
Combining Known Techniques to Solve

the Dominating Set Problem in Practice

Marlon Dittes

April 20, 2025

4164834

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisors:
Adil Chhabra, Ernestine Großmann, Kenneth Langedal, Henrik Reinstädtler, Henning

Woydt

ii

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Christian Schulz,
for his constant guidance and support throughout this thesis and my academic journey.

A special thanks to Ernestine Großmann and Kenneth Langedal for always providing
constructive feedback and insightful suggestions. I also greatly appreciate the support
from Adil Chhabra, Henrik Reinstädtler, Dr. Darren Strash and Henning Woydt, whose
discussions and advice were immensely helpful.

I would like to express my heartfelt gratitude to my family and friends for their unwa-
vering support, love, and encouragement throughout my life. Their constant belief in me
and their presence have been invaluable in helping me complete this work.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, 20.04.2025

Marlon Dittes

iii

iv

Abstract

This work addresses the DOMINATING SET and HITTING SET problem, which are both
part of the PACE Challenge 2025, by leveraging existing solving techniques. Since the
DOMINATING SET problem can be reduced to the HITTING SET problem, we explore the
use of a dedicated Hitting Set solver, as well as ILP and MaxSAT approaches, to solve
DOMINATING SET instances. To improve solver performance, we employ data reduc-
tion techniques aimed at decreasing the overall problem size prior to solving. Our results
demonstrate that an open-source MaxSAT solver significantly outperforms commonly used
open-source ILP solvers, while the dedicated hitting set solver fails to keep pace with either
method. Furthermore, we find that the MaxSAT solver, when combined with reductions,
can even compete with Gurobi, a commercial ILP solver.

v

vi

Contents

Contents

Abstract v

1 Introduction 1

1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5

2.1 General Definitions . 5
2.2 Optimization . 6

3 Related Work 9

3.1 Dominating Set . 9
3.2 ILP . 10
3.3 MaxSAT . 10

4 Approach 13

4.1 Transformation . 13
4.2 Reductions . 14
4.3 Solving Process . 17

4.3.1 Integer Linear Programming . 18
4.3.2 Weighted Partial Maximum Satisfiability 18
4.3.3 Pipeline . 18

5 Experimental Evaluation 19

5.1 Dataset . 19
5.2 Results . 23

5.2.1 Reductions . 23
5.2.2 Solvers . 27

6 Discussion 39

6.1 Conclusion . 39

vii

Contents

6.2 Future Work . 39

Abstract (German) 41

Bibliography 43

viii

CHAPTER 1
Introduction

In recent years, top-performing submissions in the PACE (Parameterized Algorithms and
Computational Experiments) Challenge [1] have frequently employed powerful general-
purpose solving techniques, most notably Integer Linear Programming (ILP) and Maxi-
mum Satisfiability (MaxSAT) solvers. For instance, the second-place solver in the 2024
exact track utilized an ILP-based approach, while the first-place submission in 2022 suc-
cessfully applied a MaxSAT solver. These results underscore the practical effectiveness of
such solvers when applied to hard combinatorial problems. This motivates the investiga-
tion of similar techniques for this year’s challenge, which centers around the well-known
DOMINATING SET problem.

This thesis explores the use of ILP and MaxSAT solvers for solving instances of the
DOMINATING SET problem, alongside a dedicated solver designed for the related HITTING
SET problem. To enhance solver performance, we additionally apply various reduction
rules as a pre-processing step to simplify the instances before solving. Our initial idea
was to employ a portfolio approach that leverages the strengths of multiple solvers. This
strategy involves running different solvers with varying configurations and allocating them
separate portions of the overall time budget. By distributing time strategically, one aims
to leverage the individual strengths of each solver and increase the likelihood of solving a
broader range of instances effectively.

1.1 Motivation

The PACE Challenge is an annual competition that focuses on difficult graph problems,
often from the field of parameterized complexity. Participants are tasked with solving
real-world-like benchmark instances within strict time and resource constraints. One of
the defining features of the PACE Challenge is its emphasis on practical algorithms that
work well in practice and not just in theory. The fact that only open-source solvers are

1

1 Introduction

permitted makes it a valuable benchmark for assessing tools that are freely available to
the research community.

This year’s focus on the DOMINATING SET problem adds another layer of interest. It is a
classical NP-hard problem [14] with a wide range of applications, and its structure is well-
suited for applying reductions, heuristics, and transformations into related formulations
such as HITTING SET or SET COVER. Notably, both HITTING SET and SET COVER are
among the 21 problems originally shown to be NP-complete by Karp in his seminal 1972
paper [23], highlighting their foundational role in computational complexity. Moreover,
given the diversity of instance types and solver behaviors, exploring a portfolio of solving
strategies can be especially beneficial. Some solvers may perform well on certain families
of instances, while others succeed where the first ones fail. Solving exact instances within
strict time constraints emphasizes the potential of combining general-purpose solvers with
effective pre-processing techniques. This approach proves to be not only viable but also
highly competitive. This thesis aims to evaluate how effective such methods can be in
addressing this year’s PACE instances.

The DOMINATING SET problem is a fundamental problem in graph theory and comput-
ing science with extensive applications across a variety of fields. Formally, given a graph
G = (V,E) where V represents the set of vertices and E the set of edges, a dominating set
D ✓ V is a subset of vertices such that every vertex in V is either in D or adjacent to at
least one vertex in D. The goal of the DOMINATING SET problem is to find a dominating
set of minimum size, usually referred to as a minimum dominating set.

The importance of the DOMINATING SET problem comes from its usefulness in many
real-world applications. In network design [6], for example, dominating sets can help
identify the best locations for servers or routers, ensuring that every device in the network
is either a server or connected to one. This ensures effective communication and resource
accessibility while minimizing infrastructure costs. Similarly, in the field of wireless sensor
networks [37], a minimal dominating set represents an optimal configuration of sensor
nodes that can monitor the entire network, thus conserving power by reducing the number
of active sensors.

Additionally, with the growing popularity of social networks, the DOMINATING SET
problem has found important applications in social network analysis [24]. It is used to
identify key influencers within a network by finding the smallest set of individuals that can
directly reach or influence every other user. This approach enables effective strategies for
information dissemination, product promotion, and public outreach.

1.2 Our Contribution

In this work, we explore the application of established solving techniques, namely ILP
(Integer Linear Programming) and MaxSAT solvers, to tackle the DOMINATING SET and
HITTING SET problem as part of the PACE Challenge 2025. Our main contribution is eval-
uating these methods, along with a dedicated hitting set solver, on real-world benchmark in-

2

1.3 Structure

stances, with a focus on improving solver performance through pre-processing reductions.
We introduce a systematic comparison between general-purpose solvers (ILP and

MaxSAT) and a specialized solver, intending to demonstrate the benefits of combining
these techniques. Additionally, we apply a range of reduction rules aimed at simplifying
problem instances before they are passed to solvers, thus improving both the efficiency and
effectiveness of the solving process.

Another contribution of this work is the investigation of a portfolio approach, where
different solver types and configurations are evaluated with time allocation strategies.
This approach leverages their complementary strengths to solve a larger number of in-
stances. This work provides insights into the potential of combining solvers with effec-
tive pre-processing to improve performance, especially under the strict time constraints of
the PACE Challenge.

Through our experiments and analysis, we aim to better understand how different solv-
ing techniques and pre-processing methods can be used to tackle complex combinatorial
problems like the DOMINATING SET and HITTING SET problems in a competitive setting.

1.3 Structure

The remainder of this thesis is organized as follows. Section 2 covers the necessary fun-
damentals, including key definitions and problem descriptions related to the DOMINAT-
ING SET and HITTING SET problems, as well as the optimization techniques used in
this work. In Section 3.3, we discuss previous research on these problems. Section 4
outlines the approach taken in this thesis, detailing the reduction rules applied as pre-
processing steps and describing the solving techniques based on ILP and MaxSAT. Sec-
tion 5 presents the experimental evaluation, including the datasets used and the results
obtained for both the reduction techniques and the different solvers. Finally, Section 6 pro-
vides a discussion of the findings, including the conclusions drawn from the experiments
and suggestions for future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

In this part of the thesis, we introduce the key concepts and terminology that will
be used throughout the remainder of the work. Our focus lies on three closely re-
lated graph problems, with the hitting set formulation serving as the main perspective
throughout our discussion.

2.1 General Definitions

Undirected Graph. An undirected graph is a graph G = (V,E), where V is a set of
vertices and E is a set of edges with E ✓

�
V
2

�
. Two vertices u, v 2 V are adjacent if there is

an edge between them, we write {u, v} 2 E. We denote by |V | the number of vertices and
likewise by |E| the number of edges. For a vertex v 2 V , the neighborhood of v, denoted
by N(v), is the set of all vertices that are adjacent to v, i.e. N(v) = {u 2 V |{u, v} 2 E}.
The closed neighborhood of a vertex v, denoted by N [v], is defined as the neighborhood
of v together with v itself, i.e. N [v] = N(v) [v.

Hypergraph. A hypergraph H = (V,F) is a collection of hyperedges F over a vertex set
V , meaning every F 2 F is a subset of V . If a vertex v is part of a hyperedge F , we write
v 2 F . Similarly to the graph definition, we use |V | for the number of vertices, |F| for the
number of hyperedges, and |F | for the number of vertices in a hyperedge F 2 F . Given a
set of vertices S ✓ V , we write H 0 = H�S to denote the induced hypergraph obtained by
removing the set of vertices S. Formally, H 0 = (V \S, {F \S | F 2 F , F \S 6= ;}). This
means that we remove the vertices in S from the vertex set and from each hyperedge in F ,
and we discard any resulting empty hyperedges to form the new hypergraph H 0. Similarly,
for a set of hyperedges L ✓ F , we write H 0 = H � L to denote the hypergraph obtained
by removing all hyperedges in L from H . Formally, H 0 = (V,F \ L).

5

2 Fundamentals

Dominating Set. A dominating set for the graph G is a subset D ✓ V such that every
vertex v 2 V is either in D or is adjacent to at least one vertex in D. Formally, D ✓ V is
a dominating set of G if and only if 8v 2 V either v 2 D or there is a vertex u 2 D with
{u, v} 2 E. We call a dominating set minimal if it contains no other dominating set as a
proper subset. A minimum dominating set is a dominating set with the smallest possible
cardinality |D|. The DOMINATING SET problem asks for a minimum dominating set of
any given graph.

