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Abstract

The MAXIMUM WEIGHT INDEPENDENT SET (MWIS) problem is a fundamental NP-
hard problem with numerous real world applications. Given an undirected graph with
vertex weights, the problem is to find a subset of the vertices of maximum weight, such
that no two of the vertices are adjacent. The MWIS problem also has many closely re-
lated graph problems, such as the MINIMUM WEIGHT VERTEX COVER problem and
MAXIMUM WEIGHT CLIQUE problem.

To effectively solve large input instances, solvers for the MWIS problem employ data
reductions, which attempt to reduce the size of the instance to be solved, while preserving
optimality of the constructed solution. One powerful but computationally expensive data
reduction is the Critical Weighted Independent Set reduction, which identifies a critical
weighted set on the input graph by computing a maximum flow on a specially constructed
flow network. From this critical weighted set it then computes a critical weighted indepen-
dent set, of which all vertices can then be removed from the input graph.

In this work, we implement different maximum flow algorithms into the MWIS solver
KAMIS, and compare them with regards to suitability for the CWIS reduction. In ad-
dition to algorithmic changes, we also introduce optimizations related to flow graph data
structures, as well as the construction of flow networks.
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CHAPTER 1
Introduction

The MAXIMUM WEIGHT INDEPENDENT SET (MWIS) problem is a fundamental NP-
hard problem in graph theory. Given an undirected graph with vertex weights, the problem
is to find a subset of the vertices of maximum weight, such that no two vertices in the
set are adjacent.

State-of-the-art solvers employ a number of different data reductions to minimize the
solution space that they need to search. One powerful but computationally expensive data
reduction for the MWIS problem is the Critical Weighted Independent Set (CWIS) reduc-
tion, which computes a maximum flow on a specially constructed flow graph, from which it
identifies a critical weighted independent set that is then reduced away in the input graph.

In this work, we discuss the CWIS reduction in detail, compare different maximum
flow algorithms with regard to their suitability for use in the CWIS reduction, and employ
various optimizations to further improve the reduction’s performance.

1.1 Motivation

The MWIS problem has many closely related graph problems, with a wide range of practi-
cal applications. One such problem is the MINIMUM WEIGHT VERTEX COVER (MWVC)
problem, in which the goal is to find a subset of vertices of minimum weight, such that
every edge is incident to at least one vertex in the subset. Solving the MWIS problem is
considered equivalent to solving the MWVC problem, as for any MWIS I ⊆ V on a graph
G = (V,E), the set V \I is a MVWC. Another related problem is the MAXIMUM WEIGHT

CLIQUE (MWC) problem, in which the goal is to find a subset of maximum weight, such
that all vertices in the subset are pairwise adjacent. Solving the MWC problem on a graph
G is equivalent to solving the MWIS problem on its complement graph G. However, solv-
ing the MWIS problem using a MWC solver is often impractical, as large real world graphs
are usually very sparse, so constructing the dense complement graph can quickly run into
memory limitations.
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1 Introduction

In practice, these problems are used to optimize vehicle routing [17], for network secu-
rity simulations [20], and in network performance measurements [42]. While this is by no
means an exhaustive list of applications, it should be clear that there is a lot of interest in
efficient solvers for the MWIS problem, which can then be used to solve the other related
problems too.

Due to the computational complexity of the MWIS problem, it is often infeasible to
run an exact solver directly on large graphs. Instead, state-of-the-art solvers employ
many different data reductions, which try to reduce the size of a graph in such a way
that given a MWIS of the reduced graph, one can efficiently reconstruct a MWIS of
the original graph.

One powerful such reduction is the Critical Weighted Independent Set (CWIS) reduc-
tion, which finds a CWIS, and commits it to the MWIS solution. Internally, this is done by
computing a maximum flow in a specially constructed flow network, and identifying ver-
tices in the CWIS on its residual graph. Since this is computationally expensive compared
to other simpler reductions, the entire reduction pipeline can be sped up significantly with
the right flow algorithm and careful optimizations.

KAMIS [1] is a state-of-the-art MWIS solver, and the first MWIS solver to implement
the CWIS reduction. Though many of our experiments are agnostic toward any specific
solver, we use KAMIS for a baseline implementation of the CWIS reduction.

1.2 Our Contribution

In this work, we provide a full self-contained description of the CWIS reduction, explana-
tion of the algorithm used, and a proof of correctness of said algorithm. Furthermore, we
implement different maximum flow algorithms into the KAMIS solver and compare them
with regards to their suitability for the CWIS reduction. More specifically:

• We implement Tidal Flow [21] and Dinitz’s Algorithm [15] in KAMIS. The MWIS
solver in KAMIS utilizes data reductions including the CWIS reduction, previously
implemented with the Push-Relabel maximum flow algorithm. We integrate two dif-
ferent maximum flow algorithms into the existing KAMIS codebase, namely Tidal
Flow and Dinitz’s Algorithm ( discussed in Sections 3.2 and 3.1). These implementa-
tions are designed as a drop-in replacement for the existing Push-Relabel implemen-
tation, to be minimally intrusive in the codebase and to allow for easy comparison
between the algorithms.

• We optimize the backing flow graph data structure used by them, minimizing mem-
ory indirections and accelerating flow graph construction. While the new flow graph
is only used in our Dinitz implementation, it could be used as a drop-in replacement
in the old Push-Relabel code, or in any future code operating on flow graphs.
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1.3 Structure

• We compare the different max-flow algorithms with regards to the CWIS reduction.
We provide timing comparisons for many different input graphs of different sizes.
These timings include the runtime of just the CWIS reduction as well as the runtime
of the entire reduction pipeline. In addition to timings for our implementations, we
also compare to the Push-Relabel implementation from the Boost library [7]. In both
of the experiments, our Dinitz implementation with our new flow graph comes out
on top, leading to large speedups over the existing baseline code.

1.3 Structure

The remainder of this thesis is organized as follows. Chapter 2 lays out definitions used
throughout the other chapters, including definitions related to graphs, to the MWIS problem
and to flow networks. Chapter 3 gives an overview of the three relevant maximum flow
algorithms, namely Dinitz’s Algorithm, Tidal Flow, and Push-Relabel. It also discusses
the structure of MWIS solvers, and lists known solvers using the CWIS reduction along
with their choice of flow algorithm used in the CWIS reduction implementation. Chapter 4
defines the CWIS reduction and gives a description of the algorithm used to implement
the reduction. It also provides detailed proofs for the correctness of the reduction and of
the algorithm. Chapter 5 gives further details about the implementation of Tidal Flow and
Dinitz’s Algorithm into KAMIS, and lists and explains the optimizations we introduced.
Chapter 6 presents experimental evaluations, comparing the different implementations of
the CWIS reduction, both in isolation and in the context of the full KAMIS reduction
pipeline. Finally, Chapter 7 discusses our findings, and lists suggestions for future work
related to the CWIS reduction.
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CHAPTER 2
Fundamentals

In this chapter, we provide definitions which are used throughout the other chapters. We
give basic definitions related to graphs in Section 2.1, as well as definitions relevant to
the MWIS problem in Section 2.2. Section 2.3 defines data reductions in the context of
the MWIS problem. Finally, Section 2.4 covers flow networks and concepts related to
them, which are relevant to the Critical Weighted Independent Set reduction introduced in
Chapter 4. Given the definitions provided in this chapter, no previous knowledge, other
than basic mathematical notation, should be required to read the rest of the thesis.

2.1 General Definitions

An undirected graph G = (V,E) consists of a finite vertex set V and an edge set E, such
that each e ∈ E is a 2-element subset of V . We denote the number of vertices of G as |V |
and its number of edges as |E|. By convention we also refer to |V | as n and to |E| as m,
unless specified otherwise. For vertices u, v ∈ V , we say u is adjacent to v, if {u, v} ∈ E.
For a vertex u and an edge e, we say u is incident to e (and e is incident to u) if u ∈ e.
By this definition, a graph cannot contain any parallel edges (distinct edges incident to one
pair of vertices) or self-loops (edges that are only incident to one vertex).

Given a vertex v, its neighborhood N(v) is the set of vertices adjacent to v, i.e.

N(v) := {u ∈ V : {u, v} ∈ E} .

The neighborhood of a set of vertices U ⊆ V is the union of its elements’ neighborhoods:

N(U) :=
⋃
v∈U

N(v)

Note that U may overlap with N(U). For convenience, we also define the shorthand

N∗(U) := N(U) \ U.
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2 Fundamentals

We call a graph G′ = (V ′, E ′) a subgraph of G, denoted by G′ ⊆ G, if V ′ ⊆ V and
E ′ ⊆ E. For a vertex set U ⊆ V , we also define its induced subgraph of G, denoted
by G[U ]:

G[U ] := (U, {{u, v} ∈ E : u, v ∈ U})

Put into words, G[U ] is the maximal subgraph of G with vertex set U , containing all edges
that have both endpoints in U .

For a vertex v ∈ G, we define its degree in G as

deg(v) := |{e ∈ E : v ∈ e}| = |N(v)|

i.e. the number of edges incident to v.
A path P = (v1, ..., vk) on G is a sequence of vertices, such that {vi, vi+1} ∈ E for all

i ∈ {1, . . . , k − 1}, and |{v1, . . . , vk}| = k, i.e. no vertex may appear twice in one path.
For vertices u, v ∈ V , we call a path starting at u and ending at v a u-v path. We say a
graph is connected, if there exists a u-v path for any two vertices u, v ∈ V .

A vertex weight function w : V → R>0 is a function that maps to each vertex in G a
positive weight. For a subset U ⊆ V , we denote the weight of U with regards to w as

w(U) :=
∑
u∈U

w(u).

A directed graph G = (V,E) is defined similarly to an undirected graph, except that its
edge set consists of ordered pairs of vertices, i.e. all edges have the shape e = (u, v) with
u, v ∈ V and u ̸= v. As in undirected graphs, parallel edges and self-loops (edges of the
shape (v, v)) are not allowed, but pairs of opposing edges are, so for vertices u, v ∈ V , both
(u, v) and (v, u) may lie in E. Subgraphs and induced subgraphs, paths, and connectedness
are also defined analogously to undirected graphs.

In directed graphs, the concept of a degree is replaced by the concept of indegree and
outdegree; we define the indegree of a vertex u as

degin(u) := |{v ∈ V : (v, u) ∈ E}|

and its outdegree as

degout(u) := |{v ∈ V : (u, v) ∈ E}|

i.e. the indegree and outdegree describe the number of incoming and outgoing edges
in u respectively.

By convention, when talking about graphs without qualifying directness, we mean undi-
rected graphs, unless the context dictates directed graphs.
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2.2 Independent Sets

2.2 Independent Sets

Let G = (V,E) be an undirected graph. We call a set of vertices I ⊆ V an independent set
in G, if there exists no edge {u, v} ∈ E such that u, v ∈ I . An independent set I ⊆ V is
called maximum, if no larger independent set exists in G, i.e. if

|I| = max{|J | : J ⊆ V is independent in G}.

Given a vertex weight function w : V → R>0, we can generalize this notion of a maxi-
mum independent set: We call an independent set I ⊆ V a maximum weight independent
set (MWIS), if no independent set with larger weight exists, i.e. if

w(I) = max{w(J) : J ⊆ V is independent in G}.

Maximum independent sets are not to be confused with maximal independent sets; the
latter is any independent set I ⊆ V such that no proper supersets J ⊋ I are independent,
i.e. I is maximally independent if adding any vertex to it would break its independence.
While a maximum independent set is trivially also maximal, not every maximal indepen-
dent set is also maximum.

2.3 Data Reductions

Computing a MWIS of a weighted graph (and consequently, a MIS on an unweighted
graph), has been shown to be NP-hard. To find exact solutions on large graphs, a solver
first has to try to efficiently minimize the size of the instance to be solved, before running
an exhaustive search on the reduced instance.

Data Reductions are rules that specify different ways to minimize input graphs, while
keeping the ability to reconstruct a MWIS solution to the original graph, given a solution
for the reduced graph. A data reduction consists of two algorithms, called REDUCEGRAPH

and RESTORESOLUTION.
REDUCEGRAPH takes in an input graph G, and tries to reduce it to a smaller graph G′,

by removing vertices or edges, or folding multiple vertices or edges together. If it is able
to reduce the graph, it returns the reduced graph G′ as output. Otherwise, it signals that G
is irreducible according to the rules of this reduction.

RESTORESOLUTION takes in a MWIS I ′ of the reduced graph G′, and reconstructs from
it a MWIS I of the original graph G. Given an oracle MWIS that is able to choose a MWIS
for any input graph, it is therefore guaranteed that the equality

w(MWIS(G)) = w(RESTORESOLUTION(MWIS(REDUCEGRAPH(G))))

holds for any graph G, regardless of which MWIS the oracle chooses for both the original
and the reduced instance.

7



2 Fundamentals

Iteratively running a selected list of such data reductions, until none can reduce the
graph further, yields a (locally) maximally reduced instance to be solved by an exact solver.
While many such reductions exist, in this thesis the focus lies on the Critical Weighted
Independent Set (CWIS) reduction, which is discussed in Chapter 4.

2.4 Flow Networks

A flow network F is defined as a 4-tuple (G, c, s, t), consisting of a connected directed
graph G = (V,E), an edge capacity function c : E → R≥0 and distinguished source and
sink vertices s, t ∈ V . We additionally require that for any edge (u, v) ∈ E, its opposing
edge (v, u) must also lie in E, and that exactly one of the two edges has nonzero capacity.

A flow on F is a function f : E → R with three conditions: For any edge (u, v) ∈ E,
its flow is bounded by its capacity, i.e.

f(u, v) ≤ c(u, v),

its flow equals the negation of the flow on the opposing edge, i.e.

f(u, v) = −f(v, u),

and for any vertex v ∈ V \ {s, t}, the amount of incoming flow must equal the amount
of outgoing flow, i.e. ∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w) = 0.

The value val(f) of the flow f is defined as the flow leaving the source, i.e.

val(f) =
∑

(s,w)∈E

f(s, w).

A flow f is called maximum, if no flows exist on F with a higher flow value.
Intuitively, one can imagine a flow network as a network of pipes (modeled by the edges)

and pipe intersections (modeled by the vertices). The amount of flow going through any
given pipe is bounded by its capacity, and the flow value represents the total throughput of
a given flow, with a maximum flow representing the most units of flow that can be pushed
through the pipe network.

