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Abstract

The task of graph clustering is to partition the graph into disjoint clusters of nodes with
dense intra-cluster connections and sparse inter-cluster connections. These natural groups
often reveal structural or intrinsic information about the data represented by the graph.
There are different metrics to evaluate the quality of a clustering, such as conductance and
modularity. Many algorithms tackle the problem of graph clustering, some based on spec-
tral theory, others in combinatorial approaches, others in machine learning techniques, and
so forth. An especially successful algorithm for graph clustering is greedy agglomeration,
in which edges of the graph are greedily selected and contracted based on the modularity
metric. In this work, we make a first attempt at combining machine learning techniques
with the greedy agglomeration framework to build a clustering algorithm that is indepen-
dent of a specific metric. We propose a supervised learning-based technique for finding
clusters inside of graphs by utilizing structural edge properties only. We achieve in 65% of
our test instances a higher score in the performance metric than greedy agglomeration and
in around 20% higher modularity.
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Abstract (German)

Graph Clustering ist das Partitionieren eines Graphen in disjunkte Cluster, die viele
Verbindungen innerhalb und wenige Verbindungen nach auflen aufweisen. Diese natiir-
lichen Gruppen konnen oft strukturelle oder versteckte Informationen der in einem
Graphen dargestellten Daten enthiillen. Fiir die Messung der Qualitét eines Clusterings
gibt es verschiedene Metriken wie beispielsweise Conductance und Modularity. Es ex-
istieren verschiedenste Algorithmen um ein Clustering zu bestimmen, manche basieren auf
Spektralanalysen, andere wiederrum auf kombinatorischen Ansétzen oder nutzen Machine
Learning Techniken. Ein besonders erfolgreicher Algorithmus ist greedy agglomeration.
Hier werden Kanten eines Graphs mit einer Greedy Policy basierend auf der Modularity
Metrik gewihlt und kontrahiert. In dieser Arbeit versuchen wir erstmals Machine Learn-
ing Techniken mit dem greedy agglomeration Framework zu kombinieren. Hierbei ist das
Ziel einen Algorithmus zu schaffen, der unabhéngig von einer spezifischen Metrik arbeitet.
Der vorgestellte Algorithmus nutzt ausschlieflich strukturelle Eigenschaften von Kanten
um, mithilfe von Supervised Learning, Cluster in einem Graphen zu finden. In 65% der
Testinstanzen erreichen wir einen hoheren Wert in der Performance Metrik als greedy ag-
glomeration. In etwa 20% eine hohere Modularity.
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CHAPTER

Introduction

A graph clustering is a partition of a graph into groups or clusters that are very densely
connected inside and very sparsely connected to other clusters. These simple requirements
for a clustering allow a natural grouping of nodes in a graph. Finding the natural groups by
clustering is in many cases a great aid for extracting insights and knowledge out of struc-
tured information in the form of a graph [1, 2]. These groups can help to identify groups
of interest in social networks (e.g. terrorism groups), automatic malware detection [3]], or
discovering the structure of the internet [4]]. In bioinformatics, clustering can help in ana-
lyzing gene expression data [S]] or identifying repetitive sequences in DNA [6]. As any data
with a relational or structural nature can be represented by a graph, clustering can be used
in many different settings. As the problem has relevance there is a requirement for measur-
ing the quality of a graph clustering to compare it against other possible solutions. For this
purpose, multiple metrics exist that have different ways of qualifying properties like inter-
cluster edges running between clusters or cluster sizes. However, most of the metrics are
NP-hard to optimize [7]. With this, there is a need for different approximation algorithms
[8,9]. Spectral methods in which eigenvalues related to the graph are utilized for separating
the graph into clusters have been used for a long time. For huge graphs, these approaches
often suffer from high computational costs of finding eigenvalues and vectors. Algorithms
that use combinatorial ideas are not dependent on eigenvalue decomposition, but instead,
follow a set of predefined decision rules. This allows the algorithms to calculate a cluster-
ing in less time and thus makes even bigger graphs feasible for graph clustering. Especially
muli-level Algorithms can cluster very huge graphs in a short amount of time [[10]. With
the advance in machine learning, learning-based techniques are also being used for graph
clustering [11)]. An approach that optimizes for the metric modularity directly is greedy
agglomeration. This hierarchical algorithm performs contractions of nodes connected by
edges by selecting the contraction, which yields the biggest improvement in modularity.



1 Introduction

1.1 Our Contribution

We propose an algorithm combining supervised learning with the general algorithmic struc-
ture of greedy agglomeration. The learning technique extracts a decision policy for cluster-
ing from training data produced from graph clusterings. This policy only relies on structural
information of edges like local node degrees or the size of the graph. With this technique,
we can produce non-trivial clusterings and in some instances achieve better results than the
original greedy agglomeration. In 65% of our test instances, we achieve higher scores in
the performance metric. In 20% of the instances, our algorithm has higher modularity than
the greedy agglomeration algorithm that aims to maximize modularity.

1.2 Structure

The remainder of this thesis is organized as follows. In Chapter 2[ we specify definitions
and knowledge required to follow the thesis and understand the approach. In Chapter [3]
we discuss different works that address the problem of graph clustering and the different
natures of methods used. In Chapter 4] we present our proposed algorithm. Additionally,
to the clustering process of a graph, we introduce an important augmentation technique to
prepare clustering data appropriately for training. This Chapter is also a detailed explana-
tion of all features we use in any experiment and the complexity of all steps. In Chapter [5]
we showcase how different factors like model choice, selected features, or hyperparame-
ters affect our results and try to draw the first conclusions. In Chapter[6| we summarize the
insights of the experiments. As a final remark, we point out some steps for improving our
algorithm and further ideas.



CHAPTER

Fundamentals

In the following, we define relevant terms, the problem of graph clustering, and introduce
two machine learning concepts.

2.1 General Definitions

2.1.1 Graph

We denote a graph as G = (V, E) consisting of a set of nodes (or vertices) V and a set
of edges E connecting nodes in V with n = |V| and m = |F|. We only consider graphs
with undirected edges between nodes. Let wy : V' — R<( be a node weight function and
wg I — Rco be an edge weight function. Let iew : V' — Rc( be the internal edge
weight of a node. A subgraph S = (V' , E’) of graph G has nodes V' C V and edges
E C (V' x V). Sis an induced subgraph if £/ = E N (V' x V'). The neighborhood
N(v) of anode v € V is defined as N(v) := {u € V : {v,u} € E}. The degree of a
node v € V is the number of neighbors this node has deg(v) := |N(v)|. We define the
maximum degree in a graph as A := max,cy deg(v). A matching M C F in the graph G
is a set of matched edges that have pairwise no common node. Every node that is adjacent
to a matched edge is also called matched. The matching M is maximal if no edge of the
graph can be inserted in M without matching a node a second time. A cut (C,V \ C) with
C' C V is a partition of a graph in two blocks. The edge-cut m(C,V \ C) is the sum of
the weights of all edges crossing the cut (i.e. ¢ = {u,v} withu € C and v ¢ C). The
contraction of two nodes u,v € V adds a new node v’ to V' and removes u and v from
the node-set. The new node has the node weight wy (v') = wy(u) + wy(v). If an edge
e € E connects the contracted nodes with a third node w € V/, e is replaced by the edge
e/ = {v',w}. The edge weight of ¢’ is either the same as the removed edge e, if only one of
the nodes is connected to w, wg(e’) = wg(e) or if the second node also has an edge € to w
the sum of the edge weights wg(e') = wg(e) + wp(€). If the edge é = {u, v} exists before
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the contraction, it is now contained inside of the new node v’ and is removed from the edge
set E. It is now an infernal edge and iew(v') = iew(u) + iew(v) + wg(e) the internal edge
weight of v'.

2.1.2 Graph Clustering

A graph clustering C' = {C1, ..., Cy} is a division of the nodes of a graph into a not ini-
tially specified number of £ disjoint clusters C; which are sparsely connected and densely
connected internally. A clustering is considered trivial if only one cluster exists containing
all nodes (and thus all edges) or if every node is its own cluster (singletons). To measure
the quality of a clustering there exist multiple metrics which we discuss next.

Clustering Metrics

For readability we use the following notation for a given graph clustering C =
{C1,...,Ck}. Let m(C) be the number of edges contained inside of all clusters (intra-

cluster) and m(C) the number of node pairs not adjacent inside of clusters. Let m(C)
denote the number of edges between clusters (inter-cluster) and 7(C) the number of node
pairs not adjacent between different clusters.

