)− ωG(v3).

Reduction 14 (5-Cycle [10])
Let there be a 5-cycle (v1, v2, v3, v4, v5) such that d(v2) = d(v3) = d(v5) = 2,
min{d(v1), d(v4)} ≥ 3, ω(v3) ≤ ω(v2) ≤ ω(v1) and ω(v3) ≤ ω(v4) ≤ ω(v5). Then
G′ is obtained by the following: Remove the vertices v2 and v3 and update the weights

ωG′(v1)← ωG(v1)− ωG(v2),
ωG′(v4)← ωG(v4)− ωG(v3), and
ωG′(v5)← ωG(v5)− ωG(v3).

We obtain MWIS(G) I from an MWIS(G′) I ′ in the following way:

If I ′ contains both v1 and v4, then I = I ′.
If I ′ contains v1 but not v4, then I = I ′ ∪ {v3}.
Otherwise, I = I ′ ∪ {v2}.

It holds that αω(G) = αω(G
′) + ωG(v2) + ωG(v3).

Cliques. In any clique C ⊆ VG, at most one vertex v ∈ C can be part of an MWIS(G).
If a vertex u ∈ VG has a clique neighborhood, then we can exclude any vertex x ∈ N(u)
that does not offer a higher weight than ω(u), because it could always be replaced by u in
the solution.

Definition 7 (Isolated Vertex [13])
For any vertex u ∈ V , if N [u] is a clique (i.e., G[N [u]] is a complete graph), then u is
called an isolated vertex3.

Reduction 15 (Isolated Weight Transfer [13])
Let u ∈ V be an isolated vertex. Then G′ is obtained from G by removing u and applying
the following change to each x ∈ NG(u):

1. If ωG(x) ≤ ωG(u), then remove x.
2. Otherwise, decrease the weight of x to ωG′(x)← ωG(x)− ωG(u).

Let I ′ be an MWIS(G′). Then MWIS(G) I can be obtained from the following: It holds
that if x ∈ I ′ for any remaining x ∈ NG′(u), then I = I ′, otherwise I = I ′ ∪ {u}.
Additionally, αω(G) = αω(G

′) + ωG(u).
3Isolated vertices are also known as simplicial vertices.

17

4 Cyclic Reduction Algorithm

4.2 Struction Reductions

Variants of STRUCTION4 reductions are some of the most powerful known reduction rules.
They can be used to strictly reduce the size of a graph, but they can also be used to transform
the graph nontrivially in ways which increase the number of vertices. The effectiveness of
these rules in a cyclic reduction algorithm for MWIS has already been demonstrated by
Gellner et al. in [7].

Extended Struction.

Reduction 16 (Extended Struction [7])
Let v ∈ V be some vertex in G. We denote with C the set of all independent sets S in the
induced subgraph G[N(v)] such that ω(S) > ω(v). We obtain G′ by applying the following
changes: Remove the vertices N [v]. For each set S of the sufficiently heavy independent
sets C, add a new vertex vS and set its weight to ωG′(vS) ← ωG(S) − ωG(v). For each set
S ∈ C and each vertex x ∈ NG(S) \NG[v], add the edge e(vS, x). Lastly, for each pair of
sets {S, S ′} ⊆ C, add the edge e(vS, vS′), so that the newly added vertices form a clique.
From an MWIS(G′) I ′, we obtain an MWIS(G) I as follows: If vS ∈ I ′ for any S ∈ C,
then I = (I ′ \ {vS}) ∪ S, otherwise I = I ∪ {v}. It holds that αω(G) = αω(G

′) + ω(v).

Extended Reduced Struction. For any vertex v ∈ V , the previous reduction, EX-
TENDED STRUCTION, creates a new vertex for every independent set in G[N(v)] which
has a weight that exceeds ω(v). The authors state that this can result in up to O(2d(v)) new
vertices [7]. Therefore, they also propose a variant, EXTENDED REDUCED STRUCTION,
which has the potential for adding fewer vertices by initially creating a new vertex for only
a subset of these heavy independent sets in G[N(v)].

A Subset of Heavy Independent Sets. For a vertex v ∈ V , let C be defined as in
Reduction 17 again, i.e., the set of all independent sets S in G[N(v)] with ω(S) > ω(v).
Let there be some fixed ordering5 to the vertices, and let max(S) denote the vertex in S
that comes last in the ordering.

Then the set of all independent sets in G[N(v)] that are just heavier than ω(v) is D =
{S ∈ C | (S \ {max(S)}) /∈ C}. In other words, a set S ∈ C is omitted in D if ω(S) −
ω(max(S)) is already greater than ω(v), and the prefix set S \ {max(S)} is therefore also
in C.

While |D| ≤ |C| and we might therefore be able to create fewer vertices initially, EX-
TENDED REDUCED STRUCTION requires adding an additional set of vertices to complete
the modification. The full procedure for the reduction is as follows:

4The name STRUCTION derives from "STability number RedUCTION". The predecessor to the STRUCTION
reductions used here was originally conceived [5] for the MIS problem, where the term stability number
refers to the size of the largest independent set in a graph.

5Our implementation uses the labels of the vertices, which are integers, for the ordering.

18

4.3 Edge Deletion Reductions

Reduction 17 (Extended Reduced Struction [7])
Given a vertex v ∈ V and a set of independent sets D as described above. We construct
the vertices vS for each S ∈ D in the same way as EXTENDED STRUCTION does for each
S ∈ C. Then we additionally create vertices vS,y for pairs of sets S ∈ D and vertices
y ∈ NG(v) where y /∈ NG[S]. Note that S ∪ {y} is then an independent set that is in C
but not in D. For two such vertices vS,y and vS′,y′ , we add the edge e(vS,y, vS′,y′) if either
S ̸= S ′ or y ∈ NG(y

′). Additionally, add an edge between each such vertex vS,y and every
vertex x ∈ (NG(S) ∪ NG(y)) \ NG[v]. Finally, add an edge between each pair of vertices
vS and vS′,y if S ̸= S ′. Given an MWIS(G′) I ′, we obtain an MWIS(G) I as follows:
If vS ∈ I ′ for some S ∈ D, then I = (I ′ ∩ VG) ∪ S ∪ {y | vS,y ∈ I ′}. Otherwise,
I = I ′ ∪ {v}. It holds that αω(G) = αω(G

′) + ω(v).

Change in graph size. Both versions of STRUCTION are capable of increasing or
decreasing the size of the graph. One application of the rule to a vertex v ∈ V can decrease
n by up to d(v)+1 (if v is a heavy vertex), but depending on how many heavy independent
sets exist in G[N [v]], it can also increase it by much more.

A transformation is called decreasing if nG′ < nG, increasing if nG′ > nG, and a plateau
transformation if n stays the same.

Whenever a check for a STRUCTION reduction is performed, there is a set limit for by
how much the graph may increase. While enumerating the independent sets S ∈ G[N(v)]
with ω(S) > ω(v), the number of vertices that would get added is compared against this
increase limit, reduced by the number of vertices d(v)+1 that would get deleted. This way,
the search for independent sets in G[N(v)] can terminate early if applying the reduction
would create too many new vertices. The limit for how much to increase n by is −1 during
the decreasing phase, and regulated by a parameter of the algorithm during the increasing
phase, set individually for the two variants.

During the increasing phase, we allow for transformations where n stays the same
(plateau transformations), but disallow any decrease in n to ensure that the increasing phase
can terminate by reaching the desired target size.

Complexity of Enumerating Independent Sets. It is important to note that the
step of finding C, the set of all independent sets in a subgraph of G with weight greater
than some threshold, is, in the general case, as complex as solving the MWIS problem
itself, meaning it is also NP-hard . It is therefore important to restrict the application of
struction rules to only vertices v with degree below some constant limit.

4.3 Edge Deletion Reductions

Typically, reduction rules are designed to reduce the number of vertices in a graph G. In
this section, we present a different kind of reduction rule focused solely on reducing the
number of edges in G instead. The first two rules are simple variants of V-SHAPE MAX

19

4 Cyclic Reduction Algorithm

and V-SHAPE MID and only delete optional edges from G, while the third rule allows us
to rewrite an edge e(x, y) when x dominates y.

Optional Edge Deletion. These reductions can be applied when V-SHAPE MAX and
V-SHAPE MID could also be applied, and in fact, still allow these reductions to be applied
afterwards. Their purpose is to serve as an intermediate step, resulting in a more sparse
graph and potentially allowing for different reductions to become applicable instead.

Reduction 18 (Optional Edge Deletion 1)
Given a degree-2 vertex v with nonadjacent neighbors N(v) = {x, y}, e(x, y) /∈ E, such
that max(ω(x), ω(y)) ≤ ω(v) < ω(x) + ω(y). Then for each vertex u ∈ (N(x) ∩N(y)) \
{v}, remove either e(u, x) or e(x, y). It holds that a MWIS(G′) is also a MWIS(G), and
αω(G) = αω(G

′).

Reduction 19 (Optional Edge Deletion 2)
Given a degree-2 vertex v with nonadjacent neighbors N(v) = {x, y}, e(x, y) /∈ E, such
that ω(x) ≤ ω(v) < ω(y). Then for each vertex u ∈ (N(x) ∩ N(y)) \ {v}, remove the
edge e(u, x). It holds that a MWIS(G′) is also a MWIS(G), and αω(G) = αω(G

′)

The result of both of the above reductions can also appear when applying V-SHAPE

MAX or V-SHAPE MID followed by their respective backward reduction rules (defined in
the following section). Our implementation contains procedures for both OPTIONAL EDGE

DELETION reductions anyhow, for use in the decreasing phase of our algorithm.

Domination Edge Deletion. Consider two adjacent vertices {x, y} ⊆ V , e(x, y) ∈ E.
If x is adjacent to at least all the vertices that y is adjacent to (except for x itself), i.e., if
N [x] ⊇ N [y], then we say that x dominates y [13]. If ω(x) ≤ ω(y), this is a sufficient
condition to remove x from the graph (cf. the DOMINATION reduction in [13]). This case
is also covered by the BASIC SINGLE-EDGE reduction (Reduction 4), which is used in our
algorithm.

Reduction 20 (Domination Edge Deletion)
Given two vertices x and y such that x dominates y (i.e., , N [x] ⊇ N [y]) and ω(x) > ω(y).
Remove the edge e(x, y) and decrease the weight of x by ωG′(x) ← ωG(x) − ω(y). We
obtain MWIS(G) I from a MWIS(G′) I ′ as follows: If {x, y} ⊆ I ′ then I = I ′ \ {y},
otherwise I = I ′. It holds that αω(G) = αω(G

′).

4.4 Backward Reduction Rules

4.4.1 Weight Generation
Over the course of a run of this algorithm, it is always ensured that all vertex weights are
positive integers. When generating weights for new vertices in backward reductions, they

20

4.4 Backward Reduction Rules

Domination Edge Deletion

x
38

y
27

A B

(a) G (before DOMINATION
EDGE DELETION)

x

38− 27 = 11

y
27

A B

(b) G′ (after DOMINATION EDGE DELE-
TION)

Figure 4.1: (a) The closed neighborhood of y, N [y] = {x, y} ∪ B, is a subset of the closed
neighborhood of x, N [x] = {x, y}∪A∪B, and ω(x) > ω(y) so that x is not outright
removable; (b) The edge linking x and y has been removed, and the weight of x has
been reduced. The inclusion of both x and y in an MWIS(G′) now represents the
inclusion of just x in an MWIS(G).

are typically selected randomly and uniformly from an interval [a, b]. Both a and b may be
restricted by the weight of other vertices, and a ≥ 1 must always hold.

However, there are often no restrictions on how large the upper bound b could be. It is
preferable that the backward reduction rules behave similarly from graph to graph, even if
the scale of weights is different between them. Therefore, we want to set b relative to the
pre-existing weights in the graph.

Our initial experiments have shown that the arithmetic mean of the weights in the original
graph is well suited as an anchor, relative to which we set b. For each reduction, there is
a parameter which is a factor that controls how large relative to the anchor we select b for
this reduction.

4.4.2 Backward V-Shape Mid Reductions

Two of the most important backward reductions that we are presenting are two variants of
BACKWARD V-SHAPE MID. These can be applied when for two vertices x and y, all the
vertices adjacent to y are also adjacent to x (except for self-loops).

A notable effect of the reduction is that edges between x and u ∈ NG(y) become re-
dundant and can be removed. Therefore, even though the new vertex v gets added to both
NG′(x) and NG′(y), the degree of x can shrink by up to dG(y) − 1, meaning the graph G′

can contain fewer edges than G.

Backward Reduction 1 (Backward V-Shape Mid 1)
Required: A pair of nonadjacent vertices {x, y} ⊆ V , e(x, y) /∈ E, such that N(y) ⊆
N(x).

