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Abstract

Hypergraphs are a generalisation of the graph data structure where edges are allowed to
connect an arbitrary number of nodes instead of exactly two. Consequently, they are not
limited to modelling binary relationships and increase the flexibility of traditional graphs.
However, their applicability is still bound by memory constraints. This thesis develops
a compressed hypergraph representation which is then implemented in the parallel parti-
tioning library Mt-KaHyPar. In the stand-alone representation, Hypergraphs are translated
into a bipartite graph where hyperedges are represented by artificially inserted vertices,
which are then connected to all of the vertices they connected in the original graph. In
Mt-KaHyPar, the compressed hypergraph is partitioned 36% slower on average, but has
identical partition quality and achieves a mean compression ratio of ≈ 2.027 to store the
graph and ≈ 1.542 during partitioning.
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CHAPTER 1
Introduction

1.1 Motivation

Graphs are fundamental to a wide range of applications. They power navigation software
on global street networks, allow the efficient storage and lookup of complex relational data,
drive web search engines and even enable artificial intelligence implementations. [13, 15,
10]

However, graphs are limited to modelling binary relationships. A traditional graph con-
sists of nodes and edges. While both of these can have weights—for example, to indicate
‘distance’ when edges model roads or ‘throughput’ when they model pipes—and both di-
rected and undirected relationships can be captured, one edge can only connect precisely
two vertices. Hypergraphs extend the capabilities of traditional graphs, as “hyperedges"—
sometimes referred to as “nets"—can connect an arbitrary number of vertices instead of
exactly two. This grants them high flexibility in modelling complex relationships, as they
are essentially just elements and groupings that can combine these elements arbitrarily.
Possible practical applications range from modelling intricate social and neural networks
to circuit boards and co-authorships [3, 8]. On the other hand, they allow the simplifica-
tion of theoretical insights about graphs, sometimes greatly simplifying theorems that are
complex when defined with traditional graphs. [3]

With their ability to model extensive real-world problems, they also inherit an issue directly
from their traditional graph parent: size. The larger the graph instances get, the higher the
difficulty of working with them, as applications such as graph partitioning require graphs
to fit into memory [5]. In some cases, large instances like webbase or Sat14 cannot be
partitioned at all because the partitioner runs out of memory or reaches a timeout [11].
There are a few different strategies to deal with very large instances, each with its own
advantages and drawbacks. Using a larger machine with more memory, for example, is

1



1 Introduction

associated with higher costs and may not be practical, as real examples of large graphs may
take up to 800 GB of memory during partitioning without memory optimisations [16, 18].
This amount of memory may simply be unavailable at a given budget. Furthermore, a
higher memory consumption might result in longer processing times if virtual memory is
used or may lead to lower solution quality. On the other hand, sharing the processing load
across multiple machines inquires all of the problems typically associated with distributed
memory systems: Communication overhead, latency, infrastructure cost, load balancing
and overall added programming complexity [22]. This thesis aims to address this problem
by utilising streaming and compression techniques to reduce memory footprints, increasing
the set of graphs that can be processed on a given machine.

1.2 Contribution

This thesis develops a compressed, memory-efficient hypergraph representation that can be
streamed from a file with minimal memory overhead. This representation is then adapted
for and applied to the shared-memory hypergraph partitioning library Mt-KaHyPar. During
the streaming process, the input hypergraph is transformed into the bipartite graph structure
outlined in Section 2.3. The representation achieves its memory savings by employing
various encoding techniques introduced in Section 2.4. Basic metadata about the graph,
such as the number of nodes and edges of the bipartite graph and the number of hyperedges
in the original graph, is stored alongside node adjacency lists, which are decompressed on
access.

Figure 1.1: Hypergraph Compression Ratio

For use in Mt-KaHyPar, the streaming algorithm is adapted to support weights and other
requirements for partitioning. The resulting data structure is a fully featured substitute for
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1.3 Structure

the existing static hypergraph. It can be used to partition hypergraphs while significantly
reducing their memory footprint. Experiments indicate that while it often lowers construc-
tion times, it significantly increases partition runtimes. Partition quality remains unaffected
by compression except for minor random variation caused by heuristics.

1.3 Structure

After various central concepts and compression techniques are introduced in Chapter 2,
related work and recent developments are presented in Chapter 3. The main contribution is
located in Chapter 4. It examines hypergraph compression techniques, develops an algo-
rithm to stream them from a file and implements compression into Mt-KaHyPar. Finally,
we will run experiments on hypergraphs from several benchmark sets [18]. These exper-
iments examine the efficacy of different compression schemes and evaluate the impact of
compression on the running time and memory consumption during graph partitioning in
Mt-KaHyPar. Lastly, Chapter 6 will summarise the results and suggest further research.
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CHAPTER 2
Fundamentals

This section introduces terms and definitions which are crucial for understanding the prob-
lems that arise during hypergraph compression and the solutions outlined later.

2.1 Data structures

Graph. A graph G = (V,E) is a mathematical structure defined as a set of vertices (or
nodes) V and edges E. An edge connects precisely two vertices. In a directed graph,
edges have a specific source and target node, meaning the described connection is one-
way. The number of edges a node is connected to is referred to as its degree. Graphs can
also be weighted, meaning either their vertices, edges, or both can be assigned weights
[23]. In the following, the term graph will refer to an undirected weighted graph, and a
weight of 1 will be assumed as the default for vertices and edges if not otherwise specified.
Figure 2.1 visualises an undirected graph. Each node is assigned a natural number as a
unique identifier.

