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Abstract

Clustering data represented by hypergraphs continues to gain significance in several dif-
ferent and overlapping fields of research, including pattern recognition, bio-informatics,
and machine learning. The hypergraph clustering problem seeks to divide the vertices of a
hypergraph into densely edge-connected subsets, called clusters, without predefining their
number or size. To solve this problem, we propose a two-phase algorithm with focus on
modularity maximization, to which end we introduce two modularity functions, one de-
fined on a graph and one defined on a hypergraph, supported by several proofs.

The first phase consists of a flow-based approach inspired by the concept of Natural
Cuts [15], iteratively computing minimum cuts on subhypergraphs to construct an initial
clustering. The second phase refines this clustering using a greedy strategy which moves
vertices between neighboring clusters to improve overall modularity. Both phases are de-
signed for parallel execution, which we present and analyze.

In our experimental evaluation, we compare numerous parameter settings, algorithm
variations, and modularity functions to determine the optimal configuration of our algo-
rithm. We further assess the efficiency and quality of our parallelization, and compare our
algorithm to state-of-the-art clustering strategies, demonstrating that our algorithm consis-
tently produces higher-quality clusterings.
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CHAPTER 1
Introduction

Graph Clustering is an essential technique used for analyzing data, but more often than
not, real world data engages in far more complex relations than graphs are able to repre-
sent. This has led to the growing use of hypergraphs, which allow us to model multi-way
relations more effectively. However, clustering hypergraphs remains significantly more
challenging, both in terms of adequacy and efficiency.

1.1 Motivation

In recent years, the use of hypergraphs has gained a growing amount of attention across a
wide range of applications, from bio-informatics to social sciences. Traditionally, relational
data has been modeled using graphs, relying solely on pairwise connections. However, it
has become increasingly obvious that such models are mostly insufficient to capture the
complexity of real-world interactions. In all contexts, from brain networks to studies of so-
cial dynamics, relations frequently occur among multiple data points simultaneously. This
realization has led to an increasing amount of research over the past decade emphasizing
the importance of higher-order connections. Hypergraphs, which generalize conventional
graphs by allowing edges to connect more than two vertices, are ideal for modeling such
multi-way relations.

A lot of research focuses on showing the importance of modeling complex systems as
hypergraphs: In neuroscience, for example, representing functional brain networks through
multi-vertex connections has been shown to reveal organizational principles of brain func-
tions that cannot be found by modeling them using pairwise connections [23, 42, 45]. Other
research showing the importance of hypergraphs in medical informatics include research-
ing the effects of combining three or more drugs [56] and metabolic engineering [29]. Sim-
ilarly, in social sciences, studies prove that for both humans [8] and animals [37], modeling
higher-order interactions is indispensable for characterizing and analyzing social dynamics,

1



1 Introduction

and this idea also extends to other areas, for example the analysis of scholarly collaboration
networks [41].

With the steadily growing popularity of hypergraphs arises the need for efficient and
effective algorithms to analyze the data they represent. Among the most important anal-
ysis techniques is clustering, which has the goal of splitting vertices into clusters while
maximizing edges inside and minimizing edges in between said clusters. For graphs, there
already exist a large number of highly efficient clustering algorithms, and they are fre-
quently applied to examine social, biological or neural networks represented by graphs.
For instance, clustering gene expression helps with the identification of functionally re-
lated genes [52], grouping cell lines assists in analyzing drug responses [12], and clus-
tering protein sequences aids in understanding protein families [36]. Analysis of online
social networks benefits from clustering techniques [31], and it is also used to cluster ego
networks [33]. Additional applications in other fields of study include analyzing air trans-
portation networks to improve planning and coordination [48], and enhancing personal
online recommendations[53].

Despite the recognized advantages of hypergraphs, clustering them in application re-
mains rarely used since clustering methods specifically designed for hypergraphs have not
been properly developed. Existing works include hypergraph spectral clustering applied
to protein-protein interaction networks between multiple species[35], partitioning of chro-
matin domains represented by hypergraphs [24] and clustering genotypic data [49]. Still,
these remain relatively sparse compared to the extensive research using graph clustering.
One option to cluster hypergraphs consists of transforming them into graphs to apply graph
clustering methods. However, this transformation leads to a loss of multi-vertex connec-
tions since they are replaced with pairwise ones, losing the additional information they
provide and effectively negating the advantages of the hypergraph representation. Conse-
quently, there is a growing need to develop clustering algorithms that operate, if possible,
directly on hypergraphs, thus preserving the structure of higher-order connections.

1.2 Our Contribution

In this work, we propose a clustering algorithm using flow-based minimum cuts adapted
to hypergraphs. We apply different modularity functions to ensure high quality and refine
results by a greedy strategy. Our key contributions are:

• Modularity Functions: We present, use and compare two modularity functions for
measuring clustering quality, one of them defined directly on the hypergraph to avoid
loss of information, and prove why the latter one is preferable in comparison to the
original versions it is based on. We develop and prove modularity gain functions for
both to efficiently compute the best choice with the highest modularity increase for
two different kinds of cluster adjustments.

• Flow-Based Clustering Algorithm for Hypergraphs: We extend the Natural Cuts [15]
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1.3 Structure

strategy for graph partitioning to hypergraph clustering by sampling and converting
subhypergraphs into flow networks, computing their minimum cuts and merging the
so-found clusters into a clustering of the entire hypergraph. We incorporate modu-
larity gain computations to select the most beneficial cuts.

• Greedy Refinement Procedure: We propose a local refinement algorithm that itera-
tively improves the initial clustering by moving vertices into neighboring clusters if
modularity increases.

• Parallelization Strategies: We design and analyze multiple parallelization approaches
for both the flow-based clustering and the greedy refinement phase, making our al-
gorithm more efficient for large hypergraphs.

These contributions provide a scalable modularity-driven framework for hypergraph clus-
tering that combines global structural clustering with local optimization and comes with
efficient parallelization.

1.3 Structure

The remainder of this thesis is organized as follows. Section 2.2 sets the foundation by
introducing key concepts and definitions used throughout this work. We introduce the
clustering problem in Section 2.2, define two hypergraph conversion techniques in Sec-
tion 2.4 and introduce flow networks in Section 2.5, which are a main component of our
algorithm. Section 3 lists different strategies for graph and hypergraph clustering, motivat-
ing a new approach that is presented in the following section. Section 4 presents our main
contributions as described in 1.2. We start by introducing the criteria for usable cluster-
ing quality functions, present two modularity functions, one of which is usable directly on
hypergraphs, and provide detailed mathematical proofs of why these functions satisfy the
criteria in Sections 4.1.1 and 4.1.2. We then continue with describing the first phase of our
algorithm in Section 4.2.1, where we explain how flow networks are sampled and derived
from hypergraphs and how we use minimum cuts to split clusters. In Section 4.2.2, we in-
troduce the greedy refinement strategy. Section 4.3.1 and Section 4.3.2 present and analyze
parallelization techniques, specifically three different approaches for the flow-based algo-
rithm. Section 5 begins by outlining implementation details and the experimental setup.
We then present a wide range of experiment results, in parts aimed at fine-tuning our algo-
rithm: we compare different choices for input parameters and stopping criteria to identify
the ones providing the highest quality clustering, which are then chosen for the final version
of our algorithm. We also assess efficiency and scalability of our parallelization. Addition-
ally, we compare our algorithm to the well-known and frequently used greedy modularity
maximization algorithms. Finally, we summarize and discuss our results and provide an
outlook on future research in Section 6.
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CHAPTER 2
Fundamentals

We begin by providing general definitions of graphs and hypergraphs, followed by an intro-
duction to the clustering problem and the closely related graph partitioning problem. Then,
we define some fundamental concepts, such as two different graph conversion techniques
and the maximum flow problem, that we will use later in our algorithm.

2.1 General Definitions

An undirected weighted graph G = (V,E, ω) consists of a vertex set V, an edge set E
where all e ∈ E are subsets of V of size 2, and a weight function ω : E → R+. We
denote the number of vertices and edges by |V | and |E|, respectively. Hypergraphs are a
generalization of graphs where one hyperedge can connect an arbitrary number of vertices.
A weighted hypergraph H = (V,E, ω) is defined similarly to G, the only difference being
the hyperedge set E with e ⊂ V ∀e ∈ E.

For both graphs and hypergraphs, the degree of a vertex v ∈ V is defined as

d(v) := |(e ∈ E : v ∈ e)|,

i. e., the number of hyperedges containing v. The weighted degree is defined as

kv = dω(v) :=
∑

e∈E : v∈e

ω(e).

The cardinality or size of a hyperedge e ∈ E is defined as

|e| := |(v ∈ V | v ∈ e)|,

which counts the number of vertices in e. For graphs, we always have |e| = 2. The
neighborhood of a vertex v ∈ V is defined as

N (v) := {i ∈ V \ {v} | ∃e ∈ E s.t. {v, i} ⊆ e} ,
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2 Fundamentals

i. e., all vertices that share at least one hyperedge with v.
We define the total edge weight as

m :=
∑
e∈E

ω(e).

In the case of unweighted graphs, this reduces to m = |E|. We also define the nontrivial
edge weight

m′ := m−
∑

e∈E : |e|=1

ω(e),

which excludes contributions from edges containing only one vertex, called self-loops
(graphs) or singleton edges (hypergraphs).

2.2 Clustering

For a given hypergraph H with vertex set V , hyperedge set E and positive edge weights,
the hypergraph clustering problem aims to partition V into densely connected components
so-called clusters. The goal is to maximize the sum of edge weights within the clusters
while minimizing the sum of weights of edges being cut. The number and size of clusters
are not predetermined, but rather depend on the network. Formally, a clustering by our
definition is a collection C = {C1, . . . , Ck} of disjoint subsets of V satisfying

V =
⋃
C∈C

C and Ci ∩ Cj = ∅ for all Ci ̸= Cj ∈ C.

Other definitions and methods might allow overlapping clusters [3], where one vertex can
be assigned to multiple clusters at the same time.

During and after the clustering process, each vertex v ∈ V is assigned to a cluster
denoted by C(v).

For each vertex v ∈ V , we define its neighboring clusters, i. e., the set of clusters con-
taining neighbors of v, as

NC(v) := {C ∈ C | ∃i ∈ N (v) s.t. C(i) = C} .

The volume of a set or cluster S ⊆ V is defined as

vol(S) :=
∑
v∈S

d(v),

where d(v) denotes the unweighted degree of v. For weighted hypergraphs, we define the
weighted volume analogously as

volω(S) :=
∑
v∈S

dω(v),
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2.2 Clustering

where dω(v) is the weighted degree of v. In most use cases on this paper, we will be
interested in the volume of the entire hypergraph, i. e., S = V .

To account for self-loops (edges of the form e = {v}), we define an adjusted weighted
volume as the counterpart of m′:

vol′ω(S) := volω(S)−
∑
e∈E

e={v}, v∈S

ω(e).