Hitting Set. If a vertex v 2 V is included in a hyperedge F 2 F , we say that v hits the
hyperedge F . Let F (v) be the set of hyperedges that v hits, i.e. F (v) = {E 2 F|v 2 E}.
Accordingly, a subset of vertices S ✓ V is called a hitting set of a hypergraph H = (V,F)
if every hyperedge in F contains at least one vertex from S. Formally, S ✓ V is a hitting set
of H if and only if for all hyperedges F 2 F , it holds that H\F 6= ;. As for the dominating
set, we say a hitting set is minimal if it contains no other hitting set as a proper subset. A
minimum hitting set is a hitting set with the smallest possible cardinality |S|. Similarily,
the HITTING SET problem asks for a minimum hitting set of any given hypergraph.

Set Cover. If an edge F 2 F contains a vertex v 2 V , we say F covers v. Based on
this, we call a subset of hyperedges S ✓ F a set cover if for all v 2 V there is at least
one hyperedge F 2 S that covers v. Formally, S ✓ F is a set cover if and only if for all
vertices v 2 V , there exists a hyperedge F 2 S such that v 2 F . We say a set cover is
minimal if it contains no other set cover as a proper subset and minimum if it is a set cover
with the smallest possible cardinality |S|. As before, the SET COVER problem asks for a
minimum set cover of a given hypergraph.

2.2 Optimization

An Integer Linear Program (ILP) consists of a set of variables, restricted to binary integer
values, a linear objective function to be minimized or maximized, and a collection of linear
constraints. Formally, an ILP can be written as: optimize cTx subject to Ax  b, where
x 2 Zn, A 2 Rm⇥n, b 2 Rm, and c 2 Rn. Feasible solutions are those that satisfy all
constraints. The objective function determines the best (optimal) one.

Maximum Satisfiability (MaxSAT) is an optimization extension of the BOOLEAN SAT-
ISFIABILITY problem (SAT). Given a boolean formula in conjunctive normal form (CNF),
the MAXIMUM SATISFIABILITY problem asks for a truth assignment to the variables that
satisfies the maximum number of clauses. Unlike SAT, where the goal is to determine
whether all clauses can be satisfied, MaxSAT tolerates unsatisfied clauses and aims to
maximize satisfaction. A natural generalization is the Partial MaxSAT problem, in which
the formulation is divided into two sets of clauses: hard clauses, which must be satis-
fied, and soft clauses, which should be satisfied as much as possible. The objective is to
find an assignment that satisfies all hard clauses and the maximum number of soft clauses.

6

2.2 Optimization

In Weighted Partial MaxSAT , each soft clause is assigned a positive weight, representing
its importance or cost. The goal then becomes to satisfy all hard clauses while maximizing
the total weight of the satisfied soft clauses (or equivalently, minimizing the total weight of
unsatisfied soft clauses).

7

2 Fundamentals

8

CHAPTER 3
Related Work

This chapter is divided into three sections. First, we provide an overview of related work
on the DOMINATING SET problem and closely related problems. Next, we review relevant
research on Integer Linear Programming (ILP) approaches. Finally, we discuss related
work in the context of MaxSAT solving.

3.1 Dominating Set

Throughout the history of the DOMINATING SET problem, numerous exact approaches
have sought to improve upon the trivial running time of O(2|V |), which is obtained by ex-
haustively enumerating all feasible solutions. Van Rooij and Bodlaender [36] reported a
running time of O(1.4969n) using a measure-and-conquer technique, which was later re-
fined by Iwata [21] through an extension known as the potential method. Both approaches
follow the branch-and-reduce paradigm, relying on a combination of reduction and branch-
ing rules. Reduction rules transform the problem into an equivalent but smaller instance,
while branching rules decompose the problem into multiple subinstances that are solved re-
cursively. However, neither study included experimental evaluations, and both algorithms
remain impractical for larger graph instances.

Due to the limitations of these exact approaches, various heuristic methods have been
proposed to address the DOMINATING SET problem, particularly in the context of large
graphs. Among these methods, metaheuristic techniques such as genetic algorithms [15],
simulated annealing [16], and ant colony optimization [17] have proven effective in
yielding approximate solutions with reasonable computational effort. Additionally, dis-
tributed approximation algorithms [25, 37] have also been explored, offering alterna-
tive approaches to tackle this problem. More recently, research has introduced an It-
erated Greedy algorithm [8] that incorporates local improvement strategies, as well as
an exact branch-and-bound method [22] that leverages improved lower bounds while
presenting empirical results.

9

3 Related Work

Bläsius et al. [5] present a fast branch-and-bound solver that claims to outperform mod-
ern ILP solvers, which are considered state-of-the-art for solving the minimum HITTING
SET problem. Their work provides a foundation for future research by introducing an ef-
ficient algorithm that integrates lower bounds, upper bounds, and reduction rules. They
conduct an experimental evaluation of different configurations of these components, high-
lighting the critical role of lower bounds in the algorithm’s performance. Notably, the
Costly Discard rule, which leverages both lower and upper bounds, plays a key role in
improving the algorithm’s efficiency.

3.2 ILP

Integer Linear Programming (ILP) is a widely studied and powerful method for solving
combinatorial optimization problems, where the objective is to find an optimal solution
subject to linear constraints, and decision variables are restricted to integer values. ILP has
been applied to a vast range of problems, including scheduling [31], network design [35],
resource allocation [29], and various other optimization problems.

The development of efficient ILP solvers has seen significant progress in recent decades.
Modern commercial solvers such as Gurobi [13] and CPLEX [20] have become industry
standards for solving large-scale ILP instances. One of the main challenges of ILP solvers
is the exponential growth in solution space as the problem size increases. As a result,
hybrid approaches that combine ILP with heuristics and metaheuristics [28, 32] have been
explored to overcome the limitations of exact ILP solvers.

In recent PACE challenges, it has become evident that some of the top-performing algo-
rithms leverage open-source ILP solvers. For instance, in the 2024 challenge, the second-
place finisher [38] in the exact track utilized the HiGHS [33, 19] ILP solver, while the
third-place team [10] employed SCIP [7]. Similarly, in the 2022 challenge, the second-
place solution [11] also relied on SCIP, particularly to solve simplified instances after ap-
plying a reduction process. Given the consistent presence of these solvers in high-ranking
solutions, it is crucial to experiment with them across a variety of problem instances and
compare their performance against dedicated solvers.

3.3 MaxSAT

The MAXIMUM SATISFIABILITY (MaxSAT) problem, a generalization of the classical
SATISFIABILITY (SAT) problem, has gained significant attention due to its applicability
in various fields such as machine learning [18] and hardware design [9].

Similar to the PACE challenges, there is an annual MaxSAT competition [26] in which
various open-source MaxSAT solvers from research teams worldwide compete to solve
instances of the MaxSAT problem. One of the top-performing exact solvers in recent
competitions is UWrMaxSat [27], followed closely by EvalMaxSAT [2], which was used

10

3.3 MaxSAT

after preprocessing in the PACE 2022 exact track winner’s algorithm [30]. Addition-
ally, the first-place winner of PACE 2023 [34] also utilized a SAT solver [4] as part of
their overall algorithm.

Similar to ILP solvers, existing MaxSAT solvers are highly adaptable and can be applied
to a broad spectrum of problems. Given their flexibility, it is beneficial to consider and
compare ILP solvers and MaxSAT solvers when approaching a new challenge. By evalu-
ating both methods, one can identify which approach is more efficient and suitable based
on the specific characteristics of the problem.

11

3 Related Work

12

CHAPTER 4
Approach

The general approach for solving DOMINATING SET instances is as follows: First, we
transform the DOMINATING SET instance into a HITTING SET instance. We then reduce
the instance size by applying multiple reduction rules specific to the HITTING SET prob-
lem. Finally, the reduced instance is translated into an ILP or MaxSAT formulation, which
can be solved using existing solvers.

4.1 Transformation

Given a graph G = (V,E) and its corresponding DOMINATING SET problem, we can
transform it into a HITTING SET problem on a hypergraph. The goal of this transformation
is to create a hypergraph H = (V,F) such that a minimum dominating set in G corresponds
to a minimum hitting set in H .

To begin the translation, the vertices of the hypergraph H correspond directly to the set
of vertices V in the graph G. Next, for each vertex v 2 V , we define a hyperedge in the
hypergraph. This hyperedge, denoted as Fv, consists of the vertex v and all of its neighbors
in the graph, that is, Fv = {v} [N(v) = N [v]. The collection of all hyperedges is thus
given by F = {Fv | v 2 V }.

A hitting set S ✓ V in the hypergraph intersects with every hyperedge Fv 2 F , meaning
H\Fv 6= ; for all v 2 V . This condition directly mirrors the requirement for a dominating
set in the graph, where each vertex v is either in the dominating set or is adjacent to a
vertex that is in the set. Thus, solving the HITTING SET problem on the hypergraph H
corresponds to finding a dominating set in the original graph G.

An example of this translation can be seen in Figure 4.1, where a specific DOMINATING
SET instance is transformed into a HITTING SET instance on a hypergraph.

13

4 Approach

1

2 3

1

(a) Graph representation

v1

v2 v3

e2

e1

e3

(b) Hypergraph representation

Figure 4.1: (a) Undirected graph where vertex 1 has edges to vertices 2 and 3. The set {1} is
a dominating set, covering all other vertices, marked in red. (b) Corresponding hy-
pergraph, where vertex 1 hits every hyperedge, making {v1} a hitting set, marked in
red.

4.2 Reductions

In this section, we introduce various data reduction rules for the HITTING SET problem.
We use data reduction rules to simplify the hypergraph and make processing the HITTING
SET problem easier. All rules are designed to reduce the hypergraph while keeping the
optimality of the solution.

All rules were inspired by the work of van Rooij and Bodlaender [36] on the SET
COVER problem. We will reformulate them for the HITTING SET problem. There will be
an intuition and a small example for each rule. The reduction rules are introduced using a
standardized scheme shown in Reduction 0.

Reduction 0 ([Reduction Name], [Figure])
Description of the pattern that can be reduced.

Reduced Hypergraph How to build the reduced hypergraph H 0

Offset How much can be added to the offset
Reconstruction How to reconstruct the solution S for the original hypergraph

given the solution S 0 on the reduced graph H 0

We start by providing the name and the corresponding figure for the reduction rule.
Then, we define the pattern the rule can reduce. Lastly, we give details on how the actual
reduction is performed. This information is composed of three parts: First is information
on how to construct the reduced hypergraph H 0. Secondly, the offset describes the
difference between the size of a minimum hitting set on the reduced hypergraph |S 0| and
the size of the minimum hitting set on the original hypergraph |S|. Third is the information

14

4.2 Reductions

1

2

3

4

e1
e2

Figure 4.2: Example instance where we can apply the Isolated Vertex rule. Hyperedge e2 can only
be hit by vertex 4, hence we need to include vertex 4 in the hitting set.

on how to reconstruct the solution S for the original hypergraph from the solution S 0 on
the reduced hypergraph.