The coverage metric [12] cov is the fraction of edges contained inside of the clusters and

the edges contained in the graph.

cov(C) == ——

The modularity metric [[13] mod can be viewed as an extension of the coverage metric
that punishes trivial clusterings by subtracting a term for the expected coverage for this
clustering in a random graph that is constructed to maintain the node degrees.

mod(C) := # - 4%712 Z <Z deg(v))

CceC \veC

Performance [14] perf measures how many node pairs are grouped correctly in the clus-
tering. Two nodes should be grouped together (i.e. are in the same cluster) if they are
connected by an edge. This is the number of edges inside clusters m(C). The opposite
are all pairs that should not be together as they do not share an edge and are not in the

same cluster 72(C). The sum is the number of all pairs correctly classified. This number is
normalized with the possible number of pairs in an undirected graph.

) +m(C)

perf(C) := nn—1)

E
1= —~
aQ



2.1 General Definitions

Conductance [[15] ¢ measures the bottleneck of a cut in a graph. The numerator counts the
number of edges between the clusters. The denominator enforces a balancing of the cut
sizes, as a very small or big cut would result in a bad score.

m(C,V \ C)
min( ) deg(v), > deg(v))

veC veV\C

¢(C) =

In the inter-cluster conductance [16] icc we use the biggest conductance of all clusters as
the index. This way the balancing is also accounted for, as a very small/big cluster leads to
a bad score which is used in the icc score.

icc(C) := 1 —max ¢(C

(€) =1 - max4(C)

In this formula a property of the inter-cluster conductance score is visible. The worst cluster
is the only influence on the score and the rest of the clustering is irrelevant for the metric.
If one singleton node that has at least one neighbor is contained in a clustering, the icc is
zero.

2.1.3 Boosted Trees

Boosted Trees are an ensemble technique in classical machine learning. The base is a de-
cision tree that is fit to the data set. For this, the tree splits the data recursively at feature
values. The values are chosen such that the split reduces the error of the model. A pre-
diction can be made by following the tree splits for the features of a sample and taking
the mean of the data contained inside the leaf node of the tree. In Figure there is a
visualization of a decision tree.

/N

Figure 2.1: Idea of a tree-based model for classification.
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In the grey box (2D feature space) there are two different classes represented by orange
points and blue points. A machine learning model intends to distinguish between those
classes based on the position of a point. In this example, we have the green point for
classification. The feature space is first divided by the green split. The upper part is divided
once more by the red line. On the right is the model that corresponds to this division
scheme. The first node contains all data and represents the full space. The green edges
represent the decision whether we are above or below the green line. As we end with a pure
node (i.e. all data instances belong to the same class) below the line, a deeper subdivision
would not provide more insights in this case. For the space above the line, there are two
different classes contained. Hence a further subdivision can improve our representation of
the data. If we split the data according to the red line, we end up with two pure nodes,
each only containing instances of one class. The training error for this model would be
zero, as all instances are in pure nodes. The prediction for the green example point in the
upper left corner works by traversing the tree. We are above the green line, so we follow
the green path to the left of the tree. Also, we are left of the red line, so we again follow
the red path to the left node. We end up in a leaf node with only instances of the blue
class. The prediction for the green point is that it also belongs to the blue class. Trees, and
especially those that were fit until purity, have a huge problem with overfitting. To counter
this, there exist multiple ensemble methods using these trees. One of those methods is
called Boosted Trees. Here a tree is fit to the data such that the training error is not zero, so
we do not split until we have pure nodes. Afterward, we fit a new tree and use the errors
of the previous tree as the prediction target. This can be repeated multiple times, always
training the next tree on the error of the previous trees combined. At prediction time, we
calculate the predictions of all trees and add up the results. Additionally to this XGBoost
[17] uses a gradient optimization to further improve the model.

2.1.4 Neural Networks

Neural Networks are a popular approach in modern machine learning. The basic idea of
neural networks is to model the functionality of neurons in the human brain. A basic neural
network consists of layers of neurons. Through these layers, the input data is passed for-
ward and processed. To fit a neural network to training data, a loss and the corresponding
gradients are calculated for the training instances. The loss is minimized by iterative opti-
mization techniques like (stochastic) gradient descent or ADAM [18]]. Neural Networks are
so powerful, as they are Universal Approximators [19]. It means that, if the neural network
is chosen sufficiently big, it can approximate any function to any precision in theory. In
recent times especially deep neural networks (DNN) have seen big growth. Here we use a
simple fully connected neural network (multi-layer perceptron) with a few hidden layers,
but there are other neural network architectures like convolutional neural networks (CNN)
or recurrent neural networks (RNN). In Figure [2.2] we can see the basic idea of a neuron on
the left.
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Figure 2.2: Single neuron and neural network.

In this example, we get three inputs each weighted by their individual weight w;. Every in-
put is also combined with a bias b; by addition. Inside a neuron, these inputs are added up.
At this point, the function represented by the neuron is still linear. To break this linearity a
non-linear activation function ¢ is applied after the sum. The complete function for a neu-
ron with N inputs z; is @(Zf\:ol w; - x; + b;). These neurons are stacked over each other
to create a layer. Multiple layers are concatenated to increase the number of free parame-
ters and thus the complexity of functions the network can model. When training a neural
network, we have to pick an optimizer that specifies the update rules for the parameters of
the network. Although neural networks are all optimized with a policy based on decreasing
the loss by gradients, the specific policies differ in complexity and solution quality. We use
batches to learn from, as it is faster, converges to better solutions, and is the standard in
deep learning. Two examples of policies are stochastic gradient descent (SGD) and ADAM
[18]]. For SGD a random batch of the training data is sampled and the gradients for this
batch are calculated. The weights of the layers are updated by subtracting the gradients
with a learning rate to scale the update. In ADAM additional moments of the gradients are
used to calculate the change for each weight. The moments make ADAM more adaptive
than SGD and lead to faster convergence in many cases.

2.1.5 XGBoost vs Neural Networks

Although XGBoost is a very strong machine learning model, it is still restricted by the
classical bias-variance tradeoff. There exists a sweet spot for the model to end up in,
that minimizes a test error. With this, we can only achieve a certain quality on new data.
However as neural networks have shown, by increasing the capabilities of the estimator, we
can reach new fields of performance which are not possible with classical machine learning
[20] visualized in Figure[2.3]
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overfitting happening
* \Test Error \

classic sweet spot

Error

Training Error"--._._. interpolation threshold

Capacity of Estimator

Figure 2.3: Modern Bias-Variance trade off.

We want to explore how well the results are for neural networks on our current problem.
Another interesting property of neural networks is their continuity. If we encounter data
we have not yet seen and it is located between two learned predictions, a tree model needs
to decide for one leaf. For neural networks, we can assume that the function has a mostly
smooth transition between those points and might produce a prediction that is closer to
what would be appropriate for the data in an interpolation-like manner visible in Figure

24

L. neural network
Prediction (

tree regressor
unseen data

«

Feature Value

Figure 2.4: step vs smooth models.
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2.1.6 Overfitting and Regularization

When using machine learning techniques in general the problem of overfitting is often en-
countered. Overfitting describes the situation when an estimator approximates the training
data very well, but struggles with the approximation of the true distribution of the problem.
This happens as the model remembers some specific information only appearing in the
training data distribution. This leads to a very low error while still failing to generalize the
problem at hand. As data only consists of a small fraction of all infinitely possible graphs,
the data created is subject to a selection bias. As Overfitting is a reappearing problem
there are known strategies to reduce it. This is often achieved by a Regularization Term in
the loss function used for training the model. XGBoost [[17] already uses a regularization
term in their library and thus already prevents overfitting, but we also have to address this
problem for the neural network. A popular method is the L2 regularization of the weight
matrices of the layers. Here the Frobenius norm of the weight matrices is added to the loss
weighted with a regularization parameter for scaling the influence of the regularization.

N M
HAHF = ZZAZZj

i=1 j=1

This leads to smaller weights in the layers and forces the network to find a more general
approximation, as the function becomes smoother. Another less theoretical approach is
Dropout, where some neurons in a layer are switched off with a given probability. These
neurons do not influence the result in the forward pass and are also skipped in the backprop-
agation step. By disabling some neurons, we create a subnetwork that is trained and can
perform the task to some degree. The idea is, that after some iterations there are multiple
subnetworks in the network, that work well individually and hopefully together to perform
the task. Since a neuron cannot rely on another neuron to be active at any time in training,
this reduces codependence and thus makes it harder to overfit.
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CHAPTER

Related Work

As graph clustering is a known problem, there exist many different approaches to finding
solutions. In the following, we discuss some of these algorithms related to our approach.

