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Abstract

Partitioning hypergraphs becomes an increasingly difficult task with real-world hyper-
graphs growing in size. Streaming algorithms are a current trend to tackle increasingly
large hypergraphs in a reasonable time. Nevertheless, little effort has yet been dedicated
to streaming hypergraph partitioning. In our previous work, we proposed a streaming
weighted hypergraph partitioning algorithm. More specifically, we adapted a successful
streaming partitioning algorithm for the domain of hypergraphs. We carefully engineered
all its details in order to optimize its performance in practice and experimentally tuned our
algorithm and show that it produces partitions with approximately 15% lower cut-net on
average than the current state-of-the-art streaming hypergraph partitioning algorithm. In
this work, we move on to introduce the usage of sampling methods in order to speed up
the algorithm even further without causing a significant solution quality loss. We show that
a constant running time can be reached regardless of the number of partition blocks. Ad-
ditionally, we propose a buffered approach for hypergraph partitioning in order to obtain
even higher quality solutions while utilizing controllable amounts of operative memory. We
demonstrate that it can at least partially achieve intended quality and performance goals.
Additionally, we experiment with utilizing our algorithm for graph edge partitioning, as it
can be shown to be equivalent to hypergraph vertex partitioning.
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CHAPTER 1
Introduction

1.1 Motivation

Hypergraphs are a generalization of graphs, where a single (hyper)edge called net can
connect an arbitrary amount of vertices. This kind of data structure makes it possible to
represent complex abstract and real-life systems that include but are not restricted to the
following ones: Boolean formulas, integrated circuits, objects from numerical linear alge-
bra [28] as well as social networks. In real-life situations, hypergraphs might become too
large to be processed on a single machine. An algorithm is therefore needed in order to dis-
tribute/partition these large hypergraphs over multiple machines in order to enable parallel
processing. This is modeled by the hypergraph partitioning problem, where the vertices
of a hypergraph are partitioned in roughly equal parts among machines while minimizing
the nets running between those machines. Aforementioned machines are called partitions,
clusters or blocks in different works depending on context. In this thesis, we call them
blocks in order to avoid confusion with the concept of clusters in multilevel graph parti-
tioning algorithms (for example, HeiStream [13]).
The (hyper)graph partitioning task can be shown to be NP-complete when specific objec-
tives such as cut-net minimization are defined. [16] It should also be noted that the (hy-
per)graph partitioning task is not approximable either, meaning there is no constant factor
acting as a bound for solution quality. [6]
In order to address this issue, a set of previously proposed algorithms seek to compute
fairly good solutions in a reasonable amount of time. Approaches mostly include multilevel
methods such as KaHIP [32] for graphs, KaHyPar [34] and hMETIS [20] for hypergraphs.
Those methods usually take the whole (hyper)graph, reduce its size by contracting vertices,
apply some initial partitioning on the most reduced level, and gradually refine the blocks
while uncontracting the vertices until the input (hyper)graph is restored. The main issue
with this family of algorithms is that they require the whole input to have been loaded into
the memory. As a result, these algorithms require high amounts of computation resources
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1 Introduction

like memory in order to perform partitioning. Another issue is the applicability of these
algorithms to cases when input is not entirely available at the start of the partitioning, and
instead can only be gradually received or streamed throughout the process for different
reasons.
With the proliferation of huge real-world (hyper)graphs comes the need for partitioning
them efficiently using low computational resources. Diverse streaming partitioning algo-
rithms have been proposed to tackle this need within the domain of graphs. In contrast
to this, only a limited amount of work has explored algorithms to partition hypergraphs
within the streaming model [36, 1, 23]. In my 2021 programming practical, we extended
the widely-known streaming partitioning algorithm Fennel for the domain of weighted hy-
pergraphs. Namely, we proposed an adaptation of the algorithm Fennel [38] to partition
weighted hypergraphs. We engineered all the details of this adapted algorithm and evalu-
ated it experimentally afterward. To the best of our knowledge, ours was the first streaming
algorithm capable of partitioning weighted hypergraphs. [12] Details are provided in Sec-
tion 3.2.4.

1.2 Our Contribution

In our work, we introduce sampling in order to linearly improve the running time of hFen-
nel [12], our previously proposed streaming hypergraph partitioning algorithm while not
causing significant solution quality losses. We experiment with different sampling ap-
proaches and parameters in order to determine the one with the least overall quality re-
duction. Upon testing the algorithm with sampling, we determine that usage of sampling
can significantly decrease the running time while preserving the solution quality to some
degree. In fact, using a constant amount of sample blocks results in a constant running time
over different numbers of blocks.
We also propose a buffered streaming hypergraph partitioning algorithm in which whole
chunks of a hypergraph are loaded into a buffer of variable size to be partitioned. A multi-
level algorithm is used in order to partition individual chunks. This algorithm aims to pro-
vide a trade-off between a high solution quality of multilevel algorithms and low resource
usage of the non-buffered streamed algorithm. The algorithm fulfills the aforementioned
expectations for large buffer sizes by yielding solutions of higher quality than non-buffered
streaming algorithms without having to load whole graphs into the memory.
Since the graph edge partitioning can be viewed as a variation of the hypergraph parti-
tioning problem, we also experiment with graph edge partitioning using our algorithm on
graphs that have been slightly modified in order to be accepted as an input for our algo-
rithm. We show that using our algorithms results in a lower amount of replicated vertices
but a higher running time and imbalance compared to an algorithm proposed specifically
for this task.
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1.3 Structure

1.3 Structure

The remainder of this thesis is organized as follows. It starts with Chapter 2. It contains
formal definitions of concepts, some formulas, and notation as well as algorithm settings
used throughout the thesis. It is followed by Chapter 3 which describes previously made
advancements in graph and hypergraph partitioning, including previously proposed stream-
ing hypergraph partitioning algorithms. It consists of two parts describing algorithms for
graph partitioning and algorithms for hypergraph partitioning. Merits of each algorithm
are reviewed and the need to propose our algorithm is justified. Among related works,
we also include the description and some experiments with hFennel in order to provide
some context for this work. The main chapter, Chapter 4, covers our non-buffered (purely
streaming) algorithm with sampling and also contains the description of the buffered algo-
rithm. Chapter 5 starts with the setup and data sets used for all experiments. It then details
the experiments themselves, including parameter fine-tuning and comparison with other
algorithms. The final chapter, Chapter 6, consists of a concluding section summarizing the
algorithms and findings from the experiments and a section with future work proposals.
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CHAPTER 2
Fundamentals

2.1 General Definitions

Let H = (V,E) be a hypergraph with a set of vertices V and a set of nets E ∈ 2V , such
that n = |V | and m = |E|. A vertex v ∈ V is said to be a pin of a net e ∈ E, if v ∈ e.
In this work, the term pin will be used interchangeably with terms hypernode or vertex
in the context of nets, while the term net with term hyperedge. Let c : V → R≥0 be a
vertex weight function, and let ω : E → R>0 be an net weight function. We generalize
c and ω functions to sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E ′) =

∑
e∈E′ ω(e). Let

Inc(v) = {e ∈ E | v ∈ e} denote the incident nets of v, meaning all nets in which
v is a pin. A net e is said to be touching V ′ ⊆ V if V ′ ∩ e ̸= ∅, meaning that it has
pins in V ′, and it is contained in V ′ if e ∈ V ′, meaning that all its pins are in V ′. The
graph partitioning problem consists of assigning each vertex of G to exactly one of k
distinct blocks respecting a balancing constraint in order to minimize the hyperedge cut
or the cut-net. More precisely, graph partitioning partitions V into k blocks V1,. . . ,Vk

(i.e. V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i ̸= j), which is called a k-partition of
G. The cut-net of a k-partition consists of the total weight of the nets crossing blocks,
i.e.

∑
i<j ω(Eij), where Eij := {e ∈ E | e ∩ Vi ̸= ∅ ∧ e ∩ Vj ̸= ∅}. An additional

balancing constraint demands that the sum of vertex weights in each block does not exceed
a threshold associated with some allowed imbalance ϵ. More specifically, ∀i ∈ {1, . . . , k} :
c(Vi) ≤ Lmax :=

⌈
(1 + ϵ) c(V )

k

⌉
.

2.2 Streaming (Hyper)Graph Partitioning

Streaming graph partitioning as mentioned throughout this thesis works as follows: The
partitioning algorithm receives vertices in a stream with the set of their incident edges.
As vertices are received, the partitioning algorithm permanently assigns them to one of
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2 Fundamentals

the blocks before having received all vertices of a graph. In order to give this assignment
process some context, the algorithm has access to the subgraph defined by all the previously
received vertices. In order to save memory, it is not able to access all the information about
that subgraph. For example, an edge running between two vertices already assigned to
blocks is not needed. [36] The algorithm might be designed either to receive vertices one-
by-one or to load multiple vertices into a buffer and assign them to blocks. For the rest of
this work they will respectively be referred to as non-buffered and buffered streaming graph
partitioning algorithms. Some mentioned works have experimented with different orders in
which vertices are received: breadth-first search, depth-first search, random, etc. In order
to be concise, we only include results with natural vertex ordering which also corresponds
to real-life graph streaming. It is also possible to apply streaming partitioning algorithms
in the context of not only graphs but also hypergraphs.

2.3 Multilevel Scheme

In contrast to streaming partitioning, a multilevel scheme requires the whole (hyper)graph
to have been loaded into memory. This heuristic works recursively on multiple levels. The
(hyper)graph is first coarsened over multiple levels, i.e. its number of vertices is reduced
until a certain stop condition is met. This is done by contracting vertices into heavier ones.
Contracting a set of vertices {v1, ..., vx} into a vertex u can be described as follows: The
vertices v1, ..., vx are replaced by u with weight c(u) =

∑
v∈{v1,...,vx} c(v). For each outgo-

ing edge or net e with ∃v ∈ e such that v ∈ {v1, ..., vx}, v is replaced by u. Depending on
the implementation of this operation, parallel edges or nets may be replaced by one with
its weight being the sum of their weights. The result of coarsening is an approximated
"compressed" (hyper)graph. When the (hyper)graph is sufficiently small, at the coarsest
level, it is possible to apply an expensive initial partitioning algorithm. The block assign-
ment of each vertex in the coarsest level implies the same assignment for all finer-level
vertices that were contracted into those coarse-level vertices with equal objective function
and balance. The initial number of vertices is then gradually restored. In other words, the
coarsening previously done at each level is undone at the same level. During uncoarsening
or local improvement, the latest contracted vertices are uncontracted, meaning vertices and
edges are restored, and a refinement algorithm is applied, moving vertices between blocks
in order to improve the objective or balance. This is repeated over all levels until the initial
(hyper)graph is restored. [14]
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CHAPTER 3
Related Work

3.1 Graph Partitioning

There has been a large amount of research on graph partitioning. We refer the reader
to [4, 7, 35] for extensive material and references. In this section, we summarize the related
work on streaming graph partitioning. It contains different heuristics proposed by Stanton
and Kliot [36] as well as some additional algorithms proposed by other authors [38, 13].
There is also a wide range of further algorithms that focus on (buffered) streaming edge
partitioning [29, 24, 31], but they will not be examined here for the sake of concision.