Reduction 1 (Isolated Vertex, Figure 4.2)
Let F 2 F with F = {v}. Then include v in the minimum hitting set.

Reduced Hypergraph H 0 = H � {v}
Offset |S| = |S 0|+ 1
Reconstruction S = S 0 [{v}

If there is a hyperedge F 2 F that only contains one vertex v, then we need to include v in
the hitting set to be able to hit F .

Reduction 2 (Single Edge, Figure 4.3)
Let F 2 F with F = {u, v}. Let F (u) ✓ F (v). Then include v in the minimum hitting set.

Reduced Hypergraph H 0 = H � {u, v}
Offset |S| = |S 0|+ 1
Reconstruction S = S 0 [{v}

If there is a hyperedge F 2 F that contains exactly two vertices u, v, then we need to
include either v or u in the hitting set in order to hit the hyperedge F . However, if v hits all
hyperedges that u hits, i.e. F (u) ✓ F (v), then including v is always better: Whenever we
take u in the hitting set, we could equally well have taken v in order to possibly hit more
hyperedges, since |F (v)| � |F (u)|.

Reduction 3 (Counting, Figure 4.4)
Let v 2 V with |(

S
F2F (v),|F |=2,u2F F (u))\F (v)| < |{F 2 F (v)||F | = 2}|. Then include

v in the minimum hitting set.
Reduced Hypergraph H 0 = H � {v}
Offset |S| = |S 0|+ 1
Reconstruction S = S 0 [{v}

For any vertex v 2 V , let s be the number of vertices that share a hyperedge of size 2

15

4 Approach

1

2

3

4

e1

e2

Figure 4.3: Example instance where we can apply the Single Edge rule. Edge e2 only contains
vertices 3 and 4, while vertex 3 hits every hyperedge that vertex 4 hits. Therefore, it is
always better to include 3 in the hitting set.

1

2

3

4e1

e2

e3

Figure 4.4: Example instance where we can apply the Counting rule. For vertex 1, q = 1 and
s = 2, therefore q < s holds. Thus, we can include vertex 1 in the hitting set.

with v, i.e. F 2 F with F = {u, v}. Then, let q be the number of hyperedges which are
getting hit by a vertex u that shares such a hyperedge F = {u, v} with v but are not getting
hit by v itself, i.e. q = |(

S
F2F (v),|F |=2,u2F F (u))\F (v)|. In this situation, we hit |F (v)|

hyperedges using one vertex if we include v into the hitting set, and we hit q + |F (v)|
hyperedges using s vertices if we decide not to include v. Therefore, if q < s, including
v is always at least as good as not including it since we then use s � 1 vertices less whilst
hitting q  s� 1 less hyperedges. We are always able to cover these hyperedges with one
additional vertex per hyperedge.

Reduction 4 (Vertex Domination, Figure 4.5)
Let u, v 2 V with F (u) ✓ F (v). Then remove u from the hypergraph.

Reduced Hypergraph H 0 = H � {u}
Offset |S| = |S 0|
Reconstruction S = S 0

16

4.3 Solving Process

1

2

3

4
e1

e2
e3

Figure 4.5: Example instance where we can apply both the (a) Vertex Domination rule and (b)
Edge Domination rule. (a) Vertex 2 is dominating vertex 1 and vertex 3 is dominating
vertex 4. Therefore, we can remove both vertex 1 and 4. (b) Hyperedge e1 dominates
hyperedge e2. Hence, we can remove hyperedge e1 from the hypergraph.

For any two vertices u, v 2 V , we say v dominates u if v hits every hyperedge that u hits,
i.e. F (u) ✓ F (v). In such event, if either vertex is needed in a minimum hitting set, it is
always better to include v. This is because v hits all hyperedges that u hits and possibly
more. Therefore, we can remove u.

At its core, the Single Edge rule is a special case of vertex domination that provides more
information. If there is a hyperedge F 2 F which only contains v and u, with u getting
dominated by v, then we can immediately include v in the minimum hitting set. This is
the case, because either u or v are needed to hit F and we just established that v is always
better to include.

Reduction 5 (Edge Domination, Figure 4.5)
Let F,E 2 F with F ✓ E. Then remove E from the hypergraph.

Reduced Hypergraph H 0 = H � {E}
Offset |S| = |S 0|
Reconstruction S = S 0

When considering two hyperedges E,F 2 F , we say E dominates F if E covers all
vertices that F covers, i.e. 8v 2 F : v 2 E. In this situation, if we chose a vertex v in
order to hit F , v will also always hit E. Therefore, we do not care about E when looking
for a minimum hitting set and are able to remove E.

4.3 Solving Process

In the following section, we present encodings of the HITTING SET problem for both In-
teger Linear Programming (ILP) and Weighted Partial MaxSAT (WPMS). We also outline
the complete solving pipeline at the end.

17

4 Approach

4.3.1 Integer Linear Programming

Given a HITTING SET instance, we encode it into an Integer Linear Program as follows:
For each vertex v in the hypergraph H = (V,F), we assign a decision variable xv,

where xv = 1 (resp. xv = 0) indicates that v is included (resp. not included) in a minimum
hitting set. Each hyperedge F 2 F results in one constraint in the ILP. In order to satisfy a
constraint of a hyperedge F , the decision variable of at least one vertex that hits F must be
set to 1. Overall, we want to then minimize the number of vertices included in the minimum
hitting set, i.e. we want to minimize the sum over all decision variables. A minimum hitting
set is then given by the set S = {v|xv = 1}. For any given hypergraph H = (V,F), we
end up with the following formulation:

minimize
X

v2V

xv

subject to
X

v2F

xv � 1 8F 2 F

xv 2 {0, 1} 8v 2 V

4.3.2 Weighted Partial Maximum Satisfiability

Given a HITTING SET instance on a hypergraph H = (V,F), we encode it into a Weighted
Partial Maximum Satisfiability instance as described in the following:

As for the ILP formulation, we assign a decision variable xv for each vertex v 2 V
that signals whether or not v is used in the solution. For each hyperedge F 2 F , we
obtain one hard clause in order to make sure every hyperedge is hit by at least one vertex.
Finally, for each vertex v 2 V , generate a soft clause ¬xv to ensure as few variables are
set to 1 as possible. Since we consider DOMINATING SET and HITTING SET instances on
unweighted graphs, we set the weights of the soft clauses uniformly to 1.

4.3.3 Pipeline

Given a graph G = (V,E), the goal is to find a minimum dominating set D. To solve this,
we first transform the problem into an instance of the HITTING SET problem by construct-
ing a corresponding hypergraph H based on the structure of G. Once the transformation
is complete, we apply a set of five reduction rules in the same order as presented in Sec-
tion 4.2, resulting in a reduced hypergraph H 0. After simplification, we encode the reduced
instance either as an Integer Linear Program (ILP) or a Weighted Partial MaxSAT (WPMS)
formula. Solving this encoding yields a minimum hitting set S 0 for the reduced graph. We
then apply the reconstruction steps of the reductions to obtain the minimum hitting set for
the original graph H . This minimum hitting set S corresponds to a minimum dominating
set D since we work with the same vertex set. Finally, we return D as the solution.

18

CHAPTER 5
Experimental Evaluation

All experiments were performed on a machine equipped with an 12th Gen Intel(R)
Core(TM) i7-12700K @ 3.60 GHz. All code was written in C++ and compiled with g++
with the following parameters: -03 -std=c++17. Due to the restrictions of the PACE
Challenge, all algorithms must run strictly sequentially.

5.1 Dataset

All experiments were conducted on the full set of 100 exact public DOMINATING SET in-
stances of the PACE Challenge 2025 [12]. We split the dataset into two sections, instances
1 to 50 and 51 to 100, since at the beginning only the first 50 instances were available.
For the initial portfolio approach, we extracted multiple instance properties to analyze
which algorithm performs well on which kind of graphs. The examined properties are
shown in Table 5.1.

Symbol Description

|V| Number of vertices in the graph
|E| Number of edges in the graph
⇢ Density of the graph, computed as ⇢ = 2|E|

|V |(|V |�1) for undirected graphs
� Maximum degree, defined as � = maxv2V deg(v) = maxv2V |N(v)|
Triangles Number of triangles (fully connected subgraphs of three vertices)
d Average degree, calculated as d = 2|E|

|V |
�d Standard deviation of vertex degrees

Table 5.1: Summary of graph statistics

The properties for each instance can be seen in Table 5.2. First, we notice the following:
There are many graphs sharing almost all properties, i.e. there are approx. 17 graphs that

19

5 Experimental Evaluation

have exactly 8 340 vertices, 16 080 edges and 6 220 triangles. These graphs also have the
same exact average degree, with the maximum degree varying between 30 and 36, and only
slight changes in the standard deviation of the vertex degrees.

Other than that, approximately 80% of graphs have less than 10 000 vertices and less than
20 000 edges. Another almost 8% of graphs have more than 70 000 vertices and more than
700 000 edges. The standard deviation of most of these graphs is significantly elevated,
usually more than 40 compared to most of the other graphs having a standard deviation of
the vertex degree below 4. Additionally, about one third of the graphs have significantly
more triangles than the rest, starting from circa 200 000 up to 3 198 008 triangles.

Most instances which neither fall in the group of sharing properties nor the instances
with more than 70 000 triangles have a very low maximum degree, usually below 7. This
is always paired with a lower amount of triangles as well, specifically under 2 000.

Lastly, we can spot three graphs that have a significantly higher average degree: ex-
act_038.gr, exact_039.gr and exact_040.gr have average degree > 19, while every other
graph has average degree < 6. Especially for exact_040.gr the standard deviation of the
vertex degrees is also very high.

Table 5.2: Graph properties for graphs exact_001.gr to exact_100.gr.