3.1 Modularity Based

An approach that works well for many problems is to define a metric that measures the
quality of a solution and then optimize this metric. If there exists a feasible optimum for
the metric, it can be used to provide a solution to the problem. If there exists no known
strategy to find the optimum of the metric, heuristics need to be used to approximate it. A
very straightforward algorithm that tries to maximize modularity is known as greedy ag-
glomeration or Modularity Maximization [21]]. In this algorithm, we start with a singleton
clustering with every node in its cluster. The two clusters are contracted into one cluster
that results in the biggest modularity improvement for the graph. For this contraction, only
clusters connected by an edge are taken into consideration, as a contraction of not incident
clusters can never result in a modularity improvement [21]. As every iteration reduces the
number of clusters by one, we need to perform O(n) contractions. A naive implementa-
tion runs in O((m + n)n) or O(n?) for a sparse graph. By keeping track of the fraction
of edges connecting nodes of clusters and the fraction of edges attached to each cluster
we can calculate the modularity change for every possible contraction. We also store the
modularity changes for all possible contractions and update them using the two quantities,
if we perform a contraction of neighboring clusters. After a contraction, the quantities are
updated. By using a binary tree for storing the adjacencies and max-heaps to store and
find the modularity changes the complexity of this algorithm drops to O(md - logn) with
d the maximum times a node is contracted (i.e. depth of the dendrogram). Additionally,
this clustering process has a single peak property [21]. This means that there is exactly
one change in the sign of the modularity differences throughout the process. If we find a
clustering at some point, after which the modularity can only be reduced, we know that

11
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we are currently at a local optimum and can stop the process. Very powerful techniques in
finding solutions for different problems in big graphs are multi-level algorithms. Here the
approach is to contract a graph by grouping nodes and edges to create a smaller version
of the graph. An algorithm that uses modularity like greedy agglomeration is the Louvain
method [10]. Here we also start with singletons and work on them in random order. A node
is moved into a neighboring cluster such that it produces the biggest modularity improve-
ment. If no further improvement is possible and the local optimum is reached, the clusters
are contracted to one new node per cluster. The graph that results from these contractions
is significantly smaller than the original graph and allows us to consider bigger decisions
than just moving a single node, but moving larger groups. As we cluster the nodes before to
maximize modularity, we hope that the basic structure of the graph’s groups is maintained.
On this contracted graph we repeat the steps before until we contracted the graph as much
as possible and we cannot improve the modularity anymore.

3.2 Structure Based

Some algorithms rely on the edge density in different regions of the graph to find cluster-
ings. A very simple but still effective method is label propagation. This algorithm starts
with a cluster for each node. Then the nodes are processed after each other. In one round
every node is assigned to the cluster with the best cluster connected to it. This best cluster
can be determined in different ways. A common approach is to use the strongest connected
cluster (i.e. the cluster with the most edges incident to the current nodes). There are also
other strategies for deciding the new assignment [22]. After a few rounds over the nodes,
the clustering converges or fluctuates between similar solutions. As each iteration is very
cheap this algorithm is suited for very big graphs, with a complexity of O(n+m). Another
interesting idea is ORCA [23]]. Here we look for substructures of high density. If we found
all of these structures we contract them and repeat the process. Here we do not rely on
metrics for decisions, but still, achieve very good scores in modularity.

3.3 Spectral Methods

An often used class of techniques is a spectral analysis of the graph in some form, which
relies on eigenvalue decomposition for a solution. Described in [24] is a spectral graph
clustering algorithm, that uses the Laplacian matrix of a graph to find a clustering. The
Laplacian is composed of the diagonal degree matrix D and the adjacency matrix A

Di,i = deg(vz')

12



3.3 Spectral Methods

A, = {1 if {i,j} € E

0 otherwise

L=D-A

Then the k smallest eigenvectors are computed (in terms of the corresponding eigenvalue).
Now the ith column of a matrix with the eigenvectors as rows is considered the feature
vector of the i¢th node. These features are now used to cluster the nodes by the k-means
clustering algorithm [25]. Here k initial means are placed randomly in the k-dimensional
feature space. Every node is assigned to its nearest mean. Now the means get updated
with all features of their assigned nodes. The assignment and update are repeated until
convergence. In the end, we receive k clusters for the nodes based on the features and can
apply the assignment to the nodes of the graph.

13
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CHAPTER

Learned Agglomerative Graph Clustering

In the following, we present our algorithm and explain each step in detail.

4.1 Overall Algorithm

Our algorithm consists of a preprocessing phase followed by a main phase. We start with a
preprocessing phase in which supervised training data is prepared and the model is trained.
After this step, the model can predict how likely an edge is contained in a cluster. In the
main phase of our algorithm, an unseen graph is clustered iteratively. In each iteration, two
nodes are contracted to form a new node in the next iteration. In particular, the two nodes
to be contracted are connected by the edge with the highest predicted score by our model.
This main phase takes n — 1 iterations to end with all nodes contracted into one single
node. Between the initialization and the one-node end are n possible clusterings. The final
solution is now picked by maximizing modularity or another metric. A solution could also
be picked by specifying the number of desired clusters. In this case, we can stop early after
reaching the desired number of clusters.

15
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Figure 4.1: Overall Algorithm with the preprocessing on the left and main phase on the right.

4.2 Preprocessing

Our preprocessing phase aims to produce a model, which is able to predict the probability
that an edge should be inside a cluster. Our supervised learning approach is highly depen-
dent on good quality training data. Furthermore, we need meaningful features X for each
edge. The function we want the model to learn is

P(in cluster | X)

4.2.1 Training Data

As a base for the training data, we require graphs and a good clustering for each graph. The
clustering can be a ground truth clustering from the real world or a clustering previously
computed by a high-quality clustering algorithm that might optimize for a specific metric.
We use a variety of graphs differing in size and structure to provide enough data for the

16



4.2 Preprocessing

model to generalize for unseen graphs with varying properties. We augment the data by
adding contracted or coarsened versions of the graphs in varying states. These do not
change the clusterings in their essence, but only provide more detailed insight into the
cases that could appear in the process of clustering a graph. A contracted version of a
graph is produced by finding a maximal matching in the graph. The matching is required
to respect the cluster borders of the clustering, as no edge between two different clusters can
be contained in the matching. All matched nodes are contracted with their corresponding
matching partner to a new node per pair. With this, the graph’s size is reduced. This
creates a new graph with similar properties to the graph in the process of clustering as some
nodes are more contracted than others. As the matching happens only within clusters, the
information of the clustering is not altered. This coarsening of a graph is repeated until
the number of nodes cannot be significantly reduced anymore (see Chapter [A)), yielding
multiple versions of the graph. This augmentation is also necessary to provide training
data for some features that change with a contraction. After the augmentation step, we now
have a big collection of graphs with a good clustering. For each clustered graph features and
labels are extracted for every edge inside the graph. The details of the feature generation
are in Section The prediction target describes if the edge is inside a cluster (1) or if
it is connecting two different clusters (0).

4.2.2 Edge Features

It 1s intuitively desirable for edge features to be as general as possible, only relying on
the structure of the graph. Consequently, no specific clustering metric is favored. An
important part of the edge features is how computationally expensive each feature is and
how this could influence the running time of the algorithm. Some features are properties
of edges and others are properties of nodes. For node-specific information, the features
of both nodes of an edge are contained inside of the feature vector. Before feeding the
features to a neural network they are normalized by subtracting the arithmetic average and
dividing by the standard deviation of the training data of the network. If the variance in
the training data is too large, the magnitude of the gradients for training might explode
and lead to numerical errors or huge changes in the weights of the network. Such a
normalization is not performed for the tree model. This is not necessary as they perform
the same with normalized and unnormalized data.

Node Degree. This degree is the number of neighboring nodes a node is connected to.

Node Count. This property is the number of nodes n contained in the original graph. This
feature is provided for more context about the graph. If a clustering function depends on
the size of the graph, this enables the model to learn this dependence.
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4 Learned Agglomerative Graph Clustering

Edge Count. The edge count is the number of edges m contained in the original graph
(similar to Node Count).

Shared Neighbor Count. This feature counts the neighbors both nodes of an edge have
in their neighborhood.

Clustering Coefficient. The clustering coefficient [26] describes the local neighborhood
of a node in terms of how close it is to being a clique (i.e. how dense it is). It measures how
well every node of the neighborhood is connected to every other node of the neighborhood.

o 2} € B {ij) € N(w))
T INEI (N - 1)

The denominator is the possible number of undirected edges in the neighborhood of the
node v € V. As the graph is undirected, each edge that exists needs to be accounted for
twice.

