
Bachelor thesis

Engineering of Algorithms
for Very Large k Partitioning

Manuel Haag

Date: October 1, 2021

Supervisors: Prof. Dr. Peter Sanders
M. Sc. Tobias Heuer
Prof. Dr. Christian Schulz
M. Sc. Daniel Seemaier

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, den 30. September 2021

Abstract

Graph partitioning is a NP-Complete [25] problem that asks to partition the node
set of a graph into k blocks of “roughly equal” size while simultaneously minimizing
the number of edges connecting the blocks. One of the most prominent applications of
graph partitioning is parallel computing where we want to distribute a computational
task to a compute node cluster such that each node receives an equal amount of work and
the communication between the nodes required to the complete the task is minimized.
However, with growing number of computing cores the problem of partitioning graphs into
a large number of blocks becomes increasingly important. Recently, a shared-memory
multilevel graph partitioning algorithm, called KaMinPar [19], was published that can
partition graphs with billion of edges into million of blocks within minutes. However,
the extreme case where each block contains only a constant number of nodes is relatively
unexplored. In such scenarios, which we consider as very large k partitioning, the blocks
of the partition should be formed by nodes that are tightly-coupled in the original graph.
Therefore, we believe that for this case much simpler algorithms that are specifically
tailored to very large k partitioning yield better results than traditional complex multilevel
algorithms. To this end, we implement and evaluate a shared-memory partitioner that
directly partitions the input graph into the desired number of blocks and afterwards, apply
a novel refinement algorithm to improve the solution quality. For block sizes that only
contain up to 8 nodes, our best configuration produces better solutions than KaMinPar on
70% of our benchmark instances, and is on average 4 times faster. Further, for block sizes
up to 32 nodes, our algorithm produces partitions with comparable quality to KaMinPar
and is still a factor of 1.5 faster.

Zusammenfassung

Graphpartitionierung ist ein NP-vollständiges [25] Problem, bei dem es darum geht,
die Knotenmenge eines Graphen in k Blöcke “annähernd gleicher” Größe zu partitionieren
und gleichzeitig die Anzahl der Kanten, die die Blöcke verbinden, zu minimieren. Eine
der bekanntesten Anwendung von Graphpartitionierung ist paralleles Rechnen, bei dem
man eine Berechnung so auf ein Cluster von Rechenknoten verteilt, dass jeder Knoten
die gleiche Menge an Arbeit erhält und die Kommunikation zwischen den Knoten, die be-
nötigt wird, um die Aufgabe zu erfüllen, minimiert wird. Jedoch mit wachsender Anzahl
von Rechenkernen wird das Problem Graphen in große Blöcke zu partitionieren zuneh-
mend wichtiger. Kürzlich wurde ein Shared-Memory Multilevel-Graphpartitionierungs-
Algorithmus, namens KaMinPar [19], veröffentlicht, welcher Graphen mit Milliarden von
Kanten innerhalb von Minuten in Millionen von Blöcken partitionieren kann. Jedoch der
extreme Fall, in dem jeder Block nur eine konstante Anzahl von Knoten enthält, ist relativ
unerforscht. In solchen Szenarien, welche wir als sehr große k Partitionierung betrachten,
sollten die Blöcke der Partition aus Knoten gebildet werden, die eng miteinander ge-
koppelt sind. Daher glauben wir, dass für diesen Fall viel einfachere Algorithmen, die
speziell für sehr großes k zugeschnitten sind, bessere Ergebnisse liefern als traditionelle
komplexe Multilevel-Algorithmen. Zu diesem Zweck implementieren und evaluieren wir
einen Shared-Memory Partitionierer, der direkt den Eingabegraphen in die gewünschte
Anzahl von Blöcke partitioniert und anschließend einen neuen Verfeinerungsalgorithmus
anwendet, um die Lösungsqualität zu verbessern. Für Blockgrößen, die nur bis zu 8 Knoten
enthalten, produziert unsere beste Konfiguration bessere Lösungen als KaMinPar auf 70%
unserer Benchmark-Instanzen, und ist im Durchschnitt viermal so schnell. Außerdem er-
zeugt unser Algorithmus für Blockgrößen bis zu 32 Knoten Partitionen mit vergleichbarer
Qualität wie KaMinPar und ist immer noch um einen Faktor von 1.5 schneller.

Contents

Contents
1 Introduction 6

1.1 Problem Statement . 6
1.2 Contribution . 7
1.3 Outline . 7

2 Preliminaries 7
2.1 Basic Definitions . 7
2.2 Balanced Graph Partitioning . 8

3 Related Work 8
3.1 Multilevel Paradigm . 9
3.2 Coarsening . 9

3.2.1 Size Constrained Label Propagation . 10
3.2.2 Matching Based Coarsening . 10

3.3 Initial Partitioning . 11
3.3.1 Graph Growing . 11
3.3.2 Spectral Partitioning . 11

3.4 Refinement . 12
3.4.1 Size Constrained Label Propagation . 12
3.4.2 Kernighan-Lin . 12
3.4.3 Fiduccia-Mattheyses . 13
3.4.4 Flow Based Refinement . 13

3.5 Geometric Partitioning . 13
3.6 KaMinPar . 13

4 A Partitioning Framework for Very Large k 14
4.1 Initial Partitioning . 15

4.1.1 Random Partitioning . 15
4.1.2 Initial Partitioning based on Graph Growing Techniques 15
4.1.3 Matching Contraction . 18

4.2 Refinement . 19
4.2.1 Size Constrained Label Propagation . 19
4.2.2 Mutation Refiner . 20
4.2.3 Backward Path Refiner . 21
4.2.4 Forward Path Refiner . 22

4

Contents

5 Experimental Results 23
5.1 Setup and Methodology . 23
5.2 Parameter Tuning . 24

5.2.1 Initial Partitioning . 24
5.2.2 Refinement . 26

5.3 Scalability of the Parallel Implementation . 32
5.4 Comparison to KaMinPar . 34

6 Conclusion and Future Work 40
6.1 Future Work . 41

A Detailed Performance Profiles Initial Partitioning 45

B Quality Loss with Parallel Implementation 47

5

1 Introduction

1 Introduction
Graphs are a mathematical model for network-like structures. They appear in many places
throughout computer science and have a wide range of applications also in other areas such
as social sciences, biology, linguistics and physics. One very useful operation is balanced graph
partitioning that asks to partition the node set of a graph into k blocks of “roughly equal” size,
while cutting only few edges. Balanced graph partitioning is NP-Complete [25] and has no
constant factor approximation on general graphs [8]. Thus in practice, one tries to find good
solutions using heuristics.
A prominent application of graph partitioning is parallel computing. In scientific simulations,
graph partitioning is used to map a computational network to processors, such that each pro-
cessor has roughly an equal number of mesh elements and communication cost between the
processors is minimized [41]. Existing research mostly focused on partitioning graphs into
small numbers of blocks, 2 ≤ k ≤ 256. However, with growing numbers of processors in parallel
machines, we are interested in large values of k – in the order of millions. For example, the
fastest supercomputer as of June 2021, Supercomputer Fugaku, has about 7.6 million compute
cores [6]. Graph partitioning also finds application in accelerating routing algorithms [35],
in Very Large Scale Integration (VLSI) [5], as first approximations for community detection
algorithms [36] and in image segmentation [37].
The most successful approach used by many state-of-the-art partitioners is the multilevel
paradigm. It consists of three phases: During coarsening, a graph hierarchy is build by succes-
sively contracting node sets computed by clustering or matching algorithms to obtain several
coarser approximations of the input graph. When the number of nodes of the coarse graph
falls below a certain threshold, a possibly expensive initial partitioning algorithm computes a
partition into k blocks of the coarsest graph. In the last step the contractions are uncoarsened
in reverse order, and, at each level, different refinement algorithms are used to improve the
quality of the partition.
However, if k is large, the coarsest graph that is used for initial partitioning can be still large.
As a consequence, many currently available multilevel frameworks compute either highly imbal-
anced solutions or have prohibitive running time for this case [19]. Recently, a shared-memory
multilevel graph partitioning algorithm, called KaMinPar [19], was published, that is specifi-
cally tailored for partitioning graphs into a large number of blocks, which substantially mitigates
these problems.
For very large k, i.e. k ∈ O(|V |), the blocks of the partition contain only a small number
of nodes. In the extreme setting that every block is only allowed to contain two nodes, the
problem is equivalent to the maximum weight matching problem, since minimizing the edge
cut corresponds to maximizing the total edge weight between matched nodes. For block sizes
larger than two, the problem is NP-Complete. Good partitions for this case contain many
densely connected blocks. But since the block sizes are small, nodes within such blocks must
have some locality. However, multilevel algorithms have a more global view on the partition of
the graph, since they refine the partition in coarser as well as finer levels of the graph hierarchy.
Therefore, we believe that there must be some trade-off depending on the number of nodes in
a block, where simpler non-multilevel algorithms are comparable or considerably better than
traditional complex multilevel algorithms.

1.1 Problem Statement
In this thesis, we want to design and evaluate algorithms to solve graph partitioning for the
case that k is very large, i.e. k ∈ O(|V |) and each block contains only a constant number of

6

1.2 Contribution

nodes. For this purpose, a framework should be developed that consists of the following two
phases: initial partitioning and refinement. The initial partitioning phase should implement
algorithms similar to techniques used in the initial partitioning phase of multilevel partition-
ers, such as random and graph growing approaches. For the refinement phase, different local
search algorithms should be investigated. The main task of this work is an extensive exper-
imental evaluation of the created algorithms on different benchmark instances. A major goal
is to significantly reduce the running time compared to KaMinPar while producing solution of
comparable or better quality on most benchmark instances.

1.2 Contribution

In this work, we implemented and evaluated four different initial partitioning and refinement
algorithms. We parallelized our most successful algorithms and compared them to KaMinPar
where each block is only allowed to a small number of nodes. Using simple graph growing
techniques for initial partitioning and a novel refinement algorithm, we outperform KaMinPar
for block sizes up to 8 nodes on 70% of the instances, while being faster by a factor of 4. For
block sizes up to 32, our algorithm is faster than KaMinPar by a factor of 1.5 with comparable
quality. Simple Label Propagation (LP) for refinement, outperforms KaMinPar with less quality
than our algorithm for block sizes up to 4 and is comparable for block sizes up to 16. However,
LP due to its simplicity is an order of magnitude faster (by a factor of 29) than KaMinPar.

1.3 Outline

In Section 2 we introduce basic definitions and required notation. We summarize related work
in the area of graph partitioning in Section 3, where we mostly focus on the stages of the
multilevel paradigm. Then, we describe our very large k partitioning framework and present
the experimental evaluation of our algorithms in Sections 4 and 5. Section 6 summarizes the
results and outlines future work.

2 Preliminaries

2.1 Basic Definitions

Let V be a finite set and d an integer. The set
(
V
d

)
:= {S ⊆ V | |S| = d} is the set of

all subsets of V of size d. An undirected weighted graph G is a tuple (V,E, c, ω), where V
is the set of nodes, E ⊆

(
V
2

)
the set of edges, with node weights c : V → R>0 and edge

weights ω : E → R>0. Let N(v) := {w ∈ V | {w, v} ∈ E} denote the neighborhood of v and
E(A,B) := {{v, w} ∈ E | v ∈ A,w ∈ B} the set of cut edges between the node sets A,B ⊆ V .
For compact notation define E(v, A) = E(A, v) := E({v}, A) for v ∈ V , A ⊆ V . The degree of
a node v is the number of adjacent neighbors d(v) := |N(v)|. The maximum degree of the graph
is denoted by ∆ := maxv∈V d(v). The definitions of N(v), c, ω are extended in the intuitive
way to sets. For V ′ ⊆ V , E ′ ⊆ E define N(V ′) := ⋃

v∈V ′ N(v) \ V ′, c(V ′) := ∑
v∈V ′ c(v),

ω(E ′) := ∑
e∈E′ ω(e).