Graph |V| |E| ⇢⇥10�3 � Triangles d �d

exact_001.gr 8 340 16 080 0.46 30 6 220 3.856 3.270
exact_002.gr 8 340 16 080 0.46 32 6 220 3.856 3.270
exact_003.gr 8 340 16 080 0.46 30 6 220 3.856 3.270
exact_004.gr 8 340 16 080 0.46 30 6 220 3.856 3.281
exact_005.gr 8 340 16 080 0.46 34 6 220 3.856 3.285
exact_006.gr 8 340 16 080 0.46 34 6 220 3.856 3.280
exact_007.gr 8 340 16 080 0.46 36 6 220 3.856 3.277
exact_008.gr 8 340 16 080 0.46 32 6 220 3.856 3.299
exact_009.gr 8 340 16 080 0.46 32 6 220 3.856 3.262
exact_010.gr 8 340 16 080 0.46 32 6 220 3.856 3.279
exact_011.gr 6 255 12 060 0.62 30 4 665 3.856 3.297
exact_012.gr 6 255 12 060 0.62 42 4 665 3.856 3.297
exact_013.gr 8 340 16 080 0.46 30 6 220 3.856 3.260
exact_014.gr 6 255 12 060 0.62 32 4 665 3.856 3.270
exact_015.gr 6 255 12 060 0.62 36 4 665 3.856 3.272
exact_016.gr 6 255 12 060 0.62 32 4 665 3.856 3.260
exact_017.gr 1 518 2 172 1.89 5 76 2.861 0.660
exact_018.gr 1 716 2 385 1.62 5 60 2.779 0.626
exact_019.gr 1 885 2 648 1.49 5 82 2.809 0.646
exact_020.gr 4 312 5 817 0.63 5 209 2.698 0.709

Continued on next page

20

5.1 Dataset

Table 5.2 – continued from previous page

Graph |V| |E| ⇢⇥10�3 � Triangles d �d

exact_021.gr 3 910 5 243 0.69 7 206 2.681 0.672
exact_022.gr 3 053 4 094 0.88 5 136 2.681 0.723
exact_023.gr 4 464 6 009 0.60 6 259 2.692 0.698
exact_024.gr 8 340 16 080 0.46 32 6 220 3.856 3.297
exact_025.gr 5 837 7 728 0.45 6 285 2.647 0.775
exact_026.gr 4 396 5 899 0.61 5 381 2.683 0.761
exact_027.gr 8 526 11 287 0.31 6 724 2.647 0.739
exact_028.gr 16 035 20 735 0.16 7 1 081 2.586 0.736
exact_029.gr 13 508 17 313 0.19 5 841 2.563 0.728
exact_030.gr 19 295 25 091 0.13 7 1 124 2.600 0.725
exact_031.gr 7 241 9 523 0.36 7 497 2.630 0.708
exact_032.gr 19 555 25 830 0.14 6 1 485 2.641 0.757
exact_033.gr 19 462 28 019 0.15 6 579 2.879 0.824
exact_034.gr 19 555 26 143 0.14 7 1 202 2.673 0.783
exact_035.gr 8 340 16 080 0.46 36 6 220 3.856 3.291
exact_036.gr 19 638 25 873 0.13 6 1 151 2.634 0.731
exact_037.gr 19 925 26 909 0.14 6 1 250 2.701 0.789
exact_038.gr 3 570 44 481 6.98 109 272 829 24.919 20.673
exact_039.gr 74 491 728 776 0.26 155 4 118 783 19.566 22.986
exact_040.gr 98 361 4 766 139 0.99 1 492 79 795 288 96.911 161.889
exact_041.gr 4 342 5 682 0.60 6 217 2.617 0.675
exact_042.gr 13 488 17 535 0.19 6 1 081 2.600 0.743
exact_043.gr 4 105 5 515 0.65 6 413 2.686 0.767
exact_044.gr 16 479 21 315 0.16 7 1 157 2.586 0.747
exact_045.gr 8 074 10 594 0.33 7 555 2.624 0.735
exact_046.gr 8 340 16 080 0.46 30 6 220 3.856 3.277
exact_047.gr 8 340 16 080 0.46 34 6 220 3.856 3.280
exact_048.gr 8 340 16 080 0.46 34 6 220 3.856 3.300
exact_049.gr 8 340 16 080 0.46 34 6 220 3.856 3.267
exact_050.gr 8 340 16 080 0.46 30 6 220 3.856 3.261
exact_051.gr 3 082 4 574 0.96 5 97 2.968 0.809
exact_052.gr 1 594 2 385 1.88 4 51 2.992 0.757
exact_053.gr 8 980 26 400 0.65 296 267 482 5.879 27.560
exact_054.gr 11 339 33 417 0.52 354 354 561 5.894 29.419
exact_055.gr 27 108 60 485 0.16 354 363 107 4.462 20.277
exact_056.gr 5 376 7 738 0.54 6 245 2.878 0.751
exact_057.gr 519 547 1 195 601 0.01 1 062 490 700 4.602 44.641
exact_058.gr 2 671 3 964 1.11 5 46 2.968 0.827

Continued on next page

21

5 Experimental Evaluation

Table 5.2 – continued from previous page

Graph |V| |E| ⇢⇥10�3 � Triangles d �d

exact_059.gr 4 090 5 724 0.68 5 134 2.799 0.781
exact_060.gr 14 282 41 946 0.41 336 232 826 5.873 27.529
exact_061.gr 13 066 38 598 0.45 346 416 574 5.908 31.688
exact_062.gr 50 977 106 515 0.08 250 202 975 4.178 17.847
exact_063.gr 675 890 1 434 319 0.01 991 640 800 4.244 43.585
exact_064.gr 20 897 46 378 0.21 284 210 257 4.438 17.821
exact_065.gr 5 874 7 861 0.46 6 458 2.676 0.774
exact_066.gr 519 477 1 191 753 0.01 1 056 490 700 4.588 44.482
exact_067.gr 3 477 4 958 0.82 5 96 2.851 0.831
exact_068.gr 2 692 3 924 1.08 5 78 2.915 0.805
exact_069.gr 4 271 6 428 0.70 5 111 3.010 0.792
exact_070.gr 5 516 7 578 0.50 6 468 2.747 0.771
exact_071.gr 9 464 13 601 0.30 6 323 2.874 0.797
exact_072.gr 675 952 1 438 362 0.01 990 640 800 4.255 43.712
exact_073.gr 6 554 19 242 0.90 250 164 463 5.871 26.784
exact_074.gr 130 026 266 360 0.03 296 381 193 4.097 22.074
exact_075.gr 519 627 1 200 333 0.01 1 072 490 700 4.619 44.837
exact_076.gr 5 581 7 957 0.51 6 197 2.851 0.775
exact_077.gr 3 861 5 459 0.73 7 264 2.827 0.857
exact_078.gr 8 511 24 993 0.69 276 197 238 5.873 27.456
exact_079.gr 8 145 23 895 0.72 284 180 168 5.867 26.373
exact_080.gr 4 192 5 749 0.65 6 205 2.742 0.844
exact_081.gr 4 534 7 022 0.68 5 88 3.097 0.800
exact_082.gr 2 764 3 990 1.04 5 142 2.887 0.765
exact_083.gr 6 453 9 054 0.43 6 246 2.806 0.787
exact_084.gr 675 940 1 436 889 0.01 988 640 800 4.251 43.665
exact_085.gr 9 568 28 104 0.61 302 241 393 5.874 27.441
exact_086.gr 47 450 141 150 0.13 762 3 198 008 5.949 43.441
exact_087.gr 519 378 1 186 551 0.01 1 048 490 700 4.569 44.269
exact_088.gr 519 356 1 185 344 0.01 1 045 490 700 4.564 44.220
exact_089.gr 14 458 42 474 0.41 328 264 386 5.875 27.432
exact_090.gr 13 846 30 424 0.32 146 35 162 4.394 13.222
exact_091.gr 3 760 5 356 0.76 6 179 2.848 0.818
exact_092.gr 4 416 6 812 0.70 5 107 3.085 0.797
exact_093.gr 519 375 1 186 379 0.01 1 044 490 700 4.568 44.261
exact_094.gr 4 032 5 592 0.69 6 216 2.773 0.864
exact_095.gr 17 968 53 004 0.33 410 520 219 5.899 31.526
exact_096.gr 17 188 50 664 0.34 400 405 065 5.895 30.527

Continued on next page

22

5.2 Results

Table 5.2 – continued from previous page

Graph |V| |E| ⇢⇥10�3 � Triangles d �d

exact_097.gr 519 554 1 196 236 0.01 1 065 490 700 4.604 44.668
exact_098.gr 21 619 48 915 0.21 276 205 591 4.525 18.908
exact_099.gr 7 511 22 053 0.78 284 201 860 5.872 26.626
exact_100.gr 49 578 106 975 0.09 284 218 613 4.315 18.624

5.2 Results

In the next two sections, we will first examine the experimental results related to the re-
duction rules. This will include an analysis of how frequently reductions occurred and
the computational time required to perform them. Following that, we will shift our focus
to the solver performances, where we will explore the number of instances each solver
successfully solved, along with the time it took to reach a solution.

5.2.1 Reductions

The reductions described in Section 4.2 were applied to each of the 100 exact instances. We
additionally provide the time it took to complete the whole reduction process in seconds.
The results can be seen in Table 5.3. The reduction rules were applied to the graphs in
the following order:

1. Isolated Vertex rule

2. Single Edge rule

3. Counting rule

4. Edge Domination rule

5. Vertex Domination rule

The order in which the reductions were applied was chosen to prioritize efficiency, i.e.
computationally inexpensive reductions, such as the removal of isolated vertices and single-
edge components, were applied first. More computationally intensive reductions, like edge
and vertex domination, were applied at the end. This ordering helps to streamline the over-
all reduction process by simplifying the graph before applying more complex operations.

In Table 5.3, it is immediately noticeable that none of the 100 instances contain any
isolated vertices that can be reduced. Similarly, after removing the single-edge cases, the
Counting rule does not identify any additional vertices for reduction. However, this does
not imply that these two rules are redundant, as this observation may not hold for instances
outside the PACE Challenge 2025 DOMINATING SET instances.

23

5 Experimental Evaluation

Overall, even though some graphs do not have single-edge cases, others greatly benefit
from the rule. For graph exact_039.gr, we add 3554 vertices to the dominating set, thus
reducing the instance by 7108 = 2⇥ 3554 vertices before more computationally intensive
reductions kick in.

Additionally, it can be seen that both Edge and Vertex Domination rules are applicable
for every single graph. For ca. 14% (resp. ca. 19%) of graphs we find below 100 edge
(resp. vertex) domination cases. On the other hand, we find more than 4000 edge and
vertex domination occurrences on about 54% of all instances.

