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Abstract

The Weighted Connectivity Augmentation Problem (WCAP) is the challenge of finding a
subset of a given set of links with an associated cost which increase the connectivity of
a graph while minimizing cost. This is a fundamental problem in robust network design.
This work proposes an evolutionary approach utilizing state-of-the-art heuristic algorithms.
By leveraging principles of natural selection, combination, mutation and fitness evaluation
heuristic solutions can be refined to produce a new solution of higher quality. The al-
gorithm described in this work implements a classic steady-state evolutionary algorithm
using different combination and mutation operations on a selection of solutions computed
by heuristic algorithms. Experiments show an improved solution quality of up to 20%
depending on the link cost distribution.
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CHAPTER 1
Introduction

1.1 Motivation

Graphs are used to model many real-world systems such as infrastructure, social or com-
munication networks. The robustness of a given graph or network can be measured by
analysing its connectivity. Ensuring robust and fail-safe systems is of particular importance
in technological systems [15]. Using the example of a power grid by Freitas et al. [15] if a
power-line fails alternative routes need to be used which increases stress on said lines and
thus the possibility of them failing as well. To guarantee a robust and fail-safe network any
given graph or network has to be sufficiently well-connected. The problem of increasing
the connectivity of any given graph while minimizing some defined cost metric is known
as the connectivity augmentation problem or the survivable network problem.

The weighted connectivity augmentation problem is known to be NP-hard. The decision
problem of whether an augmentation of a given weight exists was shown by Eswaran and
Tarjan to be NP-complete [11]. Furthermore, it has been shown by Frederickson and Ja’Ja’
that for a tree with link weights being 1 or 2 this decision is NP-complete as well [14].
Moreover, the weighted connectivity augmentation problem as well as the weighted tree
augmentation problem are APX-hard [22]. No polynomial time approximation with an
approximation factor arbitrarily close to 1 has been found yet, but despite this, the con-
nectivity augmentation problem has been discussed plenty. Recently, a novel heuristic ap-
proach based on minimum spanning trees which quickly yields high-quality solutions has
been published by Fonseca et al. [12]. Furthermore, they also proposed an efficient ILP
formulation to find optimal solutions and they gave a first implementation of better-than-2
approximations [5, 27, 30, 31].
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1 Introduction

1.2 Contributions

This thesis aims to contribute an evolutionary approach to improve solution quality for the
weighted connectivity augmentation problem based on previous work done by Fonseca et
al. [12]. The proposed algorithm heavily utilizes the minimum spanning tree heuristics,
local search approach and flow refinements detailed by Fonseca et al. [12].

In each iteration of the algorithm two individuals are selected and one of four combine
operations is performed. One performs the minimum spanning tree heuristic on only the
links present in the individuals to refine the generated solutions. Another combines both
individuals and performs the flow refinement [12] on this new solution. Furthermore, the
third combine operation combines the individuals and greedily adds links from the com-
bined solution satisfying a given heuristic. Lastly, another combine operation computes the
cut of the selected individuals and uses the minimum spanning tree heuristic algorithm and
local search to complete the cut to a feasible solution to the problem. At the end of each
iteration the newly generated solution, called an offspring, is inserted into the population
by evicting another individual. The individual which shares the largest cut with the off-
spring and has a worse solution quality, called fitness, is chosen to be evicted. If no such
individual is found a new offspring with more lenient local search parameters is computed
until an individual can be evicted.

The evolutionary algorithm is compared to heuristic algorithms which are run multiple
times with noise on the link weights to induce tie-breaking. Real-world and generated
graphs were used to perform these experiments. All algorithms were run with the same
time constraint and thus only solution quality is compared. Furthermore, different link
weight distributions were tested. These experiments show the evolutionary algorithm out-
performing the pure heuristic algorithms with added noise.

1.3 Structure

The remainder of this thesis is organized as follows. In Chapter 2 all necessary funda-
mentals and definitions are described. Chapter 3 details related work on the weighted con-
nectivity augmentation problem as well as related problems. The evolutionary approach
is discussed in Chapter 4 and subsequently experimentally evaluated in Chapter 5. This
work is concluded by a discussion regarding the experimental results as well as possible
future work.
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CHAPTER 2
Fundamentals

Preliminaries needed for the weighted connectivity augmentation problem are described in
the following chapter. As this work is based on previously conducted research by Fonseca
et al. [12] we borrow definitions to related problems such as the minimum cut problem and
cactus graph representation of minimum cuts.