Hypergraph. Hypergraphs H = (V,E) are a generalisation of traditional graphs where
hyperedges (or nets) can connect an arbitrary number of vertices instead of exactly two.
This allows a hypergraph to model any n-ary relationship. [3]

2.2 Graph Representations

In the following, we will compare two methods to store graphs using adjacency lists. An
adjacency list is a list of vertex IDs indicating the neighbourhood of each vertex, i. e., all
of the vertices it is connected to. In the undirected case, each edge is inserted symmetri-
cally, meaning the target vertex has the source vertex in its adjacency list and vice versa.
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2 Fundamentals

Figure 2.1: Graph Visualisation

The terms target and source vertex here can be assigned arbitrarily. In the directed case,
however, only the target node of an edge is added to the adjacency list of the source node.

Nested Array Representation. The first way to store a graph using adjacency lists is a
nested array representation (NAR). This means that the graph is stored in a single parent
array. At the index of each vertex ID, this array contains the adjacency list of the respective
vertex, which is an array of vertex IDs. Using a dynamic array data structure to achieve
this task, the main advantage of this representation is its flexibility. Given that the array
has an amortised insertion complexity of O(1), inserting an edge also takes constant time.
Its main disadvantage is the additional storage which might be required. Usually, such an
array has to store its current length, its capacity and its storage location. In the case of a
C++ standard library [9] vector, this translates to 24 Bytes of memory per vector. In this
representation, each node must store its own adjacency list. Thus, it must store a pointer to
a vector, which typically takes up two bytes and it must store the vector itself, which takes
up a total of 24 bytes as just established. Thus, each node requires 32 bytes of storage for
the empty adjacency lists alone. This can become highly relevant when the graph has many
vertices, and it can account for a big proportion of the storage size if adjacency lists are
small.

Compressed Sparse Row Representation. The compressed sparse row representation
(CSR) is a memory-efficient graph storage format where all adjacency lists are stored in
a single array. A second array is utilised to store the offset, i. e., the beginning of each
adjacency list. Thus, the total number of arrays stored is reduced to two for an arbitrarily
large graph, given that the array can be large enough to contain all adjacency lists. Without
sufficient gaps left between adjacency arrays, all subsequent nodes in the adjacency array
have to be moved when an edge is added. Consequently, the insert performance on this
data structure is O(m), where m denotes the number of edges. Note that in the undirected
case, the constant factor 2 is applied due to the symmetry described above. If gaps are left
at the end of each section, most of the memory efficiency is lost. Hence, this data structure
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2.3 Bipartite Hypergraph Representation

is most suited if graphs do not change or when the sizes of the adjacency arrays are known
beforehand. In this case, no capacity has to be stored; the end of one adjacency list is
simply the beginning of the next one.

2.3 Bipartite Hypergraph Representation

Figure 2.2: Bipartite Hypergraph Representation1

A hypergraph can be transformed into a bipartite graph by inserting an ‘artificial’ vertex
for each hyperedge. To distinguish them from the original vertices (OV) that were already
a part of the hypergraph, they are henceforth referred to as hyperedge vertices (HV). Af-
terwards, an edge is inserted to every vertex that the hyperedge is connected to. This is
illustrated in Figure 5.4.

2.4 Encoding Techniques

This section provides a summary of the encoding techniques which will later be examined
for their effectiveness on hypergraphs.

Delta Encoding. This encoding technique reduces the size of numbers stored in an array
by replacing the absolute value of each number with the distance to its predecessor. While
using signed integers would allow this scheme to be employed on unsorted arrays, it could
lead to larger numbers having to be stored. Thus, the array must be sorted to minimise the
size of the stored numbers [2]. For example, delta encoding would transform the sequence
{1, 2, 5, 17, 18} to {1, 1, 3, 12, 1}

1Figure inspired by ‘A hypergraph with six hyperedges’ [12], colour palette: Okabe-Ito [14]
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Variable-Length Encoding. If numbers are stored in blocks, e. g., 32-bit integers, delta
encoding does nothing to reduce the size of the array. Instead, it simply leads to more un-
used bits in each number block. This is where variable-length encoding comes in. Instead
of storing numbers in blocks large enough to fit the biggest value, the size of each block
is reduced to a minimum—usually one byte. The first bit of each block is then used to
indicate if the number ends in the current block. In the example with one-byte blocks, this
is the case if a number is 7 bits long or smaller. If it does not, the first bit is flipped, and
the number is continued in the next block. This continues until there are enough bits to
store the number. Since delta encoding alone does not reduce the size of adjacency lists, in
the following, the term gap encoding will be used to refer to a combination of delta and
variable-length encoding.

Interval Encoding. Given a sequence of integers 7, 8, ..., n, the idea of interval encoding
is to store only the starting and end points 7 − n or the starting point and length of the
sequence instead of every number in it [2]. However, when iterating over an interval-
encoded sequence, there has to be a way to distinguish between sequences and regular
number values. This can be executed by inserting a special marker that indicates the start
of an interval. However, this marker requires memory. Thus, in practice, only intervals
which are greater than a certain threshold are considered to prevent unnecessary overhead
from encoding small sequences as an interval. [16]

Figure 2.3: Illustration of Variable Length Encoding
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CHAPTER 3
Related Work

3.1 Mt-KaHyPar

The Multi-Threaded Karlsruhe Graph and Hypergraph Partitioner (Mt-KaHyPar) is a
shared-memory partitioner for graphs and hypergraphs. It is designed to efficiently handle
large instances with high solution quality and scalable performance. In benchmarks com-
paring it against leading partitioners such as KaHyPar [19] and KaFFPa [17], it consistently
matches or surpasses their quality while delivering substantial runtime improvements. This
is especially true in parallel environments, and it can be scaled to a high number of threads
without adversely affecting the solution quality. [6]