Numerous different algorithms to efficiently compute maximum flows have been devised
since the problem’s introduction by Ford and Fulkerson in 1956 [29]. We go into detail on
relevant algorithms in Chapter 3, but many of them share common concepts, which are
presented here.
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2.4 Flow Networks

2.4.1 Preflows
Some maximum flow algorithms do not always operate on a valid flow, but use a relaxed
definition called a preflow. Introduced by Karzanov in [31], preflows are very similar to
flows, but use a relaxed variation of the conservation constraint. For a preflow f , the
following must hold for all vertices v ∈ V \ {s, t}:∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w) ≥ 0

Put into words, in a preflow the amount of flow entering a vertex may exceed the amount of
flow exiting it. To quantify this, we introduce the excess function χf : V → R≥0, defined
as follows:

χf (v) =
∑

(u,v)∈E

f(u, v)−
∑

(v,w)∈E

f(v, w)

2.4.2 Residual Graphs
Let F = (G, c, s, t) be a flow network operating on the graph G = (V,E), and let f be
a flow or a preflow on F . For an edge (u, v) ∈ E, we define its residual capacity with
regards to f to be

cf (u, v) := c(u, v)− f(u, v).

The residual capacity of an edge represents the amount of additional flow that could be
pushed through this edge, without breaking the capacity constraint.

We say an edge (u, v) ∈ E is a residual edge if cf (u, v) > 0, i.e. if some amount
of flow can be pushed through it. We denote the set of all residual edges with regards
to f as Ef . The residual graph Gf = (V,Ef ) is then defined as the graph with vertices
V containing only the residual edges of the original network. Note that, because of the
symmetry constraint that f(u, v) = −f(v, u) for all {u, v} ∈ E, an edge with zero capacity
can still be a residual edge, if f(u, v) < 0.

Many maximum flow algorithms operate on the residual graph instead of the flow net-
work itself, as it reduces the data per edge from two values (flow and capacity) to just one
(residual capacity).

2.4.3 Augmenting Paths
Let F = (G, c, s, t) be a flow network operating on the graph G = (V,E), and let f be a
flow on F . An augmenting path P = (v1, ..., vk) is an s-t path on the residual graph Gf ,
i.e. v1 = s and vk = t. The value of P is defined as

val(P ) := min
i∈{1,...,k−1}

{cf (vi, vi+1)}

9



2 Fundamentals

and describes the smallest residual capacity of the edges on P . Importantly, by augmenting
f along P , i.e. subtracting val(P ) from all residual capacities along P , we get a new flow
f ′ with value val(f ′) = val(f) + val(P ). Additionally, f is maximum if and only if there
exists no augmenting path on Gf , as shown by Ford and Fulkerson in [22].

The notion of augmenting paths was used in the first description of a generic maximum
flow algorithm, the Ford-Fulkerson algorithm [29], introduced in 1956. The algorithm
starts with a zero flow f , and then repeatedly searches for augmenting paths in Gf , aug-
menting f along them once found. When no augmenting path remains, f is maximum. This
original algorithm does not specify the mechanism used to search for augmenting paths, or
the order in which augmenting paths have to be discovered. Many flow algorithms are
simply refinements of the original Ford-Fulkerson algorithm, specifying the mechanisms
to find augmenting paths.

2.4.4 Level Graphs
Let F = (G, c, s, t) be a flow network operating on the graph G = (V,E), and let f be a
flow on F . Additionally, for a vertex v ∈ V , let d(v) denote the length of the shortest s-v
path in Gf , or∞ if no such path exists. The level graph Lf is the subgraph of Gf with the
vertex set V , containing only those edges (u, v) ∈ Ef for which d(u) + 1 = d(v) holds.

In other words, for any vertex v ∈ V , the only s-v paths in Lf are those of shortest length.
In particular, out of all augmenting paths on Gf , Lf contains only those of minimum length.
This is very useful for some maximum flow algorithms that aim to process augmenting
paths in order from shortest to longest; by operating on the level graph instead of the full
residual graph, they can ensure that any augmenting path they find is of minimum length.

2.4.5 Blocking Flows
Let F = (G, c, s, t) be a flow network operating on the graph G = (V,E), and let f be a
flow on F . Let H be a connected subgraph of Gf containing both s and t. A blocking flow
is a maximum flow f ′ on the flow network (H, cf , s, t). Given such a blocking flow f ′, one
can augment the entirety of f by subtracting from every edge’s residual capacity its flow
value in f ′, thereby creating a new flow of value val(f) + val(f ′).

Some maximum flow algorithms make use of this by repeatedly computing the blocking
flow on certain subgraphs of Gf ; with the right choice of subgraphs, this can be more
efficient than individually searching for augmenting paths in the entire residual graph. In
particular, a blocking flow on the level graph Lf is able to saturate all shortest augmenting
paths on Gf at once.

2.4.6 Cuts
Let F = (G, c, s, t) be a flow network operating on the graph G = (V,E). A cut is a
partition of V into two sets, S and T , such that s ∈ S and t ∈ T . Additionally, G[S] and

10



2.4 Flow Networks

G[T ] must be connected, in the sense that for any v ∈ S \ {s}, there must exist a s-v path
in G[S], and for any v ∈ T \ {t}, there must exist a v-t path in G[T ]. The cut edges are
the set E ′ of all edges going from S to T , i.e.

E ′ = {(u, v) ∈ E : u ∈ S, v ∈ T}.

We define the value of the cut to be the sum of the capacities of all cut edges, denoted by
val(S, T ). A minimum cut is then defined as a cut of minimum value. Ford and Fulkerson
proved the following correspondence between minimum cut and maximum flow:

Let f be a maximum flow on F , and let S be the set of vertices reachable from s in Gf .
Then (S, V \ S) is a minimum cut in F .

11





CHAPTER 3
Related Work

This chapter aims to give an overview of the algorithms relevant to the thesis. As the main
work on the thesis is a comparison between different maximum flow algorithms for use in
the Critical Weighted Independent Set reduction, this chapter mainly concerns itself with
these flow algorithms. As such, we describe in detail the two newly implemented algo-
rithms, Dinitz’s Algorithm and Tidal Flow, in Sections 3.1 and 3.2, and give an overview
of the previously existing baseline algorithm, Push-Relabel, in Section 3.3. Finally, we dis-
cuss the KAMIS architecture and CWIS implementations already used by some existing
MWIS solvers in Section 3.4.

3.1 Dinitz’s Algorithm

Dinitz’s Algorithm, introduced by Yefim Dinitz in 1970, is an early refinement to the classic
Ford-Fulkerson algorithm [29], providing strong polynomial time bounds and improving
time complexity over the previously existing Edmonds-Karp algorithm [18]. While it was
originally introduced by Dinitz in [14], we focus here on a version presented again by
Dinitz in [15] with algorithmic changes made by Even [19] and implementation refinements
suggested by Cherkassky [11].

The core idea behind Dinitz’s Algorithm is to not search for individual augmenting paths
in the residual graph, but to instead reduce the scope of the search for augmenting paths to a
level graph as described in Section 2.4.4. The algorithm initializes a zero flow f , repeatedly
computes level graphs on Gf and then searches for augmenting paths in the level graph,
until none remain. The main structure of the algorithm is shown in Algorithm 1.

3.1.1 Computing the Level Graphs

To compute the level graph on a residual graph Gf = (V,Ef ), it is easiest to compute d(v)
for all v ∈ V , using a Single-Source-Shortest-Path algorithm. Since the edges all have unit
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Algorithm 1: The Dinitz algorithm’s outer structure.
Function Dinitz(Gf , s, t):

loop
Lf ← level graph on Gf

if t /∈ Lf then
return

while Lf contains an augmenting path do
P ← augmenting path in Lf

Augment Lf along P by val(P )

distances, the easiest and most efficient algorithm is a simple breadth first search from s.
The exact structure of this BFS depends on the choice of data structure for Lf ; Cherkassky
recommends in [11] to not build any auxiliary network for Lf , and to instead only compute
d(v) and check whether an edge (u, v) ∈ E lies in Lf by checking whether d(v) = d(u)+1
and c(u, v) > f(u, v). As Dinitz notes in [15], the BFS may stop early once it encounters
t, as we only care about augmenting paths in Lf and thus any v ∈ V \{t} with d(v) ≥ d(t)
may be omitted from Lf entirely.

3.1.2 Augmenting the Level Graphs

Once a given level graph Lf has been computed, the next task is to augment the flow on it
until it blocks Lf . Dinitz’s Algorithm accomplishes this using a modified depth first search.
Even though the goal of Dinitz’s Algorithm is to go through augmenting paths in order of
length, it does not need to use a BFS to search for the individual augmenting paths (unlike
Edmonds-Karp [18]), because the level graph structure guarantees that any augmenting
path in Lf will be a shortest augmenting path in Gf .

Dinitz’s Algorithm further modifies the DFS to take advantage of the structure of the
graph to identify edges it can safely skip, pruning large parts of the search space. Specif-
ically, since for any residual edge (u, v), the level graph Lf contains at most one of (u, v)
and (v, u) as an edge, any edge that gets saturated by an augmenting path in Lf may never
get unsaturated by another later discovered augmenting path. Thus, whenever the DFS sees
an edge that is saturated, the algorithm knows that this edge will never have to be checked
again in a later DFS iteration on the same level graph. A recursive pseudocode implemen-
tation of this DFS is shown in Algorithm 2. It carries with it a progress array p, storing the
next neighbor to be visited for each vertex, as well as an upper bound ε on the amount of
flow that can be pushed from the source through the currently visited path. The return value
of the function is simply the amount of flow that may be pushed to u. If the DFS reaches
the sink, it returns exactly the value of the augmenting path that it found, augmenting each
edge along that path as the recursion unravels.
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Algorithm 2: Dinitz’s modified DFS. u is the vertex currently visited by the DFS,
ε is the amount of flow that can be sent via the current path of the DFS and p is the
progress array used to prune the level graph.
Function Augment(u, ε, p):

if u = t then
return ε

while p(u) ≤ degout(u) do
v ← p(u)-th neighbor of u
r ← c(u, v)− f(u, v)
if d(v) = d(u) + 1 and r > 0 then

ε′ ← Augment(v, min{ε, r}, p)
if ε′ > 0 then

f(u, v)← f(u, v) + ε′

f(v, u)← f(v, u)− ε′

return ε′

p(u)← p(u) + 1

return 0

The inner loop of Dinitz’s Algorithm then simply sets p(v) = 1 for all v ∈ V , and
repeatedly calls Augment(s,∞, p), until 0 is returned, at which point Lf is blocked by
f , and Dinitz’s Algorithm needs to compute a new level graph.

3.1.3 Correctness and Performance

The crucial property underlying Dinitz’s Algorithm’s correctness is that the distance from
s to t increases in Gf with each iteration of the outer loop; that is, d(t) is always strictly
larger in a given level graph than in the one preceding it. This was proven by Dinitz for
his original algorithm [14], and by Even for his improved version [19]. Additionally, on a
given level graph, each iteration of Augment either saturates at least one edge, or signals
that the level graph is blocked, so each outer iteration of Dinitz’s Algorithm takes finite
time. Since d(t) strictly increases with each outer iteration, and d(t) is trivially bounded
to be at most n− 1, the algorithm then consists of a finite number of outer iterations, each
taking finite time. At the end, since t is disconnected from s in Gf , a maximum flow has
been found, so the algorithm is correct.

Regarding runtime bounds, the pruning behavior of the DFS enables each augmenting
path search to complete in amortized O(n) time; since each augmenting path saturates at
least one edge, this leads to O(nm) runtime to find a blocking flow on a given level graph.
The level graph computations each take O(m) time using BFS, and there are O(n) outer
iterations, so the total runtime is bounded by O(n · (m + nm)) = O(n2m).
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3.2 The Tidal Flow Algorithm

The Tidal Flow algorithm [21], introduced by Matthew Fontaine in 2018, is designed to be
an easily teachable, easily implementable, and competitively performant maximum flow
algorithm compared to other popular algorithms.

Similarly to Dinitz’s Algorithm, it uses level graphs, and search for augmenting paths
within each level graph to find a blocking flow in the level graph. The mechanism used to
find the blocking flows is quite different from the one used in Dinitz’ algorithm however;
whereas Dinitz uses a modified depth first search to find a blocking flow in O(nm) time,
Tidal Flow instead uses a novel procedure which the author calls a tide cycle. Using a
preflow based approach, each tide cycle augments not just one path, but every edge in the
level graph, until the flow blocks the level graph.

3.2.1 The Tide Cycle

One iteration of the tide cycle works as follows: It receives as input the vertices V , the edge
capacities c and current flow f which it modifies in place, as well as EL, the edge list of
the current level graph, sorted by ascending distance from s. The tide cycle is divided into
three phases, which the author calls High Tide, Low Tide, and Erosion. During the high tide
phase, an upper bound is calculated on how much flow can reach each vertex through EL.
During low tide, this upper bound is then reduced to a feasible preflow, using a backwards
pass through EL. Finally, during the erosion phase, each edge’s residual capacity is updated
according to the values calculated in the low tide phase with a final forward pass through
EL. Pseudocode for the tide cycle function is given in Algorithm 3. In the pseudocode, h
refers to the high tide values, l to the low tide values, and p keeps track of how much flow
each edge in EL is “promised” to receive.

For a given level graph, the TideCycle function must be called until it returns 0; only
then can the Tidal Flow algorithm compute the next level graph.

3.2.2 Correctness and Performance

To prove the correctness of the algorithm, Fontaine simply argues that every iteration of tide
cycle on a non-blocking flow saturates at least one edge in the network. Since for a given
level graph, saturated edges never become unsaturated, it then takes at most m tide cycles
to produce a blocking flow on that level graph. As Dinitz showed for his algorithm, the next
computed level graph will then only include augmenting paths of higher length, bounding
the number of required level graph and blocking flow computations by n. Therefore, the
algorithm always terminates, producing a valid maximum flow for any input.