We also define the normalized volume of a set S as

nvol(S) :=
∑
v∈S

∑
e∈E
v∈e

1

|e|
,

and its weighted version by treating a hyperedge e of weight ω(e) as ω(e) parallel unit-
weight edges:

nvolω(S) :=
∑
v∈S

∑
e∈E
v∈e

ω(e)

|e|
.

For S = V , this evaluates to

nvolω(V ) =
∑
e∈E

|e| · ω(e)
|e|

=
∑
e∈E

ω(e) =: m.

Finally, we define the loyalty of a hyperedge e to a cluster C as

ℓ(e, C) :=
|e ∩ C|
|e|

,

that is, the fraction of the hyperedge’s vertices that are contained in the cluster.

2.2.1 Related Problem: Partitioning

The graph partitioning problem, which asks to divide a given graph into k disjoint parts
of roughly equal size, is closely related to graph clustering with no overlapping clusters
allowed. For graph partitioning, the focus lies on dividing a graph efficiently, often with
size constraints, as opposed to analyzing its structure. Still, a lot of techniques can be
used for and adjusted to either of these problems, e. g., multilevel partitioning tools like
KaHIP [44]. The Natural Cuts algorithm [15], which we adapt for our approach, is also
designed to solve the graph partitioning problem rather than graph clustering problem. For
further information on both theoretical aspects and main applications of graph partitioning,
we refer the reader to Bichot et al. [4].
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2 Fundamentals

2.3 Modularity Functions

In this section, we introduce two main clustering quality functions, one of which is defined
on a regular graph requiring previous hypergraph conversion, the other one defined di-
rectly on hypergraphs. These quality functions measure the difference between actual and
expected innercluster edges, a strategy which is called modularity. In-depth explanations
and proofs on why they are suitable can be found in Section 4.1.

2.3.1 Graph Modularity
To measure clustering quality on a clustered graph G, we will be using the modularity
function [39] below, which is maximized when the edge weight inside of clusters is higher
than expected and the edge weight in between clusters is lower than expected.
The modularity of a clustering C is computed by

Q1(C) =
1

2m

∑
i,j

[
Ai,j −

kikj
2m

]
δ(ci, cj)

with adjacency matrix A of G, so Ai,j is the edge weight between vertices i and j. δ(ci, cj)
is the Kronecker delta function, i. e., it is 1 iff i and j are in the same cluster, and 0 if not.
As defined in Section 2.1, ki is the sum of the weights of the edges incident to i, the
same goes for kj . The term kikj

2m
calculates the expected edge weight between i, j in the

configuration model based on G, a graph generation model which works by randomly
adding edges between vertices until the previously provided sum of incident edge weights
kn per vertex n is reached.

2.3.2 Hypergraph Modularity
Although applying modularity measures to the converted graph derived from a hypergraph
is straightforward and uses well-established methods, it reduces the complexity of the orig-
inal data by transforming higher-order relations into simple pairwise connections. There-
fore, despite the algorithmic convenience, we additionally use the following function to
measure clustering quality directly on a hypergraph, a modified version of the so-called
PI-modularity by Feng et al. [21]:

Q2(C) =
1

m

∑
C∈C

∑
e∈Eθ(C)

ω(e)l(e, C)

log2(
1

l(e,C)
+ 1)

− 1

|C|
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

with γ :=
vol′ω(H)− 2m′

vol′ω(H)−m′ and ηC := θ

(
1− nvolω(C)

m

)
Similar to the classical notion of graph modularity [39], the proposed function measures

the discrepancy between the actual contribution of hyperedges to a cluster C ∈ C and the
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2.4 Hypergraph to Graph Conversion

expected contribution according to the hypergraph expansion model (HEM), also proposed
by Feng et al. [21], which generates a random hypergraph on a given set of vertices with a
predetermined number of edges. The expected contribution is defined as

exp(C) :=
(1− ηC)

2

1 + γηC
1−γ

,

while the actual contribution is given by

supt(C) :=
∑

e∈Eθ(C)

ω(e) l(e, C)

log2

(
1

l(e,C)
+ 1

) ,
where supt is short for support.

Here, Eθ(C) denotes the set of θ-innercluster hyperedges for cluster C, i. e., those
hyperedges e for which at least a θ-fraction of their vertices are contained in C (i. e.,
|e ∩ C| ≥ θ|e|). This relaxed criterion generalizes the commonly used All-Or-Nothing
(AON) approach, e. g., by Chodrow et al. [13] and Kaminski et al. [28], where a hyperedge
is only considered to be part of cluster only if all of its vertices lie within it. While AON
simplifies computation, it neglects even those hyperedges that are almost entirely contained
within a single cluster, losing important structural information. The θ-based definition al-
lows for a more flexible and nuanced inclusion of hyperedges, making the measure more
adaptable to varying hypergraph structures. The parameter θ ∈ (0, 1] can be adjusted de-
pending on if a stricter or looser definition of internal connectivity is required. Since we
consider weighted hypergraphs with integer weights ω(e), each hyperedge e of weight ω(e)
is interpreted as ω(e) parallel hyperedges of weight 1. This transformation enables us to
derive all theoretical results in the unweighted setting without loss of generality; all proofs
extend naturally to the weighted case. Finally, we recall that m is defined as the sum of all
hyperedge weights as described in Section 2.1, as opposed to the commonly used definition
of m = |E|.

2.4 Hypergraph to Graph Conversion

Throughout the proposed algorithm introduced later in this work, we will encounter multi-
ple sections where the input hypergraph must be transformed into a graph. This is necessary
because some of the techniques and formulas we employ are inherently defined for graphs
with edges of cardinality 2 (|e| = 2) and are not directly applicable to hypergraphs. The
process of converting a hypergraph into a graph, often called reduction, is not uniquely
defined, and the most appropriate conversion method can vary depending on the specific
objective or structural property that should be preserved.

9



2 Fundamentals

2.4.1 Clique Reduction
The first and most intuitive conversion strategy is called clique reduction [26], and it works
exactly as the name suggests. Given a hypergraph H = (V,E, ω), every hyperedge e ∈ E
is replaced by a clique, meaning it is replaced by

(|e|
2

)
graph edges, one for every pair of

vertices of e. Every edge of said clique is assigned the same weight of ω(e)
|e|−1

, ensuring the
preservation of kn for all vertices, i. e., for any vertex i ∈ V , the sum of weights of incident
edges is maintained, meaning ki in H = ki in G. Occurring parallel edges are combined
into one single edge by summing up the edge weights. Self-loops are removed as they do
not affect the clustering since they will always be contained entirely inside of a cluster.
Figure 2.1b depicts an example: hyperedges of size 2 become normal graph edges, larger
hyperedges are replaced by clique, in this case with edges of weight 0.5 since they are all
size 3, and parallel edges are merged into one by summing up the weight.

Clique reduction, as opposed to other reduction approaches, does not add any new ver-
tices, so it allows direct application of the later introduced graph modularity without mod-
ifying the modularity definition. Additionally, graph modularity computes the expected
number of edges between pairs of vertices based on weighted vertex degree, so it is neces-
sary to ensure this does not change during conversion, which clique reduction does. Even
though the quadratic blow-up of edges (one edge of cardinality n is replaced by 1

2
n(n− 1)

edges) can be seen as a drawback in terms of computational efficiency, it emphasizes the
strength of association among vertices within each former hyperedge, which is important
for computing an accurate modularity.

2.4.2 Star Expansion
The second type of conversion [11] is more efficient: given a hypergraph H = (V,E, ω),
every hyperedge e ∈ E with |e| > 2 is replaced by one new auxiliary vertex v and |e| graph
edges connecting every single one of the vertices formerly contained in the hyperedge e
to v. Each one of these new edges is assigned the weight of the original hyperedge e.
Hyperedges of size 2 are simply replaced by a normal edge since they are equivalent.
Figure 2.1c depicts an example: Hyperedges of size 2 become normal graph edges, and
larger hyperedges are replaced by a new vertex (gray) and one edge per vertex contained in
former hyperedge.

Because it works by inserting additional vertices, star expansion is not suitable for mod-
ularity computations. However, it is a fitting choice for preparing the hypergraph for min-
imum cut computations, a strategy employed in the Natural Cuts component of our algo-
rithm described in Section 4.2.1. Given that computing a min-cut requires preserving as
much hyperedge information as possible, star expansion is the obvious choice. It upholds
the global connectivity of a hyperedge rather than decomposing it into pairwise relations,
which can lead to a loss of structural information.
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Figure 2.1: Hypergraph to Graph Conversion

In this model, cutting a converted hyperedge requires cutting all connections to the aux-
iliary vertex, whereas clique expansion allows individual edges to be cut independently,
potentially underestimating the true cost of cutting the original hyperedge.

2.5 Flow Networks

We consider a capacitated flow network F = (V,E, c, s, t), where V is the set of vertices
and E ⊆ V ×V is the set of directed edges, also often called arcs. Each edge (i, j) ∈ E has
a nonnegative capacity cij ≥ 0. Two distinguished vertices are the source s ∈ V and the
sink t ∈ V . This construct can be interpreted as a regular directed graph with nonnegative
weights ω to represent the capacity.

A flow is a vector x = {xij}(i,j)∈E that satisfies:∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = f if i = s

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0 if i ∈ V \ {s, t}

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = −f if i = t

0 ≤ xij ≤ cij for all (i, j) ∈ E

The goal of the maximum flow problem is to find a feasible flow x that maximizes the
total flow value f from the source s to the sink t.

We refer the reader to Ahuja et al. [2] for more detailed descriptions of flow algorithms
and applications.
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2 Fundamentals

The minimum cut problem on the other hand asks to partition the set of vertices V (F )
into two disjoint sets S and T where s ∈ S and t ∈ T s.t. the capacity of the cut (S, T ) is
minimized. The capacity is defined as:

cap(S, T ) :=
∑

(i,j)∈E
i∈S, j∈T

c(u, v).

Ford and Fulkerson [22] showed that in any capacitated flow network, the maximum
value of a feasible s-t flow is equal to the minimum capacity of an s-t cut. This enables
us to apply efficient state-of-the-art maximum flow algorithms to compute minimum cuts,
which we will need in our algorithm later.
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CHAPTER 3
Related Work

Many different approaches for solving both the graph and the hypergraph clustering prob-
lem have been proposed in literature [47, 6, 27, 30]. These methods can be broadly grouped
into several categories based on how they define cluster quality, whether they allow over-
lapping clusters, and whether they operate globally or locally on the input structure.