In addition to its parallel scalability, Mt-KaHyPar integrates a comprehensive set of algo-
rithmic techniques that have proven central to high-quality hypergraph partitioning. Fol-
lowing the multilevel paradigm, it combines advanced coarsening schemes with diverse
initial partitioning strategies to generate strong starting solutions. During uncoarsening,
several refinement methods—such as flow-based refinements, localised FM-style heuris-
tics, and evolutionary recombination operators—are applied to iteratively improve solution
quality. This combination of complementary algorithms balances cut size and load distri-
bution, thereby matching or surpassing the quality of the best sequential partitioners while
fully exploiting parallelism. The framework is also highly modular and flexible, making
it a well-suited candidate for further research and optimisation. One of its most notable
limitations is that it cannot scale past system RAM [4]. Hence, reducing the memory foot-
print of the graphs directly extends the range of instances that can be processed on a given
machine. A successful compression implementation that does not decrease solution quality
can thus further increase the applicability of Mt-KaHyPar.
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3 Related Work

3.2 KaMinPar

KaMinPar is a scalable, parallel multilevel graph partitioner built on the deep paradigm
[5]. The traditional approach to Multilevel Graph Partitioning (MGP) is to shrink the graph
down into smaller, more manageable instances and solve the partition problem there. This
‘shrinking’ is referred to as graph coarsening. The idea is to reduce the size and complexity
of a large graph while preserving its most important structural properties. After the coars-
ened graph has been partitioned, it is gradually brought back to its original size while the
solution is refined at each uncoarsening step.

Deep MGP pushes the coarsening much further. The graphs are shrunk down to a multiple
of the processing units or a small constant. Subsequently, the small coarse graph is not
partitioned into many blocks at once (k-way partitioning). Instead, deep MGP solves the
problem by recursive bipartitioning. This means the graph is repeatedly divided into two
blocks during uncoarsening until the desired number of blocks is reached. Nevertheless,
KaMinPar also integrates aspects of classical direct [5].

During coarsening and refinement, size-constrained label propagation is used as the clus-
tering algorithm. Cluster size is restricted by an upper bound tied to block sizes, which
ensures feasible and balanced partitions. Since the introduction of edge sparsification,
there are also linear runtime guarantees [7].

In his thesis, Salwasser [16] examines strategies for effectively reducing the memory re-
quirements of KaMinPar. He develops a compressed graph representation that utilises the
compression techniques highlighted above. In addition to that, he develops a Two-Level
Cluster Weight Vector. Cluster weights track the total weight of nodes in each cluster.
They are stored to ensure constraints during graph partitioning. To avoid using a full 8
bytes for each weight, the first level has a definable restricted storage capacity, e. g., one or
four bytes. Should the capacity be exceeded, the excess weight is stored in a dynamically
growing hash table. This reduces memory consumption without significant performance
losses.

Through the outlined methods and other integrated memory optimisations, Salwasser
achieves an 8.6× reduction in peak memory usage. His work demonstrates that careful
memory optimisation and compression can extend the applicability of in-memory graph
partitioners to large graph instances without sacrificing speed or solution quality. The pro-
posed techniques are integrated into the framework, enabling it to partition some of the
largest real-world graphs on a single machine with limited RAM.

3.3 Ligra and Hygra

In 2013, Ligra was introduced as a lightweight shared-memory graph processing frame-
work which is optimised for parallel execution on multicore machines. It was later ex-
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3.4 HyperCSA

tended to support Hypergraphs, thus creating Hygra. Ligra has one routine to map over
edges and one to map over vertices and aims to facilitate writing graph traversals [21].
However, in a more recent paper, one of the authors establishes a lack of high-performance
hypergraph algorithms despite advancements in parallel graph processing. [20] Thus, the
Ligra graph processing framework is extended to support hypergraphs, resulting in the
Hygra framework. Hygra uses a bipartite graph representation to store hypergraphs and
leverages techniques such as direction optimisation, edge-aware parallelisation, bucketing
for load balancing, and compression. The paper demonstrates which high-performance
parallel hypergraph processing tasks can become feasible on a single multicore machine
through optimisation and compression. Furthermore, the proposed algorithms enable the
analysis of hypergraphs that are too large to be used in existing frameworks.

3.4 HyperCSA

Recently, there has been novel approaches to compressing Hypergraphs in works like Hy-
perCSA, further highlighting the need for effective compression solutions. Its approach is
based on compressed suffix arrays (CSAs), which was inspired by text indexing. The en-
tire hypergraph is transformed into a string and, by sorting nodes and edges, encoded into a
CSA. This achieves a compact, query-efficient representation that outperforms query times
of existing solutions. Additionally, it enables file size reductions by 26% up to 79%. [1]

Despite this, HyperCSA is not immediately suitable for implementation into Mt-KaHyPar.
While the achieved file-based compression ratios are substantial, Mt-KaHyPar relies on fast
in-memory access during the partitioning process. At first glance, the in-memory query-
ing times of HyperCSA should still make it a promising solution. However, Mt-KaHyPar
stores not only hyperedges, but also pre-computes the incidence lists of all nodes. Natu-
rally, dropping these pre-computed lists would greatly reduce memory consumption, but
significantly slow down incidence queries. HyperCSA, on the other hand, stores neither
edges nor incidence lists as directly accessible arrays, as it fully relies on the CSA. Thus,
even if the entire string representation is kept in memory, iterating through a neighbourhood
requires complex index operations, which will cause a significant slowdown compared to
constant-time array access. Consequently, the CSA approach is not trivially applicable to
Mt-KaHyPar.
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CHAPTER 4
Compression Algorithm and Implemen-
tation

Before tackling the implementation of hypergraph compression in a project with concrete
requirements and restrictions, we will develop a memory-efficient strategy to stream and
store hypergraphs.

4.1 Graph Transformation

Despite the advantages that hypergraphs have, an extensive literature exists on graph al-
gorithms that concern themselves with and run on traditional graphs. To apply these
algorithms—and libraries which implement them—on hypergraphs, it is first necessary to
convert them into a regular graph using the bipartite representation outlined in Section 2.3.
For a representation using nested arrays, Algorithm 1 achieves the described transforma-
tion.