3.1.1 Non-buffered streaming graph partitioning
Stanton and Kliot [36] examined many natural heuristics to solve graph partitioning prob-
lems in a streaming setting. Balanced heuristic, upon receiving it, simply assigns each
incoming vertex v to the block Vi of the minimal size, reinforcing balance between blocks.
Hence, the name.

i = argminj∈{1,...,k}|Vj| (3.1)

Chunking heuristic divides the stream into chunks of block upper bound size Lmax and fills
blocks in a sequence. For this, the heuristic only uses the order number t of the current
vertex:

i =
⌈ t

Lmax

⌉
(3.2)

Hashing heuristic uses a hash function in order to assign (or map) vertices to blocks based
on their index. The simplest function and the one used by Stanton and Kliot was:

i = (v mod k) + 1 (3.3)
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It should be noted that the previously mentioned three heuristics all disregard the graph
structure, i.e. edges between otherwise relevant nodes. Thus, their expected performance
is cutting a relatively high fraction of edges. The main benefit of these simple heuristics is
that there is no need to store block assignments for vertices because this information is not
accessed while processing future vertices.
Deterministic Greedy heuristic tries to assign a vertex v to the block Vi with which it has the
most common edges. The number of edges is counted as the number of neighbor vertices
of v, with the set of neighbors denoted by N(v) that are also in a block Vi. In different
variations of this heuristic, the number of common edges with each block is weighted by a
penalty function based on the capacity of the block, penalizing larger blocks:

i = argmaxj∈{1,...,k}|Vj ∩N(v)|w(j) (3.4)

with w(j) being the aforementioned penalty function:

• w(j) = 1 for unweighted greedy

• w(j) = 1− |Vj |
Lmax

for linear weighted or LDG

• w(j) = 1− exp |Vj| − Lmax for exponentially weighted

Randomized Greedy heuristic assigns v to a random block Vi. A discrete probability dis-
tribution for each block weights the probability of each block by its score obtained via
deterministic greedy heuristic:

P (i ∈ {1, ..., k}) = |Vi ∩N(v)|w(i)∑
j∈{1,...,k} |Vj ∩N(v)|w(j)

(3.5)

The randomness is added in hope of improving the solution quality. Triangles heuristic
prioritizes the block Vi with most triangles formed by vertices in the intersection of Vi and
the node neighbors N(v). Blocks are penalized in a similar manner to LDG. Using the
E(V ′) to denote all the edges in V ′:

i = argmaxj∈{1,...,k}
|E(Vj ∩N(v))|(

Vj∩N(v)
2

) w(j) (3.6)

Balance Big heuristic is a combination of the balanced heuristic and deterministic greedy
heuristic. Upon receiving a node v, the algorithm decides whether it is high-degree or
low-degree based on some function. If it is high-degree, the balanced heuristic is used.
Otherwise, the deterministic greedy heuristic is used. This heuristic can be viewed as
setting high-degree nodes as anchors only to keep the low-degree nodes around them.

8



3.1 Graph Partitioning

Fennel heuristic. Tsourakakis et al. [38] proposed a one-pass partitioning heuristic
named Fennel, which is an adaptation of the widely-known clustering objective modular-
ity [5]. Roughly speaking, Fennel assigns a node v to a block Vi, respecting a balancing
threshold, in order to maximize an expression of type |Vi ∩ N(v)| − f(|Vi|), i.e. deter-
ministic greedy proposed by Stanton and Kliot, but with an additive penalty instead of a
multiplicative one. The assignment decision of Fennel is based on an interpolation of two
properties: attraction to blocks with more neighbors and repulsion from blocks with more
non-neighbors, or from blocks that are generally already heavy. When f(|Vi|) is a con-
stant, the resulting objective function coincides with the first property. If f(|Vi|) = |Vi|,
the objective function coincides with the second property. More specifically, the authors
defined the Fennel objective function by using f(|Vi|) = α × γ × |Vi|γ−1, in which γ is a
free parameter and α = mkγ−1

nγ . After a parameter tuning made by the authors, Fennel uses
γ = 3

2
, which provides α =

√
k m
n3/2 . Note that in the original paper, the authors assume

k to be constant and hence derive a complexity of O(n + m). However, since one has to
iterate over all blocks k for each node the complexity of the algorithm depends on k and is
given by O(nk +m).

3.1.2 Buffered streaming graph partitioning

Further heuristics introduced by Stanton and Kliot [36] use a buffer. Prefer Big heuristic
maintains a buffer of size Lmax. The buffer is filled. Then, all high-degree vertices are as-
signed via the balanced heuristic. Each time such a vertex is assigned, a new one is loaded.
As long as the buffer does not entirely consist of low-degree vertices, the low-degree ver-
tices in the buffer are put on hold. That way, high-degree vertices are given more flexibility
to be assigned to blocks that would increase the partition balance. When the buffer consists
entirely of low-degree nodes, the deterministic greedy heuristic is used to clear it. This
heuristic can be seen as an expansion of the balance big heuristic. Avoid Big heuristic can
be seen as an inversion of the refer big heuristic as it prioritizes low-degree vertices and
de-prioritizes high-degree vertices in a similar manner. Greedy EvoCut heuristic uses the
EvoCut [3] on a buffer in order to find small Nibbles, or, subsets of vertices with certain
requirements to their conductance, and assigns entire Nibbles to blocks using the determin-
istic greedy heuristic. Conductance, as mentioned here, refers to the proportion of outgoing
edges between a Nibble and the outside graph to the sum of degrees of all the vertices in
it. Thus, they are treated as atomic sets of vertices, partitioning which might result in a
high resulting edge-cut of the partitioning. Even though the standalone EvoCut algorithm
has solid guarantees, its hypothetical effectiveness does not apply with the use of buffers
as applied in this heuristic. However, despite the premise, all methods that use a buffer
perform significantly worse than LDG, which had the best overall results in terms of the
proportion of cut edges while not relying on a buffer.

9
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HeiStream. Another buffered streaming graph partitioning heuristic called HeiStream
has been proposed by Faraj and Schulz [13]. This heuristic consists of several stages and
levels for each chunk of a graph loaded into a buffer and is able to work with weighted
graphs. Unlike Prefer Big or Avoid Big heuristics discussed previously, this heuristic loads
mutually exclusive sets of vertices into a buffer akin to Greedy EvoCut. Here, we describe
the algorithm.
A basic model graph is constructed from the vertices in the buffer of size δ. This is done
by initializing the model as a subgraph B of the input graph G consisting of the vertices
in the buffer. k artificial vertices are added each corresponding to one of the blocks Vi

for i ∈ {1, ..., k} to which vertices have already been assigned. Each one of these artificial
nodes is given weight c(Vi). Edges between a vertex u previously assigned to a block Vi and
a vertex v in the buffer are added to the model for each such pair of vertices, whereas edges
between previously assigned vertices are ignored. Parallel edges between each pair of
vertices consisting of a set of edges running between the same pair of vertices are replaced
by one edge with the weight equal to the sum of weights of the parallel edges. Therefore,
define a notation can be defined:

ω(Vi, v) =
∑

u∈N(v)∩Vi

w(u, v) (3.7)

Vi as used in this formula can be understood as one of the previously defined artificial
vertices. HeiStream also incorporates the building of extended models containing artificial
ghost vertices and edges that have neither been previously assigned to a block nor been
loaded into the buffer. [13] The model is then partitioned using a Multilevel Fennel heuristic
which follows the scheme described in 2.3 with some modifications. After the model is
partitioned with Multilevel Fennel, the vertices of the original graph are assigned to the
blocks of their corresponding vertices in the model.
Multilevel Fennel heuristic itself relies on many configurable parameters for each step
of the algorithm. The coarsening part uses a clustering technique called label propaga-
tion [30] algorithm or LPA while using a size constraint in order to keep clusters bal-
anced. [26] This works as follows. Note that clusters are different from blocks. At the
beginning of LPA, each vertex v is assigned to its own individual cluster Cv := {v} con-
taining this vertex only. Throughout a run, each vertex v is assigned or reassigned to a
cluster Ci with the largest sum of edges between that cluster and v:

i = argmaxj∈{1,...,|B|}
∑

u∈Cj∩N(v)

ω(u, v) (3.8)

It is ensured that v can only be assigned to a cluster Ci with:

c(Ci) + c(v) ≤
⌈ Lmax

coarsening_factor
⌉

(3.9)

10



3.2 Hypergraph Partitioning

In this case, coarsening_factor is a tunable parameter, but it is set to a default of 181. LPA
runs can be repeated, and at each run, the vertices may be reassigned to different clusters.
During fine-tuning, 5 was found to be a good number of LPA runs by Faraj and Schulz.
Throughout LPA, the artificial vertices are completely ignored. After the vertices are as-
signed clusters, all sets of vertices belonging to the same clusters are contracted. Vertex
contraction is performed in a similar manner to artificial vertex creation during model con-
struction. This is repeated until either the contractions no longer have any significant effect
as measured by the change in the number of resulting coarse vertices, or the amount of
coarse vertices has reached a threshold of max( |B|

2xk
, xk) in which x is a tunable parameter

with 4 being a good value for it. At the coarsest level, an initial partitioning is performed.
A modified version of the Fennel heuristic is used, defined as follows. Each coarse node v
is assigned to the block Vi with:

i = argmaxj∈{1,...,k}
∑

u∈Vj∩N(v)

ω(u, v)− c(v)× α× γ × c(Vj)
γ−1 (3.10)

The values for α and γ found good by Tsourakakis et al. [38] were used in order to remain
consistent with their work. Again, a balancing constraint is enforced in order to keep block
weights below Lmax. In the uncoarsening or refinement stage of a recursion level, the
vertices contracted at the current are uncontracted. They are moved between blocks based
on the Fennel score. In this stage, in contrast to the Fennel algorithm used for the initial
partitioning, when a vertex v is visited, it is removed from its current block, and only those
blocks are considered which contain neighbors of v: Vj ∩N(v) ̸= ∅.
It should also be noted that during coarsening, only non-artificial vertices are contracted,
and during initial partitioning and refinement, only non-artificial vertices are assigned to or
moved between blocks, while the artificial vertices are used only to compute Fennel scores
of different blocks as they represent the current state of their respective blocks.

3.2 Hypergraph Partitioning

Although previously mentioned heuristics provide a basis upon which streaming hyper-
graph partitioning algorithms can be developed, they are not yet applicable to hypergraphs
as they don’t take into consideration that hyperedges can contain a number of vertices dif-
ferent from 2. Hypergraph partitioning methods include a wide variety of algorithms such
as KaHyPar [34], HYPE [23], Min-Max [1], hMetis [20], and many others [8, 11, 37, 39].
Many of these algorithms are beyond the scope of this work since they have little in com-
mon with our work in streaming hypergraph partitioning algorithms.