2.1 General Definitions

Consider an undirected graph G = (V,E) where V is the set of vertices and E ⊆
(
V
2

)
is the set of edges connecting pairs of vertices. The number of vertices is denoted as n
and the number of edges is denoted as m. A graph G is connected if there exists a path
between any pair of vertices. A graph G is called k-edge-connected if any two vertices of
G can be joined by k edge disjoint paths. Intuitively, this means, that k arbitrary edges of
G can be removed without disconnecting the graph. The greatest integer k for which G is
k-edge-connected is called the edge-connectivity λ(G) of G. Notice that if λ(G) = 0 then
G is disconnected. In this work we only consider connected graphs, i.e. λ(G) > 0.

2.2 Minimum Cuts

A partition is a partition of the vertex set of a graph G into disjoint non-empty sets. A cut
C is a partition of the vertex set into two disjoint subsets. This is also called a bipartition.
Any cut C can be represented as one of its two vertex sets. The complementary vertex set
is always only implied. The sum of the edge weights of a cut is called the size or weight of
the cut. A cut is called minimum if no other cut of smaller size or weight exists. We call
CG the set of all minimum cuts of a graph G.

3



2 Fundamentals

2.3 Cactus Graphs

A cactus graph is a connected graph, where any two cycles share at most one vertex. Cycle
edges are edges that lie on a cycle and tree edges are edges that do not lie on any cycle. The
cactus graph representation of the set of minimum cuts of a graph G = (V,E) is a cactus
graph C = (VC , EC) paired with a function Π : V → VC and its inverse Π−1 : VC → 2V

which is defined as v 7→ {u ∈ V : Π(u) = v} [12]. This definition maps each minimum
cut of C to a corresponding minimum cut in G. For further details and construction we
refer the reader to [10].

2.4 Weighted Connectivity Augmentation Problem

Consider a k-connected graph G = (V,E), a set of links L ⊆
(
V
2

)
and a cost

function c : L→ R≥0. Furthermore, E ∩ L = ∅ and E ∪ L is always a solution to the
following problem. The weighted connectivity augmentation problem asks us to increase
the edge connectivity of G to k + 1 by adding the cheapest subset of links S ⊆ L. A
cut c ∈ CG is covered by a link l ∈ L if the size or weight of the cut c is increased in
G′ = (V,E ∪ {l}). We define GL = (V, L) as the link graph that contains all links but
not the edges of G. If the graph is disconnected, this problem coincides with the minimum
spanning tree problem on its components. This work is built upon the assumption that the
input graph is always connected.
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CHAPTER 3
Related Work

Prior work done on the weighted connectivity augmentation problem is presented in this
chapter. Furthermore, the state-of-the-art algorithm for minimum cuts and the cactus graph
representation thereof are discussed, as this is a crucial part of solving the weighted con-
nectivity problem.

3.1 Minimum Cuts

A linear time approach exists for computing near-minimum cuts based on cluster contrac-
tion using label propagation and contraction heuristics [19]. An efficient way to compute
the cactus graph representation of all minimum cuts was proposed by Nagamochi, Nakao
and Ibaraki [25]. Their approach computes the minimum cuts between two vertices s and t
by running a s-t-flow algorithm and partitioning the resulting network into smaller networks
on which the cactus representation can more easily be computed. Afterward, all cactus rep-
resentations are combined. For further details, we refer the reader to [25]. Currently, the
state-of-the-art algorithm is VieCut by Henzinger, Noe, Schulz and Strash [18, 20]. They
adapt and employ reduction strategies by Nagamochi et al. [25, 26] and Padberg et al. [28].
An optimized version of the algorithm by Nagamochi et al. [25] is run on the resulting ker-
nel. A detailed description of the algorithm can be found in [20].