A path P in a graph G is a sequence of nodes v1, v2, . . . , vl ∈ V , where nodes that are adjacent
in the sequence are also adjacent in G, i.e. {vi, vi+1} ∈ E for i ∈ {1, 2, . . . , l − 1}. A graph is
called connected, if for each pair of nodes v, w ∈ V , there exists a path from v to w. The length
of a path is the number of edges in P . Furthermore, the distance d(v, w) between two nodes

7

3 Related Work

v, w ∈ V is the length of the shortest path between v and w, if there is any, otherwise we set
d(v, w) :=∞.
A matching M ⊆ E is a set of edges that do not share any common nodes, i.e., the graph
(V,M) has maximum degree one. The weight of a matching is ω(M). A matching is called
maximal, if M can not be extended by adding one more edge e ∈ E \M . A maximum weight
matching is a matching maximizing ω(M). A matching M is called a perfect, if every node is
incident to an edge of the matching.
Contracting an edge {u, v} means to replace the nodes u and v by a new node x and connect
it to the former neighbors of u, v. We set c(x) = c(u) + c(v) as the new node weight. If u, v
have a shared neighbor w, we insert only one edge {x,w} with new edge weight ω({x,w}) =
ω({u,w}) + ω({v, w}). Otherwise if w is a neighbor of exactly one of u, v, say u, the edge
{x,w} with edge weight ω({x,w}) = ω({u,w}) is inserted. Uncontracting an edge e undoes its
contraction. Note that contraction and uncontraction preserve the total node weight c(V).

2.2 Balanced Graph Partitioning

Given a number k ∈ N>1 and node sets V1, V2, . . . , Vk ⊆ V with the properties:

a) V1 ∪ V2 ∪ · · · ∪ Vk = V

b) Vi ∩ Vj = ∅ for i 6= j

then {V1, V2, . . . , Vk} is called a k-way partition of G.
Given a fixed k the balanced graph partitioning problem is to find a k-way partition {V1, V2, . . . , Vk}
of G minimizing the total cut ∑i<j E(Vi, Vj) under a given balance constraint. The balance con-
straint demands that all blocks have about the same size. More precisely ∀i ∈ 1, 2, . . . , k :
c(Vi) ≤ (1 + ε) c(V)

k
+ maxv∈V c(v) for some imbalance parameter ε ∈ R≥0. The last term in this

equation arises because each node is atomic and therefore a deviation of the heaviest node has
to be allowed.
For the special case of this thesis, where the average block size c(V)

k
is constant, we will use a

deviation by a fixed node weight b ∈ N0 as balance constraint Lmax := c(V)
k

+ b+ maxv∈V . For
our purposes, this notion of balance is more meaningful and is easier to control. A block Vi is
underloaded if Vi < Lmax and overloaded if Vi > Lmax. Recall that balanced graph partitioning
is NP-Complete for every k = |V |

C
, C ≥ 3 [25] and has no constant factor approximation on

general graphs [8].
Changing the block of a node v is called a move. The gain of a move from block A to block
B is the number gB(v) := ω(E(v, VB)) − ω(E(v, VA)). This number tells us how the total cut
changes by this move. If the gB(v) ≥ 0, the cut decreases by gB(v) and the move is called
positive, if gB(v) < 0 the cut increases by −gB(v) and the move is called negative. A move
with gB(v) = 0 is also called zero gain move. A max gain move for a fixed node v is the move
maximizing gB(v) for B ∈ 1, 2, . . . , k.

3 Related Work

In this section, we will discuss related work. We mostly focus on the widely used multilevel
paradigm described in Section 3.1 and outline different techniques used in the stages of the
multilevel paradigm, namely coarsening (Section 3.2), initial partitioning (Section 3.3) and
refinement (Section 3.4). Then follows a brief description of a geometric partitioning technique

8

3.1 Multilevel Paradigm

using spacefilling curves Section 3.5. At the end we describe a partitionerKaMinPar Section 3.6,
which uses a novel technique called Deep Multilevel Graph Partitioning based on the multilevel
paradigm.

3.1 Multilevel Paradigm

The multilevel paradigm [20] is successfully used in practice by many state-of-the-art partition-
ers. In the direct k-way partitioning variant, the algorithm has three phases (see Figure 1).
First, a hierarchy of graphs is build by successively coarsening the graph. This is achieved by
contracting node sets, computed by a clustering or matching algorithm, until it reaches a pre-
defined size in O(k) or the procedure converges. Each graph is thereby a smaller approximation
of the graph from the previous level. Then, a possibly expensive inital partitioning algorithm
computes a partition of the coarsest graph. By the way contraction is defined, this partition
corresponds to a valid partition in every level of the graph hierarchy. In the uncoarsening phase
the contractions are subsequently reverted, the partition of the coarser graph is projected to
the next graph in the hierarchy and then is improved by a refinement algorithm.

Edgecut: 8

Edgecut: 6

Edgecut: 4

Coarsening Un
co
ar
sen
ing

Initial Partitioning

Figure 1: Graph Partitioning with Multilevel Paradigm.

3.2 Coarsening

The coarsening phase is the first stage in the multilevel paradigm, in which the hierarchy
of smaller graphs is build. There are two important goals of coarsening [42]. Firstly, the
contraction should quickly reduce the input size. Secondly, each computed level should reflect
the global structure of the input network. Usually, clustering and matching algorithms are used
for coarsening. In this section, we outline one clustering method based on Label Propagation
as well as different matching algorithms used for finding good matching in a practical amount
of time.

9

3 Related Work

3.2.1 Size Constrained Label Propagation

Label Propagtion was originally proposed by Raghavan et al. to detect community structures
in networks [39]. The original algorithm works as follows:
Initially, we assign to each node an unique label. The algorithm then works in rounds. In one
round the nodes are traversed in some order. If we visit a node v, it is moved to the neighboring
block Vi that the most neighbors are part of, i.e. to the cluster maximizing |N(v) ∩ Vi|, with
ties broken uniformly randomly. This process repeats until none of the vertices changed its
label.
Meyerhenke et al. [33] utilized the Label Propagation algorithm to create a multilevel hier-
archy. In one contraction, step nodes with the same label are contracted into one node. In
contrast to the original algorithm, blocks of the cluster must fulfill a size constraint. If a
block would exceed Lmax, it would be impossible to find a partition of the contracted graph
that fulfills the balance constraint. For this reason the authors introduced an upper bound
U := max(maxv∈V c(v), Lmax

f
) for the maximal size of a block, where f is a tuning parameter.

A neighboring block Vi of a node v is called eligible, if c(Vi) does not exceed U once v is moved
to Vi. When a node v is visited, it is moved to the eligible block having the most neighbor of
v. Additionally, they stop the algorithm after l iterations or if less than five percent of nodes
changed their label.

3.2.2 Matching Based Coarsening

Matching-based coarsening techniques contract a large matching in every contraction step. This
method can make use of existing matching algorithms. Optimal matchings can be computed in
polynomial time but are in general too slow [13]. In practice heuristic matching algorithms are
fast, produce good matchings and also can give an approximation guarantee [13]. We shortly
outline some methods.

Random Matching The random maximal matching algorithm works as follows [4]: The
nodes are visited in random order. If a node v is not matched, a random unmatched neighbor
w of v is selected. If such w exists, the edge {v, w} is added to the matching and v and w are
marked as matched. Otherwise, v has no unmatched neighbor and v remains unmatched. The
complexity of the described algorithm is O(|E|).

Greedy Edge Matching We can obtain a 2-approximation by always matching the heaviest
unmatched edge in the graph [26]. This can be achieved by sorting the edges by edge weight and
then scanning the edges in reverse order. Consider an edge e chosen by the greedy approach.
If e is not in an optimal matching, then at most both endpoints of e are matched with other
edges e1, e2. By the sorting ω(e1) ≤ ω(e) and ω(e2) ≤ ω(e). In total the optimal choice is not
better than 2 · ω(e). The runtime O(|E| log |E|) is dominated by the sorting algorithm.

Heavy Edge Matching The Heavy Edge Matching Algorithm is a simple O(|E|) matching
algorithm [4]. The nodes are traversed in some order. Every unmatched node v is matched with
the unmatched neighbor w ∈ N(v) connected via the heaviest edge. This method is a more
local version of the greedy approach and is also faster in practice. However, this algorithm has
no approximation guarantees. Consider a triangle with edge weights 1,1, α, α > 1. If the node
with the two smaller edges is visited first, the optimal can not be taken anymore. Since α can
be arbitrarily large, the algorithm has no approximation guarantees.

10

3.3 Initial Partitioning

Path Growing Matching The Path Growing Algorithm improves the idea of the Heavy
Edge Matching to obtain a 2-approximation in O(|E|) time. Starting from some node it con-
structs a path following the heaviest edge to an unassigned neighbor. The edges of the path
are assigned in alternating fashion to two matchings M1,M2. This process is repeated until
no edge can be matched anymore. Returning arg max(ω(M1), ω(M2)) yields a 2-approximation
[26].

Global Paths Algorithm (GPA) GPA is a more sophisticated heuristic to obtain a 2-
approxmiation in O(|E| log |E|) time [32], which empirically gives considerably better results
than other approximations. It finds a collection of paths and even length cycles and calculates
optimal matchings for each paths and cycles using dynamic programming.

3.3 Initial Partitioning

The initial partitioning phase is the second phase of the multilevel paradigm. In this phase a
k-way partition of the coarsest graph is computed. Since this partition is propagated to the top
level, it has a major impact on the solution quality. The assumption in the multilevel paradigm
is that the coarsest graph is small, so an expensive partitioning algorithm can be used. We
describe two approaches. First, BFS-based and greedy graph growing, that grow a block around
seed nodes. Secondly, we outline the idea of spectral methods, that use the information about
connectivity in the second eigenvector of the Laplace-matrix to partition the graph.

3.3.1 Graph Growing

In general, graph growing algorithms describe a family of algorithms, which can be either BFS-
based or based on greedy growing techniques. An algorithm to obtain a bipartition works as
follows [17, 18]. A BFS traversal is initialized with a random start node. All the nodes touched
by this BFS are assigned to block V1. The BFS continues until half of the nodes were assigned
to V1. The remaining nodes V \ V1 form the second block V2. This method is very sensitive to
the selection of the start node, so it is repeated multiple times with different start nodes.
Alternatively, one can also select a peripheral node as start node, which is a node x that
maximizes the eccentricity l(x) := maxy∈V d(x, y) [17]. Such a node has maximum distance
to a node out of all nodes and may be a good start node for computing a bipartition. Since
finding a peripheral node is expensive, the authors describe a heuristic algorithm to obtain
a node with high eccentricity l(x), called a pseudo peripheral node. The algorithm works as
follows: A BFS is started from a random node and the last node touched by BFS is chosen as
a pseudo peripheral node. To get better results, one can repeat this process several times with
the last found node and store the node x with maximal l(x) as final start node.
A greedy variation of graph growing always adds the node to the block having the least increase
in cut, instead of selecting the nodes in normal BFS-order [27]. These approaches can be
extended intuitively to a k-way partition algorithm by using multiple BFS traversal and stop
each after it has the average number of nodes c(V)

k
in the block. In Section 4.1.2 we describe a

more detailed implementation of the k-way approach similiar to [23].