21

4 Cyclic Reduction Algorithm

Backward V-Shape Mid 1

x
5

y
4

A B

(a) G (before BACKWARD
V-SHAPE MID 1)

v
7

x
5

y
11 = 4 + 7

A B

(b) G′ (after BACKWARD V-SHAPE
MID 1)

Figure 4.2: (a) The graph G contains two nonadjacent vertices x and y, where the neighborhood
of y, which is N(y) = B, is a subset of N(x) = A ∪ B; (b) A vertex v has been
added and made adjacent to x and y, the weight of y has been increased, and the edges
e(x, b) for b ∈ B became optional and were removed.

Backward V-Shape Mid 2

x
8

y
5

A B

(a) G (before BACKWARD
V-SHAPE MID 2)

v
7

x

8− 5 = 3

y
12 = 5 + 7

A B

(b) G′ (after BACKWARD V-SHAPE MID 2)

Figure 4.3: (a) The graph G contains the edge e(x, y) between x and y with ω(x) > ω(y), and
the closed neighborhood of y, which is N [y] = B ∪ {x, y}, is a subset of N [x] =
A ∪ B ∪ {x, y}; (b) The weight of x has been decreased by ωG(y), the edge e(x, y)
was removed, a vertex v has been added and made adjacent to x and y, the weight of
y has been increased by ωG′(v), and the edges e(x, b) for b ∈ B became optional and
were removed.

22

4.4 Backward Reduction Rules

Backward V-Shape Max

v∗
5

A B

(a) G (before BACK-
WARD V-SHAPE
MAX)

x
6

y
7

v

8 = 6 + 7− 5

A B

(b) G′ (after BACKWARD V-
SHAPE MAX)

Figure 4.4: (a) The graph G contains some vertex v∗, in this example with neighbors N(v∗) =
A ∪ B; (b) The graph G′ after replacing v∗ with the v-shape structure {v, x, y} and
redistributing the neighbors of v∗ to x and y.

Obtain G′ as follows: Add a new vertex v and select ωG′(v) such that ωG′(v) > ωG′(x).
Update ωG′(y) ← ωG(y) + ωG′(v). Add the edges e(v, x) and e(v, y). For each u ∈
NG(x) ∩ N(y) \ {v}, the edge e(u, x) is optional and can be removed. Then it holds that
αω(G) = αω(G

′)−ωG′(v). All MWIS(G′) contain either {v}, {y} or {x, y}. The solution
set MWIS(G) I can be obtained from a MWIS(G′) I ′ by removing v, if it is present:
I = I ′ \ {v}.

The second variant of BACKWARD V-SHAPE MID is a combination of DOMINATION

EDGE DELETION (Reduction 20) and the first variant, allowing us to also apply the reduc-
tion to adjacent vertices x and y:

Backward Reduction 2 (Backward V-Shape Mid 2)
Required: A pair of adjacent vertices {x, y} ⊆ V , e(x, y) ∈ E with ω(x) > ω(y), such
that x dominates y (i.e., N [x] ⊇ N [y]).
First, remove the edge e(x, y) and update the weight of x with ωG′(x) ← ωG(x)− ωG(y).
Then, add a new vertex v with ωG′(v) > ωG′(x) and update the weight of y with ωG′(y) =
ωG(y) +ωG′(v). Add the edges e(v, x) and e(v, y). For each u ∈ NG(x)∩N(y) \ {v}, the
edge e(u, x) is optional and can be removed. Then it holds that αω(G) = αω(G

′)−ωG′(v).
From an MWIS(G′) I ′ we obtain MWIS(G) I as follows: If {x, y} ⊂ I ′, then I =
I ′ \ {y}, otherwise I = I ′ \ {v}.

23

4 Cyclic Reduction Algorithm

Backward Four-Cycle

v1

5
v4

8

(a) G (before BACKWARD
4-CYCLE)

v1

5 + 11− 3 = 13

v4

8

v2

11
v3

3

(b) G′ (after BACKWARD 4-CYCLE)

Figure 4.5: (a) the graph G contains two adjacent vertices v1 and v4. They are in no particular
relation to each other regarding their weight; (b) the two vertices v2 and v3 have been
added, and the weight of v1 has increased appropriately. The weights of v1, v2 and v3
are sorted ω(v1) > ω(v2) > ω(v3). The four vertices now form a cycle.

4.4.3 Backward Rules Based on Alternative Sets

Backward Reduction 3 (Backward V-Shape Max)
Required: A vertex v∗ ∈ V .
Obtain G′ by modifying G as follows: Remove v∗ from G and add three new vertices v, x,
y. Select ωG′(x) and ωG′(y) with the restriction that min{ωG′(x), ωG′(y)} > ωG(v

∗) and
set ωG′(v) ← ωG′(x) + ωG′(y) − ωG′(v∗). Add the edges e(v, x) and e(v, y). For each
u ∈ NG(v

∗), add at least one edge out of e(u, x) and e(u, y).
Then it holds that αω(G) = αω(G

′) − ωG′(v). An MWIS(G′) I ′ contains either v or
both {x, y}. We obtain an MWIS(G) I as follows: If I ′ contains v, then I = I ′ \ {v},
otherwise I = (I ′ \ {x, y}) ∪ {v∗}.

4.4.4 Expansion of a Single Edge

The following three backward reduction rules modify an edge e ∈ E, inflating it into a
bigger structure.

Expansion of an Edge to a 4-Cycle. For an edge e(v1, v4), the BACKWARD 4-
CYCLE reduction preserves ω(v4) while increasing ω(v1).

Backward Reduction 4 (Backward 4-Cycle)
Required: An edge e(v1, v4) ∈ E with ωG(v1) ≥ 2.
Add two new vertices v2 and v3 and select the weight of v3 such that ωG′(v3) < ωG(v1),
then select the weight of v2 such that ωG′(v2) > ωG′(v3). Increase ω(v1) with ωG′(v1) ←

24

4.4 Backward Reduction Rules

ωG(v1) + ωG′(v2) − ωG′(v3). Lastly, add the three edges e(v1, v2), e(v2, v3) and e(v3, v4).
Then it holds that αω(G) = αω(G

′)− ωG′(v2) and MWIS(G) = MWIS(G′) \ {v2, v3}.

Expansion of an Edge to a 3-Path. For an edge e(v1, v4), the BACKWARD 3-PATH

reduction also preserves ω(v4) while increasing ω(v1). Note that this backward reduction
is the worst performing out of the ones presented here. In Section 5.2.3, we explain our
process of eliminating rules that perform badly.

Backward Reduction 5 (Backward 3-Path)
Required: An edge e(v1, v4) ∈ E such that ωG(v1) > ωG(v4) + 1.
Add two new vertices v2 and v3, and select ωG′(v3) such that ωG′(v4) < ωG′(v3) < ωG(v1),
then select ωG′(v2) such that ωG′(v3) < ωG′(v2). Update ωG′(v1) ← ωG(v1) + ωG′(v2) −
ωG′(v3), which increases the weight of v1 by at least one. Now it holds that ωG′(v4) <
ωG′(v3) < ωG′(v2) < ωG′(v1). Remove e(v1, v4) and add the edges e(v1, v2), e(v2, v3) and
e(v3, v4). Then it holds that αω(G) = αω(G

′) − ωG′(v2) and MWIS(G) = MWIS(G′) \
{v2, v3}.

Backward Reduction 6 (Backward 4-Path)
Required: A 2-path (v1, v3, v5) ∈ V 3 with d(v3) = 2, e(v1, v5) /∈ E and ω(v3) <
min{ω(v1), ω(v5)}.
Add two new vertices v2 and v4 to G′. Select ωG′(v2) and ωG′(v4) such that
min{ωG′(v2), ωG′(v4)} > ω(v3). Update ωG′(v1) ← ωG(v1) + ωG′(v2) − ω(v3) and
ωG′(v5) ← ωG(v5) + ωG′(v4) − ω(v3). Remove the edges e(v1, v3) and e(v3, v5) and add
the new edges e(v1, v2), e(v2, v3), e(v3, v4) and e(v4, v5).

Now it holds that αω(G) = αω(G
′) − ωG′(v2) − ωG′(v4) + ω(v3). From a solution

set MWIS(G′), we obtain the solution MWIS(G) as follows: If neither v1 nor v5 is in
MWIS(G′), then MWIS(G) = (MWIS(G′) \ {v2, v4}) ∪ {v3}. Otherwise, MWIS(G) =
MWIS(G′) \ {v2, v3, v4}.

Backward Reduction 7 (Backward 5-Cycle)
Required: A 2-path (v1, v5, v4) ∈ V 3 with d(v5) = 2, e(v1, v4) /∈ E.
Add the two new vertices v2 and v3 and select their weights freely. Add the edges e(v1, v2),
e(v2, v3) and e(v3, v4). Update the weights with ωG′(v1) ← ωG(v1) + ωG′(v2), ωG′(v4) ←
ωG(v4) + ωG′(v3) and ωG′(v5) ← ωG(v5) + min{ωG′(v2), ωG′(v3)}. Then it holds that
αω(G) = αω(G

′)− ωG′(v2)− ωG′(v3) and MWIS(G) = MWIS(G′) \ {v2, v3}.

4.4.5 Backward Reductions Introducing Removable Vertices

The following two backward reductions, which are similar, each introduce a single remov-
able vertex. The advantage of adding removable vertices stems from the fact that we can
generate arbitrary new edges from the new removable vertex to any other vertex, which
may change how and in which order other reduction rules get applied.

25

4 Cyclic Reduction Algorithm

Backward Domination

v
12

A B

(a) G (before BACK-
WARD DOMINA-
TION)

v
12

x
8

A B

(b) G′ (after BACKWARD
DOMINATION)

Figure 4.6: (a) The graph G contains some vertex v; (b) The graph G′ now additionally contains
the removable vertex x. We guarantee that N [x] ⊇ N [v], but x additionally receives
edges to vertices b ∈ B.

Backward Reduction 8 (Backward Domination)
Required: A vertex v ∈ V with ω(v) ≥ 2.
Add a new vertex x with ωG′(x) < ω(v). Add an edge between x and each vertex y ∈ N [v].
Optionally add arbitrary edges from x to any other vertices.

The new vertex x now dominates v and is removable. Thus, it holds that αω(G) =
αω(G

′) and MWIS(G) = MWIS(G′).

The following backward reduction is similar, but may connect x with fewer neighbors
of v. The key to ensuring that x is removable is making sure that for an independent set S
containing x and all the non-neighbors of x in N(v) (i.e., S = {x} ∪ (NG(v) \NG′(x))), it
still holds that ω(S) < ω(v).

Backward Reduction 9 (Backward Basic Single-Edge)
Required: A vertex v ∈ V with ω(v) ≥ 2.
Add a new vertex x with ωG′(x) < ω(v). Continue adding edges between x and vertices
y ∈ NG(v) until ω(NG(v)\NG′(x)) < ω(v)−ωG′(x), and add the edge e(v, x). Optionally
add edges between x and arbitrary other vertices.

The new vertex x is removable. Thus, it holds that αω(G) = αω(G
′) and MWIS(G) =

MWIS(G′).

Backward Triangle Reductions. The forward reduction TRIANGLE is a special case
of ISOLATED WEIGHT TRANSFER (Reduction 15) for cliques of size 3.

The following reduction, BACKWARD TRIANGLE MID, can be seen as reversing one
such triangle case. The structure we create contains a triangle with a new isolated vertex
v, where the weight of the isolated vertex v is inbetween the weight of its newly created
neighbor x and its pre-existing neighbor y (i.e., ω(x) < ω(v) < ω(y)). This reduction

26

4.4 Backward Reduction Rules

combines aspects of different other expansion rules, as it both increases the weight of the
old vertex y, while also adding a removable vertex x with arbitrary edges.

Backward Reduction 10 (Backward Triangle Mid)
Required: Any vertex y ∈ V .
Add two vertices v and x and add the edges e(v, x), e(v, y) and e(x, y). Select the weights
of v and x so that ωG′(x) < ωG′(v) and increase the weight of y: ωG′(y)← ωG(y)+ωG′(v).
While v stays a degree-2 vertex, optionally add edges between x and other vertices in G′.
Then αω(G) = αω(G

′)− ωG′(v) and MWIS(G) = MWIS(G′) \ {v}.

4.4.6 Adding Simplicial Vertices

The following three backward reduction rules each add a single simplicial vertex v to the
graph. The simplicial vertex is linked to a single vertex (Backward Reduction 11), to an
edge (Backward Reduction 12) or to some maximal clique (Backward Reduction 13) as
its only edges. In all cases, the weight of all vertices that are now adjacent to the new
simplicial vertex v have their weight increased by ωG′(v).

Single Vertex Weight Increase.

Backward Reduction 11 (Backward Degree-1 Fold)
Required: A vertex x ∈ V .
Generate a new vertex v with any weight and add the edge e(v, x). Update ωG′(x) ←
ωG(x) + ωG′(v). It holds that αω(G) = αω(G

′)− ωG′(v) and MWIS(G) = MWIS(G′) \
{v}.

Adjacent Vertices Weight Increase. The following reduction results in a weight in-
crease in both endpoints of an edge, which are extended by a new vertex to form a triangle.

