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Abstract

This work considers the NP-complete maximum weight independent set problem and
introduces a new local-search technique that we call optimal neighborhood exploration
(ONE). The maximum weight independent set problem applies to many fields of
interest like map-labeling or vehicle routing problems. In these fields of interest,
the problem-modeling graphs are typically extremely large, with up to millions of
vertices and edges. That makes it very difficult to find (near-)optimal solutions in a
short time. On the one hand, there exist good exact solvers who can find optimal
solutions. However, they still have an exponential run-time in the worst-case. On the
other hand, heuristic algorithms improve solutions using a local-search technique by
deciding a vertex locally optimally. We generalize the idea and combine both. ONE
explores the neighborhood of the seed vertex up to a certain distance and builds a
local induced subgraph covering these vertices. Every improvement of a solution for
the local induced subgraph improves the solution of our input graph. To improve the
solution quality, we solve these induced subgraphs (near-)optimally using the state-of-
the-art branch-and-reduce solver KaMIS (KaMIS BaR). Furthermore, we devise a
new iterated local-search algorithm called Exhaustive Optimal Neighborhood
Exploration (EONE) using ONE. In numerous experiments we will investigate
the effectiveness of this approach and compare it to other state-of-the-art solvers.
These experiments underline that our solver often finds optimal solutions or at least
near-optimal solutions. Furthermore, we outperform the state-of-the-art branch-and-
reduce solver KaMIS BaR on hard instances. Finally, we discuss ONE and EONE
and give an overview of future work.
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CHAPTER 1
Introduction

1.1 Motivation

Figure 1.1: Screenshot of Apple Maps showing small part of Hamburg city centre with many
places (labels). Labels which were not rendered are marked as dots, because
they would overlap in this perspective.

Imagine a map of a city centre on the screen of a device as in Figure 1.1. We have
labels of special places like restaurants, cafes, markets and many more placed in the
map which are tied to specific coordinates. Further, the labels are weighted due to
their relevance for a certain user, e.g. stars one to five. The user wants to see as
many important labels on the screen as possible. However, since the screen size is
limited and labels have a minimum size and must not overlap, the map provider has
to regard the demand for a clear display and cannot simply present all labels in one
view. A perfect solution would be a subset of labels whose accumulated weights form

1



1 Introduction

the maximum among all subsets while there is a clean representation of labels on the
screen of the user’s end device.
This is just one typical example where the maximum weight independent set problem
applies. Situations as such are modeled by undirected, node-weighted graphs. For
this application the nodes of a graph represent the labels with assigned weights while
those conflicts in the presentation on the screen form a binary relation which can be
represented by undirected edges. When applying the terminology to the maximum
weight independent set problem, one is interested in a subset of vertices of maximum
weight while any two vertices in this set are not adjacent.
The maximum weight independent set problem applies in many fields of interest: the
vehicle routing problem [18], the map-labeling problem [11, 22], and many more [10].
In the case of real-world instances, approaches are challenged with extremely large
graphs with up to millions of vertices and edges. Solving the maximum weight in-
dependent set problem is non-trivial and to be more precise: NP-complete. This
makes the task for exact and in-exact solvers even more challenging. They have to
consider real-world modeling graphs, should compute (near-)optimal solutions while
maintaining good run times.
Heuristic algorithms so far often search for improvements operating on neighborhood
structures to find high-quality solutions in good run times. They exchange solution
vertices with non-solution vertices within these neighborhoods in the solution if the
difference in the accumulated weights of the independent set yields an improvement.
Conceiving these neighborhoods as induced subgraphs, one can observe that these
techniques try to optimize the solution in this subgraph, i. e., try to solve the maxi-
mum weight independent set problem locally. For large instances their found solution
might not be good enough. On the other hand, exact algorithms still have an expo-
nential run time in the worst-case besides all kernelization and search-space pruning
techniques. Therefore, they can be infeasible for too-large instances. Hence, the
question arises whether we can both combine and find (near-)optimal solutions for
the input graph by solving subgraphs induced by a set of explored vertices, which are
then solved optimally.

1.2 Our Contribution
We devise a local-search technique, called optimal neighborhood exploration (ONE)
that explores the neighborhood of a vertex locally up to a certain depth d = bε−1c
in order to obtain induced subgraphs (with at most β > 0 vertices) such that local
solutions to themaximum weight independent set problem improve the global solution.
The first algorithm we present finds such a set with at most O(∆(G)d) vertices
inducing the subgraphs. The second and more sophisticated algorithm incorporates
a bound β > 0 on the number of vertices in the induced subgraph. This allows us

2



1.3 Structure

to solve instances whereby the graph size is strictly bounded independently of G.
As a consequence, given β, solving the local instance is fixed-parameter tractable.
These local instances can be solved with a solver of our choice which makes this
approach highly adaptive and hence, is able to interface with other solvers. However,
in this work, we restrict ourselves to solving these instances using the state-of-the-art
branch-and-reduce solver KaMIS by Lamm et al. [28]. Finally, we engineer an iterated
local-search solver which exhaustively applies ONE and has a worst-case complexity
bounded by the run-time of n(G) ONE-applications per scan over the vertices.

1.3 Structure
The remainder of this thesis is organized as follows. In Chapter 2 basic concepts are
introduced ending with a formal definition of the maximum weight independent set
problem. Chapter 3 gives an overview of related work on which our contribution builds
on. We present our contribution and introduce optimal neighborhood exploration in
Chapter 4 ending with a new iterated local-search solver. This is followed by an
experimental evaluation in Chapter 5. We close this work with a discussion and
questions intended for future work in Chapter 6.
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CHAPTER 2
Fundamentals

First, we introduce some important terms and notations used in the following and
then define the maximum weight independent set problem.

2.1 General Definitions
Given a weighted, undirected graph G = (V,E,ω), where V is the set of vertices,
E = {{u,v} : u,v ∈ V } the set of edges, and ω : V → N is a weight function that
assigns every vertex v ∈ V a weight ω(v) ∈N. We generalize the weight function to a
set of vertices by defining ω(A) =∑

u∈Aω(u) for some A⊂ V . In general, the weight
function could also map into the real numbers. However, in this work and especially
in the experimental section, we will only consider graphs whose nodes are assigned
natural numbers. We use n(G) to denote the number of vertices in V and m(G)
denotes the number of edges in E of G. In the remaining work, we assume any graph
to be weighted and undirected. Further, ‘⊂’ denotes a subset, but in general not a
proper subset.
The distance dist(u,v) between u ∈ V and v ∈ V is the length of a shortest path
connecting u and v in G or ∞ if there is no path between u and v.
The neighborhood of some vertex u∈ V is N(u) := {v ∈ V : {u,v} ∈E}. We generalize
the neighborhood of u to the neighborhood of a subset A ⊂ V by setting N(A) =⋃

u∈A N(u) \A. The neighborhood of distance d ∈ N is defined as Nd(u) := {v ∈ V :
dist(u,v) = d}. An equivalent inductive definition for d≥ 2 is: Nd(u) = N(Nd−1(u))\
Nd−2(u) where N0(u) = {u}. Moreover, N≤d(u) is the disjoint union of neighborhoods
of u from level 0 to d. Further, dG(u) = |N(u)| for u ∈ V denotes the degree of u and
∆(G) the maximum degree in G.
A set I ⊂ V is called an independent set (IS) if it contains no adjacent vertices, i. e.,
for every vertices u,v ∈ I it holds that {u,v} 6∈ E. We denote with IS(G) the set of
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2 Fundamentals

all independent sets of G. I is maximal if there is no vertex u ∈ V \I which can be
added to I such that I ∪{u} is an independent set.
Let u ∈ V \I and A ⊂ I. We say u is tight to A if A = N(u)∩I. The definition is
motivated by the fact that u can always join I if we remove A from it. The tightness
τ(u) of u is defined as |N(u)∩I|. We also say that u is k-tight if k = τ(u). In case we
remove some v ∈ I, we can add any 1-tight neighbor of v to I \{v}. This terminology
goes back to Andrade et al. [6] and is used along the analysis of (x,y)-swaps [18].
Further, let t(A) ⊂ V \ I be the set of tight neighbors of A, i. e., vertices which are
tight to some A′ ⊂ A∩I.
A maximum independent set (MIS) I ∈ IS(G) is an independent set of a graph G
if it maximizes |I|. The maximum independent set problem asks for a maximum
independent set given an unweighted, undirected graph. It is a well-known NP-
complete problem [20]. As before, a solution to the problem is not unique and must
always be maximal.
Given an independent set I ∈ IS(G), if one is interested in ω(I), then we refer to it as a
weight independent set (WIS). A maximum weight independent set (MWIS) I ∈ IS(G)
is an independent set that maximizes ω(I). The maximum weight independent set
problem asks for a maximum weight independent set given a weighted, undirected
graph. The problem is NP-complete since the maximum independent set problem can
be reduced to it if one defines ω(v) := 1 for every vertex v ∈ V . In general, a solution
is not unique and must always be a maximal independent set . Figure 2.1 gives an
example of a WIS, a maximal WIS and a MWIS of G.
The MWIS problem is strongly related to other well-known NP-complete problems.
An MWIS I of G is a maximum weight clique in in the complement graph of G.
Moreover, V \I a minimum weight vertex cover of G.
A weight clique cover of G is a collection of cliques C1, . . . ,Ck ⊂ V , with associated
weights W1, . . . ,Wk such that the union of all cliques covers V , and for every vertex
v ∈ V holds that ∑i: v∈Ci

Wi ≥ ω(v). The weight of a clique cover is the sum of all
Wi and provides an upper bound for a MWIS of G [28].

Figure 2.1: An example for an IS (left), a maximal WIS (middle) and a MWIS of G (right).
The blue vertices in the dashed areas form the independent sets. The pink
vertices are not in the independent set.
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CHAPTER 3
Related Work

This chapter discusses related work in solving the MWIS problem optimally, as well
as how to determine a high-quality maximal weight independent set. As there has
been a lot of research already, we will focus on more recent work and particularly
those on which our contribution build on.

3.1 Exact Algorithms
A lot of research has been devoted to exact algorithms. These are algorithms which
find an optimal solution and can prove optimality.
First, one can state and solve the MWIS problem as an integer linear program
(ILP) [18].

maximize
∑

u∈V (G)
ω(u)xu

subject to xu +xv ≤ 1, ∀e{u,v} ∈ E(G)
xu ∈ {0,1}, ∀u ∈ V (G)

Padberg [31] introduces other ILPs using stronger formulations by utilizing clique
inequalities. For an k-clique {v1, . . . ,vk} ⊂ V (G) one adds the inequality xv1 + . . .+
xvk
≤ 1 as additional constraint to the ILP. This is based on the observations that

in one clique at most one vertex can be part of an independent set. However, the
efficiency of solving an ILP depends heavily on the chosen solver framework in the
end. This motivates to think of solvers that are specifically engineered to find optimal
solutions for the MWIS problem.
A branch-and-bound scheme is common a approach towards fast exact solvers [7].
Roughly speaking, branching on a vertex v means to split the solution space in two
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3 Related Work

parts. One which includes the vertex and one which does not. At least one solution
space contains an optimal solution. The vertex is picked using a branching rule.
The branching rule is a heuristic which determines the order in which the algorithm
branches on vertices. Although this rule depends on the problem, the intuition is to
order the vertices such that the number of overall branching steps is small. This is
to prevent an exhaustive search for the best solution. Bounding is done using upper
and lower bounds on the solution space. For the upper bound a weighted clique cover
of G is typically computed [33, 28]. For the lower bound one can compute a solution
using a heuristic algorithm such that we have an current best solution. When the
computed upper bound for the current sub-problem falls below the best solution, we
know that branching on the sub-problem cannot improve the best solution. Lamm
et al. [28] compute a lower bound using an iterated local-search solver, a weighted
variant of ARW by Andrade et al. [6], after applying reductions initially and dividing
the problem into sub-problems, i. e., G is divided into its connected components.
Nevertheless, a branch-and-bound algorithm still has an exponential run-time in the
worst-case because of the branch-operation.
To further prune the exponent a common technique is kernelization [4]. It uses
reduction rules to reduce the graph to an irreducible kernel by applying them incre-
mentally, removing subgraphs and modifying node-weights in a sound manner [28].
These reduction rules allow us to efficiently decide vertices optimally, i. e., we can
decide whether a vertex is in the solution or not (given an optimal solution for the
kernel). Many reductions were found for the MWIS problem by transferring them
from the unweighted problem [12, 28]. If no reductions are applicable anymore then
the branching takes place on the highest degree vertex. Thus, many neighborhoods
become smaller since the decided vertices, including their neighborhoods, can be re-
moved from the graph, and it remains a simpler subgraphs which needs to be solved.
This results in a branch-and-reduce framework. The branch-and-reduce solver KaMIS
by Lamm et al. [28] is state-of-the-art.
Lately, Gellner et al. [21] developed new optimal transformation rules called struc-
tions which allow to increase the size of a graph. Although it sounds counterintuitive
to increase the size of a graph, experiments show that applying reductions after in-
creasing the instance yield even smaller kernels when not already solved to optimality.
The intuition is to apply reductions after increasing the size of the graph to obtain a
smaller kernel in the end.
Improving and finding new kernelization techniques is an open topic. Figiel et al. [19]
introduced rules to undo reductions for the unweighted vertex cover problem which
they name backward rules. They apply existing reductions backwards to obtain
slightly larger equivalent instances. Considering these increased instances yields over-
all smaller kernels because they not only undo an applied reduction. Instead they
search for opportunities to apply reductions backward in the current graph without
considering the last applied reduction.
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3.2 Heuristic Algorithms

3.2 Heuristic Algorithms
Heuristic algorithms aim to find (near)-optimal solutions. However, it is unclear
whether the final solution is optimal. As heuristics they often use local-search tech-
niques to incrementally improve a single or a fixed set of current best solutions. They
are denoted as local-search solvers, or iterated local-search solvers if they apply a
local-search for multiple iterations.