3.3.2 Spectral Partitioning

The spectral bisection method, which was first introduced by Donath and Hoffman [12], par-
titions an unweighted graph by calculating the second eigenvector v2 of the Laplace-matrix

11

3 Related Work

L := D−A, also known as the Fiedler Vector, where D is a diagonal matrix containing the node
degrees and A is the adjacency matrix. A bisection is encoded in a vector by setting the entries
of the respective nodes to 1 if they are in V1 and −1 if they are in V2. The key observation is that
the number of cut edges |C| can be expressed in the scalar xTLx = ∑

{u,v}∈E(xu − xv)2 = 4|C|,
where the vector x encodes the bisection. So the bisection problem can be reformulated as the
solution to the optimization problem

min{xTLx | xT1 = 0, xTx = n, x ∈ {−1, 1}n}

The objective function corresponds to the minimization of the edge cut and the first condition
corresponds the constraint of perfect balance (assuming even n). It can be shown that if the
integrality constraint is dropped, the Fiedler Vector v2 is an optimal solution to the relaxed
problem. In order to obtain a partition from a solution x to the relaxed problem, the median
m of the entries of x is calculated. A node v with xv ≤ m is assigned to V1, otherwise it is
assigned to V2. There are generalizations for arbitrary k [9, 21], however, the case of very large
k can not be handled efficiently and is still an issue [9].

3.4 Refinement

During the uncoarsening phase, the last phase of the multilevel paradigm, the contraction of
the graph hierarchy is successively undone, and refinement algorithms are used to improve
the solution quality after each uncontraction. We outline the use of Size Constrained Label
Propagation for refinement, the Kernighan-Lin algorithm, the Fiduccia-Mattheyses algorithm
and a flow-based refinement method.

3.4.1 Size Constrained Label Propagation

The Size Constrained Label Propagation algorithm for coarsening mentioned in Section 3.2.1
can also be used for refinement by setting the tuning parameter f = 1 and initially give each
node a label representing its block rather than unique labels. This yields a simple and fast
local search algorithm [33].

3.4.2 Kernighan-Lin

Kernighan-Lin [28], referred to as KL, is a local search algorithm to improve the edge cut of a
given balanced bisection (V1, V2) while still maintaining the balance. The algorithm repeatedly
searches node sets A ⊆ V1, B ⊆ V2 with |A| = |B|, such that swapping the respective blocks
of nodes in A and B improves the cut until no further improvement can be found. One pass
consists of finding and exchanging these sets. A pass works as follows. The algorithm searches
for pairs of nodes v ∈ V1, w ∈ V2 to exchange blocks. Moving v to V2 and w to V1 has a total
gain of g(v, w) := g2(v)+g1(w) if v and w are adjacent and g(v, w) := g2(v)+g1(w)−2ω({v, w})
otherwise, since the edge {v, w} will still be in the cut after the swap. In one pass a node is
only allowed to move once. In one round the two unmarked nodes ai ∈ V1, bi ∈ V2 maximizing
g(ai, bi) are exchanged and marked. Note that g(ai, bi) can be negative. This procedure is
repeated p := min(|V1|, |V2|) times. In the end the best prefix of swaps is applied to the
graph, i.e. l ≤ p is set to the smallest index maximizing ∑l

i=1 g(ai, bi) and A := ⋃l
i=1{ai},

B := ⋃l
i=1{bi}. The major drawback of KL is the expensive asymptotic runtime. The original

implementation has O(n2 log n) running time [28] and could be improved to O(mmax(log n,∆)
where ∆ denotes the maximum degree [14]. An advantage of the algorithm is that it can climb
out of local minima to a certain extent by the way A and B are constructed.

12

3.5 Geometric Partitioning

3.4.3 Fiduccia-Mattheyses

The Fiduccia-Mattheyses, referred to as FM, algorithm is similar to KL algorithm, but has
an improved asymptotic runtime of O(m) [15]. The major difference to KL is that instead of
performing node swaps, the algorithm tries to perform node moves that satisfy the balance
constraint. In one pass the FM algorithm alternating selects one block and moves the node
with the highest gain to the other block. During one pass a node is moved at most once. If no
move can be found anymore, the algorithms performs a rollback to best seen solution during a
pass. The procedure is repeated until no improvement can be achieved. This change allows a
more efficient implementation using a data structure called bucket queue.

3.4.4 Flow Based Refinement

Sanders and Schulz [40] describe a flow-based algorithm to improve the edge cut of a given bi-
partition. The algorithm constructs a flow problem in an area around the boundary between the
blocks. The area is chosen such that every s-t-cut induces a balanced cut in the original graph.
The source and sinks are configured in such a way that a corresponding max-flow-min-cut al-
gorithm induces a cut in the original graph, which improves the solution quality. The authors
describe multiple extensions to the algorithm. For example, one can apply this method itera-
tively, search in larger areas for feasible cuts or apply the so-called most-balanced-minimum-cut
heuristic to obtain better balanced min cuts [24]. The algorithm can be generalized to k-way
partitioning by applying the method successively to pairs of adjacent blocks.

3.5 Geometric Partitioning

If a graph has coordinates for each node in space, one can use this geometric information to per-
form partitioning. Such graphs arise for example in scientific computing in finite element models
or other geometrically-defined graphs. One approach uses spacefilling curves to partition the
graph [38]. A spacefilling curve is a family of curves defined recursively in self similar manners.
On each level the curve approximates the space more fine granular and can come arbitrarily
close to any point. These curves preserve the spatial locality of the higher dimensional space,
i.e. points that are close in the high dimensional space are close on the 1-dimensional curve.
An example is the 2-dimensional Hilbert curve [3]. The idea of spacefilling curve partitioning is
to map the nodes to a spacefilling curve, which reduces the d-dimensional partitioning problem
to a 1-dimensional problem. This problem can be solved in linear time, by dividing the line
into k intervals, such that all intervals have about the same node weight. An advantage of this
method is that if subsequent partitions are needed, in which the nodes only moved a little,
partitions can be generated by moving the boundaries between the intervals of the previous
partition.

3.6 KaMinPar

KaMinPar is a graph partitioner that uses a novel approach based on the multilevel paradigm
called Deep Multilevel Graph Partitioning [19]. Deep MGP continues coarsening deep into the
initial partitioning phase to a size of 2C, for a parameter C. Let ceil2(x) be x rounded up to
the next power of two. The algorithm maintains the invariant that the partition of a coarse
graph with n′ nodes in the graph hierarchy has k′ = min{k, ceil2(n′

C
)} blocks. The choice of k′

ensures that a bipartition algorithm works on roughly 2C nodes.

13

4 A Partitioning Framework for Very Large k

In the following we describe how a k-way partition is obtained. The graph hierarchy is unrolled
level by level. Uncoarsening of one level works as follows: First, the partition of the lower level
is projected to the uncoarsened graph and blocks are subdivided using bipartition algorithms,
until the coarse graph has k′ blocks. Possible violations of the balance constraint are repaired
by applying balancing algorithms. Then k-way refinement algorithms are used to improve the
solution quality. On the last level, if k′ < k, blocks are further subdivided into k blocks to
obtain a k-way partition. Figure 2 illustrates the procedure.
The Deep MGP can be seen as a hybrid approach between direct k-way partitioning and recur-
sive bipartitioning: Like the direct k-way approach, Deep MGP coarsens and uncoarsens the
graph only once and uses k-way local improvement algorithms throughout the graph hierarchy.
Moreover, it enforces that (possibly expensive) bipartitioning algorithms are only applied to
small graphs. They authors show in their evaluation that KaMinPar is an order of magnitude
faster than other graph partitioners if k is large, while producing comparable solutions [19].

≈ 2C ≈ C

≈ 4C

≈ C

≈ 2C

≈ 2C ≈ 2C

≈ 2C

≈ 8C

C
oarsen

in
g

Bipartition + Refinement

P
ro

je
ct

io
n

Bipartition + Refinement

P
ro

je
ct

io
n

Final Partition

≈ 2C ≈ 2C
≈ C≈ C

≈ C ≈ C

C
oarsen

in
g

Figure 2: Illustration of Deep Multilevel Graph Partitioning.

4 A Partitioning Framework for Very Large k
In this section, we present our framework for very large k-way partitioning. By very large k
we understand k ∈ O(|V |). In this setting, each block will contain only a small number of
nodes. For very large k the block sizes are very small, so the partition should be formed by
nodes that are tightly-coupled in the original graph. That is why we believe that there must
be some trade-off depending on the number of nodes in a block, where simpler non-multilevel
algorithms are comparable or considerably better than multilevel algorithms. For this purpose,
we want to develop a framework that consists of the following two phases: initial partitioning
and refinement. We deviate from the multilevel paradigm, since for very large k the coarsest
graph is still very large, which is usually assumed to be very small. Our approach starts directly

14

4.1 Initial Partitioning

in the initial partitioning phase (Section 4.1) and then continues to improve the partition using
a refinement algorithm (Section 4.2).
Based on preliminary experiments we decided to parallelize our most promising algorithms.
Thus, we describe a parallel version for the BFS initial partitioner and the refinement algorithms
Label Propagation and Forward Path Refiner.

4.1 Initial Partitioning

The goal of the initial partitioning phase is to obtain a balanced k-way partition of the graph,
which enables us to run a local search algorithm on the computed partition. We did not imple-
ment spectral methods (Section 3.3.2), as they are too slow for large k. Geometric methods,
such as spacefilling curves (Section 3.5), need coordinates for each node and thus can not be
used in the general setting.
We implement a partitioner that randomly assigns nodes to blocks, a partitioner based on graph
growing similar to [23], as well as a partitioner inspired by matching-based coarsening outlined
in Section 3.2.2. The random approach shows us how good the other techniques are performing
compared to a random partition. Graph growing is a well-established technique in many initial
partitioning portfolios such as Metis [27], KaMinPar [19], that is easy to implement and offers a
good time-quality trade-off. Last, the matching approach with an optimal matching algorithm
yields optimal solutions for k = n

2 . This motivates the use of it for very-large k, where the
graph is only contracted a few times.

4.1.1 Random Partitioning

The simplest way to compute a feasible k-way-partition is to assign the nodes one by one to a
random block with respect to Lmax. This technique will not result in good cuts, but it is more
of a starting point of a partitioner for comparison. For the implementation, we use one array
that contains all block IDs. A random block is selected by generating a random index in the
range of the array and returning the block ID at that index. If after the movement of the node
the block is full, we swap the block ID to the end of the array and decrease the array size by
one.

4.1.2 Initial Partitioning based on Graph Growing Techniques

Based on the graph growing techniques in Section 3.3.1, we implemented the Breath First
Search (BFS) partitioner. The idea is to grow each block by one separate BFS traversal. For
this reason we define the procedure BFS(u, k′, L), that takes an unassigned start node u and
runs a BFS on the unassigned nodes. Visited nodes are moved to Vk′ until the block weight of
Vk′ is at least L and the BFS is stopped. If the BFS queue Q is empty, but c(Vk′) < L, a new
unassigned node is pushed to Q in order to restart the BFS. In the following we call the node
u for the very first BFS run start node and every other node u or node that is used to restart
a BFS next node. We first outline how we set the block size L and then explain different start
node and next node selection strategies.

Configuring the Block Sizes. We could run each BFS with the block size L = Lmax, but
then we would end up only with either full or empty blocks. As a consequence, many node
swaps between block would be infeasible due to the balance constraint. Moreover, the partition
would contain empty blocks, which can not be used by local search algorithms that only move

15

4 A Partitioning Framework for Very Large k

nodes between adjacent blocks. Hence, we want the block sizes to have approximately average
weight c(V)

k
. For simplicity, we assume that G is unweighted and let r := |V | mod b |V |

k
c. Then

we can ensure that the block sizes differ by at most one by building r blocks of size d |V |
k
e and

k− r blocks of size b |V |
k
c. In the weighted case one can set L = c(V)

k
, but empty blocks can not

be avoided, if many blocks exceed the average node weight c(V)
k

due to large nodes.
Now we describe the two strategies for the selection of the start node and the next node in
more detail. In both cases we compare a simple strategy using randomization with a more
sophisticated approach. For start node the latter is the pseudo peripheral node and for the
next node the latter is the border node, which is a node that is adjacent to some block of the
partition. Figure 3 shows an example of border nodes.