Backward Reduction 12 (Backward Triangle Min)
Required: An edge e(x, y) ∈ E.
Add a new vertex v and the edges e(v, x) and e(v, y). Select some weight for v without
restrictions and increase the weights of x and y by ωG′(v). Then αω(G) = αω(G

′)−ωG′(v)
and MWIS(G) = MWIS(G′) \ {v}.

Maximal Clique Weight Increase. For this reduction, we first select a starting vertex
x∗ and then perform a greedy search to find a maximal clique in N [x∗].

Backward Reduction 13 (Backward Simplicial Weight Transfer)
Let X ⊂ V be some maximal clique in V . Add a new vertex v and assign an unconstrained
weight wG′(v) to it. For each x ∈ X , add the edge e(v, x) and increase the weight of x by
ωG′(v). It holds that αω(G) = αω(G

′)− ωG′(v) and MWIS(G) = MWIS(G′) \ {v}.

27

4 Cyclic Reduction Algorithm

4.4.7 Translation between Solutions

After solving the MWIS problem on a modified graph G′ and obtaining MWIS(G′) I ′, we
need to translate I ′ into a solution set for the original graph G, i.e., a MWIS(G) I. In
general, we formulate the backward reduction rules in such a way that it is simple to obtain
the actual solution I from the solution to the inflated graph I ′.

Strict Weight Relationships. For an example of how this is achieved, consider our
definition of BACKWARD 3-PATH: Whereas the forward reduction 3-PATH (Reduction 11)
only requires ωG(v4) ≤ ωG(v3) ≤ ωG(v2) ≤ ωG(v1), we ensure that the backward reduc-
tion results in the stricter weight relationships ωG′(v4) < ωG′(v3) < ωG′(v2) < ωG′(v1).

The reason for this is as follows: Let I ′ be a MWIS(G′) and let S∗ = I ′∩{v1, v2, v3, v4}.
Because none of the weights of {v1, v2, v3, v4} are equal, we can deduce some information
about the rest of I ′ from just S∗. For example, if v2 ∈ S∗, then we know that at least one
other neighbor of v1 must also be in I ′. If this were not the case, (I ′ \ {v2}) ∪ {v1} would
be a heavier independent set in G′ than I ′, which would be a contradiction.

This knowledge is useful, because it makes it easier to translate I ′, which might contain
v2, into a solution MWIS(G) for the original graph G, where a vertex v2 does not exist in
the vertex set VG: The vertices v2 and v3, if they are contained in I ′, can simply be deleted
to obtain I.

It would theoretically be possible to define a backward reduction rule to 3-PATH in such
a way to allow equal weights for {v1, v2, v3, v4}. It should still be possible to find an equiva-
lent solution, since the forward rule 3-PATH can apply to such cases. However, deductions
such as in the previous example would no longer be possible, and the process of recon-
structing the solution MWIS(G) from an MWIS(G′) would be significantly complicated.

In general, we define all our backward rules in such a way that the weight of newly gen-
erated vertices v does not equal the weight of a pre-existing vertex among their neighbors
u ∈ NG′(v). This avoids any issues with the translation between solution sets.

4.5 Decreasing Phase

Exhaustive Application. When making use of a reduction rule to decrease the size of
a graph, we typically iterate over every v ∈ V and check if the rule is applicable to v and
its neighborhood.

An exception to this is the CWIS reduction, which is the only global reduction in our
selection. If we have checked the entire graph and no change has been made, then we know
that this reduction cannot apply to the graph in its current state. The reduction becomes
disabled and will not be checked again until the graph has changed, either through a dif-
ferent forward reduction rule, or after a blowup-phase of the cyclic algorithm. When all of
the forward reduction rules have been disabled for this reason, the resulting kernel of the
graph is called exhaustively reduced with respect to our set of forward reduction rules.

28

4.5 Decreasing Phase

Randomized Rule Order. In other works dealing with graph reduction rules, the rules
are typically applied in a predefined order. To minimize running time or resulting kernel
size, simple and effective rules are applied first [20][8].

In our algorithm, however, we instead opt for a partially randomized application of re-
duction rules. If a predefined order was used, it would potentially undermine some of
the backward reduction rules. For example, if every reducing phase were to always begin
with the NEIGHBORHOOD REMOVAL reduction, then this might negatively influence the
effectiveness of a BACKWARD NEIGHBORHOOD REMOVAL rule in the increasing phase.

Therefore, every time a new rule needs to be selected, it is picked uniformly at random
from a set of reduction rules which are not currently disabled.

There is, however, an exception to this: The most expensive reductions, those being
CRITICAL WEIGHTED INDEPENDENT SET, DECREASING EXTENDED STRUCTION and
DECREASING EXTENDED REDUCED STRUCTION, are only applied after the other for-
ward rules have been exhausted, and are checked in this order. Preliminary experiments
have shown that treating this group of expensive reductions separately reduces the running
time of each decreasing phase.

Effectively, this splits the decreasing phase into two sub-phases: First a set of simpler
reduction rules gets applied in a randomized sequence, then a second set of more computa-
tionally expensive reduction rules gets applied in a fixed order. If the graph changes during
the second sub-phase, the first sub-phase is restarted.

Combination of Rules. To minimize the running time of the decreasing phase, we
decided to bundle some reduction rules together. When checking if a reduction rule is
applicable and iterating over the vertices, the conditions for multiple reduction rules are
tested in sequence. This allows us to avoid many duplicate checks for certain conditions.

The DECREASING LOW-DEGREE Rule combines the rules NEIGHBORHOOD RE-
MOVAL, DEGREE-1 FOLD and TRIANGLE.

The COMPLICATED DEGREE-2 Rule combines V-SHAPE MAX, 3-PATH, 4-CYCLE, 4-
PATH and 5-CYCLE rules. These all involve degree-2 vertices and have significant overlap
between their conditions.

Another time-save can be found in the combination of TWO-VERTEX + TWIN. Both
reductions operate on 2-hop neighbors, which are pairs of vertices v and x ∈ V , v ̸= x
such that e(v, x) /∈ E, but v and x share at least one common neighbor. These reductions
are combined, because the condition for the TWIN rule can also be checked for free as part
of the calculations for the TWO-VERTEX reduction.

Decreasing Process. As long as at least one reduction rule is eligible, we follow the
following process: We select the next reduction rule to apply. If at least one of them is
eligible, we randomly pick an eligible rule from the first set of simpler reduction rules.
This set consists of:

• DECREASING LOW-DEGREE

29

4 Cyclic Reduction Algorithm

• COMPLICATED DEGREE-2

• TWO-VERTEX + TWIN

• OPTIONAL EDGE DELETION

• ISOLATED WEIGHT TRANSFER

• DECREASING LOW-DEGREE

• BASIC SINGLE-EDGE

• EXTENDED SINGLE-EDGE

• UNCONFINED

If none of these is eligible, we pick the first eligible reduction rule in the following list:

• CRITICAL WEIGHTED INDEPENDENT SET

• NON-INCREASING EXTENDED STRUCTION

• NON-INCREASING EXTENDED REDUCED STRUCTION

Whenever a rule is selected, we search the entire graph and apply it to every location
where it can be applied. When it cannot be applied to a graph at all, it becomes temporarily
ineligible for selection. Whenever a reduction is applied and the graph has changed, all
reduction rules become eligible again. When no reduction rule is eligible anymore, this
implies that none can be applied. We consider the graph an exhaustively reduced kernel
and end the decreasing phase.

4.6 Increasing Phase

Termination. Every increasing phase starts with at least one vertex present in the graph
and ends when the size n of the graph G reaches a specified target size ntarget. In most
cases, this is the only termination condition that is needed, since the graph size never de-
creases in this phase, and many rules which increase the graph size, like for example the
BACKWARD DEGREE-1 FOLD rule, can always be applied. As an alternative condition, we
end the increasing phase when we were unable to apply a backward rule 50 times during
one increasing phase. This allows us to run variants of the algorithm with a limited set of
backward reduction rules, which can only be applied in certain conditions.

Set of Rules in the Increasing Phase. The set of available backward reduction rules
consists of nondecreasing variants of the two STRUCTION reduction rules, which had their
definitions given in Section 4.2, and the 15 backward reduction rules which we introduced
in Section 4.4. They are:

• NON-DECREASING EXTENDED STRUCTION

30

4.7 The Complete Algorithm

• NON-DECREASING EXTENDED REDUCED STRUCTION

• BACKWARD V-SHAPE MID 1 & 2

• BACKWARD 3-PATH

• BACKWARD 4-PATH

• BACKWARD 4-CYCLE

• BACKWARD 5-CYCLE

• BACKWARD DEGREE-1 FOLD

• BACKWARD V-SHAPE MAX

• BACKWARD TRIANGLE MID

• BACKWARD SIMPLICIAL WEIGHT TRANSFER

• BACKWARD TRIANGLE MIN

• BACKWARD DOMINATION

• BACKWARD BASIC SINGLE-EDGE

Rule Application Step. An individual step in the increasing phase involves choosing
a reduction rule uniformly at random out of the set of available rules.

After selecting a rule, we search for a suitable part of the graph to apply this rule to,
according to the configuration of the individual backward rule. If such a part cannot be
found with a reduction-specific search, a different rule is selected. When a suitable region
to modify with the selected rule has been found, then the rule is applied just once, which
concludes the step.

This is different from how we apply forward reduction rules in the increasing phase,
where after we choose a forward reduction rule, we iterate over all vertices and apply this
rule wherever it is possible to apply. This is because most backward reduction rules have
low requirements, and could even be applied to the same region indefinitely. Therefore,
changing the backward reduction rule after each individual rule application allows us to
explore a greater variety of expanded graphs.

4.7 The Complete Algorithm

Putting all the elements presented in this chapter together, we obtain our final cyclic itera-
tion routine.

We start by reading the original graph Go from a file, and verifying that it is a simple
undirected graph without self-loops. Optionally, randomized weights can be assigned in
this step, although our experiments all use pre-assigned weights.

We proceed by following the steps of the decreasing phase for the initial reduction, and
store the obtained kernel K as the currently best found solution K∗. Afterwards, the cyclic
iteration begins: We fix a target size of the vertex set ntarget ← n+a, where a is a parameter

31

4 Cyclic Reduction Algorithm

Figure 4.7: Outline of the phase transitions in our algorithm

that controls the amount to which the graph gets expanded. Then we apply the increasing
phase and then the decreasing phase as previously described. If the resulting kernel K ′ now
contains fewer vertices than the previously found smallest kernel K∗, then we store the new
kernel: K∗ ← K ′. In any case, the increasing phase of the next cycle starts with a copy
of K∗. This means that if after the decreasing phase of a cycle, the resulting kernel is not
smaller than the previous best (i.e., smallest) kernel, then it is discarded and the recursion
continues starting with K∗ another time.

When the time limit is met, the algorithm terminates and the current best solution K∗

is returned. Additionally, a solution translation file is written, which can be used to obtain
a solution for the original graph MWIS(Go) from a solution to the kernel MWIS(K∗).
If at any point during a decreasing phase, n becomes zero, then the algorithm terminates
immediately, and the solution translation file will contain the solution directly.

32

4.7 The Complete Algorithm

Figure 4.8: An example of applying our cyclic algorithm on the fe_rotor-uniform instance,
showing the progress of n over 110 cycles in 1500 seconds. Because of the scale of n,
the initial reduction from 99 617 to 87 430 vertices before the first increasing phase is
not displayed here.

33

4 Cyclic Reduction Algorithm

34

CHAPTER 5
Experimental Evaluation

5.1 Computing Environment

All experiments were performed on a machine equipped with a Intel Xeon Silver 4216
processor with 16 cores running at 2.10Ghz and 100 GB of RAM. It runs Ubuntu 20.04.2
with Linux kernel version 5.4.0-152-generic.

We are using GNU Parallel [19] to compute multiple instances in parallel. For instances
where there is not enough RAM available to compute them in parallel with others, they are
computed sequentially afterwards.

Compilation. All algorithms were compiled using GCC 9.4.0 at optimization level –O3.
The C++ standard used for our cyclic algorithm was C++20, for all other algorithms used
in the evaluation the C++11 standard is used.

5.2 Parameter Tuning

5.2.1 Preparing the Tuning Dataset

To adjust the parameters, we needed to get results from our algorithm on a variety of graphs,
forming our tuning dataset. To avoid overtuning affecting our evaluation, we chose to not
include any of the graphs that are later used in evaluating the algorithm’s performance (see
Section 5.3).

Instead, we chose a separate dataset from the 10th DIMACS Implementation Chal-
lenge [1]. Initially, we considered 56 graphs from this collection. Since they are un-
weighted, we assigned new weights to the vertices of each graph in one of the following
ways: Random weights from a discrete uniform distribution in the intervals between [1, 50]

35

5 Experimental Evaluation

and [1, 1000], and random weights from a binomial distribution1 with success probability
0.5 and sample sizes 25 and 500.