1Repository for HeiStream: https://github.com/marcelofaraj/Buffered-Partitioning
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3 Related Work

3.2.1 KaHyPar

KaHyPar [34], proposed by Schlag et al. is a sophisticated hypergraph partitioning algo-
rithm composed of a careful combination of different heuristics. It employs a multilevel
approach with multiple phases.
Preprocessing phase is done before the actual n-level part of the algorithm. During this
phase, two tasks are carried out: pin sparsification and community detection. Pin sparsi-
fication contracts similar vertices, with similarity being defined by the fraction of shared
nets relative to all the incident nets of vertices. This is done in order to reduce the average
count of pins in a net, which improves the overall running time of the algorithm. Commu-
nity detection, on the other hand, tries to divide a hypergraph into disjoint subhypergraphs
(communities) such that connections are dense within those communities but sparse be-
tween them. This division is later used for the coarsening phase. Coarsening is similar to
the one performed in HeiStream with two key differences. One of them is that instead of
contracting vertices only after the clusters for each vertex have been calculated, KaHyPar
contracts vertices on the fly before moving on to the cluster calculation for the next vertex.
The other difference lies in the fact that the rating function for clusters prefers nets with a
low incidence as shown in Equation 3.11.

Rating(u, v) :=
∑

e∈Inc(u)∩Inc(v)

ω(e)

|e| − 1
(3.11)

Initial Partitioning is done via the recursive bisection algorithm in the direct k-way setting.
While doing so, a portfolio of 9 different initial partitioning algorithms is used, such as
Random and BFS-based Partitioning [9, 19], Greedy Hypergraph Growing (GHG) [8] and
Size-constrained Label Propagation (similar to the clustering in HeiStream). Refinement is
possible using two types of algorithms: Localized 2-way or k-way FM Local Search algo-
rithms that follow the FM paradigm [15] by starting the search from the newly uncontracted
vertices or Flow-Based Refinement, which integrates a flow-based bipartitioning algorithm
(FlowCutter) [17] into the n-level framework.
It should also be noted that KaHyPar can be run in two modes: direct k-way mode which di-
rectly uses the phases mentioned above or recursive bipartitioning which repeats the phases
mentioned above for each one of its O(log k) recursion levels. Currently, KaHyPar is the
highest quality weighted hypergraph partitioner. It is however computationally intensive.

3.2.2 HYPE

Mayer et al. [23] proposed HYPE, a light-weight hypergraph partitioning algorithm based
on neighborhood expansion. It works by gradually filling blocks with vertices until they
reach a size of |V |

k
. In that sense, it is somewhat reminiscent of the chunking heuristic

proposed by Stanton and Kliot [36]. However, its main difference is in the choice of the
next node to be added to the block. For each block Vi, core set Ci is defined to represent
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vertices already assigned block Vi, Fringe set Fi for vertices that are considered for an
addition into Ci and the vertex universe V ′ ⊆ V with nodes that can be added into Fi and
have not yet been added to any block Vj or core set Cj with j ≤ i.
For each block, the algorithm adds some seed vertices to the core set and then loops over the
following steps until the block is filled. In the first step, r fringe candidates are determined.
A set of nets of Ci is constructed: {e ∈ E |Ci∩e ̸= ∅}. A sorted vector is constructed from
the set of nets so that nets with lower degrees precede the ones with higher degrees. r pins
are picked from the first nets. The pins must be in V ′. In the second step, the candidate pins
are added to the fringe Fi while keeping only an s amount of pins with the least number of
external neighbors dext(v, Fi):

dext(v, Fi) = |{u ∈ V | ∃e ∈ E : v ∈ e}\Fi| (3.12)

The candidate vertex in Fi with the least number of external neighbors is then moved from
the fringe to the core set Ci and is, thus, assigned to the block Vi. The vertex is also removed
from V ′. The values r and s are tunable. Although HYPE requires very low computational
resources, it cannot operate as a streaming algorithm and also cannot partition weighted
hypergraphs.

3.2.3 Streaming Min-Max
Alistarh et al. [1] have proposed a Min-Max streaming hypergraph partitioning method.
Being a streaming heuristic, it receives a vertex v and assigns it to a block on the fly in the
following steps.
First, candidate blocks are chosen so that the balancing constraint is not violated. Unlike
most streaming algorithms that use a hard constraint Vi <

⌈ |V |
k

⌉
for each candidate block

Vi, the Min-Max algorithm uses a different kind of balancing constraint using the size of
the smallest block so far:

Vi ≤ argminj∈{1,...,k}|Vj| × (1 + ϵ) (3.13)

The balancing constraint used here ensures that the blocks remain balanced throughout
the partitioning process. Its main advantage is that its enforcement does not require any
knowledge about the total size of the hypergraph. After the candidate blocks are chosen
from the set of all blocks, each such block Vj is rated based on the number of nets common
for the block and for the vertex v. The block Vi with the highest such number of nets is
chosen for the vertex v:

i = argminj∈{1,...,k}|Inc(v) ∩ {e ∈ E | ∃u ∈ Vj : u ∈ e}| (3.14)

As an optimization measure, sets Si can be defined for i ∈ {1, ..., k}. These sets are
empty at the beginning of the algorithm, but each time a vertex v is added to a block Vi,
the incident nets of v are added to the set Si. Thus each set Si can be used instead of
{e ∈ E | ∃u ∈ Vj : u ∈ e} and accelerate the counting of nets for each block.
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3.2.4 hFennel

The algorithms described previously in this section despite being applicable to the hyper-
graph partitioning task either do not consider vertex and net weights (HYPE and Min-Max)
or do not load vertices in a streaming setting (KaHyPar and HYPE). In order to address
those criteria, in a previous project [12], we developed an algorithm inspired by the Fennel
one-pass algorithm. Throughout the thesis, this algorithm will be referred to as hFennel.

Overview. The algorithm builds upon the work of Tsourakakis et al. [38] Similarly to
Fennel, it makes a pass over the vertices or vertex assigning each vertex v to the block with
the highest objective score. The score is calculated in such a way that the blocks with more
nets (or a higher net weight sum) to the vertex are given more scores at the same time as
the blocks with generally more vertices (heavier blocks) have their scores reduced. Thus,
the vertex v is assigned to the block that would minimize the cut-net and maintain some
balance:

argmaxj∈{1,...,k}Fennel(Vj, v) = argmaxj∈{1,...,k}(g(Vj, v)− f(c(Vj), c(v))) (3.15)

The two parts of the Fennel function are expanded (the part pertaining to nets connecting
the block and the vertex g(Vj, v) and the additive penalty f(c(Vj), c(v))) in the following
paragraphs in order for our algorithm to be able to process weighted hypergraphs.

Minimizing cut-net. In their work, for a block Vj and a vertex v, Tsourakakis et al. used
the term |Vj ∩ N(v)| for the first part of the Fennel function, which is the number of
neighbors of v in Vj . Since this is equal to the number of incident edges of v that connect
it to Vj , this term is ideal for unweighted graphs. For hypergraphs, however, there can be
different definitions, referred to in [12] as net criteria, for a net between a block and a
vertex listed as follows. An incident net e ∈ E of a vertex v (meaning v ∈ e) can be said
to be connecting the block Vj and the vertex v if it is:

• touching Vj (meaning e ∩ Vj ̸= ∅);

• contained thoroughly in Vj ∪ v;

• or something intermediate by touching Vj but not touching any other block yet.

The intermediate criterion can be used in the streaming setting in order to minimize the
cut-net since it avoids false negatives in the early iterations of the vertex pass (when few
vertices have been assigned to blocks) and false positives in the later iterations (when most
vertices are already in blocks). Apart from that, instead of counting nets, we calculate the
weight sum of those nets in order for hFennel to be able to process weighted hypergraphs.
Thus, for a set Connecting(Vj, v) of nets connecting Vj and v, we define g(Vj, v) :=
ω(Connecting(Vj, v)).
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Penalizing imbalance. For hFennel, we defined f(c(Vj), c(v)) := c(v) × α × γ ×
c(Vj)

γ−1 with α = ω(E) kγ−1

c(V )γ
. This formulation of g had been inspired by the work of

Faraj and Schulz [13]. This term subtracts some penalty from the Fennel score of the block
Vj based on its weight. It is the direct generalization of the term α × γ × |Vj|γ−1 defined
by Tsourakakis et al., the difference being that we used the weight of a block instead of its
size and a different α. The computation of the new value of α takes the weight sums of all
vertices and all nets into consideration. Faraj and Schulz also proposed to multiply the term
α×γ×c(Vj)

γ−1 by c(v) in order to retain a certain property needed for buffered streaming
partitioning. We decided to keep that multiplication so that hFennel is better adaptable for
modifications in the future. The parameter γ is a tunable variable. The higher it is, the
more significance is given to the load balance of blocks.

Values of constants. For our later experiments, α and γ had to be adjusted as well.
First, α had to be generalized for weighted graphs. In their work, Tsourakakis et al. choose
α = mkγ−1

nγ . Using a similar reasoning process adapted for weighted hypergraphs, we
obtained α = ω(E) kγ−1

c(V )γ
. The value of γ is later fine-tuned experimentally.

During the experimental fine-tuning, it was determined that the best edge criterion for
the task was "intermediate" while the best values of γ were between 1 and 1.5. [12] We
then compared the resulting hyperedge cuts on unweighted hypergraphs for the following
algorithms: hash partitioning which assigns vertices to blocks based on the application
of a hash function causing some randomness, Min-Max, HYPE, as well as hFennel with
γ ∈ {1, 1.25, 1.5}.
The results for unweighted hypergraphs are shown in Table 3.1. It could be observed from
the table that the hash algorithm clearly has an inferior hyperedge cut performance since
it pretty much assigns vertices to blocks randomly while not violating the balancing con-
straint. For the values of k from 8 to 64, HYPE also created a partition with a higher cut-net
relative to hFennel with γ = 1, but its cut-net seemed to be lower for k > 64. (Additional
experiments showed that HYPE is able to generate very highly balanced partitions with-
out needing a hard balancing constraint.) It should be noted, however, that HYPE is not a
streaming partitioning algorithm. Min-Max generated a higher cut-net for all values of k
present in the experiments, higher even than hFennel with γ = 1. For hFennel, however,
γ = 1.25 delivered a lower cut-net for k ≤ 128, but seemed to perform worse than γ = 1.5
in that regard for higher values of k. In fact, this deviation increased, which made 1.5 the
best γ for a large number of blocks and unweighted hypergraphs. The results for weighted
hypergraphs are shown in Table 3.2. From both tables, it is evident that hFennel had lower
cut-net with the values k ≥ 32 with γ = 1.25 or γ = 1.5 rather than with γ = 1, although
it is difficult to choose between 1.25 and 1.5 for the best γ.
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k Hash Min-Max HYPE hFennel 1 hFennel 1.25 hFennel 1.5
8 1 689 487 1 178 572 631 945 366 296 476 047 499 956
16 1 741 042 1 385 731 782 175 528 963 588 871 612 965
32 1 765 101 1 490 473 900 546 747 721 730 962 743 724
64 1 776 559 1 580 678 1 022 426 991 184 841 689 849 302
128 1 781 726 1 630 663 1 112 838 1 230 781 970 725 973 797
256 1 783 600 1 665 441 1 213 483 1 380 855 1 102 366 1 098 188
512 1 784 311 1 691 693 1 314 013 1 463 686 1 200 505 1 192 208
Mean 1 759 962 1 507 310 969 931 863 242 806 307 818 825

Table 3.1: Rounded geometric means of edge cuts over unweighted hypergraphs for different al-
gorithms for different numbers of blocks k. hFennel with different γ values is shown as
"hFennel γ".

k Hash hFennel 1 hFennel 1.25 hFennel 1.5
8 16 887 002 3 943 434 5 962 314 5 950 597
16 17 423 919 5 722 992 6 848 847 6 870 662
32 17 684 092 8 108 696 8 081 139 8 063 090
64 17 809 748 10 735 426 9 225 398 9 317 757
128 17 869 296 13 151 307 10 460 890 10 602 726
256 17 892 241 14 614 759 11 848 026 12 021 410
512 17 899 019 15 278 793 12 825 789 12 775 839
Mean 17 634 490 9 244 298 9 015 085 9 057 726

Table 3.2: Rounded geometric means of edge cuts over weighted hypergraphs for different algo-
rithms for different numbers of blocks k. The values are multiples of 10. hFennel with
different γ values is shown as "hFennel γ".
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CHAPTER 4
Streaming Hypergraph Partitioning

In this chapter, we describe two algorithms that serve as an expansion of the previously
proposed heuristics in the field of hypergraph partitioning. Section 4.1 describes an ex-
tension of our previous work, namely, hFennel, to which we added sampling in order to
decrease its running time. In Section 4.2, we combine parts of HeiStream with KaHyPar in
order to develop a prototype buffered hypergraph partitioning algorithm.