Border Node

Node in Block

Other Node

Figure 3: Example of border nodes.

Our experimental study indicates that the start node has a smaller impact on the behavior
of the algorithm than the next node, which we select after we start a new BFS or restart an
incomplete BFS. Choosing this node carefully can have a large impact on the solution quality.

Start Node Strategies. The first strategy is to simply select a random node v ∈ V . Since
no nodes are assigned yet, we do not have to use an extra data structure to ensure that v is
not marked. It is a simple an easy to implement strategy and has no further overhead.
The second strategy selects a pseudo peripheral node. In Section 3.3.1 we already explained the
pseudo peripheral node and an algorithm to find one. Using a pseudo peripheral start node
allows the blocks to grow from the outer part of the graph, which can lead to less fragmentation
of the blocks.

Next Node Strategies. The random next node strategy selects a random node, which is
not yet assigned to a block. We use two arrays A1, A2 to keep track of the unassigned nodes
during the algorithm. A1 stores the node IDs and A2 the index of a node (starting at 1) to A1,
i.e. A2 is the inverse permutation of A1. In the beginning A1 = A2 = [1, 2, . . . , n]. A random
node is selected by returning the node ID of a random index in the range of the A1. After the
BFS marked a node, the node is removed from A1 by looking up its index in A2, swapping it
with the last element of A1 and decreasing the size of A1 by one. The indices of the A2 must
be updated accordingly. Since every node is removed only once and since maximal |V | times a
random next nodes is needed, the running time is linear with O(|V |) extra space for the two
arrays.
A disadvantage of the random next node strategy is that the blocks cover the graph unevenly.
This leads to small holes of unassigned nodes during the algorithm. These nodes do not fill
blocks completely and thus create fragmentation of blocks.

16

4.1 Initial Partitioning

The second strategy tries to prevent a high fragmentation of blocks by selecting a border node
as next node. In this way new blocks are adjacent to each other and less fragmentation of
blocks is created. This can be efficiently implemented using a second queue Q′. Every time we
insert a node into the BFS queue Q, we push this node also to Q′, since the node is adjacent to
the block grown by the current BFS. To avoid duplicate nodes from multiple BFS traversals in
Q′, we also mark the queued node in a bitset as processed and do not reinsert, if it is already
processed. A border node can be found by popping nodes from Q′ until we find an unmarked
node. During the time a node is in Q′, it could be visited by some BFS. In this setting, if
the graph is connected, there always exists an unmarked border node in Q′. Consider a path
between a marked node v and an unmarked node w. If we follow the nodes of the path from v
to w, the first unmarked node z that we visit is a node that is adjacent to a marked node and
thus z ∈ Q′. Because of the bitset, each node is only pushed and popped once, so the cost of
finding one border node is amortized O(1). We will show in our evaluations, that this method
performs significantly better than the random next node strategy.

Parallelization. In the parallel implementation, each thread runs a separate BFS on the
unassigned nodes to construct a block. To avoid the sequential process of selecting pseudo
peripheral nodes per thread, each thread starts the first BFS from a random node. Due to the
better quality, we picked the border next node strategy over the random next node strategy.
Each thread has a local queue Q for BFS and a local queue Q′ for the border nodes. A global
array A of boolean indicates at A[v] if a node v was already assigned to a block. If a thread
visits an unassigned node v and has not enough nodes in Q to fill the current block to at least
L nodes, the thread tries to obtain the node by an atomic compare-and-swap operation on A[v]
and if successful, the node is pushed to Q. Otherwise, if the thread has enough nodes, the node
is instead pushed to Q′ for future border nodes without securing it by setting the entry A[v].
Opposed to the sequential description, we do not use a bitset to avoid duplicate nodes in Q′,
since that would cost |V | entries per thread, which is bad for cache efficiency. A border node
is obtained from Q′ by popping nodes from Q′ until an unassigned node was obtained by an
atomic compare-and-swap operation. In contrast to the sequential implementation, we can not
guarantee to get a border node, since other threads could have already assigned all nodes in
Q′. In this case we employ the random next node strategy. We use a randomly shuffled global
array of node IDs and each thread has a random start index i to that array. If a thread request
a random next node, it scans the array starting from i, restarting at index 0, if the boundary
is reached, until it obtained an unassigned node by compare-and-swap. The current index is
stored in i for the next scan. So, one thread traverse the global array only once.

Greedy Graph Growing The BFS partitioner can be modified to a greedy graph growing
algorithm, analogous to 3.3.1. We always select the node, that yields the smallest increase in
the edge cut, i.e. the node with maximal number of edges to the current block. To achieve this
we use a priority queue instead of the queue, which uses the number of edges to the current
block as key with higher number having higher priority. However, the use of a priority queue
comes at the cost of runtime, since removing an element of a priority queue is logarithmic in
the size of the priority queue. Additionally, after a node v is moved to the current block, the
keys of all the neighbors of v that are not assigned to a block yet must be updated, which also
takes logarithmic time in the size of the priority queue for each neighbor.

17

4 A Partitioning Framework for Very Large k

4.1.3 Matching Contraction

Note that this approach works only for k = n/2l, i.e. the block sizes are a power of two, and
unweighted nodes (general case open for future work). The matching contraction approach is
similar to the contraction phase in the multilevel paradigm, with the difference that we enforce
uniform node weights and halving of the graph size. For this, we drop the constraint that
matched nodes must be adjacent and extend a maximal matching by matching the remaining
nodes. This way, the node weights double after one contraction except one node, if the number
of nodes is odd. That is why the algorithm is restricted to block sizes that are a power of two.
Algorithm 1 outlines the procedure. We recursively continue contraction, until the node weight
of a contracted node is equal to the requested block size. All nodes in a contracted node on the
last level form the block in the initial partitioning (line 14). Note that for k = n

2 with perfect
balance this would give us an exact solution, if an optimal matching algorithm is used. This
motivates the intuition, that matched nodes could also form a part of a larger block.
In many cases we do not have a perfect matching, so nodes which are not incident to the same
edge must be matched in order to ensure that the graph size is halved. We match unmatched
nodes in two stages. First, we apply the method similar to 2-hop matching [30], which matches
two nodes that share a common neighbor (line 7 - 8). This can be achieved in O(|V |+ |E|)
by scanning each N(v) for v ∈ V and matching as many as possible unmatched nodes per
neighborhood. If there are no more such nodes, the remaining nodes are matched arbitrarily
(line 9 - 10). In the case that the current number of nodes is odd, the last remaining node
remains unmatched (line 11 - 12). An example execution of the algorithm is illustrated in
Figure 4.
Since exact maximum matching algorithms have excessive running time, we use fast heuristics
as explained in Section 3.2.2. We chose the Heavy Edge as a simple and fast algorithm and the
Global Paths Algorithm as a more advanced technique for our evaluations.

Algorithm 1: Initial Partitioning - Matching Contraction
Input: Graph G = (V,E), k = n

2l

Output: k-way partition P = (V1, V2, . . . , Vk)
1 G′ ← G
2 for i← 0 to l do
3 M ← approximateMaxMatching(G′) // heavy edge matching or gpa
4 for v ∈ V do
5 if v is not matched then // all neighbors of v are matched, since M is maximal
6 continue

7 N1 ← {w | w ∈ N(v) and w is not matched} // nodes that share v as neighbor
8 match elements of N1 arbitrarily and add them to M
9 N2 ← {v | v ∈ V and v is not matched} // remaining nodes

10 match elements of N2 arbitrarily and add them to M
11 if |V | is odd then // remaining node is alone in block
12 add unmatched node to M
13 G′ ← contract(G′,M)
14 P ← (G′.node(1), G′.node(2), . . . , G′.node(k))

The runtime per level is dominated by the matching algorithm, since all other steps can be
performed in linear time. There are only O(1) levels, since the block size is constant. In total

18

4.2 Refinement

the runtime is O(|E|) or O(|E| log |E|) depending on the matching algorithm.

partition
maximal matching
2-hop matching
arbitrary matched

Figure 4: Example of Matching Contraction with two contractions.

4.2 Refinement

In the following various refinement algorithms are presented. Each describes one iteration,
which is iterated until a maximal number of iterations is reached or the improvement over the
last cut was smaller than a fraction α. Throughout this thesis we will refer to this procedure as
stopping rule. All the techniques are local search algorithms using max gain moves to improve
the current solution. To determine such a move for a node v of block bv, it suffices to find
a neighbor w ∈ N(v) with block bw, such that ω(v, Vbw) is maximized, since v is fixed in
gbw(v) := ω(E(v, Vbw)) − ω(E(v, Vbv)) and since neighbors of v contribute at least one edge
that is removed from the cut, while non-neighbors do not contribute any edge. The edge cut
ω(E(v, Vbw)) for w ∈ N(v) can be easily calculated by iterating over N(v) and storing the
current cuts in a sparse hash map with the block ID as key, being very efficient for graphs with
small max degree. Ties are broken randomly. As a consequence, more moves are considered
and possible loops of zero gains moves are prevented. Similarly to Section 3.4.1 we call a move
of a node v to a block Vi eligible, if c(Vi) does not exceed Lmax once v is moved to Vi.

4.2.1 Size Constrained Label Propagation

We will use the Size Constrained Label Propagation refinement algorithm mentioned in Sec-
tion 3.4.1. Instead of maximizing |N(v) ∩ Vi|, we maximize ω(v, Vi) the edge cut to cluster Vi.
As described in Section 4.2, this is precisely the max gain block. Note that for unweighted
graphs both variants are equivalent. Additionally, moves are only applied, if they improve the
cut, i.e. gain ≥ 0, and if they are eligible. Zero gain moves are explicitly allowed, as we ob-
served in experiments that it results in better cuts than only performing strictly positive gain
moves. The intuition behind zero gain moves is, that they continuously change the partition
of the graph and possibly make space for other moves. A pseudocode description is given in
Algorithm 2.
In the original algorithm the order of node traversal was random. To determine the influence
of the node ordering, we tried four different ordering strategies. Normal traverse the nodes
by their node ID, resulting in better cache usage, since the nodes are stored continuous in
an adjacency-array. Random randomly shuffles the nodes. Chunk-Random combines cache
efficiency of Normal with the random shuffling of Random. The sequence of node IDs 1, 2, . . . , n

19

4 A Partitioning Framework for Very Large k

is cut into C continues equally sized intervals (chunks). Then each single chunk and the order of
chunks is shuffled separately. Finally, there is the heuristic of traversing the nodes increasingly
by their degrees [33]. We sorted the nodes by their most significant bit, since it is faster for
large node-degrees. So nodes with degree 2i ≤ d < 2i+1 have equal key. E.g. {4, 5, 6, 7} have all
the same key in the sorting. In order to improve cache efficiency, additionally the node IDs are
reordered by this sorting and the graph data structure is rebuild. In the following this variant
is called Pseudo Degree Sorting.

Algorithm 2: Refinement - Label Propagation
Input: k-way partition P = (V1, V2, . . . , Vk)
Output: k-way partition P ′ = (V ′1 , V ′2 , . . . , V ′k)

1 order ← reorderNodes(V) // normal, random, chunk random or pseudo degree sorting
2 P ′ ← P
3 for v ∈ order do
4 (found, gain, b)← eligibleMaxGainMove(P ′, v)
5 if found and gain ≥ 0 then
6 move v to Vb

Parallelization. In each round, we iterate in parallel over all nodes. If a node is visited,
analogous to the sequential case, the max gain move is computed. Then, we try to apply
the move to the graph by first updating the block weight using an atomic compare-and-swap
operation and then setting the new block for the node. This ensures that the balance constraint
is not violated. If the move could not be applied, we calculate a new move and try again until
either a move was successfully applied or no move was found. Note that moves with negative
gain could be applied. This can happen if a node in the neighborhood of our current node
changes its block after we computed the move, but before we could apply it. However, this
rarely happens in practice and has not a big impact.

