
Optimizing a GPU-Based All-Pairs
Shortest Path Algorithm Through

Partitioning and Transfer Reduction

Tomer Haham

May 16, 2025

3692313

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Referee:
Adil Chhabra

ii

Acknowledgments

First, I would like to sincerely thank Prof. Dr. Christian Schulz for the opportunity to work
on this project under his supervision. His support throughout various projects during my
studies has been greatly appreciated. I am also grateful to Adil Chhabra for his valuable
assistance and advice throughout the course of this thesis. His feedback and availability
were especially helpful in addressing questions and overcoming challenges along the way.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, May 16, 2025

Tomer Haham

iii

iv

Abstract

The All-Pairs Shortest Path (APSP) problem is a fundamental challenge in graph theory
with extensive applications in various domains. FASTAPSP is a state-of-the-art GPU-
accelerated algorithm designed to efficiently solve APSP on large-scale graphs. However,
its performance is limited by the quality of graph partitioning and excessive CPU–GPU data
transfers. In this thesis, we introduce two complementary enhancements to the FASTAPSP
algorithm. First, we optimize the GPU execution pipeline by restructuring data transfor-
mations into GPU kernels and minimizing costly CPU–GPU data transfers. This architec-
tural optimization yields substantial performance improvements, with an average speedup
of 2.41× and peak gains of up to 6.7× on the largest graphs. Second, we evaluate and
integrate advanced graph partitioners, including KAHIP and the GPU-based JET parti-
tioner, to improve partition quality and reduce computational overhead. This leads to an
additional 2.7% runtime improvement when using the KAHIP social variant compared to
the original implementation with the default METIS partitioner.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 2

2 Fundamentals 5
2.1 Graph Terminology . 5
2.2 Shortest Path Problems . 5
2.3 Graph Partitioning . 6
2.4 Computational Frameworks: CPU vs. GPU 6
2.5 CPU–GPU Data Transfers and Optimization 6
2.6 Compressed Sparse Row (CSR) Format 7

3 Related Work 9
3.1 Graph Partitioning . 9

3.1.1 Multilevel Graph Partitioning . 9
3.1.2 Partitioning Algorithms . 10

3.2 APSP Algorithms . 13
3.2.1 PART APSP Algorithm . 14
3.2.2 DECENTRALIZED PART APSP Algorithm 16

3.3 Building Block Algorithms . 16
3.3.1 Harish and Narayanan’s algorithm 17
3.3.2 Sequential Floyd-Warshall as a Basis for Parallelization 20
3.3.3 Blocked Floyd-Warshall algorithm 21
3.3.4 Min-Plus . 22

3.4 FASTAPSP . 23
3.4.1 Step 1: Partition the graph . 23
3.4.2 Step 2: Solving SSSP problem of boundary vertices 24
3.4.3 Step 3: Computation of the APSP in each component 24

vii

Contents

3.4.4 Step 4: Computing the shortest path from internal vertices to ver-
tices in other components . 24

3.5 Time Complexity Analysis . 26

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and
GPU Memory Management 27
4.1 The Graph Partitioning . 27
4.2 CPU–GPU Data Transfer Optimization 29

4.2.1 Data Structures . 29
4.2.2 The Original Approach . 31
4.2.3 Optimized Approach in FASTAPSP 33

5 Experimental Evaluation 39
5.1 Experimental Setup . 40

5.1.1 Hardware and Software Environment 40
5.1.2 Baselines . 40
5.1.3 Graph Instances . 41
5.1.4 Methodology . 41

5.2 Evaluation of Graph Partitioning Strategies 43
5.2.1 The Partition Quality . 43
5.2.2 Total Runtime Comparison . 46
5.2.3 Runtime Excluding Partitioning Overhead 46

5.3 Optimized Execution Strategy . 49
5.3.1 Overall Runtime Improvements 49
5.3.2 Stage-wise Runtime Breakdown 50
5.3.3 Impact of Reduced Data Transfers 52
5.3.4 Acceleration via GPU Kernel Transformations 54

6 Discussion 59
6.1 Conclusion . 59
6.2 Future Work . 60

A Appendix 61
A.1 Partition Counts per Graph . 61

Abstract (German) 63

Bibliography 65

viii

CHAPTER 1
Introduction

1.1 Motivation

The All-Pairs Shortest Path (APSP) problem is a fundamental challenge in graph the-
ory with widespread applications across a variety of domains. It plays a crucial role in
transportation and navigation systems, where shortest path distances between all inter-
sections or cities are used to precompute efficient routing schemes [18]. In social and
web network analysis, APSP enables the computation of centrality measures such as be-
tweenness centrality, which depends on the number of shortest paths that pass through
each node [3]. In biological network modeling, APSP-based methods have been applied
to identify signaling pathways in protein-protein interaction networks by finding optimal
paths between functional regions [47]. In web search and information retrieval, APSP-style
computations support the evaluation of structural similarity between documents or entities
across large-scale information networks [56]. Likewise, in parallel and distributed comput-
ing, APSP workloads, particularly those used in centrality analysis, serve as benchmarks
and algorithmic foundations for graph processing on modern multicore and multithreaded
architectures [35]. Many of these applications require computing shortest paths not just
between a few vertex pairs but between all pairs of vertices in large, sparse graphs with
millions of vertices and edges.

Traditional APSP approaches such as the Floyd-Warshall algorithm [17] are computa-
tionally intensive and consume large amounts of memory. With time complexity O(n3)
and space complexity O(n2), they are often unsuitable for large-scale graphs, even when
parallelized. Repeatedly applying Dijkstra’s algorithm [12] for every source vertex can
introduce computational redundancy and irregular memory access, making it difficult to
parallelize efficiently.

Recent research has increasingly leveraged GPU acceleration to enhance APSP
computations. An important recent advancement in this direction is the FASTAPSP
algorithm [54], which integrates Single-Source Shortest Path (SSSP) computations,

1

1 Introduction

localized Floyd-Warshall kernels, and Min-Plus matrix operations within a GPU frame-
work. Nevertheless, the performance of FASTAPSP remains constrained by graph partition
quality and excessive CPU–GPU data transfers. Low-quality graph partitions can increase
execution time, while high data transfer overhead further limits scalability and reduces
overall efficiency.

This thesis directly addresses these performance bottlenecks by pursuing two comple-
mentary research directions: (1) evaluating and integrating advanced graph partitioners that
improve edge cut and the boundary-to-interior vertex ratio, and (2) optimizing the GPU ex-
ecution pipeline to minimize CPU–GPU data transfers and fully exploit GPU parallelism.
These optimizations significantly improve the algorithm’s efficiency and scalability, en-
hancing its applicability to practical, large-scale APSP problems across various domains.

1.2 Our Contribution

This thesis presents a practical and performance-driven enhancement of the FASTAPSP
algorithm. The two central contributions are: First, we optimize the CPU–GPU execu-
tion strategy by reducing data transfers and restructuring data transformation routines as
dedicated GPU kernels. These changes significantly reduce transfer overhead and unlock
additional parallelism. The optimized version achieves an average speedup of 2.41× over
the original implementation across a wide variety of graphs, with peak gains of 6.7× ob-
served on the largest inputs.

Second, we evaluate and integrate a set of alternative graph partitioners into the
FASTAPSP pipeline, including multiple variants of the Karlsruhe High Quality Partition-
ing (KAHIP) algorithm and the GPU-based JET partitioner. We analyze the trade-offs
between partition quality and runtime, demonstrating that stronger partitioners like some
of the KAHIP variants yield tangible runtime benefits. Notably, the KAHIP social variant
achieves an average runtime improvement of 2.7% compared to the default METIS par-
titioner, while the KAHIP economical variant provides improvements of up to 7% when
excluding the partitioning overhead.

Together, these improvements make FASTAPSP run faster. This is especially true
for large-scale graphs, where partition quality and data transfer overhead are critical
performance factors.

1.3 Structure

The remainder of this thesis is organized as follows. Chapter 2 presents the necessary back-
ground on graph theory, partitioning algorithms, and GPU programming models. Chapter 3
reviews relevant prior work in parallel APSP algorithms and graph partitioning methods.
Chapter 4 presents our contributions, which include the integration of alternative graph par-
titioners and optimizations to the GPU execution pipeline. Chapter 5 provides a detailed

2

1.3 Structure

experimental evaluation of both contributions, including runtime comparisons and parti-
tion quality metrics. Finally, Chapter 6 concludes the thesis with a summary of findings
and suggestions for future research.

3

1 Introduction

4

CHAPTER 2
Fundamentals

In this chapter, we introduce the fundamental concepts required to understand the opti-
mization of the All-Pairs Shortest Path (APSP) problem. Key terms related to graph theory,
GPU-accelerated computation, and graph partitioning are explained, with a focus on their
relevance to APSP and the performance optimizations explored in this thesis.

2.1 Graph Terminology

We define a directed graph G = (V,E) as a set of vertices V and a set of directed edges E,
where each edge (u, v) ∈ E represents a one-way relationship from vertex u to vertex v.
In contrast, an undirected graph is one where the edges do not have a direction, meaning
that if (u, v) ∈ E, then (v, u) ∈ E as well.

A weighted graph assigns a numerical weight w to each edge (u, v), representing the
cost or distance of traversing that edge. If all edges are assigned the same weight or no
weight at all, the graph is referred to as an unweighted graph.

2.2 Shortest Path Problems

The single-source shortest path (SSSP) problem involves finding the minimum weight
path from a source vertex s to all other vertices t ∈ V \{s} in a weighted graph G = (V,E).
Common algorithms like Dijkstra’s algorithm are used to solve the SSSP problem.

The all-pairs shortest path (APSP) problem extends this idea by finding the shortest
path between every pair of vertices u, v ∈ V . Solutions to the APSP problem are critical in
applications like network routing, city planning, and optimization tasks where all shortest
path distances need to be computed.

5

2 Fundamentals

2.3 Graph Partitioning

In parallel computing, graph partitioning refers to the process of divid-
ing a graph G = (V,E) into smaller subgraphs or components V1, V2, . . . , Vk,
where V1 ∪ V2 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i ̸= j. The goal is to balance
computational load and minimize communication overhead, particularly in parallel and
distributed systems.

An important consideration in graph partitioning is the edge cut, which is the set of
edges that connect vertices in different components. The objective is often to minimize
the edge cut, as it directly influences the amount of inter-process communication required
when solving graph problems in parallel.

A boundary vertex of a component Vi is one that has an edge connecting it to a vertex
in another component, whereas an interior vertex has no such connections. The bound-
ary vertices are crucial in parallel algorithms because they typically form the "interface"
through which different components communicate.

2.4 Computational Frameworks: CPU vs. GPU

The Central Processing Unit (CPU) is the main processing unit in a computer, de-
signed for sequential execution of tasks. While CPUs excel at handling a wide variety
of tasks, they are typically limited by the number of cores and are less suited for highly
parallelized computations.

On the other hand, the Graphics Processing Unit (GPU) is specialized for parallel
computation. GPUs consist of many small cores that allow them to perform thousands
of operations simultaneously. This makes GPUs ideal for tasks like graph traversal and
shortest-path computation, where large amounts of independent work can be parallelized.

Execution on the GPU is organized hierarchically: individual threads are grouped into
warps (typically 32 threads), which are further organized into thread blocks. A GPU
kernel is a function that is launched across many threads in parallel, often numbering in
the thousands or millions. Threads within a warp execute instructions in a lockstep manner,
which has implications for performance when branching occurs. Programming frameworks
such as CUDA [7] and OpenCL [49] expose this execution model to developers, allowing
them to fine-tune parallel algorithms to fully exploit the GPU’s hierarchical concurrency.

2.5 CPU–GPU Data Transfers and Optimization

In GPU-accelerated algorithms, one of the key performance bottlenecks is the time spent
on CPU–GPU data transfers. This refers to the movement of data between the CPU’s
main memory and the GPU’s memory. These transfers can be slow compared to the
computational power of the GPU, and minimizing them is essential for optimizing the

6

2.6 Compressed Sparse Row (CSR) Format

performance of GPU-based algorithms. This thesis focuses on reducing the frequency and
volume of CPU–GPU data transfers. By keeping relevant data on the GPU for as long as it
is needed, we reduce the overhead associated with frequent data transfers, thus enhancing
computational efficiency.

2.6 Compressed Sparse Row (CSR) Format

Efficient graph representation is crucial for handling large-scale sparse graphs, as encoun-
tered throughout this thesis. Sparse graphs, characterized by a relatively small number
of edges compared to the total possible connections between vertices, can lead to signif-
icant inefficiencies if represented using dense structures. Therefore, to optimize memory
efficiency and computational performance, we represent graphs using the Compressed
Sparse Row (CSR) format.

In the CSR format, the graph is compactly represented using three arrays. The first array
stores the non-zero edge weights, capturing only the edges that explicitly exist. The second
array contains the column indices, identifying the destination vertex for each corresponding
edge weight. Finally, a third array holds row pointers, which indicate the positions in the
first two arrays where each vertex’s edge list begins, effectively mapping the vertex indices
to their respective edges.

In our context, this choice is especially important because FASTAPSP replicates the
entire graph data structure on each process. To keep memory usage manageable, especially
when working with large graphs and multiple GPUs, it is essential to store the graph as
compactly as possible. The CSR format supports this by representing only the non-zero
edges, thereby avoiding the overhead associated with dense representations. In addition,
its layout enables efficient sequential memory access, which matches well with how GPU
threads consume data during graph traversal and computation.

7

2 Fundamentals

8

CHAPTER 3
Related Work

This chapter surveys related work on the two main components of our approach: graph
partitioning and all-pairs shortest path (APSP) algorithms. We first review partitioning
methods, focusing on multilevel techniques used by METIS, KAHIP, and the GPU-based
JET partitioner. We then discuss classical and GPU-based APSP algorithms, including
PART APSP, its decentralized variant, and FASTAPSP, which serves as the baseline for
our optimizations.

3.1 Graph Partitioning

Graph partitioning is a critical problem in parallel computing, with numerous approaches
designed to optimize the computation and minimize the communication between sub-
graphs. There has been extensive research on graph partitioning, and we refer the reader
to the relevant literature [4, 6]. Many high-quality graph partitioners employ a multi-
level approach, such as KAHIP [44], JET Partitioner [19], METIS [26], SCOTCH [8],
HMETIS [27, 25], and (MT)-KAHYPAR [20, 21, 22]. In this chapter, we review the key
literature on graph partitioning, focusing on the multilevel partitioning approaches used by
KAHIP, JET Partitioner, and METIS, which are central to this work.

3.1.1 Multilevel Graph Partitioning

Several state-of-the-art partitioners, including KAHIP, JET, and METIS, employ the
multilevel graph partitioning (MGP) approach. This technique is widely used for effi-
ciently partitioning large-scale graphs, as it reduces complexity by simplifying the problem
across hierarchical levels. The process consists of three main phases: coarsening, initial
partitioning, and refinement.

In the coarsening phase, the graph is iteratively reduced by recursively contracting ver-
tices and edges. Each contraction step merges vertices based on a heuristic, such as edge

9

3 Related Work

matching or label propagation, to form a smaller, coarser representation of the original
graph. This phase aims to reduce the graph size while preserving its essential structure,
making it more tractable for partitioning.

Once the graph has been sufficiently coarsened, the algorithm proceeds to the initial
partitioning phase. At this stage, the graph is small enough to be efficiently partitioned.
Depending on the partitioner, either a recursive bisection method or a direct k-way parti-
tioning approach is used to divide the graph into parts. This initial partition serves as a
starting point for refinement in the next phase.

The final phase is uncoarsening (also known as refinement). Here, the graph is gradually
restored to its original size by recursively applying the inverse of the coarsening process.
At each level, the partitioning is improved using local search methods, such as Kernighan–
Lin [30] or Fiduccia–Mattheyses [16], to minimize edge cuts and balance the partitions as
the graph is uncoarsened back to its finer levels.