For the time complexity, consider that a single tide cycle iteration trivially takes O(m)
time, and a single level graph computation takes O(m) time using breadth first search.
Since there are at most n level graph computations, and at most m tide cycle iterations per
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level graph, the total runtime complexity then becomes O(n · (m + m · m)) = O(nm2).
While this is asymptotically slower than the O(n2m) of Dinitz’s Algorithm, Fontaine con-
jectures that often way fewer than m tide cycles are required to find a blocking flow, hoping
that the algorithm can outperform its asymptotic worst case bounds in many cases in prac-
tice. He does however mention that it is difficult to find tighter bounds for the average
number of required tide cycles, as certain pathological patterns in the flow network can
“trick” the algorithm into augmenting very little flow per tide cycle.

Fontaine reports performance competitive with Dinitz’s Algorithm and far better than
other algorithms examined in the paper for bipartite sparse flow networks with high edge
capacities. As this is exactly the shape of network produced in the Critical Weighted Inde-
pendent Set reduction (as described in Section 4.4.2), this made Tidal Flow an interesting
candidate to include in the comparison.

3.3 The Push-Relabel Algorithm

The Push-Relabel algorithm [25], introduced by Goldberg and Tarjan in 1986, works
quite differently than the two previously described algorithms. Building on ideas from
Karzanov’s algorithm [31], Push-Relabel departs from the idea of searching for augment-
ing paths in favor of a preflow based approach. Starting with an initial feasible preflow,
the algorithm iteratively pushes excess flow around, either towards the sink or towards the
source. It repeats this process until no vertices have excess flow, except for the source and
sink vertices. At that point, the preflow becomes a feasible flow of maximum value.

To decide where to push excess flow on a residual graph Gf = (V,Ef ), Push-Relabel
uses a labeling function d : V → N0 ∪ {∞}, defined as a function with d(s) = n, d(t) = 0,
and d(u) ≤ d(v)+1 for all residual edges (u, v) ∈ Ef . For a vertex v, if d(v) < n then d(v)
is a lower bound on the distance from v to t in Gf , and if d(v) ≥ n then d(v)−n is a lower
bound on the distance from v to s in Gf . Additionally, in the latter case, t is unreachable
from v in Gf . The authors additionally introduce the notion of an active vertex, defined as
a vertex v ∈ V \ {s, t} with d(v) < ∞ and χf (v) > 0.

Given an initial preflow f and a labeling d that is valid for Gf , the algorithm repeatedly
performs one of two operations, Push and Relabel. The Push operation is applicable
to a vertex u if u is active and has a residual edge to a vertex v such that d(u) = d(v) + 1;
in that case, the operation pushes as much excess flow as it can from u to v. The amount of
excess pushed is bounded by min{χf (u), cf (u, v)}. Notice that the Push operation either
deactivates u or saturates the edge (u, v), or both.

The other operation, Relabel, is applicable to any active vertex u, such that
d(u) ≤ d(v) for residual edges (u, v) ∈ Ef . It changes the labeling itself, setting the
label d(u) to the value min{d(v) + 1 : (u, v) ∈ Ef}. In the case that there are no outgoing
residual edges from u, it sets d(u) to ∞.

A generic algorithm may just repeatedly search for active vertices for which either op-
eration is applicable, and apply that operation to them; Goldberg and Tarjan show that any
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Algorithm 3: The tide cycle algorithm. EL is the edge list of the level graph,
ordered by distance from s. The algorithm modifies f in place and returns the
amount of augmented flow. 0 is returned iff f blocks the level graph.

Function TideCycle(V , EL, c, s, t, f):
p(u, v)← 0 ∀(u, v) ∈ EL

h(v)← 0 ∀v ∈ V
h(s)←∞
foreach (u, v) ∈ EL do

p(u, v)← min{c(u, v)− f(u, v), h(u)}
h(v)← h(u) + p(u, v)

if h(t) = 0 then
return 0

l(v)← 0 ∀v ∈ V
l(t)← h(t)
foreach (u, v) ∈ EL in reverse order do

p(u, v)← min{p(u, v), h(u)− l(u), l(v)}
l(v)← l(v)− p(u, v)
l(u)← l(u) + p(u, v)

h(v)← 0 ∀v ∈ V
h(s)← l(s)
foreach (u, v) ∈ EL do

p(u, v)← min{p(u, v), h(u)}
h(u)← h(u)− p(u, v)
h(v)← h(v) + p(u, v)
f(u, v)← f(u, v) + p(u, v)
f(v, u)← f(v, u)− p(u, v)

return h(t)

execution of this algorithm will lead to a correct maximum flow. To prove this, they show
that for any active vertex, exactly one of the operations will be applicable. Furthermore,
they show that the algorithm retains the invariant that d is a valid labeling, and that if
the algorithm ever terminates with all distance labels being finite, the preflow will at that
point be a maximum flow. They then reason that for a given vertex, its distance label only
ever increases, and is bounded above by 2n − 1. Finally, they bound the total number of
Push and Relabel operations to be finite, proving that the algorithm always terminates,
and that no distance labels will be infinite upon termination, implying that the result will
always be a maximum flow.

Goldberg and Tarjan also present an efficient ordering of operations for this algorithm,
using a First-In-First-Out queue of active vertices to be processed. This efficient algorithm
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goes through each vertex in the queue, and repeatedly applies either Push or Relabel to
the dequeued vertex, until either its excess becomes 0 or its distance label gets increased.
Any vertices that become active during this process are added to the end of the queue,
and any vertex whose distance label gets increased also gets readded to the queue to be
reprocessed later.

Goldberg and Tarjan show that by using this particular ordering, the number of nonsat-
urating pushes (Push operations along an edge (u, v) that leave (u, v) unsaturated) gets
bounded to O(n2). With this, they prove that the entire algorithm runs in O(n3) time,
asymptotically faster than both Tidal Flow and Dinitz’s Algorithm.

3.4 KAMIS and Other Solvers

KAMIS, presented by Lamm et al. in [32], is a state-of-the-art MAXIMUM WEIGHT IN-
DEPENDENT SET solver, introducing several new reduction rules, and using a novel reduc-
tion algorithm based on the branch-and-reduce [4] paradigm. Branch-and-reduce builds
on an existing approach for exact solvers for combinatorial problems, called branch-and-
bound [33]. A solver using the branch-and-bound approach systematically searches the
entire solution space of a problem, while keeping track of lower or upper bounds for the
optimal solution. If any partial solution falls outside those bounds, the entire subtree of
the search tree rooted at that solution may be discarded. As an example, a solver for the
MWIS problem may keep track of the highest weight of any independent set found so far.
If a partial solution excludes enough vertices that the weight of all non-excluded vertices is
less than the best weight found so far, the solution, and all of its descendants in the search
tree, may immediately be discarded.

Branch-and-reduce builds on this approach by introducing a reduction step before ev-
ery branch, ensuring that only inputs that are irreducible by the chosen reduction rules
are branched from. When branching, a small portion of the graph is either included in
or excluded from the partial solution, effectively removing that portion from the graph.
Many local data reductions are then checked only in the vicinity of the changes, instead of
rechecking the entire graph. Since data reductions are quite fast (often linear in the graph
size), they can often reduce the search space a lot more efficiently than a pure exhaustive
search, which is exponential in the graph size.

KAMIS implements the reduction step of the branch-and-reduce algorithm using a so-
called reduction pipeline, a list of different data reductions to try on a given problem in-
stance. The reduction algorithm goes through the list of reductions, trying to reduce the
given instance with each one. If one reduction succeeds, the algorithm restarts from the
beginning of the pipeline. Only when all data reductions fail does the algorithm return the
reduced instance.

A number of MWIS solvers, including KAMIS, already implement the Critical
Weighted Independent Set reduction. While they all use the same basic algorithm, which is
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described in Section 4.5, that algorithm does not dictate the choice of flow algorithm used
in each solver. We are aware of six different solvers implementing the CWIS reduction:

KAMIS by Lamm et al. [32] from 2019, STRUCTION by Gellner et al. [23] from 2021,
GNN-VC by Langedal et al. [34] from 2022, M2WIS by Großmann et al. [26] from 2023
and LEARNANDREDUCE by Großmann et al. [27] from 2024 all use Push-Relabel im-
plementations for their CWIS reduction code. The singular outlier is SOLVE by Xiao et
al. [41], which opts to use the ISAP maximum flow algorithm by Ahuja et al. [3]. It is
not surprising that the majority of the solvers use Push-Relabel; when the shape of the in-
put graphs is unknown, Push-Relabel is generally the algorithm of choice. However, the
evaluation done by Fontaine [21] suggests that sparse bipartite flow networks with high
capacities, as used in the CWIS reduction (see Section 4.5), may be better suited to the
Tidal Flow algorithm, or Dinitz’s Algorithm.
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CHAPTER 4
The Critical Weighted Independent Set
Reduction

Let G = (V,E) be a graph with vertex weight function w : V → R>0. A critical weighted
set in G is a vertex set Uc ⊆ V , such that

w(Uc)− w(N(Uc)) = max{w(U)− w(N(U)) : U ⊆ V }.

We define critical weighted independent sets analogously, so an independent set Ic is a
critical weighted independent set in G if the following holds:

w(Ic)− w(N(Ic)) = max{w(I)− w(N(Ic)) : I is independent in G}

Note that w(Uc) ≥ w(N(Uc)) and w(Ic) ≥ w(N(Ic)) always hold, as
w(∅)− w(N(∅)) = 0.

The Critical Weighted Independent Set (CWIS) reduction, introduced by Butenko and
Trukhanov in [9], is a data reduction for the MWIS problem, using critical weighted in-
dependent sets. Given a non-empty critical weighted independent set Ic, the reduction is
defined by its parts REDUCEGRAPH and RESTORESOLUTION:

REDUCEGRAPH(G) := G \ (Ic ∪N(Ic))

RESTORESOLUTION(I) := I ∪ Ic

Put into words, the reduction rule states that Ic is guaranteed to be a subset of some
maximum weight independent set. Removing Ic and its neighborhood from G therefore
reduces the problem to finding a maximum weight independent set on the rest of G.

On the surface, this looks like a very easy and powerful reduction, that dominates many
other simpler reductions. However, finding a critical weighted independent set in G is
nontrivial. Ageev [2] introduced a polynomial-time algorithm to find a critical weighted
independent set, by reducing the problem to a maximum flow computation on a specially
constructed flow network. The remainder of this chapter will be describing this algorithm
and the steps used to derive it, and proving their correctness.
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Ic

N(Ic)

G \ (Ic ∪N(Ic))

Figure 1: Visualization of the CWIS reduction. [12] describes this as a crown structure, where the
spikes on the crown form a critical weighted independent set. Since Ic has at least the
same weight as N(Ic), all of Ic may be included in, and all of N(Ic) excluded from the
solution.

4.1 Proving the Reduction’s Correctness

First, we must prove that the reduction as stated actually works, i.e. reducing a graph,
solving on the reduced graph, and restoring that solution always produces a maximum
weight independent set on the original graph. Butenko and Trukhanov [9] proved this
using the following theorem:

Theorem 1.
Let G = (V,E) be a graph with vertex weight function w : V → R>0 and let Ic be a
critical weighted independent set in G. Then there exists a maximum weight independent
set I , such that Ic ⊆ I .

Proof. Let J be a maximum weight independent set in G, and consider
I := (J ∪ Ic) \N(Ic). Since Ic is independent, Ic ∩ N(Ic) = ∅, so Ic ⊆ I . And
since J is independent and any vertices in J that are adjacent to some vertex in Ic get
removed, it follows that I is also independent. It remains to show that I is of maximum
weight, i.e. that w(I) ≥ w(J).

Assume for the sake of contradiction that w(I) < w(J). It follows that

w(J \ I) = w(J)− w(J ∩ I) > w(I)− w(I ∩ J) = w(I \ J). (4.1)

By construction of I , we have I \ J = Ic \ J and J \ I = J ∩N(Ic), so (4.1) becomes

w(J ∩N(Ic)) > w(Ic \ J). (4.2)

Since Ic is independent, we know that Ic ∩ N(Ic) = ∅, and thus
N(Ic ∩ J) ∩ (N(Ic) ∩ J) = ∅. And since both N(Ic ∩ J) and N(Ic) ∩ J are sub-
sets of N(Ic), the following inequality is guaranteed to hold:

w(N(Ic)) ≥ w(N(Ic) ∩ J) + w(N(Ic ∩ J)) (4.3)
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Combining (4.2) and (4.3) we get

w(Ic)− w(N(Ic)) = w(Ic \ J) + w(Ic ∩ J)− w(N(Ic))

< w(N(Ic) ∩ J) + w(Ic ∩ J)− w(N(Ic))

≤ w(N(Ic) ∩ J) + w(Ic ∩ J)− w(N(Ic) ∩ J)− w(N(Ic ∩ J))

= w(Ic ∩ J)− w(N(Ic ∩ J))

which contradicts with Ic being of critical weight. Thus, w(I) ≥ w(J), so I is a maximum
weight independent set containing Ic as a subset.

Using this theorem, it is easy to see the correctness of the reduction: Any critical
weighted independent set Ic will be contained in some maximum weight independent set,
so we can include it in the solution and search for the rest of that MWIS in the remaining
graph after removing Ic and its neighborhood.

4.2 Obtaining a CWIS From a Critical Weighted Set

Suppose we had an algorithm to compute a critical set Uc on our input graph. Ageev [2]
showed that it is then also possible to efficiently construct a critical weighted independent
set Ic from Uc:

Theorem 2.
Let G = (V,E) be a graph with vertex weight function w : V → R>0 and let Uc be a
critical weighted set in G. Then

Ic := Uc \N(Uc)

is a critical weighted independent set in G.

Proof. Clearly, Ic is independent in G. Let U ′
c := Uc \ Ic and X := N∗(U ′

c) ∪N(Ic), then
N(Uc) = U ′

c ∪X and U ′
c ∩X = ∅.

First, to show the latter, let v ∈ U ′
c, i.e. v ∈ Uc and v /∈ Ic. Since v ∈ Uc it follows that

N(v) ∩ Ic = ∅ and therefore also v /∈ N(Ic). And clearly v /∈ N∗(U ′
c), so v /∈ X , and thus

U ′
c ∩X = ∅.
Next, we show that N(Uc) = U ′

c ∪ X . Substituting the definitions for U ′
c and X and

using the identity Uc \ Ic = Uc ∩N(Uc) gives us

U ′
c ∪X = (Uc \ Ic) ∪ (N∗(Uc \ Ic) ∪N(Ic))

= (Uc \ Ic) ∪N(Uc \ Ic) ∪N(Ic)

= (Uc ∩N(Uc)) ∪N(Uc)

= N(Uc).
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Algorithm 4: Isolating a CWIS from a critical weighted set
Function IsolateCWIS(Uc):

H ← ∅
Ic ← ∅
foreach u ∈ Uc do

H ← H ∪ {u}
foreach u ∈ Uc do

foreach {u, v} ∈ E do
if v ∈ H then

continue to next u.