3.2.1 Local-Search
Common local-search techniques are so-called (x,y)-swaps which move x ∈ N∪{∗}
vertices out in order to move y ∈ N∪{∗} into the solution operating on neighbor-
hoods. If ‘∗’ is used for x or y, it means that the swap applies to arbitrary x and
y, respectively. Such a swap is improving in the weighted case if the accumulated
weight of the moved-in vertices is larger than the one of the moved-out vertices. We
discuss (1,∗)- and (∗,1)-swaps in more detail in Chapter 4.
This technique was first used in the unweighted case by Andrade et al. [6]. They
use (1,2)-swaps in their famous iterated local-search solver (ARW). Their algorithm
processes the swaps in linear-time and in addition, it can decide in linear-time whether
an improving (1,2)-swap still exists. Nogueira et al. [30] developed the Hybrid
Iterated Local-Search (HILS) based on ARW but for the MWIS problem. They
use (1,2)-swaps combined with (∗,1)-swaps.
Lately, Dong et al. [18] developed an iterated local-search algorithm (METAMIS)
for the MWIS problem designed for large instances and particularly optimized it
for the long-haul vehicle routing (VR) instances [16, 17]. METAMIS is based on
the greedy randomized adaptive search procedure (GRASP) by Resende et al. [32]
combined with path relinking. The idea of GRASP as used in their algorithm is
to repetitively generate diverse greedy solutions to which one applies a local-search
procedure to improve them afterwards. Instead of evaluating whether this improved
solution should be added to the set of best solutions, they use this solution as guiding
solution for a truncated path-relinking. Truncated path-relinking takes a best solution
(typically a local optimum of the local-search) and a guiding solution to find a new
solution which is far away enough from the best one in order to prevent converging
to the same local optimum again. Because the guiding solution is typically worse
than the best one, the path-relinking is truncated at some point in order to obtain
a solution which is not much worse than the best one. For path-relinking (1,∗)- and
(∗,1)-swaps (not necessarily improving) to transform the best solution step-by-step
to the guiding solution.
In the local-search procedure they search for improving (∗,1)-, (1,∗)- and (2,∗)-
swaps. Furthermore, they introduce and use alternating augmenting path moves
(AAP-moves). An AAP is defined as a path such that solution vertices and non-
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solution vertices along the path alternate in the order they appear and flipping the
vertices, i. e., exchanging the vertices between the solution set I(G) and the com-
plement V \ I(G), must maintain an independent set. The move is accepted if the
solution weight is improved by flipping the path.

3.2.2 Greedy Algorithms

It is common to determine initial solutions for heuristic algorithms (if not given) using
greedy algorithms. They process an ordered sequence of the vertices in the graph and
choose them into the solution if not contradicting an independent set. The order
is determined using a simple heuristic like the weight ω(u) or the weight-per-degree
rating ω(u)/deg(u). For METAMIS Dong et al. [18] use a randomized strategy in
the local-search and an adaptive greedy variant if no initial solution is provided. The
greedy algorithm can be randomized by choosing greedily uniform at random from
a fixed-sized set of best feasible candidates. The adaptive variant uses the weight-
per-degree rating and removes the added and infeasible vertices from the graph while
maintain the degree and therefore can update the rating after each greedy addition.

3.3 Hybrid Algorithms

Besides swaps, another local-search technique uses kernelization techniques [14, 13,
24]. They combine exact reductions with heuristics. In the case of the MIS problem,
an observation is that high-degree vertices are unlikely to be in a MIS. Dahlum
et al. [14] compute a kernel using the reductions by Akiba et al. [5]. The kernel is then
solved by ARW. To make ARW more effective, they remove higher degree vertices
from the kernel.This results in an algorithm called KerMIS. Moreover, they devise
an online-fashion algorithm, called OnlineMIS. The algorithm does not compute a
kernel in advance, but instead forces isolated vertices, i. e., vertices that form a clique
(here of degree 1, 2, 3), into the solution using the isolated-vertex-removal reduction
and marks them and their neighbors as removed. It removes a few high-degree vertices
and runs ARW. A vertex joins the solution if it is isolated. The local-search continues
until every vertex is marked as removed.
The benefits of kernelization in an inexact setting are also used for the weighted
problem. Gu et al. [24] present a reduce-and-peeling framework that does not branch
on a vertex, like in a branch-and-reduce framework, but instead decides a vertex using
heuristics to break the tie when reductions are applied exhaustively.

10
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3.4 Evolutionary Algorithms
Another family of algorithms are evolutionary algorithms for the MIS problem as
EvoMIS by Lamm et al. [26] and ReduMIS by Lamm et al. [27]. In this context,
an evolutionary algorithm maintains a population of individuals (independent sets).
By selecting the fittest parents (independent sets) as input for a combine-operation,
we obtain improved new children (independent sets) which are added to the popu-
lation [27, 23]. ReduMIS incorporates kernelization with the evolutionary algorithm
EvoMIS. This way, the evolutionary algorithm operates over exact kernels instead
of the input graph.
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CHAPTER 4
Optimal Neighborhood Exploration

This chapter presents our new local-search technique optimal neighborhood exploration
(ONE). We start with a small example to motivate ONE. Afterwards, we give the
details of ONE and answer how local-search can be done for the MWIS problem. The
main result is the contribution of two algorithms for the exploration. Finally, we close
this chapter with a new iterated local-search solver for the MWIS problem.

4.1 Motivation For A New Local-Search
We motivate this chapter with two examples. For this, we look on the well-known
(1,∗)- and (∗,1)-swaps. In particular, we look at two situations where we try to apply
one of the swaps and think about what an optimal decision could be by considering
only involved vertices and neighbors which are tight to them.
In Figure 4.1, we consider a (1,∗)-swap for some u ∈ I where I ∈ IS(G) is some
maximal WIS. A (1,∗)-swap applied to u removes u from the solution I, and adds a
subset of 1-tight neighbors to the solution such that the obtained solution is again a
maximal WIS of G, denoted I ′. To that end, we must choose a weight independent
set of tight neighbors t({u}). The swap improves if

ω(I ′)> ω(I) ⇐⇒ ω(I ′∩V (H))> ω(I ∩V (H))

whereH ⊂G is the induced subgraph of considered vertices. In our case, we obtain 2+
1 = 3≥ 2 = ω(u). Hence, the swap is improving. However, we note that the swap is
only improving because we inserted the vertex with weight two instead of its adjacent
vertex with weight one. A MWIS of G[t({u})] was substantial to make this specific
swap succeed. Instead of G[t({u})], we could consider H and search for a MWIS
of H because the weight of a MWIS of H is always larger than the weight of a
MWIS of G[t({u})]. The intuition is that H does not force u to be in the MWIS.

13



4 Optimal Neighborhood Exploration

Figure 4.1: Example for an improving (1,∗)-swap for u ∈ V (blue vertices are part of the
solution and pink vertices are out; numbers represent weights), left: before
swap, right: after swapping.

If a MWIS of H is not of larger weight than ω(I ∩ V (H)), then the swap cannot
be improving because of the latter observation. On the other hand, if the weight is
larger, it immediately improves our solution if we embed the solution found for H.
That means a vertex in V (H) is part of the solution for G if and only if it is part of
the solution found for H.
Next, we discuss the (∗,1)-swap for u ∈ V \ I in Figure 4.2. It removes N(u)∩I =
{v,w} from I and adds u if the weight difference

λ(u) := ω(u)−
∑

x∈N(u)∩I
ω(x)> 0.

In our example the swap fails, because λ(u) = 5− (2+3) = 0. However, if we take the
tight neighbors t(N(u)) into account, from which we can add vertices to the solution
after performing the swap nonetheless, then we obtain an overall improvement. We
used that if the swap is applied, the solution is no longer maximal, and we can add
tight neighbors of N(u). Figure 4.2 illustrates an MWIS of H on the right-hand side.
H is the induced subgraph of vertices that are either swapped by a (∗,1)-swap applied
to u or tight to the neighborhood of u. Again, we observe that solving the MWIS
problem for H gives us the best improvement possible I subject to H.
We generalize the example and call these induced subgraphs local induced subgraphs.
They cover some seed vertex, which is the single vertex u these examples, and its
neighbors up to a certain depth (here one and two). Note that every maximal WIS IH

for the subgraph H does not contradict a maximal WIS of G when we remove the
vertices in V (H) from I and add the vertices in IH . We call this exchange of solution
vertices embedding a maximal WIS of H into I. Because of this property of the
local induced subgraph, it is possible that a MWIS of H corresponds to the best
improvement for I. Moreover, a subgraph as in the example must be chosen in such
a way that every maximal WIS IH for the subgraph H does not contradict a maximal
WIS for G when we remove the vertices in V (H) from I and add the vertices in IH .
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As a side note, in this fairly simple example a (2,∗)-swap applied to v and w probably
finds the improvement in Figure 4.2. But also in this case it depends on the found
WIS of tight neighbors of v and w whether the move is accepted.
We conclude these two examples with two questions:

1. The considered swaps often perform very good in iterated local-search solvers.
As we saw, this is very similar to solving the associated local induced sub-
graph H. The question arises, if we can find even better solutions by (opti-
mally) solving local induced subgraphs which cover the neighborhood of u to a
larger distance?

2. This leads to another question: how can we efficiently find larger local induced
subgraphs? After embedding a better solution for H we do not want to cre-
ate conflicts contradicting an independent set in G. Furthermore, this new
independent should be maximal.

4.2 High-Level Overview
Roughly speaking, our new local-search technique for the MWIS problem, called
optimal neighborhood exploration (ONE), explores the neighborhood of some seed
vertex u ∈ V as shown in Figure 4.3. We cover it neighbors up to a certain distance
in an induced subgraph H given some maximal WIS of G. Afterwards, we search
for a MWIS or at least a better near-optimal solution for H and embed it into the
solution of G, i. e., we remove vertices covered by H which are not in the locally
better solution and add new ones.
We avoid conflicts in the way we choose the induced subgraph. For this induced
subgraph we ensure that every vertex in V (H) is not adjacent to a solution vertex
not covered by H. Under those circumstances, every potentially new solution vertex

Figure 4.2: Example for a none-improving (∗,1)-swap for u ∈ V (blue vertices are part of
the solution and pink vertices are out; numbers represent weights), left: before
swap, right: after solving H optimally.
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4 Optimal Neighborhood Exploration

Figure 4.3: High-level overview of optimal neighborhood exploration.

in V (H) cannot be adjacent to a solution vertex that is not covered by H. Con-
sequently, we have no conflict, i. e., an edge whose incident vertices are both in the
solution, when we embed a maximal WIS for H. Furthermore, we ensure that every
vertex which is not part of the solution is only uncovered if it has at least one neigh-
bor in the solution which is not covered by H. As a result, all vertices which are
tight to a subset of vertices in V (H) are covered by H. This means that the obtained
solution for G is maximal, because every non-solution vertex will have a neighbor in
this solution.
We devise a border policy which carefully excludes considered vertices from H at
distance d and d− 1 to u if they could yield such a conflict as described. We call
a vertex v ∈ V border vertex if v is explored, but we do not intend to explore or
cover some neighbors of v. Besides the natural constraint ε > 0 limiting the explored
vertices, we later introduce a second constraint β > 0 which limits the number of
vertices in H.
All in all, we present a local-search technique which explores local induced subgraphs
and solves the MWIS problem on these subgraphs. In the following we present two
algorithms to find local induced subgraphs and explain, how we solve them in order
to improve a given maximal WIS.