4.2.2 Mutation Refiner

At some point Label Propagation has run into a local minimum and can not find large improve-
ments anymore. The Mutate Refiner combines the ideas of variable neighborhood search [34]
with Label Propagation. In each iteration it mutates a small number of random nodes s and
then performs Label Propagation in the region around the mutated nodes, possibly escaping
local minima. Algorithm 3 outlines the procedure. For the mutation we apply a max gain
move even if it has negative gain. (line 4 - 8). Up to t · |V | , t ∈ (0, 1] nodes are gathered by
BFS for the region around the mutation nodes (line 10). The fraction t is useful to control the
degree of locality. If no improvement was achieved by the mutation and Label Propagation,
the mutation and the applied moves are reverted (line 16).
In order to compare different configurations of Mutation Refiner, each should move roughly the
same amount of nodes in one iteration. For this reason we repeat the procedure of mutation
and refinement until atleast |V | not necessarily different nodes were used for Label Propagation
(line 3, 17).

20

4.2 Refinement

Algorithm 3: Refinement - Mutation Refiner
Input: k-way partition P = (V1, V2, . . . , Vk), s, t, I
Output: k-way partition P ′ = (V ′1 , V ′2 , . . . , V ′k)

1 P ′ ← P
2 j ← 0
3 while j < |V | do
4 M ← select s random nodes
5 for v ∈M do // perform mutation
6 (found,_, b)← eligibleMaxGainMove(P ′, v)
7 if found then
8 move v to Vb
9 // can be negative

10 R← bfs(queue←M , size ← t · V) // find refinement candidates by BFS
11 for i← 0 to I do // perform label propagtion on refinement nodes
12 for v ∈ R do
13 (found, gain, b)← eligibleMaxGainMove(P ′, v)
14 if found and gain ≥ 0 then
15 move v to Vb

16 revert this rounds moves, if total gain < 0
17 j ← j + |R|

4.2.3 Backward Path Refiner

The Backward Path Refiner (BPR) generalizes Label Propagation in two aspects. First, it con-
siders sequences of moves that lie on a path formed by adjacent blocks, rather than movement
of a single node. Thus, BPR overcomes the issues with a tight balance constraint that can
prohibit single none-eligible moves. Moreover, one can allow negative moves in the sequence
and apply the best prefix of moves similar to FM (Section 3.4.2). By not restricting negative
moves and none-eligible, BPR can find more complex move sequences than Label Propagation.
Secondly, BPR examines a set of moves between blocks and selects the move with maximal
gain of this set.
Algorithm 4 outlines the method. A sequence of moves is constructed as follows. The algorithm
starts from an underloaded block b and considers the set of all moves that move a node of N(Vb)
into Vb. It selects the move that has maximal gain, with ties broken randomly (lines 7 - 9).
Then, this procedure is repeated recursively in the block, in which the moved node was part of
(line 10), until a maximal path length γ is reached.
The algorithm is based on the idea that the application of one move enables new moves in near
blocks, which is why the search continues in the former block of the moved node. In order to
maintain the balance constraint, the current block must be underloaded, which is ensured by
starting from an underloaded block and by the fact that the next block always is underloaded,
since it moved a node out of its block. Note that this implementation assumes that when a
node is moved to an underloaded block, the block will not become overloaded. This holds for
unweighted instances, whereas for instances with node weight a move from N(Vb) to a block Vb
may not be eligible.
In one iteration, we traverse the blocks by their block IDs and start a path from the current
block, if it is underloaded (line 4). This way the graph is refined equally in all places. Later we

21

4 A Partitioning Framework for Very Large k

will show the usage of negative moves, by testing the quality with and without negative moves.
The tuning parameter γ controls the length of the path that is constructed. Greater γ results
in more applied moves, but also in an increase in runtime.

Algorithm 4: Refinement - Backward Path Refiner
Input: k-way partition P = (V1, V2, . . . , Vk), γ
Output: k-way partition P ′ = (V ′1 , V ′2 , . . . , V ′k)

1 P ′ ← P
2 gains← [0]
3 for j ← 1 to k + 1 do
4 if c(Vj) < Lmax then
5 m← j
6 for i← 0 to γ do
7 w ← random element of {v ∈ N(Vm) | gm(v) = maxw∈N(Vm) gm(w)}
8 gains.pushBack(gm(w))
9 move w to block m

10 m← former block of w
11 u← arg maxp<|gains|

∑p
l=0 gains[l] // maximize prefixsum of gains

12 revert last(|gains| − u) moves

4.2.4 Forward Path Refiner

The Forward Path Refiner (FPR) works similar to the BPR but with two changes regarding
the selection of moves and the handling of the best prefix of moves.
First, we explain how moves are selected. FPR searches for moves in the opposite direction as
the BPR. Starting at a block b it computes the max gain move for every node of Vb and applies
the move with maximal gain regardless of the balance constraint and possible negative gain
of the move with ties broken randomly. The refinement is continued recursively in the block
that received the moved node until a maximal path length γ is reached. Oppose to BPR, the
number of moves considered at once is guaranteed to be constant due to our assumption that
the block size is in O(1). Note that the balance constraint in the current block may be violated.
But since the next node is moved out of this block, only the last block of the current path may
violate the balance constraint. Oppose to BPR, this implementation assumes that moving a
node out of an overloaded block (created by FPR) restores the balance constraint. Again, this
holds for unweighted instances, but can be a problem for instances with weighted nodes.
Secondly, like the BPR, we want to apply the best prefix of moves, guaranteeing that only move
sequence with overall positive gain are applied. The problem is that the last block of a prefix
of the path can be imbalanced. There are two variants to handle this. The naive variant is to
apply the best prefix, that yields no imbalanced block. However, this method often reverts good
move sequence, that are only imbalanced by one node. Given a move sequence, we call a move
balancing, if the application of the move sequence and the balancing move has positive gain
and yields a balanced partition. The idea of the second variant is to apply the best prefix, as
in the naive variant, but instead of reverting the remaining moves, we try to find one balancing
move, in order to “fix” a prefix of the remaining move sequence. To find a balancing move,
we again consider every max gain move of every node of the current block, but exclude moves
that are not balancing. If we found a balancing move, we apply it, otherwise we revert the last

22

5 Experimental Results

move of the move sequence. If in the last step a move was reverted, we continue this procedure
recursively with the remaining move sequence until either, we found a balancing move, or the
move sequence is reverted completely. We call this variant FPR with post-refine.
In one iteration of refinement we start the FPR once from every block, to refine the graph
equally in all places. In contrast to BPR, the start block must not be underloaded. The
pseudocode is similar to Algorithm 4, with the two described changes.

Parallelization. We execute multiple runs of the FPR in parallel. To ensure that at most
one thread works at a block, a thread must acquire the respective lock by an atomic compare-
and-swap operation. In order to select a start block, a thread repeatedly tries to obtain a
random block until it acquired the lock of some block. This way different runs operate on
average distant from each other. A thread continues its path by computing a move like in
the sequential algorithm and then tries to acquire the lock of the target block. During the
computation of the best move of the block, locked blocks are ignored. If the lock of the target
block was not acquired, the thread computes a new move in the same manner and tries again
until it successfully applied a move. Locks are freed as follows: In the case that the maximal
path length is reached or a balancing move is applied, all locks of modified blocks are freed. If
the last move of a path is reverted, only the lock of the last block is freed. In order to decrease
the number of locked blocks, we apply a sequence of moves directly, if it has overall positive
gain and does not violate the balance constraint, rather than waiting until a maximal path
length is reached. When this happens, all locks of the modified blocks except the last block are
freed, since a path may continue from the last block. The earlier application of the moves does
not reset to current path length. This parallelization assumes that there is a large number of
blocks, such that the threads interfere rarely.

5 Experimental Results

5.1 Setup and Methodology

The proposed algorithms are implemented in C++ and compiled using g++-10.2 with flags -03
-march=native turned on. We used Intel TBB [1] as parallelization library. The source code
of our preliminary version is available at https://github.com/HaagManuel/kamipar/tree/
master/kaminpar/super_large_k.

Setup. The experiments are performed on two different machines. Machine A has an Intel(R)
Xeon(R) CPU E5-2670 v3 processor clocked at 2.3 GHz and 125 GB main memory. The second
machine B, uses an AMD EPYC 7702 64-Core processor clocked at 2.592 GHz, 1044 GB main
memory and 1 socket with 64 cores. Machine A will be used for parameter tuning experiments
and machine B will be used for scalability experiments and the comparison to KaMinPar.

Instances. To evaluate our algorithms, we use the benchmark set used to evaluate the graph
partitioner KaMinPar [19], referred to as set A, as well as two subsets of it. Set A is composed
of 197 graphs including 129 graphs from the 10th DIMACS Implementation Challenge [7], 25
randomly generated graphs [16, 29], 25 large social networks [2, 31], and 18 graphs from various
application domains [10, 43, 44]. For parameter tuning experiments we use a subset of 53 graphs
with |E| ∈ [106, 107), which we refer to as set B. Scalability experiments are performed on a
subset of 38 graphs of set A with |E| ∈ [107, 108) called set C. The subsets are chosen, such that

23

https://github.com/HaagManuel/kamipar/tree/master/kaminpar/super_large_k
https://github.com/HaagManuel/kamipar/tree/master/kaminpar/super_large_k

5 Experimental Results

the largest graph in terms of edges of B and C take less than 10 minute respectively 1 hour with
the sequential default configuration of our algorithm with BFS for initial partitioning and FPR
for refinement. Due to limited availability of machine B, we had to choose a suitable subset
such that our scalability experiments finishes within one week. Therefore, we had to exclude
some instances that took more than 1 hour with one thread.

Methodology. Usually, graph partitioners are configured with the number of blocks k and
the relative allowed imbalance ε. For a very large number of blocks it is more meaningful to
set the upper bound for each block as Lmax = N + b, where N is the number of nodes allowed
per block and b is the absolute allowed imbalance. The number of blocks is expressed by
k = c(V)

N
and the relative imbalance ε is expressed by ε = b

N
. A combination of a graph with,

N nodes per block and absolute imbalance of b is called an instance. For each instance, we
perform several runs with different random seeds and aggregate running times and edge cuts
using the arithmetic mean over all seeds. To further aggregate over multiple instances, we use
the harmonic mean for relative speedups, and the geometric mean for absolute running times
and edge cuts.

Performance Profiles. We use performance profiles [11] to compare the solution quality
of different algorithms. Let A be the set of algorithms we want to compare, I the set of
instances and qA(I) the quality of algorithm A ∈ A on instance I ∈ I. Each algorithm
is represented by a curve with τ on the x-axis and the fraction |IA(τ)|

|I| on the y-axis, where
IA(τ) := {I ∈ I | qA(I) ≤ τ ·minA′∈A qA′(I)}. Achieving higher fraction on lower values of τ is
considered better. Note for τ = 1, the y-value indicates the percentage of instances for which
the algorithm performed best.

5.2 Parameter Tuning
For parameter tuning we partition the 53 graphs of set B in 5 runs with different seeds for each
algorithm. Each graph is partitioned for N ∈ {16, 32, 64}, b = 1. The values of N are powers
of two, since this is necessary to run the Matching Contraction algorithm. However, we leave
the general case open for future work. Each refinement algorithm runs until the improvement
in one iteration is less than α = 0.1% of the previous edge cut or until a maximal number of
iterations of 100 is reached.
The deviation from the balance constraint b is not set too high, since otherwise the different
values of N would have high variety in relative allowed balance. However, b must be at least
one to guarantee the existence of solution. The value of the minimum relative improvement
threshold α is a trade-off between running time and solution quality and was set based on
previous experiments.