4.2 Graph Representation

To systematically assess the ideal compression approach, we will sketch the maximally
compressed lossless representation of a hypergraph given the techniques outlined in chap-
ter 2. Then, we reintroduce concrete requirements as we weigh memory savings against
runtime penalties.

As the set of hyperedges is sufficient to completely describebe a hypergraph, a maxi-
mally compressed representation would not be bipartite. The advantage of the bipartite
transformation is that the entire incidence list of a node— meaning the list of all hy-
peredges it is connected to—is already stored in memory and can be accessed immedi-

13



4 Compression Algorithm and Implementation

Algorithm 1: Hypergraph to Bipartite Representation Conversion
Procedure ConvertToBipartite(Hypergraph H)

Adj ← NAR of size (H.NumV ertices+H.NumHyperedges);
i← H.NumV ertices;
for each HE ∈ H.Hyperedges do

i← i+ 1;
Adj[i]← HE;
for each j ∈ H.Edges do

E[j]← i;

return ⟨V,E⟩;

ately. Nevertheless, this information is still present in the hyperedges: The incidence list
of a given node can be generated by simply iterating through all hyperedges and check-
ing whether the node ID is present. If the hyperedges are sorted, this can be done in
O(nhyperedges · logMaxHyperedgeSize).

To avoid storing the size and capacity of each hyperedge, a CSR representation is used.
This means that all hyperedges are stored in a single array. A second offset array is required
to store the starting index of each hyperedge. Then, varint and delta encoding are applied,
which requires the node IDs in each hyperedge to be sorted in ascending order. The first
entry of each hyperedge is not delta encoded. This allows the edge-wise decompression of
the array. Finally, interval encoding is applied to further reduce the memory footprint.

Whether this maximally compressed representation is feasible or not heavily depends on
the use case of the graph. If node incidence lists are not frequently needed, and most
queries iterate through node IDs in a hyperedge, this representation is very economical
and might have tolerable runtime penalties. In this case, HyperCSA [1] is likely the best
fit. It evaluates many queries faster than the sketched data structure and likely has better
compression, especially on large instances.

Moreover, this non-bipartite representation can only be used when the application that
consumes the graph is tailored to hypergraphs, as it does not describe any binary edges. For
cases where fast incidence queries are important, such as during hypergraph partitioning, a
bipartite representation is superior, even though it doubles the memory usage of the graph.

One requirement that renders both CSR arrays and HyperCSA infeasible is flexibility. Fre-
quent updates are expensive in HyperCSA, as the index and the suffix array might have
to be completely rebuilt. As for the CSR array, adding a single node to any hyperedge
requires moving the entire array after the position of the node, as its adjacency list has to
be updated. Thus, neither approach is suitable for dynamic use cases.

In a nutshell, HyperCSA is the best fit for a static representation with infrequent incidence
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4.3 Streaming Algorithm

Figure 4.1: Insertion of Hyperedges

queries. A gap-encoded CSR array is the most memory-efficient way to store a bipartite
graph representation, but it are infeasible for dynamic applications. NARs are most suited
for dynamic use cases, although they require 16 additional bytes of memory for each node
and hyperedge.

4.3 Streaming Algorithm

In the following, we will assume that a given hypergraph fits into memory when fully com-
pressed. The ideal scenario when reading it from a file is that it is directly converted into a
fully compressed format while it is still being read. This would mean that the memory con-
sumption would gradually increase during the construction process until the hypergraph is
fully read. Necessarily, this would mean that the entire streaming operation would never ex-
ceed the memory capacity of the machine. Otherwise, the assumption that the compressed
graph fits into memory would be violated.

Therefore, it is necessary to assess which compression techniques can be applied during
the construction phase. The main problem that arises is the OV. For each vertex ID in
a hyperedge, two adjacency lists have to be updated: The hyperedge vertex ID has to be
inserted into the original vertex’s list, and it, in turn, has to be inserted into the newly
created hyperedge’s list. As a consequence, compressing the adjacency lists of the HV is
straightforward: Since they are artificially inserted, they are guaranteed not to be connected
to any other HV. Thus, the adjacency list of each HV is exactly equal to the hyperedge it
represents, will not have to be altered later and can be fully compressed directly after being
read. The OV, on the other hand, have to be updated constantly. Therefore, while the CSR
is more storage efficient, the NAR is initially used for the OV to achieve constant-time
insertions.

15



4 Compression Algorithm and Implementation

As mentioned above, gap encoding requires numbers to be sorted to achieve the best out-
come. While the OV have to be updated constantly, the construction of the bipartite rep-
resentation grants a property which can be exploited here. Since the IDs of the HV are
simply integers starting from the number of OV + 1, they are parsed in ascending order.
This means that, once a given ID n has been inserted into any given adjacency list of an
OV, there will never be any ID m < n which has to be inserted after it. Consequently,
the adjacency arrays can be immediately stored in a compressed format. Note that the first
node ID of each array is not gap encoded. If this were the case, the entire previous array
would have to be iterated through to calculate the absolute value of the starting vertex.
Thus, each starting vertex is stored as-is. In the end, the graph is converted into the CSR.
This procedure is outlined in Algorithm 2.