Graphlet Counts. A graphlet (or sometimes called graph motif) is a simple substructure
inside of a graph. Structures for graphlets can be enumerated by their number of nodes and
edges. Some simple examples are triangles consisting of 3 nodes all connected or a 4-cycle
build from 4 nodes connected in such a way, that a cycle is formed with no other edges
crossing the center of the cycle. Although there are infinitely many graphlets, we restricted
us to graphlets of order 4 (consisting of 4 nodes) and below due to computation time and
practicality, as the number of possible graphlets grows exponentially with the order. The
graphlets for one and two nodes are trivial as it is just the node itself or two nodes connected

RINONK

Figure 4.2: Used graphlets from left to right: 2_star, 3_star, 4_path, 4_tailed_triangle, 4_cycle,
4_chordal_cycle, 4_clique from the PGD documentation [27].

For calculating the graphlets we use the PGD library [27]. The calculation of graphlets
is expensive as there are many possible graphlets and we want to identify all that appear
inside of the graph. If we search for graphlets naively we would have to check for every
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4.2 Preprocessing

edge if it is contained in each specific graphlet and if so, how often. This would require us
to traverse the local area around each edge until all possibilities for the graphlet have been
checked. To reduce the computations, the authors of PGD describe relationships between
different graphlets and how counts of one graphlet can be used to derive the counts for
other graphlets in constant time or with significantly fewer computations than before.
Additionally, the individual calculations are mostly independent of each other, so with
concurrency, the running time is further reduced.

Node Weight. The node weight gives information about the number of nodes a contracted
node consists of. It is a helpful feature, as it makes the nodes transparent.

Figure 4.3: Example of differing node weights.

In the example in Figure 4.3] we can see two contracted nodes, the red one containing
more nodes than the blue one. The green node is connected in the same way to both nodes.
The original edges are visualized with dotted lines. If we want to add the green node to
one of the other nodes in a natural way, we can see an important difference. As the number
of edges connecting the green node with each other node is the same, that means that it is
relatively more connected to the blue node than the red node. In the red node, the green
node is not connected to many nodes inside, meaning it is most likely not as good in the
red cluster as it would be in the blue one. Another aspect of this feature is the balancing
of cluster sizes. If our data has balanced clusters, this means that an edge adjacent to a
node with a very high weight can have a smaller probability to add more nodes further on
compared to a node that is not as big. If the model can capture this property we achieve
some sort of balancing of the clusters from the data for free.

Edge Weight. The weight of the edge is a strong indicator, of how closely related two
nodes are. This becomes especially important after some contractions as it indicates the
actual number of edges between the two nodes.
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4 Learned Agglomerative Graph Clustering

Internal Edge Weight. The internal edge weight counts the number of edges that are
completely contained inside of a contracted node. This shows how dense the contracted
node/cluster currently is.

4.2.3 Training the Model

With the previously created data, we fit a model (we only consider boosted trees and neural
networks, but any supervised learning technique is possible). Training or fitting a model
is done by minimizing the /oss of the model that measures the magnitude of errors of the
model. We use two variants of the mean squared error as we want to estimate a regression
value for the edge to be inside of a cluster as a smooth function. For this, using two
neurons on the last layer with a softmax activation function and the binary cross-entropy
loss would also be possible. The default loss for XGBoost is the root mean squared error.
For predictions y; and true values y; it is defined as:

RMSE(y,7) = \/ A,

For the neural network, we use the pure MSE loss without the root.

Algorithm 1 Model Creation.

Data: Graphs G; = (V}, E;), Clusterings C;Vi € {1,..., I}, Feature set F
Result: Model M

X < empty list

Y < empty list

fori=1,...,1do

x < CreateEdgeFeatures(G;, F')

y < CreateEdgeLabels(G;, C;)

X .appendltems(x)

Y .appendltems(y)

74+0

Gi,() — GZ‘,CI"O < CZ

while G, ; not coarse enough do

G j+1,Cij+1 = ContractGraph(G, ;,C; ;)
x < CreateEdgeFeatures(G; 1)

y < CreateEdgeLabels(G; j+1,C; j+1)

X .appendItems(x)

Y .appendlItems(y)

LJs=J+1

| M < FitModel(X,Y")
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4.3 Main Phase: Clustering Process

4.3 Main Phase: Clustering Process

4.3.1 Overall Procedure

In the main phase, we contract the graph until all nodes are contained inside one node or a
specific criterion is reached. In every iteration, features are calculated for all edges. With
these features, a score is calculated with a trained model. Based on these scores an edge is
selected and then contracted.

4.3.2 Feature Calculation

In Table 4.1|are the costs for calculating the individual features in one iteration.

T'nae = max. number of incident triangles to an edge

Smaz := max. number of incident stars to an edge

Feature Name costs
Degree O(m)
Node count O(m)
Edge count O(m)
Shared neighbor count O(m - A)
Clustering coefficient O(m-A)
Graphlet counts O (m A {Tmm l,f Loz < A )
Smaa: lf S’maa) S A
Node weight O(m)
Edge weight O(m)
Internal edge weight O(m)

Table 4.1: Feature generation costs in one iteration for all edges.

The node/edge counts, weights, and internal edge weights are stored and updated. With
this, the calculation is one memory access for each edge. For node-related features, both
adjacent node features need to be accessed hence two memory accesses are performed per
edge. The degree of a node is the size of its neighborhood and is calculated twice for each
edge in O(1), and thus the cost for the degree is O(m) as we have to provide the degree for
every edge. The cost of computing the graphlet counts is derived in [27]. Distributing the
graphlets on each edge (O(m)) does not change the complexity as the computation of the
counts dominates the overall costs.
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4 Learned Agglomerative Graph Clustering

4.3.3 Edge Selection

The model is provided with the generated features and produces a regression value for every
edge. The higher the prediction is, the more the model predicts the nodes connected by the
edge to be in the same cluster. The edge with the highest score is selected for contraction.
If multiple edges have the same maximal value one random edge is picked as the model
predicts the same probability for each.

4.3.4 Contraction

In the contraction, we merge two nodes into one and update the properties of the new node
and edges as defined in Chapter 2]

4.4 Theoretical Running Time

To initialize our data structures we have to insert all edges for every node. The insertion
of one edge for a node happens in O(1), as the sizes of all arrays are the node degrees and
thus are known. This creates an initialization cost of O(m). As a contraction reduces the
number of nodes by one per iteration, we perform O(n) iterations to end with all nodes
contracted into one cluster. In each iteration after the prediction, the maximum score edge
and contraction nodes j, k are found in O(m). Then the contraction is performed. We
process all edges of £ leading to a node [ by updating the jth row’s entry for [ and the /th
row’s entry for j if an edge to [ already exists for j. If not, in both rows a new edge is
inserted leading to a cost for both cases of O(deg(j) + deg(k)) as we have to perform the
insertions for all edges and we assume the worst case of no shared neighbors such that the
degrees sum up. This is similar to [21] and in the worst case O(m) insertions happen. The
contraction hierarchy forms a dendrogram with depth d. With this, we have at most O(md)
insertions in the clustering process. All edges connected to & are removed for all neighbors
in O(deg(k)) and the kth row is removed in O(1). The edge removal is thus also in O(m).
The algorithm without feature calculation has a complexity of O(n - m + md). The depth
of the dendrogram is limited by the number of nodes n, thus if d = n the complexity is
O(n - m). As our algorithm does not need the modularity improvement for all possible
contractions, a linear data structure can be used. With this, insertions happen in O(1)
instead of O(logn), as we do not sort by modularity improvement.

An issue with this algorithm is that we recalculate rather expensive features like graphlet
counts multiple times from scratch and as we only contract two nodes at a time, the graph
does not shrink significantly for the next calculation. This heavily limits the graph size
we can calculate clusters for. To address these problems we can use an update policy for
the clustering process. A feature falls in either of 3 categories regarding changes due to
contractions.

1. Changes globally (e.g. node count)
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4.5 Memory Consumption

2. Changes for the contracted nodes and edges (e.g. internal edge weight)

3. Changes for local area (e.g. graphlet counts)

The first two categories are the easiest to address: global feature changes are often very
simple and in most cases, no change or easy operations like subtraction of 1 are required
for the update. Another convenient property is that we do not care, which edge we work
on, as all edges are affected in the same way. Changes that only affect the contracted nodes
and edges adjacent are also very simple to update. We can update the weights of the new
node and at most 2A edges. The new feature values are often just sums of the contracted
nodes or edges’ features. More of a challenge are features, that capture a wider field of the
graph like graphlet counts. If we contract two nodes, the graphlet counts for all edges in a
distance depending on the graphlet diameter change. For example, the 2-star graphlet has a
smaller area than the 4-path graphlet, where counts can be influenced by a contraction. Our
solution for these features is to extract an induced subgraph of the local area by performing
a breadth-first search up to the point where the area of effect ends. Only on this induced
subgraph the relevant features that can change are calculated from scratch and updated in
the feature data. All the data that belongs to edges outside of the affected area remain
untouched. This naive approach turned out to be a bit slower than just recalculating the
features from scratch. Update policies for each graphlet and different data structures could
speed up the feature generation potentially.