Ic ← Ic ∪ {u}
return Ic

Finally, we use these results to arrive at the following inequality:

w(Uc)− w(N(Uc)) = (w(U ′
c) + w(Ic))− (w(U ′

c) + w(X))

= w(Ic)− w(X)

= w(Ic)− w(N∗(U ′
c) ∪N(Ic))

≤ w(Ic)− w(N(Ic))

Since Uc is a critical weighted set, Ic must then be a critical weighted independent set.

Given a critical weighted set Uc in list representation, one can efficiently compute
Ic = Uc \N(Uc) in linear time, e.g. using a hash set, as shown in Algorithm 4. It remains
to find an algorithm to identify a critical weighted set in G.

4.3 Finding Critical Weighted Sets Using ILP

Let G = (V,E) be a graph with vertex weight function w : V → R>0. Consider the
following {0, 1}-integer linear program:

max
∑
u∈V

w(u)xu −
∑
v∈V

w(v)yv (4.4)

s.t. yv ≥ xu ∀{u, v} ∈ E

xu, yu ∈ {0, 1} ∀u ∈ V

(4.5)

Ageev [2] showed the following:
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Theorem 3.
Let (x∗

v), (y
∗
v) be {0, 1}-vectors forming an optimal solution to the above ILP. Then

X∗ := {u ∈ V : x∗
u = 1}

is a critical weighted set in G.

Proof. Let X∗ := {u ∈ V : x∗
u = 1} and Y ∗ := {v ∈ V : y∗v = 1}. Note that

N(X∗) ⊆ Y ∗, otherwise there would exist some {u, v} ∈ E such that u ∈ X∗ and
v /∈ Y ∗. By construction of X∗ and Y ∗ this would mean that y∗v = 0 < 1 = x∗

u, violating
constraint (4.5).

Now suppose there existed some v ∈ Y ∗ \N(X∗). Setting y∗v to 0 would not violate any
constraints, but would increase the objective value (4.4) by w(v), which by definition of w
is strictly positive. This would contradict the optimality of the solution (x∗

v), (y
∗
v), thus it

must be that Y ∗ \N(X∗) = ∅ and therefore Y ∗ = N(X∗).
Consider now some arbitrary X ⊆ V and let (xv), (yv) be {0, 1}-vectors such that for

all v ∈ V , xv = 1 ⇔ v ∈ X and yv = 1 ⇔ v ∈ N(X). Clearly, (xv), (yv) is a feasible
solution to the ILP, so we get

w(X)− w(N(X)) =
∑
u∈V

w(u)xu −
∑
v∈V

w(v)yv

≤
∑
u∈V

w(u)x∗
u −

∑
v∈V

w(v)y∗v

= w(X∗)− w(Y ∗) = w(X∗)− w(N(X∗))

thus X∗ must be a critical weighted set in G.

To find a critical set in G, it therefore suffices to solve the ILP. While this may not seem
like progress, as ILPs in general are NP-hard, this specific one is an instance of the so called
Selection Problem, which is efficiently solvable, as described next.

4.4 The Selection Problem

The Selection Problem was introduced in 1970 by Rhys [37] and further analyzed by Balin-
ski [5]. The problem statement goes as follows:

Suppose you are given a finite set F of facilities, and a finite set A of activities, with each
facility f ∈ F having some associated cost cf > 0, and each activity a ∈ A having some
associated profit pa > 0. Additionally, you are given a dependency function d : A→ P(F ),
mapping to each activity the facilities required to perform that activity. A selection is a set
of activities Σ ⊆ A with the associated value

val(Σ) :=
∑
a∈Σ

pa −
∑

f∈
⋃

d(Σ)

cf .
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4 The Critical Weighted Independent Set Reduction

Put into words, the value is simply the sum of the profits gained from all activities in Σ
minus the costs associated with constructing the required facilities

⋃
d(Σ). The Selection

Problem is then to find a selection of maximum value.

4.4.1 Expressing the Selection Problem as an ILP
Rhys [37] showed that the problem can be solved using the following ILP formulation:

max
∑
a∈A

paxa −
∑
f∈F

cfyf

s.t. yf ≥ xa ∀a ∈ A, f ∈ d(a)

xa ∈ {0, 1} ∀a ∈ A

yf ∈ {0, 1} ∀f ∈ F

Given an optimal solution (x∗
a), (y

∗
f ) to the ILP, the set Σ∗ := {a ∈ A : x∗

a = 1} is
a selection of maximum value. The proof for this is very similar to the proof given in
Section 4.3, and will therefore be omitted here.

Consider a graph G = (V,E) with vertex weight function w : V → R>0 and notice that
the ILP described in Section 4.3 becomes exactly the same as the ILP above when choosing
F = A = V as well as cv = pv = w(v) and d(v) = N(v) for all v ∈ V . Thus, solving the
Selection Problem is sufficient to find a critical weighted set in G.

4.4.2 Solving the Selection Problem using Flow Networks
Balinski [5] showed a way to solve the Selection Problem efficiently using flow networks.
For an instance (F,A, c, p, d) of the selection problem with F ∩ A = ∅, consider the flow
network H = (G, c, s, t) where G = (V,E) with

V = {s, t} ∪ F ∪ A

and
E = {(s, a) : a ∈ A} ∪ {(f, t) : f ∈ F} ∪ {(a, f) : a ∈ A, f ∈ d(a)}.

For an edge (u, v) ∈ E, its capacity shall be as follows:

c(u, v) =


pv if u = s,

cu if v = t,

∞ otherwise

While our definition of flow networks technically does not allow infinite edge capacity, the
∞ is only used for brevity here, and may be substituted with a large finite value if needed.
For any edge mentioned above, H should also include its opposite edge, with capacity 0.
Figure 2 shows roughly what this flow network may look like for a given instance of the
Selection Problem.

Using this network, Balinski [5] proved the following:
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s

a

... ...
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t

A F

d(a)

pa
∞

∞

∞

∞

cf

Figure 2: Example flow network for an instance of the Selection Problem. Each activity a has a
corresponding vertex in the left partition, with capacity pa coming from the source. Each
facility f has a corresponding vertex in the right partition, with capacity cf going to the
sink. Lastly, each activity has edges of infinite capacity going to all of its dependencies.

Theorem 4.
Let (S, T ) be a minimum cut on H . Then, A ∩ S is a selection of maximum value.

The proof presented here is adapted from Balinski’s [5]. As an aid in the proof, we in-
troduce the notion of maximal selections. We call a selection Σ maximal, if d(a) ̸⊆

⋃
d(Σ)

for all a ∈ A \ Σ, i.e. if no unselected activity has all its requirements met by the selected
activities already. We first prove the following lemmata:

Lemma 1.
Let Σ ⊆ A be a selection of maximum value. Then Σ is maximal.

Proof. Suppose for contradiction that Σ is not maximal. Then there must exist an activity
a′ ∈ A\Σ such that d(a′) ⊆

⋃
d(Σ). Let Σ′ := Σ∪{a′}, then the following holds for their

values:

val(Σ′) =
∑
a∈Σ′

pa −
∑

f∈
⋃

d(Σ′)

cf

= pa′ +
∑
a∈Σ

pa −
∑

f∈
⋃

d(Σ)

cf

= pa′ + val(Σ)
> val(Σ)

Because Σ was chosen to be of maximum value, this is a contradiction, so Σ must be
maximal.
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4 The Critical Weighted Independent Set Reduction

Lemma 2.
There exists a one-to-one correspondence between cuts of finite value in H and maximal
selections in A.

Proof. First, let (S, T ) be any cut of finite value, and consider the selection Σ := A ∩ S.
Because the cut value is finite, there may be no cut edge (a, f) with a ∈ S, f ∈ T , so for
any a in Σ, it must be that d(a) ⊆ S. On the other hand, any f ∈ F ∩ S must have an s-f
path in H[S], of which the second last vertex must be in Σ. Thus, any facility in S must be
required by at least one activity in S. And finally, since any activity a ∈ A ∩ T must have
an a-t path in H[T ], the second vertex of that path must be a facility in T , so any activity
not in Σ has at least one required facility not in S.

All in all, we get that Σ must be a maximal selection, and that S = {s} ∪ Σ ∪
⋃
d(Σ).

And since we were able to deduce the entirety of S solely from A ∩ S, it must also be that
the function (S, T ) 7→ A ∩ S = Σ mapping finite cuts to maximal selections is injective.

For the other direction, consider some maximal selection Σ. Let S := {s}∪Σ∪
⋃
d(Σ)

and T := V \S. Clearly, (S, T ) is a cut in H . And since for any a ∈ Σ, all its dependencies
d(A) also lie in S, the cut has finite value. Because A ∩ F = ∅, the function Σ 7→ (S, T )
is also trivially injective, and is clearly the inverse of the function mapping finite cuts to
maximal selections.

Lemma 3.
A minimum cut in H corresponds to a maximal selection of maximum value in A, according
to the correspondence from Lemma 2.

Proof. Let (S, T ) be a minimum cut. The cut value of (S, T ) must be finite, as e.g. the
cut ({s}, V \ {s}) trivially has finite value. Let thus Σ := A ∩ S be the maximal selection
corresponding to (S, T ). Additionally, let Σ′ be any other maximal selection, with its
corresponding cut (S ′, T ′). Then the values of the cuts are related by

val(S, T ) =
∑

a∈A\Σ

pa +
∑

f∈
⋃

d(Σ)

cf

≤
∑

a∈A\Σ′

pa +
∑

f∈
⋃

d(Σ′)

cf = val(S ′, T ′).

Let p :=
∑

a∈A pa. Then,
∑

a∈Σ pa = p −
∑

a∈A\Σ pa and
∑

a∈Σ′ pa = p −
∑

a∈A\Σ′ pa.
With this, the above becomes

p− val(Σ) = p−
∑
a∈Σ

pa +
∑

f∈
⋃

d(Σ)

cf

≤ p−
∑
a∈Σ′

pa +
∑

f∈
⋃

d(Σ′)

cf = p− val(Σ′)

and therefore val(Σ′) ≤ val(Σ).
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4.5 The Final Algorithm

Algorithm 5: Finding critical weighted independent sets
Function FindCWIS(V , E, w):

V ′ ← copy of V
VH ← {s, t} ∪ V ∪ V ′

EH ← {(s, v) : v ∈ V } ∪ {(v′, t) : v ∈ V } ∪ {(u, v′) : {u, v} ∈ E}
c(s, v)← w(v) ∀v ∈ V
c(v′, t)← w(v) ∀v ∈ V
c(u, v′)←∞ ∀{u, v} ∈ E
H ← ((VH , EH), c, s, t)
f ← MaxFlow(H)
S ← {v ∈ V : ∃s-v path in Gf}
Uc ← S ∩ V
Ic ← IsolateCWIS(Uc)
return Ic

With these lemmata, the theorem becomes quite simple to prove:

Proof for Theorem 4. Let (S, T ) be a minimum cut on H . According to Lemma 3, (S, T )
corresponds to a maximal selection Σ of maximum value. By Lemma 2, this selection is
exactly Σ := A ∩ S. And since any selection of maximum value must also be maximal (as
per Lemma 1), Σ is in fact a selection of maximum value.

4.5 The Final Algorithm

Putting all of the steps together, we arrive at an algorithm to efficiently identify a critical
weighted independent set in a graph G = (V,E) with vertex weight function w : V → R>0.
The algorithm constructs the special flow network described in Subsection 4.4.2, using
disjoint copies V and V ′ of the vertex set as the activity and facility sets, and calculates a
maximum flow on it. It then identifies a minimum cut, by scanning the residual graph from
the source. From this minimum cut, it identifies the maximum selection, which is also a
critical weighted set, as shown in Subsection 4.4.1. Finally, from the critical weighted set it
constructs a critical weighted independent set, as described in Section 4.2. The pseudocode
for the whole process is shown in Algorithm 5.

The algorithm is agnostic toward the exact flow algorithm used, and the graph scan can
be implemented using either breadth first or depth first search. Since everything other than
the maximum flow calculation runs in linear time (O(n + m)), the runtime of the whole
algorithm will be dominated by that of the maximum flow algorithm used.
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CHAPTER 5
Engineering Fast Flow Algorithms for
the Critical Weighted Independent Set
Reduction

In this chapter, we describe our implementations of the Dinitz and Tidal Flow algorithms.
These algorithms have already been broadly described in Sections 3.1 and 3.2 respectively.
Thus, the descriptions given here focus more on implementation details than on the algo-
rithms themselves. We describe algorithm specific implementation choices in Sections 5.1
and 5.2, as well as algorithm agnostic data structure considerations in Section 5.3. Addi-
tionally, we describe optimizations to KAMIS’s CWIS reductions that are independent of
the flow algorithms in Sections 5.4 and 5.5.

5.1 The Dinitz Implementation

Our implementation of Dinitz’s Algorithm closely follows the structure described in Sec-
tion 3.1. Following Cherkassky’s advice [11], we do not construct auxiliary data structures
to represent the level graph, and instead use a simple distance array, excluding any edges
(u, v) for which d(v) ̸= d(u) + 1. Because of the pruning done by Dinitz’s modified DFS,
any edge of the flow graph that does not lie in the level graph will only be looked at once
(per level graph) and immediately discarded. With this, computing the level graph becomes
a very simple BFS, using a FIFO queue to compute d(v) for all vertices. To make this queue
as efficient as possible, we leverage the fact that the BFS looks at each vertex at most once,
and thus at most n items are ever enqueued. Therefore, the queue can simply be an array
of length n with indices pointing to the first and last element; enqueue and dequeue opera-
tions simply write to or read from the array at the corresponding index and increment it.