4.3 Local Induced Subgraphs

First, we specify how we explore the neighborhood and obtain a local induced sub-
graph H and then explain how we manage to solve the local instance of the MWIS
problem. Let G = (V,E) be the given graph and assume that a maximal weight in-
dependent set I ∈ IS(G) was already determined. Further, let u ∈ V be the initial
vertex to which ONE is applied.
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4.3.1 Exploration
The most challenging part of optimal neighborhood exploration is to select the set
of vertices that induces the subgraph. The local induced subgraph should cover the
initial vertex u and every maximal WIS for the subgraph must not be in conflict with
the given maximal WIS for G. Further, ε ∈ (0,1] limits the vertices which we can
consider for our local induced subgraph: they have at most distance d = bε−1c to u.
Since a graph can have many high-degree vertices, our local induced subgraph can
have without any further constraints many vertices for fairly large ε. To that end,
we introduced a fourth constraint with β ∈ N∪{∞} limiting the number of vertices
in the subgraph. We incorporate this bound later on in this section.
This section is structured into two parts: in the first part we present the first approach
that selects such a set of vertices but ignores β. From this first approach we lead to
a second approach which additionally considers β.

NAIVE-BFS

We consider every vertex v ∈ V with a distance of at most d to u for the local induced
subgraph H. The border policy decides whether a vertex will be covered by H or not.
The goal is to reject considered vertices such that there is no conflict when a maximal
WIS for H is embedded in I.
Border Policy. The border policy rejects a vertex v ∈ Nd(u) if v 6∈ I is not tight to
a subset of solution vertices with a distance less than d, or v ∈ I. In the latter case,
vertices in N(v) at distance d− 1 and d must also be rejected, because if they join
a WIS after solving H they are adjacent to the solution vertex v. In summary, the
rejected vertices are either solution vertices at distance d, vertices at distance d− 1
adjacent to solution vertices at distance d and vertices at distance d adjacent to
solution vertices at distance d+ 1 (the not-tight vertices).
A considered vertex v ∈ N≤d(u) is accepted if it is not rejected. We cover a vertex
in H if it is accepted. We denote this set of accepted vertices A(d,u) which induce H.
The set of all accepted vertices A(d,u) contains all vertices with distance less or
equals d− 2. Further, accepted solution vertices appear at most at distance d− 1.
All neighbors tight to a subset of them are accepted too and appear at latest at
distance d.
Covering all the tight neighbors ensures that the solution is still maximal after em-
bedding a maximal WIS for H. Since there is no accepted vertex, adjacent to an
uncovered solution vertex, I remains an independent set. Figure 4.4 illustrates the
special cases for border vertices in an example.
NAIVE-BFS. In short, our first algorithm NAIVE-BFS (NBFS) finds H
given ε ∈ (0,0.5] and an initial vertex u∈V by visiting every vertex of feasible distance
to u and accepts them if the border policy agrees. Algorithm 1 gives the pseudo-code.
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Figure 4.4: Example for the border policy: u is some initial vertex (which is white because
solution status does not matter for the example); blue vertices are solution
vertices and pink vertices are not in the solution; v at distance d− 1 is in
the solution because it is tight to vertices with smaller distance to u, same
holds for y; x is not tight to vertices distance ≤ d and therefore rejected, z at
distance d is a solution vertex and therefore we reject it with its neighbors.

Every vertex of feasible distance to u is visited by performing a breadth-first-
search (BFS) in G starting from u. Thereby, it builds a set of vertices VH , starting
with VH = ∅, such that VH = A(d,u) when the algorithm terminates. The BFS is an
appropriate choice because it allows us to process the vertices in levels following the
first-in-first-out principle implemented through a queue. At level i ≤ d, we process
vertices with distance i to u, and if possible we can enqueue unexplored neighbors.
Whenever we process a vertex, we know the level, i. e., the distance to u. Remember
that the decision of the border policy for a considered vertex v ∈ V depends on the
distance to u. When a vertex is popped from the queue, we decide whether this
vertex is accepted or not. This decision is possible because all vertices are processed
in levels, and thus, we know all vertices at smaller levels were decided and at the
current level at least enqueued.
If the level is small enough and the vertex is accepted, we enqueue its unexplored
neighbors, i. e., vertices which were not in the queue yet. The border policy accepts
every vertex which we process at level ≤ d− 2. For this reason, we required ε ≤ 0.5
such that d≥ 2 and at least u is covered.
Vertices at distance d− 1 can be accepted if they are in I or are tight to solution
vertices with distance ≤ d− 1. Let v be a vertex which appears at distance d− 1
Whether v is in I can be simply checked by a look-up. If v 6∈ I a little more effort
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is necessary. We need to check whether N(v)∩I ⊂ N≤d−1(u), i. e., is v tight to the
later H? However, at level d−1 it is possible that not all solution vertices are accepted
yet. That is to say, we cannot guarantee VH ∩I = N≤d−1(u)∩I. But we know all
solution vertices at distance ≤ d−1 are at least marked as explored. Hence, we can
scan over the neighborhood of v and check whether a solution vertex exists which was
not explored yet. If at least one vertex exists, the border policy rejects v. Otherwise,
we accept u because it will be tight to a subset of solution vertices in V (H).
Note that at level d−1 only non-solution vertices are enqueued. Thus, at level d we
only consider non-solution vertices. At distance d the border policy accepts v only if
it is tight to the accepted solution vertices. For this, we check if every solution vertex
is in N(v) is in VH , i. e., was accepted.
When the queue becomes empty, we obtain VH = A(d,u) and can build the local
induced subgraph.
Run-time. In the worst-case we enqueue and accept O(∆(G)d) vertices. Checking
whether we can accept some vertex takes us at most O(∆(G)), because in the worst-
case we scan over the neighborhood of some vertex to check for tightness. Building
the local induced subgraph can be done in O(∆(G)d+1) where we insert for each
vertex in A(d,u) its incident edges. Hence, finding A(d,u) and building H has an
overall worst-case complexity of O(∆(G)d+1).
Conclusion. From a theoretical point of view, it would be desirable to do
the isTight(v, A(d,u)) in Algorithm 1 at distance d in O(1), because then the
worst-case complexity for finding A(d,u) reduces to O(∆(G)d).
This variant explores the neighborhood of tight vertices at distance d−1 which is not
necessary. To make this more vivid, consider v in Figure 4.4. The vertex v is tight
to vertices with distance ≤ d− 2 and consequently, it is covered. However, it is not
necessary to explore its neighbors. The reason is that its neighbors at distance d are
only covered if they are tight to vertices with neighbors that are part of the solution
at distance d−1. In Figure 4.4 the neighbor y is such a vertex at distance d which is
tight to vertices at level d−1. It will be explored via its solution neighbor at distance
d−1 even if v does not explore vertices at distance d.
Moreover, we mentioned introducing a second constraint, namely β > 0, such
that A(d,u) ≤ β. Note that the current policy does not yet support the second
constraint β. To obtain local induced subgraphs whose solutions yield maximal WISs
in G, we had to ensure that t(V (H)∩I) ⊂ V (H). We know coverable solution ver-
tices will appear at most at distance d−1 and all tight vertices will be added when
distance d is processed. For example, if we want to add a solution vertex v, we need
to ensure that new tight vertices (tight to the induced subgraph which covers v) are
added too without exceeding β. To that end, we need to add vertices to VH before
we process them at the respective level.
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TIGHT-BFS

We start by adapting the border policy such that it incorporates β. In case of β =∞,
we want that it should yield the same local induced subgraph as the border policy for
the same ε. After specifying the requirements, we make an observation which is the
basis for the new algorithm. We close this section with an algorithm for exploration
which sticks to β.
Dynamic Border Policy. Remember that every local induced subgraph H should
yield a maximal WIS in G when we embed a maximal WIS for H in the given
solution I. The border policy ensures this by rejecting specific vertices when they
have distance > d− 2 to the seed vertex. Hence, NAIVE-BFS has to take action
when vertices with distance > d− 2 are processed. At smaller levels, it just accepts
every vertex. Breaking things down, it computes a sequence of growing induced
subgraphs, where the last subgraph is feasible for further computations.
The dynamic border policy is a little more restrictive: for such a growing sequence
of induced subgraphs, we require that every induced subgraph should be feasible for
further computations. That is to say, they all must have vertices less or equal to β
and in particular, every induced subgraph should yield a maximal WIS in G when
we embed a maximal WIS for H in I. It still holds that only vertices with a distance
to u of at most d are considered, and if β is large enough the final induced subgraph
must be the same induced subgraph as the border policy proposes, i. e., Hmax :=
G[A(d,u)]. The objective is to maximize the number of vertices in the final induced
subgraph subject to the upper bound β and the other constraints when exploring the
neighborhood.
All in all, the dynamic border policy specifies the requirements for our new approach.
In the following, we give a rough idea of how we accomplish to implement the dynamic
border policy using Observation 1.

Observation 1 (Marriage Induced Subgraphs). Let H1,H2 ⊂G be induced subgraphs
which both yield for maximal WIS of Hi, i ∈ {1,2} a maximal WIS in IS(G) if we
embed them in the given maximal WIS I ∈ IS(G). We obtain an induced subgraph M
with the same property if it covers V (H1), V (H2) and all tight vertices t(V (H1)∪
V (H2)), i. e., vertices which are tight to a subset of the solution vertices in V (H1)
and V ((H2). We write for this obtained induced subgraph M =H1∪IH2.

Figure 4.5 illustrates a marriage of two induced subgraphs as in Observation 1. The
new induced subgraphM must cover, besides vertices of H1 and H2, two non-solution
vertices in the example. These two non-solution vertices are tight to vertices at the
border of H1 and H2, i. e., their neighbors in I are covered by H1 and H2.
High-Level Overview of TIGHT-BFS. The whole idea of our new algorithm,
called TIGHT-BFS (TBFS), is exploring the neighborhood of some initial ver-
tex u ∈ V level-by-level and marry the current induced subgraph H with an induced
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Figure 4.5: Marriage of two induced subgraphs H1 and H2. M covers H1, H2 and vertices
which are tight to solution vertices (blue) in V (H1) and V (H2).

subgraph which covers the considered vertex v as described in Observation 1. If
the induced subgraph obtained by the marriage is too large, i. e., by adding the new
vertices we exceed β, the marriage fails.
The induced subgraph which covers v should be of minimum vertex size as we want
to maintain the locality property, i. e., we want to prioritize vertices which are nearer
located to u, and since we process the neighborhood of u in levels vertices of larger
distance can still be covered later on if β and ε allow us to do so.
To this end, we investigate how an induced subgraph of minimum vertex size cover-
ing v looks like. We remember the subgraphs which we considered for (1,∗)- and (∗,1)-
swaps in Figures 4.1 and 4.2. These are already the induced subgraphs of minimum
vertex size covering v. They are the local induced subgraph we obtain with the border

Figure 4.6: Marrying the current local induced subgraph H and Hmin(v,G,I) to cover v
by H. Observe that x must also be covered because its neighbors in the solution
(blue) are in H and Hmin(v,G,I).
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policy for ε = 0.5 where v is the initial vertex. If v ∈ I, this is simply G[A(2,v)] =
G[{v} ∪ t({v})]. For v 6∈ I it is G[A(2,v)] = G[{v} ∪ (N(v)∩I)∪ t(N(v))]. In the
following we denote these induced subgraphs Hmin(v,G,I).
In Figure 4.6 we give an example of how TBFS tries to cover v in the local induced
subgraph H. We marry H with Hmin(v,G,I). Note that x in Figure 4.6 must also
join the local induced subgraph when marrying them, because it is tight to solution
vertices in V (H) and Hmin(v,G,I).
TIGHT-BFS. Roughly speaking, TIGHT-BFS (TBFS), computes a finite se-
quence of vertex sets (Vi)k

i=1 with k ∈N such that associating induced subgraphs Hi =
G[Vi] gives us local induced subgraphs as described in the dynamic border policy.
The algorithm does so by starting to compute a sequence which respects the dynamic
border policy and if every next considered Hi+1 would contradict n(Hi+1) ≤ β, we
terminate. In general, it is unclear whether we obtain the largest possible local in-
duced subgraph for u. But to cover a vertex v adjacent to a vertex which is in our
instance, we add only the minimum number of necessary vertices, i. e., we marry with
with the minimum local induced subgraph for v which we denoted Hmin(v,G,I).
TBFS is an online algorithm, i. e., for computing Hi+1 we only remember Hi but
not the whole sequence. Therefore, we now abuse notation and denote with H the
current local induced subgraph and with H ′ the one after marrying with H and some

Figure 4.7: Example illustrating the processing of vertices in Qin and Qout. To cover v
we precompute whether we can cover the new vertices of marriage of H and
Hmin(v,G,I). Assume for this example β is large enough and the marriage
will be successful. At the next level we enlarge H by marrying with the local
induced subgraphs of u and v of minimum vertex size.
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minimum local induced subgraph.
Again we perform a BFS starting with u. However, this time we process all vertices
in I at the current level at first and then the vertices not in I. We do so by using two
queues Qin and Qout in which we add explored solution and non-solution vertices,
respectively. Let γ denote the number of vertices which we can still add. In the
beginning, γ is initialized with β.
Let v ∈ I be the current vertex popped from Qin, then we just marriage H
with Hmin(u,G,I) and obtain H ′ =H ∪IHmin(u,G,I). We assume that v was only
added to Qin if β−n(H ′)≥ 0 holds after the marriage. If v is visited at distance less
than d and has unexplored neighbors, then we enqueue them in Qout (every neighbor
is not part of the solution).
Now we process Qout. We do not change H while processing non solution vertices,
but precompute some H̃ ′ which we will obtain, namely H ′, when we processed Qin

at the next level. We give an example in Figure 4.7. Let v ∈ V \ I be the popped
vertex by Qout and H̃ be the current precomputed local induced subgraph. To decide
whether we can add v if it is not covered yet, we need to check whether we can add
new vertices when marrying with Hmin(v,G,I). Let H̃ ′ = H̃ ∪IHmin(v,G,I) is the
precomputed graph by marrying with Hmin(v,G,I). If k :=

∣∣∣V (H̃ ′)\V (H̃)
∣∣∣ ≥ γ, we

can cover v and the k necessary vertices. In this case we enqueue all the new neigh-
bors and decrease γ by k. The necessary vertices are v itself, uncovered neighbors
in I and all vertices which would becomes to tight the local induced subgraph. They
all appear in N≤2(v). Observe, that one can either add the minimum vertex size local
induced subgraph of v or the ones of the solution vertices in the neighborhood of v:

I⋃
x∈I∩N(v)

Hmin(x,G,I) =Hmin(v,G,I).