The strength of the multilevel approach lies in its ability to simplify the partitioning
process by breaking the problem into smaller, more manageable pieces. This significantly
reduces the complexity of partitioning large graphs and ensures scalability across large
datasets. Consequently, the multilevel partitioning approach allows KAHIP, JET, and
METIS to handle large graphs efficiently while maintaining high-quality partitions.

3.1.2 Partitioning Algorithms

METIS

METIS employs a multilevel k-way partitioning strategy that reduces the graph size
through coarsening, computes an initial partition at the coarsest level, and then progres-
sively refines the solution during uncoarsening. Earlier versions of METIS used a recur-
sive bisection approach, but the current default is a direct k-way partitioning scheme [26].
In its coarsening phase, METIS recursively contracts the graph using a greedy heavy-
edge matching (HEM) strategy, merging vertex pairs connected by high-weight edges to
form super-vertices. This process preserves key structural properties while significantly
reducing the graph size. During uncoarsening, METIS refines partitions using efficient
Kernighan-Lin-inspired heuristics, including Greedy Refinement (GR) and Global KL Re-
finement (GKLR). These methods adjust vertex assignments along partition boundaries to
reduce edge cuts while respecting balance constraints.

KAHIP

KAHIP also follows the multilevel approach but incorporates significantly more sophisti-
cated refinement techniques compared to METIS. In particular, KAHIP supports various
coarsening schemes including edge rating, high-quality matchings via the Global Path Al-
gorithm (GPA), and size-constrained label propagation used to guide coarsening and pre-
serve balance. It offers multiple configurations, from fast to high-quality modes, such as

10

3.1 Graph Partitioning

eco, strong, fast and social, each tuned for specific application domains. Dur-
ing coarsening, KAHIP applies edge contraction heuristics and balance-aware matching
schemes that aim to preserve partition balance early on.

What sets KAHIP apart is its use of advanced global search techniques during Uncoars-
ening, including F-cycles and W-cycles [43]. These strategies repeatedly coarsen and un-
coarsen the graph to escape local optima and improve partition quality beyond what is
typically achievable with a single V-cycle. Refinement in KAHIP combines multiple tech-
niques applied at different granularities: localized Kernighan–Lin-style search and flow-
based improvements are used between pairs of blocks in the quotient graph, while size-
constrained label propagation is employed both in pairwise and global (k-way) refinement
phases. This multi-strategy approach enables KAHIP to produce high-quality cuts while
strictly maintaining balance constraints.

JET

JET also follows a multilevel approach, but it significantly diverges from METIS and
KAHIP in its methods. The coarsening step in JET uses a two-hop matching technique,
which initially matches edges with high weights and then extends this matching to include
two-hop matches if many vertices remain unmatched. This approach helps preserve more
graph structure in the coarse representation. After coarsening, JET uses the METIS al-
gorithm to partition the coarsest graph. This ensures that JET leverages the high-quality
partitioning capabilities of METIS for the coarsened graph. In the Uncoarsening (refine-
ment) phase, JET differs from both METIS and KAHIP by using label propagation to
improve the partition quality. JET refines partitions using a modified label propagation
scheme that prioritizes cut reduction without enforcing balance in each step. It allows tem-
porarily unbalanced moves, including negative-gain ones, through a custom afterburner
filter, and restores balance in a separate rebalancing phase. This decoupling enables larger,
more effective vertex migrations while maintaining overall partition quality and balance.
The descriptions above provide an overview of how METIS, KAHIP, and JET differ in
their overall multilevel partitioning strategies. To highlight the design choices more clearly,
we now break down the multilevel process into its three main phases, coarsening, initial
partitioning, and refinement, and compare how each partitioner implements them.

Coarsening

METIS performs coarsening by recursively contracting vertices using a greedy heavy-
edge matching (HEM) strategy [26]. In this approach, edges with the largest weights are
preferentially matched, contracting connected vertices into super-vertices. This reduces
the graph size rapidly while preserving important structural characteristics. The HEM
technique aims to maintain the quality of the partitioning throughout the multilevel process.

In contrast, KAHIP employs a multilevel coarsening scheme based on edge rating func-
tions and high-quality matchings. Instead of simple heavy-edge matching, it uses advanced

11

3 Related Work

strategies such as the Global Path Algorithm (GPA) [44], which maximizes the overall edge
rating. KAHIP also integrates size-constrained label propagation to improve balance early
in the coarsening process. These mechanisms produce structurally representative coarse
graphs and maintain partition balance from the outset.

JET, on the other hand, introduces a GPU-parallel two-hop matching strategy for coars-
ening [19]. Initially, it matches high-weight edges (similar to HEM), but then expands to
match two-hop neighbors, such as twins, leaves, and relatives, ensuring more unmatched
vertices are contracted. This leads to coarse graphs that retain more structural detail. The
design is optimized for GPU throughput using hash-based matchmaker selection and warp-
level concurrency.

Initial Partitioning

At the coarsest level, METIS computes a direct k-way partition of the graph. This is
typically done when the graph is reduced to a small number of vertices. Earlier versions
used recursive bisection, but modern METIS performs direct k-way partitioning at the
coarsest level and then uncoarsens the solution through refinement.

KAHIP takes a more flexible approach to initial partitioning. It supports multiple strate-
gies, including recursive bisection, spectral bisection, and the use of external partition-
ers such as Scotch. The selected method depends on the configuration preset (e.g., eco,
strong) and may involve internal multilevel preprocessing followed by initial refinement
using flow-based or FM-style methods.

Rather than implementing its own strategy, JET delegates the initial partitioning of the
coarsest graph to the METIS library. This is typically done once the graph has been
reduced to a few thousand vertices. By offloading this step to a well-tested CPU-based
method, JET ensures high-quality initial partitions while keeping the coarsening and re-
finement stages on the GPU.

Refinement (Uncoarsening)

METIS refines the partition during uncoarsening using lightweight heuristics inspired by
the Kernighan–Lin algorithm. These include Greedy Refinement (GR), which adjusts
boundary vertices if they yield gain without violating balance, and Global KL Refine-
ment (GKLR), which uses gain-based queues and limited hill-climbing. These strategies
are designed to be fast and effective, making METIS scalable even for large graphs [26].

KAHIP employs a hybrid refinement strategy that operates at multiple levels. Between
pairs of blocks, it uses local search techniques such as flow-based refinement and a local-
ized Fiduccia–Mattheyses heuristic. At the global level, it performs size-constrained label
propagation in both pairwise and full k-way refinement modes. Additionally, it supports
advanced global search mechanisms like F-cycles and W-cycles [43], which allow it to
repeatedly coarsen and refine the graph to escape local minima.

12

3.2 APSP Algorithms

Finally, JET performs refinement using a GPU-parallel label propagation algorithm de-
signed to operate in two stages [19]. The first stage (JETLP) focuses on unconstrained
cut improvement using gain-based label updates. The second stage (JET) restores bal-
ance through a dedicated rebalancing pass. JET also includes an afterburner heuristic that
enables negative-gain moves by filtering and reordering vertex adjustments, leading to fur-
ther cut improvements. This decoupled two-phase approach allows for both aggressive
optimization and efficient GPU utilization.

Each of these partitioners has its own strengths, and the choice of partitioner depends
on the target platform and the specific requirements of the graph partitioning task. In this
thesis, we evaluate the performance of the All-Pairs Shortest Path algorithm using these
three partitioners.

The efficiency of All-Pairs Shortest Path (APSP) algorithms on large-scale graphs is
closely tied to graph partitioning techniques. Methods like METIS, KAHIP, and JET

partition the graph into smaller subgraphs, minimizing communication overhead and im-
proving parallel processing. This allows APSP algorithms to scale better by reducing com-
putational load and enhancing performance, especially for large graphs. As we now turn to
the APSP algorithms, it’s clear that effective partitioning plays a crucial role in optimizing
their execution.

3.2 APSP Algorithms

The All-Pairs Shortest Path (APSP) problem is a fundamental challenge in graph theory and
has been extensively studied using various approaches. The two most commonly employed
methods are the Floyd-Warshall (FW) [17] algorithm and the repeated application of the
Single-Source Shortest Path (SSSP) algorithm.

The FW algorithm, which utilizes dynamic programming, computes the shortest paths
between all pairs of vertices in a systematic, iterative manner. Thanks to its matrix-based
structure, the Floyd-Warshall algorithm can be parallelized effectively. However, its cubic
time and quadratic space complexities render it impractical for large-scale graphs. Kannan
et al. [24] were able to compute 6 million vertices in about 80 minutes by engaging 4,096
computing nodes of 24,576 GPUs in the Summit supercomputer system [53].

On the other hand, the SSSP-based approach, which solves the shortest path problem
from each vertex, often employs algorithms like Dijkstra’s [12] or Bellman-Ford [10].
SSSP-based methods often scale better on sparse graphs due to their lower time complex-
ity of O(n2 log n+ nm), which can outperform the FW algorithm under certain conditions.
However, the SSSP method faces challenges in parallel computing environments due to the
need for complex data structures and a lack of optimizations for modern hardware features,
such as SIMD or cache utilization [46]. Several attempts have been made to improve the
parallelism of SSSP, such as the delta-stepping algorithm [37] and task-level parallelization
for handling multiple SSSP tasks [45], but they still struggle with scalability, particularly
on very large graphs. Notably, the largest graph tested by the SSSP algorithm consisted

13

3 Related Work

of 1,024 vertices and required approximately 10 hours to process using two GPUs [41].
While both FW and SSSP have significant limitations, recent advancements have explored
GPU-based solutions to APSP. The PART APSP algorithm [14] and its decentralized vari-
ant [13] employ a divide-and-conquer strategy, leveraging parallel computing resources
to independently process subgraphs before combining the results. These methods signifi-
cantly reduce the computational bottlenecks associated with the traditional algorithms, es-
pecially when large-scale data sets are involved. The FASTAPSP further builds upon these
techniques by integrating both SSSP and FW algorithms, improving upon the scalability of
previous methods while also eliminating inter-process communication overhead.

In this section, we provide an overview of the PART APSP and Decentralized PART

APSP algorithms, followed by a detailed explanation of FASTAPSP. The latter is the focus
of our work, where we optimize its performance.

3.2.1 PART APSP Algorithm

The PART APSP algorithm is designed to compute the shortest paths between all pairs of
vertices for large graphs using parallel computing resources. It is based on the parallel
Floyd-Warshall (FW) algorithm, which is described in more detail later in Section 3.3, and
utilizes a partition strategy. The algorithm consists of four main steps 1:

• Step 1: Preprocessing: The input graph is divided into multiple components (sub-
graphs). The vertices of each component are categorized into interior and boundary
vertices. The graph partitioning is done by the master node, which then broadcasts
the result to all worker nodes.

• Step 2: Local APSP Computation: Each process applies the Floyd-Warshall algo-
rithm to compute the APSP within its own component. This step involves updating
the distance matrix for both interior and boundary vertices. The results are then sent
to the master node.

• Step 3: Boundary APSP Computation: The boundary vertices from all compo-
nents are gathered to form a boundary subgraph. The master node applies the Floyd-
Warshall algorithm on this boundary subgraph to compute the shortest paths between
boundary vertices. The results are then broadcast to the workers, which run the FW
to update their local distance matrices to cover the case where the shortest path goes
through boundary vertices.

• Step 4: Global APSP Computation: The final shortest path results for the en-
tire graph are computed using the MIN-PLUS operation on the intermediate results
from the local and boundary APSP computations. The MIN-PLUS operation ef-
ficiently combines the partial results from each component and the boundary sub-
graph. For each vertex in the subgraph it finds the minimum among the distances to

14

3.2 APSP Algorithms

each of its boundary vertices plus the distance to each of the target subgraph bound-
ary vertices and the distance from that boundary vertex to the target, as shown in the
following formula.

Cij = min
k,p

(Aik +Bkp +Dpj)

The pseudo code for the Partitioned All-Pairs Shortest Path Algorithm is provided in
Algorithm 1. This algorithm is suitable for parallel systems where multiple workers com-
pute the APSP for graph components independently. The time complexity of the PART

APSP algorithm is O(n2.25), which is better than applying the Floyd-Warshall algorithm
directly to the entire graph. However, scalability can be limited due to the global commu-
nication required between processes.

Algorithm 1: Partitioned All-Pairs Shortest Path Algorithm
Input: A graph G(V,E), where the weights of E are non-negative
Output: The distances between the vertices in G

1 Step 1: Preprocessing
2 Master: Read and partition the graph
3 Master: Scatter the partition component C(i) to worker i

processor ;
4 Step 2: Local APSP Computation
5 for all worker processors p in parallel do
6 Worker p: Floyd-Warshall(C(p)) ;
7 Worker p: Send computed boundary distances to the

master processor ;

8 Step 3: Boundary APSP Computation
9 Master: Extract the boundary graph GBG ;

10 Master: Compute APSP on GBG ;
11 Master: Send the boundary graph GBG to all worker

processors ;
12 for all worker processors p in parallel do
13 Worker p: Floyd-Warshall(C(p)) ;
14 Worker p: Send C(p) distances to all worker

processors ;

15 Step 4: Global APSP Computation
16 for all worker processors p in parallel do
17 for all components C2 in G do
18 Worker p: compute_APSP_between_components(C(p), C2) ;

15

3 Related Work

3.2.2 DECENTRALIZED PART APSP Algorithm

The DECENTRALIZED PART APSP algorithm is an optimization of the PART APSP al-
gorithm. It follows a similar four-step approach, but with a decentralized design to reduce
global communication. The steps of the algorithm are as follows:

• Step 1: Preprocessing: Each process reads the original graph and partitions it in-
dependently. The graph is divided into components, and the vertices are categorized
into interior and boundary vertices, similar to the PART APSP algorithm.

• Step 2: Solving Local APSP: Each process computes the APSP for its local vertices
using the Floyd-Warshall algorithm. Afterward, the distance and path matrices for
boundary vertices are broadcast to other processes.

• Step 3: Solving the Boundary SSSP Problem: Each process calculates the shortest
paths from its boundary vertices to all other boundary vertices using a Single-Source
Shortest Path (SSSP) algorithm. Then each process runs the FW to update the local
distance matrices in case the shortest path goes through boundary vertices. This step
reduces the communication required compared to the PART APSP algorithm.

• Step 4: Solving the Global APSP: The final step is the same as in the PART APSP
algorithm, where the MIN-PLUS operation is used to combine the intermediate re-
sults from the local and boundary APSP computations to compute the global APSP.

The Decentralized PART APSP algorithm reduces global communication by perform-
ing boundary calculations independently and using the SSSP algorithm to compute short-
est paths between boundary vertices. This leads to improved scalability, particularly in
large parallel systems. The time complexity of the Decentralized PART APSP algorithm
is also O(n2.25), but the optimization leads to better performance in scenarios with many
processing nodes. The pseudo code for the Decentralized PART APSP algorithm is shown
in Algorithm 2.

3.3 Building Block Algorithms

We now turn to the specific algorithms used in FASTAPSP, focusing on the GPU-based
building blocks that are employed in its second, third, and fourth steps. The FASTAPSP
algorithm consists of four main steps, as illustrated in Figure 3.1. First, the algorithm
partitions the graph into equal-sized components. In the second step, it uses the global
single-source shortest path (SSSP) algorithm by Harish and Narayanan [23] to calculate
the shortest paths from the boundary vertices to all other vertices in the graph. In the third
step, it applies the local blocked Floyd-Warshall algorithm [28] within each component.
In the last step, it calculates the distances from the interior vertices in each component to
all vertices, resulting in the complete all-pairs shortest path matrix. In this section, we
provide a detailed explanation of the algorithm used in the second, third and fourth steps
of the FASTAPSP.