The resulting graphs with generated weights were then filtered down to the much smaller
final training dataset. We decided on a time limit of 1000 seconds for each parameter tuning
experiment, and therefore chose to exclude any instances which were either too simple (i.e.,
fully solvable in less than 1000 seconds) or too complex (i.e., either allowing for less than
50 cycles of our algorithm within the allotted time, or not being reactive to any of the
used forward reduction rules) given the time limit. Most of the prepared instances were
discarded here, as a majority was immediately solvable without making use of the cyclic
algorithm, and several others completed less than 10 cycles of our cyclic algorithm within
the time limit, or did not decrease in size through any of the forward reductions.

The final tuning dataset contains examples of graphs with randomly generated points
(delaunay and rgg), two road network graphs (osm), a circuit simulation graph
(G3_circuit)[3], an internet connectivity graph (caidaRouterLevel) and a numer-
ical simulation graph (NACA0015). In total, the final tuning dataset contains 20 instances.

Table B.1 lists information about the 20 selected instances and their method of weight
generation.

5.2.2 Backward Rule Tuning

Keeping Optional Edges in Backward V-Shape Mid. In both versions of our
BACKWARD V-SHAPE MID reductions (Reductions 1 and 2), any edge between x and
a vertex u ∈ NG′(x) ∩NG′(y) \ {v} is redundant and can optionally be removed.

We implemented a probability parameter p for both BACKWARD V-SHAPE MID reduc-
tions which controls how often we remove this optional edge. Every time one of the two
backward reductions is applied, for each optional edge e = e(x, u), we choose indepen-
dently with probability p if the edge e should be kept.

We performed experiments to determine a good value for this parameter p, the results of
which can be seen in Figure 5.1.

Intuitively, one might assume that fewer edges (and therefore a more sparse problem
instance) would always be better. Perhaps surprisingly, removing optional edges in 100 %
of cases turned out to be the worst option out of the ones we tested, even worse than never
removing optional edges. The average size of the reduced graphs was smallest when p was
set to 0.4.

Struction Maximum Increase. The decreasing phase makes use of the INCREASING

variants of the EXTENDED STRUCTION and EXTENDED REDUCED STRUCTION reduc-
tions. For both, we need to restrict the number of vertices that we allow n to increase by in

1Since a binomial distribution can return a result of 0 and we only allow weights greater than 0, we changed
any randomly generated 0-weight to 1.

36

5.2 Parameter Tuning

Figure 5.1: Plot showing the average size of remaining kernels of tuning dataset instances when
running our algorithm for 1000 seconds for different probabilities p to keep an optional
edge in BACKWARD V-SHAPE MID 1 and BACKWARD V-SHAPE MID 2.

a single modification. Our experiments indicate that we achieve the best results when we
only allow small increases.

As can be seen in Table 5.1, the best limit for the increase in number of vertices is
4 for INCREASING EXTENDED STRUCTION. For INCREASING EXTENDED REDUCED

STRUCTION, allowing an increase of up to just 1 is the most effective setting.

Increasing Phase: Target Size. After preliminary experimentation with a target size
determined by multiplication with a factor, we instead decided to set the target size ntarget of
the increasing phase of our algorithm with an absolute offset value a (i.e., ntarget = n+ a).
In other words, the increasing phase ends when the size of the graph is at least a greater
than at the start of the increasing phase.

As can be seen in Table 5.2, the average size of the remaining kernels has been the
smallest when we increase by a = 85 vertices, in experiments using our tuning dataset.

5.2.3 Rejecting Underperforming Backward Reduction Rules

Following our parameter tuning efforts for improving the effectiveness of individual ex-
pansion rules, we now compare their effectiveness against each other.

Not all of the 15 expansion rules are ultimately advantageous to have in the algorithm. In
early experiments, it became clear that the algorithm performs better when some backward
reduction rules are disabled.

37

5 Experimental Evaluation

Struction Maximum Increase Comparison
nG′ − nG range mean |K|/|KBaseline|

EXTENDED STRUCTION

[0, 1] 100.0 % (Baseline)
[0, 2] 98.93%
[0, 3] 98.72 %
[0, 4] 98.52 %
[0, 5] 99.46 %
[0, 6] 100.39 %

EXTENDED REDUCED STRUCTION

[0, 0] 100.96 %
[0, 1] 100.0 % (Baseline)
[0, 2] 100.74 %
[0, 3] 102.39 %
[0, 4] 104.16 %
[0, 5] 106.32 %

Table 5.1: Arithmetic mean of the remaining number of vertices in a graph after running the algo-
rithm for 1000 seconds, with a permitted increase in number of vertices in the respective
range. A lower percentage value means the setting is better.

Increasing Phase: Target Increase of n
n target increase mean |K|/|KBaseline|
a = 50 100.0 % (Baseline)
a = 60 99.46 %
a = 65 99.50 %
a = 70 99.17 %
a = 75 98.33 %
a = 80 98.33 %
a = 85 97.04 %
a = 90 97.79 %
a = 100 97.85 %

Table 5.2: Arithmetic mean of the remaining graph size after running the algorithm for 1000 sec-
onds, with the increasing phase increasing the graph size n by at least a vertices.

To measure the impact of individual expansion rules, we test 15 versions of our algo-
rithm, each disabling a single expansion rule, as well as a 16th baseline version with all
rules enabled. The results from this experiment are given in Table 5.3. As can be seen
towards the bottom of the table, there are several expansion rules where the algorithm per-
forms better when the respective rule is omitted from the algorithm. From this, we learn
which rules are expendable.

38

5.3 Comparison with State-of-the-Art Solvers

Exclusion of a Single Expansion Rule
Omitted Expansion Rule Avg. remaining size
Nondecreasing Extended Struction 105.33 %
Nondecreasing Extended Reduced Struction 100.95 %
Backward V-Shape Mid 1 100.54 %
Backward V-Shape Mid 2 100.51 %
Backward Degree-1 Fold 100.23 %
Backward 4-Cycle 100.12 %
Backward Domination 100.06 %
Backward Triangle Min 99.99 %
Backward Simplicial Weight Transfer 99.97 %
Backward Triangle Mid 99.94 %
Backward 5-Cycle 99.82 %
Backward 4-Path 99.55 %
Backward V-Shape Max 99.54 %
Backward Basic Single-Edge 98.88 %
Backward 3-Path 98.5 %
Baseline (none omitted) 100.0 %

Table 5.3: Comparison of variants which disable individual expansion rules. The performance of
each variant, measured in the arithmetic mean size of the remaining kernels, is com-
pared to the baseline, which has all 15 rules enabled. The experiment was repeated with
five different seeds. A lower reported value means an expansion rule is worse, as it
means the algorithm performs better without this rule.

5.3 Comparison with State-of-the-Art Solvers

Finally, after completing our tuning experiments and adjusting the algorithm accordingly
by setting parameters and excluding underperforming expansion rules, we apply our fi-
nalized algorithm to the evaluation dataset of 207 MWIS problem instances. We try to
determine if our algorithm successfully makes instances easier to solve by examining the
result of state-of-the-art solvers on unprocessed and pre-processed instances.

Evaluation Dataset. For our evaluation dataset, we use the same instances used by
Gellner et al. [7] and Großmann et al. [8]. The set, 207 instances in total, contains graphs
in multiple different categories.

The graphs stem from five different sources: 34 instances are social networks from the
Stanford Large Network Dataset Repository (SNAP) [14], 148 instances are real-world
conflict graphs derived from OpenStreetMap (OSM) [16], 6 instances with weights related
to population data are taken from the SuiteSparse Matrix Collection (SSMC) [4], 14 in-
stances are dual graphs of triangle meshes (MESH) [17] and finally, 5 instances are 3D
meshes that were derived from simulations using the finite element method (FE) [18].

39

5 Experimental Evaluation

Figure 5.2: Plot depicting the average remaining graph size after applying our algorithm using the
first k rules, using the order shown in Table 5.3. An alternative presentation of the data
is given in Table 5.4.

Using only the first k Expansion Rules
Selected rules Avg. rem. n Rank
Only Nondecr. Ext. Struction 97.13 % 11
First 2 (+ N. Ext. Redu. Struction) 96.88 % 9
First 3 (+ B. V-Shape Mid 1) 96.0 % 6
First 4 (+ B. V-Shape Mid 2) 93.56 % 2
First 5 (+ B. Degree-1 Fold) 93.29 % 1
First 6 (+ B. 4-Cycle) 94.99 % 3
First 7 (+ B. Domination) 95.41 % 4
First 8 (+ B. Triangle Min) 95.93 % 5
First 9 (+ B. Simpl. Weight Transf.) 96.54 % 7
First 10 (+ B. Triangle Mid) 97.2 % 12
First 11 (+ B. 5-Cycle) 97.09 % 10
First 12 (+ B. 4-Path) 96.71 % 8
First 13 (+ B. V-Shape Max) 97.62 % 13
First 14 (+ B. Basic Single-Edge) 98.32 % 14
All 15 (+ B. 3-Path) 100.0 % 15

Table 5.4: Using the order of expansion rules from Table 5.3, these are the results after applying a
version of our algorithm using the first k expansion rules to the parameter tuning dataset
for 1000 seconds. The percentage given is the average size of the remaining kernel after
termination of the algorithm, compared to the worst performing variant which uses all
15 expansion rules. A lower value means this set of expansion rules is better.

40

5.3 Comparison with State-of-the-Art Solvers

Some details about the instances included in this dataset can be found in Appendix C.

Comparison Setup. To evaluate its performance, we treat our algorithm as a pre-
processing step of an instance G before attempting to solve the returned reduced graph
instance G′ with one of several state-of-the-art MWIS solvers. We report the weight αω(G)
of an optimal solution MWIS(G), if found, or otherwise the weight of the heaviest inde-
pendent set in G that can be found within the time limit.

As the time limit for computing a solution on each instance, we set 4 500 seconds (75
minutes). To be able to compare our work with a state-of-the-art solver, we first apply this
solver to the original instance G with the full 4 500 seconds as the time limit.

For the pre-processing step, we execute our algorithm on the original instance G with
a time limit of 1 500 seconds. Unless an optimal solution is found, this step does not end
early. Then, we also apply the solver to the resulting reduced instance G′ with its time limit
set to the remaining time (⪅ 3 000 seconds).

Examining the results from these different applications of the solver, we can evaluate if
it is worthwhile to spend part of the time budget on our pre-processing algorithm.

Two Configurations. As described in Section 5.2.3, we found that using a small subset
of only 5 expansion rules, three of which are our own contribution, produced the best results
on the smaller parameter tuning dataset. While we expect this configuration to perform the
best on the evaluation dataset as well, we do not want to fully reject all other presented
backward rules yet. Therefore, we additionally compare against a configuration using three
more expansion rules in this evaluation. The two configurations are denoted as the #R5
and the #R8 configurations, respectively, for their number of expansion rules.

In the increasing phase of our algorithm in the #R5 configuration, the expansion rules
NONDECREASING EXTENDED STRUCTION, NONDECREASING EXTENDED REDUCED

STRUCTION, BACKWARD V-SHAPE MID 1, BACKWARD V-SHAPE MID 2 and BACK-
WARD DEGREE-1 FOLD are used.

In the #R8 configuration, we make use of the BACKWARD 4-CYCLE, BACKWARD

DOMINATION and BACKWARD TRIANGLE MIN expansion rules in addition to the five
used in the #R5 configuration. These are the three next best performing backward rules
according to our previous experiments (cf. Table 5.3).

5.3.1 Intermediary Results after Pre-Processing

Our algorithm is restricted to only perform data reductions, and does not include a branch-
and-bound component. Therefore, when an instance is solved by our pre-processing algo-
rithm, that means the number of vertices in the kernel became zero exclusively through the
application of reduction rules (of both directions).

41

5 Experimental Evaluation

Simple Instances. Out of the 207 instances in the evaluation dataset, 178 could be
fully solved within the allotted 1 500 seconds by our pre-processing algorithm alone. Out
of those, 141 were simple enough that they could already be solved in the initial decreas-
ing phase of our algorithm, i.e., they did not require any cycles of our cyclic algorithm.
Since the #R5 and #R8 configurations only differ in the increasing phase of our cyclic
algorithm, these 141 instances are not meaningful when comparing the two configurations.

Solved by Cyclic Iteration. For the 34 instances which were solved during pre-
processing, but not already during the initial decreasing phase (and instead after multiple
cycles of our cyclic algorithm), we can compare the two configurations: The mean time
taken to solve these instances was 79.9 seconds for #R5 and 83.3 seconds for #R8, mean-
ing the configuration with fewer expansion rules calculated the optimal solution slightly
faster. The solution was found after a mean number of cycles of only 317 in the #R5
configuration, whereas the #R8 configuration required an average of 408 cycles to arrive
at the same solution. This indicates that adding more expansion rules beyond the best five
hinders the chance of improvement in each individual cycle slightly.

Complex Instances. Conversely, there are 29 instances which were not solved during
pre-processing. Five of these are so complex that the initial decreasing phase consumed all
of the allotted 1 500 seconds, and no increasing phase was performed. These five are
osm_district-of-columbia-AM3, osm_hawaii-AM3,
osm_kentucky-AM3, osm_rhode-island-AM3 and
snap_soc-pokec-relationships-uniform. Again, comparison between the
two configurations #R5 and #R8 is not meaningful on these five instances.