4.5 Memory Consumption

Using big graphs results in many coarsened versions and also in many feature vectors for
each edge. If we want to train a tree-based model (like XGBoost), we need a lot of memory,
as the data needs to be completely accessible in memory and additional structures are also
needed for training. This is not as big of a problem for a neural network, as they are trained
with batches of data that are loaded into memory sequentially. However, more training data
increases the training time.

4.6 Model Switching

By using different hyperparameters or estimators, multiple models can be produced out of
the same training data. To improve the quality of the solution different models can be used
at different times of the clustering process. We allow switching from an XGBoost-based
model to a neural network at a specified time in the process. The algorithm stays the same,
however, the predicted scores of the models might differ and thus lead to different results
when switching between models.
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4 Learned Agglomerative Graph Clustering

4.7 Data Structures

We use a dynamic array for every node, that contains an entry for every edge that is con-
nected to this node. Additionally, every array stores a map. With this, we can find an
element in the array in O(1). The removal of entries happens in O(1), as we can swap the
last element with the element we want to remove (O(1)) and decrease the size of the array
by one (O(1)).
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4.7 Data Structures

Algorithm 2 Learned Agglomerative Graph Clustering.
Data: Graph G = (V, E), Model M

Result: Clustering C, Modularity Q

n <+ |V|,m « |E|

// store original graph

G+ G

C < Array(1,...,n)

NW (v) < 1,iew(v) «+ OVv € V

EW(e) < Ve € E

Q « CalculateModularity(G’, C)

Q@

C«+C

fori=1,....n—1do

X < CreateEdgeFeatures(G, NW, EW, iew)
Y < PredictEdgeScores(X, M)

,,,,,

NW(u) + NW(u) + NW(v)
iew(u) < iew(u) + iew(v) + EW ({u,v})
// remove the contracted edge
E <« E\ {{u,v}}
// process outgoing edges of the contracted nodes
foreach {v,v'} € F do
if {u,v'} € E then
| EW({u,v'}) < EW({u,v'}) + EW({v,v'})
else
E + Eu{u,v'}

L EW({u,v'}) = EW({v,v'})
L B« EN{{v,v'}}}
V<« V\{v}
m < |E|
Clv] + Clu]
foreach v’ contained in v do

L Clv'] « Clu]
Q <« CalculateModularity(G’, C)
if Q) > Q then
[ 852
C«+C
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CHAPTER

Experimental Evaluation

To construct this algorithm and the feature sets, we conducted several experiments.

5.1 Methodology

We implemented our algorithm in the KaHIP [28] framework in C++ and compiled it with
g++ 11.2.0 using loop unrolling (-funroll-loops) and no additional optimization turned on.
We also implemented the greedy agglomeration algorithm in this framework as a base for
our algorithm. VieClus was compiled from the latest version (Apr 7 13:39:26 2021) with
the default configuration and above compiler. All experiments were performed on the same
machine with a four-core Intel i5-6600K running at 3.50 GHz with a boost frequency of
3.90 GHz, 24 GB main memory, and 6 MB L2-Cache. For the neural networks, CUDA
11.7 with cuDNN 7.2.1 was used on an RTX 2060 with 6 GB memory. The machine runs
Ubuntu GNU/Linux 22.04.1 LTS and Linux kernel version 5.15.0-47-generic. Evaluations
on the smaller graphs were performed three times, due to the long runtime we ran the
bigger graphs only once. We got the graphs partly from the Walshaw benchmarks [29], the
DIMACS10 challenge [30] and individual sources [31]. The training data consist of the
Training Graphs in Table[5.T|with a clustering created by VieClus. The graphs are selected
by their size. We calculate coarsened versions with the global path matching algorithm [32]]
until the node count stops decreasing noticeably. As we must calculate features for every
graph version, using very large graphs becomes less feasible, so only graphs up to a specific
size are used. Also as the clustering process is computationally expensive only smaller
graphs are suited. These are not contained in the training data. We use modularity as
our main evaluation metric to improve our algorithm throughout experiments. For this,
both the final modularity for the best clustering and the modularity development are taken
into consideration. We first compare different feature combinations with an XGBoost [[17/]]
model with default hyperparameters and five training iterations. Afterward, we do the same
for a neural network implemented with Libtorch, the C++ API of PyTorch [33] version
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5 Experimental Evaluation

1.11.0 trained with ADAM [18], a learning rate of le-5 and an L2 regularization with
a strength of 2e-4. The model consists of 4 layers with the first layer being the feature
input size and the last layer of size one for the prediction value. The layers in between
both have 400 neurons. The network uses the ReLLU activation [34] after all linear layers
except the last one, as we want a regression value. The network is trained for two epochs.
Following we explore if preventing overfitting of the neural network improves the solution
quality. After noticing differences between the two approaches, we try to switch between
the models halfway through the clustering process. Then, we try to replicate clusterings for
specific graphs to explore the adaptability of the model.

Evaluation Graphs
Graph n m Type
chesapeake 39 340 Ecosystem Network
dolphins 62 318 Social
lesmis 77 508 Coappearance
adjnoun 112 850
football 115 1,226
jazz 198 5,484 Social
celegansneural 297 4,296 Neural Network
celegans_metabolic 453 4,050 Genes
email 1,133 10,902 Social
netscience 1,589 5,484 Coauthorships
add20 2,395 14,924
cora 2,708 10,556 Citation
data 2,851 30,186
3elt 4720 27,444
uk 4,824 13,674 Roads
power 4,941 13,188 Network
add32 4,960 18,924
hep-th 8,361 31,502 Coauthorship
PGPgiantcompo 10,680 48,632 Social
wing_nodal 10,937 150,976
astro-ph 16,706 242,502 Coauthorship
cond-mat 16,726 95,188 Coauthorship
as-22july06 22,963 96,872 Network
cond-mat-2003 31,163 240,058 Coauthorship
cond-mat-2005 40,421 351,382 Coauthorship
t60k 60,005 178,880 2D nodal graph

Table 5.1: Evaluation Graphs for experiments.
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5.2 Feature Development

Training Graphs
Graph n m Type
3-cluster 17 27 Artificial
zachary 34 78 Social
polbooks 105 441 Network Co.-Purch.
whitaker3 9,800 28,989 Mesh
crack 10,240 30,380 2D nodal graph
fe_4elt2 11,143 32,818
4elt 15,606 45,878 2D nodal graph
fe_sphere 16,386 49,152
cti 16,840 48,232
memplus 17,758 54,196 2D nodal graph
cs4 22,499 43,858
598a 110,971 741,934
luxembourg 114,599 119,666 Roads
citationCiteseer 268,495 1,156,647 Citation
belgium 1,441,295 1,549,970 Roads
netherland 2,216,688 2,441,238 Roads
germany 11,548,845 12,369,181 Roads
Optional Training Graph
fe_body 45,087 163,734

Table 5.2: Training Graphs for experiments.

5.2 Feature Development

We provide different sets of features to approximate the local structure around an edge and
let the machine learning model identify the meaningful ones by itself. We perform these ex-
periments first with the tree model [17], as it is not as dependent on good hyperparameters
as neural networks.
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5.2.1 Initial/Minimal Feature Set

3elt add20
08 | —— ours (XGBoost) 0.6 T —— ours (XGBoost)
| —— greedy — greedy
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5 5 0.4
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Figure 5.1: Modularity Development on different graphs with the minimal feature set.

The features used initially are the node degrees, the shared neighbor count, the clustering
coefficient and the graphlet counts. Figure[5.1|shows in every plot the change in modularity
for a specific graph. The x-axis is the number of contractions performed to reach this point
in time. This axis always starts at O and ends at the number of nodes contained inside of
a graph after all possible nodes are contracted. The y-axis is a metric for the clustering
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5.2 Feature Development

process for insights into the quality of the current model. In these plots, it is the modularity
of the clustering at the current contraction. To provide some reference, two other clustering
results are provided. The greedy agglomeration is plotted the same way as our results as
a purple line. Since greedy agglomeration can rely on the single peak property [21], the
line stops before all clusters are contracted into one and there is no drop after the peak
as the other plots have. Also, a clustering produced by the VieClus algorithm is used for
comparison to see the possible potential. The modularity of this solution is the horizontal
red line. For our algorithm, the most relevant part is the highest point in the process, as we
can just record this solution and keep on contracting the clusters together. If we find a better
solution than before, we update the current best. In the end, we just use the best solution
(the maximum) as a result of the clustering. In contrast to the greedy agglomeration, we
do not have a single peak of the modularity curve guaranteed (see data or uk plot in Figure
[5.1). This makes it impossible to stop early as a better result could be achieved after a small
peak with a little drop. If we have constraints on how many clusters £ we want to end with,
we can also just use the clustering after n — £ contractions.

