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Abstract

We present our results of an extensive experimental evaluation of dif-
ferent fully dynamic maximal matching algorithms using real-world fully
dynamic graphs and fully dynamic graphs created from real-world static
graphs. We examine the algorithms presented from Baswana, Gupta and
Sen [17], which performs edge updates in O(

√
n) time and maintains a 2-

approximate maximum matching, from Neiman and Solomon [35], which
takes O(

√
n+m) time to maintain a 3/2-approximate maximum match-

ing, as well as a naive, greedy algorithm and some random walk-based
algorithms, which take up between O(n) and O(1/ε) time and do mostly
maintain 2-approximate maximum matchings.

As a result, the naive algorithm computes edge updates averagely
fastest, whereas the algorithm by Neiman and Solomon achieves the aver-
agely best matching sizes. We presume, that the results regarding update
time arise from the rather small problem sizes. By improving some of our
algorithms to detect and resolve augmenting paths during edge insertion
we are able to achieve similarily good results as Neiman and Solomon

Further we conclude that random walks can be a mean to achieve
matching sizes above the guaranteed 2-approximate maximum matching,
however at the cost of increased update time. We also show, that small
improvements can significantly improve the performance of random walk
based algorithms. One particular algorithm, which does not guarantee
any particular lower bound of the matching size, does turn out to perform
significantly worse than the other algorithms.
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1 Introduction

1.1 Motivation

In graph theory a matching of a graph G = (V,E), with n = |V | and m = |E|,
is a subset of edges M ⊆ E where every vertex has maximally one edge incident
to it. Finding an arbitrary matching for a graph is a trivial task, since a single
edge already qualifies as a matching. However finding matchings that satisfy
more specific properties is not as trivial. The most well-researched matching
problem is the search for maximum cardinality matchings in a graph [17].

Computing maximum matchings in a static graph is a well researched topic
with algorithmic solutions developed in the 1960’s by Jack Edmonds [23] and
later improvements from Micali and Vazirani in the 1980’s [31]. Many graphs
derived from real-world applications however tend to be dynamic graphs [17],
meaning that over time they undergo changes like loss and creation of new edges.
The most naive way to solve this dynamic maximum matching problem is to
recompute the matching every time an update on the graph has occured using
a static algorithm. This however is obviously a wasteful approach regarding
the running time. The aim therefore is to find algorithms, that can maintain a
maximal matching based on the previously computed matchings and which can
compute an update in way less time than the best static algorithm would take.
Until now the algorithm providing the best upper bound on time complexity
to compute the exact dynamic maximum matching size exactly is a random-
ized algorithm by Sankowski [41] which performs an update in O(n1.495) time.
Therefore it has become a relevant topic developing algorithms which try to
maintain an approximate maximum matching in a dynamic graph [17], [28],
[35], [42], [20], [25]. This problem is further referred to as dynamic maximal
matching problem. The computation of dynamic matchings is often needed
in combinatorial optimization problems, especially from operations research or
market design [14], [16].

Traditionally, the development of algorithms is done in a theoretical man-
ner, resulting in mathematically proveable asymptotic bounds of complexity.
For some algorithms however, observing this asymptotic behaviour may be only
possible for unrealistically large problem sizes, as complexity ignores constant
factors. [34], [38]. A modern approach is known and described as algorithm engi-
neering [38] or experimental algorithmics [34], which tries to evaluate algorithms
in an experimental manner using real-world data, models and assumptions in
order to gain more practical knowledge about performance and behaviour of
algorithms. The insight achieved using this approach may then lead to further
refinement[38].

1.2 Contribution and Methods

In this work, we describe and examine different dynamic maximal matching
algorithms, which we implemented and evaluated experimentally. The exper-
iments are performed on fully dynamic real-world graphs and fully dynamic
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graphs constructed from real-world graphs, taken from the Koblenz network
collection [29]. We compare the experimental results of a naive algorithm, two
more sophisticated algorithms from Baswana, Gupta and Sen [17] and Neiman
and Solomon [35] and different random-walk based algorithms. As a result, we
identify the naive algorithm, which has runtime complexity O(n), as the fastest
algorithm on our test data. We identify Neiman-Solomn as the algorithm to
compute the largest matchings on our test data and approve experimentally,
that eliminating all augmenting paths of length 3 does have a significant im-
pact on the matching size. Further we show that sufficiently large random walks
can be a mean to detect augmenting paths and to obtain relatively good results,
comparable to the results achieved by the Neiman-Solomon algorithm, although
this happens at the cost of an increased update time. By examining the exper-
imental results of our algorithms in detail, we try to give valuable insight in
order to help to improve different solutions for the dynamic maximal matching
problem.