Unsolved after Cyclic Iteration. The 29 instances that were not solved by our pre-
processing are 2 out of 5 fe instances, 22 out of 148 osm instances, 4 out of 34 snap
instances, 1 out of 6 ssmc instances and none of the 14 mesh instances.

Using the #R5 configuration, the arithmetic mean size of remaining kernels was 36 123,
whereas with the #R8 configuration, there were 4 % more vertices remaining with a mean
of 37 553 vertices.

5.3.2 Experiments Using Pre-Processed Instances

In the following experiments, several state-of-the-art solvers for the MWIS problem were
used to find solutions for the remaining kernels after pre-processing.

If spending some time on our pre-processing routine makes it possible to subsequently
find a better solution on the kernel in the remaining time, compared to the solution obtained
from spending the entire time budget on only using the solver, then this demonstrates some
effectiveness of our algorithm.

42

5.3 Comparison with State-of-the-Art Solvers

Comparison with KaMIS Branch-and-Reduce

First, we perform a comparison using the weighted_branch_reduce routine from
the KaMIS project [13].

Table 5.5 shows the results of this experiment. The left section contains results from
using the branch-and-reduce solver alone with a time limit of 4500 seconds; in the center
and right sections, the instance was pre-processed using #R5 or #R8 respectively for
1 500 seconds first. Only instances where the best calculated weight differs between the
three different strategies are displayed. Rows where the best found weight is optimal have
a gray background.

Naturally, the majority of calculated independent set weights are optimal in all cate-
gories. The KaMIS branch-and-reduce routine on its own manages to fully solve 176 of
the 207 instances in 4 500 seconds. By combining the solver with our algorithm, this num-
ber is boosted to 187 instances.

Our pre-processing is particularly effective in improving the final branch-and-reduce
result for the fe, snap and ssmc instances, as using our algorithm never results in a
worse result. With the osm instances, which tend to have a higher density of edges, the
result are more mixed. The worst result is for the osm_rhode-island-AM3 instance,
where the best found weight for an independent set after #R5 is 1 492 weight units less
than the result without pre-processing. However, note that this is one of the five instances
where our algorithm could not perform even one full cycle of its routine within the 1 500
second time limit.

On average, the independent set weight found when one of our pre-processing configu-
rations is applied is 4 000 and 3 920 weight units higher.

Comparison with HILS

Our next experimental comparison was performed with the HILS algorithm by Nogueira
et al. [15]. As can be seen in Table 5.6, HILS on its own only solves 150 of the instances
within the time limit, the lowest amount of instances solved among our experiments. How-
ever, we see great synergy when combining HILS with our pre-processing step, as we
not only calculate the weights faster compared to our KaMIS branch-and-reduce exper-
iment and to the runs of HILS alone, we also obtain on average higher weights. The
number of fully solved instances rises to 189 out of 207 for both configurations, and #R5
again performs slightly better than #R8. A combination with #R5 produced a higher
weight compared to HILS alone in 54 instances, whereas HILS alone, thanks to the higher
time limit, found a better weight for the instances fe_rotor, osm_hawaii-AM3 and
osm_rhode-island-AM3.

Comparison with m2wis

Our next experimental comparison is with m2wis, a memetic algorithm presented by Groß-
mann et al. in [8].

43

5 Experimental Evaluation

graph branch-and-reduce #R5 + branch&reduce #R8 + branch&reduce
fe t ω t ω t ω

body 4 500.01 1 628 014 4 049.76 1 680 071 1 500.04 1 680 182
pwt 4 500.05 1 131 723 4 499.29 1 166 800 4 500.02 1 166 187
rotor 4 500.63 2 493 138 4 498.82 2 503 886 4 500.98 2 507 775
sphere 4 500.01 598 942 79.76 617 816 22.52 617 816

osm t ω t ω t ω

alabama-3 4 500.01 185 707 4 499.03 185 729 4 500.39 185 700
dc-2 4 500.01 196 081 4 502.09 208 036 4 499.63 208 204
dc-3 4 501.56 204 656 4 571.04 206 882 4 556.63 206 908
greenland-3 4 500.02 13 804 4 528.91 13 827 4 526.24 13 773
hawaii-3 4 502.86 132 801 4 396.44 132 801 4 405.87 132 801
idaho-3 4 500.08 77 010 4 519.35 77 010 4 510.9 77 010
kansas-3 4 500.12 87 923 4 497.85 87 959 4 499.06 87 949
kentucky-3 4 505.42 100 311 4 009.04 100 310 4 152.21 100 310
massachusetts-3 4 502.24 145 652 4 499.61 145 855 4 500.54 145 754
north-carolina-3 4 500.01 49 563 4 502.18 49 720 4 500.58 49 492
oregon-3 4 501.34 174 966 4 528.02 174 842 4 513.05 174 312
rhode-island-3 4 500.1 196 062 4 881.92 194 570 4 764.98 195 187
vermont-3 4 502.36 62 687 4 497.68 62 685 4 506.31 62 687
virginia-3 4 501.15 308 242 4 497.08 307 421 4 499.95 308 215
washington-3 4 500.02 308 453 4 493.52 308 461 4 515.71 309 231

snap t ω t ω t ω

as-skitter-u. 4 500.6 124 146 100 4 498.11 124 154 165 4 501.39 124 154 165
loc-gowalla_e. 4 500.07 12 276 798 1 572.31 12 276 929 1 599.71 12 276 929
soc-LiveJ.1-u. 4 502.89 284 009 147 4 499.23 284 036 176 4 499.98 284 036 062
soc-pokec-r.-u. 4 775.08 82 769 044 4 634.27 82 824 299 4 504.27 82 803 152
web-BerkStan-u. 4 500.18 43 885 391 294.17 43 907 482 186.97 43 907 482
web-Stanford-u. 4 500.1 17 792 824 16.37 17 792 930 16.56 17 792 930

ssmc t ω t ω t ω

ca2010 4 500.23 16 571 662 4 499.96 16 869 550 4 499.97 16 869 550
fl2010 4 500.15 8 632 731 998.05 8 743 506 1 500.66 8 743 506
ga2010 4 500.08 4 639 769 37.72 4 644 417 30.77 4 644 417
il2010 4 500.14 5 846 040 526.58 5 998 539 415.54 5 998 539
nh2010 4 500.03 581 732 0.59 588 996 0.56 588 996
ri2010 4 500.01 445 978 3.32 459 275 0.95 459 275

overall branch-and-reduce #R5 + branch&reduce #R8 + branch&reduce
mean time 807.2 602.84 593.48
mean weight 7 389 985 7 393 985 7 393 905
optimal sol. 176/207 187/207 186/207

Table 5.5: Comparison with the branch-and-reduce routine of KaMIS. ω columns show the weight
of the heaviest found independent set, t gives the time in seconds.

44

5.3 Comparison with State-of-the-Art Solvers

Starting with this experiment, we unfortunately ran into a problem with our experimen-
tal setup, where certain instances with a large number of edges could not be computed
in memory, as our computing machine is only equipped with 100 GB of main mem-
ory. In the experiment with m2wis and its variant, m2wis + s, this only affected the
osm_kentucky-AM3 instance. Failed instances are listed in the tables, but rows where
one experiment failed are not counted for the arithmetic means reported at the bottom of
each table.

As can be seen in Table 5.7, m2wis alone outperforms the configurations using our al-
gorithm in terms of speed. However, the quality of solutions found within 4500 seconds
is again higher when using our pre-processing. Using the #R5 configuration, we find in-
dependent sets with, on average, 1412 more weight units compared to only using m2wis.
With #R8 we also see higher weight independent sets being found, but only by 537 units
in the arithmetic mean.

Comparison with CyclicFast

Another experiment we performed was for comparison with the CyclicFast algorithm, pre-
sented by Gellner et al. in [7]. This algorithm also makes use of cyclic reduction and ex-
pansion phases to shrink a graph, embedded in a branch-and-reduce framework. It makes
use of the EXTENDED STRUCTION reductions [7], which we also use in a similar way.

Unfortunately, for 14 of the 207 instances in the evaluation dataset, we were unable to
compute the results for this algorithm, making the comparison more difficult.

Still, as we can see in Table 5.8 in the results for the remaining 193 instances, CyclicFast
was vastly faster in computing its solutions with an arithmetic mean computation time of
just 4.45 seconds. This is compared to the mean of 146 and 151 seconds for the computa-
tion including our algorithm. This is largely because our algorithm never terminates before
its time limit of 1 500 seconds, unless the graph gets shrunk to zero vertices.

In these same 193 instances, the experiments using our pre-processing algorithm found
independent sets with, on average, 4 577 and 4 486 more weight units per graph for #R5
and #R8, respectively.

Comparison with Combination of m2wis and CyclicFast

Our last comparison is with the solver m2wis + s, an algorithm combining regular m2wis
with an initial reduction using CyclicFast [8].

This comparison shows the smallest difference in performance, as can be seen in Ta-
ble 5.9. With or without our pre-processing, the exact same set of instances get solved
optimally. Our pre-processing again raises the mean time to return a solution. In terms of
weight, we obtain a slightly higher arithmetic mean of 1 121 more units across all instances
with #R5, and almost no increase in average weight with just 51 more units when using
#R8.

45

5 Experimental Evaluation

5.3.3 Comparison Disabling our Contributions

The focus of our work was on developing the new backward reduction rules. To make use
of them, we included them in a cyclic reduction algorithm. Various design decisions were
made for this cyclic algorithm, including the selection of implemented forward reduction
rules and the randomized order of applying them. Our comparisons in the preceding sec-
tions indicate that our algorithm as a whole is worthwhile to apply as a preprocessing step
before other MWIS solvers.

In this section, we also want to demonstrate that the effectiveness of our algorithm stems
from the newly developed backward reduction rules, in particular the three included in
the #R5 configuration, and not just from other incidental decisions that were made in
the implementation of our algorithm. To this end, we compare the preprocessing perfor-
mance of our #R5 configuration to a version of our algorithm with our main contribu-
tions disabled. We call this configuration #R2, because it uses only the two expansion
rules NON-DECREASING EXTENDED STRUCTION and NONDECREASING EXTENDED

REDUCED STRUCTION in the increasing phase, which are previously known expansion
rules. Additionally, the OPTIONAL EDGE DELETION reductions in the decreasing phase
are disabled in #R2.

Using both configurations for preprocessing of the same 207 instances as before, again
using a time limit of 1 500 seconds, #R2 only manages to fully reduce 166 instances,
compared to the 183 of #R5. The arithmetic mean size of kernels obtained using #R2 is
4 891.9, compared to 4 831.1 using #R5.

Figure 5.3: The configuration not using new backward reduction rules initially manages to shrink
the graph quickly, finding a kernel with 1 435 vertices after 339 seconds, but is unable
to make another breakthrough afterwards. When also using the three best new back-
ward reduction rules, fully solving the graph in under 1 000 seconds is possible.

46

5.4 Discussion

We can see this demonstrated in Figure 5.3. The #R5 configuration initially finds im-
provements slightly slower compared to #R2, but #R5 has more options to expand the
graph which allow the algorithm to explore more reduction paths and ultimately, to fully
solve the instance.

5.4 Discussion

Comparison between Configurations. As seen in the previous sections, our #R5
configuration, using only the two NONDECREASING EXTENDED STRUCTION rules, the
two BACKWARD V-SHAPE MID rules, and BACKWARD DEGREE-1 FOLD outperformed
the #R8 configuration with three more expansion rules in every comparison, as higher
weight solutions could be found. At the same time, the time taken to compute these solu-
tions was similar in every case.

This confirms our findings from the experiments on the smaller parameter tuning dataset,
and indicates that only a small number of backward reduction rules are effective and effi-
cient on a level comparable to the previously known EXTENDED STRUCTION-based rules.

Improvements in Solution Quality. In our experimental evaluation, we found that
solution quality was rarely worse when time was spent on our pre-processing, specifi-
cally using the #R5 configuration. The cases where pre-processing using our algorithm is
clearly not worth it are mainly those where the graph instance is so complex that the pre-
processing algorithm cannot reach the cyclic phases beyond the initial reduction within the
allowed time limit. Overall, our algorithm was shown to lead to higher independent set
weights very consistently.

In fact, if we consider the arithmetic mean of the weight values computed across the
dataset, the variants using pre-processing by our #R5 algorithm resulted in the highest
solution quality in every single comparison.

Particularly Complex Instances and the Time Limit. As previously stated in Sec-
tion 5.3.1, our pre-processing algorithm was unable to complete a full cycle consisting of
an increasing and a decreasing phase after initial reduction, or was unable to complete the
initial reduction, in the case of five graph instances. It is possible that our algorithm would
have shown an effect if the time limit was long enough to reach the iterative phases, but
in our experiments, these instances generally showed the weakest results. For backward
rules to have an effect on these instances within a short time limit like the one we set, they
would have to be intermixed with forward reduction rules in the decreasing phase, which
is an idea we did not explore in this thesis.