To find augmenting paths, our implementation uses a recursive DFS, much like the one
shown in Algorithm 2. In principle, it is possible to replace the recursive DFS with an
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5 Engineering Fast Flow Algorithms for the Critical Weighted Independent Set Reduction

iterative variant that manually manages its stack, but the recursive version outperformed
the iterative version in our experiments. Pseudocode faithful to our C++ implementation
of Dinitz’s Algorithm is given in Algorithm 7.

5.2 The Tidal Flow Implementation

The broad structure of our Tidal Flow implementation is very similar to that of Dinitz’s
Algorithm, with Dinitz’s DFS being replaced by the tide cycle algorithm as shown in Al-
gorithm 3. However, the level graph is represented quite differently for Tidal Flow than
it is for Dinitz’s Algorithm. Instead of an implied level graph using a distance array, we
store a list of all the edges in the level graph, ordered by distance from the source. While
it is possible in principle to use the distance array approach for Tidal Flow too, it appeared
less efficient in early experiments. Since each iteration of the tide cycle algorithm needs to
traverse the edges of the level graph in BFS order three times, the tide cycle algorithm itself
would need to do three BFS searches when using the distance array representation. And
unlike Dinitz’s Algorithm, edges that lie outside the level graph cannot simply be pruned
away after first encountering them. These overheads outweigh the cost of building a full
edge list of each level graph.

To construct this edge list, the BFS implementation itself needs to be altered. For each
visited vertex u, all (u, v) edges with d(v) = d(u) + 1 need to be appended to the edge
list. This also means that the BFS cannot just exit once it encounters t, as vertices left in
the queue may still have edges going to t. Instead, we switch to only enqueueing newly
encountered vertices if the BFS has not yet visited the sink. Pseudocode faithful to our
C++ implementation of Tidal Flow is given in Algorithm 8.

5.3 Flow Graph Data Structures

There are many different ways for flow graphs to be represented in memory. While the
algorithms themselves are agnostic to the exact representation of the flow graphs, choosing
the right underlying data structure can still lead to significant performance wins. Important
for the performance of our flow algorithms are the ability to efficiently iterate all outgoing
edges from a vertex, to query and modify the flow and capacity of an edge, and to query
the opposing edge of a given edge in the flow graph. Flow graphs are defined to always
have these opposing edges, and augmenting the flow along an edge requires augmenting
the flow along the opposing edge too.

The existing maximum flow algorithm in KAMIS, a Push-Relabel implementation in-
herited from KAHIP [30], uses an Adjacency List to represent its flow graph. In this repre-
sentation, each vertex holds a list, containing information about all of its outgoing edges.
Part of this information for an edge (u, v) is the index of the edge (v, u) in v’s edge list,
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which is required to query the opposing edge efficiently. The flow graph is then effectively
a list of length n, containing many smaller lists, whose lengths add up to m.

Iterating the outgoing edges of a vertex consists of simply iterating the edge list corre-
sponding to that vertex. To identify a single edge, both its source vertex index, as well as
its index within that vertex’s edge list are required, and accessing an edge’s information
usually requires two memory operations, as you must first look up the corresponding edge
list, before accessing the edge itself.

An alternative representation of the flow graph is the so-called Compressed Sparse Row
(CSR) representation. Instead of storing edges in separate lists for separate vertices, all
edges are stored in one big list of length m. As part of the information for an edge (u, v),
the index of the edge (v, u) is also stored. For each vertex, a start and end index in the edge
list are stored, to identify which edges belong to the vertex. Representing each vertex’s
outgoing edge range as a half-open interval [start , end) = {start , . . . , end − 1}, a given
vertex’s end index coincides with the next vertex’s start index. Thus, all indices can be
stored in a list of length n + 1. Figure 3 shows a visualization of the adjacency list and
CSR representations.

Iterating the outgoing edges of a vertex consists of iterating the edge index range of that
vertex. To identify a single edge, only the index of the edge in the edge list is required.
And unlike the adjacency list representation, CSR makes all edge information lookups a
single memory access. It also improves spatial locality of the edge information in memory,
which might lead to preferable cache access patterns. Additionally, the overall memory
consumption of a CSR encoded graph is lower than that of the same graph encoded with
adjacency lists, as the memory overhead of a list per vertex is higher than that of a single
index per vertex.

Constructing a flow graph in CSR representation for a given graph is more involved than
using adjacency lists; two passes over the input graph are needed. The first pass computes
a prefix sum of the outdegrees, whose output is the vertex index array for the CSR. The
edge list is then allocated, and the second pass fills in all edge information. While the CSR
construction does require an extra pass over the input graph compared to adjacency list
construction, it requires only two allocations in total, whereas adjacency list construction
needs at least one allocation per non-isolated vertex. Pseudocode for CSR construction is
shown in Algorithm 6.

Unlike the previously existing Push-Relabel implementation, our Dinitz implementation
uses a flow graph backed by a CSR based data structure.
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Figure 3: Visualization of adjacency list (left) and CSR (right) representations of the complete
graph on three vertices. Neighborhoods of a vertex have the color corresponding to
that vertex.

5.4 Identifying Full Critical Weighted Sets

As part of the CWIS reduction algorithm described in Section 4.5, the residual graph of the
maximum flow must be scanned from s to discover all vertices in the critical weighted set.
For a full graph scan, either a BFS or a DFS from s is required. For reasons unknown to
us, the CWIS reduction implementation in KAMIS did not do such a full scan, but instead
only used the set {v ∈ V : cf (s, v) > 0}, considering it a critical weighted set. While
this set is clearly a subset of the critical set that would be found by a full BFS, there is no
guarantee that this subset itself is of critical weight. Considering the Critical Weighted Set
problem as an instance of the Selection problem, one could easily imagine that the selection
found by only considering direct neighbors of s is not a maximal selection, and is therefore
not covered by the proofs in Chapter 4. Troublingly, using only a proper subset U ′

c of
the critical set Uc might break the correctness of the reduction itself. Since we compute the
CWIS Ic := Uc\N(Uc), the independent set based on the subset U ′

c, that is I ′c := U ′
c\N(U ′

c),
might contain vertices of U ′

c that were excluded from Ic, i.e. I ′c ̸⊆ Ic might be possible. In
this case, I ′c would no longer be guaranteed to be a subset of a MWIS on the input graph,
making the reduction as implemented in KAMIS possibly incorrect. Note however that
we do not know of any inputs for which the reduction as implemented actually leads to
wrong results.

We alter the KAMIS implementation of the CWIS reduction to instead always do a
full BFS on the residual graph of the maximum flow. Not only does this guarantee the
correctness of the reduction, but it also maximizes the number of vertices which we reduce
during the reduction itself. Very few of our input instances (see Section 6.2) show slight
changes in the reduction offset of the reduction pipeline, but these are essentially noise and
are to be expected when changing the CWIS reduction itself. They are not indicative of
either version reducing more or less than the other in general.
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s t s t

Figure 4: Visualization of the unpruned flow graph (left) and pruned flow graph (right) constructed
for the complete graph on four vertices. The unset vertices and set vertices are high-
lighted in teal and red respectively.

5.5 Pruning the Flow Graph

To prevent having to rebuild huge almost identical graphs many times, data reductions in
KAMIS do not build augmented copies of the input graph. Instead, KAMIS stores only
the original input graph, and additionally tracks for each vertex if it has been included
in or excluded from the current partial solution. We call a vertex unset, if it has not yet
been included in or excluded from the current partial solution, or set if it has. Reductions
in KAMIS then only operate on unset vertices, reducing the input graph by setting some
unset vertices to be either included or excluded.

To build the flow graph for the CWIS reduction from this graph representation, KAMIS
simply builds the flow graph as if all vertices were included in it, but omits any s-v and
v′-t edges where v is a set vertex. By not allowing set vertices to receive any flow from
the source or send any flow to the sink, maximum flows on this network have a clear
correspondence to maximum flows on a network that would fully exclude all set vertices.
The algorithm to find a CWIS works exactly the same, but construction of this network is
simpler than construction of the network that includes only the necessary vertices.

While the correctness of the algorithm is preserved, performance of the maximum flow
algorithms may still suffer, as many superfluous u-v′ edges, where u or v is a set vertex,
are still included in the network. And while there can never be flow through these edges,
they are still included in the level graphs and may therefore significantly slow down the
flow algorithms.

To prevent this, we make the very simple change of omitting any u-v′ edges where at
least one of u and v is a set vertex. Figure 4 visualizes the difference in the constructed
flow networks. Note that set vertices are still included as isolated vertices in the flow graph.
While it is possible to exclude these vertices by maintaining a mapping between vertex
indices of the original graph and the compressed flow network, our measurements do not
show performance improvements compared to our simpler flow network construction.
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Algorithm 6: CSR construction of a flow graph for the CWIS reduction. Assumes
that V = {0, . . . , n−1}. For the resulting flow network, v′ = v+n for each v ∈ V ,
s = 2n and t = 2n + 1. VL and EL are the index and edge lists of the CSR graph.
An edge (u, v) is represented as a (v, c(u, v), f(u, v), index of (v, u)) tuple.

Function AddEdges(EL, P , u, v, c):
e← P (u)
er ← P (v)
P (u)← P (u) + 1
P (v)← P (v) + 1
EL(e)← (v, c, 0, er)
EL(er)← (u, 0, 0, e)

Function BuildFlowGraph(G = (V,E), w):
VL ← List of length 2n+ 3.
// Indices are offset by one for the prefix sum
VL(s+ 1)← n
VL(t+ 1)← n
foreach v ∈ V do

// v and v′ need an extra edge to source/sink
VL(v + 1)← degout(v) + 1
VL(v + n+ 1)← degout(v) + 1

foreach i ∈ {1, ..., 2n+ 2} do
VL(i)← VL(i) + VL(i− 1)

E ← List of length VL(t+ 1)
P ← VL // Progress array
foreach u ∈ V do

AddEdges(EL, P , s, u, w(u))
AddEdges(EL, P , u+ n, t, w(u))
foreach v ∈ N(u) do

AddEdges(EL, P , u, v + n,∞)
return (VL, EL)
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CHAPTER 6
Experimental Evaluation

In this chapter, we present our experiments and findings. We describe the methodology
with which the experiments were conducted in Section 6.1, and the datasets we used in
Section 6.2. Section 6.3 describes our experiments and interprets their results.

6.1 Methodology

All experiments were conducted on a machine with an Intel Xeon Silver 4216 16-core
processor and 93GB of main memory, running Ubuntu 20.04.1 LTS with Linux ker-
nel 5.4.0-152-generic. All algorithms were written in C++ and integrated into KAMIS,
which was compiled with g++ 9.4.0, using the -O3 optimization flag. Our code, along
with raw timing data, is available at https://github.com/MarkusEverling/
KaMIS-cwis-dinitz/.

One tool we use to compare different algorithms to each other are Performance Pro-
files [16]. These plots visualize for a set of algorithms how well each algorithm performs
compared to the fastest one, for some fraction of input instances. The x-axis, labelled τ ,
represents a certain slowdown factor, and the y-axis represents the fraction of input in-
stances for which a given algorithm was at most τ times slower than the fastest algorithm
on that instance. The parameter τ ranges from 1 to the largest observed slowdown. Note
also that while we draw continuous lines through the data points, performance profiles are
inherently discrete, and their granularity is limited by the number of instances included in
the profile.

6.2 Datasets

For our experiments, we use a large set of instances, which have been used in existing
publications to evaluate MWIS solvers, made up of the graphs used by Gellner et al. [24]
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and by Gu et al. [28]. This set includes 3d meshes derived from simulations using the fi-
nite element method (fe) [40], instances from dual graphs of triangle meshes (mesh) [38],
real-world graphs from OpenStreetMaps (osm) [6, 10, 36], large social networks from the
Stanford Large Network Dataset Repository (snap) [35], as well as graphs from the SuiteS-
parse Matrix Collection (ssmc) [13, 39]. For some of the instances, each vertex weight was
increased by one to avoid many zero weight vertices. For unweighted graphs, each vertex
was assigned a random weight uniformly distributed in the range [1, 200]. Overall, the set
contains 213 graphs. A complete listing of these graphs, along with their vertex and edge
count, is provided in Table 3.

Additionally, we produce pre-reduced input graphs from the instances mentioned above.
For this, we use the weighted_reduce executable from the KAMIS framework, pass-
ing the --kernel flag to output the reduced graph, and disabling the CWIS reduction and
any reductions that come after it in the reduction pipeline. The resulting graphs are reduced
exactly as far as they would be before the first application of the CWIS reduction, and are
therefore well suited for performance measurements of the CWIS reduction in isolation.
After removing graphs that fully vanish from the reduction, we are left with 112 reduced
instances. These instances, along with their vertex and edge count, are listed in Table 4.

6.3 Results

We split our experimental evaluation into two broad categories: Comparing one invocation
of the CWIS reduction in isolation, and comparing the entire reduction pipeline with and
without using our CWIS reduction.

6.3.1 The CWIS Reduction in Isolation

To evaluate different flow graph algorithms with regards to their suitability for the CWIS re-
duction, we compare performance of the reduction in isolation, on realistic input instances.
For this, we use the pre-reduced instances described in Section 6.2. As these instances are
exactly what the inputs would be in a full reduction, performance differences measured on
them should be indicative of performance differences on the whole reduction pipeline.

Included in the comparison are the existing Push-Relabel implementation as well as our
implementations of Tidal Flow and Dinitz’s algorithm. Additionally, we include a Push-
Relabel implementation from the Boost.Graph library [8]. As part of the very popular
Boost family of C++ libraries [7], this is meant to serve as a representative for what per-
formance may be expected when using an existing “off-the-shelf” flow algorithm imple-
mentation. Boost.Graph helpfully provides a type trait based bridge that allows the user to
provide their own flow graph type. For the experiments, we use the CSR based flow graph
data structure described in Section 5.3. For each algorithm and each input instance, we run
the CWIS reduction 10 times and calculate the mean runtime for that instance. The CWIS
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reduction consists of building the flow graph, finding a maximum flow, and identifying a
CWIS from it.

Figure 5 shows performance profiles for the timings of the CWIS reduction. Since many
of the input instances are quite small, and therefore quite fast to solve, we show not only a
performance profile of all 112 input instances, but also one profile containing only the 33
instances for which the at least one algorithm took at least 100 milliseconds. Removing
small instances helps remove noise that is more noticeable on extremely short timings. Ad-
ditionally, the difference in performance on large inputs is far more important to optimize,
as we want to be able to reduce larger instances more efficiently.