Algorithm 2: Streaming Algorithm
Procedure StreamAndCompress(Hypergraph H)

OV ← dynamic array of size H.NumV ertices;
HV ← dynamic array of size H.NumHyperedges;
hyperedge_id← H.NumV ertices+ 1;

for each hyperedge h read from disk do
hyperedge_id← hyperedge_id+ 1;
HV [hyperedge_id]← gap_encode(h);

for each vertex v in h do
gap← hyperedge_id−OV [v].back();
OV [v]← OV [v] ∪ {gap};

V ertexArray ← array of size (H.NumV ertices+H.NumHyperedges);
EdgeArray ← array;
offset← 1;
for AdjacencyArray a in OV do

V ertexArray ← V ertexArray ∪ {offset};
EdgeArray ← EdgeArray ∪ a;
offset← offset + a.length();

for each AdjacencyArray a in HV do
V ertexArray ← V ertexArray ∪ {offset};
EdgeArray ← EdgeArray ∪ a;
offset← offset + a.length();

16



4.4 Mt-KaHyPar Implementation

4.3.1 Buffer

To account for cases where the graph is too large to fit into memory, partially compressed
during IO, a buffer is added to the procedure. This buffer stores all HV. Once full, the
adjacency lists are stored in a binary chunk file on disk. The properties outlined above
ensure that these files will only have to be read again once in the final stage of the procedure.
The OV accordingly remain in memory, as they are frequently used and chunking them on
disk would greatly reduce performance. Once all of the hyperedges are read, first, all of
the OV are converted into the CSR. This frees up a maximal amount of memory. Then, the
chunk files are merged and appended to the edge array in order

A smaller buffer size implies a lower peak memory consumption, but also a longer IO time,
as more chunks have to be written and merged. The following figure shows the relationship
between the compression time and the buffer size.

4.4 Mt-KaHyPar Implementation

In this section, the insight gained through the stand-alone compression experiments is ap-
plied to the hypergraph partitioning library Mt-KaHyPar.

4.4.1 Data Structure

The current data structure in Mt-KaHyPar that the compressed representation will replace
is the static hypergraph. As the compression techniques highlighted above rely on densely
packed arrays, frequent rebuilding is computationally expensive. Since there are no gaps
to account for edge and node insertions, the entire CSR array would have to be rebuilt or
additional memory would have to be allocated, directly counteracting the compression.

Consequently, the compressed data structure will serve as a substitute for the static hy-
pergraph. The representation in Mt-KaHyPar differs slightly from the bipartite approach
outlined above. No artificial nodes are inserted to represent hyperedges. Instead, there is
an explicit separation of hyperedges and node adjacency lists. Both are stored in a sepa-
rate CSR array. However, the offset array does not merely contain the starting positions
of nodes and edges in the respective list. Instead, it is an array of objects which store
additional information:

Thus, for a hypergraph with nhn hypernodes and nhe hyperedges, the storage requirement
without any adjacency lists is already 25(nhn + nhe) bytes. Most of these values cannot
be omitted, as they are crucial for the partitioning procedure. Thus, different strategies are
applied for each of these properties.

To store the hyperedges and the incidence arrays of each node, two CSR arrays are created.
A second array then stores the offset of each node and edge respectively. The ID serves as
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Hypernode / Hyperedge Memory (Bytes)

Degree / Size 8

Begin (start index in CSR array) 8

Weight 8

Valid (boolean for deactivation) 1

Total 25

Table 4.1: Hypernode/-edge Memory Consumption in the Static Hypergraph

the index in the array to allow constant-time lookups.

4.4.2 Compression Techniques

Start Index. The start index of each adjacency list is stored uncompressed. Other than
reducing the index size to 32 bits—which would limit the maximum graph size—there is
little room to reduce the size of the offset arrays. If any encoding were applied to the vector
which contains the start offsets, additional computation would be required to decode them,
thus increasing the time required to find an adjacency list.

Weights. On the other hand, weights do not have to be stored at all for unweighted in-
stances. However, there is a critical restriction to this: During the partitioning process—
specifically the contraction of a graph—weights are required even on unweighted instances.
This is because the weight of affected nodes is aggregated during contraction and applied
to the contracted node. To remedy this issue, the weight vector is initially empty and does
not take up any memory. As long as this is the case, any weight query simply returns
1. As soon as any node or edge is assigned a weight other than 1, the respective array is
initialised. This ensures optimal memory efficiency for both node and edge weights.

Degrees and Sizes. Node degrees and edge sizes are stored in the CSR arrays in the
beginning of each chunk. This allows both constant time lookups and memory efficiency.
Finding the degree (size) of a node (egde) simply requires looking up the start index in
the offset array and decoding the first entry. Given that all degrees and sizes are at most a
64-bit integer, this requires decoding at most 9 blocks and thus, is in O(1).

Validity Flag. To keep track of disabled nodes and edges while allowing constant time
lookups and updates, two additional arrays are used. While the boolean in the Hypernode
and Hyperedge objects requires 8 bits of storage, an efficient bit array can reduce this to a
single bit. Consequently, the memory usage of the validity flag is greatly reduced.
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4.4.3 Partitioning requirements

The partitioning step introduces additional requirements, such as edge removal and con-
traction. In the following, the implementation of these requirements is discussed.

Edge Removal and Iteration During graph preprocessing, edges are dropped and restored.
In the static graph, dropped hyperedges are not only disabled, but also removed from all
the adjacency lists of all nodes they connected. Dropping an edge is trivial; the validity flag
is simply set to false. However, removing it from all adjacency lists presents a challenge.
Firstly, all affected incident nets have to be decoded. Secondly, the respective edge has to
be removed, and the degree must be updated. Then, all entries following the edge ID have
to be shifted by one to close the gap. Lastly, the entire list has to be re-encoded. However,
this operation creates gaps in the incident nets array and would result in a detrimental
runtime if the entire CSR array were to be recreated. Therefore, the gaps are filled with
padding bytes.

Two problems arise. First of all, the encoded degree of a given node might underflow upon
edge removal. This can be solved by leaving the size the same and simply adding any
empty block with the continuation bit set to true followed by the actual value.

Secondly, the padding bytes need to be unambiguously identifiable and recognised by the
iterators. Using the value −1 is not possible without sacrificing a bit in each block non-
continuation block to store the sign of each value. Using the largest possible integer is not
an option, because the varint encoding allows the storage of numbers only limited by the
maximal array length. Thus, a trivial "maximum integer" does not exist and would also
require indefinite blocks. However, by exploiting the properties of the CSR arrays, 0 can
be used as a padding byte.