Time Efficiency. In terms of time taken to compute a solution, our pre-processing im-
proved the time taken compared to KaMIS branch-and-reduce and to HILS, but the combi-

47

5 Experimental Evaluation

nation of pre-processing and application of the solver took longer compared to the compu-
tations of m2wis, m2wis + s and CyclicFast. This is partially because our algorithm keeps
performing iterations of the cyclic routine until the time limit is met, unless it manages to
reduce the graph down to zero vertices and thereby solve it.

For an example of where instead terminating early would likely be faster, consider the
instance ssmc_ca2010. Over 1 500 seconds, our algorithm continually shrinks the graph
down, with only 710 vertices remaining after the time limit. This kernel can then be quickly
solve optimally by one of the state-of-the-art solvers, for example after just 0.75 seconds
using the m2wis algorithm.

However, as can be seen in Figure 5.4, the rate of improvement slows down substan-
tially after initial great improvements. After 677 seconds, there are already less than 1 000
vertices remaining, but improvements after this time are much rarer.

Slowing Down of Improvement Rate

Figure 5.4: Applying our cyclic algorithm to ssmc_ca2010, we manage to greatly shrink the
graph size in the first 200 seconds using decreasing and increasing reduction rules, but
the rate of improvement slows down significantly afterwards.

With a method for detecting when the rate of improvement becomes too slow, it would
be possible to stop the cyclic algorithm early and continue with a different solver, which
would likely improve the efficiency of the computation.

48

5.4 Discussion

graph HILS #R5 + HILS #R8 + HILS
fe t ω t ω t ω

body 2 072.64 1 678 286 1 051.2 1 680 182 1 507.45 1 680 182
ocean 4 500.01 7 038 618 8.51 7 248 581 8.14 7 248 581
pwt 1 098.66 1 174 694 1 850.36 1 178 087 1 862.23 1 177 979
rotor 4 500.0 2 652 075 4 499.61 2 650 137 4 500.0 2 651 218
sphere 311.99 616 516 80.11 617 816 22.95 617 816

mesh t ω t ω t ω

blob 286.22 854 822 0.49 855 547 0.48 855 547
buddha 4 500.06 56 098 924 12.49 57 555 880 15.56 57 555 880
bunny 2 643.6 3 680 724 0.8 3 686 960 0.75 3 686 960
cow 63.72 269 452 0.45 269 543 0.37 269 543
dragon 4 500.0 7 946 511 1.15 7 956 530 1.06 7 956 530
ecat 4 500.02 36 098 983 8.66 36 650 298 9.49 36 650 298

osm t ω t ω t ω

alabama-3 384.17 185 744 1 530.77 185 744 1 542.76 185 744
dc-2 1 197.05 209 127 1 828.42 209 132 1 813.93 209 132
dc-3 4 500.01 227 618 4 499.25 227 669 4 500.0 227 550
greenland-3 1 359.01 14 011 2 503.83 14 012 2 505.14 14 011
hawaii-3 4 500.0 141 047 4 499.92 141 033 4 500.01 141 015
kansas-3 854.7 87 976 2 026.44 87 976 1 998.57 87 976
kentucky-3 4 500.04 100 507 4 499.45 100 502 4 500.02 100 510
rhode-island-3 4 171.61 201 771 4 499.84 201 751 4 500.0 201 743
vermont-3 959.7 63 304 1 942.16 63 312 1 954.88 63 312

snap t ω t ω t ω

as-skitter-u. 4 500.14 123 241 756 1 542.06 124 157 729 1 542.1 124 157 729
ca-CondMat-u. 1 337.73 1 147 948 0.54 1 147 950 0.45 1 147 950
com-amazon 4 500.02 19 265 906 2.16 19 271 031 2.17 19 271 031
loc-gowalla_e. 4 500.01 12 274 663 1 509.18 12 276 929 1 509.67 12 276 929
roadNet-CA-u. 4 500.06 108 406 930 13.74 111 360 828 17.08 111 360 828
soc-LiveJ.1-u. 4 500.17 278 906 042 1 537.17 284 036 239 1 543.71 284 036 239
soc-pokec-r.-u. 4 500.26 82 977 745 4 499.56 83 625 383 4 500.05 83 530 465
web-BerkStan-u. 4 500.05 43 696 500 294.59 43 907 482 187.38 43 907 482

ssmc t ω t ω t ω

ca2010 4 500.04 16 644 409 1 513.38 16 869 550 1 516.21 16 869 550
fl2010 4 500.03 8 696 096 997.49 8 743 506 1 507.59 8 743 506
ga2010 4 500.04 4 640 587 38.1 4 644 417 31.18 4 644 417

overall HILS #R5 + HILS #R8 + HILS
mean time 908.22 357.88 364.18
mean weight 7 321 920 7 398 853 7 398 399
optimal sol. 150/207 189/207 189/207

Table 5.6: An excerpt of the experiment results comparing the performance of our algorithm with
the HILS algorithm.

49

5 Experimental Evaluation

graph m2wis #R5 + m2wis #R8 + m2wis
fe t ω t ω t ω

body 591.19 1 679 750 1 050.76 1 680 182 1 500.69 1 680 182
pwt 289.45 1 172 482 2 085.24 1 177 844 1 801.38 1 177 827
rotor 191.83 2 637 201 1 749.17 2 639 995 2 257.6 2 641 414
sphere 457.86 616 144 79.76 617 816 22.52 617 816

mesh t ω t ω t ω

dragon 6.88 7 956 510 0.74 7 956 530 0.7 7 956 530
dragonsub 403.73 32 213 118 6.49 32 213 898 6.73 32 213 898
ecat 387.01 36 649 883 8.2 36 650 298 9.1 36 650 298
turtle 135.25 14 262 961 1.95 14 263 005 1.87 14 263 005

osm t ω t ω t ω

dc-2 100.2 209 131 1 547.26 209 132 1 541.11 209 132
dc-3 1 818.61 227 540 2 563.8 227 626 2 899.51 227 605
greenland-3 258.24 14 012 1 713.35 14 011 1 769.43 14 011
hawaii-3 3 759.16 140 992 3 622.8 141 004 3 924.84 140 969
idaho-3 255.52 77 144 1 783.88 77 145 1 707.86 77 145
kentucky-3 4 241.59 97 212 - -
massachusetts-3 41.94 145 866 1 584.86 145 866 1 544.17 145 866
oregon-3 171.78 175 078 1 700.08 175 078 1 706.9 175 078
rhode-island-3 1 245.24 201 771 2 928.53 201 712 2 344.4 201 771
vermont-3 49.6 63 312 1 551.73 63 312 1 563.12 63 312
virginia-3 73.14 308 305 1 570.87 308 305 1 540.14 308 305
washington-3 823.2 314 288 1 720.66 314 288 1 621.26 314 288

snap t ω t ω t ω

as-skitter-u. 235.84 124 157 715 1 552.99 124 157 729 1 549.6 124 157 729
roadNet-CA-u. 14.14 111 360 162 13.34 111 360 828 16.69 111 360 828
roadNet-PA-u. 636.36 61 731 270 6.49 61 731 589 7.93 61 731 589
roadNet-TX-u. 10.81 78 599 294 9.86 78 599 946 11.35 78 599 946
soc-LiveJ.1-u. 263.16 284 036 126 1 517.52 284 036 239 1 515.52 284 036 239
soc-pokec-r.-u. 4 039.28 80 690 587 4 547.09 80 915 286 4 514.02 80 733 686
web-BerkStan-u. 556.08 43 906 971 294.17 43 907 482 186.97 43 907 482

ssmc t ω t ω t ω

ca2010 358.28 16 840 602 1 501.71 16 869 550 1 501.81 16 869 468
fl2010 97.06 8 737 274 997.1 8 743 506 1 500.63 8 743 506
ga2010 11.57 4 644 209 37.72 4 644 417 30.77 4 644 417
il2010 331.15 5 982 542 526.58 5 998 539 415.54 5 998 539

overall m2wis #R5 + m2wis #R8 + m2wis
mean time 89.86 275.63 281.27
mean weight 7 419 663 7 421 075 7 420 200
optimal sol. 172/207 189/206 188/206

Table 5.7: Comparison with m2wis. Due to limited memory, a heavy independent set for
osm_kentucky-AM3 could not be computed.

50

5.4 Discussion

graph CyclicFast #R5 + CyclicFast #R8 + CyclicFast
fe t ω t ω t ω

body 1.63 1 680 108 1 051.65 1 680 182 1 500.04 1 680 182
ocean 13.34 6 594 370 8.1 7 248 581 7.77 7 248 581
pwt 30.33 1 112 613 1 516.85 1 178 583 1 598.75 1 178 735
rotor 27.37 2 539 291 1 529.05 2 532 233 1 524.24 2 534 475

osm t ω t ω t ω

dc-2 - - 1 502.53 209 132
dc-3 - 2 305.06 149 648 2 292.35 149 648
greenland-3 - - -
hawaii-3 - 2 199.71 123 884 2 193.9 123 884
idaho-3 - 2 865.49 77 145 2 885.53 77 145
kentucky-3 - 2 104.11 100 475 2 102.26 100 465
massachusetts-3 - 1 501.24 145 866 1 501.56 145 866
north-carolina-3 - 1 501.05 49 720 2 574.99 49 720
oregon-3 - - -
rhode-island-3 - - -
vermont-3 - 1 586.48 63 312 1 561.06 63 312
virginia-3 - 1 511.65 308 209 1 508.16 308 166
washington-3 3.4 285 549 - -
snap t ω t ω t ω

as-skitter-u. 282.67 124 137 365 1 739.65 124 138 232 1 739.36 124 138 439
soc-LiveJ.1-u. - 1 507.06 284 036 216 1 505.24 284 036 216
soc-pokec-r.-u. 460.26 76 880 511 1 978.95 77 049 923 1 880.44 77 029 787

overall CyclicFast #R5 + CyclicFast #R8 + CyclicFast
mean time 4.45 146.16 151.53
mean weight 6 414 004 6 418 581 6 418 490
optimal sol. 187/194 189/203 189/202

Table 5.8: Result of the experiment with CyclicFast. Due to limited memory available in our setup,
14 instances have incomplete results. The reported mean time and weight only take such
rows into account where all results are present.

51

5 Experimental Evaluation

graph m2wis + s #R5, then m2wis + s #R8, then m2wis + s
fe t ω t ω t ω

body 61.17 1 680 182 1 050.76 1 680 182 1 504.46 1 680 182
pwt 65.04 1 178 365 1 802.01 1 178 734 1 681.28 1 178 567
rotor 1 775.11 2 623 267 3 985.96 2 641 428 3 434.06 2 641 414

osm t ω t ω t ω

dc-2 249.1 209 132 1 631.46 209 132 1 569.98 209 132
dc-3 3 089.39 227 645 4 079.54 227 599 2 140.1 209 719
greenland-3 2 000.76 14 012 1 678.85 14 011 1 626.98 14 011
hawaii-3 4 610.74 140 979 3 015.61 130 191 2 998.27 130 191
idaho-3 428.62 77 144 1 925.6 77 145 2 927.39 77 145
kentucky-3 4 239.33 97 778 - -
massachusetts-3 125.0 145 866 1 623.02 145 866 1 623.33 145 866
oregon-3 478.97 175 078 1 851.34 175 078 2 843.17 175 078
rhode-island-3 2 500.92 201 771 4 058.66 201 712 3 777.84 201 758
vermont-3 1 308.92 63 312 2 751.75 63 312 3 242.23 63 312
virginia-3 1 455.0 308 305 1 696.78 308 305 1 633.51 308 305
washington-3 1 545.75 314 288 2 924.94 314 288 2 822.01 314 288

snap t ω t ω t ω

as-skitter-u. 2 442.79 124 157 715 2 691.91 124 157 729 2 934.24 124 157 729
soc-LiveJ.1-u. 805.21 284 036 239 2 113.32 284 036 239 1 690.36 284 036 239
soc-pokec-r.-u. 4 586.55 80 695 686 6 468.52 80 919 005 5 608.25 80 716 632

overall m2wis + s #R5, then m2wis + s #R8, then m2wis + s
mean time 136.05 328.26 324.77
mean weight 7 419 931 7 421 052 7 419 982
optimal sol. 189/207 189/206 189/206

Table 5.9: Experimental results from comparison with m2wis + s. For all 189 instances where the
optimal weight is known, it was computed by all three variants.

52

CHAPTER 6
Conclusion

6.1 Conclusion

This thesis set out to explore the idea of applying backward reduction rules for the
MWIS problem to graph instances, in order to increase their size. Ideally, this would
allow a wider range of forward reduction rules to be applicable to the expanded instance,
which would then ultimately make it possible to reduce the graph instance down to an even
smaller size than before.

To this end, we developed 14 backward reduction rules which reverse the effects of pre-
viously known forward reductions. Additionally, we presented another rule, BACKWARD

V-SHAPE MID 2, which exploits a previously unexplored graph reduction which allows us
to remove an edge from the graph in certain conditions.