We can already see from these plots, that we can produce non-trivial clusters (Figure
random contractions with mean modularity around 0.2), and even more than that. In the
instance add20 our clustering is a tiny bit better than the results of the greedy agglomeration
(greedy: 0.5411, ours: 0.541927). Another very interesting observation here is in the uk
plot. Greedy agglomeration is specifically targeted to maximize modularity by always
picking the local best modularity improvement available. However, our algorithm can find
contractions in such a way, that we end up with higher modularity in the process between
contraction 1000 and 3500 than the greedy agglomeration. An important reminder at this
point is, that our algorithm does not know the change of modularity that is connected to a
contraction of nodes. It only has seen data of clusterings with high modularity. This means
that by picking a different edge for contraction than the maximal modularity improvement,
we can achieve at least temporary better results. However, we can notice, that the features
provided with the minimal feature set are only capturing the graph at surface level, ignoring
any information kept inside of nodes and edges.

5.2.2 Node Weight

If we add the node weight to the feature set, we see a small improvement. For some graphs
(3elt, add32, uk) the maximum modularity improves visibly in Figure[5.2] For other graphs,
it seems to have almost no influence. The average modularity with node weights (0.724067)
is higher than without (0.707156).
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Figure 5.2: Modularity Development on different graphs with minimal feature set vs node weights
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5.2.3 Counts and more Weights

After making the weight of nodes accessible and with that the nodes that are otherwise
hidden within a contracted node, the next idea is to also make the edges transparent. This
includes both edges that are still in the graph structure accessible but also edges that are
locked inside of nodes because they are involved in an earlier contraction. For the first,
every edge has a new weight feature. For the second category of transparency, every node
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5.2 Feature Development

receives an internal edge weight and thus an edge has access to the internal edge weights
of both nodes it is connecting. Another piece of information that can be interesting is the
number of present nodes and edges in the original graph. If there exists a dependence of a
clustering function on the size of the graph, the model cannot use it for the clustering pro-
cess. Therefore, we add this information and can see the results for different configurations

in Figure[5.3]
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Figure 5.3: Geometric mean modularity for different feature sets vs greedy agglomeration and
VieClus.

After adding different features, we observe that more features do not equal better results. If
we add the weight features separately (nw: node weight, ew: edge weight, and iew: internal
edge weight), we see a small improvement, but when combining the node and edge weight
features the results are worse than with just the minimal feature set. Also, after adding the
counts (nc: node count, ec: edge count) we see a significant drop in the modularity.

In Figure [5.4 we see the differences in the modularity development for bigger feature sets
using the node count. In the beginning, they all perform better or equally good as the
minimal feature set in terms of modularity. The initial better results might suggest, that the
additional information about the graph is helpful. As the contractions progress, the models
start to behave similarly to a model picking random edges in some graphs. Although the
feature set models with more information start better than the minimal feature set model,
they are in some instances unable to find edges, that produce a good clustering later on. For
the minimal model, the maximum spike of modularity seems to be very concentrated, as
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the curve rises, stays there for a small number of contractions, and drops at the end. For the
feature set model using internal edge weights and counts there exists no such sharp point
of highest modularity, but the modularity seems to plateau for longer.
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Figure 5.4: Modularity Development on different graphs and different feature combinations using

counts.

As we increase the feature dimensions, this significantly increases the feature space and
leads to the fact, that we usually need more data to train a model that works well with this
feature set. We suspect that the problem lies in the amount of training data, as the model
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5.2 Feature Development

seems to perform well in general, but struggles with a specific contraction stage of a graph
in some cases. To support this argument and to show that it is not a general restriction
imposed by the new features, we add one graph instance (fe_body) to the training set,
augment the data with the coarsened graphs, and train a new model on this data set.
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Figure 5.5: Modularity Development on different graphs after adding fe_body graph to training
graphs for the feature set without internal edge weights.

We can see in Figure[5.5]that there is a huge improvement in the achieved modularity. Every
instance is clustered with higher modularity than before. Also, the random-like behavior
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5 Experimental Evaluation

ceases to happen. In the case of the data graph, it is also slightly better than the minimal
feature set. Only in the uk graph, the progression remains partially similar to the random
model. If this trend continues, this also validates the intuition that the result should improve
when providing more training data with more variety.
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Figure 5.6: Modularity Development on different graphs after adding fe_body graph to training
graphs for the feature set with internal edge weights.

In Figure[5.6 we see the effect of adding data to the training set when also using the internal
edge feature. For most graphs, it is a significant improvement. For the uk graph, the addi-
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5.3 Neural Network

tional data does not change anything and for the 3elt graph, it results in lower modularity,
as the modularity grows even slower. A likely explanation is a core difference in the graph
structures.

So far the best feature set with fixed training data we have is using the minimal set with
the node weight. There is also a strong indication, that adding the node and edge count
requires more training data with more variety in the data to produce good results, maybe
yielding even better results than the other feature sets with a sufficiently large data set.

5.3 Neural Network

We can perform the same experiments as we did with the tree model with a neural network
as our estimator. The geometric mean of achieved modularities for the neural network for
different feature sets is visible in Figure [5.7]
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Figure 5.7: Geometric mean modularity for different feature sets vs greedy agglomeration and
VieClus.

Right from the start, we can see an interesting difference for the neural network. In contrast
to XGBoost, the difference between our best feature set model and the greedy agglomera-
tion is now almost zero. Also, the results for the feature sets with node and edge count are
significantly better than for XGBoost. The worst result for XGBoost is below 0.5 and for
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5 Experimental Evaluation

the neural network easily exceeds 0.5. Also, the feature set with the counts and the internal
edge weight is even better than the minimal feature set.
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Figure 5.8: Modularity for XGBoost and Neural Network vs greedy agglomeration and VieClus.

We can see in Figure [5.8] that except for the first instance all clusterings calculated with
the neural network are better than the ones created with XGBoost. For 4 of 6 instances,
it is also better than using the greedy agglomeration algorithm. However, none of the
clusterings were able to beat VieClus. From here on the experiments are conducted on the
neural network, as it yields better results.

5.4 Dropping Graphlets

Graphlet counts give a detailed representation of the local structure around an edge. The
time to calculate these is a huge bottleneck for this algorithm, so it would be interesting
to exclude them from the feature set and observe, how relevant these counts are for the
solution quality.
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5.5 Overfitting and Regularization

ullll

Figure 5.9: Two feature sets each with and without graphlet count feature mean modularities.
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In Figure[5.9 we can immediately see, how big the benefit of using graphlet counts is. In the
two feature sets, the achieved modularity significantly drops after removing the graphlets
(...-graphlets). Additionally, the features added to the minimal feature set (nw, ew, nc,
ec, iew) seem to only have a good influence if the graphlets are present. After discarding
the graphlet information, the algorithm still performs better than a model with random
weights. From this, we can conclude that a lot of information is gained from the graphlet
counts, although some of the other features in the minimal feature set also have relevance
for creating a clustering.

5.5 Overfitting and Regularization

When using a network without regularization it can achieve nontrivial results in the clus-
tering process compared to a randomly initialized network in Figure The errors of
instances from the same graph behave similarly, even for instances not used in training. For
data instances stemming from other graphs not included in the training set, the errors are
noticeably higher.

5.5.1 L2 Regularization

If we add this regularization, the clustering results improve.
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Figure 5.10: Geometric Mean modularities for different L2 regularization hyperparameters and
comparison with random weights, minimal feature set.

In Figure it is visible, that there is some clear benefit in using L.2 regularization. All
runs with regularization are consistently better than the runs without. Here it would be
interesting to see, how well the algorithm can perform with a better choice of the regular-
ization parameter 7. Also, it is obvious, that the model is indeed learning important criteria
from the training data, as the modularity is significantly higher than using a model with
random weights.

5.5.2 Dropout

Although Dropout usually helps to prevent overfitting, in our setting it does not work as
well as L2 Regularization. Therefore, it was not used in further experiments.
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5.6 Switching between XGBoost and Neural Network

5.6 Switching between XGBoost and Neural Network
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Figure 5.11: Modularity Development on different graphs XGBoost vs Neural Network vs Switch
at 50% progress, minimal+nw,ew feature set.

As visible in Figure[5.11] the modularity for the clustering produced by XGBoost is higher
than the modularity for the Neural Network initially. If the XGBoost model is better suited
for the beginning phase of clustering and the neural network excels more at the end of
clustering, we could produce even better results than with the models separately. As we
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can see in Figure the modularity follows the one from XGBoost up to 50%. After we
switch over to the neural network, we see a drop and the result is worse for all instances
except for the cora graph than just using the neural network model. This is the only graph
instance, where XGBoost performs better than the neural network, so it seems like it could
contract some nodes in the first half, that prepare the graph for a better solution than with
just the neural network.