3.2 Connectivity Augmentation

3.2.1 Approximation Algorithms

Since the weighted connectivity problem is APX-hard [22] several different approxima-
tion approaches have been proposed. An early approach by Frederickson and Ja’Ja’ for
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3 Related Work

the bridge connectivity augmentation, the case where a graph is 1-connected but not 2-
connected, utilizes a greedy approach that connects leaves in a tree structure [14]. The
problem is transformed into a directed graph problem where minimum cost arborescences
are used. Later, Watanabe et al. proposed 4 approximation algorithms for the weighted
connectivity problem called FSA, FSM, SMC and HBD [32]. FSA is based upon the work
done by Frederickson and Ja’Ja’ [14] and uses minimum-cost arborescences. FSM utilizes
maximum-cost matchings to connect graph components. SMC greedily selects minimum-
cost edges and HBD is a hybrid approach combining FSA and FSM. Watanabe et al. showed
that FSA, FSM and HBD guarantee an approximation ratio of at most 2 for the bridge-
connectivity augmentation, but this bound does not hold for k > 1 [32].

In 1993 Khuller and Thurimella proposed a 2-approximation for any k > 0 by first
transforming the undirected graph into a directed graph [21]. Each undirected edge e =
(u, v) is replaced by directed edges in both directions and the directed version is solved
using matroid intersection. Furthermore, the directed problem can be solved in polynomial
time using minimum-cost flows [13]. A polynomially bound linear program for the cactus
augmentation problem can also be used to solve this case [7].

Work on approximation algorithms with an approximation factor better than 2 has been
done recently. Byrka, Grandoni and Ameli proposed a 1,91-approximation algorithm for
the unweighted connectivity augmentation problem by reducing it to a Steiner Tree prob-
lem [4, 6]. After reducing an instance to a Steiner Tree problem instance they utilize an
iterative randomized rounding approach and an adjusted linear program relaxation for said
problem to achieve this approximation bound. A 1,393-approximation algorithm was pro-
posed by Cecchetto et al. [7] for the tree augmentation problem, the case where k = 1 and
therefore essentially augmenting a tree, as well as the unweighted connectivity augmenta-
tion problem. A greedy approach with an approximation factor of (1+ ln(2)+ ϵ) has been
proposed for the weighted tree augmentation problem by Traub and Zenklusen [30]. They
transferred this approach to the weighted connectivity augmentation problem and proposed
a (1.5 + ϵ)-approximation algorithm [31]. A first implementation and experimental eval-
uation of both the (1 + ln(2) + ϵ) as well as the (1.5 + ϵ) approximation algorithms has
been given by Fonseca et al. [12]. In addition to these implementations, they propose
a new exact solver using an integer linear program, as well as new heuristic approaches
which aim to quickly deliver high quality solutions. The first approach they proposed is a
greedy heuristic called GWC which adds links based on cost-effectiveness, which consid-
ers both the link cost as well as the number of cuts this link covers. Their second approach
MSTConnect starts with an initial feasible solution to the weighted connectivity augmen-
tation problem by computing a minimum spanning tree and removing unnecessary links
using a flow-based approach. Furthermore, they employ a local search which can improve
any given solution by replacing sets of links with cheaper ones. Unlike the previously
mentioned approximation algorithms, these heuristic algorithms cannot guarantee an ap-
proximation factor. Their approaches are faster and yield higher quality solutions than the
previous state-of-the-art algorithms.
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3.2 Connectivity Augmentation

3.2.2 Randomized Algorithms
A randomized Monte Carlo algorithm that solves the weighted connectivity problem
in Õ(m + n3/2) has been proposed by Cen, Li and Panigrahi [8] which improves the pre-
vious best time complexity of Õ(n2) established by Benczúr and Karger [3]. They showed
that the weighted connectivity problem can be solved by using polylog(n) maximum flow
computations. The current state of the art is an Õ(m)-time algorithm by Cen, Li and Pani-
grahi [9].
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CHAPTER 4
Engineering an Evolutionary Approach

An evolutionary algorithm draws heavy inspiration from mechanisms of biological evo-
lution, such as selection, recombination, mutation and survival of the fittest. An initial
population of individuals (in our case sets of links that improve the edge-connectivity of
the input graph) is acted upon by the evolutionary algorithm through selection and recom-
bination. In each iteration of the algorithm, some individuals are selected based on their
fitness (in our case the summed cost of links in the set) and combined to form an improved
offspring [16]. We do not need a penalty function as each created offspring is a feasible
solution to the weighted connectivity problem. This will become clear in the following
sections. After the successful creation of an offspring, an individual of the population is
chosen by an eviction rule to be replaced by the new offspring. This eviction rule has to
consider the fitness of an individual and how similar the individual is to the offspring, as
we want to keep the diversity of the population high. This is important to avoid possible
premature convergence of the algorithm, i.e. to avoid getting stuck in a local optima [1].
We implement a steady-state evolutionary algorithm meaning, we only generate one off-
spring in each iteration of the evolutionary algorithm. We borrow a depiction of a typical
structure of a steady-state evolutionary algorithm from Sanders and Schulz from their work
on distributed evolutionary graph partition [29], which is described by Algorithm 1.