5.2.1 Initial Partitioning

In the following we compare the initial partitioning algorithms described in Section 4.1. First,
we determine the best configuration for BFS / greedy growing and the Matching Contraction
algorithms separately. We will demonstrate that the edge cut after the initial partition is not
always accurate on determining the quality of an initial partition algorithm. That’s why we
use performance profiles with the edge cut after refinement for comparison of solution quality.
For the initial partitioning experiments, we use Label Propagation for refinement, since it is
very fast. At the end of this section we compare the best initial partitioning algorithm to the
Random partitioner.

24

5.2 Parameter Tuning

BFS Configuration. We tested the two start node strategies a ∈ {peripheral, random}
and the two next node strategies b ∈ {border, random} for the BFS partitioner. Figure 5
shows the quality of the algorithms after refinement, if we compare the values of a while fixing
b = border (left) and if we compare the values of b while fixing a = peripheral (right). Clearly
the start node strategy has no significant impact on the solution quality. Regarding the next
node strategy, the border strategy produces on 95% of the instances the best solution, while
the random strategy is on 50% of the instances within a factor of 2% of the best algorithm. The
start node strategy does not influence the initial partitioning runtime, whereas the border next
node strategy (0.12s geometric mean running time) is slightly faster than the random strategy
(0.19s). For the upcoming experiments the default variant of BFS will be a = peripheral and
b = border.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

peripheral random

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

border random

Figure 5: Quality of BFS partitioner with different start node strategies (left) and different
next node strategies (right).

BFS vs. Greedy Growing Next we will compare the best BFS variant with the greedy
growing algorithm, referred to as Greedy, that uses the same start and next node strategy.
In Figure 6 we see that Greedy yields better initial cuts. It produces the best initial cut on
90% of the instances. However, surprisingly after refinement the big gaps in quality mitigate
and BFS is even slightly better. To confirm the observation, we made the same experiment
with BPR and FPR as refinement algorithm and got similar results (see Appendix A). The
BFS partitioner produces on 80% of the instances solutions that are only 1% worse than the
best solution, while the greedy partitioner achieves this result only for 55% of the instances.
So the initial cut is not necessary an indicator for overall quality after applying refinement
algorithms. In this case the BFS algorithm, that grows each block equally in all direction,
provided better initial partitions for refinement than Greedy. One possible explanation for the
significant increase in quality of BFS after refinement is, that Label Propagation considers the
same nodes in the neighborhood of a node for a move as Greedy when building a block. So the
refinement algorithm can construct similar blocks as Greedy. That Greedy after refinement is
worse than BFS could be caused by decisions of Greedy that were locally good, but turned out
to be bad overall.

Matching Contraction Configuration. In this experiment, we evaluate the influence of the
matching algorithm on the Matching Contraction partitioner by comparing the simple heavy-
edge matching, referred to as Heavy, with the the global path growing matching algorithm,

25

5 Experimental Results

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

Figure 6: BFS vs. Greedy with initial partition cut (left) and cut after refinement (right).

referred to as GPA. Secondly, we test the impact of the 2-hop-matching [30], i.e. matching
unmatched nodes within a distance of 2. We make use of the existing GPA implementation1 [40],
by calling a separate build with a system call. Additional time spend for the call was excluded
in the runtime. The results are shown in Figure 7. In the left performance profile, we compare
two variants using GPA as matching algorithm, but one uses additionally the 2-hop-matching.
On 95% of the instances the variant using 2-hop-matching computes the best solution. The
right plot shows the impact of the used matching algorithm, while both algorithms use 2-hop-
matching. The variant using GPA computes the best solution on 80% of the instances. As
we presumed 2-hop-matching and the use of a more advanced matching algorithm come with
significantly amount of improvement of the solution quality. Looking at the average initial
partitioning time, 2-hop-matching had no significant overhead, whereas the GPA comes with a
cost in runtime on average of 5.08s or 5.12s, with or without the 2-hop-matching respectively,
where Heavy only takes 0.6s or 0.57s.
When comparing GPA using 2-hop-matching with BFS, we observe a similar result as in the
comparison of Greedy and BFS. The GPA variant like Greedy computes better initial cuts,
but both have similar edge cuts after refinement (see Appendix A). Since BFS is considerably
faster, we chose it as our default initial partitioning algorithm.

Quality of the Random Partitioner. Now we compare BFS with the Random partition.
As shown in Figure 8 the random partitioner produces on 80% of the instances initial cuts
that are more than twice as large as the best known solutions. After refinement 45% solutions
of random are at least 10% worse than the best solution. The random approach is very fast
on average (0.04s), but increases the refinement time by more than a factor of 2 compared to
all other initial partitioning algorithms. This may be caused by the fact, that in the initial
partition very few nodes have neighbors that are in the same block. So Label Propagation
probably needs some time to reduce the noise of the random partition and to construct blocks
that have some degree of locality.

5.2.2 Refinement

In this section, we will evaluate the refinement algorithms of Section 4.2. First, we test four
different ordering strategies for Label Propagation. Secondly, we determine the influence of the

1https://github.com/schulzchristian/GPAMatching

26

https://github.com/schulzchristian/GPAMatching

5.2 Parameter Tuning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

2-hop no 2-hop

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

GPA Heavy

Figure 7: Comparison of Matching Contraction variants. 2-hop-matching (left), simple vs.
advanced matching algorithm (right).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Random

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Random

Figure 8: Quality of BFS and Random partitioner, initial partition cut (left), cut after refine-
ment (right).

number of mutation nodes s and the fraction of refinement candidates t for Mutation Refiner.
Then, we compare two variants of Backward Path Refiner to the Forward Path Refiner. And
finally, we evaluate the trade-off between quality and running time of the minimum relative
threshold α for Label Propagation and Forward Path Refiner.

Size Constrained Label Propagation. To determine the influence of the order in which
Label Propagation (referred to as LP) iterates over the node, we tested the four ordering
variants described in Section 4.2.1, namely input order (Normal), random shuffling (Random),
shuffling equally sized chunks of nodes and the order of chunks (Chunk-Random) and sorting the
nodes ascending by their most significant bit of their degree Pseudo Degree Sorting. For Chunk-
Random we picked a chunk size of 1024. The input order of node IDs have some locality, and
by shuffling only small chunks, later iterations over the node IDs might be more cache-friendly.
Furthermore, we applied the reordering for Random and Chunk-Random only once at the start,
to avoid the overhead in runtime due to shuffling. We made a run with random shuffling before
each LP iteration (Random every round), to see how this changes affects the quality and the

27

5 Experimental Results

running time. For Pseudo Degree Sorting we use the existing parallel implementation2 that is
used in KaMinPar to reorder the graph. Meyerhenke et al. [33], who used Label Propagation
for coarsening, also tried different orderings and came to the conclusion that sorting by node
degrees provided significant improvement, while other orderings like Random did not have an
impact. However, in our experiment all ordering perform similarly Figure 9. The variants
Chunk-Random and Pseudo Degree Sorting have about the same average refinement time of
1.71s and 1.7s respectively. Due to many cache misses, Random takes more than double the
runtime oppose to the other variants with 3.82s. Random every round has the worst runtime
of 4.58s and is 20% slower than Random. We picked the Normal variant as the default, as it
has the fasted refinement time of 1.47s on average.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

normal random-every-round

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

normal random

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

normal chunk-random

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

normal deg-sort

Figure 9: Quality of Label Propagation with different node orderings.

Mutation Refiner In this experiment we want to evaluate the impact of the number of
mutation nodes s and the fraction of refinement candidates t used in the Mutation Refiner
(referred to as MR). The number of iterations of Label Propagation is fixed at 8 and was set
based on preliminary experiments. Recall, that for the comparability of the different values
of t, the procedure of mutation and Label Propagation around the mutation nodes is iterated
until at least |V | not necessarily different nodes were used for Label Propagation. So for
example one repetition of s = 64, t = 1% performs 64 mutations and then refines the region

2https://github.com/KaHIP/KaMinPar/tree/v1.0/kaminpar/algorithm/graph_utils.cc

28

https://github.com/KaHIP/KaMinPar/tree/v1.0/kaminpar/algorithm/graph_utils.cc

5.2 Parameter Tuning

around the mutation nodes. Since in each repetition the region for refinement has a size of
1% of the total graph, the procedure is repeated about 100 times. Note that this counts as
one iteration for the stopping rule. First, we tested t ∈ {0.1%, 1%, 10%}. As shown in
Figure 10, t = 0.1% yields the best quality out of the three values, with 55% best solutions.
The better quality comes at the cost of longer running times, which steadily increased with
17.46s 25.94s, 35.52s for t = 10%, 1%, 0.1%. The reason for this is that more iterations of
the Mutation Refiner are executed, due to the stopping rule: On average 16.24, 21.03, 26.26
iterations for t = 10%, 1%, 0.1%. Recall that the stopping rule starts another iterations, if the
last improved the cut by at least α, which for this experiment is set to α = 0.1%. Similar
behavior regarding quality and runtime can be observed if we fix t = 0.1% and test different
values of the number of mutation nodes s ∈ {4, 16, 64}. The number of average iterations also
increases: 19.17, 22.90, 26.26 for s = 4, 16, 64 and therefore the runtime. A higher number
of mutations nodes s and a higher degree of local refinement controlled by t results in better
quality. We decided not to investigate the parameters of Mutation Refiner in more detail,
since the improvement over Label Propagation (referred to as LP) are moderate, as shown in
Figure 11 and LP is more than 20 times faster.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best
t = 0.1%
t = 1%

t = 10%

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best
s = 4
s = 16

s = 64

Figure 10: Mutation Refiner with different fraction of refinement candidates and s = 64 (left)
and different number of mutation nodes and t = 0.1% (right).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

MR LP

Figure 11: Comparison of Mutation Refiner with s = 64, t = 0.1% and Label Propagation.

29

5 Experimental Results

Comparison of Path Refiner variants The goal of this experiment is to determine the
best algorithm of the Path Refiner variants described in Sections 4.2.3 and 4.2.4 We tested
three variants:

• BPR is the Backward Path Refiner algorithm from Section 4.2.3.

• BPR+ works like BPR with the only difference that moves with gain < 0 are not applied.
If no positive gain move can be found, the search is stopped early.

• FPR is the Forward Path Refiner algorithm with post-refine described in Section 4.2.4.

Algorithm Runtime t[s]
γ = 4 γ = 8 γ = 16 γ = 32

BPR+ 7.70 10.57 15.04 22.16
BPR 9.42 14.15 21.93 35.24
FPR 11.31 18.44 31.38 55.21

Table 1: Average runtime of Path Refiner variants by path length γ. Running times of the
configuration used in Figure 12 are marked bold and were selected, such that each path refiner
runs for roughly the same amount of time.

As shown in Table 1, the algorithms differ significantly in running time for same values of the
path length γ. FPR is consistently the slowest, followed by BPR and BPR+. In order to give
each algorithm roughly the same amount of running time, we picked γ = 8, 16, 32 for FPR, BPR
and BPR+ respectively (bold in Table 1). Figure 12 shows the results. Although FPR has the
lowest average runtime with 18.44s, it outperforms the other two variants. It computed 60%
of the best solutions, whereas roughly 50% of the solutions of BPR and BPR+ respectively lie
within a range of 1% of the best solution. All path refiners significantly outperform the Label
Propagation algorithm. However, Label Propagation is an order of magnitude faster than the
path refiner variants.

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best
FPR
BPR

BPR+
LP

Figure 12: Comparison of Path Refiner variants and Label Propagation.