For around 90% of the instances, we can finish the reduction process in under 60 seconds.
For all instances where this is not the case, we observe a very large amount of domination
occurrences, up to 1 281 600 edge domination and 640 800 vertex domination cases. It
can be seen that exact_040.gr is an outlier: It takes over 4 000 seconds to complete the
reduction process, way exceeding the time limit of 1 800 seconds defined by the PACE
Challenge 2025 organizers. Looking at Table 5.2, we notice that exact_040.gr has by far
the most amount of edges, about 4 times the edges of exact_063.gr, the graph with the
second most edges. This is likely the cause for the outlier behavior. Every other instance
can be reduced in under 900 seconds, thus it remains more than half of the initial time
available for a solver to find a solution.

Lastly, it can be seen that, for the group of instances sharing the exact same amount
of vertices and edges introduced in Section 5.1, they also share a very similar amount
of edge and vertex domination cases, ca. 10 720 and 5 360 respectively. Addition-
ally, they also have no single-edge cases. This further signifies their close relation
observed in Section 5.1.

Table 5.3: Displays the number of reductions found for the graphs from exact_001.gr to ex-
act_100.gr, along with the time taken to compute all reductions.

Graph Isol. V. Single E. Count. Edge Dom. Vert. Dom. Time(s)

exact_001.gr 0 0 0 10 720 5 360 3.63
exact_002.gr 0 0 0 10 728 5 364 3.62
exact_003.gr 0 0 0 10 720 5 360 3.64
exact_004.gr 0 0 0 10 720 5 360 3.70
exact_005.gr 0 0 0 10 726 5 363 3.63
exact_006.gr 0 0 0 10 720 5 360 3.61
exact_007.gr 0 0 0 10 720 5 360 3.64
exact_008.gr 0 0 0 10 722 5 361 3.63
exact_009.gr 0 0 0 10 722 5 361 7.22
exact_010.gr 0 0 0 10 720 5 360 3.61
exact_011.gr 0 0 0 8 044 4 022 2.04
exact_012.gr 0 0 0 8 040 4 020 2.06
exact_013.gr 0 0 0 10 722 5 361 7.22

Continued on next page

24

5.2 Results

Table 5.3 – continued from previous page

Graph Isol. V. Single E. Count. Edge Dom. Vert. Dom. Time(s)

exact_014.gr 0 0 0 8 044 4 022 2.05
exact_015.gr 0 0 0 8 040 4 020 2.04
exact_016.gr 0 0 0 8 042 4 021 5.67
exact_017.gr 0 42 0 39 22 0.19
exact_018.gr 0 33 0 41 22 0.24
exact_019.gr 0 51 0 26 17 0.29
exact_020.gr 0 204 0 120 73 1.30
exact_021.gr 0 141 0 109 64 1.12
exact_022.gr 0 144 0 92 51 0.66
exact_023.gr 0 190 0 137 83 1.43
exact_024.gr 0 0 0 10 722 5 361 3.64
exact_025.gr 0 353 0 170 101 2.19
exact_026.gr 0 226 0 203 117 1.27
exact_027.gr 0 477 0 453 267 4.87
exact_028.gr 0 1 016 0 675 389 19.82
exact_029.gr 0 896 0 560 310 11.45
exact_030.gr 0 1 100 0 770 443 24.13
exact_031.gr 0 371 0 314 178 3.57
exact_032.gr 0 1 199 0 887 514 28.18
exact_033.gr 0 773 0 298 166 30.39
exact_034.gr 0 1 134 0 767 433 28.30
exact_035.gr 0 0 0 10 722 5 361 3.65
exact_036.gr 0 1 027 0 708 415 25.90
exact_037.gr 0 1 166 0 758 434 25.75
exact_038.gr 0 78 0 1 319 741 3.63
exact_039.gr 0 3 554 0 4 457 18 296 676.96
exact_040.gr 0 2 589 0 2 424 20 994 4 553.66
exact_041.gr 0 193 0 160 93 1.32
exact_042.gr 0 901 0 677 398 11.42
exact_043.gr 0 245 0 241 142 1.12
exact_044.gr 0 1 098 0 668 388 16.92
exact_045.gr 0 457 0 345 197 4.27
exact_046.gr 0 0 0 10 720 5 360 7.22
exact_047.gr 0 0 0 10 722 5 361 3.62
exact_048.gr 0 0 0 10 722 5 361 3.64
exact_049.gr 0 0 0 10 720 5 360 3.67
exact_050.gr 0 0 0 10 720 5 360 7.20
exact_051.gr 0 87 0 50 29 0.57

Continued on next page

25

5 Experimental Evaluation

Table 5.3 – continued from previous page

Graph Isol. V. Single E. Count. Edge Dom. Vert. Dom. Time(s)

exact_052.gr 0 41 0 13 8 0.16
exact_053.gr 0 0 0 17 600 8 800 0.97
exact_054.gr 0 0 0 22 278 11 139 1.46
exact_055.gr 0 443 0 38 970 19 513 22.05
exact_056.gr 0 169 0 97 56 1.67
exact_057.gr 0 0 0 981 400 490 700 639.14
exact_058.gr 0 88 0 11 7 0.43
exact_059.gr 0 183 0 56 38 0.92
exact_060.gr 0 0 0 27 964 13 982 1.97
exact_061.gr 0 0 0 25 732 12 866 1.79
exact_062.gr 0 182 0 87 953 43 982 62.77
exact_063.gr 0 0 0 1 281 600 640 800 851.76
exact_064.gr 0 191 0 31 277 15 643 11.73
exact_065.gr 0 372 0 231 148 1.71
exact_066.gr 0 0 0 981 400 490 700 630.29
exact_067.gr 0 170 0 57 37 0.65
exact_068.gr 0 91 0 36 23 0.44
exact_069.gr 0 96 0 58 32 1.14
exact_070.gr 0 273 0 269 164 1.66
exact_071.gr 0 358 0 167 96 5.03
exact_072.gr 0 0 0 1 281 600 640 800 857.71
exact_073.gr 0 0 0 12 828 6 414 0.53
exact_074.gr 0 215 0 244 855 122 432 347.72
exact_075.gr 0 0 0 981 400 490 700 645.22
exact_076.gr 0 223 0 73 44 1.74
exact_077.gr 0 184 0 103 63 0.83
exact_078.gr 0 0 0 16 662 8 331 0.81
exact_079.gr 0 0 0 15 930 7 965 0.76
exact_080.gr 0 235 0 76 52 0.90
exact_081.gr 0 86 0 37 23 1.32
exact_082.gr 0 89 0 77 44 0.44
exact_083.gr 0 280 0 121 78 5.85
exact_084.gr 0 0 0 1 281 600 640 800 857.98
exact_085.gr 0 0 0 18 736 9 368 1.03
exact_086.gr 0 0 0 94 100 47 050 25.16
exact_087.gr 0 0 0 981 400 490 700 626.40
exact_088.gr 0 0 0 981 400 490 700 730.10
exact_089.gr 0 0 0 28 316 14 158 1.95

Continued on next page

26

5.2 Results

Table 5.3 – continued from previous page

Graph Isol. V. Single E. Count. Edge Dom. Vert. Dom. Time(s)

exact_090.gr 0 58 0 21 259 10 652 5.48
exact_091.gr 0 166 0 76 48 0.79
exact_092.gr 0 91 0 55 34 1.24
exact_093.gr 0 0 0 981 400 490 700 733.67
exact_094.gr 0 228 0 74 46 0.84
exact_095.gr 0 0 0 35 336 17 668 3.05
exact_096.gr 0 0 0 33 776 16 888 2.72
exact_097.gr 0 0 0 981 400 490 700 637.38
exact_098.gr 0 207 0 33 216 16 613 15.96
exact_099.gr 0 0 0 14 702 7 351 0.71
exact_100.gr 0 38 0 91 036 45 521 50.12

5.2.2 Solvers

In this section, we first compare the completion times of the following five solvers on the
first 50 instances:

• FINDMINHS [5]: A dedicated Branch-and-Bound hitting set solver by Bläsius et al
from the year 2023. We used the example settings provided on the GitHub 1.

• SCIP Optimization Suite [7]: An open source ILP solver often used in previous
PACE challenges [11, 10].

• HiGHS [33, 19]: Another open source ILP solver which was popular in previous
PACE competitions [38].

• Gurobi [13]: A commercial ILP solver. The setting Threads=1 was used in order
to force sequential execution.

• UWrMaxSat [27]: An open source MaxSAT solver. One of the best performing
solvers on the unweighted instances of the MaxSAT Evaluation 2024 [3]. The stan-
dard settings provided in the README.md file of the solver were used 2.

These first 50 instances are useful for our analysis because they allow us to quickly de-
termine which solvers are competitive. By evaluating all the solvers on these instances, we
can avoid wasting computational resources on those that are clearly underperforming. This
enables us to focus on analyzing variants of the most promising solvers for the remaining
graphs, ensuring that we prioritize approaches with the highest potential for success.

1https://github.com/Felerius/findminhs
2https://maxsat-evaluations.github.io/2024/descriptions.html

27

5 Experimental Evaluation

Each solver was given a time-limit of 1 800 seconds to obtain a minimum dominating set,
as required by the PACE Challenge. We ran every solver, except FINDMINHS, twice: Once
with the use of reductions and once without. Running FINDMINHS with reductions was
not necessary, since the original authors were already using all of the reductions applicable
on these instances. By SOLVERNAME+R we refer to any given solver combined with the
aforementioned reduction process.

The results without reductions are shown in Table 5.4. We immediately notice that the
dedicated hitting set solver cannot compete with the other solvers: FINDMINHS times out
for every of the first 50 graphs. It can also be seen that the open source ILP solvers, SCIP
and HiGHS, cannot compete with the open source MaxSAT solver, UWrMaxSAT, on these
instances. SCIP manages to solve 17, while HiGHS only manages to solve 9 out of 50
instances. Additionally, on all instances solved by an open source ILP, except exact_039.gr,
UWrMaxSat finds a minimum dominating set significantly faster. All instances solved by
an open source ILP, mostly taking more than 100 seconds, can be solved by UWrMaxSat
in under 60 seconds.

We also notice that UWrMaxSat is very competitive with Gurobi, only solving one in-
stance less on the first 50 instances. Except on 8 instances, UWrMaxSat finds a solution
more quickly than Gurobi. On 12 instances we find a solution more than 30 seconds faster
using UWrMaxSat instead of Gurobi. However, there are 7 instances, where Gurobi finds
a solution 100 seconds sooner, oftentimes even up to 400 seconds.

Table 5.4: Solver times in seconds for the graphs exact_001.gr to exact_050.gr.