16

3.3 Building Block Algorithms

Algorithm 2: Decentralized Partitioned All-Pairs Shortest Path Algorithm
Input: A graph G(V,E), where the weights of E are non-negative
Output: The distances between the vertices in G

1 Step 1:
2 for all processor p in parallel do
3 read and decompose the graph
4 get own component C(p)

5 Step 2:
6 for all processor p in parallel do
7 Floyd-Warshall(C(p)) send computed boundary distances to all other processors

8 Step 3:
9 for all processor p in parallel do

10 GBG = extract_boundary_graph(G)
11 for all vertex v in GBG do
12 solve_SSSP(v,GBG)

13 for all processor p in parallel do
14 Floyd-Warshall(C(p)) send computed distances to all other processors

15 Step 4:
16 for all processor p in parallel do
17 for all component C2 in G do
18 compute_APSP_between_components(C(p), C2)

3.3.1 Harish and Narayanan’s algorithm

This algorithm follows a pattern similar to Dijkstra’s algorithm [12], but with a key differ-
ence: instead of processing only the vertex at the top of the priority queue as in Dijkstra’s
algorithm, Harish and Narayanan’s algorithm processes all vertices whose paths were up-
dated in the previous step. These are then processed in parallel. As shown in Figure 3.3,
in the first step, only the source vertex is active. In the second step, all its children become
active, and in the third step, the children of these children are activated.

This approach significantly improves upon Dijkstra’s algorithm because it leverages
the parallel processing capabilities of GPUs. Each GPU thread is assigned to a vertex.
This allows the algorithm to compute shortest paths in parallel and achieve substantial
performance gains.

After providing the intuition, we will delve deeper into the details. Initially, each GPU
thread is assigned to a single vertex. The algorithm maintains, for each vertex, its cost, tem-
porary cost, path, and temporary path, where the cost represents the best known distance
from the source vertex.

17

3 Related Work

Figure 3.1: An illustration of the two algorithms: (1) PART APSP, and (2) DECENTRALIZED

PART APSP. Adapted from Yang et al. [54].

The algorithm proceeds in iterations, each comprising three synchronized phases. Dur-
ing the first phase, every thread verifies the activity status of its assigned vertex. Upon
confirming that it is active, the thread evaluates all of its neighboring vertices. It computes
the sum of its vertex cost and the edge weight to each neighbor, comparing it against the
neighbor’s temporary cost. If this sum is smaller, the neighbor’s temporary cost is updated
using atomic operations, as described by Kemp [29].

In the second phase, when a vertex is active, its corresponding thread verifies for each
of its neighbors, whether the temporary cost of its neighbor equals the sum of its own cost
and the edge weight to that neighbor. Essentially, this checks if the shortest path to the
neighbor goes through this specific active vertex. If this condition holds true, the active
vertex is appended to the neighbor’s temporary path.

During the third phase, each thread examines whether the cost of its assigned vertex
exceeds its temporary cost. If so, it signifies that the vertex’s cost has been updated in the
current iteration. Consequently, the thread updates the vertex’s cost and path to match its
temporary cost and temporary path and marks the vertex as active. The algorithm proceeds
to iterate until no vertices remain active, indicating that further improvement to any vertex’s
path is not possible. At this point, the algorithm concludes.

Algorithms 1, 2, and 3 represent the different kernel functions (phases) of the algorithm.
The boolean array Ma indicates whether a vertex is active, while Pa stores the path and TPa

information for each vertex. The arrays Ca and TCa hold the current and temporary dis-
tances, respectively, ensuring efficient distance updates during computation. In addition,

18

3.3 Building Block Algorithms

Figure 3.2: Demonstrations of the four different steps in the FASTAPSP algorithm. Adapted from
Yang et al. [54].

Figure 3.3: Overview of Harish and Narayanan’s algorithm executing the first three steps. Repro-
duced from Yang et al. [54].

several improvements have been made to Harish’s GPU algorithm. Okuyama et al. [39]
leverage coarse-grained parallelism by implementing a task parallelization strategy that as-
sociates each task with an SSSP problem. The delta stepping algorithm [40], proposed as
a compromise solution, demonstrates good performance on GPUs. However, the authors
also note that for planar graphs such as road networks, which typically have high diameters
and low degrees, the delta stepping algorithm is not as efficient. Furthermore, a number of
other works [11, 36, 52] address parallel solutions to the SSSP problem.

Algorithm 3: SSSP-KERNEL1
Input: Va, Ea,Wa,Ma, Ca, TCa, Pa, TPa

Output: Updated values of Ca, Pa

1 ti ← threadID ;
2 if Ma[ti] then
3 for all neighbors nid of ti do
4 atomic:

if TCa[nid] > Ca[ti] +Wa[nid] then
5 TCa[nid]← Ca[ti] +Wa[nid] ;

19

3 Related Work

Algorithm 4: SSSP-KERNEL2
Input: Va, Ea,Wa,Ma, Ca, TCa, TPa

Output: Updated values of Ma, TPa

1 ti ← threadID ;
2 if Ma[ti] then
3 Ma[ti]← false ;
4 for all neighbors nid of ti do
5 if TCa[nid] == Ca[ti] +Wa[nid] then
6 TPa[nid]← ti ;

Algorithm 5: SSSP-KERNEL3
Input: Va, Ea,Wa,Ma, Ca, TCa

Output: Updated values of Ca, Pa,Ma

1 ti ← threadID ;
2 if Ca[ti] > TCa[ti] then
3 Ca[ti]← TCa[ti] ;
4 Pa[ti]← TPa[ti] ;
5 Ma[ti]← true ;

6 TCa[ti]← Ca[ti] ;
7 TPa[ti]← Pa[ti] ;

3.3.2 Sequential Floyd-Warshall as a Basis for Parallelization

The third step of the FASTAPSP algorithm uses a parallel version of the Floyd-
Warshall [28] algorithm to solve the all-pairs shortest path problem in each of its compo-
nents. Before explaining the parallel version, we will first explain the original version [17]
of the algorithm, as understanding the sequential version is crucial for comprehending the
parallel one.

The Floyd-Warshall algorithm uses a dynamic programming technique to solve the all-
pairs shortest path problem. It performs n iterations where, n is the number of vertices in
the graph, and in each iteration k, it checks for each pair of vertices vi, vj ∈ V if there
exists a shorter path between vi and vj through vertex vk. It employs an n × n distance
matrix to represent the current shortest distances between all pairs of vertices. We denote
this distance matrix as dist. In the initialization stage, for each edge (vi, vj) ∈ E, the
entry dist[i, j] is set to w(vi, vj). All entries that do not correspond to edges in the graph
are set to infinity.

After the initialization stage, the algorithm performs n iterations. In the kth iteration,
it checks for all pairs vi, vj ∈ V if dist[i, j] > dist[i, k] + dist[k, j]. If this is the case, it
updates dist[i, j] to dist[i, k] + dist[k, j]. After n iterations, the algorithm terminates, and
the distance matrix represents the all-pairs shortest path solution.

20

3.3 Building Block Algorithms

Algorithm 6: Floyd-Warshall Algorithm
Input: n× n matrix dist, where dist[i, j] is the initial distance between vertices i

and j, and infinity for non-edges
Output: dist matrix with the shortest distances between all pairs of vertices

1 for k = 1 to n do
2 for i = 1 to n do
3 for j = 1 to n do
4 if dist[i, j] > dist[i, k] + dist[k, j] then
5 dist[i, j]← dist[i, k] + dist[k, j]
6 end
7 end
8 end
9 end

Figure 3.4: Overview of Katz and Kidar’s algorithm in its first iteration. Reproduced from Katz
et al. [28].

3.3.3 Blocked Floyd-Warshall algorithm

Having introduced the sequential Floyd-Warshall algorithm, we now turn to the parallel
variant proposed by Katz and Kider [28], which adapts the original formulation for efficient
execution on GPUs. Yang et al. referred to it as the Blocked FW algorithm. The first step
is to divide the dist matrix into b equal-sized sub-blocks, with each sub-block assigned to a
GPU thread-block.

The algorithm performs n/b iterations, where each iteration of the Blocked FW
simulates n/b iterations of the original FW algorithm. In each iteration, a primary block is
set. The primary block in the pth iteration is the pth diagonal block. An iteration consists
of three phases, as illustrated in Figure 3.4. In the first phase, the primary block calcu-
lates its all-pairs shortest paths using the Floyd-Warshall algorithm. In this phase, only one
thread-block is processing the primary block.

In the second phase, the blocks in the same row of the primary block and the blocks
in the same column of the primary block are active. A close examination of the distance
matrix accesses when running the FW algorithm reveals that to calculate a block in the
same row or column as the primary block, only the entries of this specific block and the
entries of the primary block are needed. This is explained as follows: the pth iteration of

21

3 Related Work

Figure 3.5: Dependency of a specific block in phase 3 of the first iteration.

Figure 3.6: The second, third, and fourth iterations

the blocked FW represents the k = (n/b) ∗ ((pth) − 1) to k = (n/b) ∗ (pth) iterations in
the FW algorithm, where with close examination only the entries as described above are
needed to calculate the block. This way the calculations of all the blocks that are active in
this phase are performed in parallel.

In the third step all other blocks in the matrix are calculated for the same k values. Using
the same argument as in the second phase, it can be shown that each of the remaining
blocks depends only on its own entries and the entries of the blocks in its row and column
that intersect with blocks in the row and column of the primary block. For instance, as seen
in Figure 3.5, the red block depends only on the circled blocks and its own entries. This
means that all the blocks calculated in the third phase do not depend on each other within
this iteration and can, therefore, be computed in parallel. Figure 3.6 demonstrates the
three phases in the second, third, and fourth iterations of the blocked FW algorithm.

3.3.4 Min-Plus

The Min-Plus operation plays a key role in the FASTAPSP algorithm and can be viewed
as a variant of the General Matrix Multiplication (GEMM) operation, which is a core
operation in matrix computations. In standard matrix multiplication, the entry Cij in the

22

3.4 FASTAPSP

Figure 3.7: An illustration of the Min-Plus operation. Reproduced from Yang et al. [54].

product of two matrices A and B is computed as:

Cij =
n∑

k=1

Aik ·Bkj

where n represents the number of columns in A (and equivalently, the number of rows
in B). In contrast, the Min-Plus operation modifies the traditional matrix multiplication
by replacing the addition and multiplication operations. Specifically, it replaces the sum-
mation with the minimum operation and multiplication with addition, resulting in the
following formulation for the elements of the matrix C:

Cij = min
k

(Aik +Bkj)

Here, instead of summing products, the Min-Plus operation calculates the minimum over
the sum of corresponding elements from the rows of A and the columns of B.

Although the Min-Plus operation is a modification of matrix multiplication, it retains
the core structure of GEMM, making it computationally similar. This similarity en-
ables the Min-Plus operation to benefit from optimization techniques commonly used
for GEMM [9, 32, 50, 55], as demonstrated by Yang et al., particularly in the context of
parallel computing.

3.4 FASTAPSP

As mentioned above, the FASTAPSP algorithm consists of four steps. In this section, we
will explain each of these steps in more detail.

3.4.1 Step 1: Partition the graph
In the first step, the algorithm uses the graph partitioning tool METIS [26] to partition the
graph into k sub-graphs, called components, of nearly the same size. Each component is

23

3 Related Work

assigned to a process, and the set of boundary vertices Bi and the set of interior vertices Ini

are identified. Additionally, the complete graph is stored in each of the processes in CSR
(Compressed Sparse Row) matrix format.

3.4.2 Step 2: Solving SSSP problem of boundary vertices
Next, each process Pi (where i ranges from 1 to k) calculates the single-source shortest
paths using Harish and Narayanan’s algorithm. This is done from each boundary vertex of
its component to all other vertices in the graph, see step 2 in Figure 3.1. This is feasible be-
cause each process has access to the complete graph, allowing this computation to proceed
without any process communication.

3.4.3 Step 3: Computation of the APSP in each component
In the third step, each process computes the all-pairs shortest paths within its component
using the blocked Floyd-Warshall algorithm, as shown in step 3 in Figure 3.1. Yang et al.
proved that the distances calculated within each component are optimal. The following
provides an intuitive explanation:

Shortest paths from boundary to interior vertices: The shortest paths from the bound-
ary vertices to the interior vertices are optimal (see Step 2).

Paths between interior vertices: There are two cases for paths between
interior vertices:

• Paths within the component: If the optimal path between two interior vertices in-
cludes only vertices within the same component, the blocked FW algorithm will
compute the optimal path.

• Paths involving external vertices: If the optimal path includes vertices outside the
component, the path must involve at least two boundary vertices of the component,
see Figure 3.8(a). The path from the first boundary vertex to the target interior vertex
is already optimal (as established in Step 2). Therefore, the distance from the source
interior vertex to the target interior vertex, passing through the first boundary vertex,
will also be optimal.

3.4.4 Step 4: Computing the shortest path from internal
vertices to vertices in other components

Lastly, each component uses the knowledge obtained from Steps 2 and 3 to compute the
shortest paths from each of its interior vertices to all vertices outside its component, by
applying MIN-PLUS operations. The MIN-PLUS operation computes, for each interior
vertex, the minimum of the distances from the vertex to one of the boundary vertices plus
the distance from that boundary vertex to the target vertex.

24

3.4 FASTAPSP

Figure 3.8: An illustration of paths involving external vertices (a). Path to vertex outside the com-
ponent (b). Reproduced from Yang et al. [54].

Yang et al. provide a proof of the optimality of the MIN-PLUS operation. The intuition
is straightforward: any path from a source interior vertex to a target vertex outside its
component must traverse a boundary vertex of its component. The distance from the source
vertex to its boundary vertex is computed in Step 3, and the distance from the boundary
vertex to the target vertex is computed in Step 2. Thus, selecting the minimum among all
possible paths, as shown in Figure 3.8(b), guarantees the optimal solution.

One key advantage of the FASTAPSP algorithm is that it eliminates the need for inter-
process communication during the computation stages by storing the original graph in
each process. This feature distinguishes it from similar algorithms such as the Part-
APSP [14] and decentralized Part-APSP [13] algorithms, which require communication
between the processes.

Algorithm 7: Fast All-Pairs Shortest Path Algorithm
Input : A graph G(V,E), where the weights of E are non-negative
Output: The distances between the vertices in G

1 for all processor p in parallel do
2 read and decompose graph G;
3 get own component C(p);

4 for all processor p in parallel do
5 for all boundary vertex v in C(p) do
6 solve_SSSP(v, G);

7 for all processor p in parallel do
8 Floyd-Warshall(C(p)) // compute_APSP(C(p));

9 for all processor p in parallel do
10 // 1 MIN-PLUS operator;
11 compute_APSP_components(C(p), G);

25

3 Related Work

3.5 Time Complexity Analysis

The time complexity of the FASTAPSP algorithm is strongly dependent on the ratio of
boundary vertices to all vertices in the graph, which is denoted as a. In each compo-
nent, this ratio is ai =

|Bi|
|Bi|+|Ini| . In the first step, the graph partitioning using METIS

takes O(n log n) time. In the second step, the single-source shortest path from all bound-
ary vertices to all other vertices in the graph is computed, resulting in time complexity
of O(an(n log n+m)). In the third step, the algorithm calculates the all-pairs shortest
path in each of the components. Since there are k tasks, the time complexity for this step
is O

(
k
(
n
k

)3). In the fourth step, there are k tasks that need to perform the MIN-PLUS
operations. Each MIN-PLUS operation involves all the boundary vertices of its compo-
nent and it is done for each interior vertex to all other vertices in the graph. This leads to
a time complexity of O

(
((a ∗ n

k
) ∗ ((1− a) ∗ n

k
) ∗ n) ∗ k

)
= O

(
a(1− a)n

3

k

)
. The over-

all time complexity of the algorithm is O
(
nlogn+ an2 log n+ anm+ n3

k2
+ a(1− a)n

3

k

)
.