Since no duplicates are stored, a gap of “0" will never occur. Thus, when an iterator en-
counters the value 0, it immediately knows that a chunk is over. Notwithstanding this, there
a two valid occurrences of the number 0. On the one hand, it can occur as the continuation
of a varint that started in a previous block. This is trivially identified by checking if the
previous block has the continuation bit set to true. If this is not the case, the iterator knows
it has encountered a padding block. On the other hand, 0 might simply be indicating the
node or edge with ID 0. On first glance, it appears that this can simply be detected by the
position of the entry. If 0 is the first entry in a given chunk, it must be indicating a valid ID
instead of a padding byte.

Yet, there is one edge case in which this behaviour fails. Say a given node is connected
to the hyperedges 3 and 9. Then, both of these edges are removed. The adjacency list of
this node is now empty, filled with only padding bytes. However, the iterator identifies the
first padding byte as the valid edge ID “0”, since it is the first entry. Hence, anytime the
iterator identifies 0 as a potential node (edge) ID, it has to fall back on another property of
the node (edge): its degree (size). If the degree (size) is 0, it returns an empty list. If it is 1,
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it returns 0 as an ID. In any other case (> 1), the iterator would not consider first entry to
be a padding byte in the first place.

When an iterator is initialised, it finds the last valid element of a chunk. To optimise the
runtime of this operation, the iterator first jumps to the start of the next node (edge). This
is possible in constant time as it merely requires a lookup in the offset array. The iterator
then decrements its position until it finds a valid entry or reaches the start of the chunk.
If no edge has been removed from the graph and there are no gaps, the last element is
always valid and the iterator immediately knows where the chunk ends. Thus finding the
end of a chunk is in O(1), as exactly two lookups have to be executed. If edges have been
removed—which is only the case during partitioning—the worst case runtime is the max
degree of the graph. For edges, this operation is always in O(1), as the CSR edge array is
never altered and the last element in a chunk is always valid.

Proxy Object Access. To retain cross-compatibility with the structure of the static hyper-
graph, the Hypernode and Hyperedge interfaces are retained, but merely serve as proxy
objects. They are not stored in memory unless they are accessed by index. In this case, the
information of the weight array, validity array and the CSR array is combined to compute
all of the properties of the respective object listed in table 4.4.1 and initialise a temporary
proxy object.

In summary, these techniques reduce the memory consumption of each edge and node from
25 Bytes down to ≈ 10 Bytes1. This figure consists of 8 Bytes for the offset, 1-9 Bytes
for the degree/size and 1 Bit for the validity flag. It is important to note that all of the
improvements except for the compression of the degree can also be trivially implemented
in the static hypergraph without any additional overhead.

Contraction. Operating directly on compressed, varint gap–encoded CSR complicates
random access and forbids cheap in-place edits. To avoid inflation and fragmentation, the
algorithm rebuilds a new compressed hypergraph via streaming passes:

Representation challenges. (i) pins and incident nets are stored as varint headers plus
strictly increasing gap sequences, so random access requires short decoding prefixes; (ii)
structural edits would fragment arrays; (iii) detecting parallel coarse edges is costly if full
pin lists are decoded and materialized.

Strategy. (1) For each enabled fine edge, decode its slice once, map pins to coarse nodes,
then sort-unique; drop singletons. (2) Collect lightweight per-edge metadata in parallel
(hash, size, 32-bit fingerprint, ID); parallel-sort only a permutation by these keys; dedu-
plicate in one linear sweep, decoding candidates selectively on key matches and aggre-
gating weights into a representative. (3) Compute exact encoded length per coarse edge

1This is a conservative estimate which assumes that the node degree and hyperedge size can fit into two
varint bytes on average. Across the 488 files of the benchmark set, a [18], the average degree is ⌈25⌉ and
the average edge size is ⌈27⌉. Both of these values fit into a single block.
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(varint(|pins|) + gap varints), take a prefix sum, and write each edge directly into its disjoint
incidence slice in parallel. (4) Build incident nets in two passes: first count degree and byte
budget per node (including varint(degree) header and he-ordered gap costs); prefix-sum to
assign disjoint slices; then write headers and gap-encoded incident edges without races.

Parallelism and Determinism. Thread-local buffers remove contention; disjoint slice as-
signment eliminates write races; an explicit ID tie-breaker in the sort key yields determin-
istic output. Weights are assigned in a final sequential pass to avoid contention in compact
two-level vectors.

The purpose of these measures is to ensure: few linear passes over compressed data,
no global uncompressed materialisation, minimal peak memory usage, scalable parallel
throughput, and reproducible results.

4.4.4 Construction
The compressed hypergraph is streamed analogously to the stand-alone implementation.
Usually, graphs in Mt-KaHyPar are created using a two-part process. In the first step, the
entire graph with all of its edges is read into memory. Afterwards, this information is
passed to a Factory which creates a graph object dependent on the application (static vs.
dynamic, graph vs. hypergraph).

To minimise peak memory usage during the construction process, the compressed hyper-
graph is streamed directly from disk, meaning it is built while it is being read. As in the
un-buffered stand-alone implementation, the compressed adjacency list is immediately cre-
ated as a gap encoded CSR array. The node incidence lists are created as a NAR, but are
also encoded directly exploiting the properties outlined in section 4.3.
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CHAPTER 5
Experimental Evaluation

The following experiments assess the general efficacy of different compression techniques
on hypergraphs and the effects of introducing compression into Mt-KaHyPar.