Because we enqueued all new neighbors of v, it is guaranteed thatHmin(v,G,I) will be
married with H when processing Qin at the next level. Thus, we cover Hmin(v,G,I)
by marrying H with all Hmin(x,G,I) for all x ∈ N(v) ∈Qin.
This cover check for v is done, if v is appears at distance < d− 1, because other-
wise Hmin(v,G,I) might contain vertices beyond Hmax. Note that we still still cover
acceptable vertices at distance d−1 or d−2 since we do the cover check at most at
distance d−2. Thereby, we visit neighbors of v with distance ≤ 2 to v. We initialize
the BFS by enqueuing the initial vertex u in the respective queue. If u ∈ I, we need
to decrease γ by n(Hmin(u,G,I)) in advance. The algorithm terminates if γ ≤ 0 after
processing Qin. Note that the algorithm can return the empty induced subgraph if β
is chosen too small.
Run-time. For the run-time analysis we assume that we can do tight queries of the
scheme is v ∈ V \I in t(V (H)) for V (H)⊂ V in O(1).
Processing a solution vertex runs in O(∆(G)), because we add at most the solution
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vertex and some neighbors which become tight to the induced subgraph. Because
solution vertices appear at most at level d−1, we have at most O(∆(G)d−1) solution
vertices. Thus, processing all solution vertices can be done in O(∆(G)d).
For non-solution vertices v we need to compute whether Hmin(v,G,I) will be covered.
This forces us to do tight queries for vertices in N≤2(v), i. e., for vertices with distance
of at most two to v. Since the tight queries are done in O(1) in the worst-case,
processing v has worst-case complexity O(∆(G)2). Note that non-solution vertices
are popped from the queue at most at level d− 2. Consequently, all non-solution
vertices can be processed in O(∆(G)d) too.
As before, we can build an induced subgraph in O(∆(G)d+1). This gives us an
worst-case complexity of O(∆(G)d+1) for selecting the vertices and building the
induced subgraph.
If β <∞, then the number of vertices in H is bounded by β. From a theoretic point
of view, building the induced subgraphs with β vertices can be done in O(β∆).
Thus, if β < ∞, we have a worst-case complexity of O(∆(G)d + β∆(G)). We
maintain the tightness of a vertex to V \V (H), and V \V (H̃) in order to make O(1)
queries. Maintaining this information for H and H̃ can be done when we perform
and evaluate marriages and adds only a constant in the run-time per vertex. We
maintain τ(v) for all vertices v ∈ V over all calls of ONE. Thus, we can initialize
the tightness to V \ V (H) and V \ V (H̃) for some v in O(1) when TIGHT-BFS
is called. The idea of maintaining τ(v) is already used by Dong et al. [18]. They
implemented it to efficiently update the internal data structure of METAMIS.

4.3.2 Solving
In the following, we explain how the instance H of the MWIS problem is solved
where H a local induced subgraph in G computed by one of the algorithms in the
previous section. In principle, we could use any solver which aims to solve the MWIS
problem optimally or at least optimizes IH := V (H)∩I. We choose the branch-and-
reduce solver from KaMIS (KaMIS BaR) by Lamm et al. [28] since it is state-of-
the-art among the exact algorithms. It is capable to solve many (large) instances
optimal while outperforming other approaches. Even compared to iterated local-
search approaches like HILS it can often compete in run-time, e. g., for OSM instances
(street networks), as the experiments by Lamm et al. [28] show.
In case that KaMIS BaR cannot find an optimal solution in a certain time limit
when branching on the initially computed irreducible kernel recursively, the best
maximal WIS IH for H is returned. Since every maximal WIS for H results in
maximal WIS for G when embedded in I, we can simply overwrite the old solution I
in G by removing the vertices which are not in the returned solution for H and
adding the vertices IH \ I if IH improves the old one. Therefore, we only need to
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evaluate ω(IH)> ω(I ∩V(H)), and if it is true, we can embed the new solution.
Run-time. KaMIS BaR implements the branch-and-reduce framework. Recur-
sively branching on vertices has in the worst-case an exponential run-time in the
input graph. In our case the input graph is the explored local induced subgraph H.
NBFS and TBFS produce instances with O(∆(G)d) vertices. If β <∞ is given,
TBFS finds instances with at most β vertices. In the latter case the worst-case
complexity becomes independent of the local induced subgraph H since the number
of vertices is bounded by β and the number of edges bounded by β(β− 1). As a
result, we can control the worst-case run-time of KaMIS BaR only by β <∞, and
consequently solving the local induced subgraph is fixed-parameter tractable.

4.4 Iterated Local-Search
Finally, we propose an iterated local-search algorithm which uses optimal neigh-
borhood exploration. It scans over a shuffled sequence of V and applies ONE
to every u ∈ V as sketched in Figure 4.8. This is done in rounds, i. e., when the end
of the sequence is reached, it starts again with the first element. Whenever ONE
finds a better solution for H, we update I of G.

Figure 4.8: High-level view of iterated local-search with optimal neighborhood exploration.

For the initial solution we use a greedy algorithm described in Chapter 3 to find an
initial maximal weight independent set or an initial solution is given in advance.
The algorithm terminates when there was no successful local-search in the last n(G)
applications. In this case, it is stuck in a local optimum and another round would
consider the same instances without yielding any improvement. Therefore, we simply
introduce a counter which starts counting applications when in some application no
improvement was found. However, if one was found, we reset the counter to zero.
If it reaches n(G), it terminates. The algorithm terminates always, because the
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solution only changes when a solution with a greater solution weight is found, and
is bounded by the optimal solution weight. We call this algorithm Exhaustive
Optimal Neighborhood Exploration (EONE). Depending on the algorithm
used for the exploration, we call it EONE NBFS or EONE TBFS. We give the
pseudo-code for EONE in Algorithm 2. It includes also a taboo-mechanism which
we will discuss in the next section.
Run-time. In one round, i. e., in one scan over the vertices, we perform at most n(G)
ONE-applications. Therefore, the run-time of EONE per round is in worst-case
bounded by the run-time of n(G) ONE-applications. Since the solution cannot de-
crease in one round and improves it at least by one in the weight except for the last
round, we perform at most ω(I∗)+1−ω(I ′) rounds where I∗ is a MWIS of G and I ′
is the initial maximal WIS.

4.4.1 Taboo-Mechanism
A bottleneck of the presented iterated local-search so far is that we solve an local
induced subgraph for some vertex u ∈ V again if it was already considered in the
previous round and yielded no improvement. We cannot improve the global solution
if did not improved it last time and consider it in the next round again. Especially
the closer the algorithm comes to its local-optimum, it seems to be likely that we
consider many instances do not change anymore and are considered for a potential
improvement over and over again. In this case we do not want to solve non-improving
local induced subgraphs again since it costs unnecessary run-time. Therefore, we
propose a taboo-mechanism and implement it into EONE. The goal is to prevent as
many unnecessary applications of the BaR solver while we only skip instances if we
can be sure that we solved exactly the same instance before (in the last round) and
found no improvement.
Algorithm 3 introduces the necessary functions to maintain an active flag which
indicates a vertex changed its solution status (was removed or added) in the last
round. We use a counter ONECounter which counts the ONE applications. Hence,
we can store the application using setActive when the solution state for some vertex
changed and finally, we can evaluate whether we observed in the last n(G) applications
(one round) a change using isActive. It remains to clarify when to use these methods
and when we can skip an instance.
We skip an instance whenever there was no active vertex considered in any condition
by EONE when determining H. Thus, we have to check for each seen vertex one
more condition in the algorithm. Clearly, it does not change the overall worst-case
complexity. We call isActive to evaluate the condition for a single vertex. For
NBFS it is sufficient to call setActive for some v ∈ V whenever its solution status
changes. For TBFS we set its whole neighborhood active in addition, because we
do not scan over the (changed) neighborhood of a vertex v ∈ V to determine the
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tightness, but use our maintained statistic. If a neighbor of v changes its solution
status it must notify v as it can affect the tightness of v and therefore the decision
whether v is covered in the local induced subgraph.

4.4.2 Kernelization
As we saw in Chapter 3 KerMIS by Dahlum et al. [14] combines kernelization with
local-search very well. They use reductions to compute a kernel and operate with a
heuristic approach on a much smaller graph. This allows the solver to consider an
equivalent graph with less vertices.
Lamm et al. [28] presented new reductions for the weighted problem. Moreover,
the authors devise a strategy for their state-of-the-art branch-and-reduce solver
KaMIS BaR to compute an irreducible kernel. They incrementally apply the re-
ductions until no reduction can be applied anymore. Therefore, it is checked for each
vertex whether a reduction is applicable. If a reduction rule applies, the graph is
modified, and when all checks finished for the current reduction rule, one goes back
and starts with the first reduction rule again. Otherwise, the next reduction rule is
chosen from the set of reduction rules. Most reduction rules act locally which allows
to efficiently maintain a queue for each local reduction rule with vertices changed
during graph modifications. If no reduction rule left which can be applied, we obtain
an irreducible kernel.
Important to note is that a MWIS of kernel has a weight offset to an MWIS I of the
actual graph G. Reductions as neighborhood removal [28] remove a dedicated vertex
v from the graph and thereby modify the overall weight of the graph. If v has a
weight ω(v)≥ ω(N(v)), this reduction states that v is in some MWIS of G. Hence, v
can be added to the solution and v and its neighbors can be removed from the graph.
That increases the weight offset to the actual graph since v contributes ω(v) to I but
is not covered in the reduced graph.
Remember that the run-time per round of EONE depends among the run-time of
ONE on the number of vertices. It determines local induced subgraphs for every
vertex for at least two rounds and solves them for at least one round. Moreover,
ONE depends on the input graph even if β <∞ because of the exploration. Due to
the fact that EONE should operate on relatively large graphs and might consider
many local induced subgraphs which do not yield an improvement, operating on
kernels could close this potential bottleneck.
Moreover, thinking about solution quality, for vertices which can be efficiently decided
optimally it is not worth it to risk to classify them wrong using an inexact algorithm.
As Figure 4.9 sketches, we can compute a kernel using KaMIS BaR and then apply
EONE. We investigate the effects on solution quality and efficiency in Section 5.4.
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4 Optimal Neighborhood Exploration

Figure 4.9: Example illustrating kernelization combined with EONE.
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4.4 Iterated Local-Search

Algorithm 1: Exploration (NAIVE-BFS)
input : G= (V,E,ω), maximal I ∈ IS(G), u ∈ V, 0< ε≤ 0.5
output: H ⊂G[VH ]
VH ←∅ Q←{u};
nodesCurrentDepth← 1;
l← 0;
queued[v] ← false ∀v ∈ V ;
queued[v] ← true;
while Q 6= ∅ do

nodesNextDepth← 0;
while nodesCurrentDepth > 0 do

v← pop(Q);
/* assert: queued[v] = true */
if l < bε−1c then

accept ← true;
if l+ 1 = bε−1c∧ v 6∈ I then

foreach w ∈ N(v) do
if !queued[w] ∧ w ∈ I then

/* assert: w ∈ Nd+1(u) */
/* assert: v cannot be tight to N≤d(u) */
accept ← false;
break;

if accept then
VH ← VH ∪{v} for w ∈ N(v) do

if !queued[w] then
push(w, Q);
queued[w] ← true; + +nodesNextDepth;

else
/* assert: l = bε−1c */
/* assert: v 6∈ I */
if isTight(v,VH) then

VH ← VH ∪{v}

nodesCurrentDepth← nodesNextDepth;
+ + l;