4.1 hFennel with Sampling

In [12], we proposed a streaming Fennel-like heuristic for hypergraph partitioning. The
heuristic proved to be delivering high-quality hypergraph partitions among other stream-
ing algorithms and is applicable to weighted hypergraphs. In this work, we add non-
determinism and sampling in order to decrease the overall computational complexity of
the algorithm and perhaps improve its running time. Section 4.1 first introduces the hy-
pothesis and the reasoning for the employment of sampling. Then, each subsequent part of
it describes a specific part of the algorithm and the reasoning for some design decisions.
In conclusion, Section 4.1.5 presents the overall implementation as used later during our
experiments.

4.1.1 Hypothesis

Although some work has been done in the field of hypergraph partitioning and streaming
graph partitioning algorithms, the concept of using sampling for the task is relatively new
and has not been well researched yet. Algorithms like SMGP and SMGP+ [18] or RD-B-
GRAP and HD-B-GRAP [27] proposed in the years 2021 and 2022 respectively employ
sampling on the very structure of an input graph in order to improve the partitioning time
and yield a competitive partitioning quality. Indeed, it is possible to significantly improve
the running time of a partitioning algorithm by, for example, reducing the number of edges
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or nets considered during the computation, as most such algorithms usually contain loops
iterating over incident edges or nets of relevant vertices. Reducing the number of iterations
in such loops naturally decreases the running time of those loops by the factor of edges or
nets remaining after sampling relative to their original number.
In the case of the streaming (hyper)graph partitioning algorithms that rate blocks based on
a certain heuristic and assign an input vertex to the block with the best rating, a different
approach to sampling can also be employed. hFennel is one such algorithm as for each
vertex v it has to rate k blocks and choose one. [12] Thus, it contains a loop that iterates
over k blocks. Similarly to using edge or net sampling in order to reduce iterations over
them, one may also reduce the number of iterations over these blocks. We define c < k to
be the number of samples. This part of hFennel has an asymptotic complexity of O(nk)
without sampling since it has to compute ratings for k blocks for each one of n vertices.
With sampling, this complexity is reduced to O(nc). This means sampling results in an
algorithm whose complexity is factor k

c
lower and which is therefore faster. However,

integrating sampling into a streaming (hyper)graph partitioning algorithm comes with some
issues that have to be addressed. In the following subsections, we describe the design
decisions that we make in order to address those issues.

4.1.2 Sampling Algorithm
One of the important components of every heuristic with sampling is the sampling algo-
rithm. In our specific case, its task is: Given a population of k blocks, it must randomly
pick a sample of size c. The choice of the right sampling algorithm is critical. In our work,
we define two main criteria for the sampling algorithm: the algorithm must be as unbi-
ased as possible, and it must have a running time complexity of O(c). In search of such
an algorithm, we reviewed several algorithms. The algorithms included reservoir sam-
pling [22, 40, 21] and permutation-based sampling (by using shuffling [21]), which had a
complexity of O(k), making these sampling algorithms unviable as it defeats the purpose
of having sampling in our algorithm by keeping the overall complexity of our algorithm at
O(nk).
The algorithm that we decided to choose is one for sampling with replacement. It works
by generating and picking a random integer in a range {1, ..., k} and repeating this process
c times. Random integer generation has a complexity of O(1), wherefore the sampling
process is O(c). It should be noted that the algorithm does not check whether an element
has been picked. As a result, some elements are picked multiple times, and the resulting
sample contains c′ ≤ c unique elements. An issue arises when the value of c′ << c.
Such a case is undesirable, and it is difficult to guarantee that. The worst hypothetical case
scenario might happen if c = k. It can be considered the worst case since the closer the
value of c is to k, the more the chance of such "collisions". However, we determined in our
preliminary experiments that the proportion of unique elements in a sample c′

c
remains in

a range approximately between 60% and 72%. Thus, it can be concluded that cases with
c′ << c are unlikely, and this sampling algorithm is viable.
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4.1.3 Advanced Infeasibility Handling

hFennel without sampling is able to iterate over blocks Vi for i ∈ {1, ..., k} in order to
choose the one with the highest Fennel score for a vertex v while simply disregarding
blocks Vi with c(Vi∪{v}) > Lmax. While integrating sampling into hFennel, it is desirable
that the sampling of blocks, the filtering of blocks with an admissible load, and choosing
the best block are three separate steps. In this case, the sampling operation should come
first, as otherwise at least one of the other two steps would iterate over all k blocks, keeping
the overall running time complexity of the algorithm at O(nk).
Since sampling is a part of our algorithm, our options while choosing a block Vi for a vertex
v are even more limited. We define the set of all blocks V := {Vi | i ∈ {1, ..., k}}, the
set of sampled blocks Vsample ⊆ V with |Vsample| = c′ ≤ c and the set of available blocks
Vavailable := {Vi ∈ V | c(Vi ∪ {v}) ≤ Lmax}. As mentioned in [12], for weighted hyper-
graphs it is possible that for a vertex v, no block Vi is available with c(Vi ∪ {v}) ≤ Lmax,
or Vavailable = ∅. When using sampling, we are not considering blocks that are only in
Vavailable, but the blocks only in Vsample ∩ Vavailable, an intersection which is even more
likely to be empty. It is worth mentioning that it would be less likely for that intersection
to be empty if the order of steps previously defined had the filtering operation as the first
one and the sampling operation as the second one because then Vsample ⊆ Vavailable would
hold. However, recall that because of the chosen order of operations the sample is likely to
contain and, perhaps, consist only of infeasible blocks. Therefore, an advanced unavailable
block resolution is required. To propose such a method, we looked at the existing unavail-
able block resolution from hFennel without sampling as defined in Section 3.2.4 and try to
modify them.
The Fennel resolution simply disregards the balancing constraint. [12] Its behavior with
sampling can be modified to iterate over all sampled c′ blocks and has therefore no further
modification potential worth mentioning that would be relevant. The load resolution iter-
ates over all blocks while disregarding the Fennel score, and the block with the lowest load
is selected. [12] After the blocks have been sampled, the one with the lowest load among
c′ blocks can be selected. For this resolution, no further modification can be done either.
The random resolution is, however, different from the previous resolutions. It can be mod-
ified in such a way that the block is not chosen among c′ sampled blocks like the previous
two resolutions but among all k possible blocks similar to how it happens in the algorithm
without sampling. Thus, there is a chance that a block Vi can be picked for a vertex v such
that c(Vi ∪ {v}) ≤ Lmax. Furthermore, the algorithm can be modified in such a way that
not one but a limited amount of attempts can be made picking a random block until a block
with a low enough load is found.

Random resolution with attempts. In our work, we modify the random unavailable
block resolution in order for it to be able to find a block that can meet the hard balancing
constraint Lmax after several attempts. In order for the overall algorithm running time
complexity not to reach O(nk), the number of those attempts must be less than k (for the
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case if, for example, all blocks are tried out) for each v ∈ V . In other words, the number
of such attempts per node must be bound by some constant d with d < k. It is pertinent to
mention that the number of attempts is bounded by d, and that it is very likely that a right
block is found in d′ attempts with d′ < d for the majority of streamed vertices. This opens
up the possibility of using the remaining or unused attempts during future invocations of the
random resolution. As a result, the amortized asymptotic number of all attempts remains
O(nd) throughout the partitioning algorithm run, while using as many attempts as possible
to find a block with low enough load for each vertex.

4.1.4 Sampling Modes

When designing a streaming hypergraph partitioning algorithm with sampling, a decision
has to be made as to which subset of all blocks should be used as the population for the
sampling algorithm. Assuming that sampling from the set Vneighbor := {V ∈ V | V ∩⋃

e∈Inc(v) e ̸= ∅} of neighbor blocks of v may affect the solution quality, we experimented
with four sampling modes.

Neighbors mode. A block Vi is a neighbor block of v, if it has one or multiple nets
satisfying one of the net criteria as defined in Section 3.2.4. Such blocks have a higher
Fennel score due to the weights of the aforementioned nets. The blocks like that are more
likely to be the ones with the highest Fennel score. In this sampling mode, we therefore
sample blocks from Vneighbor instead of sampling from V. When there are no neighbor
vertices in any block yet (as at the beginning of the streaming process), random assignment
is used.

All blocks mode. This is the simplest mode the output of which is not affected by
the neighbor blocks of a vertex. Since blocks already containing large amounts of ver-
tices are more likely to attract further vertices, some mechanism should be employed that
would let incoming vertices be assigned to blocks with no neighbor blocks naturally and
without invocation of an unavailable block resolution. This sampling mode addresses that
by regarding all blocks for sampling. It should nevertheless be noted that for cases like
|Vneighbor| << k, this mode might result in samples that contain few or no neighbor blocks,
which has an effect on the choice of the highest scoring block.

Non-neighbors mode. This sampling mode addresses the issue with both the first
mode and the second one by adding all neighbor blocks to the sample of all blocks. For an
average |Vneighbor| much smaller than k, adding all neighbor blocks should have no signif-
icant effect on the running time complexity of the algorithm. In addition to this neighbor
blocks set, additional c′ with c′ ≤ c blocks are added to the sample, which addresses the
same issue as the previous sampling mode.
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Twofold mode. This method tries to combine the neighbors mode with all blocks mode
by picking c′1 from Vneighbor and c′2 from all blocks V with c′1 ≤

⌊
c
2

⌋
and c′1 ≤

⌈
c
2

⌉
. The

issue with this sampling mode is that Vneighbor ⊆ V which might cause an overlap between
the two samples, resulting in an even smaller general sample.