3.1 Graph Clustering Methods

Among all the different ways of clustering a graph, working with modularity functions [38],
which aim at maximizing innercluster edges while simultaneously minimizing edges in be-
tween clusters, remains the most frequently used method. The preferred method on regular
graphs is the Louvain algorithm by Blondel et al. [6], a greedy modularity maximization
approach which starts with one vertex per cluster and uses local search to move vertices to
new clusters such that modularity is optimized. Extensions like the Leiden algorithm [50]
further improve upon Louvain by addressing disconnected clusters and refining local move-
ment, which makes it useful as a robust modularity maximization baseline for both graphs
and converted hypergraphs.

Another quality measure which can be used to cluster a graph is called conductance,
measuring how well-separated a group of vertices (cluster) is from the rest of a graph [32].
To accurately measure the quality of less densely clustered graphs, another metric to use
is cluster path length, which measures quality based on the length of paths inside of clus-
ters [54].

Spectral clustering [27], [55] is a fundamentally different approach to clustering a graph
as compared to modularity optimization. This method makes use of the eigenvectors of
the graph Laplacian to project vertices into a k-dimensional space, where it becomes easier
to detect clusters. Then, traditional clustering methods such as k-means can be applied,
which for each cluster computes the average position of all points currently assigned to

13



3 Related Work

that cluster (centroid) and assigns each point to the closest centroid’s cluster, minimizing
within-cluster variance, i. e., the total distance from each point to its cluster.

Another method for clustering a graph is modeling it using mathematical programming.
For instance, linear or integer programming formulations can optimize cluster quality based
on flow or cut-based metrics [9]. These methods are often computationally expensive but
can provide strong guarantees.

Although many methods require disjoint clusters, some clustering strategies allow over-
lapping communities. One of these techniques is called seed expansion, where clusters are
grown from small sets of vertices by adding nearby vertices that meet certain connectivity
criteria while allowing them to belong to multiple clusters at the same time [34, 51]. The
Label Propagation Algorithm (LPA) [43] and Clique Percolation [40], where overlapping
communities are found via percolation of k-cliques, are other well-known methods that
naturally yield overlapping clusters.

Finally, one approach is to take advantage of the efficient computability of max-flow
solvers and the max-flow min-cut theorem as described in Section 2.5. Since graph clus-
tering aims to identify clusters with as few edges between them as possible, finding the
minimum cut that separates sets of vertices in the graph is a useful strategy, used by
Feng et al. [21] and Sarcheshmehpour et al. [46] among others, and it forms the foundation
of our algorithm as well.

3.2 Hypergraph Clustering Methods

Hypergraph clustering presents additional challenges due to the complexity of hyperedges
connecting multiple vertices. The most intuitive approach is clustering a hypergraph by
converting it into a graph and then applying graph clustering methods like Louvain [6], as
described in the work of Kumar et al. [30].

Instead of transforming the hypergraph to match the modularity function, it is also possi-
ble to extend the definition of modularity to hypergraphs. The simpler but less meaningful
option is to only count a hyperedge towards a cluster if it is completely contained, also
called the All-Or-Nothing approach (AON) [13, 28]. Feng et al. [21] avoid this by intro-
ducing the Partial Innerclusteredge modularity (PI) based on a new random hypergraph
model called the Hyperedge Expansion Model (HEM). In their paper, they propose the
so-called clustering algorithm Partial Innerclusteredge Clustering (PIC) which optimizes
PI-modularity (defined in Section 4.1.2).

To simplify cluster analysis, one can look at k-uniform hypergraphs which restrict hy-
peredge sizes to k, i. e., every hyperedge hyperedge contains exactly k vertices [1, 7]. This
constraint allows generalization of graph-based concepts such as conductance or modular-
ity.

A method working directly on hypergraphs without conversion or restriction is called
motif-based clustering [10, 11] which groups vertices into one cluster based on recurring
small patterns (motifs) in a hypergraph. This is especially useful for hypergraphs and com-
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plex networks where relations involve more than two vertices. Other hypergraph clustering
strategies work via merging clusters by using a so-called linkage function, computing the
similarity between pairs of clusters and merging those with highest similarity [17].
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CHAPTER 4
Clustering Hypergraphs

In this chapter, we describe our strategy for clustering hypergraphs, making decisions based
on different modularity functions measuring clustering quality. We begin by offer some
proofs on why our modularity functions are suitable. We then continue with descriptions
of the flow-based cuts algorithm and the greedy improvement strategy used, and discuss
impact of parameter variations. Finally, we present different parallelization techniques and
their strengths and drawbacks.

4.1 Measuring Clustering Quality

To measure the quality of a hypergraph clustering, we need a formula with the following
properties:

1. It needs to be bounded to ensure interpretability by keeping values in a known range
and comparability of different clusterings on the same hypergraph.

2. It should take on values ≤ 0 for both trivial solutions, where either all vertices are
in a single cluster or every vertex is in its separate cluster, since none of these two
clusterings convey any information about the connection of the represented data.

3. Most importantly, it needs to fulfill the criterion for a good/bad clustering: The goal
is to maximize the sum of edge weights within clusters while simultaneously min-
imizing the sum of edge weights in between clusters, so the quality measurement
formula should be high when these conditions are met, and low when they are not.

A well-known measure meeting all the listed criteria is called modularity, originally in-
troduced by Newman et al. [39], and it is defined as the difference between the expected
fraction of edges and the fraction of edges that actually fall within clusters. For graphs
with only edges of size 2, defining a modularity formula is straightforward and commonly
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4 Clustering Hypergraphs

used, which is why we are introducing it here, even though it requires rather inefficient
hypergraph-to-graph conversion, losing information in the process. To avoid the downsides
of computing clustering quality of a hypergraph on its graph counterpart, we are addition-
ally using another modularity formula defined directly on a hypergraph. Since translating
the concept of modularity on graphs with edges of any size is rather ambiguous, there is
not one single hypergraph modularity function that is commonly used, but many different
definitions.

The hypergraph modularity function we use here is a modified version of the so-called
PI modularity [21]. The original function is not suitable for our case because it was defined
for unweighted edges and does not meet all the criteria mentioned above, proofs can be
found in Lemma 5 and Lemma 6. In the following, we will prove some main qualities for
both quality functions and derive two gain functions each to simplify and optimize their
later usage in our clustering algorithm.

4.1.1 Graph Modularity
As already introduced in Section 2.3.1, we will be using the following modularity func-
tion [39]:

Q1(C) =
1

2m

∑
i,j

[
Ai,j −

kikj
2m

]
δ(ci, cj)

The modularity Q1 is high if actual weight between i, j in G is higher than the expected
weight for all (or a majority of) i, j in same cluster. Evidently, maximizing the modularity
function is the same as maximizing edge weight sums in clusters and minimizing them
in between clusters, which is exactly what we want. As we will see in the following two
lemmas, Q1 also meets the other requirements for quality measuring functions.

Lemma 1
The modularity function Q1 is bounded; more specifically, its values always lie within the
interval [−1, 1].

Proof. First we need to prove that Q1 ≤ 1. This part is easy to see: Q1 is maximized
when the number of innercluster-edges is maximized, so we assume all edges are inside of
clusters. We get

1

2m

∑
i,j

Ai,jδ(ci, cj) =
1

2m

∑
i,j

Ai,j = 1,

and since kikj
2m

is obviously always positive, Q1 is bounded from above by 1, so Q1 ≤
1
2m

∑
i,j Ai,jδ(ci, cj) ≤ 1 Now we need to show that Q1 ≥ −1. We know that Q1 is

minimized when all edges are between clusters, so none are in the same cluster. This
means

∑
i,j Ai,jδ(ci, cj) = 0, and

1

2m

∑
i,j

kikj
2m

δ(ci, cj) ≤
1

2m

∑
i,j

kikj
2m

=
1

(2m)2

∑
i,j

kikj =
1

(2m)2

[∑
i

ki

]2

=
(2m)2

(2m)2
= 1
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so

Q1 =
1

2m

∑
i,j

Ai,jδ(ci, cj)−
1

2m

∑
i,j

kikj
2m

δ(ci, cj) = 0− 1

2m

∑
i,j

kikj
2m

δ(ci, cj) ≥ −1.

■

Lemma 2
For trivial clusterings carrying no meaningful information (assigning all vertices to the
same cluster or placing each vertex in its own cluster), Q1 = 0.

Proof. For |C| = 1, all edges lie inside of a cluster, so δ(ci, cj) is always 1, and by
transforming the expression as in the proof above using

∑
i,j

kikj =

[∑
i

ki

]2

= (2m)2,

we get Q1 = 0. For ci ̸= cj for all vertices i, j, all edges fall in between clusters, meaning
we simply have δ(ci, cj) = 0 ∀ci, cj , so Q1 = 0 as well. ■

Since a quality value of less than 0 (Q1 ≤ 0) would imply that this division into clusters
is worse than if assigned randomly, we work with a clustering quality between 0 and 1, and
ensure this by starting with a null model (e. g., all vertices in the same cluster) and only
allowing changes that increase clustering quality.

Modularity Gain. To be able to use this formula efficiently in our algorithm later, we
need to avoid recomputing the entire modularity as much as possible by only calculating
the change in modularity resulting from the cluster changes. We will be dealing with two
different kinds of clustering modifications:

In one case, we need to calculate the change in modularity when "layering" a new cluster
S on top of the already existing clusters, splitting each old cluster C into two new ones
C1 := C ∩ S, C2 := C \ C1. Instead of recomputing the entire graph modularity, it
is enough to only consider the clusters getting split. In most cases, this strategy is more
efficient since rarely all clusters are affected. We compute the changes in modularity of
clustering C with the following formula with input set S:

∆Q1(C, S) =
1

m

∑
i∈S,j /∈S

j∈former cluster(i)

[
kikj
2m
− Ai,j

]

Lemma 3
∆Q1(C, S) correctly computes the change in modularity when splitting of C according to
S as described above.
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4 Clustering Hypergraphs

Proof. We begin by showing that ∆Q1(C, S) properly determines the modularity adjust-
ment for splitting one cluster of the original clustering C. The contribution of one cluster
C ∈ C to the total modularity of C is

1

2m

∑
i∈C
j∈C

[
Ai,j −

kikj
2m

]
,

and by adding ∆Q1(C, S) for cluster C we get

1

2m

∑
i∈C
j∈C

[
Ai,j −

kikj
2m

]
+

1

m

∑
i∈S∩C,j /∈S

j∈former cluster(i)

[
kikj
2m
− Ai,j

]

=
1

2m

(∑
i∈C
j∈C

[
Ai,j −

kikj
2m

]
− 2

∑
i∈C1
j∈C2

[
Ai,j −

kikj
2m

])

=
1

2m

( ∑
i∈C1
j∈C1

[
Ai,j −

kikj
2m

]
+

∑
i∈C2
j∈C2

[
Ai,j −

kikj
2m

]

+
∑
i∈C1
j∈C2

[
Ai,j −

kikj
2m

]
+

∑
i∈C2
j∈C1

[
Ai,j −

kikj
2m

]
− 2

∑
i∈C1
j∈C2

[
Ai,j −

kikj
2m

])

=
1

2m

( ∑
i∈C1
j∈C1

[
Ai,j −

kikj
2m

]
+

∑
i∈C2
j∈C2

[
Ai,j −

kikj
2m

])

which is exactly the contribution of the two new clusters C1, C2 to the modularity of the
entire graph. By summing up over i ∈ S, j /∈ S, j ∈ former cluster(i), we adjust the
modularity for all clusters being split an thus get

Q1(C) + ∆Q1(C, S) = Q1(C ′)

with C ′ being the new clustering after applying the changes as described above. ■

This gain function is very intuitive as we simply adjust the modularity for all i, j that used
to be in the same cluster but are now separated. Only pairs of vertices in the same cluster
have an impact on Q1, and the algorithm only performs cluster splits, without merging
clusters or moving individual vertices. Therefore, no new pairs i, j of vertices in the same
cluster are introduced, and thus no other changes to the modularity need to be considered.