We then integrated these reduction rules into a cyclic algorithm with randomized in-
creasing and decreasing phases. Through experiments, we adjusted their parameters to im-
prove their effectiveness. Then we filtered the set of backward reduction rules to identify
which rules resulted in the highest solution quality. We discovered that using a small selec-
tion of backward rules, the two BACKWARD V-SHAPE MID reductions and BACKWARD

DEGREE-1, increased the effectiveness of our routine the most. Accordingly, we limited
the backward reduction rules that are used to this selection and finalized the algorithm.

Using this algorithm as a pre-processing step, we compared the results of applying vari-
ous state-of-the-art solvers on both pre-processed and unmodified graph instances in a large
dataset. Through this experimental comparison, we were able to successfully demonstrate
that our pre-processing algorithm enables us to find, on average, higher quality solutions
compared to those that can be found without our pre-processing.

In this thesis, we were able to show that most of the presented backward reduction rules
cannot compete with the previously known NON-DECREASING EXTENDED STRUCTION

and NON-DECREASING EXTENDED REDUCED STRUCTION in terms of effectiveness.
On the other hand, we were able to show that a cyclic algorithm using these two

53

6 Conclusion

STRUCTION-based reductions can be improved by a small number of backward reduc-
tion rules, primarily the two variants of BACKWARD V-SHAPE MID. We can recommend
utilizing these backward rules in future work related to increasing transformations for the
MWIS problem.

6.2 Future Work

Integration into Branch-and-Reduce Algorithm. The algorithm we developed is
limited to shrinking instances in a preprocessing step. In practice, many graph instances
cannot be solved optimally through reduction rules alone. The standard approach for
solving the MWIS problem is to integrate reduction techniques, as presented here, into
a branch-and-reduce algorithm [7]. A next step could be to more tightly integrate back-
ward reduction rules in such a branch-and-reduce context. How a cyclic increase-decrease
routine would best work in the middle of a branch-and-reduce algorithm is an interesting
open question for future work.

Relax Separation of Phases. A weakness we encountered in our experiments was
that the cyclic reduction routine becomes useless if the initial decreasing phase takes too
long, since we do not even reach the cyclic recursion within the time limit. The decreas-
ing and increasing phases are completely separate in our algorithm. One might consider
applying a limited number of some expansion rules like BACKWARD V-SHAPE MID 2
during what would normally be the decreasing phase, before complex and time-consuming
rules like CWIS and EXTENDED STRUCTION. It is possible that this way, graphs could
be shrunk further using only simple and cheap reduction rules, before the more expensive
reduction rules are applied. It remains a question for future work if this would be a viable
strategy.

54

APPENDIX A
Implementation Details

Notes on Data Structure

Adjacency between vertices is stored through adjacency lists1. In the adjacency list of
vertex v, every u ∈ N(v) will appear in unsorted order. This means that generally, checking
if two vertices u, v ∈ V are adjacent takes O(min(d(u), d(v))) time.

Caching the Neighborhood Weight. For a vertex v ∈ V , we frequently want to
know the weight of its neighborhood, ω(N(v)). This value is directly used for some reduc-
tions like NEIGHBORHOOD REMOVAL or EXTENDED SINGLE-EDGE, or while computing
other values in reductions like TWO-VERTEX. We decided to store a variable containing
N(v) for every v, updating it whenever relevant vertices get added, deleted, or change their
weight.

Timestamps. To avoid duplicate work during the decreasing phase, we store a time-
stamp value tv for each v ∈ V , which represents the last time v or N(v) has been changed
(i.e., , the last time ω(v) was modified, an edge including v was added or removed, or the
weight of a neighbor x ∈ N(v) was modified). For each forward reduction, we also store
the timestamp for the most recent time it was checked if the reduction is applicable. These
timestamp values are then used to quickly rule out vertices for specific reductions, instead
of repeatedly checking the same conditions for a part of the graph that has not changed
since the last time these checks were made.

1Using std::vector in C++.

55

A Implementation Details

56

APPENDIX B
Parameter Tuning Dataset

Parameter Tuning Dataset
Filename |V | |E| gen. distribution
delaunay_n11 2 048 6 127 B(500, 0.5)
delaunay_n12 4 096 12 264 B(500, 0.5)
delaunay_n13 8 192 24 547 B(500, 0.5)
delaunay_n13 8 192 24 547 B(25, 0.5)
delaunay_n14 16 384 49 122 B(25, 0.5)
delaunay_n15 32 768 98 274 B(25, 0.5)
delaunay_n16 65 536 196 575 B(25, 0.5)
delaunay_n17 131 072 393 176 B(25, 0.5)
belgium.osm 1 441 295 1 549 970 B(500, 0.5)
netherlands.osm 2 216 688 2 441 238 B(25, 0.5)
G3_circuit 1 585 478 3 037 674 U{1, 1000}
rgg_n_2_15 32 768 160 240 B(25, 0.5)
rgg_n_2_16 65 536 342 127 B(25, 0.5)
rgg_n_2_17 131 072 728 753 B(25, 0.5)
rgg_n_2_18 262 144 1 547 283 B(500, 0.5)
caidaRouterLevel 192 244 609 066 B(25, 0.5)
caidaRouterLevel 192 244 609 066 B(500, 0.5)
caidaRouterLevel 192 244 609 066 U{1, 50}
caidaRouterLevel 192 244 609 066 U{1, 1000}
NACA0015 1 039 183 3 114 818 U{1, 50}

Table B.1: The graphs that were picked for the tuning dataset, alongside the method(s) with which
their weights were generated. Weights generated from a discrete uniform distribution
in the interval [a, b] are indicated with U{a, b}. Weights generated from the binomial
distribution with n trials and success probability 0.5 are indicated with B(n, 0.5).

57

B Parameter Tuning Dataset

58

APPENDIX C
Evaluation Dataset

The following table contains information about the 207 graphs that were used for the ex-
perimental evaluation in Section 5.3. The table lists |V | and |E| (i.e., the sizes of the vertex
set and the edge set), as well as the maximum degree dmax in each graph.

Additionally, the last column lists the weight of a MWIS for this graph, denoted by αω.
For 18 of the 207 graphs, we were unable to determine this value. This set of particularly
complex graphs consists of 3 fe instances, 12 osm instances, and 3 snap instances.

Evaluation Dataset Summary
Graph |V | |E| dmax αω

fe_body-uniform 45 087 163 734 28 -
fe_ocean-uniform 143 437 409 593 6 7 248 581
fe_pwt-uniform 36 519 144 794 15 -
fe_rotor-uniform 99 617 662 431 125 -
fe_sphere-uniform 16 386 49 152 6 617 816
mesh_blob-uniform 16 068 24 102 3 855 547
mesh_buddha-uniform 1 087 716 1 631 574 3 57 555 880
mesh_bunny-uniform 68 790 103 017 3 3 686 960
mesh_cow-uniform 5 036 7 366 3 269 543
mesh_dragon-uniform 150 000 225 000 3 7 956 530
mesh_dragonsub-uniform 600 000 900 000 3 32 213 898
mesh_ecat-uniform 684 496 1 026 744 3 36 650 298
mesh_face-uniform 22 871 34 054 3 1 219 418
mesh_fandisk-uniform 8 634 12 818 3 463 288
mesh_feline-uniform 41 262 61 893 3 2 207 219
mesh_gameguy-uniform 42 623 63 850 3 2 325 878
mesh_gargoyle-uniform 20 000 30 000 3 1 059 559
mesh_turtle-uniform 267 534 401 178 3 14 263 005

59

C Evaluation Dataset

Continuation of Table C.1
Graph |V | |E| dmax αω

mesh_venus-uniform 5 672 8 508 3 305 749
osm_alabama-AM1 320 581 19 167 588
osm_alabama-AM2 1 164 19 386 126 174 309
osm_alabama-AM3 3 504 309 664 643 185 744
osm_alaska-AM1 31 31 4 20 266
osm_alaska-AM2 54 156 15 20 900
osm_alaska-AM3 86 475 29 22 325
osm_arkansas-AM1 26 19 3 17 702
osm_arkansas-AM2 55 233 21 20 771
osm_arkansas-AM3 103 1 376 59 20 935
osm_california-AM1 77 130 13 46 537
osm_california-AM2 231 3 074 68 47 153
osm_california-AM3 587 27 536 253 49 365
osm_canada-AM1 189 240 8 78 466
osm_canada-AM2 449 2 947 44 81 799
osm_canada-AM3 943 20 241 146 86 018
osm_colorado-AM1 128 232 10 50 507
osm_colorado-AM2 283 2 026 36 52 172
osm_colorado-AM3 538 8 365 92 54 741
osm_connecticut-AM1 87 96 6 55 131
osm_connecticut-AM2 211 975 23 56 058
osm_connecticut-AM3 367 3 769 62 57 650
osm_delaware-AM1 2 1 1 1 060
osm_delaware-AM2 3 3 2 1 060
osm_delaware-AM3 5 9 4 1 060
osm_district-of-columbia-AM1 2 500 24 651 137 196 475
osm_district-of-columbia-AM2 13 597 1 609 795 1 126 -
osm_district-of-columbia-AM3 46 221 27 729 137 5 940 -
osm_florida-AM1 475 1 277 19 225 655
osm_florida-AM2 1 254 16 936 106 230 595
osm_florida-AM3 2 985 154 043 356 237 333
osm_georgia-AM1 294 434 12 205 068
osm_georgia-AM2 746 7 753 95 216 346
osm_georgia-AM3 1 680 74 126 384 222 652
osm_greenland-AM1 77 341 30 9 328
osm_greenland-AM2 686 50 218 358 10 718
osm_greenland-AM3 4 986 3 652 361 3 354 -
osm_hawaii-AM1 411 1 423 30 113 792
osm_hawaii-AM2 2 875 265 158 584 125 284
osm_hawaii-AM3 28 006 49 444 921 10 313 -

60

Continuation of Table C.1
Graph |V | |E| dmax αω

osm_idaho-AM1 136 208 15 70 623
osm_idaho-AM2 552 35 221 296 73 554
osm_idaho-AM3 4 064 3 924 080 3 332 -
osm_illinois-AM1 113 202 15 54 678
osm_illinois-AM2 261 2 138 49 55 496
osm_indiana-AM1 2 1 1 1 146
osm_indiana-AM2 2 1 1 1 146
osm_indiana-AM3 4 6 3 1 146
osm_iowa-AM1 90 164 12 47 907
osm_iowa-AM2 155 954 38 47 984
osm_kansas-AM1 190 400 19 84 449
osm_kansas-AM2 602 16 474 197 85 942
osm_kansas-AM3 2 732 806 912 1 404 87 976
osm_kentucky-AM1 381 2 402 49 91 897
osm_kentucky-AM2 2 453 643 428 1 222 97 397
osm_kentucky-AM3 19 095 59 533 630 14 928 -
osm_louisiana-AM1 157 181 6 51 446
osm_louisiana-AM2 436 3 111 46 55 127
osm_louisiana-AM3 1 162 37 077 224 60 024
osm_maine-AM1 38 29 3 24 921
osm_maine-AM2 81 243 14 26 208
osm_maine-AM3 143 850 26 26 734
osm_maryland-AM1 104 216 18 43 930
osm_maryland-AM2 316 4 715 89 45 300
osm_maryland-AM3 1 018 95 415 476 45 496
osm_massachusetts-AM1 413 1 089 33 136 695
osm_massachusetts-AM2 1 339 35 449 236 140 095
osm_massachusetts-AM3 3 703 551 491 1 188 -
osm_mexico-AM1 175 358 17 90 599
osm_mexico-AM2 516 9 411 95 94 834
osm_mexico-AM3 1 096 47 131 273 97 663
osm_michigan-AM1 133 112 6 51 076
osm_michigan-AM2 241 750 21 51 928
osm_michigan-AM3 376 2 459 45 52 674
osm_minnesota-AM1 86 136 10 28 692
osm_minnesota-AM2 253 2 580 58 30 251
osm_minnesota-AM3 683 34 188 274 32 787
osm_mississippi-AM1 74 60 4 32 273
osm_mississippi-AM2 151 366 16 33 187
osm_mississippi-AM3 242 1 116 23 33 318