It is immediately visible from the profiles that our implementation of Dinitz’s Algorithm
is extremely competitive compared to all other tested algorithms. In almost 90% of all
instances, and over 70% of the large instances, Dinitz’s Algorithm is the fastest out of all
tested algorithms. At its worst, it is roughly 40% slower than the fastest algorithm.

Trailing closely behind is Boost’s Push-Relabel implementation. While it is quite fast in
most instances, there is one outlier where it is over 28 times slower than the fastest algo-
rithm. Notably, Boost’s Push-Relabel is consistently outperforming the existing KAMIS
Push-Relabel implementation. It is however not an apples-to-apples comparison on an al-
gorithmic level, as we use a CSR flow graph for Boost, and KAMIS uses an adjacency list
flow graph for its Push-Relabel implementation. As Boost has quite strict requirements on
the API that needs to be implemented for a user supplied flow graph structure,

Tidal Flow and the existing Push-Relabel are both consistently performing significantly
worse than the other two algorithms. In almost all large instances, Tidal Flow is at least
3 times slower than the fastest algorithm. While Push-Relabel somewhat keeps up with
the faster algorithms on roughly half the instances, it also experiences large slowdowns on
many instances. In the worst cases, Push-Relabel is roughly 17 times slower, and Tidal
Flow is over 30 times slower than the fastest algorithm.

Table 1 shows the runtimes of the CWIS reduction for the same 33 large instances in-
cluded in the performance profile. They are ordered by ascending runtime of the baseline
Push-Relabel implementation. For each of the tested algorithms, we list the mean runtime
in seconds of the CWIS reduction per instance. For each instance, the fastest algorithm
is highlighted. At the bottom of the table, we list for each algorithm the geometric mean
of the runtimes across all 33 instances. We choose the geometric mean to ensure that not
only the largest times have a meaningful impact on the average. Additionally, we list for
each algorithm the arithmetic mean of the speedup over the baseline Push-Relabel across
all instances. It is immediately visible that our implementation of Dinitz’s Algorithm is
fastest for the majority of instances. The two Push-Relabel implementations are fastest for
very few instances, while Tidal Flow is fastest for no instances.

Additionally, comparing the runtimes directly, Dinitz’s Algorithm has the largest
speedups for the largest instances. In particular, its largest speedup compared to the base-
line is the very largest instance, where Push-Relabel finishes in 124 seconds and Dinitz’s
Algorithm finishes in just 7 seconds. There is only one instance each, for which Boost’s
Push-Relabel and KAMIS Push-Relabel are significantly faster than Dinitz’s algorithm.
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And while Tidal Flow does become a lot faster than the baseline Push-Relabel for many
large instances, it is slower than Dinitz’s Algorithm for all instances, and suffers from huge
slowdowns for some instances, in one case taking 326 seconds where Dinitz takes only
33 seconds.1

The average speedup over the baseline reflects this: Dinitz’s algorithm is the fastest,
being more than four times faster than the baseline on average.

Observation: Dinitz’s Algorithm is by far the best algorithm with regards to the
CWIS reduction, especially for large instances. We therefore proceed only with
Dinitz’s Algorithm for further measurements.
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Figure 5: Performance profiles for the runtime of the CWIS reduction on pre-reduced inputs. The
left profile contains all input graphs, the right profile contains only those inputs for which
at least one algorithm took at least 100ms.

1Fontaine’s results [21] suggest a much smaller gap in performance between Tidal Flow and Dinitz’s Algo-
rithm. We asked them if their implementations were available, but received no response.
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Graph Push-Relabel Tidal Flow Dinitz Boost

snap_as-skitter-uniform 0.057 0.169 0.056 0.043
snap_web-BerkStan 0.067 0.201 0.056 0.050
snap_web-BerkStan-uniform 0.068 0.185 0.049 0.046
mesh_turtle-uniform 0.069 0.224 0.062 0.083
snap_roadNet-PA-uniform 0.093 0.373 0.094 0.108
snap_roadNet-PA 0.093 0.378 0.109 0.117
fe_sphere-uniform 0.098 0.030 0.007 0.207
snap_roadNet-TX-uniform 0.108 0.474 0.109 0.123
snap_soc-LiveJournal1-uniform 0.116 0.301 0.069 0.084
osm_virginia-AM3 0.144 0.104 0.029 0.051
osm_massachusetts-AM3 0.146 0.104 0.030 0.042
osm_kansas-AM3 0.154 0.090 0.019 0.026
snap_roadNet-CA-uniform 0.162 0.726 0.154 0.172
osm_district-of-columbia-AM2 0.204 0.194 0.043 0.074
fe_pwt-uniform 0.219 0.102 0.089 0.385
osm_vermont-AM3 0.249 0.173 0.042 0.052
mesh_buddha-uniform 0.316 1.390 0.244 0.274
ssmc_fl2010 0.332 1.220 0.200 0.289
mesh_dragonsub-uniform 0.345 2.167 0.318 0.366
mesh_ecat-uniform 0.427 2.615 0.439 0.447
ssmc_il2010 0.630 2.919 0.456 0.638
ssmc_ca2010 0.675 3.463 0.432 0.621
osm_washington-AM3 0.893 0.512 0.156 0.317
fe_rotor-uniform 1.197 5.780 0.581 1.146
osm_oregon-AM3 1.465 0.531 0.159 0.209
osm_greenland-AM3 1.857 0.712 0.219 0.273
fe_ocean-uniform 2.206 67.203 3.213 3.153
osm_idaho-AM3 3.017 0.679 0.255 0.306
osm_district-of-columbia-AM3 11.938 4.856 1.319 2.441
osm_rhode-island-AM3 14.066 3.187 0.944 1.387
snap_soc-pokec-relationships-uniform 30.968 326.081 33.088 25.554
osm_hawaii-AM3 49.149 14.269 4.593 5.647
osm_kentucky-AM3 124.247 15.061 7.014 8.404

Mean 0.558 0.873 0.201 0.287
Mean Speedup 1.000 1.416 4.670 3.177

Table 1: Runtimes in seconds for one invocation of the CWIS reduction on pre-reduced input
graphs. The fastest time for each input is written in bold. Inputs for which all algo-
rithms took at most 100 ms are excluded. The bottom rows show the geometric mean of
each algorithm’s runtimes, as well as the mean speedup of each algorithm over the base-
line Push-Relabel.
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6.3.2 The Full Reduction Pipeline

In addition to the measurements on the CWIS reduction in isolation, we also want to mea-
sure the impact that our faster reduction, as well as our other optimizations, have on the
runtime of the entire reduction pipeline. As previously stated, we discard all algorithms
other than the baseline Push-Relabel and our implementation of Dinitz’s Algorithm.

To measure the runtime of the entire reduction pipeline, we use the
weighted_reduce executable included in KAMIS. It takes in a graph as input,
applies the whole reduction pipeline to it, and outputs various statistics about the reduc-
tions. The relevant statistics for us are reduction offset and runtime. The reduction offset
is the difference between the weight of a MWIS on the reduced graph and the weight
of a MWIS on the input graph. In other words, it is the weight of all vertices added in
the reconstruction of the MWIS. Because different maximum flows can induce different
minimum cuts, and because we changed the identification of the critical weighted set, as
described in Section 5.4, our CWIS reduction might reduce different vertices than the
baseline, which could then lead to changed behavior of other subsequent reductions and
a different final reduction offset. In our measurements, very few instances had slight
differences in reduction offsets for the different implementations, and there was no clear
trend of one implementation leading to higher or lower reduction offsets than the other.
As such, we consider the differing reduction offsets not meaningful to the algorithm’s
correctness or reduction quality, and instead look only at the runtime.

Figure 6 shows performance profiles for the runtimes of the weighted_reduce exe-
cutable with the baseline CWIS reduction and with our Dinitz backed CWIS reduction. As
before, we include one profile containing all 213 input graphs and one profile containing
only instances for which the algorithms took a significant amount of time. In this case, we
choose 2 seconds as the cutoff, leading to 32 instances on the right profile.

In both profiles, the version using Dinitz’s Algorithm clearly outperforms the baseline. In
roughly 70% of all instances, and almost 85% of large instances, the version using Dinitz’s
Algorithm is faster. Note that the graphs are a lot further apart on the plot containing
only large instances. Including all instances leads to a lot more noise, as many small
instances are solved very quickly. Additionally, many of the instances are fully reduced
before they ever get to the CWIS reduction itself, in which case we do not expect any
runtime difference between the versions. We still include those instances in the left profile
for the sake of completeness, but the right profile, containing only the large instances, is a
lot more relevant to real world applicability, as we mainly care about improving runtimes
for instances which are difficult to solve in practice.

Focusing on the large instances, we see that the baseline version is more than 25% slower
than our version for roughly half of the instances. Of the 32 instances, 7 are over 50%
slower with the baseline version than with ours. In the worst case, the baseline version is
over 2.3 times slower than ours.
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6.3 Results

In contrast, there are only 5 instances where the baseline outperforms our version using
Dinitz’s Algorithm. Of those, 4 are roughly 25% slower with our version than the with
baseline, while the slowest one is almost 2 times slower.

Table 2 shows the runtime of the reduction pipeline reported by the
weighted_reduce executable for the same 32 large instances that were included
in the right performance profile in Figure 6, i.e. for all instances for which at least one
of the versions took at least 2 seconds. The rows are sorted by ascending runtime of the
baseline. As before, we give the runtime of each version in seconds for all instances, with
faster times being highlighted. We also list the speedup of our version compared to the
baseline for each instance. The bottom row of the table contains the geometric means of
the runtimes across all instances, as well as the arithmetic mean of the speedup.

Comparing the runtimes, our version leads to very large speedups for many of the slowest
input instances. The slowest instance, the graph osm_kentucky-AM3, takes over 850 sec-
onds to fully reduce with the baseline version, but only 360 seconds with our version. Note
that this speedup, with a factor of 2.36, is the largest speedup across all listed instances.

Additionally, some instances on which the CWIS reduction in isolation was slower us-
ing Dinitz’s Algorithm, such as snap_soc-pokec-relationships-uniform, still show faster
runtimes across the entire reduction pipeline with our version. We suspect that this is due
to our changes to the critical weighted set identification, described in Section 5.4.

Another thing that the table shows is that 4 out of the 5 instances for which the baseline
is faster belong to the finite element (fe) group of graphs. It may be worthwhile to investi-
gate the structure of these graphs more closely, to understand the performance discrepancy
between them and the rest of the input instances better. Our version still performs much
better across the whole dataset, with a mean speedup of 30% on the large instances.
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Figure 6: Performance profiles for the runtime of the weighted_reduce executable. The left
profile contains all inputs, the right profile contains only those inputs for which at least
one algorithm took at least 2s.
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Graph Push-Relabel (s) Dinitz (s) Speedup

fe_sphere-uniform 1.325 2.615 0.507×
snap_roadNet-PA 2.042 1.861 1.097×
snap_roadNet-TX-uniform 2.138 1.904 1.123×
mesh_ecat-uniform 2.158 1.975 1.093×
osm_west-virginia-AM3 2.415 1.812 1.333×
osm_alabama-AM3 2.602 2.006 1.297×
snap_web-BerkStan 2.715 2.621 1.036×
fe_pwt-uniform 2.987 3.765 0.793×
osm_puerto-rico-AM3 3.158 2.285 1.382×
fe_ocean-uniform 3.278 4.133 0.793×
snap_roadNet-CA-uniform 3.685 3.142 1.173×
mesh_buddha-uniform 3.782 3.332 1.135×
osm_district-of-columbia-AM2 3.976 3.284 1.211×
snap_web-BerkStan-uniform 4.130 4.309 0.959×
osm_florida-AM3 4.439 3.333 1.332×
ssmc_fl2010 6.545 5.307 1.233×
osm_greenland-AM3 7.503 4.648 1.614×
osm_mexico-AM3 7.582 5.525 1.372×
osm_oregon-AM3 8.802 5.287 1.665×
osm_virginia-AM3 13.349 9.916 1.346×
osm_washington-AM3 13.546 9.957 1.360×
ssmc_il2010 14.328 12.019 1.192×
osm_idaho-AM3 16.074 8.036 2.000×
fe_rotor-uniform 16.296 18.364 0.887×
ssmc_ca2010 19.709 15.598 1.264×
snap_as-skitter-uniform 32.737 23.554 1.390×
snap_soc-LiveJournal1-uniform 49.400 42.667 1.158×
osm_rhode-island-AM3 63.372 28.706 2.208×
osm_district-of-columbia-AM3 79.910 51.208 1.560×
osm_hawaii-AM3 229.668 140.804 1.631×
snap_soc-pokec-relationships-uniform 589.134 565.899 1.041×
osm_kentucky-AM3 852.455 361.556 2.358×

Mean 10.324 8.299 1.298×

Table 2: Runtime for one invocation of the whole weighted_reduce pipeline. The fastest
time for each input is written in bold. The rightmost column shows the speedup of the
reduction pipeline using Dinitz’s Algorithm versus Push-Relabel. Inputs for which both
algorithms took less than 2 s are excluded. The bottom row shows the geometric mean of
each algorithm’s runtimes, as well as the mean speedup.
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CHAPTER 7
Discussion

In this final chapter, we provide a summary of our work, and of our experimental results,
in Section 7.1, and give a list of suggestions for future work in Section 7.2.

7.1 Conclusion

In this work, we investigate the performance differences between different maximum flow
algorithms, in the context of the Critical Weighted Independent Set reduction for MAXI-
MUM WEIGHT INDEPENDENT SET solvers. To do this, we integrate implementations of
the Tidal Flow algorithm [21] and Dinitz’s Algorithm [15] into the codebase of the MWIS
solver KAMIS [1], as the findings by the author of Tidal Flow suggest that these algorithms
are well suited for the shape of flow graph produced in the CWIS reduction. Additionally,
we introduce several other optimizations related to the used data structures, pruning the
constructed flow graph, and identification of the critical weighted set.

We compare the runtimes of the CWIS reduction in isolation on pre-reduced input
graphs, using KAMIS’s Push-Relabel, our Tidal Flow and Dinitz implementations, as well
as the Push-Relabel implementation from the Boost.Graph library [8].