29



4 Optimal Neighborhood Exploration

Algorithm 2: Exhaustive Optimal Neighborhood Exploration (EONE)
input : G= (V,E,ω), maximal I ∈ IS(G), 0< ε≤ 0.5, β > 0
output: maximal WIS I ′
I ′←I V ← shuffle(V );
noImprovementStartPos ←∞;
currentPos ← 0;
/* for taboo mechanism: */
lastSolChange[v] ← 0 ∀v ∈ V ;
ONECounter ← 0;
while noImprovementStartPos 6= currentPos do

/* Run ONE for u: */
u←V [currentPos];
/* ‘explore’ uses isActive */
H, taboo ← explore(u,G,ε,β,lastSolChange, ONECounter);
++ONECounter;
if not taboo then
IH ← solve(H)

if ω(IH)> ω(I ∩V (H)) then
/* set swapped vertices (+ neighborhoods) active */
setActiveNodes(IH , I ′, V , ONECounter, lastSolChange);
I ′← (I \V (H))∪IH ;
noImprovementStartPos ←∞;

else if noImprovementStartPos = ∞ then
noImprovementStartPos ← currentPos;

++currentPos;
if currentPos = n(V ) then

currentPos ← 0;

Algorithm 3: Components for taboo-mechanism
/* ONECounter is incremented in every ONE application after

exploring the H */
ONECounter ← 0;
lastChange[v] ← 0 ∀v ∈ V ;
Function setActive(v ∈ V ):

lastChange[v] ← ONECounter;
Function isActive(v ∈ V ):

/* was a vertex set active in the last n applications? */
return ONECounter − lastChange[v] < n(G);

30



CHAPTER 5
Experimental Evaluation

In this chapter we present experimental results considering our new iterated local-
search solver. We start with giving an overview over the set of instances for our
experiments in Section 5.1, followed by the methodology in Section 5.2. Section 5.3
gives an overview of the different experimental parameters of the solver we compare
in the experiments and the metrics which we obtain and present. Finally, we move
on to the experiments in Section 5.4.
We start by comparing our two approaches, NBFS and TBFS, in run-time in Sec-
tion 5.4.1. Afterwards we investigate the solution quality and compare the found
solutions to optimal solutions by KaMIS BaR by Lamm et al. [28] in Section 5.4.2.
On a set of hard instances, we compare EONE with the state-of-the-art exact solver
KaMIS BaR in Section 5.4.3. Finally, we compare EONE with an own implemen-
tation of the state-of-the-art solver METAMIS by Dong et al. [18] for the vehicle
routing (VR) instances [16, 17] in Section 5.4.4. We reimplemented METAMIS as
it was not publicly available. Thanks to the help of Alexander Noe, a co-author
of [18], our implementation finds solutions very close to the ones presented in their
experiments with METAMIS in [18]. The small gap in solution quality is probably
related to the implementation itself or to fine-tuned optimizations we are not aware
of. However, to make this experiment meaningful, we will mention the best solutions
found by METAMIS in the respective experiments. In order to distinguish our im-
plementation from their algorithm, we will denote our implementation METAMIS*.
At the end of the experiments, we will close with a conclusion in Section 5.5.
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5 Experimental Evaluation

5.1 Instances
This section gives an overview over the set of instances which we consider.

5.1.1 Weighted DIMACS Instances
The first set of instances is a subset of DIMACS instances [9, 8]. Our subset consists
of four street networks and five citation (social) networks. The street networks are
very sparse. The average degree in these graphs is two. The social networks are a
little denser. In average they have an average degree of 18. The original graphs are
unweighted. We assigned them weights from 1 to 30 using the formula

ω(v) = 1 + (v.id mod 30)

where v.id ∈ {0, . . . ,n(G)−1} denotes the node id of v ∈ V . Note that in our internal
graph representation node ids are shifted by one. Therefore, node ids start to count
from zero.

Instance n(G) m(G) d(G)

citation networks
citationCiteseer 268495 1156647 9
coAuthorsCiteseer 227320 814134 7
coAuthorsDBLP 299067 977676 7
coPapersCiteseer 434102 16036720 74
coPapersDBLP 540486 15245729 56
GEOMEAN 336003 2954412 18
OSM street networks
belgium.osm 1441295 1549970 2
germany.osm 11548845 12369181 2
great-britain.osm 7733822 8156517 2
italy.osm 6686493 7013978 2
GEOMEAN 5416528 5754841 2

Table 5.1: Weighted DIMACS Instances. d(·) is the average degree of the instance.

5.1.2 Hard Instances
The second set contains twelve instances. All these graphs in Table 5.2 have in
common that KaMIS BaR is not able to prove optimality or is not capable to find an
optimal solution in a certain amount of time. The first instance, fe_sphere-uniform,
is a 3d mesh obtained from simulations using the finite element method (FE) [21, 3].
KaMIS BaR was not able to solve the instance within 1000 s [21]. Further, we
consider three Open Street Map (OSM) networks [2, 28], All these three graphs were
not solved within 1000 s in experiments by Gellner et al. [21]. Same holds for the four
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5.2 Methodology

Instance n(G) m(G) d(G) n(K) m(K) n(K)/n(G) [%] m(K)/m(G) [%] d(K)

FE
fe_sphere-uniform 16386 49152 6 15269 44641 93.18 90.82 6
OSM
district-of-columbia-AM2 13597 1609795 237 6360 592457 46.78 36.80 186
greenland-AM3 4986 3652361 1465 3942 2348539 79.06 64.30 1192
rhode-island-AM2 2866 295488 206 1103 81688 38.49 27.65 148
SNAP
as-skitter 1696415 11095298 13 9633 45665 0.57 0.41 9
loc-gowalla_edges 196591 950327 10 1102 5513 0.56 0.58 10
soc-LiveJournal1-uniform 4847571 42851237 18 29508 200915 0.61 0.47 14
wiki-topcats 1791489 25444207 28 187301 793723 10.46 3.12 8
SSMC
ca2010 710145 1744683 5 167299 357449 23.56 20.49 4
il2010 451554 1082232 5 151815 316669 33.62 29.26 4
nh2010 48837 117275 5 12123 26384 24.82 22.50 4
ri2010 25181 62875 5 9707 22060 38.55 35.09 5

Table 5.2: Hard Instances: G is the instance itself and K is the irreducible kernel computed
with KaMIS BaR, d(·) is the average degree of the instance.

SNAP instances from the Stanford Large Network Dataset Collection (SNAP) [29, 21]
in the experiments by Gellner et al. [21] and by Gu et al. [24]. Finally, we added
to the set four SSMC instances from The Suite Sparse Matrix Collection [25, 15].
KaMIS BaR was not able to find an optimal solution within 1000 s [24].

5.1.3 Vehicle Routing Instances
The last set are the vehicle routing instances by Dong et al. [16, 17]. We consider a
subset containing 19 instances. These are the instances with smaller weights. They
have around 105 vertices and 108 edges. They are conflict graphs where a solution
to the MWIS problem corresponds to an optimal, conflict-free planning of routes for
vehicles assigned to drivers and the load which should be transported [16, 17].

5.2 Methodology
EONE and METAMIS* are implemented in C++17. KaMIS BaR is implemented
in C++11. We use KaMIS BaR with git commit 3d08a14 for comparisons and for
solving local induced subgraphs produced by ONE. We computed kernels as input
for EONE with KaMIS BaR using git commit 254fd16. They were compiled
using g++ (gcc) 9.4 with full optimizations turned on (-O3 flag). All experiments
were executed on a machine with an Intel Xeon Silver 4216 16-Core CPU, 100W,
2.10GHz, 22.00MB L3 Cache, DDR4-2400, Turbo Core max. 3.20GHz, bis AVX-512
RAM 96GB (6x 16GB) DDR4-2933 DIMM, REG, ECC and 2R. The machine runs
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Ubuntu 20.04.1 LTS and a Linux kernel 5.4.0-65-generic x86_64.

5.3 Setup

In the following, we introduce the experimental parameters of the compared solvers
and metrics which we use to analyze them.

5.3.1 Experimental Parameters
In this section we give an overview over the experimental parameters which are used
for all solvers and those specific to certain solvers. First of all, all algorithms support
a time-limit tl which is used in the experiments. If the execution-time of an algo-
rithm exceeds tl, it must return the best solution found so far. In the METAMIS*-
experiments we will observe execution times larger than tl. The reason for this is
that an initial solution is computed and the time-limit for EONE and METAMIS*
bounds only the time spent in local-search improving this initial solution. Since both
algorithms use the same greedy algorithm to find an initial solution, both results are
biased to the same degree in run-time.

EONE

The exploration by ONE in EONE can be controlled by ε ∈ (0,0.5]. A smaller ε
leads to larger local induced subgraphs because vertices with larger distance to the
seed vertex are explored. Besides ε, EONE TBFS supports a bound on the vertices
β ∈ N∪{∞} covered by a local induced subgraph. In addition, we introduce a third
parameter which is a time-limit tlH for KaMIS BaR. This way, we ensure that the
exact solver spends not to much time on a single local induced subgraph.

KaMIS BaR

Across all experiments KaMIS BaR is used in one way or another as a solver
for local induced subgraphs, for precomputations or as competitor. There are two
variants which differ in the reduction style. It can be either set to normal/sparse
or to dense/osm. The difference is that the dense/osm mode omits costly reduc-
tions. Across the experiment, we will use all reductions. The reason is that we use
KaMIS BaR for the local induced subgraphs which are typically relatively small.
When we use KaMIS BaR as competitor we use a relatively large time limit such
that it should be able to find (near)-optimal solutions.
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METAMIS*

Thanks to the help of Alexander Noe, we know most of the values of the parameters
for METAMIS used for the VR instances which we consider. Since we use only
these particular values, we mention the best configuration for them in the following.
METAMIS* allows to maintain a set of best solutions, so-called elite solutions. For
the VR instances, METAMIS maintains only a single best solution as this seems
to perform best. The authors apply no local-search on the random greedily selected
solution used as guiding solution for path-relinking for one round. In the iterated
local-search applied on the relinked solution, they limit the number of non-improving
iterations by two. If no improvement was found at the end of one round of the iterated
local-search, they perform a perturbation that adds a limited number (here 2) of
vertices to the solution and removes their neighbors. As mentioned in Chapter 3, they
incrementally apply (∗,1)-swaps, AAP-moves, (1,∗)-swaps, and if no improvement was
found yet: one improving (2,∗)-swap in one iteration the local-search. We limit the
number of AAP-move searches to 200 per round. The number of vertices in the path
is limited to 20, and when the path is constructed but its gain in the solution weight
exceeds a lower bound of −300, an improving prefix of the path, maximizing the gain,
is used.

5.3.2 Metrics

EONE, METAMIS* and KaMIS are randomized, e. g., processing vertices in a
shuffled order for random tie-breaking. The random mechanism is determined using
an initial seed. In order to present metrics obtained from an execution independent of
the random generator, we use three of such seeds. For plots showing the solution over
time we average the best solutions at each certain point in time using the geometric
mean. Let w1, . . . ,w3 be the bests solutions weights computed by some algorithm
A using three seeds within the time limit tl. The average best solution wbest is the
geometric mean of all wi. Further, let tr(wi) be the time A used to compute wi. By
abuse of notation, we will denote wbest as the best solution found by A. The average
best solution report time tr is the geometric mean over all tr(wi) as estimate for the
run-time of the best solution. Again by abuse of notation, we will denote it as the
report time of the best solution. Sometimes we compare a solution to a (near-)optimal
solution to get an impression of how close we are to an (near-)optimal solution. This
is done using the solution quality which is the ratio of the considered solution and
the (near-)optimal solution.
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5.4 Experiments
Because we presented two approaches, NAIVE-BFS and TIGHT-BFS, to explore
and find an induced subgraph, we want to compare them. The main difference be-
tween them (disregarding β) is that TIGHT-BFS maintains the tightness globally
and the tightness to the unaccepted vertices during exploration. As a result we do
not need to perform tightness queries in O(∆(G)) for border vertices.
We start by comparing our algorithms for explorations: NBFS and TBFS. Therefore,
we consider the set of weighted instances taken from the DIMACS challenge [9, 8].
The main question we want to investigate is whether we can find optimal solutions
or at least near optimal solutions using these approaches of considering local-induced
subgraphs. Therefore we compare our solution for the weighted DIMACS instances
with (near-)optimal solutions computed by KaMIS BaR.
In a second experiment we want to compare EONE with the state-of-the-art exact
solver KAMIS BaR by Lamm et al. [28]. Therefore, we consider instances which
KaMIS BaR struggles to solve optimally or prove optimality for the computed
solutions. Moreover, we computed irreducible kernels of these hard instances using
KaMIS BaR. Solving the kernel optimally is equivalent to solving the actual instance
optimally. Since the kernel is typically much smaller (in vertices and edges), we
suppose that EONE is even more effective. We study the effects on solution quality
and run-time comparing it with applying EONE directly on the instances.
Finally, we compare EONE with the state-of-the-art solver METAMIS* by
Dong et al. [18] on a subset of the VR instances [16, 17].