Figure 13 shows the quality of FPR with different γ relative to γ = 8. The improvement
from 4 to 8 and 8 to 16 are very small. We set the default value of γ for FPR to 8, since
the improvements in quality of larger γ are too small for the cost in runtime. An interesting
observation is that the average number of performed refinement iterations decreases with in-
creasing γ : 18.05, 15.68, 13.82, 12.25, for γ = {4, 8, 16, 32}. So longer path length leads to more

30

5.2 Parameter Tuning

improvement per round. But such variants run into similar optima as variants with shorter
path length, as their solution quality does not differ much. In the following we will refer to
Forward Path Refiner simply as Path Refiner (PR).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

γ = 4 γ = 8

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

γ = 8 γ = 16

Figure 13: Quality of Forward Path Refiner with γ = 4, 16 relative to γ = 8.

Configuring minimum relative improvement threshold α. Now we will evaluate the
trade-off between quality and running time of the minimum relative improvement threshold α ∈
{1%, 0.5%, 0.1%, 0.05%, 0.01%} for Label Propagation (LP) and Path Refiner (PR). Table 2
shows the runtime of the two algorithms with different values of α. We observe that the
runtime from α = 1% to α = 0.1% increases by a factor of ≈ 2.86 (LP), ≈ 3.45 (PR) and
from α = 0.1% to α = 0.01% by a factor of ≈ 2.34 (LP), ≈ 3.31 (PR). The increase for PR
are higher than for LP, since PR can escape local minima to a certain extent and thus can
find improvement for a longer amount of time. While the average runtime of LP for larger
α ∈ {0.05%, 0.01%} is still fast, PR becomes very slow.
Figure 14 (left) shows the quality of LP with different α. The algorithm with α = 0.01% com-
putes on all instances the best solution (thus no curve visible in the plot). α ∈ {0.05%, 0.1%}
are comparable to the best configuration, finding on 60% of the instances solutions that are
only 1% worse than the best. However, α ∈ {0.5%, 0.1%} produce considerably worse solutions.
The plot for PR looks similar. There is a quality-trade-off between α = 0.1% and α = 0.01%
for LP, with improvement in the order of 1% at the cost of roughly double the runtime. But
for PR the runtime becomes too high to justify the small increase in quality. For larger values
of α the loss in quality for LP and PR is too high to make up for the faster runtime. We prefer
the faster running time for LP, so the default value is α = 0.1% for PR and LP.

Algorithm Runtime t[s]
α = 1% α = 0.5% α = 0.1% α = 0.05% α = 0.01%

LP 0.51 0.71 1.46 1.98 3.49
PR 5.22 7.46 18.03 26.62 59.72

Table 2: Average runtime of Label Propagation (LP) and Path Refiner (PR) by minimum
relative improvement threshold α.

31

5 Experimental Results

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best
α =0.01%
α =0.05%
α =0.1%

α =0.5%
α =1%

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best
α =0.01%
α =0.05%
α =0.1%

α =0.5%
α =1%

Figure 14: Label Propagation (left) and Path Refiner (right) with different thresholds α.

5.3 Scalability of the Parallel Implementation

Figure 15 shows the scalability of Label Propagation (LP) and Path Refiner (PR) with BFS
initial partitioning for N ∈ {16, 32, 64} and imbalance parameter b = 1 on set B. The exper-
iments are performed with five repetitions per instance and p ∈ {1, 4, 16, 64} threads. In the
plot, we represent the speedup of each instance as a point and the cumulative harmonic mean
speedup over all instances with a single-threaded running time ≥ x seconds with a line. The
overall harmonic mean speedup without super-linear speedups with p ∈ {4, 16, 64} threads of
LP are 3.56, 11.58, 18.60 and for PR 3.73, 11.74, 28.72. Our algorithms do not perform expen-
sive arithmetic operations. Hence, perfect speedups are not possible due to limited memory
bandwidth.
Our BFS partitioner shows moderate speedups. However, its running time is an order of mag-
nitudes faster than our refinement algorithm. Thus, it does not influence the overall scalability
of our system. There are two possible reasons for this behavior. First, each thread needs a
BFS queue and a queue for the border nodes. These queues potentially can use O(|V |) memory
per thread, which can increase the number of cache-misses with increasing number of threads.
Secondly, when many nodes are assigned, different BFS could interfere with each other by
competing over nodes.
For PR we observe super-linear speedups on 14 instances. These instances are mainly complex
networks characterized by highly-skewed vertex degree distributions. The cause for the super-
linear speedup is, that threads interfere more with each other due to extensive block-level
locking. Less improvement per iteration is found, so the stopping rule terminates the algorithm
earlier than in the single-threaded setting.
The loss in quality with p ∈ {4, 16, 64} threads for LP and p ∈ {4, 16} threads for PR compared
to single-threaded execution is negligible. PR with p = 64 threads produces moderately worse
solutions than the single-threaded execution. Detailed performance profiles can be found in
Appendix B.

32

5.3 Scalability of the Parallel Implementation

Total Computationxxx Initial Partitioning Refinementxxxxxxxxxx

100 101 0.25 100 100 101
2
4
8
16
32
45

Single-Threaded Running Time of Component [s]

H
ar
m
on

ic
M
ea
n
Sp

ee
d
U
p

[≥
x

]

4 16 64

Total Computationxxx Initial Partitioning Refinementxxxxxxxxxx

101 102 103 0.25 100 101 102 103
2
4
8
16
32
64

100

Single-Threaded Running Time of Component [s]

H
ar
m
on

ic
M
ea
n
Sp

ee
d
U
p

[≥
x

]

4 16 64

Figure 15: Self-relative speedups Label Propagation (top), Path Refiner (bottom) with BFS as
initial partitioning

33

5 Experimental Results

5.4 Comparison to KaMinPar

We compare two of our configurations to KaMinPar from Section 3.6, in order to evaluate if
non-multilevel techniques are faster and potentially better than KaMinPar for very large k. The
first configuration uses parallel Path Refinement, as it performs the best in terms of solution
quality and our second configuration uses parallel Label Propagation, since the algorithm is
fastest and offers a good trade-off between quality and running time. The experiments are
executed with 64 threads.
As a benchmarkset, we use a subset of set A composed of 141 graph with at least 105 nodes. We
excluded small graphs from set A, since in applications of parallel computing the graphs are usu-
ally large. Each graph is partitioned for block sizes N ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
and ε = max(0.03, 1

N
). We run each algorithm 5 times on each instance initialized with different

random seeds and use average runtime and edge cut for our evaluations. Since KaMinPar can
only configure imbalance by ε, we use ε instead of b to express imbalance. The imbalance ε
is set this way, such that an imbalance of at least one node is allowed to guarantee existence
of solutions and whenever possible, an imbalance up to 3% is allowed as in the experiments in
[19].
As shown in Figure 16, our algorithms perform better than KaMinPar on very small block sizes
N ≤ 4. LP is comparable to KaMinPar for 8 ≤ N ≤ 16 and PR for 16 ≤ N ≤ 32. For block
sizes greater than 64, KaMinPar significantly outperforms both non-multilevel algorithms.
A more detailed insight shows the performance profiles in Figure 19. Compared to LP,
KaMinPar produces about 18%, 30%, 45%, 60%, 75% of the best solutions forN ∈ {2, 4, 8, 16, 32},
whereas compared to PR, KaMinPar produces 25%, 28%, 32%, 48%, 65% of the best solutions
for the same values of N . For N ≥ 64, KaMinPar computes more than 75% of the best solu-
tions than LP or PR respectively. Further, for N ≥ 256, 50% of the solutions by non-multilevel
techniques are at least 10% worse than KaMinPar.
Figure 20 shows the geometric mean runtime of the three algorithms for the different block sizes.
KaMinPar is getting faster with increasing block size. PR is faster than KaMinPar for block
sizes smaller than N = 64. LP, due to it’s simplicity, has constant geometric mean runtime
of 0.3s over all tested block sizes. Looking at Table 3, we observe that LP and PR achieve
increasingly faster running time relative to KaMinPar with decreasing block size. For the block
sizes N ≤ 8, PR is on average 4 times faster than KaMinPar, and for 16 ≤ N ≤ 32, by a factor
of 1.5. LP is for N ≤ 32 an order of magnitude faster than KaMinPar. For 8 ≤ N ≤ 32 the
better quality of PR over LP is preferred, but LP can still be useful, if very fast running time
is a requirement for the application.

34

5.4 Comparison to KaMinPar

0.75

0.9

0.95

1

1.05

1.1

1.25

1.5

3.25

2 4 8 16 32 64 128 256 512 1024
nodes per block

A
lg
or
ith

m
/
K
aM

in
Pa

r

LP PR

Figure 16: Ratio of cut between Label Propagation and KaMinPar and Path Refiner and
KaMinPar per instance.

35

5 Experimental Results

LP PR KaMinPar

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 2

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 2

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 4

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 4

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 8

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 8

36

5.4 Comparison to KaMinPar

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 16

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 16

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 32

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 32

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 64

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 64

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 128

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 128

37

5 Experimental Results

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 256

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 256

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 512

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 512

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 1024

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

N = 1024

Figure 19: Performance profiles by node per block N comparing Label Propagation relative to
KaMinPar (left), Path Refiner to KaMinPar (right).

38

5.4 Comparison to KaMinPar

0.5

1.0

2.0

4.0

8.0

2 4 8 16 32 64 128 256 512 1024
nodes per block

ge
om

et
ric

m
ea
n
t[s

]

LP PR KaMinPar

Figure 20: Geometric mean runtime of KaMinPar, Label Propagation and Path Refiner for
different block sizes.

N
Runtime t[s] Speedup
KaMinPar LP PR

2 10.87 36.05 6.02
4 8.89 28.65 4.10
8 7.46 24.68 2.48
16 6.02 19.64 1.75
32 4.45 14.53 1.29
64 3.34 10.77 1.04
128 2.72 9.15 0.97
256 2.30 7.81 0.84
512 2.04 6.88 0.76
1024 1.84 5.95 0.70

Table 3: Runtime of KaMinPar and speedup of Label Propagation and Path Refiner over
KaMinPar for different block sizes N

39

6 Conclusion and Future Work

6 Conclusion and Future Work

In this thesis, we presented and evaluated a shared-memory framework that can partition large
graphs into a very large number of blocks, so each block contains only a small number of nodes.
To this end, our algorithm partitions the graph directly into the desired number of blocks
(initial partitioning) and afterwards, uses a novel local search algorithm to improve the quality
of the partition (refinement). We showed through our experiments that our algorithm produces
significantly better solutions than KaMinPar for very large k while being considerably faster.
For initial partitioning, we tested four different algorithms. A random partitioner, which ran-
domly assigns nodes to blocks. Based on the graph growing techniques described in Section
(3.3.1), we implemented a Breath First Search (BFS) partitioner, that grows each block by
one separate BFS traversal. Further, we tested a greedy growing method that works similar to
the BFS partitioner, but moves the node with the smallest increase in edge cut to the current
block. Last, inspired by matching-based coarsening, we implemented the matching-based initial
partitioner. The approach is restricted to the case where the number of nodes in each block
is a power of two (general case left open for future work) and compute and contract a perfect
matching until the number of nodes of the graph is equal with our desired number of blocks.
Since perfect matchings rarely exists, we first compute a maximal matching and extend it to a
perfect matching by matching the remaining nodes despite not being adjacent to each other.
For refinement, we tested four algorithms and repeated them until a maximal number of itera-
tions is reached or the relative improvement found was less than a certain threshold. The first
algorithm is the well-known size-constraint label propagation algorithm (LP) [33]. In one iter-
ation the nodes are traversed in some order and a node v is moved to the block Vi minimizing
the edges in the cut, with ties are broken randomly. The second algorithm called Mutation
Refiner combines the ideas of Label Propagation and variable neighborhod search. In each
iteration some nodes are mutated, by moving them to an adjacent block which can worsen
the solution quality, and then Label Propagation is performed in a region around the mutated
nodes, possibly escaping local minima. The last two algorithms are novel algorithms which
we refer to as path refiner. They construct a sequence of moves that form a path on adjacent
blocks until a maximal length is reached. We use the idea of traditional FM local search to
allow intermediately worsen solution quality in the sequence and apply the best prefix of moves
to achieve overall positive gain. Starting at an underloaded block Vi the Backward Path Refiner
(BPR) moves the node v ∈ N(Vi) with maximal gain gi(v) to Vi and continues the procedure
recursively in the block in which v was part of. Whereas the Forward Path Refiner (FPR) starts
from some block Vi, moves the node v ∈ Vi with the maximal gain gj(v) to Vj and continues
recursively with block Vj. The last block of the path constructed by FPR can be imbalanced,
which is handled by finding a move from the last block to an underloaded block, if possible.
Otherwise the last move is reverted until such a move was found or the complete sequence is
reverted.
We also parallelized our most promising algorithms (BFS, LP and FPR) to handle large input
graphs. BFS scales moderately for higher number of threads. But since the running time
is an order magnitude faster than our refinement algorithms, this does not affect the overall
scalability of our algorithms. Our parallel algorithm using FPR scales well with an overall
harmonic speedup of 28.7 for 64 threads and our configuration using LP scales acceptable with
an average speedup of 18.6. Finally, we compared our parallel algorithm to KaMinPar [19], a
parallel multilevel framework specifically tailored for partitioning graphs into a large number of
blocks. For block sizes that only contain up to 8 nodes, our best configuration produces better
solutions than KaMinPar on 70% of our benchmark instances, and is on average 4 times faster.
Moreover, for block sizes up to 32 our algorithm is faster by a factor of 1.5 with comparable