Yang et al. were able to show that the time complexity for planar graphs can be simplified
to O(n9/4) and to O(n3) for non-planar graphs.

26

CHAPTER 4
Optimizing FASTAPSP Through Ad-
vanced Graph Partitioning and GPU
Memory Management

In this section, we present the main contributions of our research. The goal of our project
was to build upon the work of Yang et al. and identify ways to enhance the performance
of their algorithm. Specifically, we focused on two main aspects. The first is the graph
partitioning process in the algorithm’s initial step. The second is the implementation flow,
with an emphasis on optimizing CPU–GPU data transfers.

To improve the partitioning process, we explored alternative partitioners and integrated
KAHIP and JET as replacements for METIS, as discussed in Section 4.1. In addition, we
refined the implementation by minimizing CPU–GPU data transfers, ensuring that neces-
sary data remains on the GPU for the duration of dependent computations. The details of
this optimization and its impact are elaborated in Section 4.2.

4.1 The Graph Partitioning

The FASTAPSP algorithm utilizes the METIS graph partitioner to divide the input graph
into k subgraph components. Graph partitioning plays a crucial role in determining the al-
gorithm’s efficiency, as it influences how well the workload will be parallelized across com-
puting processes. As demonstrated by Yang et al., the quality of the partition, particularly
the boundary-to-interior vertex ratio, greatly influences the performance of the FASTAPSP
algorithm. A higher number of boundary vertices increases computational overhead. This
is because more operations are required in the second (3.4.2) and fourth (3.4.4) steps, which
involve calculating shortest paths and performing Min-Plus operations.

In the second step, each process computes the Single-Source Shortest Path (SSSP) from
all boundary vertices of its assigned component to every other vertex in the graph. More

27

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

boundary vertices result in more SSSP computations, which increases the number of times
the shortest path algorithm must be executed and impacts the overall runtime, particularly
with large graphs.

Similarly, in the fourth step, each process performs Min-Plus operations to propagate
distances from the interior vertices of its assigned subgraph through the boundary ver-
tices of the same subgraph, which serve as bridge vertices. By reducing the number of
boundary vertices, the number of required Min-Plus operations decreases, resulting in more
efficient execution.

To optimize the partitioning, we explored alternative graph partitioners, namely KAHIP
and JET. The experiments we conducted (see Chapter 5) demonstrated that these partition-
ers were able to improve the boundary-to-interior vertex ratio, and we investigated how this
improvement influences the overall performance.

Implementation Details of Graph Partitioners. To integrate alternative partition-
ers into FASTAPSP, we modified the graph decomposition step to support both JET and
KAHIP while retaining the existing METIS-based approach.

KAHIP Integration: KAHIP follows the same interface as METIS, making its inte-
gration straightforward. The implementation first transforms the input adjacency list into a
format suitable for KAHIP’s main partitioning function. The partitioning process is con-
figured using a balance constraint of 3%, ensuring near-even distribution of vertices across
partitions. Additionally, a fixed random seed of 42 is used for reproducibility. Different
KAHIP modes, such as “FAST”, “ECO”, “STRONG”, and “SOCIAL”, were integrated to
explore trade-offs between partitioning speed and quality. The resulting partition labels,
computed for each vertex by KAHIP, are then used to construct subgraph assignments
within FASTAPSP. Each vertex is assigned to a subgraph based on its partition label, and
a mapping structure is populated to group vertices by subgraph ID. This assignment is sub-
sequently used in the parallel stages of the algorithm to manage per-subgraph computation
and boundary handling.

JET Integration: The JET Partitioner, being a GPU-based partitioning tool using
Kokkos [15], required a different integration approach. The input graph is converted
into a KokkosSparse::CrsMatrix, which is the format expected by JET’s parti-
tioning function. The partitioning step is performed on the GPU, leveraging Kokkos for
memory management and computation. Similar to KAHIP, JET was configured to use
a balance constraint of 3% to maintain partition quality. After partitioning, the result-
ing labels are copied back to the CPU and stored in a mapping structure that assigns
vertices to their respective subgraphs. An additional integration challenge involved the
explicit creation and initialization of Kokkos device views. Since JET expects its input
data on the GPU, the host-side adjacency structures had to be manually mirrored using
create_mirror_view and synchronized via deep_copy operations. Moreover, con-
stant initialization of device-side vertex weights required a temporary mirror view to set
values on the host before transferring them to the device.

28

4.2 CPU–GPU Data Transfer Optimization

4.2 CPU–GPU Data Transfer Optimization

In the original FASTAPSP implementation, the algorithm follows a straightforward ap-
proach where data is transferred between the CPU and GPU at each stage of the computa-
tion. Specifically, the graph data required for each step is transferred to the GPU before the
computations, and the results are subsequently moved back to the CPU after each step, as
illustrated in Figure 4.1.

In contrast, our optimized approach reduces the frequency of these back-and-forth data
transfers by retaining the necessary data on the GPU for as long as it is required for subse-
quent steps, as depicted in Figure 4.2.

These transfers are particularly costly due to the significant latency and bandwidth lim-
itations of the communication channel between the CPU and GPU. Moving data between
the two involves explicit memory copies and synchronization overhead, introducing a bot-
tleneck that can significantly impact performance, particularly when frequent transfers dis-
rupt the continuity of GPU computations. By minimizing these transfers, our optimized
approach eliminates unnecessary memory operations, reduces synchronization delays, and
significantly improves overall computational efficiency.

At first glance, one might assume that this approach would lead to an increase in the
memory usage on the GPU. However, as demonstrated in Section 5.3.3, the peak memory
usage on the GPU remains nearly unchanged. Instead, memory usage increases in other
areas, with the peak staying almost the same, and only rising during stages where memory
utilization is below the peak limit. In the following sections, we will provide a detailed
explanation of the data structures used in both approaches and describe the processes of
each approach in turn.

4.2.1 Data Structures

In this section, we describe the main data structures used throughout the algorithm. The
input graph is initially provided in the Matrix Market (.mtx) format and is internally con-
verted to the Compressed Sparse Row (CSR) format. CSR is a widely used representation
for sparse graphs, consisting of three compact arrays: the row pointer array, which indi-
cates the start of each vertex’s adjacency list; the column index array, which lists the target
vertices of all edges; and the values array, which stores the corresponding edge weights.
This format is particularly space efficient for sparse graphs and enables fast traversal and
indexing on the GPU. Once constructed, the CSR representation is transferred to the GPU
and reused across various computation stages.

For subgraph-specific operations, the subgraph_dist and subgraph_path ma-
trices are used to store the shortest distances and the corresponding paths between all
the vertices of a subgraph and all vertices of the complete graph. During the Floyd-
Warshall algorithm, additional intermediate matrices like inner_to_inner_dist and
inner_to_inner_path are created to compute the shortest paths between vertices

29

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

Data

SSSP

Data transformation

Floyd

Data transformation

Min-Plus
Results

Updated Data

Data

Data

Figure 4.1: CPU–GPU Data Transformation Workflow in the Original Version

within the subgraph. Similarly, the inner_to_boundary_dist matrix holds the
shortest distances between the interior vertices of the subgraph and the boundary ver-
tices, which is used in the Min-Plus operation later in the process. Additionally, the
id_to_index structure maps each vertex ID to its corresponding index in the subgraph,
while index_to_id performs the inverse mapping, converting indices back to their orig-
inal vertex IDs. Table 4.1 presents an overview of the key data structures used in the algo-
rithm, detailing their memory requirements, computational complexity, and usage across
different processing stages. In this table, bp denotes the number of boundary vertices in
subgraph p, n the total number of vertices, m the total number of edges, and k the number
of subgraph components. Algorithm 8 presents the pseudo code for FASTAPSP, providing
a detailed breakdown of each function’s data structures and signatures.

30

4.2 CPU–GPU Data Transfer Optimization

Data

SSSP

Data transformation

Floyd

Data transformation

Min-Plus
Results

Figure 4.2: CPU–GPU Data Transformation Workflow in the Optimized Version

4.2.2 The Original Approach

The original FASTAPSP algorithm progresses through a series of stages, with data being
transferred back and forth between the CPU and GPU at each step. This continuous data
movement introduces significant CPU–GPU data transfer overhead, which can become a
bottleneck, particularly when processing large graphs. The chronological flow of events,
as depicted in Figure 4.1, is as follows:

Step 1: Graph Partitioning

In this step, the graph partitioning algorithm is applied to the input graph, with each vertex
being assigned to a subgraph component. This operation is entirely performed on the CPU.

31

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

Data Size O-Notation Used In
GCSR |V |+ 2|E| O(m) SSSP, Min-Plus

subgraph_dist, subgraph_path |V |2/k O(n2) SSSP, Floyd-Warshall, Min-Plus
inner_to_inner_dist, inner_to_inner_path |V |2/k2 O(n2) Floyd-Warshall

inner_to_boundary_dist (|V | − bp)/k ∗ bp O(n ∗ bp) Min-Plus
id_to_index, index_to_id |V | O(n) SSSP, Min-Plus

Final APSP Results of C(p) |V |2/k O(n2) Output

Table 4.1: Data Structures and Their Memory Usage

Algorithm 8: FASTAPSP Algorithm with data structures and signatures
Input : A graph G(V,E), where the weights of E are non-negative
Output: The distances between all vertices in G

1 for all processor p in parallel do
// Step 1: Graph Partitioning (CPU)

2 Read and decompose graph G on CPU;
3 Get own component C(p);

4 for all processor p in parallel do
// Step 2: SSSP Computation on Boundary Vertices

(GPU)
5 for each boundary vertex v in C(p) do

// Run SSSP kernel on GPU
6 Solve_SSSP_GPU(GCSR, subgraph_dist, subgraph_path , id_to_index);

7 for all processor p in parallel do
// Step 3: Floyd-Warshall Algorithm on Subgraphs

(GPU)
// Prepare subgraph distance matrices

8 build_subgraph_matrix_CPU(GCSR subgraph_dist, subgraph_path,
inner_to_inner_dist, inner_to_inner_path, id_to_index, index_to_id)
// Run Floyd-Warshall on GPU

9 floyd_warshall_GPU(inner_to_inner_dist, inner_to_inner_path,);

10 for all processor p in parallel do
// Step 4: Min-Plus Operation (GPU)
// Construct intermediate matrices

11 construct_inner_to_boundary_dist_CPU(inner_to_inner_dist,
inner_to_boundary_dist);
// Execute Min-Plus kernel

12 min_plus_GPU(subgraph_dist, subgraph_path, inner_to_boundary_dist);

32

4.2 CPU–GPU Data Transfer Optimization

Step 2: SSSP Algorithm on Boundary Vertices

In this step, the Single-Source Shortest Path (SSSP) algorithm is applied to all bound-
ary vertices in the subgraph. The graph’s CSR adjacency matrix, along with the
subgraph_dist and subgraph_path matrices, are transferred to the GPU for com-
putation. After the computation is completed, the results are returned to the CPU, and the
matrices are removed from the GPU memory.

Step 3: Floyd-Warshall Algorithm within Subgraphs

As part of the preprocessing, the inner_to_inner_dist and
inner_to_inner_pathmatrices are constructed from the updated subgraph_dist
and subgraph_path matrices. This matrix construction is carried out on the CPU, as
it involves data transformations that are essential for preparing the data for the subsequent
steps of the algorithm. The blocked Floyd-Warshall algorithm is then used to compute
all pairs of shortest paths within the subgraph. The inner_to_inner_dist and
inner_to_inner_path matrices are transferred to the GPU for computation. Once
the calculations are complete, the results are transferred back to the CPU.

Step 4: Min-Plus Algorithm

Following the completion of the blocked Floyd-Warshall algorithm,
the inner_to_boundary_dist matrix is constructed from the
inner_to_inner_dist matrix. This matrix stores the shortest distances be-
tween the interior and boundary vertices. The construction of this matrix is performed on
the CPU, as it involves transforming the computed data from the previous step into the
format required for Min-Plus operations.

The final step involves the Min-Plus algorithm, which computes the shortest paths from
the interior vertices to the boundary vertices and then from the boundary vertices to all
other vertices. During this step, the relevant matrices inner_to_boundary_dist,
subgraph_dist, and subgraph_path are transferred to the GPU for computation.
Once the Min-Plus operation is complete, the results are transferred back to the CPU.

4.2.3 Optimized Approach in FASTAPSP
In our optimized version of FASTAPSP, the algorithm reduces CPU–GPU data transfers
by keeping data on the GPU for as long as it is required for subsequent computations,
minimizing the need for frequent and costly transfers. As illustrated in Figure 4.2, this
approach avoids unnecessary memory movements by retaining intermediate results on the
GPU. Our optimized version continues to use the same core data structures as the original
approach while refactoring data transformations previously handled by the CPU into GPU
kernels, ensuring that only the final results are transferred back to the CPU after computa-
tion is completed.

33

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

Step 1: Graph Partitioning

In the optimized version of FASTAPSP, the graph partitioning step was extended to support
alternative partitioners beyond the original METIS based approach. While the conceptual
goal of assigning vertices to subgraphs remains unchanged, the implementation differs
depending on the selected partitioner.

When using KAHIP, partitioning is performed on the CPU in a manner similar to
METIS, with only minor differences in the configuration interface and partitioning modes.
In contrast, JET executes the partitioning step on the GPU. The graph is first transferred
to the device, where partitioning is carried out using Kokkos based kernels. After compu-
tation, the resulting partition labels are transferred back to the CPU and used to construct
the subgraph mapping. As a result, this step does not reduce CPU–GPU data transfers but
provides an alternative partitioning strategy that may yield improved subgraph quality. For
additional integration details, see Section 4.1.

Step 2: SSSP Algorithm on Boundary Vertices

In this step, the graph’s CSR adjacency matrix, along with the subgraph_dist and
subgraph_path matrices, are transferred to the GPU for computation. After the SSSP
computations, the subgraph_dist and subgraph_path matrices are updated and
retained on the GPU, avoiding unnecessary transfers back to the CPU.

Step 3: Floyd-Warshall Algorithm within Subgraphs

The inner_to_inner_dist and inner_to_inner_path matrices are con-
structed from the updated subgraph_dist and subgraph_path matrices. Unlike
the original approach, these matrices are now created directly on the GPU, eliminating the
need for data transfers to the CPU, which significantly reduces overhead.

The blocked Floyd-Warshall algorithm is then executed entirely on the GPU, as in the
original approach. However, in our optimized version, the inner_to_inner_dist and
inner_to_inner_path matrices remain on the GPU, preventing unnecessary trans-
fers to the CPU and reducing data movement bottlenecks.

Step 4: Min-Plus Algorithm

The inner_to_boundary_dist matrix is constructed entirely on the GPU using the
inner_to_inner_dist matrix. This avoids unnecessary transfers to the CPU and
fully utilizes the parallelism provided by the GPU.

Next, the Min-Plus operation is executed on the GPU using the matrices
subgraph_dist, subgraph_path, and inner_to_boundary_dist. Once the
operation is complete, the final results are transferred back to the CPU.

Our optimized approach significantly reduces CPU–GPU data transfer frequency. By
refactoring data transformation functions into GPU kernels, it takes full advantage of GPU

34

4.2 CPU–GPU Data Transfer Optimization

parallelism, reducing transformation time and improving computational efficiency. As
demonstrated in 5.3.3, the peak memory consumption occurs during the fourth step in
both approaches, with only a slight difference between them. However, in the second and
third steps, our optimized approach exhibits considerably higher memory usage, though
still lower than the peak observed in the fourth step.