1.3 Structure

This work is structured as follows. After clarifying basic terms and concepts in
Section 2, we discuss some related work in Section 3. In Section 4 we present
the different dynamic algorithms, that we examine throughout this paper. The
main part of this paper is in Section 5 and especially in Section 5.3, where we
present the results of our experimental evaluation of the previously introduced
and discussed algorithms. Our conclusion is presented in Section 6.
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2 Preliminaries

2.1 Matchings

In graph theory a matching M of a simple graph G = (V,E) is defined as a
subset of edges M ⊆ E where no vertex from V is incident to more than one
edge from M . In other words, if we construct the graph G′ = (V,M), then all
vertices in V have either degree 0 (we call them free or unmatched) or 1 (we
call them unfree or matched). For every vertex u with degree of 1, we call the
vertex v at the other end of the incident edge the mate of u, which we denote as
mate(u) = v. For an unmatched vertex u we define mate(u) = ⊥. Note that we
call an graph without self-loops and without parallel edges a simple graph. The
cardinality or size of a matching is simply the cardinality of the edge subset M .

An augmenting path is defined as a cycle-free path in the graph G, that
starts and ends on a free vertex and where edges from M alternate with edges
from E \M . The trivial augmenting path is a single edge, that has both its
endpoints unmatched. Throughout this paper, we call such an edge a free edge.
If we take an augmenting path and resolve it by matching every unmatched
edge and unmatching every matched edge, we increase the matching cardinality
by one.

Further we call a matching maximal, if there is no edge in E, that we could
add to M without corrupting the previously introduced matching condition.
We call a matching a maximum matching, if it is maximal in size among all
other valid matchings for some particular graph. The cardinality of a maximum
matching is called the matching number ν(G). As proven in [19] any maximal
matching without augmenting paths is a maximum matching.

We call an a-approximate maximum matching a matching, that contains at

least ν(G)
a number of edges. Hopcroft and Karp [27] showed that any maximal

matching with no augmenting paths of length at most 2k − 3 is a (k/(k − 1))-
approximate matching. By setting 2k − 3 = 1 ⇒ k = 2 we can show that any
maximal matching is therefore at least a 2-approximate maximum matching.

2.2 Dynamic Graphs and Sequences

Unlike the classical maximal matching problem, which tries to compute a match-
ing for static graphs, we focus in this work on dynamic graphs, where the number
of vertices is fixed, but edges can appear and disappear. The algorithms exam-
ined do not recompute the matching for every instance of the graph at a given
moment of time i, but try to maintain a maximal matching over time. We
call a sequence S a sequence of edge updates, which can be either insertions or
deletions. A sequence S of length k is a k-tupel of 3-tupels (m,u, v), where m
denotes the input mode (0 for deletion, 1 for insertion), and u and v denote the
edge. Note that G is undirected and (u, v) = (v, u) holds. We denote a single
sequence step for a given point in time i as Si.

Furthermore let G = {G0, G1, . . . , Gk, Gk+1} be a dynamic graph, where Gi
denotes the graph constructed from applying the sequence step Si−1 on Gi−1.
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Note here that G0 is the graph without edges, therefore we obtain k + 1 static
graph instances from a sequence of length k. Our definition of dynamic graphs
does consider only the edge set to be dynamic, whereas the set of vertices
remains the same for all static instances Gi ∈ G. Therefore we simply write
V or V to denote the node set of the dynamic graph G as well as every static
instance Gi. On the other hand the edge set E of the dynamic graph G is
defined as E = {E0, E1, . . . , Ek, Ek+1}, where Ei is the edge set of the static
graph instance Gi. Also let M = {M0,M1, . . . ,Mi, . . . ,Mk,Mk+1} be the set
of matchings for the according graph Gi for some point in time i.

According to [22] we can handle dynamic graph problems in three different
settings depending on the kind of updates allowed. As stated in [21], changes
happen more frequently on edges than on vertices, hence usually edge updates
are considered in dynamic graph problems. A setting where only edge insertions
are allowed is called an incremental setting, whereas a problem where only edge
deletions are allowed is called decremental. If both updates are allowed we call
the setting fully dynamic.