In the majority of test instances, our implementation of Dinitz’s Algorithm is the fastest,
with the two Push-Relabel implementations being faster for very few instances. Tidal Flow
is the fastest for no instances. We therefore recommend to implementors of the CWIS
reduction to use Dinitz’s Algorithm, as shown in Algorithm 7 with an efficient flow graph
data structure as described in Section 5.3.

To measure the impact of the faster CWIS reduction on the whole reduction pipeline, we
compare the runtime of KAMIS’s weighted_reduce program using the original CWIS
reduction and our version. We measure significant speedups across many input instances,
with a positive correlation between instance size and speedup. The highest speedup occurs
on the largest instance, where our version is more than 2.3 times faster than the baseline,
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reducing the runtime by almost 500 seconds. On average, reducing large instances becomes
30% faster with our version of the CWIS reduction.

7.2 Future Work

There are still many aspects of the CWIS reduction which warrant attention. One very
promising aspect is that of parallelization. As single-threaded performance improvements
are slowing down with each generation of CPUs, manufacturers are instead scaling hori-
zontally, packing dozens if not hundreds of cores into one CPU. Taking advantage of this
parallelism could lead to large performance improvements for the CWIS reduction, com-
pared to our current single threaded implementation. The construction of the flow graph,
as well as the graph scan to identify a critical weighted set, are parallelizable using parallel
prefix sum and BFS implementations; it would remain to determine a parallel flow graph al-
gorithm that is well suited for the kind of flow network produced in the CWIS reduction.

It might also be possible to choose dynamically between different flow graph algorithms,
based on heuristics of the constructed flow graph. While Dinitz’s Algorithm is fastest for
most instances in our dataset, it is still getting beaten by Push-Relabel on some instances.
Identifying cheaply computable heuristics that predict which maximum flow algorithm is
likely to be the fastest might further improve overall performance.

While the minimum cut construction described in Section 4.4.2 always finds a critical
weighted set, the found set is not guaranteed to have maximum cardinality compared to
all other critical weighted sets. An interesting question is whether it is possible to extract
more information from the computed maximum flow. Choosing higher cardinality critical
weighted sets might lead to higher cardinality critical weighted independet sets, which
would then reduce more vertices, resulting in a smaller reduced graph.

Finally, with a much faster CWIS reduction, it might be beneficial to investigate the order
of reductions in the reduction pipeline itself. As the CWIS reduction dominates some other
local reductions, one invocation of the CWIS reduction might be able to replace many
invocations of simpler reductions.
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7.2 Future Work

Zusammenfassung

Das MAXIMUM WEIGHT INDEPENDENT SET (MWIS) Problem ist ein grundlegendes
NP-schweres Problem, mit vielen verwandten Problemen wie dem MINIMUM WEIGHT

VERTEX COVER Problem und mit zahlreichen praktischen Anwendungen. Für einen ge-
gebenen ungerichteten Graphen mit Knotengewichten, lautet das Problem, eine Teilmenge
der Knoten mit höchstmöglichem Gewicht zu identifizieren, so dass keine zwei der Knoten
benachbart sind.

Um große Eingabeinstanzen effektiv lösen zu können, verwenden MWIS Solver soge-
nannte Data Reductions, welche versuchen, die Größe der zu lösenden Instanz zu reduzie-
ren, ohne dabei die Optimalität der konstruierten Lösung zu verlieren. Eine mächtige aber
rechnerisch aufwändige Data Reduction ist die Critical Weighted Independent Set Reducti-
on, welche ein Critical Weighted Set auf dem Eingabegraphen identifiziert, indem sie einen
Maximum Flow auf einem speziell konstruierten Flow Netzwerk berechnet. Ausgehend
von diesem Critical Weighted Set berechnet sie dann ein Critical Weighted Independent
Set, dessen Knoten dann alle vom Eingabegraphen entfernt werden können.

In dieser Arbeit implementieren wir in dem MWIS Solver KAMIS verschiedene Ma-
ximum Flow Algorithmen, sowie Optimierungen der für den Flow Graphen verwendeten
Datenstruktur und der Konstruktion der Flow Graphen und vergleichen die Implementie-
rungen mit Bezug auf die Tauglichkeit für Verwendung in der CWIS Reduction.
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Algorithm 7: Full implementation of Dinitz’s Algorithm. Takes in a flow graph F
and a feasible flow f , and modifies f in place to be maximum.
Function ComputeRanks(F = ((V,E), c, s, t), f):

Q← Empty FIFO Queue
foreach v ∈ V do d(v)← 0
Q.enqueue(s)
d(s)← 1
while Q is not empty do

u← Q.dequeue()
if u = t then break
foreach v ∈ N(u) do

if f(u, v) < c(u, v) and d(v) = 0 then
d(v)← d(u) + 1
Q.enqueue(v)

return d

Function Augment(F = ((V,E), c, s, t), f , p, d, u, ε):
if u = t then return ε
while p(u) ≤ degout(u) do

v ← p(u)-th neighbor of u
r ← c(u, v)− f(u, v)
if r > 0 and d(v) = d(u) + 1 then

ε′ ← Augment(F , f , p, d, v, min{ε, r})
if ε′ > 0 then

f(u, v)← f(u, v) + ε′

f(v, u)← f(v, u)− ε′

return ε′

p(u)← p(u) + 1

return 0
Function Dinitz(F = ((V,E), c, s, t), f):

loop
d← ComputeRanks(F , f)
if d(t) = 0 then return
foreach v ∈ V do p(v)← 1
loop

if Augment(F , f , p, d, s,∞) = 0 then break
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Algorithm 8: Full implementation of the Tidal Flow algorithm. Arguments are the
same as in Dinitz’s Algorithm above.
Function ComputeLevelGraphEdges(F = ((V,E), c, s, t), f):

foreach v ∈ V do d(v)← 0
EL ← Empty List, Q← Empty FIFO Queue
d(s)← 1, Q.enqueue(s)
while Q is not empty do

u← Q.dequeue()
foreach v ∈ N(u) do

if f(u, v) = c(u, v) then continue
if d(v) = 0 then

d(v)← d(u) + 1
if d(t) = 0 then Q.enqueue(v)

if d(v) = d(u) + 1 then EL.push((u, v))

return EL

Function TideCycle(V , EL, c, s, t, f):
foreach v ∈ V do h(v)← 0, l(v)← 0
h(s)←∞
foreach (u, v) ∈ EL do

p(u, v)← min{c(u, v)− f(u, v), h(u)}
h(v)← h(u) + p(u, v)

if h(t) = 0 then return 0
l(t)← h(t)
foreach (u, v) ∈ EL in reverse order do

p(u, v)← min{p(u, v), h(u)− l(u), l(v)}
l(v)← l(v)− p(u, v), l(u)← l(u) + p(u, v)

foreach v ∈ V do h(v)← 0
h(s)← l(s)
foreach (u, v) ∈ EL do

p(u, v)← min{p(u, v), h(u)}
h(u)← h(u)− p(u, v), h(v)← h(v) + p(u, v)
f(u, v)← f(u, v) + p(u, v), f(v, u)← f(v, u)− p(u, v)

return h(t)

Function TidalFlow(F = ((V,E), c, s, t), f):
loop

EL ← ComputeLevelGraphEdges(F , f)
if t is not reachable from s in EL then return
loop

if TideCycle(V , EL, c, s, t, f) = 0 then break
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Datasets

1 Unreduced Graphs

Graph n m File Size

fe_sphere-uniform 16,386 49,152 566.35 KiB
fe_pwt-uniform 36,519 144,794 1.69 MiB
fe_body-uniform 45,087 163,734 1.95 MiB
fe_ocean-uniform 143,437 409,593 5.34 MiB
fe_rotor-uniform 99,617 662,431 7.76 MiB

mesh_cow-uniform 5,036 7,366 85.83 KiB
mesh_venus-uniform 5,672 8,508 99.02 KiB
mesh_fandisk-uniform 8,634 12,818 151.08 KiB
mesh_blob-uniform 16,068 24,102 304.24 KiB
mesh_gargoyle-uniform 20,000 30,000 386.65 KiB
mesh_face-uniform 22,871 34,054 444.25 KiB
mesh_feline-uniform 41,262 61,893 832.37 KiB
mesh_gameguy-uniform 42,623 63,850 859.99 KiB
mesh_bunny-uniform 68,790 103,017 1.37 MiB
mesh_dragon-uniform 150,000 225,000 3.18 MiB
mesh_turtle-uniform 267,534 401,178 5.92 MiB
mesh_dragonsub-uniform 600,000 900,000 13.68 MiB
mesh_ecat-uniform 684,496 1,026,744 15.65 MiB
mesh_buddha-uniform 1,087,716 1,631,574 25.31 MiB

osm_delaware-AM1 2 1 21 B
osm_indiana-AM1 2 1 21 B
osm_indiana-AM2 2 1 21 B
osm_new-mexico-AM3 3 3 31 B
osm_new-mexico-AM2 3 3 31 B
osm_new-mexico-AM1 3 3 31 B
osm_delaware-AM2 3 3 32 B
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Datasets

osm_new-jersey-AM2 4 6 47 B
osm_new-jersey-AM1 4 6 47 B
osm_new-jersey-AM3 4 6 47 B
osm_indiana-AM3 4 6 49 B
osm_delaware-AM3 5 9 64 B
osm_missouri-AM1 10 6 80 B
osm_wyoming-AM1 7 11 87 B
osm_wyoming-AM2 8 16 110 B
osm_missouri-AM2 13 12 122 B
osm_missouri-AM3 17 24 205 B
osm_arkansas-AM1 26 19 230 B
osm_wyoming-AM3 12 42 253 B
osm_alaska-AM1 31 31 333 B
osm_maine-AM1 38 29 351 B
osm_tennessee-AM1 49 39 460 B
osm_nebraska-AM1 40 46 464 B
osm_wisconsin-AM1 54 51 567 B
osm_puerto-rico-AM1 60 63 648 B
osm_mississippi-AM1 74 60 667 B
osm_south-carolina-AM1 75 69 767 B
osm_new-york-AM1 42 118 873 B
osm_ohio-AM1 78 96 935 B
osm_nevada-AM1 89 93 951 B
osm_connecticut-AM1 87 96 958 B
osm_california-AM1 77 130 1.09 KiB
osm_alaska-AM2 54 156 1.14 KiB
osm_minnesota-AM1 86 136 1.15 KiB
osm_west-virginia-AM1 65 150 1.17 KiB
osm_michigan-AM1 133 112 1.29 KiB
osm_north-carolina-AM1 93 150 1.30 KiB
osm_iowa-AM1 90 164 1.36 KiB
osm_arkansas-AM2 55 233 1.49 KiB
osm_montana-AM1 109 194 1.58 KiB
osm_wisconsin-AM2 89 219 1.65 KiB
osm_maine-AM2 81 243 1.72 KiB
osm_illinois-AM1 113 202 1.73 KiB
osm_maryland-AM1 104 216 1.74 KiB
osm_louisiana-AM1 157 181 1.85 KiB
osm_idaho-AM1 136 208 1.87 KiB
osm_colorado-AM1 128 232 2.01 KiB
osm_greenland-AM1 77 341 2.21 KiB
osm_canada-AM1 189 240 2.39 KiB

58



1 Unreduced Graphs

osm_pennsylvania-AM1 193 276 2.71 KiB
osm_tennessee-AM2 100 418 2.88 KiB
osm_mississippi-AM2 151 366 2.96 KiB
osm_new-hampshire-AM1 195 302 3.00 KiB
osm_utah-AM1 230 309 3.11 KiB
osm_alaska-AM3 86 475 3.12 KiB
osm_mexico-AM1 175 358 3.14 KiB
osm_vermont-AM1 128 418 3.28 KiB
osm_kansas-AM1 190 400 3.73 KiB
osm_wisconsin-AM3 136 588 4.24 KiB
osm_georgia-AM1 294 434 4.54 KiB
osm_nebraska-AM2 93 734 4.70 KiB
osm_south-carolina-AM2 165 713 5.15 KiB
osm_alabama-AM1 320 581 5.63 KiB
osm_maine-AM3 143 850 6.11 KiB
osm_michigan-AM2 241 750 6.35 KiB
osm_connecticut-AM2 211 975 7.06 KiB
osm_iowa-AM2 155 954 7.17 KiB
osm_arkansas-AM3 103 1,376 8.17 KiB
osm_mississippi-AM3 242 1,116 8.63 KiB
osm_oregon-AM1 381 996 9.02 KiB
osm_massachusetts-AM1 413 1,089 9.35 KiB
osm_puerto-rico-AM2 165 1,285 10.00 KiB
osm_florida-AM1 475 1,277 11.47 KiB
osm_hawaii-AM1 411 1,423 12.23 KiB
osm_nevada-AM2 242 1,531 12.41 KiB
osm_nebraska-AM3 145 2,168 13.67 KiB
osm_virginia-AM1 570 1,480 13.82 KiB
osm_ohio-AM2 211 1,815 14.12 KiB
osm_colorado-AM2 283 2,026 15.61 KiB
osm_illinois-AM2 261 2,138 16.98 KiB
osm_rhode-island-AM1 455 1,973 17.15 KiB
osm_minnesota-AM2 253 2,580 18.83 KiB
osm_kentucky-AM1 381 2,402 19.38 KiB
osm_michigan-AM3 376 2,459 19.97 KiB
osm_washington-AM1 713 2,316 21.04 KiB
osm_california-AM2 231 3,074 21.52 KiB
osm_tennessee-AM3 212 3,215 23.72 KiB
osm_canada-AM2 449 2,947 23.85 KiB
osm_louisiana-AM2 436 3,111 25.26 KiB
osm_new-hampshire-AM2 514 3,369 27.24 KiB
osm_connecticut-AM3 367 3,769 28.93 KiB
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osm_pennsylvania-AM2 521 3,812 30.67 KiB
osm_south-carolina-AM3 317 4,508 33.58 KiB
osm_montana-AM2 307 5,154 33.76 KiB
osm_maryland-AM2 316 4,715 34.21 KiB
osm_utah-AM2 589 4,692 38.33 KiB
osm_new-york-AM2 224 6,399 45.69 KiB
osm_west-virginia-AM2 317 8,328 61.69 KiB
osm_georgia-AM2 746 7,753 63.24 KiB
osm_colorado-AM3 538 8,365 63.47 KiB
osm_mexico-AM2 516 9,411 73.60 KiB
osm_north-carolina-AM2 398 10,116 75.68 KiB
osm_ohio-AM3 482 11,376 85.48 KiB
osm_nevada-AM3 569 15,016 118.66 KiB
osm_kansas-AM2 602 16,474 130.57 KiB
osm_florida-AM2 1,254 16,936 139.31 KiB
osm_new-hampshire-AM3 1,107 18,021 141.27 KiB
osm_alabama-AM2 1,164 19,386 159.77 KiB
osm_canada-AM3 943 20,241 160.14 KiB
osm_puerto-rico-AM3 494 26,926 206.17 KiB
osm_california-AM3 587 27,536 208.01 KiB
osm_pennsylvania-AM3 1,148 26,464 221.95 KiB
osm_district-of-columbia-AM1 2,500 24,651 224.21 KiB
osm_minnesota-AM3 683 34,188 265.66 KiB
osm_idaho-AM2 552 35,221 274.77 KiB
osm_massachusetts-AM2 1,339 35,449 282.13 KiB
osm_vermont-AM2 766 37,607 289.18 KiB
osm_louisiana-AM3 1,162 37,077 300.54 KiB
osm_utah-AM3 1,339 42,872 345.37 KiB
osm_mexico-AM3 1,096 47,131 372.97 KiB
osm_greenland-AM2 686 50,218 379.65 KiB
osm_oregon-AM2 1,325 57,517 484.08 KiB
osm_montana-AM3 837 69,293 519.02 KiB
osm_virginia-AM2 2,279 60,040 548.80 KiB
osm_georgia-AM3 1,680 74,126 640.87 KiB
osm_new-york-AM3 837 88,728 687.54 KiB
osm_maryland-AM3 1,018 95,415 741.17 KiB
osm_west-virginia-AM3 1,185 125,620 1,006.88 KiB
osm_florida-AM3 2,985 154,043 1.38 MiB
osm_washington-AM2 3,025 152,449 1.41 MiB
osm_north-carolina-AM3 1,557 236,739 1.93 MiB
osm_hawaii-AM2 2,875 265,158 2.47 MiB
osm_rhode-island-AM2 2,866 295,488 2.55 MiB
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1 Unreduced Graphs