Implementation Details of the Optimized GPU Data Transformations. To op-
timize the performance of FASTAPSP, we restructured key data transformation operations
into independent GPU kernels. These transformations involve constructing, extracting,
and decoding the subgraph distance matrices, all of which were previously handled on
the CPU. The new GPU implementation eliminates redundant data transfers and leverages
parallel execution for efficient computation. This section describes the three key trans-
formation steps and their corresponding GPU kernels, which are detailed in Algorithm 9,
Algorithm 10, and Algorithm 11.

Subgraph Matrix Construction and Floyd-Warshall Preparation The first trans-
formation initializes the inner_to_inner_dist and inner_to_inner_pathma-
trices from the Compressed Sparse Row (CSR) format and the subgraph_dist
and subgraph_path matrices.

The original CPU implementation iterated sequentially over all vertices to extract
and store connectivity information and distances, leading to inefficient memory accesses
and high overhead. In contrast, our optimized GPU implementation launches three
independent kernels. The first kernel constructs the inner_to_inner_dist and
inner_to_inner_path matrices using the CSR graph structure, allowing each vertex
to process its neighbors in parallel. The second kernel copies subgraph-related distances
from subgraph_dist into inner_to_inner_dist, ensuring that all necessary sub-
graph information is transferred. Finally, the third kernel initializes diagonal entries in
inner_to_inner_dist, correctly setting all self-distances to zero. This transforma-
tion is detailed in Algorithm 9.

Once these transformations are completed, the matrices inner_to_inner_dist and
inner_to_inner_path are ready for Floyd-Warshall execution on the GPU, eliminat-
ing unnecessary CPU transfers.

Extraction of Inner-to-Boundary Distances Once the subgraph structure is built,
the Min-Plus computation requires a thin matrix containing only distances from interior
vertices to boundary vertices. In the CPU-based approach, this transformation was exe-
cuted with a nested loop that iterated over each interior vertex and extracted its connections
to boundary vertices.

The GPU-based version significantly reduces overhead by using Kernel 4 to assign one
thread per interior vertex. Each thread extracts the relevant entries in parallel and copies
them into the new matrix. This transformation is detailed in Algorithm 10.

35

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

Algorithm 9: Build the subgraph matrices for the Floyd-Warshall algorithm
Input : GCSR, subgraph_dist, subgraph_path
Output: inner_to_inner_dist, inner_to_inner_path
// Step 1: Process Graph Structure (Kernel 1)

1 foreach v ∈ Vp (in Kernel 1) in parallel do
2 foreach neighbor u of v do
3 if u ∈ Vp then
4 inner_to_inner_dist[v, u]← subgraph_dist[v, u];
5 inner_to_inner_path[v, u]← v;

// Step 2: Copy Subgraph Data (Kernel 2)
6 foreach boundary vertex vb ∈ Vp (in Kernel 2) in parallel do
7 foreach u ∈ Vp do
8 inner_to_inner_dist[vb, u]← subgraph_dist[vb, u];
9 inner_to_inner_path[vb, u]← subgraph_path[vb, u];

// Step 3: Initialize Diagonal Entries (Kernel 3)
10 foreach v ∈ Vp (in Kernel 3) in parallel do
11 inner_to_inner_dist[v, v]← 0;

Algorithm 10: Extraction of Inner-to-Boundary Distances
Input : inner_to_inner_dist
Output: inner_to_boundary_dist
// Step 1: Extract Inner-to-Boundary Distances (Kernel

4)
1 foreach interior vertex vi ∈ Vp (in Kernel 4) in parallel do
2 foreach boundary vertex vb ∈ Vp do
3 inner_to_boundary_dist[i, vb]← inner_to_inner_dist[vi, vb];

Final Decoding of Floyd-Warshall Results After executing the Floyd-Warshall al-
gorithm on each subgraph, the computed shortest path distances need to be transferred
back to the global distance matrix. The CPU version used a nested loop to update each
subgraph’s distances and paths in the global structure, leading to expensive sequential
memory accesses.

To accelerate this process, Kernel 5 assigns a separate thread to each vertex pair, enabling
efficient parallel copying of the Floyd-Warshall results into the final matrix. The kernel also
maps subgraph indices to their global counterparts, avoiding unnecessary data transfers.
This process is described in Algorithm 11.

36

4.2 CPU–GPU Data Transfer Optimization

Summary By parallelizing these data transformations, we achieve significant improve-
ments over the CPU implementation. First, data transfers are reduced, as the subgraph ma-
trices are constructed and retained on the GPU, eliminating the need for frequent memory
exchanges. Additionally, parallelism is enhanced by fully parallelizing each transformation
step, leading to a substantial reduction in computational time.

Algorithm 11: Decoding of Floyd-Warshall Results
Input : inner_to_inner_dist, inner_to_inner_path, subgraph_dist,

subgraph_path
Output: subgraph_dist, subgraph_path
// Step 1: Transfer Processed Results to Global Graph

Matrix (Kernel 5)
1 foreach (vi, vj) ∈ Vp × Vp (in Kernel 5) in parallel do
2 subGraph[vi, vj]← inner_to_inner_dist[vi, vj];
3 subGraph_path[vi, vj]← inner_to_inner_path[vi, vj];

37

4 Optimizing FASTAPSP Through Advanced Graph Partitioning and GPU Memory
Management

38

CHAPTER 5
Experimental Evaluation

This chapter presents an in-depth experimental evaluation of the contributions proposed
in this thesis. Our goal is to assess the practical impact of the two main enhancements
to the FASTAPSP algorithm: (1) the integration of alternative graph partitioners and (2)
the optimization of the CPU–GPU execution pipeline to reduce data transfers. We aim to
answer key questions regarding the runtime performance, memory behavior, and partition
quality of the modified algorithm compared to the original baseline.

To guide our evaluation, we formulate the following research questions:

Partitioning Impact (P):

P1 Does improving the boundary-to-interior vertex ratio lead to better overall runtime
performance of FASTAPSP?

P2 What is the trade-off between partitioning time and total runtime when using stronger
partitioners such as KAHIP or JET?

Execution Optimization (O):

O1 How does reducing CPU–GPU data transfers affect overall runtime performance?

O2 How is total runtime distributed across algorithmic stages, and what does this reveal
about the source of performance improvements?

O3 What is the effect of the optimized execution strategy on GPU memory consumption
across different graph sizes?

O4 How much of the runtime improvement can be attributed to restructuring data trans-
formations as GPU kernels?

39

5 Experimental Evaluation

To address these questions, we perform a series of experiments on a collection of real-
world and synthetic graphs. Each experiment is designed to isolate specific aspects of
the algorithm, allowing us to compare runtime behavior, partitioning quality, and resource
usage across different configurations.

The remainder of this chapter is organized as follows: Section 5.1 introduces the ex-
perimental setup. Section 5.2 presents results related to the impact of graph partitioning
strategies, addressing questions P1-P2. Section 5.3 analyzes the optimized execution strat-
egy, focusing on questions O1-O4.

5.1 Experimental Setup

This section presents the experimental setup used to evaluate the performance and scal-
ability of the proposed improvements to FASTAPSP. We first describe the hardware and
software environment. Then, we introduce the baseline implementation and the graph par-
titioning tools used for comparison. Next, we summarize the benchmark datasets and par-
titioning parameters. The section concludes with the evaluation methodology.

5.1.1 Hardware and Software Environment

All experiments were conducted on the bwUniCluster 2.0 HPC system [5], using Ice
Lake + GPUx4 nodes. Each node is equipped with two Intel Xeon Platinum 8358 pro-
cessors (2 sockets × 32 cores, 2.6 GHz), 512 GB of RAM, and four NVIDIA H100
GPUs (80 GB each). Nodes are interconnected via dual InfiniBand HDR200 links and
run Red Hat Enterprise Linux 8.4. The Lustre parallel file system was used, with high-
performance temporary storage provided via $TMPDIR (backed by NVMe SSDs).

Experiments were scheduled using SLURM, with one MPI process per GPU. Small and
medium graphs were processed on a single GPU; larger graphs used four. The project
was compiled with GCC 11.4.0, OpenMPI 5.0.2, and CUDA 12.2 using nvcc_wrapper,
with full optimization enabled (-O3). The main executable was run with 1 or 4 MPI ranks,
corresponding to the number of GPUs used per experiment.

5.1.2 Baselines

We compare our optimized implementation of FASTAPSP against the original version by
Yang et al. [54], which we refer to as the baseline. In their work, Yang et al. demonstrated
that FASTAPSP significantly outperforms prior state-of-the-art APSP algorithms across a
wide range of datasets, including PART APSP [14], DECENTRALIZED PART APSP [13], a
GPU-based Dijkstra implementation [39], and a variation of a CPU-based Dijkstra imple-
mentation [48]. Accordingly, we treat their implementation as the standard reference for
evaluating our contributions.

40

5.1 Experimental Setup

To assess the effect of partitioning quality, we compare several alternative partitioners,
KaHIP eco, KaHIP social eco, KaHIP social fast, and the Jet partitioner, which we refer to
as KAHIP_ECO, KAHIP_SOC_ECO, KAHIP_SOC_FAST, and JET, respectively, against
the default METIS baseline.

To evaluate the impact of our architectural optimizations independently, we also compare
the total runtime of the original and optimized versions using identical graph instances and
METIS partitions. This ensures a fair and controlled assessment focused exclusively on
the implementation-level improvements.

5.1.3 Graph Instances

Table 5.1 lists the graph instances used in our experiments. The collection spans both
synthetic and real-world networks, which are commonly used to benchmark shortest path
algorithms and graph partitioning methods. All graphs were processed as undirected and
unweighted and were converted into the format required by the FASTAPSP framework.

The graphs were obtained from either the SuiteSparse Matrix Collection [31] or the
Network Data Repository with Interactive Graph Analytics and Visualization [42]. We
preserved original attributions to the graph creators where possible.

A large subset of the mesh and scientific graphs originates from the 10th DIMACS Im-
plementation Challenge [1], including delaunay_n16, wing, fe_tooth, fe-ocean, and 598a.
Several OpenStreetMap-derived road networks, such as luxembourg_osm, belgium_osm,
and netherlands_osm, were also used. Additional scientific and infrastructure graphs, in-
cluding onera_dual, usroads-48, and sc-pwtk, were sourced from SuiteSparse.

The dataset also includes real-world web and social graphs. Notably, web-sk-2005 and
web-it-2004 were created by Boldi et al. [2], while soc-youtube originates from the work of
Mislove et al. [38]. The com-amazon graph was obtained from the SNAP collection [33],
and the road networks roadnet-pa and roadnet-ca are credited to Leskovec et al. [34].

To ensure a fair and meaningful comparison, our dataset includes all graphs used in the
original FASTAPSP evaluation by Yang et al. [54]. This allows us to directly assess the im-
pact of our modifications under the same conditions. In addition, we augment this set with
several larger real-world graphs, ny-sorted, com-amazon, belgium_osm, road-roadnet-ca,
and netherlands_osm, to extend the experimental coverage and evaluate scalability on more
demanding instances.

5.1.4 Methodology

Our evaluation focuses on three primary criteria: total runtime, runtime breakdown by
algorithmic stage, and partitioning quality. Runtime is measured as wall-clock time, with
results collected separately for core computational phases such as SSSP, Floyd–Warshall,
and Min–Plus. Partition quality is assessed through structural metrics including edge cut
and the boundary-to-interior vertex ratio.

41

5 Experimental Evaluation

Table 5.1: Graph instances used in our APSP experiments. For each graph, we show the number
of nodes n, the number of edges m, and the graph type.

Graph Nodes (n) Edges (m) Type

delaunay_n16 65,536 196,575 Mesh / Scientific
wing 62,032 121,544 Mesh / Scientific
fe_tooth 78,136 452,591 Mesh / Scientific
onera_dual 85,567 252,384 Mesh / Scientific
598a 110,971 741,934 Mesh / Scientific
luxembourg_osm 114,599 119,666 Road Network
web-sk-2005 121,422 334,419 Web Graph
usroads-48 126,146 161,950 Road Network
fe-ocean 143,437 409,593 Mesh / Scientific
ny-sorted 264,346 365,050 Road Network
com-amazon 334,863 925,872 Web Graph
sc-pwtk 217,891 5,653,221 Mesh / Scientific
web-it-2004 509,338 7,178,413 Web Graph
soc-youtube 495,957 1,936,748 Social Network
roadnet-pa 1,090,920 1,541,898 Road Network
belgium_osm 1,441,295 1,549,970 Road Network
road-roadnet-ca 1,957,027 2,760,388 Road Network
netherlands_osm 2,216,688 2,441,238 Road Network

Partitioning performance is evaluated by running the optimized implementation of
FASTAPSP with each integrated partitioner. All configurations are tested on multiple
graphs and across a range of k values (i.e., the number of partitions), selected based on
graph size and structure to reflect realistic parallel workloads and GPU memory constraints.
To enable a deeper evaluation of partitioner behavior under varying conditions, and to sim-
ulate scenarios with different numbers of available GPUs, each graph was tested with mul-
tiple k values. Smaller graphs were assigned lower k values to preserve subgraph granular-
ity, while larger graphs required higher k values to remain within device memory limits. A
complete breakdown of the k values used per graph instance is provided in Appendix A.1.

Architectural improvements are assessed independently by comparing the original and
optimized versions of FASTAPSP on identical graph inputs, all using the same METIS-
generated partitions. This setup allows for a controlled analysis of the impact of re-
duced CPU–GPU data transfers and the restructuring of data transformation routines as
CUDA kernels.

Unless otherwise noted, all experiments were conducted on identical hardware under
consistent conditions. Performance metrics were aggregated using the geometric mean
to ensure a balanced view across graph sizes, with both absolute and relative runtimes
reported where appropriate.

42

5.2 Evaluation of Graph Partitioning Strategies

To account for runtime variability, each configuration was executed 20 times on small
and medium graphs, and 10 times on large graphs. We classify as large those instances
exceeding one million vertices, specifically roadnet-pa, belgium_osm, road-roadnet-ca, and
netherlands_osm. Reported values reflect the average across these repetitions.

We imposed a uniform partitioning time limit of two hours to maintain fair and consistent
comparisons across all partitioners. In two cases, KAHIP_ECO on soc-youtube and JET on
onera_dual, this limit was exceeded and no result was produced. These two graphs were
therefore excluded from all geometric mean computations to avoid skewing aggregate met-
rics. This approach ensures that comparisons remain both fair and methodologically sound.

5.2 Evaluation of Graph Partitioning Strategies

5.2.1 The Partition Quality

To evaluate the impact of partition quality on runtime, we compare two structural metrics:
edge cut and the boundary-to-interior vertex ratio. These metrics are chosen to evaluate the
connection between structural partition quality and runtime behavior, as framed in research
questions P1 and P2. The edge cut and the boundary-to-interior vertex ratio are measured
for KAHIP_ECO, KAHIP_SOC_ECO, KAHIP_SOC_FAST, and JET, using METIS as a
baseline. We analyze how these metrics correlate with the total runtime of the APSP algo-
rithm across a range of graph instances.

As shown in Table 5.2, KAHIP_ECO yields the lowest edge cuts overall, with an average
reduction of 11% compared to METIS. Its performance is notably impacted by one outlier,
the web-sk-2005 graph, where the edge cut is significantly worse, skewing the geometric
mean. Meanwhile, KAHIP_SOC_ECO and JET achieve improvements of 11% and 7%,
respectively, without such regressions.

While edge cut is a commonly used proxy for partition quality, it does not reliably corre-
late with computational cost in FASTAPSP. Instead, the boundary-to-interior vertex ratio
proves to be a more reliable predictor, as it governs the volume of computation and inter-
partition communication in the SSSP and Min-Plus stages 4.1.