In the other case, we want to compute the quality change for moving a single vertex to
one of its neighboring clusters, i. e., clusters that contain neighboring vertices. Here, we
have an even smaller change in modularity, and directly computing the modularity gain is
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4.1 Measuring Clustering Quality

decidedly more efficient. The gain of moving vertex i from its old cluster Cold to a new
cluster Cnew can be computed as follows:

∆Q1(i, Cold → Cnew) =
ki,in, new − ki,in, old

m
− ki(Σtot, new + Σin, new − Σtot, old − Σin, old + ki)

2m2

We denote by
∑

in the sum of the weights of all edges with both endpoints in cluster C,
and by

∑
tot the sum of the weights of all edges incident to vertices in C. Furthermore, for

a vertex i, we define ki,in as the sum of the weights of all edges between i and other vertices
in C. The old / new in the subscript refers to which cluster this variable is in reference to,
e. g.,

∑
in, new is defined as sum of the weights of all edges with both endpoints in cluster

Cnew.

Lemma 4
∆Q1(i, Cold → Cnew) correctly computes the change in modularity when moving a vertex
i from its current cluster Cold to Cnew.

Proof.
To construct this formula, we decompose the process of moving vertex i from its original

cluster to a new cluster into two steps: First, i is removed from its current cluster Cold and
placed into a new isolated cluster (singleton). Then, in a second step, i is moved from
this singleton into the target cluster Cnew. As a singleton has no internal edges and hence
does not contribute to the overall modularity, this decomposition into two parts simplifies
the understanding of the gain formula without adding unnecessary computations to the
function. Moreover, moving a vertex from a singleton cluster into an existing cluster yields
a modularity gain that is equal in magnitude but opposite in sign to the gain obtained when
moving the same vertex from that cluster back into the singleton, so it suffices to consider
only one direction of the move in the analysis. To compute the contribution of a given
vertex i in cluster C ∈ C to the total modularity of C, it is only necessary to consider
vertices j ∈ C and thus can be written as follows:

1

m

∑
j∈C

(
Ai,j −

kikj
2m

)
Here, the expression is multiplied by 1

m
instead of 1

2m
, since each vertex pair (i, j) is con-

sidered only once. In contrast, the original modularity function Q1 accounts for both (i, j)
and its symmetric counterpart (j, i), effectively double-counting each edge.

Additionally, observe that

(1)
∑
j∈C

Ai,j = ki,in, and (2)
∑
j∈C

kj = Σtot + Σin.

Identity (1) holds by definition of ki,in. For (2), note that we are summing the weighted
degrees of all vertices in C, which includes each internal edge twice, once from each end-
point in C, and each external edge once. Thus, the result equals the sum of all edge weights
incident to vertices in C, i. e., Σtot + Σin. Combining these results, we get
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1

m

∑
j∈C

(
Ai,j −

kikj
2m

)
=

1

m

(∑
j∈C

Ai,j −
ki
2m

∑
j∈C

kj

)
=

1

m

(
ki,in −

ki
2m

(Σtot + Σin)

)
.

We have now determined the change in modularity associated with moving a vertex i from
an isolated cluster into an existing one. By symmetry, the modularity change for moving i
out of a cluster into its own singleton follows directly, with the only remaining adjustment
being Σtot and Σin for the original cluster. Since our formula assumes that i is no longer
part of the cluster, we must account for the fact that its edges should no longer contribute to
Σtot and Σin: edges that were previously internal now only contribute to Σtot, and edges that
were previously external are no longer connected to the cluster at all. Overall, this change
is captured by subtracting ki from the sum, i. e., we get Σitot + Σin − ki. Summing up
the modularity of both earlier described steps and performing some trivial simplifications
yields

1

m

(
ki,in, new −

ki
2m

(Σtot, new + Σin, new)

)
− 1

m

(
ki,old −

ki
2m

(Σtot, old + Σin, old − ki)

)
=

ki,in, new − ki,in, old

m
− ki(Σtot, new + Σin, new − Σtot, old − Σin, old + ki)

2m2

= ∆Q1(i, Cold → Cnew)

■

Observe that if vertex i has no neighboring vertices in Cnew, then ki,in, new
m

= 0. In this case,
even if the third and fourth terms in the modularity gain function representing moving i out
of Cold were positive, it would still be preferable to assign i to a singleton cluster. This is
because the expression

−ki(Σtot, new + Σin, new)

2m2

would evaluate to zero, rather than contributing a negative value to ∆Q1(i, Cold → Cnew).

4.1.2 Hypergraph Modularity
We will begin by introducing the original PI-modularity functions by Feng et al. [21], one
from the paper and one from the implementation, and prove that they do not meet all criteria
from 4.1. We start with the definition offered in the paper:

PI(C) = 1

m

∑
C∈C

( ∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

− m(1− ηC)
2

1 + γηC
1−γ

)
Lemma 5
The original function PI(C) for unweighted graphs [21] by Feng et al. is unbounded.
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Proof. We begin by bounding the relevant parameters and expressions. Note that for all
0 < x ≤ 1, the inequality

0 <
x

log2
(
1
x
+ 1

) ≤ x

holds. Furthermore, for all e ∈ E, by definition of l(e, C) we have

0 ≤
∑

C : e∈Eθ(C)

l(e, C) ≤ 1, with 0 < l(e, C) ≤ 1.

It follows that

0 <
1

m

∑
C∈C

∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

=
1

m

∑
e∈E

∑
C:e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

≤ 1

m

∑
e∈E

∑
C:e∈Eθ(C)

l(e, C) ≤ 1

m

∑
e∈E

1 = 1

Next, we bound the parameters γ and ηC . By definition, trivial edges are excluded from
vol′(H) and m′, implying vol′(H) ≥ 2m′. Hence,

0 ≤ vol′(H)− 2m′

vol′(H)−m′ < 1,

where γ → 1 as vol′(H)→∞.
For ηC , we use the bound nvol(C) ≤ m, which gives

0 <
nvol(C)

m
≤ 1⇒ 0 ≤ θ

(
1− nvol(C)

m

)
< θ ≤ 1

Let

T (ηC , γ) :=
(1− ηC)

2

1 + γηC
1−γ

.

Since (1 − ηC)
2 > 0 for 0 ≤ ηC < 1 and 1 + γηC

1−γ
> 1 for 0 ≤ γ < 1, we immediately

obtain T (ηC , γ) ≥ 0.
To show T (ηC , γ) < 1, consider:

(1− ηC)
2

1 + γηC
1−γ

< 1 ⇐⇒ (1− ηC)
2 < 1 +

γηC
1− γ

.

Expanding the left-hand side gives:

1− 2ηC + η2C < 1 +
γηC
1− γ

⇐⇒ ηC

(
ηC − 2− γ

1− γ

)
< 0.
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Since ηC ≥ 0 and ηC − 2 − γ
1−γ

< 0 for all 0 < ηC < 1 and 0 ≤ γ < 1, the inequality
holds. Hence, 0 ≤ T (ηC , γ) < 1.

What remains to be shown is that the term

1

m

∑
C∈C

m(1− ηC)
2

1 + γηC
1−γ

=
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

=
∑
C∈C

T (ηC , γ)

is unbounded as the number of clusters grows. To demonstrate this, we consider a graph
partitioned into a large number of clusters, where each cluster contains exactly one vertex
(i. e., singleton clusters), and each vertex has degree 1. For simplicity, we assume a graph,
where each edge connects exactly two vertices. In this setting, since the graph is binary,
we have γ = 0. Moreover, the normalized volume of each cluster satisfies nvol(C) = 1

2
,

and thus

∑
C∈C

T (ηC , γ) = |C|(1− ηC)
2 = 2m(1− θ(1− 0.5

m
))2

= 2m(1− θ)2 + 2θ(1− θ) +
θ2

2m

m→∞−−−→∞

which shows that PI(C) is not bounded from below. ■

Evidently, this definition of PI-modularity proves unsuitable for our purposes, as it may
produce arbitrarily low quality scores, thereby undermining the comparability of clustering
results.

A slightly modified version of this modularity function can be found in the implementa-
tion [20] by Feng et al. associated with their publication [21] :

PIimpl(C) =
1

m

∑
C∈C

( ∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

− (1− ηC)
2

m(1 + γηC
1−γ

)

)

This version is preferable, as it is bounded. This is not proven here, but follows readily
from the reasoning and estimations used in the proof of Lemma 5, suitably adapted to
this formula. However, it exhibits another shortcoming that renders it unsuitable for our
purposes, as will be demonstrated below.

Lemma 6
The function PIimpl(C) for unweighted graphs found in the implementation [20] by
Feng et al. associated with their publication [21] approaches 1 very quickly for the trivial
clustering of all vertices in the same cluster, when number of edges approaches infinity.
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Proof. Assume all vertices are in the same cluster. In that case, l(e, C) = 1 and e ∈ Eθ(C)
for all edges, and thus

1

m

∑
C∈C

∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

=
1

m

∑
e∈E

1 = 1.

Additionally, we get nvol(C) = m, so nvol(C)
m

= 1 and ηC = 0, which leads to

1

|C|
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

= 1

so it is obvious that

PIimpl(C) =
1

m

∑
C∈C

( ∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

− (1− ηC)
2

m(1 + γηC
1−γ

)

)

= 1− 1

m

(
(1− ηC)

2

m(1 + γηC
1−γ

)

)
= 1− 1

m2

m→∞−−−→ 1

■

Since this function does also not meet our criteria from Section 4.1, we have proven that
our suggested changes resulting in the function

Q2(C) =
1

m

∑
C∈C

∑
e∈Eθ(C)

ω(e)l(e, C)

log2(
1

l(e,C)
+ 1)

− 1

|C|
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

,

as already introduced in Section 2.3.2, are necessary. We remains to show is that this new
function Q2 does meet all criteria from Section 4.1, which we will do in the following.