Graph findminhs SCIP HiGHS Gurobi UWrMaxSat

exact_001.gr - - - 13.15 0.43
exact_002.gr - - - 11.79 0.14
exact_003.gr - - - 54.18 0.04
exact_004.gr - - - 14.82 0.39
exact_005.gr - - - 94.94 0.06
exact_006.gr - - - 8.11 0.54
exact_007.gr - - - 126.73 0.68
exact_008.gr - - - 47.25 0.04
exact_009.gr - - - 197.88 0.66
exact_010.gr - - - 1.1 0.37
exact_011.gr - - - 3.14 0.83
exact_012.gr - - 441.81 2.11 0.97
exact_013.gr - - - 3.15 0.11
exact_014.gr - - - 6.67 0.70
exact_015.gr - - - 32.22 0.07
exact_016.gr - - - 14.97 0.14

Continued on next page

28

5.2 Results

Table 5.4 – continued from previous page

Graph findminhs SCIP HiGHS Gurobi UWrMaxSat

exact_017.gr - 363.21 - 156.83 602.78
exact_018.gr - 242.04 - 193.91 641.80
exact_019.gr - 296.12 - 39.79 657.55
exact_020.gr - - - 26.2 4.02
exact_021.gr - 1 139.69 - 92.52 210.13
exact_022.gr - 134.79 1 663.7 54.42 1.26
exact_023.gr - 141.17 1 491.72 16.7 1.40
exact_024.gr - - - 33.52 0.89
exact_025.gr - - - 135.29 -
exact_026.gr - 368.61 - 183.62 725.72
exact_027.gr - 1 410.82 - 66.65 1 719.35
exact_028.gr - - - 8.94 5.21
exact_029.gr - 376.62 - 10.03 3.51
exact_030.gr - 839.21 - 19.33 13.20
exact_031.gr - - - 87.22 104.52
exact_032.gr - - - 37.73 11.93
exact_033.gr - - - - -
exact_034.gr - - - - -
exact_035.gr - - - 10.65 0.44
exact_036.gr - - - 120.57 46.83
exact_037.gr - - - - -
exact_038.gr - 14.86 104 3.78 455.19
exact_039.gr - 2.74 2.5 5.02 6.19
exact_040.gr - 12.9 14.85 9.36 33.29
exact_041.gr - 67.9 345.64 4.38 0.11
exact_042.gr - 243.64 - 6.83 4.86
exact_043.gr - 17.1 123.11 1.27 3.16
exact_044.gr - - - 13.03 7.63
exact_045.gr - 61.35 1 239.73 3.41 1.99
exact_046.gr - - - 15 0.98
exact_047.gr - - - 220.22 0.08
exact_048.gr - - - 121.05 0.35
exact_049.gr - - - 266.23 0.82
exact_050.gr - - - 8.47 0.43

Looking at Figure 5.1, the discussed results are verified. SCIP outperforms HiGHS,
while Gurobi and UWrMaxSat significantly outperform both SCIP and HiGHS. It is also
noticeable that UWrMaxSat solves around 37 instances in a very short time, outperforming
Gurobi at the beginning. UWrMaxSat and Gurobi are equally as fast at solving the first 39

29

5 Experimental Evaluation

instances. Gurobi then solves all remaining instances, for which it is able to find a solution
for within the time-limit, in under 260 seconds. UWrMaxSat slowly catches up, with a
small bump at around 600 seconds.

Figure 5.1: Plot of the solver performances on the graphs exact_001.gr to exact_050.gr. We plot
the cumulative number of instances solved over time, with the x-axis representing the
time in seconds.

In Table 5.5, we present the completion times for the first 50 instances, but this time for
the different solvers after the reduction process has been applied. We do this in order to
assess the impact of the reduction process on the different solvers and to determine which
solvers benefit the most from the reduction. UWr+R refers to the UWrMaxSat solver to-
gether with all reductions, while UWr+Re (resp. UWr+Rv) refer to applying all reductions
except edge (resp. vertex) domination before using the UWrMaxSat solver. This was done
in order to further analyze how the different reductions influence the overall solving time.

We first recognize that no solver is able to solve instance 40 when using reduction rules.
This is due to the reduction process taking longer than the time-limit of 1 800 seconds, as
mentioned in Section 5.2.1.

We also notice that SCIP+R only manages to solve 14, while SCIP was able to solve
17 instances. With the use of reductions, SCIP+R solves instance 16 now, but is unable
to solve instances 27, 30, 39, and 40 anymore. Especially for instance 40, but possibly
also for instance 39, this is caused by the significant amount of time used in order to ap-
ply the reduction rules. We find that the amount of time needed to find a solution via
SCIP+R is sometimes very different when compared to SCIP. For instances 17, 18, and
19, SCIP+R finds a solution about 100 seconds sooner. For instance 21, there is a dif-

30

5.2 Results

ference of about 500 seconds. However, on instance 29, SCIP is ca. 300 seconds faster
than SCIP+R. When looking at Table 5.3, we notice that for the instances were SCIP+R
performs better, we have a lower amount of reductions found, about 40 per applicable re-
duction. SCIP seems to perform better than SCIP+R when a larger amount of applicable
reductions is found (approx. 400).

Like SCIP+R, HiGHS+R also solves one instance less than its non-reducing counterpart
HiGHS. While HiGHS+R is able to find a solution for 14 and 16, it is unable to find a
solution for instances 22, 40, and 45. When comparing the solver times of instances that
both HiGHS and HiGHS+R find a solution on, we do not see anything noticeable. Even
with reductions, SCIP+R still significantly outperforms HiGHS+R.

When looking at the results for Gurobi+R, it is noticeable that Gurobi does not really
benefit from the reduction process for these graphs. Gurobi+R solves the same amount
of instances as Gurobi on instances 1 to 50. However, there are circa 10 instances that
Gurobi+R solves more than 60 seconds slower than plain Gurobi. A significant improve-
ment is only noticeable for instances 47 and 49, being about 200 seconds faster each.

Moreover, we notice that UWr+R is able to solve all instances between 1 and 50 which
plain UWrMaxSat found a solution on except instance 40, which was already discussed.
UWr+R additionally finds a solution for exact_025.gr, which was the one instance that
Gurobi was able to solve more than UWrMaxSat. Generally, we notice that UWr+R is at
least 60 seconds faster on 6 instances, while in return being slower on 3 other instances
compared to UWrMaxSat. One of these instances is exact_039.gr, for which we notice
in Table5.3 that the slower time is due to the initial reduction finding time. We also
recognize that all instances that were originally solved under 1 second by UWrMaxSat
are now introduced with some overhead originating from the reduction computation time
shown in Section 5.2.1.

Looking at the other two reduction variants of UWrMaxSat, UWr+Re and UWr+Rv,
we notice some significant changes when comparing it to UWr+R. For instance, UWr+Rv
finds solutions faster on instances 22, 26, and 39, whilst being slower on 32 and 41. For
instances 22 and 26, we do not observe anything in Table 5.3 which could be the cause for
the significant speedup. However, the same goes for the instances were UWr+Rv performs
worse. UWr+Re on the other hand is approximately 200 seconds faster than UWr+R on
5 separate instances, while only being significantly worse on exact_022.gr. It is important
to note, that both UWr+Re and UWr+Rv solve one more instance, namely exact_034.gr.
In both cases, the solution was found in less than 160 seconds. Looking at the reduction
stats of instance 34, we once again do not find anything that cause this behavior. The graph
properties of instance 34 are also not suspicious.

31

5 Experimental Evaluation

Table 5.5: Solver times in seconds for the graphs exact_001.gr to exact_050.gr.

Graph SCIP+R HiGHS+R Gurobi+R UWr+R UWr+Re UWr+Rv

exact_001.gr - - 379.16 9.62 1.81 1.30
exact_002.gr - - 18.86 2.53 1.37 1.09
exact_003.gr - - 29.12 3.48 2.31 3.48
exact_004.gr - - 504.32 3.58 1.48 1.03
exact_005.gr - - 85.40 9.44 1.11 3.98
exact_006.gr - - 7.58 7.20 1.18 2.75
exact_007.gr - - 162.53 15.01 1.79 17.93
exact_008.gr - - 45.27 3.99 2.52 6.52
exact_009.gr - - 109.89 3.70 1.79 8.24
exact_010.gr - - 1.04 2.79 2.81 1.96
exact_011.gr - - 2.23 1.18 0.41 1.38
exact_012.gr - 348.67 2.34 4.17 1.24 0.09
exact_013.gr - - 4.21 3.49 1.67 3.14
exact_014.gr - 1 038.61 101.50 1.68 1.65 1.46
exact_015.gr - - 7.20 1.30 0.88 0.45
exact_016.gr 450.27 848.52 20.23 1.38 1.62 1.24
exact_017.gr 279.92 - 148.50 354.93 334.99 598.13
exact_018.gr 155.03 - 129.59 621.43 609.95 778.64
exact_019.gr 181.22 - 107.51 575.29 586.07 597.76
exact_020.gr - - 24.05 2.17 79.32 2.40
exact_021.gr 619.00 - 62.74 4.52 2.21 2.85
exact_022.gr 148.07 - 46.30 1.38 230.94 0.38
exact_023.gr 135.87 1 454.16 12.67 2.07 7.53 25.34
exact_024.gr - - 14.08 2.96 1.08 2.11
exact_025.gr - - 541.35 1 070.79 925.73 812.60
exact_026.gr 389.64 - 749.25 601.50 627.37 6.06
exact_027.gr - - 156.22 6.76 5.27 3.99
exact_028.gr - - 8.16 22.70 17.31 9.98
exact_029.gr 715.66 - 5.60 11.15 8.66 10.35
exact_030.gr - - 23.42 28.72 24.95 13.04
exact_031.gr - - 83.98 29.09 33.62 10.66
exact_032.gr - - 61.08 781.72 37.38 804.30
exact_033.gr - - - - - -
exact_034.gr - - - - 45.85 153.98
exact_035.gr - - 53.03 3.15 1.70 1.60
exact_036.gr - - 160.13 88.47 - -
exact_037.gr - - - - - -

Continued on next page

32

5.2 Results

Table 5.5 – continued from previous page

Graph SCIP+R HiGHS+R Gurobi+R UWr+R UWr+Re UWr+Rv

exact_038.gr 22.08 494.79 4.20 466.39 104.29 471.14
exact_039.gr - 1.37 0.28 701.64 556.07 118.86
exact_040.gr - - - - - -
exact_041.gr 43.03 374.73 4.36 1.95 2.02 129.01
exact_042.gr 219.63 - 5.53 12.84 13.91 6.01
exact_043.gr 14.64 119.78 1.33 1.19 1.29 1.88
exact_044.gr - - 9.10 21.66 14.76 10.46
exact_045.gr 86.43 - 3.47 5.83 4.89 6.02
exact_046.gr - - 13.29 2.43 1.87 1.08
exact_047.gr - - 26.36 26.84 2.01 3.31
exact_048.gr - - 161.58 2.74 2.99 1.53
exact_049.gr - - 43.37 2.14 1.06 6.63
exact_050.gr - - 10.99 10.57 1.39 4.88

The plot of the solver performance with initial reductions in Figure 5.2 shows simi-
lar results to the previous plot. Once again, SCIP+R and HiGHS+R cannot compete with
Gurobi+R and the UWrMaxSat variants. We once again see that the first about 37 instances
are solved faster by any UWrMaxSat variant, until Gurobi+R overtakes at around the 40
instances mark. We then see Gurobi+R finishing all results by 750 seconds, which is sig-
nificantly worse compared to the 260 seconds it took plain Gurobi. We can also notice that
UWr+Re seems to mostly outperform the other variants. At the end, every UWrMaxSat
variant ends up with the same amount of solved instances. Given the consistently bet-
ter performance of the UWrMaxSat solver compared to all other open-source solvers, the
portfolio approach initially considered was ultimately abandoned.