The work in the following chapter is based on previous work done by Fonseca et al. [12].
A brief description of the data structures used by Fonseca et al. [12] is given first. After-
ward, a high-level view of the evolutionary algorithm and its parts is introduced. The
following sections detail all parts of the evolutionary algorithm.

4.1 Data Structures

It suffices to do computations on the cactus graph C, as all minimum cuts of a given graph
G can be represented as a potentially significantly smaller cactus [10]. To compute the
cactus graph VieCut [18, 20] is used. The original graph G is stored using an adjacency

9



4 Engineering an Evolutionary Approach

Algorithm 1 A classic general steady-state evolutionary algorithm [29]
procedure STEADY-STATE-EA

create initial population P
while stopping criterion not fulfilled

select parents p1, p2 from P
combine p1 with p2 to create offspring o
mutate offspring o
evict individual in population using o

return the fittest individual that occurred

list. A function Π : V (G) → V (C) mapping vertices of G to vertices of C is defined
and modeled by an array using vertex IDs as indices. For every link l = (u, v) ∈ L the
function Π(l) := (Π(u),Π(v)) maps the link l to its corresponding link lC := Π(l) in the
cactus graph C. This can lead to parallel links, i.e. g, h ∈ L, g ̸= h with Π(g) = Π(h).
This set is optimized by only keeping minimum-cost links for each vertex pair in C. The
link set LC is stored using an adjacency matrix. Fonseca et al. also employ a dynamic
cactus data structure which can be updated efficiently [12]. This data structure extends and
modifies the approach by Henzinger, Noe and Schulz [17], which utilizes a union find data
structure. For implementation details, we refer the reader to [24].

In addition to the data structures used by Fonseca et al. [12] we keep one copy of the
original link set with the original link costs. During the evolutionary algorithm, a small
amount of noise is regularly added to the link costs to induce tie-breaking when running
the heuristic algorithms and combine operators. This copy is used to remove the added
noise and evaluate the produced offspring on the original link costs.

4.2 High-Level Overview

An overview of our evolutionary algorithm can be found in Algorithm 2. All parts of the
algorithm, such as how selection is performed or what combine operators are used, are de-
tailed in the following sections. First, we create an initial population. Afterward, the main
evolutionary loop starts. At the start of each iteration, two individuals from the population
are selected based on the tournament selection rule [23]. Then, noise is added to the link
costs. This noise is a random number between 0 and 1/100 of the smallest occurring link
cost. This is done to induce tie-braking wherever possible. One of four combine opera-
tors is chosen and the previously chosen individuals are combined to produce an offspring.
Afterward, the added noise is removed and one individual from the population is swapped
with the new offspring based on an eviction rule. This cycle is repeated until a time limit
is reached, after which the fittest individual of the population is returned.

10



4.3 Creating the initial Population

Algorithm 2 Overview of our evolutionary algorithm for WCAP
procedure WCAPEVO(Graph G, Cactus C)

create initial population P
while time left

select parents p1, p2 from P
add noise to links of C
choose random combine operator comb
combine p1 with p2 using comb
remove noise from links of C
evict individual in population using o

return the fittest individual that occurred

4.3 Creating the initial Population

In the initial creation of our population, 63 individuals are created by using 3 different
heuristic algorithms. The first run of these algorithms is computed without any noise on
the link costs. All following individuals are subjected to the previously discussed noise
to induce tie-braking. A population size of around 63 individuals seems to strike a good
balance between having a large enough and diverse population while also being computed
quickly. Early experiments with a population size of 100, 300 and 500 did not yield any
significant improvements regarding final solution quality. The noise on the link costs regu-
larly changes during the initial population fill. After the initial population is filled all noise
is removed. The algorithms used are as follows:

MSTConnect and Local Search. We use MSTConnect and the local search approach
by Fonseca et al. [12] extensively. First, a minimum-spanning tree LMST (or a minimum-
spanning forest if the link set is not complete) is calculated on the cactus link graph CL. The
links in LMST are sorted by weight in descending order. For each link in l = (u, v) ∈ LMST

a u-v-flow is computed to check if this link can be removed from the solution, i.e. dropped.
This can be done in linear time. A proof is given by Fonseca et al. [12]. Afterward, a local
search [12] is performed on the solution, which aims to replace sets of links with cheaper
ones. The number of links within a swap is limited by a parameter k, the local search
depth, which in our case is set to 3 during the initial population fill. Experiments done by
Möller [24] show a local search depth of 3 providing significant improvements. Depth-
limits of 4 and 5 seem to further find small improvements, while depth-limits larger than
that do not yield significant improvements. Therefore, a local search depth of 3 strikes a
good balance between possible improvements and running time. Sets of links are swapped
until no more feasible swaps can be found, after which the local search terminates. Feasible
swaps are found by using an adapted depth-first search. The depth for this adapted depth-
first search is also limited by the local search depth parameter k. For a detailed description
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4 Engineering an Evolutionary Approach

of the local search, we refer the reader to [12, 24]. We modified the local search to allow us
to set a time limit specifically on the local search. This is done to avoid hitting the global
time limit during the initial population fill and to ensure that the algorithm starts the main
evolutionary loop. During the creation of the initial population we aim to quickly compute
feasible solutions by setting a very strict time limit. Let t be the global time limit for the
evolutionary algorithm. The time limit for the local search during the initial population fill
is set to max(1, t/1000).

MSTConnect without dropping links. Secondly, we utilize MSTConnect, but with-
out dropping any links and without using local search. This approach is fast and may in-
clude links that could have been dropped. This leads to a slightly more diverse population
which may induce more mutations during the combine stage.

FastGreedy. Lastly, we utilize an approach that does not rely on minimum-spanning
trees. We do not directly use GWC by Fonseca et al. [12] since MSTConnect is consider-
ably faster. GWC could be made feasible by enforcing a time limit or finding reductions
for the link set on which the greedy algorithm is run. Instead of using the weight coverage
heuristic employed by GWC we just sort the link set by their cost in ascending order and
add links to the solution until all cuts are covered. This is generally very fast and provides
some diversity in our population, but produces low-quality solutions [24]. For graphs with
a large number of links, this approach still takes a considerable amount of time, which often
leads to the algorithm not starting the main evolutionary loop on said graphs. Therefore, a
time limit has to be enforced. If this time limit is reached the currently unfeasible solution
is made feasible using MSTConnect without dropping links or any local search.

4.4 Selection

In each iteration of the evolutionary algorithm, we have to select individuals, in our case 2
individuals p1 and p2, to perform combine operations on. We utilize the selection process
by Miller and Goldberg [23]. To select an individual from our population a tournament is
held between two randomly selected individuals r1 and r2. The fitter of the two individuals
is selected. Another tournament between two new randomly selected individuals is held to
select another individual.

4.5 Combine Operators

After two individuals have been selected noise is added to the link costs before choosing a
combine operation. One of four combine operators is chosen randomly.

12



4.6 Eviction Strategy

MST-Combine. The idea of this approach is to combine the selected individual into
one new solution and remove duplicates in the process. A minimum-spanning tree is then
computed on only the links in the combined solution. This will lead to unnecessary links
being dropped. As this is a quite simple approach it is very fast.

Drop-Combine. This combine operation relies on the flow approach by Fonseca
et al. [12] to drop links and improve our solution. Again, the selected individuals are
combined into one large solution. This link set is then sorted in ascending order using the
weight coverage heuristic from GWC [12], i.e. for a link l ∈ L we divide the cost of the
link c(l) by the number of cuts covered by said link al := {c ∈ CG : c is covered by l}. If
al = 0 the link l is not considered. The flow approach by Fonseca et al. [12] is then applied
to find links that can be removed from the new solution.

Recombine. Again, the selected individuals are combined into one large solution.
Analogously to GWC we greedily pick links l from the combined solution which mini-
mize c(l)/al until all cuts are covered.