5.1 Setup

All Benchmarks hereafter were executed on a machine equipped with a 12th Gen Intel®
Core™ i5-1235U processor. This CPU has a single socket with 6 physical cores and sup-
ports 12 hardware threads via simultaneous multithreading (2 threads per core). The pro-
cessor operates at a base frequency of 1.3–4.4 GHz and supports both 32-bit and 64-bit
modes with little-endian byte ordering. It provides 39-bit physical and 48-bit virtual ad-
dressing. The system is configured with 16 GiB of main memory. The cache hierarchy
consists of 288 KiB L1 data cache, 192 KiB L1 instruction cache, 7.5 MiB of L2 cache
distributed across cores, and a shared 12 MiB L3 cache. Hardware virtualisation (Intel
VT-x) was enabled, with Microsoft Hyper-V providing full virtualisation support. and
benchmarks were compiled under the Windows Subsystem for Linux and executed using
CMake version 3.28.3.

For experiments involving Mt-KaHyPar, the default preset was used. Graphs were parti-
tioned into 12 blocks using the km1 objective function with an ε of 0.03.

5.2 Gap vs. Gap-Interval Encoding

These results indicate that interval encoding can improve compression on the bipartite rep-
resentation of hypergraphs, but its effect is noticeably diminished compared to real-world
graphs. Surprisingly, we found that there are 54,850,115 intervals of length 3 or greater,
but they have a mean length of 5.118. This means that the intervals that do exist are close
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to the cut-off where interval encoding is applied, explaining both the low number of graphs
it affected at all and the lower effectiveness of the compression method.

Table 5.1: Gap Encoding vs. Interval Encoding

Dependent variable:

CompressionRatio

(1) (2)

Interval 0.909∗∗∗ 0.545∗∗∗

(0.251) (0.122)

Constant 2.435∗∗∗ 2.008∗∗∗

(0.177) (0.086)

Observations 144 976
R2 0.085 0.020
Adjusted R2 0.078 0.019
Residual Std. Error 1.503 (df = 142) 1.903 (df = 974)
F Statistic 13.148∗∗∗ (df = 1; 142) 20.019∗∗∗ (df = 1; 974)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.3 Comparison to KaMinPar

In direct comparison to KaMinPar, our implementation improved the geometric mean com-
pression ratio by 19% and the running time by 77%. The latter is likely because the graphs
were converted into their bipartite representation before being parsed by KaMinPar. This
essentially doubles the number of elements that have to be read from disk, as each vertex
in a hyperedge is added to two adjacency lists. Compression ratio measurements are un-
affected by this, as our implementation also uses the memory consumption of the bipartite
representation as the baseline.

5.4 Mt-KaHyPar

For the compressed hypergraph data structure, there are three critical objectives: The com-
pression ratio should be as high as possible, the partition time should be as short as possible,
and the partition quality should remain unaffected compared to the static hypergraph.
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Figure 5.1: Compression Ratio Histograms

To assess these objectives, the same hypergraph files will be read and multilevel-
partitioned, first using the static hypergraph and then using the compressed hypergraph.
We expect to see a high compression ratio on the data structure. Nevertheless, it is impor-
tant to point out that many of the applied optimisations can also be trivially implemented in
the static hypergraph. Except for the compression of the adjacency arrays, the replacement
of the Hypernode and Hyperedge objects with array and proxy object accessors changes
very little about the functioning of the data structure. Notwithstanding that, the benchmarks
are made against the static hypergraph as-is to gauge a realistic image of the improvements
that can be expected due to this paper.

The partition time is expected to increase. While previously, accessing an arbitrary element
in any given adjacency list was a constant-time operation, now, the lists have to be encoded
first. This is especially significant if there are frequent random accesses within the edges.
When the edge is not iterated through from start to finish, but the element at position x
is accessed directly, all previous entries have to be decoded as well. This is because the
values are delta-encoded. Thus, without decoding and accumulating all values from the
start of the list until position x, the value cannot be computed.

Construction Time. The experiments indicate that the streamed construction is faster than
the existing construction process that is employed by the static hypergraph. This result is
not completely surprising, as the two-step process of loading everything into memory first
and then constructing the graph is avoided. However, the current factory maps the file to
the virtual address space (mmap), so peak memory during construction is decreased and,
in some instances, the construction time is comparable.

Partition Time. On average, partition time increased by 0.436s. This constitutes a slow-
down of ≈ 36%. This result suggests that the compressed hypergraph should only be
used when memory constraints would make it impossible to process a hypergraph, or if the
partitioning process becomes slow due to virtual memory usage.

Memory Usage. As expected, the memory usage of the graphs could be significantly
reduced. The geometric mean compression ratio across all hypergraphs is ≈ 2.027. There
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Figure 5.2: Hypergraph Construction Time

Figure 5.3: Hypergraph Partition Time

are several reasons why the compression ratio fluctuates. Firstly, when IDs in the adjacency
lists are closer together, delta encoding works more efficiently. Secondly, the proxy object
optimisations become more significant the more sparse the graph is. For example, lazy
loading of the weight array is more effective the smaller the average node degree is, as
the weight takes up proportionally more of the graph’s memory. Table 5.3 summarises the
estimated savings by the respective technique.
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Figure 5.4: Hypergraph Compression Ratio

Table 5.2: Geometric Means of Savings Categories (KB)

Encoding BitVectors SizeDegree Total

2, 273 195 1, 564 7, 313

Peak Memory Usage. Figure 5.4 showcases the reduction in peak memory usage during
partitioning. The mean compression ratio is 1.542.

Save for some random variation likely caused by the use of heuristics, the partition qual-
ity is identical between the two data structures. Overall, these experiments demonstrate
that incorporating compression into Mt-KaHyPar enables substantial memory savings and
increases partition time while preserving solution quality. This trade-off makes it a valu-
able technique for large-scale hypergraph partitioning where available memory is a critical
bottleneck. However, due to the significance of the slowdown, it might be worth imple-
menting only the optimisations that are largely performance-neutral, such as bit vectors
and two-level weight vectors as used by Salwasser [16]. Table 5.3 summarises the esti-
mated savings by each technique.
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Figure 5.5: Hypergraph Partition Quality

Figure 5.6: Hypergraph Partition Quality
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Table 5.3: Geometric Means of Savings

Category Mean Saved KB

IncidenceSaved 1, 081
IncidentNetsSaved 1, 216

WeightsSaved 916
HypernodeValidBitsSaved 80
HyperedgeValidBitsSaved 100

HypernodeDegreeHdrSaved 640
HyperedgePinHdrSaved 799

TotalSavedB 5, 528
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CHAPTER 6
Discussion

6.1 Conclusion

This project developed a strategy for the streamed compression of hypergraphs. Employing
established compression methods, hypergraphs are converted into a gap-encoded bipartite
CSR adjacency list. During the input process of the graph, properties of the bipartite con-
struction are exploited to reduce peak memory consumption and immediately store vertex
arrays in a compressed format.