5.4.1 EONE NBFS versus EONE TBFS
We start the experiments with a benchmark which compares EONE NBFS and
EONE TBFS in run-time. To this end, we compare the time both algorithms need
to converge to the same local optimum. In the experiment, we set ε = 0.5 and give
KaMIS BaR a time limit of 1 s. The initial solutions are computed using a greedy
algorithm which processes vertices in the descending order of their weights and adds
them to the solution if feasible.
In Table 5.3 we report the best final solution weight ωbest. Both find the same
best solution, because they consider the same local induced subgraphs for the same
configuration if β =∞. Moreover, it shows the report time of both variants.
Further, Table 5.3 reports the differences in the run-time between EONE NBFS
and EONE TBFS. For almost all instances, there are just small differences in
the run-time, except for coPapersCiteseer and coPapersDBLP. For these instances
EONE NBFS is more than twice the time than EONE TBFS. These two graphs
have an average degree of 74 and 56, respectively, which is significantly larger than the
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average degree of the other graphs in this set. Comparing both, this first benchmark
indicates that EONE TBFS performs better when it comes to denser graphs.

Instance EONE NBFS EONE TBFS
ω(Ibest) tNBFS

r ω(Ibest) tTBFS
r tNBFS

r /tTBFS
r [%]

citation networks
citationCiteseer 2503500 7.00 2503500 6.78 103.36
coAuthorsCiteseer 1651875 3.00 1651875 3.01 99.85
coAuthorsDBLP 2385565 3.77 2385565 3.90 96.59
coPapersCiteseer 943481 160.03 943481 65.28 245.13
coPapersDBLP 1320894 73.60 1320894 33.82 217.60
OSM street networks
belgium.osm 11616209 12.46 11616209 12.86 96.82
germany.osm 93816891 111.58 93816891 118.35 94.29
great-britain.osm 63494427 72.99 63494427 75.57 96.59
italy.osm 53756998 62.43 53756998 66.61 93.72
GEOMEAN 26.25 22.27 117.88

Table 5.3: EONE NAIVE-BFS and EONE TIGHT-BFS applied on weighted DIMACS
instances with ε= 0.5 and tH = 1s.

We do this experiment again, but now setting ε= 0.25, and tl to 7200 s (two hours).
The local induced subgraphs become larger because we allow to consider vertices of
larger distance to the seed vertex. Remember that NBFS has to run (costly) tightness
checks for border vertices. Because there are more border vertices, we should expect
more tightness queries, and thus, observe a larger gap to TBFS in run-time. We give
the best solution weight over time in Figure 5.1 for a street network, germany.osm, and
for a social network, coPapersCiteseer. First, we observe that a local optimum for the
street network is found within a few seconds. After 170 s both algorithms converged
and EONE NBFS is only 15 s faster. Focusing on coPapersCiteseer, we can observe
that the last improvement of EONE NBFS is found 1500 s earlier. Although this
set of instances is fairly small, EONE TBFS seems to be faster than EONE NBFS
if the underlying graph is not extremely sparse. In further experiments we will use
EONE NBFS only for ε set to 0.5.

5.4.2 Performance With Weighted DIMACS Instances
In the following experiment, we want to investigate the solution quality of the max-
imal WIS found by EONE. The time limit is set for all algorithm for the DI-
MACS instances to two hours again. We determine optimal solutions using KaMIS
BaR. In Table 5.4 we list the solution qualities for different ε ∈ {0.5,0.25,0.2} for
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Figure 5.1: Improvements of solution weight over time: EONE NBFS and EONE TBFS
for ε= 0.25 applied on germany.osm and coPapersCiteseer.

Instance EONE TBFS KaMIS BaR
ωε=0.2

best /ωopt [%] tε=0.2
r [s] ωε=0.25

best /ωopt [%] tε=0.25
r [s] ωε=0.5

best /ωopt [%] tε=0.5
r [s] ω(Iopt) tBaR

r [s]

citation networks
citationCiteseer 100.00 4952.68 100.00 1071.89 99.85 6.78 2507336 0.42
coAuthorsCiteseer 100.00 430.19 100.00 61.55 99.99 3.01 1652034 0.18
coAuthorsDBLP 100.00 1635.47 100.00 135.34 99.98 3.90 2385956 0.26
coPapersCiteseer 99.66 7105.27 100.00 4584.43 99.96 65.28 943830 1.19
coPapersDBLP 99.82 7195.35 99.94 7178.56 99.97 33.82 1321337 1.24
OSM street networks
belgium.osm 99.82 22.21 99.70 18.66 99.22 12.86 11707292 2.28
germany.osm 99.85 193.22 99.75 162.58 99.26 118.35 94515182 28.22
great-britain.osm 99.86 126.02 99.77 107.15 99.31 75.57 63934818 13.48
italy.osm 99.89 91.64 99.83 76.96 99.55 66.61 54000201 40.18
GEOMEAN 99.88 591.24 99.89 268.90 99.68 22.27 2.17

Table 5.4: Solution quality: EONE TBFS applied on weighted DIMACS instances; solu-
tion quality is bold if for at least one seed an optimal solution was found, the
solution quality is rounded to the second digit.

EONE TBFS together with the optimal solutions found by KaMIS BaR. More-
over, we tested ε= 0.1. However, we leave ε= 0.1 out of consideration because it was
not improving the solution quality while report times got worse. We discuss this be-
haviour in the following on the remaining choices for ε. Except for italy.osm, KaMIS
BaR was able to prove optimality of the found solutions within seconds. In the case
of italy.osm, it was not possible to prove optimality within two hours. Probably it
is either optimal already and KAMIS was not able to prove optimality in the given
time or it is a near-optimal solution. For optimal solutions we list the report time of
the respective best solution.
We observe for EONE TBFS with ε= 0.5 that the solution weight already converges
to over 99.9 % of the respective optimal solution for every instance. Typically, after a
few seconds no improvement is found anymore and unable to find an optimal solution.
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For ε= 0.25 EONE TBFS is able to report optimal solutions for three of five social
networks. In case of the street networks, we are able to find better solutions in average
if we use smaller ε, e. g.,. ε= 0.25. However, we are not able to find optimal solutions
for the street networks for our choices of ε ∈ {0.5,0.25,0.2}.
We want to draw the attention to the report times of the best solutions. For ε= 0.5 the
report times are fairly small compared to those for smaller ε. We apply ONE to very
small local induced subgraphs if we choose ε = 0.5 and therefore they can be solved
very fast. A local optimum is typically reached after a few seconds. For smaller ε
this behaviour for the last improvement remains the same at least for street networks.
The last improvement within two hours is found in less than 200 s. Considering social
networks, we observe rapidly growing report times for the last improvement, while the
it has no positive effect on the solution quality considering ε= 0.2 and ε= 0.25 These
graphs are denser. Hence, for a fixed ε we consider significantly larger local induced
subgraphs than compared to the street networks. These local induced subgraphs can
cover large parts of the actual graph. Note that KaMIS BaR is able to solve these
social networks very quickly. Since we use this solver for the local induced subgraphs
too, it should have no problem to solve them also very fast. The reason for the larger
report time for smaller ε is probably the accumulated run-time of more expensive
exploration which selects large part of the graph and the subsequent solving if the
instance is active (taboo mechanism). The effect on solution quality within these two
hours becomes visible for coPapersCiteseer and ε= 0.2: EONE TBFS is unable to
find an optimal solution within two hours.
In this context, another observation should not go unmentioned. Table 5.5 lists the
solution quality of the greedy initial solutions used in this experiment. For the
street networks we obtain very good solutions with the greedy solutions. Their so-
lution weight is 98 % of the optimal solution weight. Thus, the improvement by
EONE TBFS can only be relatively small. The solution quality for the social net-
works is 90 % of the optimal solutions on average. With ε = 0.25 we improve it to
almost 100 %.

5.4.3 EONE Compared To KaMIS BaR

The results in Table 5.4 indicate that EONE is capable to find (near-)optimal
solutions. However, KaMIS BaR reports optimal solutions in magnitudes faster
than EONE does. The question arises whether EONE is an efficient approach and
whether EONE is able to perform better than KaMIS BaR. The next experiment
answers the question.
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Instance init. sol. for EONE
ωinit /ωbest [%]

citation networks
citationCiteseer 90.57
coAuthorsCiteseer 91.23
coAuthorsDBLP 91.39
coPapersCiteseer 89.55
coPapersDBLP 89.61
GEOMEAN 90.47

OSM street networks
belgium.osm 98.31
germany.osm 98.24
great-britain.osm 98.29
italy.osm 98.98
GEOMEAN 98.45

Table 5.5: Solution quality of greedy algorithm used by EONE TIGHT-BFS applied on
weighted DIMACS instances.

Performance With Hard Instances

We consider the set of hard instances which EONE TBFS, EONE NBFS, and
KaMIS BaR are going to solve with a time limit set to 7200 s. In order to find
good configurations we tried ε ∈ {0.5,0.25}. We ran EONE NBFS with ε = 0.5,
but it was not faster than EONE TBFS. To shrink the space of configurations, we
did not try other configurations with EONE NBFS. For ε = 0.25 we use different
β ∈ {100,200,400,∞}. Since for larger local induced subgraph it might take more
time to find (near-)optimal solutions, we choose for β ≥ 200 a time limit tlH = 3s
besides the default time limit of 1s. In Table 5.6 we report, next to the results for
KaMIS BaR, the results received with the best configurations for EONE. These
are configurations which found (for at least one instance) the best solution with the
fastest report time.
First, we note that KaMIS BaR still finds improvements for half of the instances
after two hours. For the remaining instances, KaMIS BaR typically reports the last
improvement very fast, but is unable to prove optimality or the last found solution
is not yet optimal. The best EONE TBFS configurations all use tlH = 1s instead
of tlH = 3s. For except two instances they find solutions of larger solution weights
compared to KaMIS BaR. In particular, the configurations using ε = 0.25 with
β ∈ {400,∞} perform very good for most of the instances. Especially noticeable
is the mean report time over all instances when comparing these two configurations.
Limiting the number of vertices in the local induced subgraphs for this set of instances
seems to decrease the overall average report time from 268.41s to 151.71s while
maintaining the solution quality. Given the fact that configurations with a smaller
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tlH perform better, we suspect that they can explore more local induced subgraphs
within the overall time limit than the configurations with a larger tlH . Therefore we
can conclude using more local induced subgraphs compared to increasing the time
spent on less induced subgraphs results in better solutions.
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Instance
EONE TBFS KaMIS BaR

ε= 0.25 ε= 0.25, β = 400 ε= 0.25, β = 100 ε= 0.5
ωbest tr [s] ωbest tr [s] ωbest tr [s] ωbest tr [s] ωbest tr [s]

FE
fe_sphere-uniform 616393 1.56 616393 1.53 616393 1.53 606969 0.24 600017 1.00
OSM
district-of-columbia-AM2 198339 5876.07 209113 1677.11 207091 10.89 207589 275.43 196515 7200.02
greenland-AM3 12646 138.61 13521 373.63 12828 77.69 13959 5700.51 13828 93.56
rhode-island-AM2 184596 1828.78 184084 106.04 182517 1.56 184596 12.49 184596 19.13
SNAP
as-skitter 123763358 7169.79 123669674 5425.79 123524336 1651.09 123940661 117.45 123982623 7200.59

loc-gowalla_edges 12276822 4903.80 12275842 185.04 12274127 101.07 12261793 3.59 12276794 0.37
soc-LiveJournal1-uniform 283488236 6257.46 283598126 6075.98 283885744 7128.30 283646716 788.21 284009063 179.26

wiki-topcats 106572372 7072.11 106620081 7195.83 106420771 3927.79 106447505 133.44 106323717 225.37
SSMC
ca2010 16854514 69.63 16854514 66.55 16853409 62.15 16661165 10.80 16571662 7200.22
il2010 5992685 38.94 5992685 37.98 5992604 38.03 5925427 6.00 5852319 7200.13
nh2010 588837 5.06 588837 4.82 588837 4.61 578444 0.71 581615 7200.02
ri2010 459146 2.82 459146 2.75 459097 2.65 452617 0.35 446952 7200.01
GEOMEAN 268.41 151.71 50.48 19.72 352.66

Table 5.6: Results for hard instances received with best configurations of EONE TBFS
versus KaMIS BaR, tl = 7200s, every EONE TBFS configuration uses
tlH = 1s, best solutions weights globally are bold, the report time is bold
if it is the smallest for the global best solution weight.