The previously defined sampling modes each have their own pros and cons. And, since
it is difficult to theoretically determine the superior one of the aforementioned sampling
modes, we do that experimentally in Chapter 5.

4.1.5 Algorithm Overview

An overview of hFennel with sampling with its steps is presented in Algorithm 1. The
algorithm first initializes the set V of all blocks and dcumul which accumulates yet unused
attempts as described in Section 4.1.3. It then receives or iterates over vertices v of the
hypergraph.
For each v, dcumulative is incremented, and a set of neighbor blocks Vneighbor is initialized.
Subsequently, the set of sampled blocks Vsample is initialized depending on the sampling
mode. The function call sample(V, c) returns a set of c′ sampled blocks with c′ < c as
described in Section 4.1.2. Note that if Vsample = ∅ after the initialization (for example,
when v has no neighbors), a random dummy block is added from V. That block may be
used in the later steps. After sampling, the set of blocks Vconsider to be considered while
comparing Fennel scores is initialized by filtering out heavy blocks Vi with c(Vi ∪ {v}) >
Lmax from the sample set Vsample. If Vconsider ends up empty, one of the unavailable
block resolutions is invoked. The Fennel resolution simply ignores the balancing constraint
and adds all sampled resolutions in Vsample into Vconsider for them to be considered while
comparing Fennel scores. The load resolution assigns v to the lightest block among Vsample

before making the overall algorithm move on to the next vertex. The random resolution,
unlike the load resolution, makes several attempts in order to find a block Vi that meets the
balancing constraint and assigns the v to that block. The function call pick_random(V)
returns a random block from the set V. If the algorithm has not moved on to the next
vertex as caused by an invocation of the aforementioned resolutions, Fennel scores of the
blocks in Vconsider relative to v are calculated, and the vertex v is assigned to the block
Vi ∈ Vconsider with the highest score.

4.2 Buffered Hypergraph Partitioning

Work done on HeiStream [13], shows that a buffered streaming algorithm is applicable to
the graph partitioning problem where the graphs are weighted and vertices in a buffer are
partitioned via a multilevel heuristic. In this work, we attempt to explore a similar idea for
hypergraphs in order to achieve a trade-off between resource usage and solution quality.
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Algorithm 1 hFennel with sampling.
V← {Vi | i ∈ {1, ..., k}}
dcumulative ← 0
for v ∈ V do

dcumulative ← dcumulative + d
Vneighbor ← {V ∈ V | V ∩

⋃
e∈Inc(v) e ̸= ∅}

if neighbors sampling mode then
Vsample ← sample(Vneighbor, c)

else if all blocks sampling mode then
Vsample ← sample(V, c)

else if non-neighbors sampling mode then
Vsample ← Vneighbor ∪ sample(V, c)

else if twofold sampling mode then
Vsample ← sample(Vneighbor,

⌊
c
2

⌋
) ∪ sample(V,

⌈
c
2

⌉
)

if Vsample = ∅ then
Vsample ← {pick_random(V)}

Vconsider ← {Vi ∈ Vsample | c(Vi ∪ {v}) ≤ Lmax}
if Vconsider = ∅ then

if Fennel resolution then
Vconsider ← Vsample

else if load resolution then
Vi ← argminVj∈Vsample

c(Vj)
Vi ← Vi ∪ {v}
continue

else if random resolution then
repeat

Vi ← pick_random(V)
dcumulative ← dcumulative − 1

until c(Vi ∪ {v}) ≤ Lmax ∨ dcumulative = 0;
Vi ← Vi ∪ {v}
continue

Vi ← argmaxVj∈Vconsider
Fennel(Vj, v)

Vi ← Vi ∪ {v}
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Section 4.2.1 introduces the general idea behind our prototype algorithm. Sections 4.2.2
and 4.2.3 regard specific aspects of the algorithm unique to the buffered streaming setting.

4.2.1 General Idea

Many high-quality hypergraph partitioning algorithms like the one proposed by Schlag et
al. [34], despite yielding superior solution quality with low cut-net values or other metrics,
require access to the whole hypergraph before the partitioning may even be initiated. Not
only does it make those algorithms inapplicable with streaming hypergraph input, but also
uses a large amount of memory by having to store the entire hypergraph structure and takes
a long time to partition. This is especially true for multilevel heuristics which conduct dif-
ferent operations at different levels. Streaming partitioning algorithms (including hFennel),
on the other hand, mostly have the disadvantage of only having access to one vertex and its
immediate vicinity, thus being strongly greedy and likely yielding low-quality solutions.
The need arises to be able to flexibly regulate the partitioning algorithm by controlling its
solution quality versus resource usage.
Faraj and Schulz [13] addressed this need for the graph partitioning task by proposing
HeiStream, a buffered streaming heuristic. Their algorithm takes δ vertices at a time with
their immediate vicinity and partitions them using a multilevel heuristic. Our work on
buffered streaming hypergraph partitioning, being based partly on HeiStream, reuses dif-
ferent components of HeiStream while expanding those components to the domain of hy-
pergraphs.
Our algorithm iterates over batches B ⊆ V with |B| = δ vertices. For each batch, an
artificial small hypergraph M = (B′, EB) is generated. The small hypergraph, from now
on referred to as the model, consists of |B′| vertices that contain copies of vertices in the
original batch and a set EB of nets choice of which depends on the design of the algorithm.
We define a function ϕ : B −→ B′ that maps an original vertex from the batch B to the
copy in the model.
When the model is generated, it is partitioned using a hypergraph partitioning heuristic.
The choice of a heuristic to partition the model is flexible. The heuristic can be, for ex-
ample, a multilevel hypergraph partitioning algorithm like KaHyPar, because it delivers
high-quality solutions. A high running time complexity of the algorithm is not an issue in
this case, since the model size remains O(δ), resulting in the overall running time com-
plexity of the streaming algorithm being O(n). The spatial complexity of the streaming
algorithm is in this case equal to that of the model partitioning algorithm for a hypergraph
with δ vertices. These asymptotic complexity estimates assume that parameters other than
n and δ do not change. After the model M is partitioned, for each v′ ∈ B′ such that an
original vertex v ∈ B exists with v′ = ϕ(v), we assign the vertex v in the original hyper-
graph to the same block as v′ was assigned in the model. The algorithm then iterates to the
next batch.
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4 Streaming Hypergraph Partitioning

4.2.2 Model Construction

As mentioned in the previous Section, an integral part of the algorithm constructs a model
M = (B′, EB) from batch B ⊆ V of the original hypergraph H = (V,E). This model not
only serves as a constant size input for the model partitioning algorithm but also provides
it information about the previously partitioned vertices.

Buffer vertices. All vertices in B are copied as they are into the model. No contraction
or weight modification is done on them. Since these vertices are not contracted, each net
incident to them but not incident to any one of the previously partitioned vertices is also
copied with the only modification being that vertices that are neither previously partitioned
nor present in B, that are, in other words, future vertices, are omitted. Vertex copies in B′

are subject to the model partitioning algorithm.

Artificial vertices. In addition to vertex copies from B, the vertex set B′ of the model
also contains some artificial vertices. They are generated by contracting all vertices previ-
ously assigned to a block Vi into a single vertex with the weight c(Vi) for each i ∈ {1, ..., k}.
While copying a net e incident to a vertex v ∈ B touching a block Vi, meaning that
Vi ∩ e ̸= ∅, instead of being kept, pins assigned to Vi are all replaced by the artificial
vertex representing Vi. Future vertices are, again, omitted. Since artificial vertices rep-
resent previously partitioned vertices in a way that is relevant to the model partitioning
algorithm without being subject to it, they are flagged or set as fixed vertices. This means
the model partitioning algorithm cannot assign them to a different block.

Parallel nets. Since future vertices are omitted, and previously partitioned vertices are
contracted into artificial pins of the resulting nets, the occurrence of nets with the same
sets of pins otherwise known as parallel nets becomes very likely. In order to improve the
running time of the model partitioning algorithm by decreasing the overall number of nets
in a model, parallel nets are merged. The nets created by merging other nets are given a
weight equal to the sum of the weights of the merged nets.
This process can be implemented by first representing nets as vectors of sorted pins. Each
pin vector will also have a function or some other way of quickly mapping it to the weight
of the corresponding net. The nets represented as pin vectors are all added into one vector
of nets, and this vector of nets is sorted lexicographically. After that, it is possible to iterate
over the vector of nets and simply extract the first occurrence of a net with weights of all
subsequent occurrences added to the weight of the first occurrence.

The model construction process described here can be seen as a generalization of model
construction from HeiStream [13] for hypergraphs. The process is visualised in Figure 4.1.
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4.2 Buffered Hypergraph Partitioning

Figure 4.1: Model construction process for a buffer. Numbers indicate weights, and vertex colors
(blue and red) denote their already assigned blocks. Note how artificial vertices are
created by contracting vertices previously assigned to same blocks while the nets with
weights 2 and 3 are merged into one with weight 5.

4.2.3 Imbalance Prescription
Partitioning algorithms usually try to enforce a hard balancing constraint. Using the same
imbalance ϵ to partition each buffer ensures that blocks remain balanced over all batches.
However, it is too harsh a constraint since we don’t need each batch to be partitioned with
an ϵ imbalance. On the other hand, using the absolute block constraint to partition each
batch is also not ideal, since a multilevel algorithm such as KaHyPar would try to optimize
for edge-cut as much as possible in the first batches by roughly putting all nodes in a single
block. We propose a balancing constraint to address both these possible issues.
Over the batches, the weight of the constructed model approaches the weight of the overall
input hypergraph c(B′) −→ c(V ) as it contains artificial vertices with the weight of all
previously partitioned vertices. Throughout the run of the algorithm, we should be able
to maintain L′

max := c(B′)
k

(1 + ϵ′) equal to Lmax so that there is more flexibility while
partitioning early batches. To do so, an individual imbalance ϵ′ may be prescribed for each
generated model throughout the execution. The following must then hold:

Lmax =
c(V )

k
(1 + ϵ) =

c(B′)

k
(1 + ϵ′) = L′

max (4.1)

Through some arithmetic manipulations, we can obtain:

ϵ′ =
c(V )

c(B′)
(1 + ϵ)− 1 (4.2)
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4 Streaming Hypergraph Partitioning

Figure 4.2: The prescribed imbalance for different batches. The weight of the first batch model is
3775 and the total hypergraph weight is 32259. The prescribed imbalance converges
to 0.03.