40

6.1 Future Work

solution quality. Our configuration that only uses Label Propagation as local search algorithm
produced better solutions than KaMinPar for block sizes up to 4 and comparable solutions for
block sizes up to 16, but is on average an order of magnitude faster than KaMinPar. However,
for larger block sizes (larger than 64 for FPR, 32 for LP) KaMinPar significantly outperforms
our algorithms in terms of quality.

6.1 Future Work

In the future, we would like to evaluate further refinement techniques for large k. In particular,
one could implement other refinement algorithm based on Integer Linear Programming (ILP)
inspired by [22]. Moreover, efficient implementations of Fiduccia-Mattheyses [15] for very large
k can be explored. Finally, we plan to integrate our best algorithm into the graph partitioning
framework KaMinPar3, so that KaMinPar can switch to the simpler non-multilevel algorithm
for very large k.

3https://github.com/KaHIP/KaMinPar

41

https://github.com/KaHIP/KaMinPar

References

References

[1] Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/.

[2] U. o. M. Laboratory of Web Algorithms. Datasets. URL:http://law.di.unimi.it/
datasets.php.

[3] H. Abelson and A. A. diSessa. Turtle Geometry, The Computer as a Medium for Exploring
Mathematics. Cambridge, Massachusetts: The MIT Press, 1984.

[4] L. Almeida and A. A. Lopes. An Ultra-Fast Modularity-Based Graph Clustering Algo-
rithm. 2009.

[5] C. J. Alpert and A. B. Kahng. Recent Directions in Netlist Partitioning: A Survey.
Integration, the VLSI Journal, 19(1-2):1–81, 1995.

[6] T. Alsop. Fastest supercomputers by number of computer
cores 2020. https://www.statista.com/statistics/268280/
number-of-computer-cores-in-selected-supercomputers-worldwide/, 2021.

[7] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. 10th DIMACS Implementation
Challenge - Graph Partitioning and Graph Clustering. 2012.

[8] T. N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions is NP-
Hard. Information Processing Letter, pages 153–159, 1992.

[9] W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Parallel Spectral Clustering in
Distributed Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(3):568–586, 2011.

[10] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans-
actions on Mathematical Software, 38(1):1:1–1:25.

[11] E. D. Dolan and J. J. Moré. Benchmarking Optimization Software with Performance
Profiles. Math. Program., 91(2):201–213, 2002.

[12] W. E. Donath and A. J. Hoffman. Algorithms for Partitioning of Graphs and Computer
Logic Based on Eigenvectors of Connection Matrices. IBM Technical Disclosure Bulletin,
15(3):938–944, 1972.

[13] D. E. Drake and S. Hougardy. A Linear Time Approximation Algorithm for Weighted
Matchings in Graphs. ACM Transactions on Algorithms, 1:1 (2005), 107-122, 2005.

[14] S. Dutt. New Faster Kernighan-Lin-type Graph-Partitioning Algorithms. In 4th
IEEE/ACM Conference on Computer-Aided Design, pages 370-377, 1993.

[15] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network
Partitions. In Proceedings of the 19th Conference on Design Automation, pages 175–181,
1982.

[16] D. Funke, S. Lamm, P. Sanders, C. Schulz, D. Strash, and M. von Looz. Communication-
free massively distributed graph generation. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

42

https://www.threadingbuildingblocks.org/
URL: http://law.di.unimi.it/datasets.php.
URL: http://law.di.unimi.it/datasets.php.
https://www.statista.com/statistics/268280/number-of-computer-cores-in-selected-supercomputers-worldwide/
https://www.statista.com/statistics/268280/number-of-computer-cores-in-selected-supercomputers-worldwide/

References

[17] A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[18] T. Goehring and Y. Saad. Heuristic Algorithms for Automatic Graph Partitioning. Tech.
rep., Department of Computer Science, University of Minnesota, Minneapolis, 1994.

[19] L. Gottesbüren, T. Heuer, P. Sanders, C. Schulz, and D. Seemaier. Deep Multilevel Graph
Partitioning. CoRR, abs/2105.02022, 2021.

[20] B. Hendrickson and R. Leland. A Multi-Level Algorithm For Partitioning Graphs. Su-
percomputing ’95:Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, pp.
28-28, 1995.

[21] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algorithm for
Mapping Parallel Computations. SIAM Journal on Scientific Computing, 16, 03 1995.

[22] A. Henzinger, A. Noe, and C. Schulz. ILP-based Local Search for Graph Partitioning.
CoRR, abs/1802.07144, 2018.

[23] T. Heuer. Engineering Initial Partitioning Algorithms for direct k-way Hypergraph Parti-
tioning. Bachelor Thesis, Karlsruhe Institute of Technology, 2015.

[24] T. Heuer, P. Sanders, and S. Schlag. Network Flow-Based Refinement for Multilevel Hy-
pergraph Partitioning. In Gianlorenzo D’Angelo, editor, 17th International Symposium on
Experimental Algorithms (SEA 2018), volume 103 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 1:1–1:19, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[25] L. Hyafil and R. Rivest. Graph Partitioning and Constructing Optimal Decision Trees are
Polynomial Complete Problems. Technical Report 33, IRIA - Laboratoire de Recherche en
Informatique et Automatique, 1973.

[26] L. Hyafil and R. Rivest. A Simple Approximation Algorithm for the Weighted Matching
Problem. Information Processing Letter 85 (2003), 211-213, 2002.

[27] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[28] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, 49(1):291–307, 1970.

[29] F. Khorasani, R. Gupta, L. N. Bhuyan, C. Schulz, D. Strash, and M. von Looz. Scalable
SIMD-Efficient Graph Processing on GPUs. In Proceedings of the 24th International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’15, pages 39–50.

[30] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey, and G. Karypis. Im-
proving Graph Partitioning for Modern Graphs and Architectures.

[31] J. Leskovec. Stanford Network Analysis Package (SNAP).

[32] J. Maue and P. Sanders. Engineering Algorithms for Approximate Weighted Matching.
In Camil Demetrescu, editor, Experimental Algorithms, pages 242–255, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

43

References

[33] H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning Complex Networks via Size-
Constrained Clustering. In Experimental Algorithms, volume 8504 of LNCS, pages
351–363. Springer, 2014.

[34] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations
Research. 24 (11):, page 1097–1100, 1997.

[35] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning Graphs
to Speedup Dijkstra’s Algorithm. Journal of Experimental Algorithmics (JEA), 11(2006),
2007.

[36] M. E. J. Newman. Community Detection and Graph Partitioningn. CoRR, abs/1305.4974,
2013.

[37] B. Peng, L. Zhang, and D. Zhang. A survey of Graph Theoretical Approaches to Image
Segmentation. Pattern Recognition 46(3):1020 – 1038, 2013.

[38] J. R. Pilkington and S. B. Baden. Partitioning with Space-filling Curves. Technical Report
CS94-349, UC San Diego, Dept. of Computer Science and Engr., 1994.

[39] U. N. Raghavan, R. Albert, and S. Kumara. Near Linear Time Algorithm to Detect
Community Structures in Large-Scale Networks. Physical Review E, 76(3), 2007.

[40] P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In
Proceedings of the 19th European Symposium on Algorithms, volume 6942 of LNCS, pages
469–480. Springer, 2011.

[41] K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Sci-
entific Simulations. In The Sourcebook of Parallel Computing, pages 491–541, 2003.

[42] C. Schulz. High quality graph partitioning. PhD thesis, 2012.

[43] N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The DAC 2012 Routability-driven
Placement Contest and Benchmark Suite. In 49th Design Automation Conference, (DAC),
pages 774–782.

[44] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimiza-
tion of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms. In SC
’07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pages 1–12,
doi:10.1145/1362622.1362674.

44

A Detailed Performance Profiles Initial Partitioning

A Detailed Performance Profiles Initial Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

Figure 21: BFS vs. Greedy with initial partition cut (left) and cut after refinement with BPR
(right).

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS Greedy

Figure 22: BFS vs. Greedy with initial partition cut (left) and cut after refinement with FPR
(right).

45

A Detailed Performance Profiles Initial Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS GPA

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

BFS GPA

Figure 23: BFS vs. GPA (2-hop) with initial partition cut (left) and cut after refinement with
Label Propagation (right).

46

B Quality Loss with Parallel Implementation

B Quality Loss with Parallel Implementation

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

1 4 16 64

Figure 24: Quality of parallel Label Propagation relative to single-threaded execution.

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac
tio

n
of

in
st
an

ce
s

1 1.05 1.1 1.5 2 101 102

Quality relative to best

1 4 16 64

Figure 25: Quality of parallel Path Refiner relative to single-threaded execution.

47

	1 Introduction
	1.1 Problem Statement
	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Balanced Graph Partitioning

	3 Related Work
	3.1 Multilevel Paradigm
	3.2 Coarsening
	3.2.1 Size Constrained Label Propagation
	3.2.2 Matching Based Coarsening

	3.3 Initial Partitioning
	3.3.1 Graph Growing
	3.3.2 Spectral Partitioning

	3.4 Refinement
	3.4.1 Size Constrained Label Propagation
	3.4.2 Kernighan-Lin
	3.4.3 Fiduccia-Mattheyses
	3.4.4 Flow Based Refinement

	3.5 Geometric Partitioning
	3.6 KaMinPar

	4 A Partitioning Framework for Very Large k
	4.1 Initial Partitioning
	4.1.1 Random Partitioning
	4.1.2 Initial Partitioning based on Graph Growing Techniques
	4.1.3 Matching Contraction

	4.2 Refinement
	4.2.1 Size Constrained Label Propagation
	4.2.2 Mutation Refiner
	4.2.3 Backward Path Refiner
	4.2.4 Forward Path Refiner

	5 Experimental Results
	5.1 Setup and Methodology
	5.2 Parameter Tuning
	5.2.1 Initial Partitioning
	5.2.2 Refinement

	5.3 Scalability of the Parallel Implementation
	5.4 Comparison to KaMinPar

	6 Conclusion and Future Work
	6.1 Future Work

	A Detailed Performance Profiles Initial Partitioning
	B Quality Loss with Parallel Implementation