Instance
EONE TBFS applied on kernels

ε= 0.25, β = 400, ∗ ε= 0.25 β = 400 ε= 0.25 β = 200 ε= 0.25 β = 100 ε= 0.5
ωbest tr [s] ωbest tr [s] ωbest tr [s] ωbest tr [s] ωbest tr [s]

FE
fe_sphere-uniform 616628 2.02 616628 2.01 616628 2.01 616628 2.03 607206 0.86
OSM
district-of-columbia-AM2 209132 5882.25 208027 5689.86 209132 419.51 207930 34.25 205886 51.70
greenland-AM3 13521 621.26 13521 657.80 13294 114.15 13125 65.69 14011 1901.23

rhode-island-AM2 184596 202.73 184596 145.24 183653 5.62 183653 1.27 184470 4.01
SNAP
as-skitter 123991215 6916.78 123992049 7109.46 123992437 3912.09 123993262 301.52 123988977 62.48
loc-gowalla_edges 12276929 17.06 12276929 16.14 12276862 0.62 12276854 0.33 12276444 0.24
soc-LiveJournal1-uniform 284009584 5408.66 284008442 5291.34 284030469 7001.43 84035821 396.01 284026010 430.85
wiki-topcats 106659115 6639.12 106659091 3104.65 106658256 504.82 106652105 267.76 106570377 197.53
SSMC
ca2010 16856943 46.62 16856943 45.82 16856943 45.74 16856943 45.93 16748979 29.63
il2010 5993472 34.75 5993472 34.73 5993472 34.70 5993472 34.66 5949127 23.95
nh2010 588909 2.08 588909 2.07 588909 2.07 588909 2.04 584397 0.81
ri2010 459158 1.85 459158 1.78 459158 1.79 459158 1.77 455893 0.55
GEOMEAN 135.84 123.04 41.68 16.32 15.04

Table 5.7: Results for hard instances received with best configurations of EONE TBFS
on kernels, tl = 7200s, tlH = 1s or tlH = 3s when marked with a ‘∗’, global best
solution weights including Table 5.6 are bold, the report time is bold if it is the
smallest for the best solution weight including Table 5.6.
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Figure 5.2: Improvements of solution weight over time with and without kernelization.

Local-Search Using Kernelization

This first benchmark shows the effectiveness of EONE TBFS comparing to
KaMIS BaR. We suppose that EONE becomes even more effective overall as dis-
cussed in Section 4.4.2 if it is applied to the irreducible graphs with the previous
experimental configurations. We computed kernels for EONE using KaMIS BaR
with all available reductions (normal/sparse). This way, many vertices are decided
already optimal comparing with the kernel sizes in Table 5.2 and EONE ‘focuses’ on
the hard-to-decide problem kernel.
In Table 5.7 we report the best configurations (which slightly changed) for the kernels
of the instances. The best report time takes the reduction time used to compute the
kernel into account and for the best solution weights we added the weight offset
between solution of the actual graph and the computed kernel such that we obtain
metrics for the hard instances.
First, we note that for almost every instance (except for osm_rhode_island-AM2 )
the average solution weight was increased by some configuration compared to the best
solution from Table 5.6. For osm_rhode_island-AM2 no further improvement was
possible because in the first experiment, we already found an optimal solution [21].
Furthermore, we note that these best solution weights are now obtained with slightly
changed configurations. The best configurations seem to be the ones with ε = 0.25,
β = 400 and tlH ∈ {1,3}. As one can see, the configuration with tlH = 3 found
the best solution weight for nine of twelve instances. The other three instances,
osm_greenland-AM3, snap_as_skitter, and snap_soc-LiveJournal1-uniform were
improved with ε= 0.5 and ε= 0.25 using β = 100.
Moreover, the experiment indicates that the mean report time for the same configu-
rations decreases when we apply local-search to the kernel while maintaining solution
quality. Comparing the configuration with ε= 0.25, β = 400 and tlH = 1 used for the
kernel and for the input graph, we observe the mean report time of the best solution
decreased from 151.71 s to 123 s. Despite the fact this is a small decrease, note that,
applied to the kernel, it finds for eleven instances a better solution weight. These

43



5 Experimental Evaluation

solution weights are at least as good when not taking the kernel as input.
We compare the development of the solution weight over time with and without kernel
in Figure 5.2 for two instances. The first instance, snap_loc-gowalla_edges, is reduced
very quickly to a kernel which has only 0.6 % of the original size. EONE TBFS finds
small improvements and is able to find better solutions than without kernelization
in seconds. Without the kernelization it takes more than 100 s to come close to the
solution quality with kernel in Figure 5.2. Secondly, we consider ssmc_ca2010. It
takes a littler longer to find the first solution because the reduction time is longer
(28 s) as shown in Figure 5.2. Furthermore, the computed kernel is not as small
as for the last instance. It still has 24 % of the number of vertices. Nonetheless,
we find out that EONE TBFS is able to find many good improvements in a short
time for ssmc_ca2010. And thus, overtakes the solution of the execution without
kernelization.

5.4.4 Solving The VR Instances
In our last experiment we consider the VR instances and compare our approach with
state-of-the-art METAMIS for these instances. Furthermore, we investigate the
question whether EONE TBFS has a potential to improve the solution quality fur-
ther if METAMIS has already found a near-optimal solution. Therefore, we combine
both by applying them sequentially: first METAMIS* and then EONE TBFS.

With Greedy Solutions

In the first benchmark in Table 5.8 we present initial solutions using the adaptive
greedy algorithm devised by Dong et al. [18]. All algorithm have a time-limit set to
tl = 7200s to improve the initial solution.
We tried a configuration with ε = 0.5 for both exploration algorithms applied on
the instance CR-S-L-4 but EONE TBFS was the better choice because it finds a
solution weight of 5644909 after 4480 s, whereas EONE NBFS uses the full two
hours to compute a solution with a weight of 5580128. This solution is still over 1 %
behind the solution of EONE TBFS. Therefore, we use only EONE TBFS.
TBFS uses in addition ε = 0.25 with β ∈ {100,250}. For all configurations tlH
is set to 1 s. The reason that we did not try ε = 0.25 with β = ∞ is that the
local induced subgraphs become very larger and thus, make improvements hard
to find even if we increase tlH to several minutes. The combined algorithm,
METAMIS* + EONE TBFS, executes METAMIS* for one hour, then takes
the best solution and uses it as input for EONE TBFS to find further improve-
ments. Table 5.8 shows results of the best configurations. First, we note in Table 5.8
that our implementation of METAMIS reaches a mean solution quality of 99.55 %,
compared to the solution by Dong et al. [18], after 3600 s. For the instance CW-
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T-D-6 METAMIS* was able to find a better solution. Our best configuration for
EONE TBFS (ε = 0.25 and β = 100) is slightly behind METAMIS* with respect
to the solution weights. Most interesting is the combination of both using ε = 0.25
and β = 100. It finds better maximal WIS than the standalone variants. Only for
CW-T-D-6 a better one than in the work by Dong et al. [18] was found.
Figure 5.3 shows the solution improvement of CR-S-L-4 over time among the best
configurations and in addition: EONE TBFS for ε= 0.5. Using ε= 0.5 a local opti-
mum is reached after 3000 s. Moreover, we can observe a boost in the solution weight
after one hour, when METAMIS* stops and EONE TBFS takes over. Without
METAMIS*, EONE TBFS performs noticeably worse.

With Warm-Start

We do this experiment again but with good initial solutions instead of a greedy
solution. This is what Dong et al. [18] call a warm-start. The initial solutions are
significantly better than the ones computed by METAMIS after one hour without
warm-start [18]. It should be more challenging for a local-search solver to find further
improvements because the solution is better.
Table 5.9 shows the results when performing a warm-start. The mean solution qual-
ity of our implementation of METAMIS is now slightly better than in the first
benchmark. However, no variant produces better maximal WISs than the solutions
presented by Dong [18]. Comparing our implementations, we can observe that except
for three instances every instance was improved by a combination of both. Again a
boost in the solution weight is noticeable in Figure 5.4 for CR-S-L-4 after one hour.
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Figure 5.3: Solution improvement over time for CR-S-L-4 without a warm-start; besides
the best configuration is shows EBNF with ε = 0.5 which stucks in a local
optimum after 3300 s.
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5.5 Conclusion
To summarize the experiments: we have shown that EONE and in particular our
new local-search technique ONE is a working approach to find (near-)optimal solu-
tions by considering a subset of the DIMACS instances. As we supposed, exploring
neighborhoods to a larger distance given a seed vertex is a decisive factor in finding
optimal solutions. However, making ε too small yields larger instances, and makes
them harder to solve with KaMIS BaR. For eight of twelve hard instances the exper-
iments have shown that EONE TBFS finds better solutions than the state-of-the-art
exact solver KaMIS BaR given a time limit of two hours. On average our best solu-
tions are 1.52 % better than the ones received with KaMIS BaR. Applying EONE
on kernels of these hard instances allows us to further improve the solutions to 1.57 %
compared to the solutions received with KaMIS BaR. Not only the improvement of
solution quality underlines the benefits of kernelization combined with our approach,
but also the report times get better because many vertices are often decided opti-
mally in advance. Thus, EONE operates on a smaller problem. It should not go
unmentioned that β is a crucial factor, to shrink the sizes of subgraphs when graphs
get denser because the number of explored vertices rapidly gets larger. During this
work, the development of EONE TBFS which incorporates β was essential to scale
to large instances,e. g., the VR instances because they not only have hundred of thou-
sand of vertices but also millions of edges. Without β considering larger instances
as ε = 0.5 was not feasible. The last experiment has shown that EONE TBFS not
only finds high-quality solutions but also improves the solution of METAMIS* after
improving the initial solution with METAMIS* for one hour. Overall we received
slightly better solutions than the standalone variant.
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CHAPTER 6
Discussion

The last chapter is dedicated to the discussion of our new local-search technique. We
conclude this thesis and give an outlook on future work.

6.1 Conclusion
In this thesis, we have developed and implemented a new local-search technique,
called optimal neighborhood exploration (ONE), for the maximum weight independent
set problem. Particular about this technique is that ONE generalizes known local-
search techniques by not only considering the immediate neighborhood of a seed
vertex but a large-scaleable neighborhood to find improvements. These explored
neighborhoods can be considered as induced subgraphs and then solved optimally by
any MWIS solver. Improving the local solution of the subgraphs always corresponds
to an improvement to the same extent globally. To ensure that a better maximal WIS
for the local induced subgraph results globally in an improvement, we introduced two
boundary rules: the border policy and the dynamic border policy. These boundary
rules were the building blocks for the two exploration algorithms, NBFS and the more
sophisticated algorithm: TBFS. NBFS has a worst-case complexity of O(∆d+1) for
selecting the set of vertices for the local induced subgraph, whereas TBFS has worst-
case complexity O(∆d) where ∆ is the maximum degree of G. We solve the local
induced subgraphs using KaMIS BaR. By bounding the number of vertices in the
local induced subgraph by β, the worst-case complexity for solving the subgraph is
independent of G and only depends on β. As a result, solving the local induced
subgraphs is fixed-parameter tractable.
Starting from ONE, we have built an iterated local-search solver called Exhaustive
Optimal Neighborhood Exploration (EONE). To avoid solving local instances
whose vertices did not change the solution status in the last iteration, we devised a
taboo mechanism that avoids solving instances twice.
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Through the evaluation of our extensive experiments, we have shown that EONE
can find high-quality maximal WISs. Using TBFS for exploration seems to be the
way-to-go option compared to NBFS. Especially for ε smaller 0.5 we often found
optimal solutions, which underlines the effectiveness of considering neighborhoods of
larger distance. Using a bound on the number of vertices often results in solutions
better than those found by KaMIS BAR within a certain time limit. Using kernel-
ization to find a kernel in advance and solving it with EONE improves the solution
quality while the report time of the best solution decrease on average. Considering
the VR instances, we realized that we do not outperform the state-of-the-art solver
METAMIS yet. However, we have shown that EONE TBFS finds high-quality
maximal WISs on its own and can boost the solution quality when it is applied af-
ter running METAMIS* for one hour. We consider this a success because it shows
METAMIS* misses potential improvements that EONE can find.
In conclusion, this work has produced an effective and competitive iterated local-
search solver that can be used for large graphs modeling real-world applications by
implementing our new local-search technique. The basis of this success is the optimal
neighborhood exploration of a graph.