61

C Evaluation Dataset

Continuation of Table C.1
Graph |V | |E| dmax αω

osm_missouri-AM1 10 6 2 7 928
osm_missouri-AM2 13 12 3 7 928
osm_missouri-AM3 17 24 5 7 928
osm_montana-AM1 109 194 12 55 348
osm_montana-AM2 307 5 154 108 56 068
osm_montana-AM3 837 69 293 418 59 822
osm_nebraska-AM1 40 46 7 24 345
osm_nebraska-AM2 93 734 42 26 680
osm_nebraska-AM3 145 2 168 74 27 214
osm_nevada-AM1 89 93 7 45 761
osm_nevada-AM2 242 1 531 40 47 068
osm_nevada-AM3 569 15 016 166 52 036
osm_new-hampshire-AM1 195 302 10 108 186
osm_new-hampshire-AM2 514 3 369 39 110 621
osm_new-hampshire-AM3 1 107 18 021 95 116 060
osm_new-jersey-AM1 4 6 3 256
osm_new-jersey-AM2 4 6 3 256
osm_new-jersey-AM3 4 6 3 256
osm_new-mexico-AM1 3 3 2 182
osm_new-mexico-AM2 3 3 2 182
osm_new-mexico-AM3 3 3 2 182
osm_new-york-AM1 42 118 13 13 187
osm_new-york-AM2 224 6 399 112 14 330
osm_new-york-AM3 837 88 728 511 16 268
osm_north-carolina-AM1 93 150 11 45 254
osm_north-carolina-AM2 398 10 116 140 46 896
osm_north-carolina-AM3 1 557 236 739 709 49 720
osm_ohio-AM1 78 96 8 50 964
osm_ohio-AM2 211 1 815 49 51 289
osm_ohio-AM3 482 11 376 137 52 634
osm_oregon-AM1 381 996 36 161 298
osm_oregon-AM2 1 325 57 517 356 165 047
osm_oregon-AM3 5 588 2 912 701 2 906 -
osm_pennsylvania-AM1 193 276 10 133 914
osm_pennsylvania-AM2 521 3 812 43 138 413
osm_pennsylvania-AM3 1 148 26 464 173 143 870
osm_puerto-rico-AM1 60 63 7 29 802
osm_puerto-rico-AM2 165 1 285 45 32 921
osm_puerto-rico-AM3 494 26 926 246 33 590
osm_rhode-island-AM1 455 1 973 49 171 224

62

Continuation of Table C.1
Graph |V | |E| dmax αω

osm_rhode-island-AM2 2 866 295 488 692 184 596
osm_rhode-island-AM3 15 124 12 622 219 5 930 -
osm_south-carolina-AM1 75 69 6 50 033
osm_south-carolina-AM2 165 713 28 51 446
osm_south-carolina-AM3 317 4 508 89 52 087
osm_tennessee-AM1 49 39 4 29 569
osm_tennessee-AM2 100 418 25 31 567
osm_tennessee-AM3 212 3 215 73 32 276
osm_utah-AM1 230 309 11 87 856
osm_utah-AM2 589 4 692 67 95 087
osm_utah-AM3 1 339 42 872 268 98 847
osm_vermont-AM1 128 418 28 55 884
osm_vermont-AM2 766 37 607 272 59 310
osm_vermont-AM3 3 436 1 136 164 1 608 -
osm_virginia-AM1 570 1 480 25 280 936
osm_virginia-AM2 2 279 60 040 174 295 867
osm_virginia-AM3 6 185 665 903 775 -
osm_washington-AM1 713 2 316 32 296 653
osm_washington-AM2 3 025 152 449 401 305 619
osm_washington-AM3 10 022 2 346 213 1 986 -
osm_west-virginia-AM1 65 150 13 42 868
osm_west-virginia-AM2 317 8 328 124 45 923
osm_west-virginia-AM3 1 185 125 620 561 47 927
osm_wisconsin-AM1 54 51 5 44 608
osm_wisconsin-AM2 89 219 14 44 651
osm_wisconsin-AM3 136 588 24 47 904
osm_wyoming-AM1 7 11 4 4 568
osm_wyoming-AM2 8 16 5 4 568
osm_wyoming-AM3 12 42 9 4 568
snap_as-skitter-uniform 1 696 415 11 095 298 35 455 -
snap_ca-AstroPh-uniform 18 772 198 050 504 797 510
snap_ca-CondMat-uniform 23 133 93 439 279 1 147 950
snap_ca-GrQc-uniform 5 242 14 484 81 286 489
snap_ca-HepPh-uniform 12 008 118 489 491 581 039
snap_ca-HepTh-uniform 9 877 25 973 65 562 004
snap_com-amazon 334 863 925 869 549 19 271 031
snap_com-youtube 1 134 890 2 987 624 28 754 90 295 294
snap_email-Enron-uniform 36 692 183 831 1 383 2 464 935
snap_email-EuAll-uniform 265 214 364 481 7 636 25 286 322
snap_loc-gowalla_edges 196 591 950 327 14 730 12 276 929

63

C Evaluation Dataset

Continuation of Table C.1
Graph |V | |E| dmax αω

snap_p2p-Gnutella04-uniform 10 876 39 994 103 679 111
snap_p2p-Gnutella05-uniform 8 846 31 839 88 554 943
snap_p2p-Gnutella06-uniform 8 717 31 525 115 548 612
snap_p2p-Gnutella08-uniform 6 301 20 777 97 434 577
snap_p2p-Gnutella09-uniform 8 114 26 013 102 568 439
snap_p2p-Gnutella24-uniform 26 518 65 369 355 1 984 567
snap_p2p-Gnutella25-uniform 22 687 54 705 66 1 701 967
snap_p2p-Gnutella30-uniform 36 682 88 328 55 2 787 907
snap_p2p-Gnutella31-uniform 62 586 147 892 95 4 776 986
snap_roadNet-CA-uniform 1 965 206 2 766 607 12 111 360 828
snap_roadNet-PA-uniform 1 088 092 1 541 898 9 61 731 589
snap_roadNet-TX-uniform 1 379 917 1 921 660 12 78 599 946
snap_soc-Epinions1-uniform 75 879 405 740 3 044 5 690 970
snap_soc-LiveJournal1-uniform 4 847 571 42 851 237 20 333 -
snap_soc-Slashdot0811-uniform 77 360 469 180 2 539 5 660 899
snap_soc-Slashdot0902-uniform 82 168 504 230 2 552 5 971 849
snap_soc-pokec-relationships-u. 1 632 803 22 301 964 14 854 -
snap_web-BerkStan-uniform 685 230 6 649 470 84 230 43 907 482
snap_web-Google-uniform 875 713 4 322 051 6 332 56 326 504
snap_web-NotreDame-uniform 325 729 1 090 108 10 721 26 016 941
snap_web-Stanford-uniform 281 903 1 992 636 38 625 17 792 930
snap_wiki-Talk-uniform 2 394 385 4 659 565 100 029 235 837 346
snap_wiki-Vote-uniform 7 115 100 762 1 065 500 079
ssmc_ca2010 710 145 1 744 683 141 16 869 550
ssmc_fl2010 484 481 1 173 147 177 8 743 506
ssmc_ga2010 291 086 709 028 85 4 644 417
ssmc_il2010 451 554 1 082 232 90 5 998 539
ssmc_nh2010 48 837 117 275 74 588 996
ssmc_ri2010 25 181 62 875 44 459 275

Table C.1: Sizes of the vertex and edge sets, maximum degree, and, if known, the weight of an
MWIS for all 207 graph instances in the evaluation dataset.

64

Abstract (German)

Diese Arbeit beschäftigt sich mit dem Maximum Weight Independent Set-Problem
auf Graphen mit gewichteten Knoten. Data Reduction-Methoden werden typischerweise
eingesetzt, um die Größe der Probleminstanz zu verringern. Die Frage, die in dieser Arbeit
geklärt wird, ist ob man durch Modifikationen, die die Problemgröße stattdessen erhöhen,
den Graph am Ende auf eine noch kleinere Größe reduzieren kann. Dafür entwickelten wir
mehrere sogenannte Backward Reduction Rules, welche in einem zyklischen Algorithmus
Anwendung finden. Durch experimentelle Evaluation konnten wir feststellen, dass diese
Methode, angewandt als Preprocessing, tatsächlich effektiv ist, um Lösungen von höherer
Qualität zu finden.

65

Bibliography

[1] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian
Schulz, and Dorothea Wagner. Benchmarking for graph clustering and partitioning.
In Reda Alhajj and Jon G. Rokne, editors, Encyclopedia of Social Network Analysis
and Mining, 2nd Edition. Springer, 2018.

[2] Sergiy Butenko and Svyatoslav Trukhanov. Using critical sets to solve the maximum
independent set problem. Oper. Res. Lett., 35(4):519–524, 2007.

[3] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[4] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[5] Ch. Ebenegger, P.L. Hammer, and D. de Werra. Pseudo-boolean functions and sta-
bility of graphs. In R.E. Burkard, R.A. Cuninghame-Green, and U. Zimmermann,
editors, Algebraic and Combinatorial Methods in Operations Research, volume 95 of
North-Holland Mathematics Studies, pages 83–97. North-Holland, 1984.

[6] Aleksander Figiel, Vincent Froese, André Nichterlein, and Rolf Niedermeier. There
and back again: On applying data reduction rules by undoing others. arXiv preprint
arXiv:2206.14698, 2022.

[7] Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdán
Zaválnij. Boosting data reduction for the maximum weight independent set prob-
lem using increasing transformations. In Martin Farach-Colton and Sabine Storandt,
editors, Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 128–142. SIAM,
2021.

[8] Ernestine Großmann, Sebastian Lamm, Christian Schulz, and Darren Strash. Finding
near-optimal weight independent sets at scale. In Sara Silva and Luís Paquete, edi-
tors, Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2023, Lisbon, Portugal, July 15-19, 2023, pages 293–302. ACM, 2023.

67

Bibliography

[9] Jiewei Gu, Weiguo Zheng, Yuzheng Cai, and Peng Peng. Towards computing a near-
maximum weighted independent set on massive graphs. In Feida Zhu, Beng Chin
Ooi, and Chunyan Miao, editors, KDD ’21: The 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021, pages 467–477. ACM, 2021.

[10] Sen Huang, Mingyu Xiao, and Xiaoyu Chen. Exact algorithms for maximum
weighted independent set on sparse graphs. CoRR, abs/2108.12840, 2021.

[11] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller
and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of
Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia
Series, pages 85–103. Plenum Press, New York, 1972.

[12] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Wer-
neck. Finding near-optimal independent sets at scale. J. Heuristics, 23(4):207–229,
2017.

[13] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo
Zhang. Exactly solving the maximum weight independent set problem on large
real-world graphs. In Stephen G. Kobourov and Henning Meyerhenke, editors, Pro-
ceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments,
ALENEX 2019, San Diego, CA, USA, January 7-8, 2019, pages 144–158. SIAM,
2019.

[14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[15] Bruno Nogueira, Rian GS Pinheiro, and Anand Subramanian. A hybrid iterated local
search heuristic for the maximum weight independent set problem. Optimization
Letters, 12:567–583, 2018.

[16] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

[17] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient traver-
sal of mesh edges using adjacency primitives. ACM Trans. Graph., 27(5):144, 2008.

[18] Alan J. Soper, Chris Walshaw, and Mark Cross. A combined evolutionary search and
multilevel optimisation approach to graph-partitioning. J. Glob. Optim., 29(2):225–
241, 2004.

[19] Ole Tange. GNU parallel: The command-line power tool. login Usenix Mag., 36(1),
2011.

68

http://snap.stanford.edu/data
 https://www.openstreetmap.org

Bibliography

[20] Mingyu Xiao, Sen Huang, Yi Zhou, and Bolin Ding. Efficient reductions and a fast
algorithm of maximum weighted independent set. In Jure Leskovec, Marko Grobel-
nik, Marc Najork, Jie Tang, and Leila Zia, editors, WWW ’21: The Web Conference
2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, pages 3930–3940. ACM
/ IW3C2, 2021.

[21] Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoiding bottleneck cases:
A simple maximum independent set algorithm in degree-3 graphs. Theor. Comput.
Sci., 469:92–104, 2013.

[22] Weiguo Zheng, Jiewei Gu, Peng Peng, and Jeffrey Xu Yu. Efficient weighted inde-
pendent set computation over large graphs. In 36th IEEE International Conference
on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1970–
1973. IEEE, 2020.

69

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	General Definitions
	Vertex-Weighted Graphs
	Problem Definition
	Data Reductions

	Related Work
	Cyclic Reduction Algorithms

	Cyclic Reduction Algorithm
	Weighted Forward Reduction Rules
	Sufficient Conditions for Inclusion
	Sufficient Conditions for Removal
	Simultaneous Set Merging
	Alternative Sets
	Other Reductions Based on Degree-2 Vertices

	Struction Reductions
	Edge Deletion Reductions
	Backward Reduction Rules
	Weight Generation
	Backward V-Shape Mid Reductions
	Backward Rules Based on Alternative Sets
	Expansion of a Single Edge
	Backward Reductions Introducing Removable Vertices
	Adding Simplicial Vertices
	Translation between Solutions

	Decreasing Phase
	Increasing Phase
	The Complete Algorithm

	Experimental Evaluation
	Computing Environment
	Parameter Tuning
	Preparing the Tuning Dataset
	Backward Rule Tuning
	Rejecting Underperforming Backward Reduction Rules

	Comparison with State-of-the-Art Solvers
	Intermediary Results after Pre-Processing
	Experiments Using Pre-Processed Instances
	Comparison Disabling our Contributions

	Discussion

	Conclusion
	Conclusion
	Future Work

	Implementation Details
	Parameter Tuning Dataset
	Evaluation Dataset
	Abstract (German)
	Bibliography