Lemma 7
The modularity function Q2 is bounded; more specifically, its values always lie within the
interval (−1, 1].

Proof. For this proof, we primarily rely on the bounds established in the proof of Lemma 5.
From that, we know

0 <
1

m

∑
C∈C

∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

≤ 1

and

T (ηC , γ) :=
(1− ηC)

2

1 + γηC
1−γ

, 0 ≤ T (ηC , γ) < 1

It follows that
1

|C|
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

<
1

|C|
∑
C∈C

1 = 1
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Combining all results, we get
−1 < Q2(C) ≤ 1

which concludes the proof. ■

Lemma 8
For trivial clusterings carrying no meaningful information, i. e., assigning all vertices to the
same cluster or placing each vertex in its own cluster, Q2 ≤ 0.

Proof. We begin by showing this for the easier case, where all vertices are inside of one
large cluster. From the proof of Lemma 6, we already know that

1

m

∑
C∈C

∑
e∈Eθ(C)

l(e, C)

log2(
1

l(e,C)
+ 1)

= 1

and
1

|C|
∑
C∈C

(1− ηC)
2

1 + γηC
1−γ

= 1,

so we get Q2(C) = 1− 1 = 0 as required.
The second case, where every vertex is in a singleton, is more complicated to show. For a
hyperedge e with |e| vertices, we have |e ∩ C| ≤ 1 for all C. Thus, for any cluster C,

l(e, C) =
|e ∩ C|
|e|

≤ 1

|e|
.

Therefore, if we assume θ > 1
mine∈E |e| , no edge satisfies the θ-inner-cluster condition in

any cluster. As a result, the first term in Q2(C) evaluates to 0. For the second term, we use
nvol(C)≪ m to get ηC → θ and consequently,

(1− ηC)
2

1 + γηC
1−γ

→ (1− θ)2.

hence it approaches 0 as θ → 1. Therefore, Q2(C) ≤ 0 under singleton clustering when θ is
chosen large enough. If we pick a smaller θ, more edges will be counted as being inside of
a cluster, increasing the first term of Q1 only marginally because singleton clusters imply
small values for l(e, c)). Simultaneously, the second term approaches 1 as θ → 1, ensuring
that Q1 ≤ 0. ■

We conclude that Q2 serves as a suitable function for measuring clustering quality, as it
satisfies the essential criteria of a modularity function that we demanded at the beginning
of this chapter in Section 4.1: (1) it is bounded, (2) it assigns low quality scores to trivial
clusterings, and (3) it computes the difference between expected and actual edges inside of
clusters.

26



4.1 Measuring Clustering Quality

Modularity Gain. As for the graph modularity function Q1, we aim to minimize re-
dundant computations when evaluating changes in clustering quality. To this end, deriving
modularity gain functions is a key step toward developing an efficient algorithm. We again
introduce two expressions for the modularity gain ∆Q2, each corresponding to a different
type of cluster modification, the same ones as introduced in Section 4.1.1 Both expressions
follow directly from the definition of Q2, using arguments analogous to those employed in
Lemmas 3 and 4, which is why we omit formal proofs to avoid repetition and only provide
explanations.

The first gain function, denoted by ∆Q2(C, S), measures the change in clustering quality
resulting from splitting each affected cluster C ∈ C into two disjoint new clusters C ∩ S
and C \ S, where S ⊂ V is a given set of vertices. We define C ′ ⊂ C, C ∈ C ′ if C ∩ S ̸= ∅
and C ∩ S ̸= S, and get the following definition:

∆Q2(C, S) =
1

m

∑
C∈C′

(
suptθ(C ∩ S) + suptθ(C \ S)− suptθ(C)

)
− 1

|C ′|
∑
C∈C′

(
exp(C ∩ S) + exp(C \ S)− exp(C)

)

This clustering adjustment affects all clusters C sharing at least one and at most |C| − 1
vertices with set S, because in those cases, C is being split into two new clusters. Therefore,
the actual and expected edge contributions must be updated for all such clusters C ∈ C ′
by subtracting their previous contributions and adding the respective contributions of the
resulting clusters C ∩ S and C \ S.

The second gain function, denoted ∆Q2(i, Cold → Cnew), captures the change in quality
resulting from moving vertex i from cluster Cold to cluster Cnew:

∆Q2(i, Cold → Cnew) =
1

m

(
suptθ(Cnew ∪ {i})− suptθ(Cnew)− suptθ({i})

−
(

suptθ(Cold)− suptθ(Cold \ {i})− suptθ({i})
))

−
(

exp(Cnew ∪ {i})− exp(Cnew)− exp({i})

−
(

exp(Cold)− exp(Cold \ {i})− exp({i})
))

=
1

m

(
suptθ(Cnew ∪ {i})− suptθ(Cnew)− suptθ(Cold) + suptθ(Cold \ {i})

)
−

(
exp(Cnew ∪ {i})− exp(Cnew)− exp(Cold) + exp(Cold \ {i})

)
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4 Clustering Hypergraphs

Since this vertex movement affects only two clusters (Cold and Cnew), adjustments are
required only for these. Specifically, we subtract both the actual (supt) and expected (exp)
contributions corresponding to the clusters prior to the move (Cold and Cnew), and then add
the updated values after the move has been applied: Cold \ {i} and Cnew ∪ {i}).

4.2 Finding Clusters

In this section, we introduce our strategy for obtaining a high-quality clustering, which
combines two complementary approaches: The first is based on the so-called Natural Cuts
strategy [15] that repeatedly samples parts of the hypergraph, computes their minimum
cuts 2.5, and aggregates the resulting partitions to construct an initial clustering capturing
global structural patterns. The second is a greedy refinement strategy that improves this
preliminary result by reassigning vertices to neighboring clusters to improve quality. Both
strategies make use of the previously introduced modularity functions in between itera-
tions to ensure an increase in quality. Additionally, both are deliberately chosen to support
efficient parallel execution, enabling scalability to large hypergraphs.

4.2.1 Clustering using Flow-Based Cuts

Our clustering approach builds on the Natural Cuts method introduced by Delling et al. [15]
for graph partitioning. This technique takes advantage of the property that maximum-
flow-minimum-cut algorithms can effectively identify clusters by splitting networks where
the smallest possible sum of edge weights is being cut, which is precisely the criterion
we seek in high-quality clusterings. To apply this strategy to hypergraphs, we iteratively
process subgraphs of a predetermined size by transforming them into flow networks using
star expansion (Section 2.4.2), computing their minimum cuts, and merging the resulting
partitions to form clusters. Initially, all vertices are assigned to the same cluster. Connected
components are identified before the algorithm begins. A summary of the steps of this
algorithm is provided in Algorithm 1.

Input Parameters. Our input is a hypergraph H = (V,E, ω). Before running the
algorithm, we specify three parameters:

• α ∈ (0, 1]: The quantity α|V (H)| defines an upper bound on the number of vertices
|V (H ′

i)| in the subgraphs H ′
i = (V,E, ω) that we will sample. If the connected

component is smaller, then |V (H ′
i)| is simply the size of that component. When

α = 1, the entire hypergraph (or component) will be sampled.

• β ∈ (0, 1
2
): The value β|V (H ′

i)| denotes the size of the so-called core, which will
later be contracted into into the source vertex, and ring, which will later be contracted
into the sink vertex. The constraint β < 1

2
ensures that the resulting flow network
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4.2 Finding Clusters

is functional, i.e., it contains at least one vertex aside from the source and sink.
Moreover, β > 0 guarantees the existence of both a source and a sink vertex.

• σ ∈ (0, 1]: This is a stopping criterion which will be checked at the beginning of
each iteration. The algorithm terminates once the number of vertices that have been
included in a core at any point during execution reaches at least σ|V (H)|.

For each sampled subgraph H ′
i, we construct a flow network Fi = (V,E, ω) with the

following vertex bound:

|V (Fi)| ≤ (1− β)|V (H ′
i)|+ 2 + |E(V (H ′

i))|,

where Fi includes all vertices not in the core or ring, one source vertex, one sink vertex,
and at most one additional vertex per hyperedge in H ′

i, resulting from the hypergraph-to-
network transformation via star expansion.

Construction of the Flow Network. Each iteration i begins by randomly selecting a
vertex v that has not yet been included in a core during past iterations, ensuring that every
vertex lies inside of a found cluster at least once. We build H ′

i starting at v via breadth-
first search (BFS) to explore the surrounding component until either α|V (H)| vertices or
the entire component have been discovered, depending on what is smaller. During this
traversal, we keep track of the number of visited vertices and identify two subsets to be
contracted into source and sink later to create a flow network: The first β|V (H ′

i)| vertices
discovered by BFS form the core, the final β|V (H ′

i)| vertices form the ring. During the
exploration of the hypergraph, we simultaneously contract core and ring into one single
vertex each called source and sink respectively. This vertex contraction process consists
of replacing a set of vertices with one new vertex while preserving all edges incident to
the former set. Parallel edges (i. e., multiple edges containing exactly the same vertices)
might occur; in that case, they are simply merged into a single edge by summing up their
weights. This contraction is necessary in larger hypergraphs with thousands of vertices and
edges, since selecting individual vertices as source and sink would often result in trivial
cuts where only the sink or source is separated from the rest of the network. By contracting
groups of vertices instead, we can force the cut to split the graph more meaningfully, being
able to use it for finding a high quality clustering.

Figure 4.1 visualizes this step: the overall gray region denotes the hypergraph, while the
darker gray zones highlight the core (merged into source vertex s) and ring (merged into
sink vertex t). The orange dashed line illustrates the minimum cut separating these regions.
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4 Clustering Hypergraphs

v

s

t

Figure 4.1: high level representation of one iteration of the Natural Cuts algorithm

Computation of the Minimum Cut. Before computing the minimum cut, the con-
tracted hypergraph must be transformed into a graph. For this purpose, we apply the star
expansion technique as introduced in Section 2.4.2. The resulting graph uses edge weights
as capacities and interprets every undirected edge as a pair of directed edges, one in each
direction, both carrying the same weight equal to the original edge weight. These weights
are then interpreted as capacities in the flow network, enabling the use of classical max-
flow algorithms to split the vertices into two sets S, T such that edges with the least weight
possible lie in between these sets.

In our implementation tested in this paper, Dinitz’s algorithm [18] is used, which works
by repeatedly computing a blocking flow on the residual network until no longer possible.
However, this partitioning is constrained by the core and ring: the core must lie on one side
of the cut, and the ring on the other, which may prevent the discovery of a globally optimal
split.

Repetition and Aggregation. To construct a complete clustering of the hypergraph,
the min-cut procedure is repeated across different regions, which is ensured by randomly
choosing the starting vertex form all vertices that have not yet been part of a core.
The iterations continue until the stopping criterion is met: all but a fraction of vertices
(1− σ)|V (H)| must have been contracted into a source vertex in at least one iteration,
meaning they have been inside of a cut at least once. Lower values of σ reduce the number
of iterations, but clustering quality might suffer.