6.2 Future Work
The experiments have shown, that while EONE can find (near-)optimal solutions,
there is still unused potential for further improvements. To this end, we discuss them
and explain how we plan to improve EONE in the future.
The most significant drawback so far is that EONE processes the ONE-applications
sequentially. The closer it comes to its local optimum, the longer sequences of non-
improving ONE-applications are. Although the taboo-mechanism helps skipping
instances which are not improvable, we still have to figure out for that an instance is
not improvable by solving it as least once.
Parallelization probably is a solution to this problem. It is of great potential because
we can consider relatively small subgraphs and solve them independently of each as
long as there is no edge between them and the vertex sets are disjoint. Figure 6.1
illustrates how multiple local induced subgraphs are solved in parallel. To do so, we
need to select a set of vertices that are used as seed vertices for ONE in one iteration.
One approach could be to select this set uniformly at random. In the case instances
cannot be solved independently, we could solve them nonetheless. We accept the
change with the most largest improvement among the instances which are in conflict.
Another approach for resolving conflicts could be to marry the graphs with a conflict
and solve a larger local induced subgraph. However, there might be a risk that the
local-induced subgraphs become too big.
A second approach to selecting the seed vertices could be to compute a vertex-coloring
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Figure 6.1: Example illustrating how EONE can be accelerated: solving local induced
subgraphs in parallel.

in advance as in Figure 6.2. The vertex-coloring is feasible if vertices have the same
color only if their distance is at least 2 · bε−1c+ 1. Vertices of the same color can be
used as seed vertices for parallel execution because ONE will consider for each seed
vertex at most vertices with a distance of at most bε−1c. That is to say, the vertices
are located far enough from each other located.
In this work, we have restricted ourselves to the state-of-the-art exact solver
KaMIS BaR. For the experiments, we considered, among others, instances which
are hard to reduce for KaMIS BaR comparing with Table 5.2. Large kernels imply
more branching. Thus, it takes more time to solve them optimal. As mentioned in
Chapter 3, Lamm et al. [21] recently advanced KaMIS BaR with increasing trans-
formations, called structions, which are exact reductions. The idea is to increase the

Figure 6.2: Example shows two colors (red and green) of a vertex-coloring where vertices
with distance ≥ 2d+1 have the same color, green vertices are currently used as
seed vertices for local induced subgraphs.

53



6 Discussion

size of the current kernel to a certain threshold to find a smaller kernel when decreas-
ing reductions are applied again. They successfully solve most of the instances within
seconds. For the few left, it would be interesting to use the advanced KaMIS BaR
solver. This could help to solve instances obtained with a smaller ε in a faster time.
After all, it would be interesting to find out how EONE TBFS performs on the VR
instances, comparing it with the current best solutions computed by METAMIS by
Dong et al. [18].
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Implementation Details

This chapter should give an overview over the implementation details. In particular
we make notes on the data structures and operation which were used and sketch how
EONE can be implemented efficiently.

Breadth-First-Search (BFS)
Roughly speaking, NBFS and TBFS are modified breath-first-search implementa-
tion. We give the pseudo-code for NBFS in Algorithm 1. This difference in the
pseudo-code from our implementation is that this pseudo-code might not scale very
well to many applications of ONE as in EONE.
EONE applies ONE exhaustively until a local optimum is (ideally) reached, i. e.,.
we apply the BFS very often. In the pseudo-code, we remember whether a vertex was
enqueued or not by setting a boolean flag to true in a vector of size n(G). Allocating
and initializing this vector has a worst-case complexity of O(n(G)). This is infeasible
for many applications. Therefore, we maintain a counter of the ONE-application
together with a vector of integers of size n(G) in a dedicated data-structure. Whenever
we perform a BFS, we increment this counter. When a vertex is enqueued we store
the value of the counter in the vector in order to remember that this vertex was
explored.
Since we know n(G) vertices can be enqueued at most in one BFS, we allocate the
storage for the queue in advance using a vector. Instead of clearing the vector for a
second BFS, we just overwrite the entries of the vector.
We maintain this queue in the dedicated data-structure.

Maintaining Tightness
For TBFS we use look-ups for the tightness instead of computing it on-demand. First
of all, we maintain for each vertex v ∈ V(G) the tightness τ(v) which is the number
of neighbors of v which are part of the solution. Before the first ONE application,
we initialize τ(v) to zero for each v ∈ V , and scan once over the set of the vertices.
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If v is part of the solution, we visit its neighbors and increment their tightness. If the
solution now changes we can increment or decrement the tightness of the respective
vertices.
When we perform a BFS and check for marriages, we want to do look-ups as is v tight
to H where H is the current local induced subgraph. That is to say, we want to know
how many neighbors of v, that are part of the solution, are covered by H. Therefore,
we maintain the number of solution vertices in the neighborhood of H which are not
covered. We denote it τ¬H(v) and initialize τ¬H(v) to τ(v) when a solution neighbor
is covered for the first time. Note, we do not change τ during exploration.
Whenever we cover a solution neighbor of a non-solution vertex u, we decre-
ment τ¬H(v). If now τ¬H(v) becomes zero, we know it is tight to the current H
and we must cover it (when processing solution vertices).
That should give an intuition of maintaining tightness efficiently. However, in the
actual implementation we go one step further and maintain in addition the tight-
ness to the precomputed subgraph H̃. Since the idea is the same as the idea of
maintaining τ¬H(v) we do not elaborate on this.
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Command-Line Arguments

The following is an excerpt of the Command-Line Interface of the application imple-
menting EONE and METAMIS*. In the later case, they are executed sequentially.
To keep this interface clearly arranged, we will just list the options and an example
from our experiments which demonstrate how to use this application. For the exact
grammar of the commands we refer to the repository of DynWMIS.

Command-Line Interface
In the following we list the arguments for the binary of DynWMIS which can be used
together with solve and batch-solve. To see a full help message use -h. Roughly
speaking, it allows one to apply EONE and METAMIS* as standalone solvers, as
well as arbitrarily configured batches of solvers. One can read in given a solution
from a file for a warm-start, or use a greedy algorithm which were described in the
experiments Section 5.4 and in the Chapter 3. Note, default values cannot be set if
bath-solve is used.

• –-seed=<int> set random seed [default: 1]

• –-time_limit=<double> time_limit [default: 0]

• –-solver=<string> EONE_SOLVER, METAMIS_SOLVER [de-
fault: EONE_SOLVER]

• –-rating=<string> determine greedy solution using a heuris-
tic: WEIGHT_RATING, WEIGHT_DEG_RATING [de-
fault: WEIGHT_RATING]

• –-rel_rand_size=<double> relative (to number of nodes) size of random set
with best nodes with respect to rating [default: 0.1]

• –-adaptive_greedy determine adaptive greedy solution using heuristic
WEIGHT_DEG
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• –-eone EONE (iterated local-search) config

• –-max_ONE=<unsigned> set upper bound for ONE applications [default: 0]

• –-max_none_improving_ONE_seq=<unsigned> max length of allowed non-
improving ONE seq [default: 0]

• –-eps=<eps> eps determines the radius for the BFS [default: 0.5]

• –-eps2=<eps2> eps2<=eps determines the radius for the second BFS (only
used in FLOW_SEPARATOR) [default: 0.5]

• –-max_nodes=<unsigned> bound number of nodes in local instance (currently
only used in NAIVE_BFS, TIGHT_BFS) [default: 0]

• –-kamis_time_limit=<double> time limit for static solver in seconds [default:
1000]

• –-kamis_ils_iterations=<unsigned> maximum iterations used in
WEIGHTED_ILS [default: 100]

• –-algorithm=<string> NAIVE_BFS, TIGHT_BFS,
FLOW_SEPARATOR, TRIVIAL, FLOW_SEPARATOR_UNWEIGHTED,
FLOW_SEPARATOR_ALLWEIGHTED,
FLOW_SEPARATOR_ALLWEIGHTED2,
FLOW_SEPARATOR_ALLWEIGHTED2DEG,
FLOW_SEPARATOR_NEIGHBOURHOOD [default: NAIVE_BFS]

• –-local_algorithm=<string> local instance solver:
BRANCH_AND_REDUCE, WEIGHTED_ILS [default:
BRANCH_AND_REDUCE]

• –-metamis METAMIS config (own Implementation of METAMIS by Dong
et al.)

• –-mm_time_limit=<double> time limit for METAMIS [default: 100]

• –-mm_ls_num_iterations=<unsigned> number of iterations in local-search
[default: 2]

• –-mm_ls_before_relinking=<on:off> apply local-search on random greedy
solution before path relinking [default: off]

• –-mm_ls_perturbation_amount=<unsigned> number of (x,1)-swaps if stuck in
local optimum [default: 2]
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• –-mm_aap_searches=<unsigned> number of AAP searches [default: 100]

• –-mm_aap_neg_threshold=<signed> max negative gain threshold in one AAP
search [default: -300]

• –-mm_aap_max_length=<unsigned> max length of one AAP [default: 20]

• –-mm_max_elite_sol=<unsigned> max maintained elite solutions [default: 1]

• –-mm_use_eone=<on:off> use EONE after MetaMIS’ local-search (EONE
within METAMIS) [default: off]

• –-mm_eone_eps=<double> eps of in EONE [default: 0.5]

• –-mm_eone_max_nodes=<unsigned> max nodes in local instance in EONE [de-
fault: 0]

• –-mm_eone_kamis_time_limit=<limit> time limit for
BRANCH_AND_REDUCE [default: 1000]

Examples
DynWMIS has two commands: solve for using exactly one local-search solver and
batch-solve for executing an arbitrary sequence of local-search solvers.
This is an example how to execute a batch of solvers. It determines a greedy solution
which processes the vertices in the descending order of their weights, applies EONE
for 3600 s and finally applies METAMIS for 3600 s.

1 batch -solve
2 graph
3 ../ examples / germany .osm. weighted .graph
4 germany .osm.out
5 --greedy_init
6 --rating = WEIGHT_RATING
7 --solver = EONE_SOLVER
8 --eone
9 --time_limit =3600

10 --algorithm = TIGHT_BFS
11 --local_algorithm = BRANCH_AND_REDUCE
12 --eps =0.25
13 --eps2 =0.25
14 -- kamis_time_limit =100
15 -- kamis_ils_iterations =100
16 --max_nodes =0
17 -- max_none_improving_ONE_seq =0
18 --max_ONE =0
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19 --solver = METAMIS_SOLVER
20 --metamis
21 --mm_time_limit =3600
22 -- mm_ls_num_iterations =2
23 -- mm_ls_before_relinking =off
24 -- mm_ls_perturbation_amount =2
25 --mm_aap_searches =100
26 -- mm_aap_neg_threshold = -300
27 -- mm_aap_max_length =20
28 -- mm_max_elite_sol =1
29 --mm_use_eone =off

File Format
DynWMIS reads the graphs from a file. We stick to the file format used for the
solvers in repository KaMIS [1]. The first line lists the number of vertices and edges.
The remaining lines describe vertices with their assigned weights and neighbors in
the graph. The i-th line (counting from one) lists the weight of the vertex with node
id i−1, followed by its adjacency list, i. e.,. the node ids.
An initial solution can be read in from a file. This file must list the solution node ids
ascending. Each line contains one node id.
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Zusammenfassung

In dieser Arbeit betrachten wir das NP-vollständige MaximumWeight Indepndent Set
Problem und stellen eine neue Technik, namens Optimal Neighborhood Exploration
(ONE) (zu deutsch: Optimal Nachbarschaftserkundung), zur lokalen Suche vor. Das
Maximum Weight Independent Set Problem findet in vielen wichtigen Bereichen An-
wendung wie dem Map-Labeling Problem (zu deutsch: Kartenbeschriftungsproblem)
oder Vehicle Routing Problem (zu deutsch: Routenplanungsproblem). In diesen
Anwendungen sind die Graphen, die diese Probleme modellieren, oft extrem groß,
mit Millionen von Knoten und Kanten. Dies macht es sehr schwer (fast-)optimale
Lösungen in einer kurzen Zeit zu finden. Auf der einen Seite existieren gute ex-
akte Lösungsverfahren, die optimale Lösungen finden können. Auf der anderen Seite
verbessern heuristische Algorithmen durch das Benutzen von lokalen Suchtechniken
gegebene Weight Indepndent Sets. Sie finden Lösungen mit größerem Gewicht, in-
dem sie oft Knoten lokal optimal entscheiden. Wir verallgemeinern diese Idee und
kombinieren beide Ansätze. ONE erkundet the Nachbarschaft des Startknotens bis
zu einer bestimmten Distanz und baut einen lokalen induzierten Teilgraph, der diese
Knoten enthält. Dabei verbessert jede Verbesserung der Lösung in dem lokalen in-
duzierten Teilgraphen die Lösung des gesamten Graphens. Um die Lösungsqualität
zu verbessern, lösen wir diese induzierten Teilgraphen (fast-)optimal mit dem auf
dem Stand der Technik entsprechenden branch-and-reduce (zu deutsch: verzweige-
und-reduziere) Löser KaMIS (KaMIS BaR).
Darüber hinaus präsentieren wir eine neue iterierte lokale Suche namens Exhaustive
Optimal Neighborhood Exploration (EONE), die unsere lokale Suche ONE
verwendet. In vielen und umfangreichen Experimente untersuchen wir die Effektiv-
ität dieses Ansatzes und vergleichen EONE mit anderen Verfahren, die dem Stand
der Technik entsprechen. Diese Experimente unterstreichen, dass unser Verfahren
oft optimale Lösungen oder zumindest fast-optimale Lösungen findet. Des Weit-
eren, übertreffen wir den Stand der Technik entsprechenden branch-and-reduce Löser
KaMIS für schwere Instanzen. Zu guter Letzt diskutieren wir ONE und EONE
und geben einen Ausblick auf Arbeit, die für die Zukunft bestimmt ist.
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