Figure 4.2 demonstrates how the value of ϵ′ is affected by the batch. It shows how its value
gradually converges with the original ϵ = 0.03.
While using multilevel heuristics for the model partitioning algorithm, an issue may arise
if the degree of flexibility is too high, and the current state of the blocks is imbalanced
as a result. Let’s assume, a multilevel partitioning algorithm receives the following task:
bipartitioning a model with two fixed vertices u1 and u2 with c(u1) = 10 and c(u2) = 0,
Lmax = 15 and 20 buffer vertices, each weighting 1. The buffer vertices are contracted, and
eventually, two heavy vertices v1 and v2 remain at the coarsest level with c(v1) = 10 and
c(v2) = 10. In this case, regardless of the initial partitioning, there will be an imbalance of
≈ 0.33. It is unlikely that refinement can restore the balance. Thus, it might be useful to
be able to regulate the degree of flexibility with regard to ϵ′. We introduce:

ϵ′′ = ϵ+ α (ϵ′ − ϵ) (4.3)

In this formula, we regulate the scale of the distance of ϵ′ from ϵ, and prescribe ϵ′′ to the
model partitioning algorithm. The parameter α ∈ [0, 1] is tunable.
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CHAPTER 5
Experimental Evaluation

5.1 Experimental Setup

We performed the implementation of our algorithms inside the KaHyPar framework (using
C++) and compiled it using gcc 9.3 with full optimization turned on (-O3 flag). In our
current implementations, we load the entire hypergraph to memory before streaming its
nodes directly from memory. Competing algorithms HYPE and Min-Max were pulled
from public GitHub repositories123. We have used a machine with two sixteen-core Intel(R)
Xeon(R) Silver 4216 processors running at 2.10 GHz, 93 GB of main memory, and 16 MB
of L2-Cache. It runs Ubuntu GNU/Linux 20.04.1 LTS and Linux kernel version 5.4.0-65-
generic. Unless explicitly mentioned otherwise, we use k ∈ {8, 16, 32, 64, 128, 256, 512}
for our partitioning experiments. We allow an imbalance of 0.03 for all experiments (and
all algorithms). All partitions computed by all algorithms have been balanced. Depending
on the focus of the experiment, we measure running time, memory usage, and/or edge-cut.
In general, we perform ten repetitions per algorithm and instance using different random
seeds for initialization, and we compute the arithmetic average of the computed objective
functions and running time per instance while fine-tuning the algorithm with sampling.
When further averaging over multiple instances, we use the geometric mean in order to
give every instance the same influence on the final score. This is done with the running
time and the memory usage of the algorithm as well, but not with the imbalance since
imbalance is a proportion. Unless explicitly mentioned otherwise, we average all results of
each algorithm grouped by k.

1Repository for HYPE: https://github.com/mayerrn/HYPE
2Repository for Min-Max: https://github.com/DarkWingMcQuack/MMStreamer
3Repository for Two-Phase Streaming: https://github.com/mayerrn/two_phase_streaming
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5 Experimental Evaluation

5.2 Data Sets

5.2.1 Hypergraphs

For our experiments, we chose some hypergraphs from the benchmark data set by Sebas-
tian Schlag [33]. The original set included 18 hypergraphs from the ISPD98 VLSI Circuit
Benchmark Suite [2] consisting of 18 circuits with sizes ranging from 13,000 to 210,000
modules translated from internal IBM internal designs, 192 hypergraphs from the Univer-
sity of Florida Sparse Matrix Collection [10], a large and actively growing set of sparse
matrices that arise in real applications, and 100 hypergraphs from the International SAT
Competition 2014 corresponding to different Boolean satisfiability (SAT) problems used
to test the performance of SAT solvers submitted by the participants. Two mutually exclu-
sive sets were derived: the Fine-tuning set and the Test set for the experiments described
in the following chapters. Each set includes 1 hypergraph from the ISPD98 VLSI Circuit
Benchmark Suite, 3 hypergraphs from the International SAT Competition 2014, and 6 hy-
pergraphs from the University of Florida Sparse Matrix Collection. Only 10 hypergraphs
in total for each set were chosen in order to avoid overfitting. We picked among the largest
hypergraphs by size in hMetis format from each of the original sets in order to measure the
solution quality and the performance of our algorithms in somewhat demanding settings.
All hypergraphs are unweighted (i.e. have unit edge and vertex weights) and use the hMetis
hypergraph input file format [20]. They have additionally been transformed to the edgelist
format in order to be used for tests with algorithms that only support this format. In the
edgelist format, each line models a node followed by a comma-separated list of edges it
is connected to. To investigate the effect of vertex and net weights on the partition qual-
ity, some experiments included initializing vertex weights as the number of their incident
nets and net weights as the number of their pins, since this kind of setting might be sim-
ilar to many practical applications of hypergraph partitioning. Individual hypergraphs are
described in Table 5.1.
ISPD98 VLSI Circuit Benchmark Suite consists of 18 circuits with sizes ranging from
13,000 to 210,000 modules and were translated from internal IBM internal designs. The
designs represent many types of parts, including bus arbitrators, bus bridge chips, mem-
ory and PCI bus interfaces, communication adaptors, memory controllers, processors, and
graphics adaptors. For each circuit, a cell is considered to be an internal movable ob-
ject, a pad is an external (perhaps movable) object, and a module is either a cell or a pad.
Each circuit is a translation from VIM (IBM’s internal data format) into "net/are" format,
a simple hypergraph representation originally proposed by Wei and Cheng [41] (see vl-
sicad.cs.ucla.edu for benchmarks in this format). [2] University of Florida Sparse Matrix
Collection is a large and actively growing set of sparse matrices that arise in real applica-
tions. The Collection is widely used by the numerical linear algebra community for the
development and performance evaluation of sparse matrix algorithms. It allows for robust
and repeatable experiments: robust because performance results with artificially generated
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5.2 Data Sets

Hypergraph Vertices Nets
Tune set

ISPD98_ibm16 183 484 190 048
human_gene2 14 340 14 340
nd12k 36 000 36 000
gupta3 16 783 16 783
Rucci1 109 900 1 977 885
ecology1 1 000 000 1 000 000
mono_500Hz 169 410 169 410
sat14_SAT_dat.k90.debugged 2 873 830 5 715 644
sat14_SAT_dat.k85-24_1_rule_2 2 712 808 5 395 102
sat14_SAT_dat.k80-24_1_rule_1 2 551 810 5 074 584

Test set
ISPD98_ibm15 161 570 186 608
BenElechi1 245 874 245 874
gearbox 153 746 153 746
3Dspectralwave2 292 008 292 008
pre2 659 033 659 033
Hamrle3 1 447 360 1 447 360
para-4 153 226 153 226
sat14_atco_enc3_opt2_05_21 2 968 120 5 933 456
sat14_SAT_dat.k85-24_1_rule_3 2 712 808 5 395 102
sat14_SAT_dat.k75-24_1_rule_3 2 390 788 4 754 042

Table 5.1: Information about individual hypergraphs for both data sets.

matrices can be misleading, and repeatable because matrices are curated and made publicly
available in many formats. Its matrices cover a wide spectrum of domains, including those
arising from problems with underlying 2D or 3D geometry and those that typically do not
have such geometry. [10] International SAT Competition 2014 hypergraphs correspond to
different Boolean satisfiability (SAT) problems used to test the performance of SAT solvers
submitted by the participants.

5.2.2 Graphs for Edge Partitioning

Some additional experiments were conducted to test the edge (as in graphs, not hyper-
graphs) partitioning capabilities of our algorithms. For that, we used a set of 10 graphs
with the corresponding file size of at most 250 MB for each. The file format in question
stores for each node its weight and its neighbors with the weight of the corresponding edge
followed by each neighbor.
To be able to partition graph edges via a hypergraph vertex partitioning algorithm, we
first converted graphs into corresponding hypergraphs, and then simply swapped vertices
and nets. It is possible because hypergraphs can be represented as bipartite graphs with
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hypernodes stored as nodes in one block being in an N-to-N relationship with hyperedges
stored as nodes in the other block, thus being equivalent in the hypergraph structure. Then,
a node with m′ outgoing or incoming edges in a graph becomes a hyperedge with m′ pins
in the resulting hypergraph, whereas each edge becomes a hypernode with 2 incident nets.

5.3 Fine-tuning hFennel with Sampling

As discussed in Section 4.1, there are some parameters, each with discrete values that
need to be tuned. In this section, we do that by starting from a baseline setting with the
number of random resolution attempts d = 1, sampling mode all blocks, and the number
of samples c = 8. We then go through steps adjusting each parameter while keeping the
other parameters constant. The best-found parameter value is then used in the subsequent
experiments along with the previously found best values from all previous steps. We,
therefore, hope to find the best combination of parameters, which will be used for the
comparison with other algorithms.

5.3.1 Fine-tuning Random Resolution Attempts

The first parameter to be tuned is d, because the enforcement of a hard balancing constraint
depends on it. If a low value for it is chosen, infeasible blocks might occur while using the
random unavailable block resolution, and avoiding infeasible balance is the priority.
In order to test the validity of the hypothesis from Section 4.1.3 about the effect of d on
the random unavailable block resolution, we conducted a simple preliminary experiment
on a randomly generated graph with no edges with results shown in Figure 5.1. In the
experiment, the random resolution tries to assign a weighted node v ∈ V with |V | = 1024
with weights between 0 and 64 to one of 32 blocks. Only, the hard balancing constraint
Lmax was considered. With the optimal block weight being approximately 1008 and the
maximum allowed block load being approximately 1038. In the case with d = 1, the
resolution only receives 1 attempt per each v which is depleted immediately. Therefore,
the hard balancing constraint is effectively ignored. In the case with d = 2, however, the
resolution only receives x+2 attempts per each v: x left over from previous invocations and
2 because of the value of d. We can see that there is a sharp improvement in the partition
balance. In fact, all blocks have a load less or equal to 1038, which satisfies the balancing
constraint.
After seeing such a sharp increase in the hypothetical balance, one could assume that it is
generally enough to use d = 2. However, that experiment only determined the validity of a
hypothesis about the effect of d and not its optimal value. For the tuning, we look at three
values of d ∈ {1, 2, 3}. The results of experiments on the tune set with these values are
presented in Figure 5.2.
We can observe the following from the experiments: For all values of d the solution seems
to have almost the same solution quality. The imbalance is close but below 0.03 for almost
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5.3 Fine-tuning hFennel with Sampling

Figure 5.1: Block weight distribution for the random resolution with d attempts for d ∈ {1, 2}.

Figure 5.2: Effects of d on solution quality at different values of k. Results seem to be the same
across values of d, causing an overlap.

all the experiments except at k = 256, 512. (A high imbalance indicator is caused by
the hypergraphs ibm16, gupta3, and mono_500Hz, for which there is difficulty assigning
multiple heavy nodes towards the end of the execution.) The lack of the effect of d can be
explained by the fact that the hypergraphs used in the experiments (similar to hypergraphs
used in the real world) have a large number of vertices. This causes a sufficient number of
attempts to be accumulated over the earlier iterations of the algorithm. Therefore, it can be
assumed that it is enough to use d = 1 for the majority of cases.
We still let the minimal value d be bounded by c outside the fine-tuning experiment de-
scribed above. In other words, unless a value d higher than c is specified, the algorithm
uses d = c. This ensures that the highest possible number of attempts is allowed without
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the overall running time complexity of the algorithm becoming more than O(nc). If d > c,
a complexity of O(nd) is possible in the worst-case scenario.