Instead of using the parameter σ to control the number of iterations, we also consider an
alternative stopping criterion based on the number of consecutive unsuccessful clustering
attempts, i. e., min-cut computations that do not lead to an improvement in the overall clus-
tering quality. This strategy offers greater flexibility: If many high-quality cuts are found,
the algorithm continues for more iterations, whereas a fixed threshold σ might prematurely
terminate the process despite potential for further improvement.
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4.2 Finding Clusters

Figure 4.2: After several minimum cut computations, cuts are used to form clusters

However, this alternative approach does not guarantee convergence to an optimal clus-
tering. After a certain number of non-improving iterations, it is still possible that better
cuts remain undiscovered. Nevertheless, this heuristic improves computational efficiency
with only a marginal loss in clustering quality (shown in experiments).

Once the iterations are finished, the accumulated cuts are combined into a final clustering
of the original hypergraph. This step is illustrated in Figure 4.2.

Improving Quality: Applying Modularity Functions. Since the algorithm de-
scribed above does not necessarily find optimal cuts for the sampled subgraphs due to
the predetermined choice of source and sink vertices as well as the core and ring sizes,
applying a newly computed cut (S, T ) to the clustering might reduce overall hypergarph
clustering quality. To avoid this, we evaluate the hypothetical change in modularity at the
end of each iteration and only apply the cut if it results in an improvement. We make use
of the previously introduced hypergraph modularity gain functions ∆Q1(C, S), where we
first apply clique reduction from Section 2.4.1 to transform the hypergraph into a regular
graph, and ∆Q2(C, S). These allow for an efficient evaluation of the modularity change
and ensure that the algorithm maintains or improves the overall clustering quality.

Improving Quality: Comparing Results for Multiple Input Parameters. Fur-
thermore, the quality of the resulting clustering can be improved by varying the parameters
α and β across iterations rather than fixing them throughout the entire algorithm. Specifi-
cally, for each starting vertex , we may perform multiple iterations using different combi-
nations of α and β. Each resulting cut is evaluated using one of the modularity functions
∆Q1(C, S) and ∆Q2(C, S), and only the best outcome, i. e., the cut that yields the highest
modularity gain, is applied. If no parameter setting leads to a positive modularity gain, then
no update is made in that iteration. Since different vertices may benefit from different pa-
rameter choices, this additional computational effort may be justified by the corresponding
improvements in clustering quality.
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Figure 4.3: Sampling and contraction of core and ring

Example. Consider a hypergraph with eight vertices and input parameters α = 1 β = 1
4
,

meaning that the sample size equals α|V (H)| = |V (H)| = 8, and the core and ring each
have size β(sample size) = 2. Suppose we select vertex 0 as the starting point. Performing
a breadth-first search, we track the number of visited vertices and contract the first two
discovered vertices (core) consisting of vertices {0, 1} into s and the last two discovered
vertices (ring) consisting of vertices {6, 7} into t (Figure 4.3) To compute a minimum cut,
we transform the hypergraph into a graph using star expansion technique, e. g., replacing
the hyperedge {s, 2, 3} with auxiliary vertex 8 and three edges {s, 8}, {2, 8}, {3, 8}, while
hyperedge {5, t} can simply be replaced by an edge, since they are equivalent. After having
constructed this flow network with designated source and sink vertices, classical minimum
cut algorithms such as Dinitz’s [18] or Ford-Fulkerson’s[22] can be applied. In this exam-
ple, since all edges are unweighted, the minimum cut is straightforward to identify. Assum-
ing this is the first iteration of the algorithm, this leaves us with two new clusters, splitting
the old cluster which contained the entire graph along the minimum cut. (Figure 4.4)

2

3 4

5

s

t

8 9
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0

3 4
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7

Figure 4.4: Computation and application of the minimum cut, gray vertices are auxiliary vertices
resulting from star expansion 2.4.2, min cut and clusters are indicated by orange line
and background
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4.2 Finding Clusters

Algorithm 1 Clustering using Flow-Based Cuts
Function MinCut(H , v, α, β):

H ′
i ← BFS(H, v, α|V |)

s← contract first ⌊β|V (H ′
i)|⌋ in V ′

t← contract last ⌊β|V (H ′
i)|⌋ in V ′

F ← star expansion of H ′
i with s, t

return Dinitz(F, s, t)

Function FlowCuts(H , α-set, β-set, σ, Qi):
Initialize clustering C with C(v) = 0 ∀v ∈ V
Initialize clusQual← 0
Mark all vertices as not in core
while less than σ|V (H)| vertices have been part of a core do

Select v ∈ V (H) uniformly at random such that v is not yet in any core
Initialize bestCut← null, bestGain← 0
foreach α ∈ α-set do

foreach β ∈ β-set do
cut← MinCut(H , v, α, β)
Compute modularity gain ∆Qi for cut
if ∆Qi > bestGain then

bestGain← ∆Qi

bestCut← cut

end
end

end
if bestCut ̸= null then

Update C with bestCut
clusQual← clusQual + bestGain
Mark vertices in core of this iteration as in core

end
end
return C
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4 Clustering Hypergraphs

4.2.2 Greedy Refinements

To further improve the clustering results obtained by the minimum cuts method described
above, we propose a simple greedy improvement procedure. As the minimum cut com-
putations are restricted by fixed core and ring sizes and predetermined source and sink
vertices, the resulting clustering is likely not globally optimal, failing to maximize modu-
larity. Additionally, by merging a new cluster in the already existing clustering, no small
exact adjustments are possible, instead a larger number of vertices changes cluster at once
during each iteration. This makes it suitable for identifying coarse partitions but neglects
improvements possible through subtle changes. Hence, applying a greedy refinement pro-
cedure to the initial clustering results is a logical step.

Algorithm 2 Greedy Refinements
Function ImproveModularity(H, C, clusQual,Qi):

Initialize improved← true
while improved do

improved← false
foreach v ∈ V (H) do

Cold ← C(v)
best_gain← 0, best_cluster ← Cold

foreach C ∈ NC(v) do
if C ̸= Cold then

gain← ∆Qi(v, Cold → C)
if gain > bestGain then

bestGain← gain
bestCluster ← C

end
end

end
if best_cluster ̸= Cold then

move v from Cold to bestCluster
improved← true
clusQual← clusQual + bestGain

end
end

end
return C

Strategy. We start with the initial clustering computed by the min-cut-based approach,
iterate over all vertices v ∈ V , and consider all clusters C ∈ NC(v), where NC(v) de-
notes the set of clusters that contain at least one neighbor of v. For each such candidate
cluster C, we evaluate the modularity gain obtained by removing v from its current cluster
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C(v) and inserting it into C. Among all candidate clusters, vertex v is reassigned to the
cluster C that yields the maximum positive gain in modularity. If the gain in modularity
is negative for all possible clusters, v remains in its old cluster. This local optimization
process is repeated iteratively until no further improvement is possible (strict version), or
until only negligible improvements remain (efficient version), indicating that a local op-
timum has been reached. The modularity gain resulting from moving a vertex from one
cluster to another is computed using one of the previously introduced modularity func-
tions, either ∆Q1(v, Cold → Cnew) or ∆Q2(v, Cold → Cnew). This strategy is summarized
in Algorithm 2.

4.3 Parallelization

Both parts of our algorithm, the initial coarse clustering phase using minimum cuts and
the greedy refinement phase, consist of repeating the same series of operations applied to
individual vertices. These operations are largely independent except for shared quality and
clustering adjustments. This inherent structure makes the algorithm particularly well-suited
for parallelization.

4.3.1 Parallelizing Flow-Based Clustering

To make efficient parallelization of the Flow-Based strategy from Section 4.2.1 possible,
we need to slightly modify the original iteration criterion of the Natural Cuts approach,
which restricts the selection to vertices that have not yet been part of a core. In the original
sequential setting, this condition can be enforced easily; however, in a parallel setting, it
becomes problematic: Determining whether a vertex belongs to a core depends on building
the flow network during each iteration and cannot be computed ahead of time. Every thread
would need to wait for all earlier threads to finish parts of their computation which would
significantly decrease parallelization efficiency.

To avoid this, we adopt a simpler and more parallel-friendly strategy. Before starting
the parallel computation, we shuffle the list of all vertex ids in the hypergraph and assign
iterations to threads based on this predefined order. Each thread processes vertices from
the shuffled list independently and stops once no further improvements are found. This ap-
proach determines which thread processes which vertex before the actual computation be-
gins and eliminates the need for generating random variables during parallel execution. As
a result, accidentally processing the same vertex with the same parameters can be avoided.

In the following, we first introduce and compare three parallelization strategies for the
minimum cut phase of the algorithm. The first is a strictly deterministic approach preserv-
ing the exact behavior and results of the sequential version but offering limited parallel
efficiency. The second is a fully asynchronous version that prioritizes parallel performance
at the cost of potentially reduced clustering quality. The third is a mix of both, aiming to
balance correctness and efficiency by selectively synchronizing key operations.
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All strategies naturally parallelize the iterations consisting of the sampling of a sub-
hypergraph, the construction of the corresponding flow network, and the computation of
the minimum cut. These iterations can originate from different starting vertices, or in some
cases even from the same one, when multiple parameter configurations are evaluated per
vertex as outlined in Section 4.2.1.

Deterministic Strategy. In this strategy, parallelization is applied only in completely
independent sections to preserve the sequential results of the original algorithm. For differ-
ent parameter settings associated with the same starting vertex, the corresponding minimum
cut and modularity gain computations are performed in parallel. Once all threads finish, a
single thread compares the results, selects the cut yielding the highest gain in modularity
and applies the changes, while all other threads wait.

In the case of different starting vertices, modularity gain evaluations are conducted se-
quentially: After all threads finish their minimum cut computation, a single thread itera-
tively calculates the gain the first optional cluster change and, if beneficial, applies it before
continuing to the next vertex.

This strategy guarantees the same results as if executed using only one thread. It avoids
the risk of decreasing quality due to concurrent updates. Specifically, it ensures that a
change that initially appears beneficial does not later result in a net loss of modularity due
to subsequent, concurrently applied changes.

The downside is however, that most threads spend a lot of time waiting, resulting in very
limited parallel efficiency. This strategy is summarized in Algorithm 3.

Algorithm 3 Flow-Based Clustering: Deterministic Parallel Strategy
Function DeterministicParallelClustering(H , α-set, β-set, Qi):

foreach vertex v in parallel do
foreach pair (α, β) ∈ α-set ×β-set do

cutv,α,β ← MinCut(H , v, α, β)
end
wait until released (designated thread has finished loop below sequentially)
foreach vertex v with params (α, β) already processed do

gainv,α,β ← modularity gain ∆Qi for cutv,α,β
SelectAndApplyBestChange({cutv,α,β})

end
end

Asynchronous Strategy. The asynchronous strategy prioritizes speed and maximal
parallel utilization. All computations (minimum cuts, modularity gain evaluations, and
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clustering updates) are performed independently and in parallel. For the same vertex with
multiple parameter settings, this does not make much of a difference, but for different
starting vertices, changes with positive modularity gain are applied immediately by each
thread.