Intersect-Combine. Lastly, the idea of this operation is not to combine the selected
individuals, but to compute the intersection. This intersection is completed into a feasible
solution by running MSTConnect with the flow approach. This new solution is then sub-
jected to a local search. Again, this local search is given a time limit. This time limit is less
strict than the time limit given in the initial population fill. When first creating the initial
population we want to quickly compute feasible solutions, but now we allow more time for
the local search to compute solutions of higher quality. Let t be the global time limit again.
The time limit for the local search during the Intersect-Combine is set to max(1, t/10).

4.6 Eviction Strategy

Before the eviction process is started, all noise is removed from the link costs. We want to
replace one individual in the population with our new offspring. At the same time, we want
to keep the population diverse as well as only replace individuals who have worse fitness
than our offspring. Our eviction strategy is based on a round system. First, we try to find the
individual in the population with the largest intersection with our new offspring. Preferably,
we want to swap these to keep diversity high. We do this only if the fitness of our offspring
exceeds that of the chosen individual. Should this not be the case a round-based approach is
started. In each round, a random individual in our population is chosen and a new offspring
is generated by adding noise to the link costs and subsequently using MSTConnect and
local search. This time no special time limit, other than the global time limit, is used for
the local search. Recall from section 4.3 that the local search can terminate even if no
time limit is given, by stopping if no more feasible swaps can be found. This is done to
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4 Engineering an Evolutionary Approach

increase the probability of the local search to compute a solution of high solution quality.
Afterward, the noise is again removed and if the fitness of the new offspring exceeds that
of the randomly chosen individual to be evicted, we swap them and the eviction process is
finished. If this is not the case we proceed to the next round. Every time we proceed we
increase the local search depth by one. Recall from section 4.3 that the local search depth
determines the limit of links in a swap. The initial local search depth is set to 3. If we are
unable to evict any individual after 4 rounds we stop the eviction process without changing
the population. An overview of this process is depicted in Algorithm 3.

Algorithm 3 Overview of the eviction process
procedure EVICT(offspring o, population P )

find individual p ∈ P with largest intersection with o
round← 0
depth← 3
do

if fitness of p < fitness of o then
evict p and insert o into P
return

else
pick new p ∈ P randomly
add noise to link costs
generate new offspring o with MSTConnect
run local search with depth limit depth on o
remove noise from link costs
if fitness of p < fitness of o then

evict p and insert o into P
return

else
round← round+ 1
depth← depth+ 1

while round < 4
return

14



CHAPTER 5
Experimental Evaluation

We now discuss the experimental evaluation of the previously detailed evolutionary algo-
rithm. First, the methodology as well as some information on the test instances is given.
Afterward, the evolutionary algorithm is compared to the pure heuristic algorithms in terms
of solution quality.

5.1 Methodology

The experiments are performed on a computer with an Intel(R) Xeon(R) Silver 4216 CPU
with 32 cores running at 2.10GHz and 93GB of main memory running Linux. The C++
code is compiled using gcc 9.4.0 with optimization level O3. The running time is limited
to 150 minutes.

Each instance is run twice using two different link cost distributions. We denote the link
cost distributions as w2 and w9, respectively. Link costs in w2 are given by the set {0.5, 1}
and link costs in w9 are given by the set { i

10
: i = 1..10}. These are picked uniformly

at random. We compare our evolutionary algorithm against the simple greedy approach
(called greedy in the following tables), a simple minimum-spanning tree on the cactus
graph (called mst in the following tables), and MSTConnect with the flow refinement and
local search [12] (called mst-ls-flow in the following tables). It is important to note that,
just like in the eviction process detailed in section 4.6, the local search is not time-limited
and allowed to terminate naturally. The heuristics are run for the same amount of time as
the evolutionary algorithm. Before each run of the heuristic algorithm noise is added to the
link costs. The solution is evaluated on the original link costs and the best found solution is
returned once the time limit is reached. This approach allows us to see if our evolutionary
algorithm can find better solutions given the same time constraint. The tables also include
the time, when the evolutionary found the best solution. This is given in seconds.
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5 Experimental Evaluation

Table 5.1: Properties of Instances G and their Corresponding Cactus Graph C

Graph |V (C)| |E(C)| |V (G)| |E(G)| Description

coPapersCiteseer 6 372 6 371 434 102 16 036 720 Social network
t60k 1 136 1 332 60 005 89 440 Sparse matrix
vibrobox 625 624 12 328 165 250 Sparse matrix
delaunay_n14 181 180 16 384 49 122 Delaunay graph
email 156 155 1 133 5 451 Social network
jazz 6 5 1 133 5 451 Social network
star-5000 5 000 4 999 Generated graph
star-1000 1 000 999 Generated graph
cycle-1000 1 000 1 000 Generated graph