Table 5.3 shows that KAHIP_ECO and KAHIP_SOC_ECO reduce the boundary-to-
interior vertex ratio by 6% and 11%, respectively, compared to METIS, while the JET

partitioner performs substantially worse. This discrepancy is notably evident on the web-
it-2004 graph: although JET achieves a 32% reduction in edge cut, it produces a boundary-
to-interior vertex ratio that is over 110% higher, resulting in a 42% increase in total runtime
relative to METIS.

To further reinforce the connection between partition quality and algorithmic efficiency,
Figure 5.1 presents the average runtime of the SSSP phase for each partitioner. As the most
computationally expensive component of FASTAPSP, as demonstrated in Figure 5.6, the
SSSP stage is particularly sensitive to the number of boundary vertices.

Consistent with the boundary-to-interior vertex ratio results, KAHIP_ECO achieves

43

5 Experimental Evaluation

the best performance, reducing SSSP runtime by 12.5% compared to METIS, with
KAHIP_SOC_ECO also showing a reduction of 3.5%.

These improvements highlight how better partition quality translates directly into run-
time benefits, particularly in the most performance-critical stage of the algorithm. This
supports the hypothesis in P1, confirming that the boundary-to-interior vertex ratio signif-
icantly impacts end-to-end performance. While lower boundary ratios generally lead to
shorter runtimes, the relationship is not strictly linear. We explore this nuance further in
the next subsection.

Table 5.2: Edge cut comparison across partitioners for each graph instance. Lower values indicate
fewer inter-partition edges, which can reduce communication overhead. Bold values
indicate the best result per row

Graph METIS KAHIP_SOC_ECO KAHIP_ECO KAHIP_SOC_F JET

delaunay_n16 2,449.00 2,170.00 2,129.50 2,474.50 2,405.15
wing 5,103.67 4,561.00 4,100.33 5,298.67 4,416.23
fe_tooth 20,733.63 19,158.25 18,456.33 22,146.52 19,596.16
onera_dual 5,193.33 4,288.00 4,068.00 4,520.67 -
598a 38,504.75 37,214.50 35,098.00 40,482.75 35,675.87
luxembourg_osm 276.50 265.00 241.00 284.00 278.37
web-sk-2005 119.00 85.00 326.00 80.00 81.75
usroads-48 334.00 283.00 286.00 342.00 346.50
fe-ocean 17,357.67 15,173.33 13,917.67 18,834.44 15,100.15
ny-sorted 2,140.00 1,731.00 1,624.00 1,929.00 1,939.60
com-amazon 75,582.84 59,715.19 53,832.00 63,753.00 64,720.80
sc-pwtk 673,703.33 653,115.00 616,131.67 743,767.67 631,800.73
web-it-2004 150,608.50 165,188.50 118,474.50 147,356.50 101,639.90
soc-youtube 1,047,247.67 1,031,893.33 - 1,105,530.00 1,002,470.03
roadnet-pa 31,481.50 28,366.00 26,220.50 32,455.00 33,386.85
belgium_osm 12,829.50 12,273.50 11,126.00 13,971.50 14,220.15
road-roadnet-ca 67,307.00 62,481.00 57,704.00 70,787.00 72,045.00
netherlands_osm 27,734.00 26,945.00 24,056.00 30,775.00 31,133.25

Arithmetic Mean 70,391.56 68,045.33 61,482.72 74,671.10 64,299.15

Geometric Mean Improvement 1.00x 1.11x 1.11x 1.00x 1.07x

44

5.2 Evaluation of Graph Partitioning Strategies

Table 5.3: Boundary-to-interior vertex ratio across partitioners. This metric reflects the proportion
of vertices on partition boundaries relative to internal vertices, with lower values gen-
erally correlating with better runtime performance. Bold values indicate the best result
per row

Graph METIS KAHIP_SOC_ECO KAHIP_ECO KAHIP_SOC_F JET

delaunay_n16 0.039 0.034 0.033 0.039 0.038
wing 0.167 0.157 0.141 0.175 0.148
fe_tooth 0.183 0.167 0.161 0.196 0.170
onera_dual 0.117 0.106 0.098 0.112 -
598a 0.225 0.215 0.200 0.239 0.203
luxembourg_osm 0.005 0.005 0.004 0.005 0.005
web-sk-2005 0.001 0.001 0.003 0.001 0.001
usroads-48 0.005 0.004 0.005 0.005 0.005
fe-ocean 0.213 0.221 0.213 0.240 0.205
ny-sorted 0.016 0.013 0.012 0.014 0.014
com-amazon 0.333 0.276 0.244 0.295 0.293
sc-pwtk 0.745 0.706 0.640 0.870 0.683
web-it-2004 0.140 0.094 0.146 0.088 0.296
soc-youtube 0.959 0.966 - 1.042 1.372
roadnet-pa 0.056 0.052 0.047 0.059 0.060
belgium_osm 0.018 0.017 0.016 0.020 0.020
road-roadnet-ca 0.068 0.064 0.058 0.072 0.073
netherlands_osm 0.025 0.025 0.022 0.028 0.029

Arithmetic Mean 0.14 0.13 0.12 0.15 0.14

Geometric Mean Improvement 1.00x 1.11x 1.06x 0.992x 0.98x

M
ETIS

KAHIP
_ECO

KAHIP
_SOC_ECO

KAHIP
_SOC_F

JE
T

500

600

700

0%

12.6%

3.4%

-8.3%
-9.5%

Partitioner

A
ve

ra
ge

SS
SP

R
un

tim
e

(s
)

Figure 5.1: Average runtime of the SSSP phase across all graph instances for each partitioner.
Lower runtimes indicate more efficient processing.

45

5 Experimental Evaluation

The boundary-to-interior vertex ratio emerged as a stronger predictor of runtime
than edge cut, supporting hypothesis P1. Partitioners like KAHIP_ECO and
KAHIP_SOC_ECO achieved up to 11% reductions in this ratio, resulting in SSSP
speedups of 12.5% and 3.5%, respectively. While the JET partitioner reduced edge
cuts, its boundary ratio was significantly worse on certain graphs. For example, on
web-it-2004, it increased the boundary-to-interior vertex ratio by over 110%, lead-
ing to a 42% runtime slowdown. These results emphasize that minimizing boundary
vertices, not just edge cuts, is more critical for runtime efficiency.

5.2.2 Total Runtime Comparison

While structural partition quality provides valuable insights, the ultimate criterion for eval-
uating a partitioner’s utility in FASTAPSP is its effect on end-to-end runtime. Figure 5.2
presents a boxplot comparison of total runtimes across all tested partitioners.

KAHIP_SOC_ECO achieves consistently strong performance on most graphs, slightly
outperforming METIS in terms of average runtime across the majority of datasets 5.4,
with an overall 2.7% improvement.

JET performs well on small to medium-sized graphs, but its efficiency degrades with
input size, suggesting that its partitioning strategy does not scale as effectively. In con-
trast, KAHIP_ECO excels on large graphs, despite its longer partitioning times. This is
attributable to its ability to minimize both edge cut and boundary ratios, factors that be-
come increasingly important as graph size and communication overhead grow.

These results highlight the trade-off described in P2 between partitioning time and run-
time efficiency. While KAHIP_ECO offers the best partition quality and scales well with in-
put size, its long partitioning time increases the total runtime on small and medium graphs,
making it less favorable in those scenarios. In contrast, KAHIP_SOC_ECO provides the
most balanced performance overall.

KAHIP_SOC_ECO achieved the best overall performance with a 2.7% speedup
over METIS. Better partitioners like KAHIP_ECO required more time but produced
higher-quality partitions, leading to the best results on large graphs. JET was signif-
icantly faster but yielded lower-quality partitions, making it more effective on small
graphs. Overall, no single partitioner performed best across all inputs.

5.2.3 Runtime Excluding Partitioning Overhead

In many real-world scenarios, the partitioning of a graph is performed once and reused
across multiple executions of the same algorithm. This is particularly relevant in settings
where the input graph structure changes only slightly, such as during incremental updates,
or where multiple executions are needed for parameter tuning or scenario analysis.

46

5.2 Evaluation of Graph Partitioning Strategies

Table 5.4: Total runtime of FASTAPSP for each partitioner across all graphs. Results reflect wall-
clock time and include partitioning. The geometric mean is calculated only over graphs
for which all partitioners successfully completed.

Graph METIS KAHIP_SOC_ECO KAHIP_ECO KAHIP_SOC_F JET

delaunay_n16 26.89 25.35 28.32 27.36 27.00
wing 44.93 43.75 51.56 46.74 42.03
fe_tooth 41.99 40.97 56.13 42.99 40.58
onera_dual 52.73 51.61 58.93 52.84 -
598a 71.45 71.69 98.51 73.53 68.59
luxembourg_osm 65.99 66.67 65.64 68.58 67.97
web-sk-2005 51.17 51.29 63.65 50.98 50.36
usroads-48 79.84 77.67 80.17 80.45 80.35
fe-ocean 286.87 297.68 314.93 311.78 285.41
ny-sorted 247.49 223.64 229.17 236.79 239.76
com-amazon 384.08 382.60 3,184.09 367.70 368.91
sc-pwtk 512.02 505.63 598.81 558.40 498.84
web-it-2004 170.83 153.16 267.51 146.15 243.52
soc-youtube 364.18 1,678.88 - 381.62 415.08
roadnet-pa 1,310.89 1,252.77 1,328.41 1,356.21 1,385.84
belgium_osm 1,773.47 1,738.34 1,718.87 1,875.39 1,904.24
road-roadnet-ca 3,449.99 3,309.36 3,306.65 3,541.40 3,619.33
netherlands_osm 5,290.01 5,272.84 4,983.79 5,725.00 5,785.25

Arithmetic Mean 862.99 844.59 1,023.51 906.84 919.25

Geometric Mean Speedup 1.00x 1.027x 0.8x 0.983x 0.975x

For example, in a traffic navigation system like Waze [51], the underlying road network
remains largely static, while edge weights (e.g., travel times) vary dynamically. In such
cases, it is practical to compute the partitioning once and reuse it, as the partitioning quality
is not significantly affected by changes in edge weights.

To capture this practical setting, we evaluate the total runtime of FASTAPSP excluding
the partitioning step. By removing this cost, we isolate the impact of partition quality on
the core computational workload and more clearly highlight the efficiency gains provided
by different partitioners. This perspective also addresses the trade-off posed in P2, demon-
strating that partitioners with higher upfront costs may still yield better overall efficiency
in repeated or long-running workloads.

The results, presented in Table 5.5, show that when the cost of partitioning is re-
moved, performance differences between partitioners become more pronounced. Both
KAHIP_ECO and KAHIP_SOC_ECO consistently outperform METIS, with average im-
provements of 7% and 4%, respectively, across nearly all graph sizes. Their advantage is
especially evident on large-scale graphs, where better boundary management and reduced
communication overhead have the greatest impact on SSSP and Min-Plus performance. In
contrast, the JET partitioner shows only modest changes under this measurement. Since its
partitioning time is relatively low, removing this cost does not significantly shift its standing.

47

5 Experimental Evaluation

30

100

300

1000

3000
To

ta
lR

un
tim

e
(s

)

KAHIP-ECO KAHIP-SOC-ECO KAHIP-SOC-F

JET METIS

Distribution of Total Runtime (s)

Figure 5.2: Distribution of Total Runtime Across All Algorithms. Each box represents the average
runtime per graph.

Overall, these results confirm that investing in high-quality partitions, especially using
KAHIP_ECO or KAHIP_SOC_ECO, yields lasting benefits that persist beyond the initial
partitioning step. This is particularly relevant for iterative workloads, multi-run tuning, or
applications where the partitioning cost can be amortized over many executions.

However, it is important to note that no single partitioner consistently delivers the best
runtime across all graph instances. As shown in our results, performance can vary signif-
icantly depending on the structure of the input graph. In scenarios where partitioning is
performed infrequently, such as in batch preprocessing or long-lived deployment settings,
it may be beneficial to benchmark multiple partitioners for each graph and select the one
that yields the best runtime performance for that instance.

Excluding partitioning time, high-quality partitioners consistently yield better per-
formance. KAHIP_ECO and KAHIP_SOC_ECO achieved average runtime reduc-
tions of 7% and 4%, respectively, compared to METIS. These results suggest
that in scenarios with repeated executions or infrequent re-partitioning, investing
in stronger partitions delivers better amortized performance.

48

5.3 Optimized Execution Strategy

Table 5.5: Runtime of FASTAPSP excluding the partitioning phase. This isolates the impact of
partition quality on core computation

Graph METIS KAHIP_SOC_ECO KAHIP_ECO KAHIP_SOC_F JET

delaunay_n16 26.87 24.90 24.63 27.22 26.93
wing 44.90 43.05 39.77 46.54 41.96
fe_tooth 41.94 39.49 38.70 42.82 40.50
onera_dual 52.69 49.22 47.69 51.21 -
598a 71.37 69.49 66.87 73.27 68.51
luxembourg_osm 65.95 66.31 63.23 68.38 67.91
web-sk-2005 51.13 50.91 52.88 50.83 50.29
usroads-48 79.80 77.24 77.30 80.24 80.27
fe-ocean 286.80 296.53 289.81 311.45 285.33
ny-sorted 247.39 222.18 214.68 236.09 239.66
com-amazon 383.73 359.61 351.72 366.28 368.76
sc-pwtk 511.59 498.66 472.98 557.17 498.68
web-it-2004 170.17 146.80 174.38 144.37 243.36
soc-youtube 360.66 374.47 - 372.65 414.69
roadnet-pa 1,309.77 1,237.18 1,174.26 1,351.90 1,385.58
belgium_osm 1,772.40 1,723.21 1,632.90 1,871.05 1,903.97
road-roadnet-ca 3,447.72 3,283.23 3,065.69 3,534.29 3,618.52
netherlands_osm 5,287.34 5,233.47 4,799.79 5,717.03 5,784.70

Arithmetic Mean 862.43 835.77 783.72 904.93 919.06

Geometric Mean Speedup 1.00x 1.04x 1.07x 0.99x 0.98x

5.3 Optimized Execution Strategy

5.3.1 Overall Runtime Improvements

To evaluate the impact of our optimization strategy, we compare the total execution
time of the original and optimized versions of FASTAPSP, both using the METIS par-
titioner. As shown in Figure 5.3, our optimized implementation achieves substantial per-
formance improvements across nearly all graph sizes. The corresponding absolute run-
times for both versions are provided in Table 5.6. Most notably, we observe speedups
of 6.74× and 6.68× on the two largest graphs, road-roadNet-CA and netherlands_osm,
each with about two million vertices. These results support our hypothesis that min-
imizing CPU–GPU data transfers becomes increasingly critical as data volume grows.
Smaller graphs such as luxembourg_osm and onera_dual still show improvements (1.22×
and 1.15×, respectively), though the relative gains are less pronounced, as expected.
This observation directly addresses research question O1, confirming that reducing data
transfers improves runtime performance, particularly on large-scale graphs where com-
munication overhead is a dominant cost. The only exception is web-sk-2005, which
shows a slight performance regression (15% slower). Notably, this graph has an excep-
tionally low boundary-to-interior vertex ratio (122 boundary vs. 121,300 interior vertices),

49

5 Experimental Evaluation

indicating highly effective partitioning. As a result, the original version already incurs min-
imal data transfer overhead, limiting the benefits of our optimization. In contrast, graphs
like fe_tooth, with a much higher ratio (7,921 boundary vs. 70,215 interior), experience
significantly more data transfer and thus benefit more from transfer reduction. Overall, the
average speedup across all tested graphs is 2.41×, validating the scalability and impact of
our optimization strategy.

de
la

un
ay

_n
16

w
in

g

fe
_t

oo
th

on
er

a_
du

al

59
8a

lu
xe

m
bo

ur
g_

os
m

w
eb

-s
k-

20
05

us
ro

ad
s-

48

fe
-o

ce
an

ny
-s

or
te

d

co
m

-a
m

az
on

sc
-p

w
tk

w
eb

-i
t-

20
04

so
c-

yo
ut

ub
e

ro
ad

N
et

-P
A

be
lg

iu
m

_o
sm

ne
th

er
la

nd
s_

os
m

ro
ad

-r
oa

dN
et

-C
A

0

1

2

3

4

5

6

7

1.01 1.08 1.11 1.15
1.33 1.22

0.85
1.20

1.64
2.04 2.17 2.11

1.03

1.63

5.27 5.20

6.68 6.74

Graph

Sp
ee

du
p

Optimized

Figure 5.3: Speedup achieved by the optimized version of FASTAPSP over the original imple-
mentation across all graphs using the METIS partitioner.