5.3.2 Choosing the Sampling Mode

The next parameter is the sampling mode, which is one of the following: all blocks, neigh-
bors, non-neighbors, and twofold. It was decided to be the second parameter to be deter-
mined as the choices are limited to only four. The results are shown in Figure 5.3.
We can make the following observations from the charts. A clear outlier is the sampling
mode all blocks. Although it has a clearly lower running time, its average cut-net result is
very high in comparison to the other methods. Conversely, the non-neighbors method has
the worst running time while yielding the lowest cut-net. Since we are trying to determine
an optimal method with trade-offs, we exclude both previous methods as extremities. It
leaves us with the methods neighbors and twofold. We choose to proceed with the method
twofold even though it yields a higher average cut-net than method neighbors. The reason
for it lies in the fact that the method neighbors tends to assign vertices to blocks conse-
quently as the block choice is only limited to the neighboring blocks, using only the hard
balancing constraint. Its cut-net advantage over twofold is, therefore, insignificant.

5.3.3 Finding the Best Proportion of Samples

The concluding configurable part of the algorithm with sampling is the actual amount of
samples c to be picked. While working with different values of k, it might be difficult to
judge the right absolute number of blocks to be sampled. Therefore, instead of determining
the actual value of c, we design experiments to find the right fraction of c relative to k that
would result in an optimal trade-off in the solution quality and the running time. Input
hypergraphs have unweighted vertices. We present the results in Figure 5.4.
In the figures, it can be observed that the running time seems to be linearly dependent
on c. It should be noted that the running time, although linearly dependent, still doesn’t
reduce by half for c = k

2
. This can be explained by the fact that the algorithm in its current

implementation needs time to load the whole hypergraph into the main memory and to
do some additional steps for each vertex apart from looping to find the block with the
highest Fennel score, like calculating the neighbor blocks, etc. However, the cut-net values
decrease sharply between c = k

8
and c = 2k

8
or k

4
, while the decrease for the rest of the

values is somewhat stable. This means the negative effect on cut-net is most insignificant
relative to the running time improvement for values of c at around c

4
. Therefore, we use

c = k
4

in our further experiments. The average imbalance also seems to gradually decrease,
staying below 0.03.
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5.3 Fine-tuning hFennel with Sampling

Figure 5.3: Effects of different sampling modes on solution quality and running time.

5.3.4 Choosing the Best Absolute Number of Samples

In some cases, it might be required that the amount of samples c remains constant and
independent from k. In order to pick the best absolute value of c that might be used uni-
versally, we conduct another set of experiments with the difference being that instead of
comparing the quality and performance at values c ∈ {k

8
, 2k

8
, ..., k}, we compare them at

values c ∈ {8, 16, 32, 64}. For the values k = 32, 64, we do not remove values of c > k as
those values of c still affect the solution quality due to the sampling algorithm we use which
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Figure 5.4: Effects of different c
k values on solution quality and running time.

we describe in Section 4.1.2. Input hypergraphs have unweighted vertices. We present the
results in Figure 5.5.

In this case, we can again notice two things. Namely, how the running time increases
linearly, and that the imbalance is also high. While analyzing the cut-net chart, it can be
observed that the least value of c at which a close to minimum cut-net is reached at 16. We
use this value in our comparison experiments. The average imbalance, in this case, does
not show a downward trend with the increasing c. However, for all experimented values
c > 8, it is lower and roughly the same.

34
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Figure 5.5: Effects of different c values on solution quality and running time.

5.4 Fine-tuning Buffered Hypergraph Partitioning

For the buffered algorithm described in Section 4.2, the only configurable parameter is α
from the Equation 4.2. As discussed in that section, using the original value ϵ for a model
may lead to an excessive amount of nets cut in order to keep the balance even for the
earliest vertex batches, which is generally not necessary. Meanwhile, using the value ϵ′

derived from Lmax without any adjustment might yield an incorrigibly high imbalance in
artificial vertices of models constructed for vertices received later. This necessitates finding
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an optimal α between 0 and 1 in order to be able to prescribe an optimal allowed imbal-
ance for models. We accomplish it experimentally by running our algorithm for values of
buffer size σ in {4096, 65536, 1048576}, values of k in {8, 32, 128, 512} and values of α
in {0.00, 0.04, 0.08, 0.12, 0.16, 0.20}. We choose values α ≤ 0.2, because the preliminary
experiments with values of alpha have yielded unacceptably high imbalance regardless
of other parameters. For cut-net comparison, we use the percentual difference from the
highest cut-net (or decrease) for each given σ instead of simply comparing cut-net values,
because it better represents the effect of α at a given buffer size. The results are shown in
Figure 5.6.

Figure 5.6: Effects of different α on solution quality.

In the figure, we can clearly see that the cut-net decreases for σ = 1048576. For the
other two buffer size values, no significant changes can be observed, although preliminary
experiments showed a decrease for values of α > 0.2. This can be interpreted as the higher
values of α loosening balance requirements and allowing for partitions with less cut-net.
However, the imbalance chart shows that already at α = 0.04, the prescribed imbalance
for models is too high, allowing partitions with an overall imbalance of more than 0.03. It
can also be observed that for the lower σ values imbalance grows faster with α than for the
higher σ values. In fact, for σ = 4096, the imbalance at α = 0 is already above 0.05. This
is caused by KaHyPar struggling to assign as few as 4096 into as many as 512 blocks in
hypergraphs such as gupta3.

5.5 Comparison of Algorithms

After having fine-tuned both our algorithms, we compare them with each other and some
other streaming hypergraph partitioning algorithms. We present our findings and interpret
them. We not only test our algorithms’ hypergraph partitioning capabilities but also their
applicability in graph edge partitioning.
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5.5 Comparison of Algorithms

5.5.1 Hypergraph Partitioning

Streaming algorithms. We experimentally compare different hypergraph partitioning
heuristics, including ours, on two versions of the hypergraph test set. One version of the test
set contains the original hypergraphs, which are unweighted. As described in Section 5.2.1,
for the second version of the test set, we added some vertex and net weights. The results of
our experiments are presented in Table 5.2 for unweighted hypergraphs and Table 5.3 for
weighted hypergraphs. hFennel with c = k

4
proposed in this work, denoted as "Sample k

4
",

and with c = 16, denoted as "Sample 16", is compared with the following heuristics: Hash
heuristic (used as a baseline), which assigns vertices to blocks based on the hash value
of their ID while enforcing the Lmax balancing constraint, Min-Max algorithm mentioned
in Section 3.2.3, HYPE mentioned in Section 3.2.2 and hFennel without sampling. We
also include the resulting average imbalance, the partition running time, and the average
maximum amount of memory used. Min-Max and HYPE are excluded from experiments
on weighted hypergraphs as they only support unweighted input.
The results show that despite yielding lower quality solutions than the hFennel algorithm
without sampling, hFennel with sampling still manages to deliver lower cut-net than all
other heuristics with the only exception being against HYPE at k = 8. Moreover, it is on
average at least twice as fast as the original hFennel algorithm for hypergraphs. It delivers
on average 20% more cut-net as the original hFennel and uses roughly the same amount of
memory. Its resulting imbalance being closer to 0.03 implies that the algorithm might have
a slight tendency towards heavy block assignment. The main advantage of the algorithm
with sampling can be observed while comparing running time results over different values
of k at a constant c (not shown in the tables). At all values of k, the running time stays
roughly the same, indicating that the algorithm is indeed O(nc) complex (or O(n) if c is
constant) instead of O(nk).

Buffered algorithm. Using the same test set, we test our buffered streaming hyper-
graph partitioning algorithm. Due to the lack of buffered streaming hypergraph partitioning
algorithms in general, we only compare the algorithm against the algorithm with sampling
and c = k

4
that we use as a baseline, even though it is not a buffered algorithm. The

algorithm is tested with the buffer size σ ∈ {212, 216, 220}. The results are presented in
Table 5.4 for unweighted hypergraphs and Table 5.5 for weighted hypergraphs. We use
the same statistics (resulting imbalance, running time, and memory usage) as for the non-
buffered streaming algorithms.
Some rather unexpected results can be observed, especially with respect to σ = 212. The
average cut-net for this buffer size is, in fact, larger than the one of the non-buffered al-
gorithm. With growing buffer size, however, the cut-net decreases at a rate such that at
σ = 216 the cut-net is already lower than that of the non-buffered algorithm. The im-
balance for all buffered algorithms is lower, as the algorithm tries to partition each batch
evenly, while the memory usage also grows with the buffer size, although the correlation
doesn’t seem to be linear. The memory usage being lower for the non-buffered algorithm
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k Hash Min-Max HYPE hFennel Sample k
4

Sample 16
8 690 420 500 402 282 279 168 121 305 307 174 950
16 710 819 563 578 328 238 222 641 327 454 237 536
32 714 003 596 210 364 371 286 390 323 056 298 606
64 726 205 616 333 397 641 335 443 336 670 336 671
128 729 166 631 550 432 345 378 403 374 279 381 455
256 730 535 645 662 467 876 424 991 422 931 430 314
512 731 093 657 128 503 161 466 050 464 774 466 478
Mean 718 756 599 308 389 758 309 088 361 063 316 749

Statistics
Imbalance 0,030 0 0,029 3 0,000 2 0,025 4 0,029 3 0,024 6
Time (ms) 1 170 24 465 5 916 5 178 2 454 2 155
Memory (MB) 651 375 343 964 974 500 649 347 649 323 649 698

Table 5.2: Performance comparison of different non-buffered streaming hypergraph partitioning
algorithms on unweighted hypergraphs.

k Hash hFennel Sample k
4

Sample 16
8 6 654 108 1 929 589 3 297 319 2 013 788
16 6 801 219 2 429 856 3 394 803 2 523 997
32 6 816 278 2 894 324 3 428 157 3 054 068
64 6 901 676 3 297 003 3 447 915 3 447 915
128 6 922 366 3 688 419 3 730 972 3 896 448
256 6 932 770 4 252 069 4 248 243 4 381 559
512 6 936 252 4 751 882 4 748 929 4 804 646
Mean 6 851 421 3 186 312 3 725 411 3 314 032

Statistics
Imbalance 0,030 0 0,027 0 0,029 9 0,026 7
Time (ms) 1 147 5 313 2 437 2 196
Memory (MB) 652 882 650 976 651 042 651 270

Table 5.3: Performance comparison of different non-buffered streaming hypergraph partitioning
algorithms on weighted hypergraphs.

can be explained as being caused by our implementation of the non-buffered algorithm stor-
ing additional information about all edges of hypergraphs and can, therefore, be discarded,
since, otherwise, it would have been roughly twice as little.
Due to the complexity of the model partitioning algorithm that we use, KaHyPar, it is
difficult to pinpoint the exact reasons why the buffered algorithm yields poor results at
σ = 212. However, some hypotheses can be made. As we have seen in Section 5.4 with
hypergraphs such as gupta3, KaHyPar may struggle to partition a model for a buffer size
as small as 4096, or 212. This not only causes a relatively high imbalance in general, but
may also cause KaHyPar to try and repartition the hypergraph, or in this case, the model,
yielding a higher cut-net during the process. This may be repeated multiple times. Such
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k Sample k
4

Buffered 212 Buffered 216 Buffered 220

8 305 307 324 817 140 690 33 761
16 327 454 387 477 184 558 50 875
32 323 056 461 846 223 960 67 070
64 336 670 502 379 274 383 89 490
128 374 279 528 361 326 457 120 913
256 422 931 547 917 379 254 162 892
512 464 774 569 653 437 406 206 475
Mean 361 063 466 609 262 730 88 321