5.2 Dataset

Two types of graphs are used in the evaluation: generated cycle and star graphs as well
as real-world instances. Cycles and stars are edge cases of cactus graphs with a number
of minimum cuts between O(|VC |) and O(|VC |2) [12]. Fonseca et al. recognized, that
many real-world instances have a low number of distinct minimum cuts, which leads to
very small cactus graphs [12]. Therefore, we follow the selection of graphs by Fonseca et
al. [12]. They picked connected graphs with non-trivial cactus graph representation, which
have at least 100 edges and at most 40 000 vertices, from the 10th DIMACS Implementation
Challenge [2]. All cactus representations are computed by using VieCut [20]. These are
computed once for every instance and done in advance. All instances, including all instance
properties, are listed in Table 5.1.

5.3 Evaluation

Table 5.2 shows the fitness values (summed link costs of the best found solution) using
the w2 link cost distribution. It is immediately obvious, that the jazz graph is small enough
for the greedy approach, as well as MSTConnect with flow refinements and local search
to find an optimal solution. Therefore, our evolutionary algorithm also finds this solution
instantaneously. It is clear, that MSTConnect is the best heuristic algorithm. These obser-
vations are in line with the observations by Fonseca et al. [12]. Our evolutionary approach
is able to refine the solution. The improvement is consistently around 20%. This is easily
apparent for large graphs, such as coPapersCiteseer. It is important to note that the evo-
lutionary algorithm finds the best solution rather quickly and is unable to improve upon it
until the time limit is reached. Recall, that the time limit is set to 150 minutes which is
equivalent to 9 000 seconds. This may imply that more aggressive mutation and combina-
tion approaches might be necessary to further improve the solution. The greedy approach
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5.3 Evaluation

Table 5.2: Augmentation weights using w2 Distribution

graph evo greedy full-mst mst-ls-flow time-found [s]

jazz 1,5 1,5 3,0 1,5 < 0,01
email 38,0 97,5 77,5 44,0 116
vibrobox 158,5 615,0 312,0 197,0 5 564
t60k 292,5 1 317,0 567,5 369,0 1 378
coPapersCiteseer 1 598,5 9 997,0 3 185,5 2 075,5 1 582
coAuthorsCiteseer 8 552,5 15 160,5 15 160,5 9 979 5
delaunay_n14 45,0 117,0 90,0 56,5 228
delaunay_n20 3 490 5 869,5 5 869,5 4 104 2 792
cycle-1000 265,5 1 191,5 499,5 322,5 1 132
star-1000 256,5 1 105,5 499,0 322,5 3 036
star-5000 1 370,5 8 083,0 2 499,0 1 727,5 3 345

which adds the lowest cost links until all cuts are covered expectedly performs the worst.
Figure 5.1 shows plots for the progression of fitness values for the evolutionary algo-

rithm, the greedy heuristic and MSTConnect on the T60K graph (see Table 5.1 for more
information on this instance). The greedy approach in Subfigure 5.1c seems to react to the
added noise, but quickly converges to the final fitness value. Since the local search is not
time limited MSTConnect does not produce many solutions as can be seen in Subfigure
5.1b. One minor jump in solution quality can be observed. The evolutionary algorithm
quickly finds a large improvement in the beginning. A steady improvement in solution
quality follows until the algorithm converges. Here, it is easy to see, that for most of the
time given to the evolutionary algorithm, no improvement can be observed.

When using the w9 distribution, as can be seen in Table 5.3, the evolutionary algorithm
struggles to significantly improve the solution when compared to MSTConnect. While bet-
ter solutions are found, the margins are much smaller compared to when using the w2
distribution. This is especially clear for graphs with small cactus representations. A more
significant improvement in solution quality can be seen for graphs with larger cactus rep-
resentations, coPapersCiteseer and star-5000 being good examples. For these graphs, the
evolutionary algorithm is able to find solutions that improve the solution quality by around
10%. It is again possible to observe, that the evolutionary algorithm quickly converges and
is unable to improve the solution further for most of the given time.
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5 Experimental Evaluation