Reducing CPU–GPU data transfers significantly improved total runtime, supporting
hypothesis O1. The optimized version of FASTAPSP achieved an average speedup
of 2.41×, with gains reaching up to 6.74× on the largest graphs. Smaller graphs
showed more modest improvements (e.g., 1.22× for luxembourg_osm). These re-
sults highlight transfer reduction as a critical factor for scalable graph processing.

5.3.2 Stage-wise Runtime Breakdown

To better understand where the observed performance improvements occur, Figures 5.4
and 5.5 present a breakdown of the total runtime by algorithm stage for representative small

50

5.3 Optimized Execution Strategy

Table 5.6: Absolute runtimes (in seconds) of the original and optimized versions of FASTAPSP
on all graphs, using the METIS partitioner.

Graph Old Time (s) New Time (s) Speedup

delaunay_n16 30.56 30.12 1.01x
wing 47.69 44.06 1.08x
fe_tooth 45.14 40.84 1.11x
onera_dual 59.99 52.32 1.15x
598a 96.99 72.69 1.33x
luxembourg_osm 81.37 66.60 1.22x
web-sk-2005 44.65 52.36 0.85x
usroads-48 85.64 71.45 1.20x
fe-ocean 477.10 291.29 1.64x
ny-sorted 482.79 236.64 2.04x
com-amazon 807.72 373.03 2.17x
sc-pwtk 1,521.32 720.95 2.11x
web-it-2004 250.78 243.27 1.03x
soc-youtube 839.38 514.98 1.63x
roadNet-PA 8,184.37 1,554.10 5.27x
belgium_osm 9,200.81 1,769.67 5.20x
road-roadNet-CA 32,677.72 4,845.67 6.74x
netherlands_osm 35,261.54 5,279.40 6.68x

Overall Average 5,010.86 903.30 2.41x

and large graphs, respectively. These results address research question O2, which asks
where in the algorithmic pipeline the performance gains originate. As expected, the runtime
of the three core computational phases-SSSP, Floyd-Warshall, and Min-Plus-remains vir-
tually unchanged between the original and optimized versions, since the underlying GPU
kernels are identical.

Among these stages, the SSSP phase consistently accounts for the largest share of total
runtime. This dominance is already evident in small graphs (Figure 5.4), and becomes
increasingly pronounced in larger inputs (Figure 5.5). Figure 5.6 further illustrates this
behavior by highlighting the scaling trends of each stage across the entire dataset.

This trend can be attributed to two key factors. First, larger graphs are partitioned into a
greater number of subgraphs, which increases the boundary-to-interior vertex ratio. Since
SSSP is executed from each boundary vertex to all other vertices, a higher number of
boundary vertices leads to more shortest-path computations. Second, the overall graph size
increases, leading to longer traversal paths and higher memory demand during execution.
In contrast, the Floyd-Warshall and Min-Plus stages operate on local subgraphs, and their
runtime scales less aggressively with global graph size.

51

5 Experimental Evaluation

These findings reinforce that the observed performance improvements stem not from
modifications to the GPU kernels themselves, but from architectural changes-namely, the
restructuring of data transformation routines into dedicated GPU kernels and the reduction
of redundant data transfers between CPU and GPU. These aspects are examined in more
detail in the following sections.

D
el

au
na

y_
N

16

Fe
_T

oo
th

W
in

g

O
ne

ra
_D

ua
l

0

20

40

60

Graph

To
ta

lR
un

tim
e

(s
)

Graph Initialization

SSSP

Floyd-Warshall

Min-Plus

Data Transformation

Transfer Time

Figure 5.4: Runtime breakdown by processing stage for four representative small graphs. Bars are
stacked by component: Graph Initialization (1), SSSP (2), Floyd-Warshall (3), Min-
Plus (4), Data Transformation (5), and Transfer Time (6). The SSSP phase dominates
overall runtime even at small scales, while other components remain comparatively
minor.

Runtime analysis reveals that the optimization gains in FASTAPSP stem not from
changes in the GPU kernels, but from reduced data transfers and improved stage
transitions, confirming O2.

5.3.3 Impact of Reduced Data Transfers

To isolate and quantify the impact of reduced data movement between host and device,
Figure 5.7 presents a comparison of the time spent on CPU to GPU data transfers in both
the original and optimized implementations of FASTAPSP.

52

5.3 Optimized Execution Strategy

R
oa

dn
et

-p
a

B
el

gi
um

_O
sm

R
oa

d-
ro

ad
ne

t-c
a

N
et

he
rla

nd
s_

O
sm

0

10,000

20,000

30,000

Graph

To
ta

lR
un

tim
e

(s
)

Graph Initialization

SSSP

Floyd-Warshall

Min-Plus

Data Transformation

Transfer Time

Figure 5.5: Runtime breakdown by processing stage for four representative large graphs. Bars are
stacked by component: Graph Initialization (1), SSSP (2), Floyd-Warshall (3), Min-
Plus (4), Data Transformation (5), and Transfer Time (6). On large graphs, Transfer
Time is the most dominant component, followed by SSSP, highlighting the critical cost
of CPU–GPU communication at scale.

A clear trend emerges: the performance gap between the two versions grows with graph
size. While the difference is relatively small for smaller graphs, it increases substantially
on larger graphs, where high data volumes make memory transfers a dominant cost factor.
This observation aligns with the overall runtime improvements shown in Figure 5.3, and
highlights the critical role of communication overhead in large scale graph processing.

In our optimized version, intermediate data is retained on the GPU across computation
stages, which avoids redundant data transfers between the host and device. As a result,
the total time spent on data transfers is significantly reduced, particularly for large graphs
where communication overhead would otherwise dominate. Although transfer time re-
mains a substantial portion of overall runtime, it is dramatically lower compared to the
original implementation and constitutes the primary source of the observed speedup.

In addition, addressing O3, the performance improvements come at a modest memory
cost: on average, the peak GPU memory usage of the optimized version is only 4% higher
than that of the original implementation. This small overhead validates the feasibility of
our design and demonstrates that reducing communication costs does not require sacrificing
device memory efficiency.

53

5 Experimental Evaluation

W
eb

-s
k-

20
05

D
el

au
na

y_
N

16

Fe
_T

oo
th

W
in

g

O
ne

ra
_D

ua
l

U
sr

oa
ds

-4
8

Lu
xe

m
bo

ur
g_

O
sm

59
8a

W
eb

-it
-2

00
4

N
y-

so
rte

d

C
om

-a
m

az
on

Fe
-o

ce
an

So
c-

yo
ut

ub
e

Sc
-p

w
tk

R
oa

dn
et

-p
a

B
el

gi
um

_O
sm

R
oa

d-
ro

ad
ne

t-c
a

N
et

he
rla

nd
s_

O
sm

0

1

10

100

1000

10000

Graph

R
un

tim
e

(s
)

SSSP
Floyd-Warshall
Min-Plus

Figure 5.6: Scaling behavior of the SSSP, Floyd-Warshall, and Min-Plus stages across all input
graphs, sorted by graph size. The y-axis uses a logarithmic scale to better reflect
differences across several orders of magnitude. Runtime for each stage increases dif-
ferently with input scale.

Optimizing data locality by retaining intermediate results on the GPU reduced data
transfers substantially, directly addressing O3. For large graphs, transfer time was
reduced by up to two orders of magnitude. Despite this, our optimized version used
only 4% more peak GPU memory on average, confirming that significant transfer
reduction can be achieved with minimal memory overhead.

5.3.4 Acceleration via GPU Kernel Transformations

A further source of performance improvement in the optimized version stems from restruc-
turing previously CPU-based data transformation routines into dedicated CUDA kernels.
This change yields two main benefits: first, it eliminates unnecessary data transfers by

54

5.3 Optimized Execution Strategy

de
la

un
ay

_n
16

w
eb

-s
k-

20
05

fe
_t

oo
th

w
in

g

on
er

a_
du

al

lu
xe

m
bo

ur
g_

os
m

us
ro

ad
s-

48

59
8a

w
eb

-it
-2

00
4

fe
-o

ce
an

ny
-s

or
te

d

co
m

-a
m

az
on

so
c-

yo
ut

ub
e

sc
-p

w
tk

ro
ad

N
et

-P
A

be
lg

iu
m

_o
sm

ro
ad

-r
oa

dN
et

-C
A

ne
th

er
la

nd
s_

os
m

100

101

102

103

104

Graph

Tr
an

sf
er

Ti
m

e
(s

)

Original
Optimzed

Figure 5.7: Comparison of time spent on CPU–GPU data transfers in the original and optimized
implementations. The y-axis is shown on a logarithmic scale to better visualize the
wide range of transfer times across graph sizes. The optimized version significantly
reduces transfer overhead, especially on larger graphs.

executing transformations directly on the GPU; second, it enables parallel execution of
these routines, thereby leveraging the computational capabilities of the GPU more effec-
tively. As illustrated in Figure 5.8, the runtime of these transformation steps is significantly
reduced in the optimized implementation. While each kernel contributes only a modest
speedup in isolation, their cumulative impact is substantial and plays a central role in reduc-
ing total execution time. To better reflect the factors influencing transformation behavior,
the graphs in Figure 5.8 are sorted by average subgraph size.

An interesting observation emerges when examining the scaling behavior of these trans-
formations across different graph sizes. Intuitively, one might expect that larger graphs
would lead to longer transformation times due to increased data volume. However, the
experimental results reveal a more nuanced trend: transformation times do not grow sig-
nificantly with graph size.

55

5 Experimental Evaluation

ro
ad

-r
oa

dN
et

-C
A

ne
th

er
la

nd
s_

os
m

sc
-p

w
tk

ro
ad

N
et

-P
A

be
lg

iu
m

_o
sm

w
eb

-it
-2

00
4

so
c-

yo
ut

ub
e

ny
-s

or
te

d

lu
xe

m
bo

ur
g_

os
m

59
8a

w
in

g

fe
-o

ce
an

de
la

un
ay

_n
16

co
m

-a
m

az
on

fe
_t

oo
th

on
er

a_
du

al

w
eb

-s
k-

20
05

us
ro

ad
s-

48

0

5

10

15

20

Graph

D
at

a
Tr

an
sf

or
m

at
io

n
Ti

m
e

(s
)

Original
Optimized

Figure 5.8: Comparison of data transformation time between the original (CPU-based) and op-
timized (GPU-based) implementations. GPU kernels enable parallel processing and
eliminate transfer latency. Graphs are sorted by average subgraph size, which influ-
ences the number and size of kernel invocations.

This behavior was explained by the relationship between global graph size and subgraph
structure. In our experiments, larger graphs are decomposed into a greater number of
subgraphs in order to fit within GPU memory constraints. Conversely, smaller to medium-
sized graphs can be partitioned into fewer, but larger subgraphs. Since the transformation
kernels are invoked once per subgraph, the average size of a subgraph, rather than the total
graph size, becomes the dominant factor influencing transformation time.

These results underscore the effectiveness of our approach. By executing transformation
routines in parallel on the GPU and minimizing inter-device data movement, we eliminate a
key bottleneck and achieve a scalable reduction in runtime. This directly answers research
question O4, demonstrating that GPU-based transformation kernels contribute meaning-
fully to the overall speedup.

56

5.3 Optimized Execution Strategy

Transforming CPU-based data preparation steps into GPU kernels provided mean-
ingful performance gains, affirming hypothesis O4. While each individual kernel
yielded only modest improvements, executing preparation directly on the GPU elim-
inated the need for CPU–GPU transfers by keeping the data on the GPU. These
transformations played a key role in achieving the overall speedups.

57

5 Experimental Evaluation

58

CHAPTER 6
Discussion

6.1 Conclusion

The All-Pairs Shortest Path (APSP) problem is a fundamental building block in many appli-
cation domains, including transportation networks, social network analysis, and scientific
simulations. As graph datasets grow in size and complexity, efficiently solving APSP at
scale, especially on GPU architectures, has become increasingly critical.

This thesis introduced two key improvements to the FASTAPSP algorithm: the use of
alternative partitioning strategies and the optimization of CPU–GPU memory interaction.
In the first part, we achieved a 2.4× average speedup over the original implementation of
FASTAPSP by minimizing data transfers between CPU and GPU and parallelizing trans-
formation routines using dedicated CUDA kernels. These architectural changes led to im-
provements of up to 6.7× on the largest graphs. These gains were achieved with only a
modest increase in GPU memory consumption, confirming the efficiency and scalability of
the optimized design.

In the second part, we integrated several state-of-the-art graph partitioners into
FASTAPSP, including KAHIP variants and the GPU-based JET partitioner. This resulted in
a 2.7% additional reduction in total runtime compared to METIS. The evaluation showed
that partition quality, particularly the boundary-to-interior vertex ratio, has a significant
impact on runtime efficiency. When partitioning time was excluded, simulating a realistic
multi-run scenario, we achieved a 7% speedup using a KAHIP variant, highlighting the
amortized benefits of high-quality partitions.

Overall, the findings demonstrate that combining high-quality partitioning with a
memory-efficient GPU execution strategy yields substantial and reliable performance gains
for large-scale APSP computations.

59

6 Discussion

6.2 Future Work

While this thesis introduces several significant optimizations to the FASTAPSP algorithm,
multiple promising directions remain open for future research. One natural extension is to
evaluate the scalability of the algorithm beyond the four GPUs used in our experiments. Ex-
panding to larger multi-GPU or multi-node environments would help assess performance
limits and potential bottlenecks in more distributed settings.

As graph sizes continue to grow, another major challenge is overcoming the memory
limitations of a single GPU. Although increasing the number of partitions (k) can reduce
per-partition memory usage, this approach offers diminishing returns. An alternative direc-
tion is to adopt a distributed GPU memory model, where graph data is partitioned across
multiple GPUs or nodes. This would require implementing efficient GPU-to-GPU com-
munication protocols such as NVLink or NCCL, and designing algorithms that minimize
inter-device data movement.

In addition to scaling memory capacity, reducing CPU–GPU transfer overhead remains
important. Currently, the input graph is constructed on the CPU and transferred to the GPU.
Building the graph directly on the GPU could reduce initialization costs and better exploit
memory locality. This is particularly relevant in scenarios where graph data is produced on
the GPU or arrives in a streaming fashion.

Additionally, the partitioning strategy itself could be made adaptive. Incorporating run-
time feedback into partitioner selection, such as choosing between METIS, KaHIP, or JET

based on structural properties like degree distribution or sparsity, could improve perfor-
mance across diverse graphs. Further, dynamically adjusting the partition count (k) at run-
time in response to memory constraints or workload imbalance may lead to more efficient
resource utilization and better overall throughput.

Finally, an important direction for future work is the evaluation of FASTAPSP on
weighted graphs. While the current evaluation focuses on unweighted graphs, introducing
edge weights would affect both shortest-path computations and the partitioning strategy.
In particular, partitioners would need to account for weighted edge cuts, where minimiz-
ing total cut weight may conflict with minimizing the boundary-to-interior vertex ratio.
This could lead to new trade-offs in partition quality, requiring more nuanced strategies for
balancing computational load and minimizing inter-partition communication. Exploring
how different partitioners adapt to weighted inputs could yield further improvements or
highlight limitations of current heuristics.