While this approach ensures minimal waiting between threads, it accepts incorrect gain
computations. Concurrent threads may operate on outdated versions of the clustering: For
instance, it is possible that while thread 1 is in the middle of calculating modularity gain,
thread 2 is adjusting clusters, resulting in thread 1 computing modularity gain based on a
clustering that changes halfway through. This can result in applying outdated or even coun-
terproductive updates, ultimately reducing clustering quality. This strategy is summarized
in Algorithm 4.

Algorithm 4 Flow-Based Clustering: Asynchronous Parallel Strategy
Function AsynchronousParallelClustering(H , α-set, β-set, Qi):

foreach vertex v in parallel do
foreach pair (α, β) ∈ α-set ×β-set do

cut← MinCut(H , v, α, β)
gain← modularity gain ∆Qi for cutv,α,β

end
apply best modularity change per vertex immediately in parallel, no waiting
SelectAndApplyBestChange({cutv,α,β})

end

Combined Strategy. The hybrid approach aims to balance correctness and efficiency.
For different parameter settings of the same vertex, modularity gain computations are per-
formed in parallel. Once completed, a single thread selects and applies the best cut while
others wait. For different starting vertices, minimum cuts and modularity gain evaluations
are also computed in parallel, but all updates to the clustering are applied sequentially
afterward. All threads wait until this update step is complete before proceeding. This strat-
egy allows for substantial parallelism in the most time-consuming part (minimum cut and
modularity gain computation) while ensuring that updates are applied in a coordinated,
consistent manner. There remains a risk that the application of one cut might render an-
other cut suboptimal or invalid since gains are computed before any updates are applied
However, this risk is generally small, especially when only a moderate number of threads
operate on different starting vertices simultaneously, and parameter α dictating the flow
network size, and thus, maximum cluster size, is relatively small. In summary, we allow a
slight potential loss in clustering quality in exchange for significantly improved efficiency
compared to the fully deterministic strategy. This strategy is summarized in Algorithm 5.
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Algorithm 5 Flow-Based Clustering: Combined Parallel Strategy
Function CombinedParallelClustering(H , α-set, β-set, Qi):

foreach vertex v in parallel do
foreach pair (α, β) ∈ α-set ×β-set do

cutv,α,β ← MinCut(H , v, α, β)
gainv,α,β ← modularity gain ∆Qi for cutv,α,β

end
wait until all changes have been applied sequentially
SelectAndApplyBestChange({cutv,α,β})

end

4.3.2 Parallelizing Greedy Refinements
In this section, we briefly discuss the simple parallelization technique of the greedy re-
finement algorithm. We could again consider different parallelization strategies similar to
those used in the flow-based clustering algorithm. However, in this case, such strategies
have limited impact. The greedy algorithm makes only minor changes by moving one
vertex at a time to a neighboring cluster, rather than constructing entirely new clusters po-
tentially involving up to two-thirds of all graph vertices and affecting all clusters. Because
of this, delaying the application of cluster changes until after computing the modularity
gain for other vertices barely affects the modularity outcome. Therefore, we parallelize the
algorithm by performing all iterations in parallel, without any stopping points: Each thread
computes the best modularity gain for a single vertex across all candidate clusters. After
evaluating all vertices, the changes are applied sequentially and modularity is updated. This
process can be repeated until no further improvement is possible, i. e., a local maximum is
reached. This strategy is summarized in Algorithm 6.

Algorithm 6 Greedy Refinement: Parallel Strategy
Function GreedyRefinement(H , Qi):

repeat
foreach vertex v ∈ V in parallel do

(C∗
v ,∆Qv)← EvaluateModularityGain(v, C, Qi)

end
ApplyMovesSequentially({(v, C∗

v ,∆QI)})
until no improvement in modularity
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CHAPTER 5
Experimental Evaluation

This section presents the experimental evaluation of the algorithms developed and de-
scribed in the previous chapters. We begin by presenting the evaluation methodology and
implementation details, and introduce the hypergraph instances used. Next, we present our
experimental results, starting with tuning experiments to identify the optimal parameters
for our flow-based clustering algorithm. We then show the efficiency of our parallelization
for both the coarser min-cut clustering phase and the greedy refinement phase. Finally, we
compare our algorithm to state-of-the-art clustering frameworks.

5.1 Methodology

The algorithms described in Section 4 are implemented in C++. All experiments were car-
ried out on an Intel Xeon Silver 4216 16-Core Processor running at 2.10 GHz equipped
with 93 GB. We are using performance profiles [19] to plot our results. They visualize
for which fraction of instances a clustering with quality ≥ τ · Qbest is computed by the re-
spective methods, where Qbest denotes the highest modularity obtained across all methods.
Similarily, they display for which fraction of instances the algorithm terminates in τ · Tbest,
with Tbest being the lowest running time observed.

5.1.1 Parallelization

For the parallel implementation of our algorithm, we use OpenMP (Open Multi-
Processing), an API (Application Programming Interface) that supports multi-platform
shared-memory parallel programming in C++ among others. OpenMP allows the program-
mer to specify parallel regions in the code using simple compiler instructions, eliminating
the need for manual thread management while offering control over concurrency and syn-
chronization when needed. It is particularly useful for our use case because it enables
efficient parallel execution of loops and independent task such as the repeated vertex-wise
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operations in both phases of our algorithm on multi-core CPUs. Furthermore, OpenMP
can be easily integrated into existing sequential code, so complete restructuring of the al-
gorithm is not necessary.

5.1.2 Instances

In Section 5.2 and Section 5.4, we use hypergraph instances that are constructed from inci-
dent matrices obtained from the suite sparse collection by Davis and Hu [14]. They gather
sparse matrices from real-world applications across various domains, including structural
engineering, circuit simulation, computational fluid dynamics, and optimization. These
matrices are contributed by researchers and practitioners and are not synthetically gener-
ated.

In Section 5.3, we use five hypergraphs 5.1 from the collection provided by Gottes-
büren et al. [25] containing general hypergraphs.

Hypergraph #Edges #Vertices
astro-ph.mtx.hgr 16,046 16,706
av41092.mtx.hgr 41,092 41,092
bibd_49_3.mtx.hgr 1,176 18,424
bips07_1998.mtx.hgr 15,066 15,066
fd18.mtx.hgr 16,428 16,428

Table 5.1: Hypergraph instances from [25]

5.2 Optimizing the Flow-based Clustering Algorithm

We optimize the quality and running time of our algorithm by systematically varying the
sample size (α) and core size (β) used during the maximum flow phase of our algorithm.
Additionally, we evaluate the change in performance when applying small algorithmic vari-
ations such as two different stopping criteria for min-cut iterations and two options for
selecting vertices.

5.2.1 Comparing Input Parameter Variations

We present a comprehensive set of performance profiles to identify the best overall choices
for α and β, as well as strong alternatives. These runner-up configurations allow us to
assign multiple parameter variations to each vertex and select the best one individually. In
Figures 5.1, 5.2, 5.3, 5.5 and 5.6, we use the graph modularity measure Q1 (see Sec-
tion 4.1.1) to evaluate clustering quality. In Figure 4.1.2), we instead apply the hypergraph
modularity Q2.
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Fixed α, Varying β. The performance profiles in Figures 5.1, 5.2 and 5.3 show how
different values of β perform for fixed values of α. Across all experiments, we use β ∈
{0.01, 0.05, 0.1, 0.333}, with 0.333 being the highest possible choice for beta that ensures
the number of core vertices does not exceed that of the flow network vertices. Hypergraph
sample size α is set to 1, 0.5, and 0.1 in Figures 5.1, 5.2, and 5.3, respectively.

In all three cases, β = 0.333 consistently outperforms smaller values in both clustering
quality and runtime. The quality gain likely stems from a larger core reducing the chance
of trivial cuts, while the runtime improvement results from fewer vertices in the flow graph,
thus reducing computational overhead. Given that β = 0.1 is the next-best option, it may
be worthwhile to explore additional values between 0.1 and 0.333 for further tuning.

Performance profiles in Figure 5.4 present results using the same input parameters as
in Figures 5.1 and 5.2, but this time the decisions are based on the hypergraph modularity
measure Q2. We omit running time plots here, as they closely match those shown previ-
ously.

Interestingly, the outcomes differ significantly: lower values of β lead to higher modu-
larity scores, with the smallest tested value, β = 0.01, outperforming all others. A smaller
β typically results in smaller average cluster sizes, since each new cluster must at least
contain all core vertices. Fewer core vertices allow the algorithm to form smaller clusters
without requiring a split.

These results suggest that Q2 favors smaller clusters, in contrast to Q1, which tends to
reward larger cluster formations.
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Figure 5.1: Hypergraph sample size parameter α = 1
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Figure 5.2: Hypergraph sample size parameter α = 0.5
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Figure 5.3: Hypergraph sample size parameter α = 0.1
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Figure 5.4: Hypergraph sample size parameter (a) α = 1, (b) α = 0.5
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Figure 5.5: Core and ring size parameter β = 0.333
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Figure 5.6: Core and ring size parameter β = 0.1

Fixed β, Varying α. In Figures 5.5 and 5.6 we repeat the evaluation with fixed values
of β, specifically 0.333 in 5.5 and 0.1 in 5.6, while varying α ∈ {0.05, 0.1, 0.5, 1}. In both
cases, we observe that α = 0.5 achieves the best overall clustering quality.

In terms of running time, the highest value α performs best, likely because a larger
sample of the hypergraph results in more vertices being marked as already included in a
core early on, reducing the number of required iterations. However, the runtime difference
between α = 0.5 and α = 1 is relatively small, making α = 0.5 a worthwhile trade-off for
its superior quality.

It may be beneficial to explore additional values of α between 0.1 and 1, as values lower
than 0.1 yield both poorer quality and longer runtimes compared to the others.
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5.2.2 Analyzing Vertex Selection and Stopping Criterion
Strategies

For our parallelization strategy, we proposed selecting vertices not based on whether they
have already been part of a core, but instead by choosing randomly from those that have
not yet been used as a starting vertex for sampling the hypergraph. Figure 5.7 confirms
the adequacy of this modification: although running time increases, the clustering quality
remains nearly unchanged.

To further improve efficiency, we explore alternative stopping criteria, as waiting until
every vertex has been part of a core is inefficient. Figures 5.8 and 5.9 demonstrate that
simply lowering the threshold ω (i. e., allowing more vertices to be skipped) significantly
reduces runtime, but leads to unacceptable losses in clustering quality.