(a) T60K Evo w2

(b) T60K MSTConnect+Flow+Local Search w2

(c) T60K Greedy w2

Figure 5.1: Comparison of Fitness Progression for the T60K Graph18



5.3 Evaluation

Table 5.3: Augmentation weights using w9 Distribution

graph evo greedy mst mst-ls-flow time-found [s]

jazz 1,33 1,67 2,22 1,33 < 0,01
email 8,44 21,22 17,22 8,56 4
vibrobox 35,22 132,56 69,33 37,11 8 996
t60k 64,78 291,44 126,11 68,33 2 312
coPapersCiteseer 350,00 2 310,22 707,89 385,22 6 773
coAuthorsCiteseer 1 896,67 3 369 3 369 1 938,78 9
delaunay_n14 10,00 27,22 20,00 10,33 389
delaunay_n20 774,56 1 304,33 1 304,33 777,11 2 772
cycle-1000 59,11 269,22 111,00 59,78 727
star-1000 57,00 247,44 110,89 59,89 4 835
star-5000 290,67 1 760,56 555,33 316,44 4 368
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5 Experimental Evaluation
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CHAPTER 6
Discussion

6.1 Conclusion

A lot of research and work has been done recently on heuristic and approximation algo-
rithms for the weighted connectivity augmentation problem. However, little to no research
has been done on an evolutionary approach to this problem. Previously done work on fast
heuristic algorithms that deliver high-quality solutions serve as a strong base to develop
promising evolutionary algorithms to solve the weighted connectivity problem. The con-
tribution of this thesis aims to provide a starting point to further develop and refine evolu-
tionary approaches and tailor them specifically to the weighted connectivity augmentation
problem. By using simple combine operations measurable improvements can be observed
when comparing the evolutionary approach to the heuristic algorithms. This improvement
is currently highly dependent on the distribution of link costs.

6.2 Future Work

This thesis proposes a first, simple evolutionary approach to solve the weighted connec-
tivity augmentation problem. Graphs with a large link set pose a great challenge. This is
especially noticeable when running greedy heuristics. One way to improve this is to per-
form some preprocessing on the link set by finding reduction rules. Currently, no reduction
rules have been established or evaluated. Another way of improving this algorithm is to
find more aggressive mutations. This may be useful if the evolutionary algorithm is stuck
in a local optima. One way to achieve this might be to forcefully insert new links into a
solution. The questions of how many and which links to choose for mutation have to be
looked into.

Moreover, parallel algorithms are not covered in this work. A parallel approach would
significantly speed up the initial creation of the population, which by itself would mean,
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6 Discussion

that the evolutionary algorithm spends more time in the main evolutionary loop. Further-
more, multiple offsprings could be generated in parallel, further speeding up the algorithm.
Currently, the heuristics used in this thesis are also not yet parallelized.

Finally, this work only focuses on the weighted connectivity augmentation problem and
not on related problems, such as the survivable network design problem. There, the goal
is not to increase edge-connectivity, but vertex-connectivity. These problems may have
overlapping features and assumptions which can be made.
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6.2 Future Work

Zusammenfassung

Das Problem der gewichteten Konnektivitätserhöhung (weighted connectivity augmenta-
tion problem, WCAP) ist die Forderung, eine Teilmenge einer gegebenen Menge von
Verbindungen mit entsprechenden Kosten zu finden, welche die Konnektivität eines
Graphen erhöht und gleichzeitig die Kosten minimiert. Dies ist ein grundlegendes Prob-
lem beim Entwurf robuster Netzwerke. In dieser Arbeit wird ein evolutionärer Ansatz
vorgestellt, welcher aktuelle heuristische Algorithmen nutzt. Durch die Anwendung von
Prinzipien der natürlichen Selektion, Kombination, Mutation und Fitnessbewertung kön-
nen heuristische Lösungen optimiert werden, um eine neue Lösung von höherer Qualität zu
erzeugen. Der in dieser Arbeit beschriebene evolutionäre Algorithmus implementiert einen
klassischen, kontinuierlichen (steady-state) Evolutionsalgorithmus, welche verschiedene
Kombinations- und Mutationsoperationen auf eine Auswahl von Lösungen anwendet, die
von heuristischen Algorithmen berechnet wurden. Experimente zeigen eine verbesserte
Lösungsqualität von bis zu 20%, abhängig von der Verteilung der Verbindungskosten.
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