60

APPENDIX A
Appendix

A.1 Partition Counts per Graph

Table A1 lists the number of partitions k used for each graph instance in our evaluation.
These were selected based on the input size, ensuring fair comparisons between partitioners
and adherence to GPU memory limitations.

Table A1: Number of partitions k used per graph.

Graph Partition Counts (k)

delaunay_n16 8, 16, 32
wing 8, 16, 32
fe_tooth 8, 16, 32
onera_dual 8, 16, 32
598a 16, 32, 64
luxembourg_osm 16, 32, 64
web-sk-2005 16, 32, 64
usroads-48 16, 32, 64
fe-ocean 16, 32, 64
ny-sorted 64, 128
com-amazon 64, 128
sc-pwtk 128, 256, 512
web-it-2004 128, 256, 512
soc-youtube 128, 256, 512
roadnet-pa 1,024, 2,048
belgium_osm 1,024, 2,048
road-roadnet-ca 4,096
netherlands_osm 4,096

61

A Appendix

62

A.1 Partition Counts per Graph

Zusammenfassung

Das All-Pairs-Shortest-Path-Problem (APSP) stellt eine grundlegende Herausforderung
der Graphentheorie dar und findet breite Anwendung in verschiedenen Bereichen. FA-
STAPSP ist ein moderner, GPU-beschleunigter Algorithmus, der darauf ausgelegt ist,
das APSP-Problem effizient auf großskaligen Graphen zu lösen. Seine Leistung wird
jedoch durch die Qualität der Graphpartitionierung und durch umfangreiche CPU–GPU-
Datenübertragungen begrenzt. In dieser Arbeit präsentieren wir zwei komplementäre Er-
weiterungen des FASTAPSP-Algorithmus. Erstens optimieren wir die Ausführungspipe-
line auf der GPU, indem wir Datenumwandlungen in GPU-Kernels überführen und kost-
spielige CPU-GPU-Datenübertragungen minimieren. Diese architektonische Optimierung
führt zu deutlichen Leistungssteigerungen mit einer durchschnittlichen Beschleunigung um
den Faktor 2,41 und einem maximalen Gewinn von bis zu 6,7 bei den größten Graphen.
Zweitens evaluieren und integrieren wir fortgeschrittene Graphpartitionierer, darunter KA-
HIP sowie den GPU-basierten JET-Partitionierer, um die Qualität der Partitionierung zu
verbessern und den Rechenaufwand zu verringern. Dies führt zu einer zusätzlichen Reduk-
tion der Laufzeit um 2,7%, wenn die KAHIP-Variante "social" anstelle des Standardparti-
tionierers METIS verwendet wird.

63

Bibliography

[1] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors.
Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge
Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012.
Proceedings, volume 588 of Contemporary Mathematics. American Mathematical
Society, 2013.

[2] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-
Crawler: A scalable fully distributed web crawler. Software: Practice & Experience,
34(8):711–726, 2004.

[3] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathematical
sociology, 25(2):163–177, 2001.

[4] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. In Lasse Kliemann and Peter Sanders, editors,
Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes
in Computer Science, pages 117–158. 2016.

[5] bwUniCluster 2.0. High performance computing for universities in badenwuerttem-
berg.

[6] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To-
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner. More recent advances in (hyper)graph parti-
tioning. ACM Comput. Surv., 55(12):253:1–253:38, 2023.

[7] Jie Cheng. CUDA by example: An introduction to general-purpose GPU program-
ming. Scalable Comput. Pract. Exp., 11(4), 2010.

[8] Cédric Chevalier and François Pellegrini. Pt-scotch: A tool for efficient parallel graph
ordering. CoRR, abs/0907.1375, 2009.

[9] Lung-Sheng Chien. Hand tuned sgemm on gt200 gpu. Technical Report, Tsing Hua
University, 2010.

65

Bibliography

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, 3rd Edition. MIT Press, 2009.

[11] Andrew A. Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-
efficient parallel GPU methods for single-source shortest paths. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA,
May 19-23, 2014, pages 349–359. IEEE Computer Society, 2014.

[12] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[13] Hristo N. Djidjev, Guillaume Chapuis, Rumen Andonov, Sunil Thulasidasan, and
Dominique Lavenier. All-pairs shortest path algorithms for planar graph for gpu-
accelerated clusters. J. Parallel Distributed Comput., 85:91–103, 2015.

[14] Hristo N. Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov, and Do-
minique Lavenier. Efficient multi-gpu computation of all-pairs shortest paths. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix,
AZ, USA, May 19-23, 2014, pages 360–369. IEEE Computer Society, 2014.

[15] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns. J.
Parallel Distributed Comput., 74(12):3202–3216, 2014.

[16] Charles M. Fiduccia and Robert M. Mattheyses. A linear-time heuristic for improv-
ing network partitions. In James S. Crabbe, Charles E. Radke, and Hillel Ofek, ed-
itors, Proceedings of the 19th Design Automation Conference, DAC ’82, Las Vegas,
Nevada, USA, June 14-16, 1982, pages 175–181. ACM/IEEE, 1982.

[17] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

[18] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Catherine C.
McGeoch, editor, Experimental Algorithms, 7th International Workshop, WEA 2008,
Provincetown, MA, USA, May 30-June 1, 2008, Proceedings, volume 5038 of Lecture
Notes in Computer Science, pages 319–333. Springer, 2008.

[19] Michael S. Gilbert, Kamesh Madduri, Erik G. Boman, and Siva Rajamanickam. Jet:
Multilevel graph partitioning on graphics processing units. SIAM J. Sci. Comput.,
46(5):700, 2024.

[20] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel flow-based hypergraph
partitioning. In Christian Schulz and Bora Uçar, editors, 20th International Sym-
posium on Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Ger-
many, volume 233 of LIPIcs, pages 5:1–5:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

66

Bibliography

[21] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scal-
able shared-memory hypergraph partitioning. In Martin Farach-Colton and Sabine
Storandt, editors, Proceedings of the Symposium on Algorithm Engineering and Ex-
periments, ALENEX 2021, Virtual Conference, January 10-11, 2021, pages 16–30.
SIAM, 2021.

[22] Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Shared-
memory n-level hypergraph partitioning. In Cynthia A. Phillips and Bettina Speck-
mann, editors, Proceedings of the Symposium on Algorithm Engineering and Exper-
iments, ALENEX 2022, Alexandria, VA, USA, January 9-10, 2022, pages 131–144.
SIAM, 2022.

[23] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on the GPU
using CUDA. In High Performance Computing - HiPC 2007, 14th International Con-
ference, Goa, India, December 18-21, 2007, Proceedings, volume 4873 of Lecture
Notes in Computer Science, pages 197–208. Springer, 2007.

[24] Ramakrishnan Kannan, Piyush Sao, Hao Lu, Drahomira Herrmannova, Vijay
Thakkar, Robert M. Patton, Richard W. Vuduc, and Thomas E. Potok. Scalable
knowledge graph analytics at 136 petaflop/s. In Christine Cuicchi, Irene Qualters,
and William T. Kramer, editors, Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event
/ Atlanta, Georgia, USA, November 9-19, 2020, page 6. IEEE/ACM, 2020.

[25] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hy-
pergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale
Integr. Syst., 7(1):69–79, 1999.

[26] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular
graphs. J. Parallel Distributed Comput., 48(1):96–129, 1998.

[27] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In
Mary Jane Irwin, editor, Proceedings of the 36th Conference on Design Automation,
New Orleans, LA, USA, June 21-25, 1999, pages 343–348. ACM Press, 1999.

[28] Gary J. Katz and Joseph T. Kider Jr. All-pairs shortest-paths for large graphs on
the GPU. In Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Conference on
Graphics Hardware 2008, Sarajevo, Bosnia and Herzegovina, 2008, pages 47–55.
Eurographics Association, 2008.

[29] JEREMY KEMP. All-Pairs Shortest Path Algorithms Using CUDA. PhD thesis,
Durham University, 2012.

[30] Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning
graphs. Bell Syst. Tech. J., 49(2):291–307, 1970.

67

Bibliography

[31] Scott P. Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A.
Davis, Matthew Henderson, Yifan Hu, and Read Sandström. The suitesparse matrix
collection website interface. J. Open Source Softw., 4(35):1244, 2019.

[32] Junjie Lai and André Seznec. Performance upper bound analysis and optimization
of SGEMM on fermi and kepler gpus. In Proceedings of the 2013 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2013, Shenzhen,
China, February 23-27, 2013, pages 4:1–4:10. IEEE Computer Society, 2013.

[33] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[34] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Math., 6(1):29–123, 2009.

[35] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and Daniel G.
Chavarría-Miranda. A faster parallel algorithm and efficient multithreaded implemen-
tations for evaluating betweenness centrality on massive datasets. In 23rd IEEE In-
ternational Symposium on Parallel and Distributed Processing, IPDPS 2009, Rome,
Italy, May 23-29, 2009, pages 1–8. IEEE, 2009.

[36] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. A pattern based algorithmic
autotuner for graph processing on gpus. In Jeffrey K. Hollingsworth and Idit Keidar,
editors, Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP 2019, Washington, DC, USA, February 16-20,
2019, pages 201–213. ACM, 2019.

[37] Ulrich Meyer and Peter Sanders. [delta]-stepping: a parallelizable shortest path algo-
rithm. J. Algorithms, 49(1):114–152, 2003.

[38] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter Druschel, and
Bobby Bhattacharjee. Measurement and analysis of online social networks. In Con-
stantine Dovrolis and Matthew Roughan, editors, Proceedings of the 7th ACM SIG-
COMM Internet Measurement Conference, IMC 2007, San Diego, California, USA,
October 24-26, 2007, pages 29–42. ACM, 2007.

[39] Tomohiro Okuyama, Fumihiko Ino, and Kenichi Hagihara. A task parallel algorithm
for finding all-pairs shortest paths using the GPU. Int. J. High Perform. Comput.
Netw., 7(2):87–98, 2012.

[40] Hector Ortega-Arranz, Yuri Torres, Diego R. Llanos, and Arturo González-Escribano.
A new gpu-based approach to the shortest path problem. In International Conference
on High Performance Computing & Simulation, HPCS 2013, Helsinki, Finland, July
1-5, 2013, pages 505–511. IEEE, 2013.

68

http://snap.stanford.edu/data

Bibliography

[41] Héctor Ortega Arranz, Yuri Torres de la Sierra, Diego Rafael Llanos Ferraris, Arturo
González Escribano, et al. The all-pair shortest-path problem in shared-memory het-
erogeneous systems. High-Performance Computing on Complex Environments, pages
283–299, 2014.

[42] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive
graph analytics and visualization. In AAAI, 2015.

[43] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning al-
gorithms. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms -
ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September
5-9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages
469–480. Springer, 2011.

[44] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced
Graph Partitioning. In Proceedings of the 12th International Symposium on Experi-
mental Algorithms (SEA’13), volume 7933 of LNCS, pages 164–175. Springer, 2013.

[45] Piyush Sao, Ramakrishnan Kannan, Prasun Gera, and Richard W. Vuduc. A su-
pernodal all-pairs shortest path algorithm. In Rajiv Gupta and Xipeng Shen, editors,
PPoPP ’20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, California, USA, February 22-26, 2020, pages 250–261.
ACM, 2020.

[46] Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jong-
soo Park, Muhammad Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and
Pradeep Dubey. Navigating the maze of graph analytics frameworks using massive
graph datasets. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, Inter-
national Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, pages 979–990. ACM, 2014.

[47] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algorithms
for detecting signaling pathways in protein interaction networks. J. Comput. Biol.,
13(2):133–144, 2006.

[48] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library
- User Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall,
2002.

[49] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Comput. Sci. Eng., 12(3):66–73,
2010.

[50] Guangming Tan, Linchuan Li, Sean Triechle, Everett H. Phillips, Yungang Bao, and
Ninghui Sun. Fast implementation of DGEMM on fermi GPU. In Scott A. Lathrop,

69

Bibliography

Jim Costa, and William Kramer, editors, Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC 2011, Seattle, WA, USA, November 12-18,
2011, pages 35:1–35:11. ACM, 2011.

[51] Shoshana Vasserman, Michal Feldman, and Avinatan Hassidim. Implementing the
wisdom of waze. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 660–666. AAAI Press, 2015.

[52] Yangzihao Wang, Andrew A. Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. Gunrock: a high-performance graph processing library on the
GPU. In Rafael Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2016,
Barcelona, Spain, March 12-16, 2016, pages 11:1–11:12. ACM, 2016.

[53] Jack Wells, Buddy Bland, Jeff Nichols, Jim Hack, Fernanda Foertter, Gaute Hagen,
Thomas Maier, Moetasim Ashfaq, Bronson Messer, and Suzanne Parete-Koon. An-
nouncing supercomputer summit. Technical report, Oak Ridge National Lab.(ORNL),
Oak Ridge, TN (United States), 2016.

[54] Shaofeng Yang, Xiandong Liu, Yunting Wang, Xin He, and Guangming Tan. Fast
all-pairs shortest paths algorithm in large sparse graph. In Proceedings of the 37th
International Conference on Supercomputing, ICS 2023, Orlando, FL, USA, June
21-23, 2023, pages 277–288. ACM, 2023.

[55] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and Mingyu
Chen. Understanding the GPU microarchitecture to achieve bare-metal performance
tuning. In Vivek Sarkar and Lawrence Rauchwerger, editors, Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Austin, TX, USA, February 4-8, 2017, pages 31–43. ACM, 2017.

[56] Peixiang Zhao, Jiawei Han, and Yizhou Sun. P-rank: a comprehensive structural
similarity measure over information networks. In David Wai-Lok Cheung, Il-Yeol
Song, Wesley W. Chu, Xiaohua Hu, and Jimmy Lin, editors, Proceedings of the 18th
ACM Conference on Information and Knowledge Management, CIKM 2009, Hong
Kong, China, November 2-6, 2009, pages 553–562. ACM, 2009.

70

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	Graph Terminology
	Shortest Path Problems
	Graph Partitioning
	Computational Frameworks: CPU vs. GPU
	CPU–GPU Data Transfers and Optimization
	Compressed Sparse Row (CSR) Format

	Related Work
	Graph Partitioning
	Multilevel Graph Partitioning
	Partitioning Algorithms

	APSP Algorithms
	Part APSP Algorithm
	Decentralized Part APSP Algorithm

	Building Block Algorithms
	Harish and Narayanan's algorithm
	Sequential Floyd-Warshall as a Basis for Parallelization
	Blocked Floyd-Warshall algorithm
	Min-Plus

	FastAPSP
	Step 1: Partition the graph
	Step 2: Solving SSSP problem of boundary vertices
	Step 3: Computation of the APSP in each component
	Step 4: Computing the shortest path from internal vertices to vertices in other components

	Time Complexity Analysis

	Optimizing FastAPSP Through Advanced Graph Partitioning and GPU Memory Management
	The Graph Partitioning
	CPU–GPU Data Transfer Optimization
	Data Structures
	The Original Approach
	Optimized Approach in FastAPSP

	Experimental Evaluation
	Experimental Setup
	Hardware and Software Environment
	Baselines
	Graph Instances
	Methodology

	Evaluation of Graph Partitioning Strategies
	The Partition Quality
	Total Runtime Comparison
	Runtime Excluding Partitioning Overhead

	Optimized Execution Strategy
	Overall Runtime Improvements
	Stage-wise Runtime Breakdown
	Impact of Reduced Data Transfers
	Acceleration via GPU Kernel Transformations

	Discussion
	Conclusion
	Future Work

	Appendix
	Partition Counts per Graph

	Abstract (German)
	Bibliography