A more promising approach is to monitor the number of consecutive iterations without
improvement in modularity, and terminate once a given threshold is reached. Figure 5.10
shows that this method achieves substantial speed-ups with only minimal loss in quality.

Finally, Figures 5.11 and 5.12 illustrate that after a certain number of non-improving
iterations, further gains in quality are negligible. When using the original vertex selection
strategy (only vertices not yet in a core), terminating after 10 non-improving iterations
appears sufficient. Extending this to 100 only increases quality marginally (Figure 5.11).
In the alternative selection strategy (choosing from vertices not yet used as a starting point),
a slightly higher threshold is advisable, as shown in Figure 5.11. This difference likely
stems from the more uniform vertex coverage in the former case, whereas the latter may
select neighboring vertices in close succession.
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Figure 5.7: choosing a vertex that has not been a starting vertex yet vs. choosing a vertex that
has not been in a core yet (terminating after 10 consecutive iterations without quality
improvement)
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Figure 5.8: Terminating when < ω|V | vertices have not been in a core yet
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Figure 5.9: Terminating when < ω|V | vertices have not been a starting vertex yet
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Figure 5.10: Terminating when all vertices have been a starting vertex once vs. terminating after
10 consecutive iterations without quality improvement
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Figure 5.11: Randomly choosing vertices from all that have not been in a core yet, terminating
after varying numbers of consecutive iterations without quality improvement
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Figure 5.12: Randomly choosing vertices from all that have not been a starting vertex yet, termi-
nating after varying numbers of consecutive iterations without quality improvement

5.3 Efficiency of our Parallelization

We showcase the efficiency of our parallelization technique using five hypergraph instances
from [25]. Both the deterministic strategy (Section 4.3.1) and the asynchronous strategy
(Section 4.3.1) exhibited major drawbacks, the former being highly inefficient, and the
latter suffering from a loss in clustering quality. Therefore, we only present the results of
the combined strategy (Section 4.3.1), which minimizes the downsides of the individual
approaches.

For these computations, we used the best parameter settings identified in Section 5.2,
namely α = 0.5 and β = 0.333. As a stopping criterion, we terminate after a fixed number
of successive iterations without quality improvement. Since we select vertices from the
set of all that have not yet served as a starting vertex rather than only those not previously
included in a core, we set this threshold to 30.
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5.4 Comparison to another Clustering Strategy

As shown in Table 5.2, the parallelization yields satisfactory results, with an efficiency
of approximately 0.5 (and often higher) when using 16 threads, and even better for fewer
threads. For up to 4 threads, the clustering quality is largely unaffected. With a higher num-
ber of threads, the risk of quality loss increases, though in some cases, even improvements
are observed.

This parallelization technique offers a useful speedup. Moreover, incorporating a set of
parameter choices per vertex could further reduce or eliminate the risk of quality loss.

Hypergraph 1 thread 2 threads 4 threads 8 threads 16 threads

astro-ph.mtx.hgr
67 s

0.411
53 s

0.412
14 s

0.512
8 s

0.531
5 s

0.543

av41092.mtx.hgr
523 s
0.348

310 s
0.348

203 s
0.348

141 s
0.415

109 s
0.427

bibd_49_3.mtx.hgr
23 s

0.269
12 s

0.342
7 s

0.259
4 s

0.325
3 s

0.314

bips07_1998.mtx.hgr
18 s

0.855
10 s

0.855
5 s

0.855
3 s

0.851
2 s

0.849

fd18.mtx.hgr
30 s

0.855
16 s

0.855
9 s

0.855
5 s

0.838
3 s

0.843

Table 5.2: Running time and modularity values Q1 for various thread counts.

5.4 Comparison to another Clustering Strategy

The most widely used clustering strategy is the greedy modularity maximization approach,
which starts by assigning each vertex to its own cluster and iteratively moves vertices to
neighboring clusters whenever an increase in modularity is possible. This strategy has been
applied not only to graphs but also to hypergraphs, either by transforming hypergraphs into
graphs before clustering or by adapting the graph modularity function to hypergraphs.

As illustrated in Figure 5.13a, our flow-based approach using the modularity measure Q1

(Section 4.1.1) finds higher quality clusterings in more than 90% of the cases. Moreover,
for 50% of all instances, the greedy strategy finds clusterings with quality at least 10%
worse. Despite these improvements, our method achieves comparable running times on
average, as also shown in Figure 5.13b.

In Figure 5.14, we compare the greedy strategy to our approach using the hypergraph
modularity measure Q2 (Section 4.1.2). For the greedy strategy, we still use the modular-
ity function Q1, since due to its definition of θ-innercluster edges, Q2 is not useful in this
context. Therefore, it is unsurprising that our approach outperforms the greedy strategy in
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5 Experimental Evaluation

Figure 5.14a, where evaluation is based on Q2. Conversely, in Figure 5.14b, we compare
results using Q1 as the quality metric, although our algorithm optimizes a different func-
tion. Nonetheless, our algorithm performs well in comparison, despite evidence from other
experiments (Figure 5.1 and 5.4) indicating that the quality functions Q1 and Q2 tend to
favor very different clustering structures.
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Figure 5.13: Comparison of our algorithm using Q1 to the modularity maximization approach as
used in Louvain [6] and Leiden [50]
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Figure 5.14: Comparison of our algorithm using Q2 to the modularity maximization approach as
used in Louvain [6] and [50]

48



CHAPTER 6
Discussion

6.1 Conclusion

In this work, we introduced a novel algorithm for clustering hypergraphs that combines a
flow-based coarse clustering phase with a greedy local refinement strategy. By making use
of the Max-Flow-Min-Cut theorem [22] and repeatedly solving maximum flow problems
using Dinitz’s algorithm [18], our approach identifies meaningful substructures that can
be interpreted as clusters. These clusters are then improved through a greedy refinement
strategy which finds a local optimum.

To emphasize the representational richness of hypergraphs over standard graphs, we
proposed a new variation of a hypergraph modularity measure defined directly on hyper-
graphs [21]. We demonstrated that our adapted function satisfies the criteria for clustering
quality functions, as discussed in Section 4.1, making it suitable for optimization within
our algorithm.

To ensure scalability, we developed three parallelization strategies for the flow-based
clustering component and an additional parallelization approach for the refinement phase.
Among these, one combined technique proved particularly effective and was used in our
final version. Experiments confirmed the efficiency of this parallelization.

Furthermore, we conducted a thorough evaluation of algorithmic variations, including
parameter tuning for building the flow network, vertex selection strategies, and stopping
criteria. These experiments allowed us to identify the most robust and high-performing
configuration of our algorithm.

Overall, our method decisively outperforms the classical graph and hypergraph clus-
tering strategy of greedy modularity maximization, both in terms of clustering quality and
scalability. The presented results demonstrate the usefulness of combining flow-based tech-
niques with refinement heuristics for effective hypergraph clustering.
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6 Discussion

6.2 Future Work

As we have seen in the experiments, there is no best choice of α and β for all hypergraphs,
and not even for all vertices in the same hypergraph. While some decidedly outperform
others, we still notice a clear improvement in quality when trying out an array of parameter
combinations for one vertex compared to having them as fixed parameters for the entire
computation. Instead of having to try out all variations for every vertex, we can focus on
analyzing if there are any relations between best parameter choice and vertex or hyper-
graph characteristics, such as vertex degree or current state of the clustering. This would
allow the algorithm to better adapt to varying hypergraph structures and avoid unnecessary
computations.

Similarly, we can try to find connections between vertex properties and their potential to
improve clustering quality. This can be applied in both parts of our algorithm, choosing to
process vertices with high potential to improve clustering quality first.

Inspired by other hierarchical clustering methods [16, 17, 5], we could also adapt this
idea to our algorithm: We start by contracting vertices based on certain similarity crite-
ria, apply the flow-based algorithm to the coarse hypergraph, and then iteratively expand
the hypergraph back into its original state while applying both the minimum cut and the
greedy refinement strategy. This could possibly improve quality and efficiency through the
"divide-and-conquer" approach.

In addition to trying various modularity functions, we could also test quality metrics be-
yond modularity such as conductance [32] or cluster path length [54] and possibly combine
them with the currently used metrics.

The greedy refinement strategy could be improved by not only allowing one vertex but
also a set of vertices at a time to change cluster. Especially in combination with Q2 this
might be a good idea, because this function only counts hyperedges as part of a cluster if a
θ-fraction of its vertices lies in said cluster, and when only moving one vertex at a time, it
is unlikely that loyalty changes, as could be seen in the experiments. This strategy might
also help to prevent local maxima determined by allowing only single vertices to move.
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6.2 Future Work

Zusammenfassung

Das Clustern von Daten, die durch Hypergraphen dargestellt werden, gewinnt in den ver-
schiedensten Forschungsbereichen zunehmend an Bedeutung, darunter Mustererkennung,
Bioinformatik und Maschinelles Lernen.

Das Hypergraph-Clustering-Problem besteht darin, die Knotenmenge eines gegebenen
Hypergraphen in eng durch Kanten verbundene Teilmengen, sogenannte Cluster, zu un-
terteilen, ohne dabei deren Anzahl oder Größe vorzugeben. Zur Lösung dieses Problems
schlagen wir einen aus zwei Phasen bestehenden Algorithmus mit Fokus auf der Max-
imierung der Modularität vor. Hierfür führen wir zwei Modularitätsfunktionen ein, eine
auf einem Graphen und eine direkt auf einem Hypergraphen definiert, und untermauern
diese durch mehrere mathematische Beweise.

Die erste Phase unseres Verfahrens basiert auf einem Flow-orientierten Ansatz, der
von dem Konzept der Natural-Cuts-Methode [15] inspiriert ist. Dabei werden sukzessive
Minimum-Cuts von Teilhypergraphen berechnet, um daraus ein initiale Clustering zu kon-
struieren. In der zweiten Phase wird dieses Clustering mittels eines Greedy-Verfahrens
verbessert, welches einzelne Knoten zwischen benachbarten Clustern verschiebt, um die
Modularität des gesamten Hpergraphen zu verbessern.

Beide Phasen wurden explizit mit Blick auf parallele Ausführbarkeit entworfen;
entsprechende Parallelisierungsstrategien werden vorgestellt und analysiert. Im Rahmen
unserer experimentellen Evaluation untersuchen wir eine Vielzahl an Parameterkonfigura-
tionen, Abwandlungen unseres Algorithmus sowie unterschiedliche Modularitätsfunktio-
nen, um eine optimale Einstellung zu identifizieren. Darüber hinaus evaluieren wir die
Effizienz und Qualität unserer Parallelisierung und vergleichen unseren Ansatz mit state-
of-the-art Verfahren. Unsere Ergebnisse zeigen, dass unser Algorithmus in der Lage ist,
konsistent Clusterings von höherer Qualität zu erzeugen.
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