5.7 Network Size

If the network is significantly smaller, regularization is not as necessary as for our final
model. This is most likely due to the fact, that the model is just not capable of overfit-
ting and is forced to generalize. With a smaller model with fewer or smaller layers, the
training error and results were not as good as for our current model. For bigger networks,
the training error did not significantly change, but overfitting became more of a problem.
Changing the size of the network could produce better results than we can, but due to time
and hardware limitations, extensive optimization of these factors is not discussed in this
thesis.

5.8 Replicate Clusterings

To explore how well the algorithm can adapt to a graph and clustering, we provide the
model with training data of a graph and run the algorithm with this model on the same
graph. For this experiment, we train the model 20 epochs instead of 2 as we have signifi-
cantly less training data and thus need more epochs to achieve similar convergence. Some
results are visualized in Figure For the first two, an edge is green, if the training clus-
tering and the replicated clustering agree on the two nodes to be in the same cluster. The
edge is colored red if the clusterings disagree. The add32 graph has a tree-like structure
with small branches extending out of a long path. The clusterings agree on almost all ex-
tensions as they are largely green. Our model is thus able to identify very clear structures
for this graph as clusters the same way VieClus defines them and this matches with the
basic intuition. In some cases, there are disagreements between the solutions, for example
in the long upper branch. The main path has a lot of red edges and the two clusterings
often disagree in this area so our model is not able to cluster path nodes correctly with their
extending branches and other path nodes. For most graphs, the replications look similar
to the second example. There are a lot of edges that disagree. Also, some parts that seem
very separated from other parts are almost completely red. The lower right extension is
an example of this. Although a human would probably group all these nodes together, our
algorithm decides for the edges in this part of the graph to be singletons. This happens
probably because the graph has a grid-like structure and it is hard for our algorithm to
distinguish if a node is inside the big patch in the middle or at the end of the extension.
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5.9 Evaluation on more Graphs

Another problem one encounters is visible in the 3elt graph below. Around 67% of all
nodes are contained inside the blue cluster. All other nodes are singletons. This might
happen because one huge cluster is created and reaches a local modularity optimum. All
later contractions of singletons are discarded.

Figure 5.12: add32, data and 3elt after training the model on each individually and clustering them
with the respective model.
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5 Experimental Evaluation

Table 5.3: Time, Coverage and Modularity comparison of clustering results ours vs greedy ag-

44

|

ours

|

greedy agglomeration

|

] Graph H t(s) \ cov \ mod H t(s) \ cov \ mod ‘
Evaluation Graphs
chesapeake 0.026 0.741 | 0.179 || 0.002 0.594 | 0.238
dolphins 0.045 0.881 | 0.365 || 0.003 0.761 | 0.512
lesmis 0.049 0.618 | 0.365 || 0.005 0.795 | 0.515
adjnoun 0.160 0.249 | 0.131 || 0.011 0.485 | 0.298
football 0.153 0.540 | 0.271 || 0.012 0.708 | 0.552
jazz 1.768 0.929 | 0.277 || 0.041 0.779 | 0.439
celegansneural 1.924 0.313 | 0.182 || 0.080 0.671 | 0.385
celegans_metabolic || 3.427 0.363 | 0.210 || 0.143 0.665 | 0.412
email 24.149 0.321 | 0.246 || 0.859 0.730 | 0.515
netscience 6.173 0.987 | 0.938 || 0.788 0.989 | 0.955
add20 87.363 0.771 | 0.569 || 3.249 0.781 | 0.541
cora 48.012 0.715 | 0.654 || 3.744 0.884 | 0.808
data 96.408 0.905 | 0.825 || 4.511 0.965 | 0.763
3elt 169.044 0.914 | 0.856 || 12.626 0.969 | 0.805
uk 97.489 0.947 | 0.903 || 12.824 0.963 | 0.920
power 86.855 0.941 | 0.905 || 11.876 0.965 | 0.934
add32 133.537 0.951 | 0.919 || 12.633 0.960 | 0.908
hep-th 311.714 0.791 | 0.745 || 28.011 0.906 | 0.830
PGPgiantcompo 845.056 0.746 | 0.719 || 66.208 0.926 | 0.850
wing_nodal 2,365.970 | 0.829 | 0.720 || 69.924 0.944 | 0.666
astro-ph 8,654.730 | 0.651 | 0.614 || 215.191 0.819 | 0.705
cond-mat 1,928.300 | 0.733 | 0.714 || 172.561 0.880 | 0.776
as-22july06 21,827.100 | 0.656 | 0.444 || 385.898 0.794 | 0.636
cond-mat-2003 12,461.800 | 0.592 | 0.572 || 748.109 0.862 | 0.772
cond-mat-2005 31,013.500 | 0.534 | 0.515 || 1,338.040 | 0.845 | 0.789
t60k 16,511.800 | 0.955 | 0.935 || 2,026.410 | 0.988 | 0.921
Geometric Mean 51.191 0.672 | 0.489 || 3.077 0.820 | 0.633
Feasible Training Graphs
3-cluster 0.020 0.926 | 0.392 || 0.000 0.926 | 0.571
zachary 0.107 0.449 | 0.168 || 0.001 0.692 | 0.392
polbooks 0.310 0.576 | 0.342 || 0.008 0.893 | 0.523
whitaker3 680.933 0.934 | 0.867 || 43.386 0.979 | 0.811
crack 737.058 0.921 | 0.851 || 52.291 0.972 | 0.832
fe_4elt2 837.790 0.940 | 0.895 || 56.201 0.976 | 0.809
4elt 1,665.680 | 0.951 | 0.903 || 127.444 0.983 | 0.816
fe_sphere 1,942.050 | 0.870 | 0.826 || 129.050 0.979 | 0.812
cti 1,928.810 | 0.904 | 0.834 || 144.233 0.948 | 0.843
memplus 8,488.120 | 0.664 | 0.624 || 165.903 0.787 | 0.630
cs4 2,799.040 | 0.872 | 0.810 || 271.705 0.938 | 0.854
Geometric Mean 114.042 0.798 | 0.614 || 4.998 0.911 | 0.698

glomeration.



5.9 Evaluation on more Graphs

’ H ours H greedy agglomeration ‘
] Graph H perf \ icc H perf \ icc ‘
Evaluation Graphs
chesapeake 0.607 | 0.600 || 0.702 | 0.472
dolphins 0.564 | 0.855 || 0.807 | 0.222
lesmis 0.887 | 0.000 || 0.752 | 0.726
adjnoun 0.884 | 0.000 [| 0.833 | 0.420
football 0.750 | 0.000 {| 0.891 | 0.616
jazz 0.567 | 0.400 || 0.758 | 0.162
celegansneural 0.867 | 0.000 [| 0.745 | 0.408
celegans_metabolic || 0.853 | 0.000 || 0.793 | 0.403
email 0.954 | 0.000 || 0.808 | 0.545
netscience 0.980 | 0.750 || 0.988 | 0.923
add20 0.813 | 0.400 {| 0.901 | 0.556
cora 0.941 | 0.000 {| 0.939 | 0.769
data 0.926 | 0.824 || 0.794 | 0.899
3elt 0.943 | 0.718 || 0.837 | 0.890
uk 0.957 | 0.890 || 0.958 | 0.912
power 0.966 | 0.880 (| 0.970 | 0.905
add32 0.969 | 0.137 || 0.954 | 0.936
hep-th 0.980 | 0.000 {| 0.970 | 0.783
PGPgiantcompo 0.978 | 0.000 || 0.952 | 0.750
wing_nodal 0.892 | 0.702 || 0.726 | 0.936
astro-ph 0.912 | 0.000 {| 0.889 | 0.500
cond-mat 0.991 | 0.000 [| 0.949 | 0.713
as-22july06 0.810 | 0.000 || 0.872 | 0.519
cond-mat-2003 0.995 | 0.000 [| 0.908 | 0.462
cond-mat-2005 0.997 | 0.000 || 0.888 | 0.429
t60k 0.980 | 0.910 [| 0.932 | 0.970
Geometric Mean 0.872 | 0.000 || 0.862 | 0.595
Feasible Training Graphs
3-cluster 0.654 | 0.900 || 0.860 | 0.833
zachary 0.725 | 0.000 || 0.786 | 0.533
polbooks 0.797 | 0.000 {| 0.750 | 0.250
whitaker3 0.934 | 0.871 || 0.833 | 0.593
crack 0.931 | 0.767 || 0.860 | 0.921
fe_4elt2 0.955 | 0.889 || 0.834 | 0.968
4elt 0.952 | 0.905 || 0.834 | 0.610
fe_sphere 0.956 | 0.809 || 0.834 | 0.975
cti 0.931 | 0.829 || 0.896 | 0.904
memplus 0.970 | 0.424 || 0.962 | 0.625
cs4 0.937 | 0.827 || 0.917 | 0.917
Geometric Mean 0.879 | 0.000 || 0.850 | 0.694