osm_alabama-AM3 3,504 309,664 2.87 MiB
osm_massachusetts-AM3 3,703 551,491 5.07 MiB
osm_kentucky-AM2 2,453 643,428 5.51 MiB
osm_virginia-AM3 6,185 665,903 6.13 MiB
osm_kansas-AM3 2,732 806,912 7.42 MiB
osm_vermont-AM3 3,436 1,136,164 10.13 MiB
osm_district-of-columbia-AM2 13,597 1,609,795 15.66 MiB
osm_washington-AM3 10,022 2,346,213 22.39 MiB
osm_oregon-AM3 5,588 2,912,701 27.47 MiB
osm_greenland-AM3 4,986 3,652,361 33.33 MiB
osm_idaho-AM3 4,064 3,924,080 35.57 MiB
osm_rhode-island-AM3 15,124 12,622,219 122.66 MiB
osm_district-of-columbia-AM3 46,221 27,729,137 311.80 MiB
osm_hawaii-AM3 28,006 49,444,921 542.74 MiB
osm_kentucky-AM3 19,095 59,533,630 611.31 MiB

snap_ca-GrQc-uniform 5,242 14,484 153.12 KiB
snap_ca-GrQc 5,241 14,484 153.28 KiB
snap_p2p-Gnutella08-uniform 6,301 20,777 211.20 KiB
snap_p2p-Gnutella09-uniform 8,114 26,013 268.77 KiB
snap_ca-HepTh-uniform 9,877 25,973 281.14 KiB
snap_p2p-Gnutella06-uniform 8,717 31,525 323.97 KiB
snap_p2p-Gnutella05-uniform 8,846 31,839 328.36 KiB
snap_p2p-Gnutella04-uniform 10,876 39,994 418.60 KiB
snap_p2p-Gnutella25-uniform 22,687 54,705 654.98 KiB
snap_p2p-Gnutella24-uniform 26,518 65,369 787.32 KiB
snap_wiki-Vote-uniform 7,115 100,762 960.81 KiB
snap_ca-CondMat-uniform 23,133 93,439 1.06 MiB
snap_ca-CondMat 23,133 93,439 1.06 MiB
snap_p2p-Gnutella30-uniform 36,682 88,328 1.06 MiB
snap_ca-HepPh-uniform 12,008 118,489 1.18 MiB
snap_p2p-Gnutella31-uniform 62,586 147,892 1.83 MiB
snap_email-Enron 36,692 183,831 1.88 MiB
snap_email-Enron-uniform 36,692 183,831 1.88 MiB
snap_ca-AstroPh-uniform 18,772 198,050 2.10 MiB
snap_soc-Epinions1-uniform 75,879 405,740 4.17 MiB
snap_email-EuAll-uniform 265,214 364,481 4.70 MiB
snap_soc-Slashdot0811-uniform 77,360 469,180 5.09 MiB
snap_soc-Slashdot0902-uniform 82,168 504,230 5.49 MiB
snap_loc-gowalla_edges 196,591 950,327 11.20 MiB
snap_com-amazon 334,863 925,869 12.85 MiB
snap_web-NotreDame 325,729 1,090,108 14.86 MiB

61



Datasets

snap_web-NotreDame-uniform 325,729 1,090,108 14.86 MiB
snap_roadNet-PA-uniform 1,088,092 1,541,898 24.10 MiB
snap_roadNet-PA 1,088,092 1,541,898 24.10 MiB
snap_web-Stanford-uniform 281,903 1,992,636 26.06 MiB
snap_roadNet-TX-uniform 1,379,917 1,921,660 30.94 MiB
snap_com-youtube 1,134,890 2,987,624 40.64 MiB
snap_roadNet-CA-uniform 1,965,206 2,766,607 45.70 MiB
snap_web-Google-uniform 875,713 4,322,051 59.58 MiB
snap_wiki-Talk-uniform 2,394,385 4,659,565 62.76 MiB
snap_web-BerkStan-uniform 685,230 6,649,470 87.56 MiB
snap_web-BerkStan 685,230 6,649,470 87.56 MiB
snap_as-skitter-uniform 1,696,415 11,095,298 147.80 MiB
snap_soc-pokec-relationships-uniform 1,632,803 22,301,964 300.13 MiB
snap_soc-LiveJournal1-uniform 4,847,571 42,851,237 614.62 MiB

ssmc_ri2010 25,181 62,875 774.08 KiB
ssmc_nh2010 48,837 117,275 1.45 MiB
ssmc_ga2010 291,086 709,028 9.92 MiB
ssmc_il2010 451,554 1,082,232 15.47 MiB
ssmc_fl2010 484,481 1,173,147 16.35 MiB
ssmc_ca2010 710,145 1,744,683 25.25 MiB

Table 3: Full input graphs, used to measure the performance of weighted_reduce.
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2 Reduced Graphs

2 Reduced Graphs

Graph n m File Size

fe_body-uniform 10,208 30,058 440.76 KiB
fe_sphere-uniform 14,793 41,533 638.91 KiB
fe_pwt-uniform 32,966 124,071 1.92 MiB
fe_ocean-uniform 141,277 404,905 6.81 MiB
fe_rotor-uniform 98,001 638,164 9.92 MiB

mesh_cow-uniform 579 1,131 14.67 KiB
mesh_venus-uniform 1,007 1,902 25.16 KiB
mesh_fandisk-uniform 1,046 2,014 26.71 KiB
mesh_gargoyle-uniform 1,241 2,425 32.92 KiB
mesh_face-uniform 1,409 2,743 37.77 KiB
mesh_blob-uniform 1,677 3,218 45.21 KiB
mesh_gameguy-uniform 3,093 5,917 86.50 KiB
mesh_feline-uniform 4,438 8,652 128.17 KiB
mesh_bunny-uniform 9,529 18,379 277.59 KiB
mesh_dragon-uniform 10,309 19,671 298.95 KiB
mesh_turtle-uniform 25,301 49,120 805.84 KiB
mesh_buddha-uniform 80,026 153,857 2.56 MiB
mesh_ecat-uniform 87,769 170,303 2.83 MiB
mesh_dragonsub-uniform 92,517 178,945 2.98 MiB

osm_louisiana-AM2 6 10 111 B
osm_wisconsin-AM3 6 10 114 B
osm_california-AM1 7 12 139 B
osm_kansas-AM1 8 18 183 B
osm_mexico-AM1 9 20 213 B
osm_new-hampshire-AM2 9 21 216 B
osm_utah-AM2 8 22 220 B
osm_greenland-AM1 11 25 260 B
osm_oregon-AM2 11 32 318 B
osm_new-york-AM1 12 35 363 B
osm_maine-AM3 12 40 402 B
osm_washington-AM1 16 44 472 B
osm_canada-AM2 19 54 574 B
osm_north-carolina-AM2 19 69 703 B
osm_connecticut-AM3 19 101 997 B
osm_florida-AM2 28 106 1.10 KiB
osm_hawaii-AM1 30 126 1.31 KiB

63



Datasets

osm_massachusetts-AM1 35 130 1.35 KiB
osm_michigan-AM3 36 135 1.41 KiB
osm_west-virginia-AM2 28 197 1.96 KiB
osm_kentucky-AM1 45 239 2.41 KiB
osm_mexico-AM2 34 270 2.64 KiB
osm_rhode-island-AM1 75 400 4.17 KiB
osm_south-carolina-AM3 79 630 6.31 KiB
osm_tennessee-AM3 67 736 7.37 KiB
osm_california-AM2 74 959 9.54 KiB
osm_alabama-AM2 118 1,052 11.06 KiB
osm_new-york-AM2 75 1,166 11.41 KiB
osm_nevada-AM3 102 1,246 12.58 KiB
osm_colorado-AM3 145 1,521 16.53 KiB
osm_massachusetts-AM2 184 3,389 36.66 KiB
osm_minnesota-AM3 165 4,063 42.05 KiB
osm_virginia-AM2 259 3,824 43.84 KiB
osm_maryland-AM3 222 4,136 45.51 KiB
osm_new-hampshire-AM3 275 4,454 49.47 KiB
osm_ohio-AM3 227 5,167 58.62 KiB
osm_vermont-AM2 159 6,600 70.40 KiB
osm_greenland-AM2 193 6,516 71.83 KiB
osm_hawaii-AM2 340 6,545 75.55 KiB
osm_washington-AM2 320 6,791 76.09 KiB
osm_louisiana-AM3 353 7,044 80.85 KiB
osm_pennsylvania-AM3 327 7,154 81.71 KiB
osm_canada-AM3 339 7,239 83.84 KiB
osm_district-of-columbia-AM1 746 7,960 93.90 KiB
osm_puerto-rico-AM3 223 9,403 104.77 KiB
osm_kentucky-AM2 300 11,389 127.13 KiB
osm_utah-AM3 529 18,108 206.42 KiB
osm_california-AM3 353 18,969 211.67 KiB
osm_mexico-AM3 521 24,479 277.08 KiB
osm_montana-AM3 377 37,060 416.99 KiB
osm_georgia-AM3 727 37,332 437.08 KiB
osm_new-york-AM3 544 51,957 590.16 KiB
osm_florida-AM3 1,047 62,452 719.99 KiB
osm_rhode-island-AM2 1,052 73,484 854.02 KiB
osm_west-virginia-AM3 977 108,648 1.24 MiB
osm_alabama-AM3 1,535 116,497 1.45 MiB
osm_north-carolina-AM3 1,058 149,557 1.70 MiB
osm_kansas-AM3 1,546 367,779 4.45 MiB
osm_massachusetts-AM3 1,999 371,448 4.61 MiB
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2 Reduced Graphs

osm_virginia-AM3 3,622 374,065 4.80 MiB
osm_district-of-columbia-AM2 5,734 533,846 6.83 MiB
osm_vermont-AM3 2,285 587,557 7.27 MiB
osm_oregon-AM3 3,694 2,033,546 26.77 MiB
osm_washington-AM3 7,930 2,064,840 27.17 MiB
osm_greenland-AM3 3,882 2,325,120 29.81 MiB
osm_idaho-AM3 3,137 2,725,557 34.43 MiB
osm_rhode-island-AM3 12,610 11,390,377 152.49 MiB
osm_district-of-columbia-AM3 31,917 15,907,976 236.60 MiB
osm_hawaii-AM3 23,906 39,708,565 580.22 MiB
osm_kentucky-AM3 16,977 54,313,331 757.93 MiB

snap_com-youtube 15 55 540 B
snap_wiki-Vote-uniform 337 1,764 20.38 KiB
snap_com-amazon 756 1,806 23.25 KiB
snap_loc-gowalla_edges 778 5,372 64.30 KiB
snap_web-Google-uniform 1,401 5,174 67.45 KiB
snap_web-NotreDame 2,778 12,409 172.49 KiB
snap_web-NotreDame-uniform 3,110 16,600 229.30 KiB
snap_web-Stanford-uniform 4,703 66,422 890.60 KiB
snap_roadNet-PA 31,981 64,253 1.04 MiB
snap_roadNet-PA-uniform 32,997 66,230 1.07 MiB
snap_as-skitter-uniform 14,841 76,823 1.11 MiB
snap_roadNet-TX-uniform 36,466 73,049 1.19 MiB
snap_web-BerkStan 15,744 94,511 1.35 MiB
snap_web-BerkStan-uniform 15,710 96,555 1.38 MiB
snap_roadNet-CA-uniform 50,356 101,522 1.66 MiB
snap_soc-LiveJournal1-uniform 15,476 151,571 2.13 MiB
snap_soc-pokec-relationships-uniform 878,495 11,707,095 198.95 MiB

ssmc_nh2010 5,827 14,262 206.07 KiB
ssmc_ri2010 6,517 15,846 230.11 KiB
ssmc_ga2010 16,075 36,920 570.78 KiB
ssmc_fl2010 72,276 169,052 2.73 MiB
ssmc_il2010 110,520 246,028 4.05 MiB
ssmc_ca2010 115,338 265,174 4.41 MiB

Table 4: Pre-reduced input graphs, used to measure the performance of one CWIS reduction.
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