In Mt-KaHyPar, a new compressed data structure is added. It mimics the existing static hy-
pergraph but greatly reduces memory consumption. Since adjacency array access requires
decoding steps, this data structure is partitioned 36% slower on average, but it matches
the partition quality of the static hypergraph and achieves a mean compression ratio of
≈ 2.027.

6.2 Future Work

The memory savings in Mt-KaHyPar that the compressed hypergraph enables are accom-
panied by a significant runtime penalty. Future work might explore optimisations to the
compressed data structure that restore runtime performance. This might be accomplished
by sacrificing peak memory usage to cache decoded arrays or exploring techniques such as
run-markers, SIMD-based Stream VByte or branch-light pointer decoding.
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Implementation Details

Stand-Alone Interface

The graph interface provides several methods to interact with the static graph. By request,
individual neighbourhoods are decompressed and can either be iterated over or returned as
an array.

Table .1: Main Features and Methods of the Compressed Hypergraph Class

Method/Feature Description

Constructor Reads a metis file from a path

num_nodes() Returns the number of nodes in the graph.

num_edges() Returns the number of edges in the graph. This is useful
as variable-length encoding makes it difficult to extract
the number of edges in the array.

num_hyperedges() Returns the number of hyperedges in the graph.

operator[] Decompresses the neighbourhood of node i and caches
the last decompressed neighbourhood for efficiency.

for_each_neighbor() Applies a callback to each neighbour of node i, avoiding
the allocation of a vector.

compressed_graph() Returns a constant reference to the compressed adjacency
list.

used_memory() Estimates the memory usage of the compressed graph
structure.
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Benchmark Sets

The following table summarises key details about the benchmark set used in during testing.
It highlights the number of nodes, hyperedges, the max and average degree (∆), and max
and average edge size (ES).

Hypergraph Nodes Hyperedges Max ∆ Avg ∆ Max RS Avg ES
ISPD98_ibm06 32498 34826 91 3.94 35 3.68
sat14_dated-10-1... 629461 141860 10 2.27 26 10.08
ISPD98_ibm07 45926 48117 98 3.82 25 3.65
mixtank_new.mtx 29957 29957 154 66.60 154 66.60
sat14_aaai10-pla... 107838 308235 67 6.40 61 2.24
ISPD98_ibm08 51309 50513 1165 3.99 75 4.06
vibrobox.mtx 12328 12328 121 27.81 121 27.81
sat14_6s153.cnf.... 85646 245440 2048 6.69 3 2.33
RFdevice.mtx 74104 74104 9 4.93 271 4.93
sat14_6s133.cnf 96430 140968 1456 3.41 3 2.33
sat14_dated-10-1... 141860 629461 26 10.08 10 2.27
sat14_atco_enc2... 112732 526872 517 18.61 11 3.98
mult_dcop_01.mtx 25187 25187 22774 7.67 22767 7.67
sat14_6s153.cnf 171292 245440 1024 3.34 3 2.33
laminar_duct3D.mtx 67173 67173 89 57.06 89 57.06
sat14_hwmcc10-ti... 163622 488120 423 6.96 3 2.33
sat14_6s153.cnf.... 245440 85646 3 2.33 2048 6.69
ISPD98_ibm09 53395 60902 173 4.16 39 3.65
sat14_aaai10-pla... 53919 308235 73 12.81 61 2.24
sat14_atco_enc2... 56533 526872 1031 37.10 11 3.98
ISPD98_ibm10 69429 75196 137 4.29 41 3.96
sat14_dated-10-1... 1070757 229544 10 2.31 38 10.77
sat14_6s133.cnf.... 140968 48215 3 2.33 2912 6.82
sat14_6s9.cnf.dual 100384 34317 3 2.33 2696 6.83
sat14_dated-10-1... 283720 629461 13 5.04 10 2.27

Table .2: Hypergraph Benchmark Statistics.
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Zusammenfassung

Hypergraphen sind eine Verallgemeinerung der Graphdatenstruktur, bei der Kanten eine
beliebige Anzahl von Knoten verbinden dürfen, anstatt genau zwei. Dadurch sind sie
nicht auf die Modellierung binärer Beziehungen beschränkt und erweitern die Flexibil-
ität von herkömmlichen Graphen. Trotzdem ist Ihre Anwendbarkeit durch Speicher-
größen beschränkt. Diese Arbeit entwickelt eine komprimierte Hypergraph-Repräsentation
und implementiert diese in der parallelen Partitionierungsbibliothek Mt-KaHyPar. In der
eigenständigen Implementierung werden Hypergraphen in einen bipartiten Graphen trans-
formiert, in dem Hyperkanten durch künstlich eingefügte Knoten repräsentiert werden, die
dann mit allen Knoten verbunden sind, die sie im Originalgraphen verbunden haben. In Mt-
KaHyPar ahmt die Implementierung die bestehende statische Hypergraph-Datenstruktur
nach. Der komprimierte Hypergraph wird im Mittel um 36% langsamer partitioniert,
weist jedoch eine identische Partitionierungsqualität auf und erreicht ein mittleres Kom-
pressionsverhältnis von circa 2, 027 zur Speicherung des Graphen sowie 1, 542 während
der Partitionierung.
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