Table 5.6: Solver times in seconds for the graphs exact_051.gr to exact_100.gr.

Graph Gurobi Gurobi+R UWrMaxSat UWr+R

exact_051.gr - - 80.63 -
exact_052.gr 288.23 252.04 1 131.02 46.27
exact_053.gr 16.02 0.04 0.22 1.73
exact_054.gr 7.17 0.09 1.67 2.88
exact_055.gr 63.88 95.17 541.09 67.42
exact_056.gr - - - 18.03
exact_057.gr - - - -
exact_058.gr - - - -
exact_059.gr 178.39 174.80 - 989.22

Continued on next page

33

5 Experimental Evaluation

Table 5.6 – continued from previous page

Graph Gurobi Gurobi+R UWrMaxSat UWr+R

exact_060.gr 137.17 2.68 1.50 2.03
exact_061.gr 18.63 0.16 1.20 3.64
exact_062.gr 336.32 588.10 - -
exact_063.gr - - - -
exact_064.gr 191.28 167.66 4.54 907.22
exact_065.gr 57.54 45.72 839.58 527.80
exact_066.gr - - - -
exact_067.gr - - 5.01 -
exact_068.gr 418.30 401.32 791.80 807.69
exact_069.gr - - - -
exact_070.gr 178.39 155.14 1 308.34 261.15
exact_071.gr - - - -
exact_072.gr - - - -
exact_073.gr 1.82 0.07 0.95 1.33
exact_074.gr 63.67 139.84 11.09 364.10
exact_075.gr - - - -
exact_076.gr - - - -
exact_077.gr 201.82 388.91 30.84 108.60
exact_078.gr 10.42 0.17 0.80 1.72
exact_079.gr 10.68 0.07 1.53 1.96
exact_080.gr 218.29 269.28 379.37 1 353.55
exact_081.gr - - - -
exact_082.gr 30.61 37.17 6.82 6.61
exact_083.gr - - 1 289.85 -
exact_084.gr 246.27 - - -
exact_085.gr 8.99 0.05 0.57 1.70
exact_086.gr 154.86 0.40 14.05 27.23
exact_087.gr 146.81 - - -
exact_088.gr - - - -
exact_089.gr 66.38 0.32 1.29 3.08
exact_090.gr 262.25 280.64 30.23 65.10
exact_091.gr 190.65 160.15 1 078.28 65.63
exact_092.gr - - - -
exact_093.gr - 1 050.45 - -
exact_094.gr 75.00 99.80 713.36 8.37
exact_095.gr 116.57 0.22 2.21 4.26
exact_096.gr 42.57 0.92 1.93 3.64
exact_097.gr - - - -

Continued on next page

34

5.2 Results

Table 5.6 – continued from previous page

Graph Gurobi Gurobi+R UWrMaxSat UWr+R

exact_098.gr 114.70 126.64 1.60 15.17
exact_099.gr 5.89 0.01 1.72 1.16
exact_100.gr - 414.71 - 1 588.38

Because FINDMINHS, SCIP, and HiGHS exhibited poor performance on the first
50 graphs, our analysis of the remaining 50 graphs is limited to a direct compari-
son of Gurobi, Gurobi+R, UWrMaxSat, and UWr+R. Table 5.6 presents the results of
this direct comparison.

When comparing these solvers, it is important to note the significantly longer pre-
processing time needed on the graphs exact_050.gr to exact_100.gr. In Table 5.3, it can be
seen that there are overall 11 graphs that require a pre-processing time of more than 60 sec-
onds. This significantly affects both Gurobi+R and UWr+R in the following comparisons.

For Gurobi and Gurobi+R, we actually notice some changes in comparison to the first
50 graphs. Notably, we see some differences in which instances the two variants can
solve: Overall, both approaches are able to solve 31 instances. However, while Gurobi+R
is unable to solve instances 84 and 87, plain Gurobi cannot solve instances 93 and 100.
When looking at Table 5.3, we notice that the reduction times for instance 84 and 87 are
857.98 and 626.40 seconds respectively. As noted above, this heavily impacts the ability
of Gurobi+R finding a solution in the remaining time.

Moreover, Gurobi+R is comparably fast to Gurobi on these instances. While notably
slower on graphs 62, 74, 77, and 80, Gurobi+R performs significantly better on instances
60, 86, 89, 95, and 96. It is important to recognize that instances 62 and 74 additionally
have a long reduction pre-processing time of 62.77 and 347.72 seconds respectively, as can
be seen in Table 5.3. In comparison to the previous 50 instances, Gurobi+R actually gains
significant performance benefits from the reduction process.

Looking at UWrMaxSat and UWr+R, we observe that 25 instances can be solved by
plain UWrMaxSat and 24 instances can be solved by UWr+R. UWr+R is able to solve
instances 67 and 83, while UWrMaxSat cannot find a solution for instance 100. On these
graphs, UWr+R is able to significantly improve solving time on only 4 instances. On the
other hand, solving time is notably slower than plain UWrMaxSat on 4 instances as well.

Overall, we notice Gurobi is able to solve 6 instances more than UWrMaxSat while
Gurobi+R is able to solve 7 instances more than UWr+R. Gurobi and Gurobi+R together
are able to find a solution on 33 instances, where only 3 instances were solved neither by
UWrMaxSat nor by UWr+R. On the other hand, UWrMaxSat and UWr+R together are
also able to solve 33 instances, including 4 that neither Gurobi nor Gurobi+R could solve.
Hence, when looking at the combined approach of using both solver variants, UWrMaxSat
seems to benefit more from the reduction process.

Since UWrMaxSat and Gurobi delivered similarly strong performance on both instance
sets, we now examine their overall performance in Figure 5.3. As before, we notice that the

35

5 Experimental Evaluation

Figure 5.2: Plot of the solver performances on the graphs exact_001.gr to exact_050.gr, where
reduction was applied beforehand. The plot shows the cumulative number of instances
solved over time, with the x-axis representing time in seconds.

Figure 5.3: Plot of the solver performances on the graphs exact_001.gr to exact_100.gr, providing
a direct comparison between Gurobi and UWrMaxSat. The plot shows the cumulative
number of instances solved over time, with the x-axis representing time in seconds.

36

5.2 Results

UWrMaxSat variants are able to solve significantly more instances in under 100 seconds
than the Gurobi variants. We notice that all solvers are able to solve 60 instances in about
150 seconds. Thereafter, Gurobi and Gurobi+R both solve their remaining instances faster
than UWrMaxSat and UWr+R, which slowly catch up in the end.

It is important to note that Gurobi is not only able to find solutions more quickly than
Gurobi+R, but also solves more instances overall. This can mostly be attributed to the first
50 instances, as discussed above. When comparing UWrMaxSat to UWr+R, we observe
that although UWrMaxSat performs better initially, UWr+R solves instances more quickly
later on. In the end, both variants solve the same number of instances.

37

5 Experimental Evaluation

38

CHAPTER 6
Discussion

6.1 Conclusion

This thesis investigated the effectiveness of combining Integer Linear Programming (ILP)
and MaxSAT solving techniques with a pre-processing reduction phase to address the
DOMINATING SET and HITTING SET problems. The experimental results demonstrate that
the proposed reduction techniques can significantly reduce problem sizes, possibly con-
tributing to improved solver performance. Among the evaluated approaches, the dedicated
hitting set solver FINDMINHS was unable to match the performance of ILP and MaxSAT-
based methods. Notably, the open-source MaxSAT solver UWrMaxSat consistently outper-
formed the widely used open-source ILP solvers SCIP and HiGHS, successfully solving the
majority of exact DOMINATING SET instances from this year’s PACE Challenge. Although
we originally planned to use a portfolio approach, the results showed that it is not feasible
due to the significant performance difference between the open-source solvers. Further-
more, UWrMaxSat proved to be competitive even when compared to the commercial ILP
solver Gurobi. While the application of reductions did not improve Gurobi’s performance
for most instances, UWrMaxSat benefited significantly from different reduction configura-
tions, often resulting in faster solution times and a higher number of solved instances.

6.2 Future Work

Several promising directions for future work emerge from this thesis. A key opportunity
lies in optimizing the reduction process. Currently, both edge and vertex domination rules
are implemented in a relatively naive fashion. Enhancing the efficiency of these implemen-
tations could further improve the performance of UWrMaxSat when used in combination
with reductions. Additionally, the approach presented here could be extended by identify-
ing new reduction rules to reduce problem instances even further before solving.

39

6 Discussion

Another interesting direction would be to explore time allocation strategies. Since solu-
tions are typically found within approximately 1 100 seconds, splitting the total available
time across multiple configurations of the UWrMaxSat solver might increase the likelihood
of solving more instances within the time limit.

Lastly, given the strong performance of UWrMaxSat compared to open-source ILP
solvers, it would be worthwhile to investigate other MaxSAT solvers featured in the
MaxSAT Evaluation 2024 [3]. It is possible that some solvers can solve instances
that UWrMaxSat misses, and vice versa, making a portfolio-based approach in this
direction potentially beneficial.