Statistics
Imbalance 0,029 323 0,009 269 0,014 019 0,026 586
Time (ms) 2 454 233 090 133 507 161 144
Memory (MB) 649 323 566 874 786 718 1 620 781

Table 5.4: Performance of the buffered streaming hypergraph partitioning algorithm over different
buffer sizes on unweighted hypergraphs.

k Sample k
4

Buffered 212 Buffered 216 Buffered 220

8 3 297 319 3 252 631 1 483 478 376 199
16 3 394 803 3 889 431 1 933 520 552 896
32 3 428 157 4 454 358 2 342 519 762 976
64 3 447 915 4 929 579 2 848 683 998 748
128 3 730 972 5 251 441 3 381 624 1 372 988
256 4 248 243 5 500 155 3 915 826 1 838 394
512 4 748 929 5 759 282 4 411 556 2 365 046
Mean 3 725 411 4 638 645 2 725 836 992 127

Statistics
Imbalance 0,029 873 0,029 551 0,018 492 0,027 633
Time (ms) 2 437 281 670 157 290 211 942
Memory (MB) 651 042 572 306 802 891 1 692 505

Table 5.5: Performance of the buffered streaming hypergraph partitioning algorithm over different
buffer sizes weighted hypergraphs.

repetition also may cause increased running time for each model, hence the issue with the
running time for σ = 212. Another reason may lie within the treatment of fixed vertices
by the recursive bipartitioning algorithm of KaHyPar. It works by removing fixed vertices
from a hypergraph, partitioning the remaining vertices, and then adding fixed vertices back
while trying different block permutations. The issue is in the fact that the main part of the
algorithm excludes fixed vertices. When the buffer size decreases, the relative number of
nets or connections to fixed in other words, already partitioned vertices increases for each
vertex batch. Thus, more inter-batch nets are being cut, resulting in a higher overall cut-net.
When it comes to the running time over buffer sizes, decreased buffer size does not result
in a logarithmically, or yet alone, linearly better performance. The reason for this might
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be the expensiveness of model construction, which uses sorting algorithms in order to sort
nets by their pin set and merge them. It should be noted that although the performance
improvement is not large, decreased buffer sizes still improve the overall performance to
some extent.

5.5.2 Graph Edge Partitioning
In addition to testing our buffered and non-buffered algorithms for hypergraph partitioning,
we test their solution quality and performance for the edge partitioning task. We compare
our algorithms to the "Two-Phase" algorithm proposed by Mayer et al. [25], which is a
non-buffered linear time out-of-core graph edge partitioning algorithm. For the Two-Phase
algorithm, instead of using the cut-net metric, we count the number of vertices that have
replicas in multiple edge blocks. For our algorithms, the resulting cut-net is equivalent to
the number of replicated vertices in the source graph. We present our results in Tables 5.6
and 5.7.
The main thing to notice is how our algorithms deliver a lower number of replicated ver-
tices. However, the Two-Phase algorithm can be considered better suited for the edge
partitioning task as it delivers highly balanced solutions for an order of magnitude less
average running time while using less memory.

k hFennel Sample k
4

Sample 16 Two-Phase
32 622 390 622 377 619 177 2 359 112
128 631 051 628 413 628 413 2 408 213
Mean 626 706 625 388 623 778 2 383 536

Statistics
Imbalance 0,001 404 0,015 120 0,001 549 0,000 000 1
Time (ms) 54 812 13 908 22 829 2 821
Memory (MB) 2 473 932 2 473 846 2 473 937 422 134

Table 5.6: Performance comparison of different non-buffered streaming algorithms in edge parti-
tioning.

k Two-Phase Buffered 212 Buffered 216 Buffered 220

32 2 359 112 770 625 590 891 356 621
128 2 408 213 854 214 695 619 427 561
Mean 2 383 536 811 344 641 120 390 483

Statistics
Imbalance 0,000 000 1 0,000 420 0,001 070 0,006 250
Time (ms) 2 821 1 935 008 588 137 882 524
Memory (MB) 422 134 2 350 136 2 351 263 3 957 978

Table 5.7: Performance comparison of different buffered streaming algorithms in edge partition-
ing.
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CHAPTER 6
Discussion

6.1 Conclusion

In this work, we proposed and experimented with two algorithms. One of them was based
on an online heuristic for hypergraphs proposed by us previously, and the other one was
a prototype buffered streaming hypergraph partitioning algorithm. We fine-tuned their pa-
rameters and compared them to other similar partitioning algorithms.
For hFennel with sampling, we determined optimal parameters such as the number and
proportion of sampled blocks, the sampling mode, etc. We first explained our hypothesis
regarding whether and how sampling might yield balanced partitions with little gain in
cut-net and within a smaller amount of time. The algorithm with sampling proved to be
very efficient and, in some cases, capable of delivering roughly the same solution quality
as hFennel as measured by the cut-net metric while being remarkably faster, even though
there were a few exceptions to that while working with hypergraphs from the tune set (See
Section 5.3). It furthermore proved to result in a lower number of replicated vertices while
being used for the edge partitioning task than a specialized edge partitioner.
We also tried to find the best setting for the buffered hypergraph partitioner. Although there
is some limited success in cut-net reduction or a reduced running time and memory con-
sumption in some cases, a part of the experiments, especially for low buffer size, did not
yield expected improvements, and the running time did not decrease significantly with the
buffer size. The issues regarding the solution quality seemed to be caused by the internal
usage of KaHyPar, which was not intended to be used as a part of a buffered algorithm.
Performance-related issues were primarily caused by our use of KaHyPar libraries in order
to load hypergraphs and construct models. Overall, the performance and solution quality of
the buffered algorithm can not be considered conclusive as algorithms and libraries specif-
ically developed for buffered streaming partitioning are yet to be tested with the algorithm.
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6.2 Future Work

Our work conducted on streaming hypergraph partitioning algorithms and the algorithms
we propose can be considered as yet a step in the field. While attempting to answer some
questions, some further questions arose which can, perhaps, be answered by some future
work proposed in this section.

Weighted edgelist. In our experiments, input hypergraphs were loaded via KaHyPar
framework. It uses the hMetis [20] input format. In this format, the first m lines store
the weight and pin IDs for each net followed by n lines with vertex weights. Thus, the
whole hypergraph must be loaded before the actual partitioning starts. A format similar
to or based on the edgelist format can be developed in order to truly be able to receive a
weighted hypergraph in a stream. The edgelist format used by algorithms like MinMax is
for the unweighted hypergraphs. The weighted version of it may, for example, have the
weight after each vertex and net mention. For example:

4 73: 1 37, 2 84
2 98: 1 37
5 49: 2 84, 3 79, 52

This would be a hypergraph with vertex 4 of weight 73 connected to nets 1 of weight 37
and 2 of weight 84.

HeiStream for hypergraphs. Our prototype buffered algorithm uses KaHyPar to par-
tition models. A Fennel-based multilevel algorithm can be employed for model partition-
ing in order to accelerate our buffered partitioning algorithm and perhaps improve its so-
lution quality. In light of the related work, an obvious example of such an algorithm is
HeiStream. It employs a heuristic called Multilevel Fennel in order to partition models.
Since HeiStream as described by Faraj and Schulz in [13] uses Lmax throughout the algo-
rithm, there is no need to prescribe permitted imbalance for each model. On the software
side, it can be accomplished in two possible ways: On one hand, KaHyPar modules can be
expanded, adding a coarsener like the one used in HeiStream, a modified version of hFen-
nel that we previously proposed as an initial partitioning algorithm, and another modified
version of hFennel for hypergraphs as a refiner. Model construction from our prototype
may be reused. On the other hand, HeiStream itself should be expanded to be able to
process not just edges but also hyperedges.
Some other changes may be applied to our prototype algorithm as well. One of them is a
construction of an extended model, which not only includes artificial vertices created from
previously partitioned vertices and buffer vertices but also includes some ghost vertices.
These are vertices that are neither in the buffer nor have been previously partitioned, in
other words, "future" vertices. [13] Faraj and Schulz also extended HeiStream to operate in
a restreaming setting, which makes over the same graph with a modified algorithm. This
can hypothetically be applied to hypergraph partitioning as well.
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6.2 Future Work

Other metrics. In our work, we used cut-net minimization as the main objective. In
some contexts, other metrics are used to measure the solution quality. For example, con-
nectivity minus 1 objective not only considers the cut nets but also the number of times
a net is cut, in other words, their connectivity with 1 subtracted from it. For the hFennel
algorithm for hypergraphs proposed by us previously, minimization of connectivity minus
1 can be theoretically achieved by using the net criterion touching instead of intermediate
described in Section 3.2.4 as it accepts nets that have already been cut during execution.
During analysis, the geometric mean over different hypergraphs is used in order to deter-
mine an "average" absolute cut-net for an algorithm. This is done because total hypergraph
net weights and hence the resulting cut-net values differed in orders of magnitude, making
large cut-net values dominant if the arithmetic mean was to be used. The result is vulnera-
ble to zero values and cannot be used to make a judgment unless compared to that of other
algorithms. An alternative would be to use proportions of cut-net values relative to total
hypergraph net weights ω(cut(E))

ω(E)
where cut(E) denotes the set of cut nets. The resulting

value is always between 0 and 1 inclusively. Thus, using an arithmetic average in this con-
text is not only feasible in regard to unbiasedness but also informative of overall algorithm
solution quality.
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Zusammenfassung

Die Hypergraphpartitionierung wird bei an Größe zunehmenden realen Hypergraphen im-
mer schwieriger. Strömende Algorithmen sind ein aktueller Trend, die dafür da sind, im-
mer größere Hypergraphen in angemessener Zeit anzugehen. Allerdings wurde bislang
wenig Aufwand für strömende Hypergraphpartitionierungsalgorithmen betrieben. In un-
serer vorherigen Arbeit haben wir einen gewichteten Hypergraphpartitionierungsalgorith-
mus vorgeschlagen. Insbesondere haben wir einen erfolgreichen strömenden Algorithmus
an den Bereich der Hypergraphen angepasst. Wir haben sorgfältig alle Details dazu ent-
wickelt, um seine Leistung in der Praxis zu optimieren, und es experimentiell abgestimmt,
und wir zeigen, dass es Partitionen mit durchschnittlich ca. 15% weniger Hyperkanten-
schnitt ergibt als das derzeitig modernste strömende Hypergraphpartitionierungsalgorith-
mus. Bei dieser Arbeit fahren wir fort und führen die Nutzung der Probenahme vor, um
den Algorithmus weiter zu beschleunigen ohne einen signifikanten Qualitätsverlust der
Lösung zu verursachen. Nebenbei schlagen wir einen gepufferten Ansatz für Hypergraph-
partitionierung, um noch höhere Lösungsqualitäten bei der Nutzung regelbarer Arbeitsspei-
chermengen zu erhalten. Wir experimentieren außerdem mit der Nutzung unseres Algorith-
mus der Graphkantenpartitionierung, weil sich diese der Hypergraphknotenpartitionierung
äquivalent erweist.
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