Table 5.4: Performance and inter-cluster conductance comparison of clustering results ours vs
greedy agglomeration.
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5.9 Evaluation on more Graphs

In Table and Table we can see the results of clustering the graph with our algo-
rithm and with the greedy agglomeration. We see that adding the feature generation and
searching for the highest score to the algorithm increases the running time drastically as
we can expect. The greedy algorithm achieves in almost all instances higher coverage.
For modularity, we can see that in some cases our algorithm produces a clustering with a
higher score. Interestingly, in no instance with higher modularity, our algorithm has higher
coverage than the greedy algorithm. So the greedy algorithm can move more edges inside
of clusters, but if our algorithm works properly, it has a better structural understanding
of the graph. For some instances used in training, we also see a formation of very good
clusterings results regarding modularity beginning with the whitaker3 graph and ending
with the fe_sphere graph. As the graphs are sorted by node count, this indicates that there
are some sizes (around 10-16k nodes, see Table for graphs, that perform very well
with our algorithm and this trained model. As our dataset is biased towards medium-sized
graphs, this could produce these results. In terms of performance our algorithm is better
than the greedy agglomeration in 17 out of 26 graphs, sometimes significantly (e.g. lesmis
ours: 0.887218, greedy: 0.752221). For the last metric, the inter-cluster conductance, our
algorithm has very low scores of zero in many instances. This happens as some nodes form
a singleton cluster at the point with the highest modularity. The singletons are contracted
inside other clusters later on. However, our model decides for other contractions leading to
lower modularity before the singletons are combined with other nodes. This change will
not be contained in the final solution. In these cases of zero inter-cluster conductance, the
modularity is also significantly smaller than for the greedy agglomeration. This implies
that the clusters are not finished yet, but the algorithm is not able to make good decisions
in the following steps in terms of modularity. A bigger training set could possibly produce
a model, that overcomes these problems and can contract all singleton nodes into bigger
clusters.
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CHAPTER

Conclusion

In this thesis, we present a supervised learning-based technique for graph clustering, that
relies on structural edge properties. For this, we introduce an approach for data creation
and data augmentation based on a given graph and clustering. After training a model on
the created data, we use it as the decision rule instead of the modularity change in the
greedy agglomeration framework. In our experiments, our final algorithm and model has
higher modularity than the original greedy agglomeration in some test instances, and over
half of the instances have better performance scores. For our model, we test two different
types of models. A tree-based XGBoost model and a neural network. For both model
types, we test multiple feature combinations and found well-performing sets. For the neural
network, we evaluate the effect of removing the computational expensive graphlets from
the feature set and see the importance of this feature. Further, we compare both model
types against each other. Our finding is, that although the XGBoost model can create
good solutions, the neural network can extract more valuable information leading to better
modularity results for our training set. For the neural network, we additionally test the
influence of L2 regularization and Dropout to prevent overfitting with the hope to achieve
better results on unseen graphs. We notice an improvement compared to no regularization
with L2 regularization but are unable to find a hyperparameter working for Dropout. We
test one possibility of using multiple models in the same clustering process, as we switch
from an XGBoost model to a neural network halfway through the clustering process. The
XGBoost model has higher modularity in the clustering process beginning than the pure
neural network, but after switching to a neural network the modularity experiences drops,
and the overall achieved modularity is not as high as for the pure neural network in almost
all cases. To explore how accurately the model learns a clustering for a specific graph
we try to replicate some clusterings with the help of a model. For one graph the model
achieves a reasonable solution that had some similarities with the original clustering, while
for the other graphs the solution often greatly differs. In the end, we cluster all available
feasible graphs and point out some properties of the results. Our algorithm achieves higher
modularity for six evaluation instances. It has lower modularity in the geometric mean
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6 Conclusion

(ours: 0.489, greedy: 0.633) as our solutions for some instances are significantly worse
than the ones from greedy agglomeration. The geometric mean of the performance metric
of our solutions is slightly higher than the modularity maximization (ours: 0.872, greedy:
0.862).

Future Work

An obvious improvement would be to add more graphs to the training set. We could also
increase the training set by creating more diverse coarsened versions of the graphs. Cur-
rently, we have only one branch of coarsening, but we could use e.g. random matching or
other algorithms to create a huge variety of coarsened graphs. Also, it would be interesting
to identify the graphlets that are significant for good results. Another target for the future
can be to improve the speed of the algorithm, in order to cluster bigger instances. This
could be possible by the earlier mentioned update policy for the features and different data
structures for maintaining the features and edges. If the speed can be improved enough, a
Reinforcement Learning approach would also be possible. The algorithm is presented with
a graph and a clustering for this graph. Then the algorithm contracts nodes it currently
predicts to belong together. The model is rewarded for every edge, that is contracted cor-
rectly according to the provided clustering. A punishment happens for every edge that is
contracted although the clustering disagrees with this decision. With this setup, the model
could learn more details about how a clustering should look like. This method has the ben-
efit, that we do not need to provide explicit coarsened versions anymore, as the algorithm
creates coarsened versions on its own in a way that fits the current state of the model.
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APPENDIX

Implementation Details

CUDA support

The training and clustering were performed on a device that supports CUDA. Although the
code can theoretically run on a CPU, the running time is increased drastically, and thus
usage of a CUDA device is the default for our code.

File Formats

The implementation assumes all graphs to be in the Metis graph format that is also used by
VieClus [35] and KaHIP [28]. The graph has to be undirected, without self-loops and no
parallel edges connecting two nodes multiple times. Although the algorithm could work
with weighted nodes and edges it is currently not supported. Therefore any weights should
be removed beforehand.

Score Tie Resolution

In case more than one edge receives the maximum score of an iteration, an edge is uniform
randomly picked among the edges with the maximum score to resolve the tie. With this,
another random seed can produce a different clustering solution.

Implementation Data Structure

The basic algorithm works without recalculating the modularity change or sorting by mod-
ularity. In our implementation, we use heaps similar to the original greedy agglomeration
to keep track of possible modularity changes.
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APPENDIX

Further Results

Clustering Visualization

Figure B.1: The t60k graph clustered with our algorithm and VieClus.

We compare the clusters in the t60k graph in Figure [B.T] in which our algorithm performs
better than greedy agglomeration with the solution provided by VieClus. The clusters
from VieClus have a clearer structure and are on average smaller (937.5 nodes) than our
solution (1132.2 nodes). Our solution does not structure the graph into strict blocks of
nodes. Instead, the borders of clusters often extend into other clusters. This also stretches
clusters over longer areas of the graph. Another interesting observation for our algorithm
is in the lower left corner. We can see a pink cluster completely contained inside of a
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dark cluster. On the first view, our solution looks more organic, but as most of the graph is
similar to a grid, the organic structures cannot exist due to the graph’s structure but originate
from our algorithm. These structures also explain the lower coverage. A thin branch of a
cluster adds only a small fraction of edges to the intra-cluster edges. At the same time, it
separates nodes from each other and reduces the number of edges inside a cluster.

Only Modularity Gain

add20
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negative - 9
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negative A - -
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Figure B.2: Appearance of negative modularity gain in the clustering process.

Small drops followed by good decisions increasing the modularity again lead to plateaus
in the modularity. The real potential of the method might not be reached due to insufficient
training data or hyperparameters. In Figure [B.2] all of the contractions lead to a non-
negative change for most of the process. The drops in modularity are only appearing in
the final phase of the clustering process. To prevent bad decisions close to the end, we
restrict the model to only contract edges, that yield no modularity drop. As most of the
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contractions already follow this rule, we also do not change the initial part of the process
but only the final phase.
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Figure B.3: Modularity Development on different graphs with and without positive modularity
restriction (neural network, minimal+nw,ew feature set).

In the beginning, the modularity behaves the same for both versions as we expect in Fig-
ure B3] There is a huge improvement in both the cora and add20 graph instance. The
unrestricted version has some plateaus for these graphs. The restricted version separates
at these unsteady parts and rises significantly higher. For the graphs with no plateau, the
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modularity does not increase significantly. We use the modularity metric for filtering, the
model’s score still makes the final decision. It seems as if the model could especially bene-
fit from more training data of coarse graphs, as only at the coarse level do the negative-gain
decisions start.
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