40

6.2 Future Work

Zusammenfassung

Diese Arbeit behandelt das Problem des DOMINATING SET und des HITTING SET, die
beide Teil der PACE Challenge 2025 sind, und nutzt dafür bestehende Lösungstechniken.
Da das DOMINATING SET auf das HITTING SET Problem reduziert werden kann, unter-
suchen wir den Einsatz eines spezialisierten Hitting Set Solvers sowie ILP- und MaxSAT-
Ansätze zur Lösung von DOMINATING SET-Instanzen. Zur Verbesserung der Solver-
Leistung wenden wir Datenreduktionsverfahren an, die darauf abzielen, die Gesamtgröße
des Problems vor dem Lösen zu verringern. Unsere Ergebnisse zeigen, dass ein Open-
Source MaxSAT-Solver deutlich bessere Ergebnisse liefert als gängige Open-Source ILP-
Solver, während der spezialisierte Hitting Set-Solver mit keiner der beiden Methoden
mithalten kann. Darüber hinaus stellen wir fest, dass der MaxSAT-Solver, kombiniert mit
Reduktionen, sogar mit Gurobi, einem kommerziellen ILP-Solver, konkurrieren kann.

41

Bibliography

[1] Pace challenge. https://pacechallenge.org/, 2025. Accessed: 2025-04-
19.

[2] Florent Avellaneda. Evalmaxsat. https://github.com/
FlorentAvellaneda/EvalMaxSAT, 2024. Accessed: 2025-04-18.

[3] Jeremias Berg, Matti Järvisalo, Ruben Martins, Andreas Niskanen, and Tobias Pax-
ian. Maxsat evaluation 2024. https://maxsat-evaluations.github.io/
2024/index.html, 2024. Accessed: 2025-04-18.

[4] Armin Biere. Kissat sat solver. https://github.com/arminbiere/
kissat, 2024. Accessed: 2025-04-18.

[5] Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand. An effi-
cient branch-and-bound solver for hitting set. CoRR, abs/2110.11697, 2021. URL
https://arxiv.org/abs/2110.11697.

[6] Jeremy Blum, Min Ding, Andrew Thaeler, and Xiuzhen Cheng. Connected dominat-
ing set in sensor networks and manets. Handbook of Combinatorial Optimization:
Supplement Volume B, pages 329–369, 2005.

[7] Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela,
João Dionísio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mo-
hammed Ghannam, Ambros Gleixner, Christoph Graczyk, Katrin Halbig, Ivo
Hedtke, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Dominik
Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni
Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Mark Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu.
The SCIP Optimization Suite 9.0. Technical report, Optimization Online,
February 2024. URL https://optimization-online.org/2024/02/
the-scip-optimization-suite-9-0/.

[8] Alejandra Casado, Sergio Bermudo, AD López-Sánchez, and Jesús Sánchez-Oro. An
iterated greedy algorithm for finding the minimum dominating set in graphs. Mathe-
matics and Computers in Simulation, 207:41–58, 2023.

43

https://pacechallenge.org/
https://github.com/FlorentAvellaneda/EvalMaxSAT
https://github.com/FlorentAvellaneda/EvalMaxSAT
https://maxsat-evaluations.github.io/2024/index.html
https://maxsat-evaluations.github.io/2024/index.html
https://github.com/arminbiere/kissat
https://github.com/arminbiere/kissat
https://arxiv.org/abs/2110.11697
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/

Bibliography

[9] Yibin Chen, Sean Safarpour, Andreas Veneris, and Joao Marques-Silva. Spatial and
temporal design debug using partial maxsat. In Proceedings of the 19th ACM Great
Lakes symposium on VLSI, pages 345–350, 2009.

[10] Doblalex. Crgone, 2023. URL https://github.com/Doblalex/CRGone.
Accessed: 2025-04-22.

[11] Rainer Grapa et al. pace-2022-dfvs-solver, 2022. URL https:
//gitlab.informatik.uni-bremen.de/grapa/java/
pace-2022-dfvs-solver. Accessed: 2025-04-22.

[12] Mario Grobler. Pace2025-instances: Instances for the pace challenge 2025. https:
//github.com/MarioGrobler/PACE2025-instances, 2025. Accessed:
2025-04-18.

[13] Gurobi Optimization, LLC. Gurobi optimizer, 2024. URL https://www.
gurobi.com/. Accessed: 2024-11-04.

[14] Juris Hartmanis. Computers and intractability: a guide to the theory of np-
completeness (michael r. garey and david s. johnson). Siam Review, 24(1):90, 1982.

[15] Abdel-Rahman Hedar and Rashad Ismail. Hybrid genetic algorithm for minimum
dominating set problem. In Computational Science and Its Applications–ICCSA
2010: International Conference, Fukuoka, Japan, March 23-26, 2010, Proceedings,
Part IV 10, pages 457–467. Springer, 2010.

[16] Abdel-Rahman Hedar and Rashad Ismail. Simulated annealing with stochastic lo-
cal search for minimum dominating set problem. International Journal of Machine
Learning and Cybernetics, 3:97–109, 2012.

[17] Chin Kuan Ho, Yashwant Prasad Singh, and Hong Tat Ewe. An enhanced ant colony
optimization metaheuristic for the minimum dominating set problem. Applied Artifi-
cial Intelligence, 20(10):881–903, 2006.

[18] Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning op-
timal decision trees with maxsat and its integration in adaboost. In IJCAI-PRICAI
2020, 29th International Joint Conference on Artificial Intelligence and the 17th Pa-
cific Rim International Conference on Artificial Intelligence, 2020.

[19] Q. Huangfu and J. A. J. Hall. Parallelizing the dual revised simplex method.
Mathematical Programming Computation, 10(1):119–142, 2018. ISSN 1867-
2957. doi: 10.1007/s12532-017-0130-5. URL https://doi.org/10.1007/
s12532-017-0130-5.

44

https://github.com/Doblalex/CRGone
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://gitlab.informatik.uni-bremen.de/grapa/java/pace-2022-dfvs-solver
https://github.com/MarioGrobler/PACE2025-instances
https://github.com/MarioGrobler/PACE2025-instances
https://www.gurobi.com/
https://www.gurobi.com/
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/s12532-017-0130-5

Bibliography

[20] IBM. Cplex website, ibm products, 2024. URL https://www.ibm.com/
de-de/products/ilog-cplex-optimization-studio. Accessed:
2024-11-04.

[21] Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential method.
In Parameterized and Exact Computation: 6th International Symposium, IPEC 2011,
Saarbrücken, Germany, September 6-8, 2011. Revised Selected Papers 6, pages 41–
54. Springer, 2012.

[22] Hua Jiang and Zhifei Zheng. An exact algorithm for the minimum dominating set
problem. In Proceedings of the Thirty-Second International Joint Conference on Ar-
tificial Intelligence, pages 5604–5612, 2023.

[23] Richard M. Karp. Reducibility among Combinatorial Problems, pages
85–103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2.
doi: 10.1007/978-1-4684-2001-2_9. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

[24] Laura L. Kelleher and Margaret B. Cozzens. Dominating sets in social net-
work graphs. Mathematical Social Sciences, 16(3):267–279, 1988. ISSN 0165-
4896. doi: https://doi.org/10.1016/0165-4896(88)90041-8. URL https://www.
sciencedirect.com/science/article/pii/0165489688900418.

[25] Fabian Kuhn and Rogert Wattenhofer. Constant-time distributed dominating set ap-
proximation. In Proceedings of the twenty-second annual symposium on Principles
of distributed computing, pages 25–32, 2003.

[26] MaxSAT Evaluation. Maxsat evaluations, 2021. URL https://
maxsat-evaluations.github.io/. Accessed: 2025-04-18.

[27] Marek Piotrów. Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean prob-
lems. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelli-
gence (ICTAI), pages 132–136, 2020. doi: 10.1109/ICTAI50040.2020.00031.

[28] Günther R Raidl and Jakob Puchinger. Combining (integer) linear programming tech-
niques and metaheuristics for combinatorial optimization. Hybrid metaheuristics: An
emerging approach to optimization, pages 31–62, 2008.

[29] Mostafa Rezvani, Mohammad Kazem Akbari, and Bahman Javadi. Resource allo-
cation in cloud computing environments based on integer linear programming. The
Computer Journal, 58(2):300–314, 2015.

[30] Alexander Schidler. dfvs, 2022. URL https://github.com/ASchidler/
dfvs. Accessed: 2025-04-22.

45

https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://www.sciencedirect.com/science/article/pii/0165489688900418
https://www.sciencedirect.com/science/article/pii/0165489688900418
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/
https://github.com/ASchidler/dfvs
https://github.com/ASchidler/dfvs

Bibliography

[31] Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzyjegla, and Gero
Mühl. Ilp-based joint routing and scheduling for time-triggered networks. In Pro-
ceedings of the 25th International Conference on Real-Time Networks and Systems,
pages 8–17, 2017.

[32] Hesamoddin Tahami and Hengameh Fakhravar. A literature review on combining
heuristics and exact algorithms in combinatorial optimization. European Journal of
Information Technologies and Computer Science, 2(2):6–12, 2022.

[33] HiGHS Development Team. Highs: High-performance parallel linear optimization
software, 2025. URL https://highs.dev/. Accessed: 2025-04-18.

[34] TheoryInPractice. hydraprime, 2023. URL https://github.com/
TheoryInPractice/hydraprime. Accessed: 2025-04-22.

[35] Massimo Tornatore, Guido Maier, and Achille Pattavina. Wdm network design by ilp
models based on flow aggregation. IEEE/ACM Transactions On Networking, 15(3):
709–720, 2007.

[36] Johan M.M. van Rooij and Hans L. Bodlaender. Exact algorithms for dominat-
ing set. Discrete Applied Mathematics, 159(17):2147–2164, 2011. ISSN 0166-
218X. doi: https://doi.org/10.1016/j.dam.2011.07.001. URL https://www.
sciencedirect.com/science/article/pii/S0166218X11002393.

[37] Peng-Jun Wan, Khaled M Alzoubi, and Ophir Frieder. Distributed construction of
connected dominating set in wireless ad hoc networks. Mobile Networks and Appli-
cations, 9:141–149, 2004.

[38] Michael Wien. pingpong, 2023. URL https://github.com/mwien/
pingpong. Accessed: 2025-04-22.

46

https://highs.dev/
https://github.com/TheoryInPractice/hydraprime
https://github.com/TheoryInPractice/hydraprime
https://www.sciencedirect.com/science/article/pii/S0166218X11002393
https://www.sciencedirect.com/science/article/pii/S0166218X11002393
https://github.com/mwien/pingpong
https://github.com/mwien/pingpong