In this paper we address the problem of maintaining a maximal matching in
a fully dynamic graph, therefore a graph, where edges can be added and deleted
from the graph. Accordingly all algorithms presented can handle edge insertions
as well as edge deletions.
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3 Related Work

Throughout the last decades the interest in computing structures in fully dy-
namic graphs has grown and many different problems like maintaining minimum
spanning trees or connectivity information are well-researched, providing algo-
rithms which solve the problems in polylogarithmic time [22], [26]. Regarding
the dynamic maximum matching problem, the best algorithm to obtain the size
of a maximum matching in a fully dynamic setting is a randomized algorithm by
Sankowski [41]. A trivial solution in order to obtain a maximum matching in a
fully dynamic undirected graph is known to require O(m) ⊂ O(n2) update time
[24]. As no better solutions have been discovered so far, interest has grown in
computing approximated maximum matchings. Hopcroft and Karp [27] showed,
that any matching without augmenting paths of length 2k − 3 is a (k/(k − 1))-
approximate maximum matching. Hence, by resolving all trivial augmenting
paths of length 1, we receive a maximal matching, which is a 2-approximate
maximum matching. This circumstance has been a key concept when develop-
ing fully dynamic approximate maximum matching algorithms [17], [28], [35],
[42].

The first algorithm Baswana, Gupta and Sen present in [17] maintains a
2-approximate maximum matching in amortized O(

√
n), however they improve

upon their own result and present a further algorithm, which maintains a 2-
approximate maximum matching in O(log n) time, both however are random-
ized. Solomon [42] presented a randomized algorithm which improves even
further upon the update time by Baswana, Gupta and Sen and maintains a
2-approximate maximum matching in constant amortized update time O(1). In
contrary Neiman and Solomon [35] presented a deterministic algorithm, which
maintains a 3/2-approximate maximum matching by guaranteeing, that there
exists no augmenting path of length 3 throughout the matching and which takes
O(
√
m+ n) time. Gupta and Peng [25] improved upon this with a determin-

istic algorithm, which maintains a (1 + ε)-approximate maximum matching in
O(
√
mε−2), Bernstein and Stein [20] presented a deterministic algorithm, which

maintains a (3/2 + ε)-approximate maximum matching in only O(m1/4ε−2.5)
time and claim to be the first ones to achieve an approximation factor above 2
in O(

√
n) time, since m1/4 ∈ O(

√
n). Kashyop and Narayanaswamy [28] just

recently published a randomized algorithm, which combines the approaches of
Neiman and Solomon [35] and Baswana, Gupta and Sen [17] and by doing so
achieve to maintain a 3/2-approximate maximum matching in O(

√
n) amortized

update time.
Despite this variety of different algorithms, to the best of our knowledge,

there has been no effort made so far, to implement and evaluate these algo-
rithms in an experimental manner, using algorithm engineering techniques [38].
Although there exist quite numerous randomized algorithms for the dynamic
maximal matching problem, we do not know about any attempts, to use ran-
dom walks as a mean to improve matching quality.
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4 Algorithms

In this section we give an overview over the implemented and revised fully
dynamic algorithms. We begin with the most naive algorithm, which is of com-
plexity O(n). Further we revise a random walk algorithm with different varia-
tions, that range from complexity O(1/ε) to O(n) and finally two algorithms by
Baswana, Gupta and Sen and Neiman and Solomon. All these algorithms work
on fully dynamic graphs and assume that the graph is empty at i = 0 and that
for every sequence step Si only one insertion or deletion is processed.

4.1 A Naive Approach

In this section we describe a naive algorithm to maintain a maximal matching
in a dynamic graph in O(n) time.

4.1.1 Edge Insertion

The most naive approach to handle an edge insertion is to check, if both end-
points are free and, if so, add the edge to the matching, otherwise simply ignore
it. For a sequence, that consists of insertions only and is therefore pure incre-
mental, this approach maintains a maximal matching.

Lemma 4.1. Given the graph Gi = (V,E) and a matching Mi, that is maximal
with respect to Gi, the naive algorithm will maintain a maximal matching Mi+1

for Gi+1 when adding an arbitrary edge (u, v), u, v ∈ V .

Proof. Given a maximal matching Mi on a graph Gi = (V,Ei). In such a graph,
every free vertex u has all its neighbours matched, as otherwise Mi would not be
maximal. Therefore the only way to create a new unmatched edge, which has
both its endpoints free, is to insert an edge (u, v) to Gi+1 = (V,Ei ∪ {(u, v)}),
where both vertices u, v are unmatched. The naive insertion algorithm described
will match any newly inserted edge (w, x), if both its endpoints are free, hence
(u, v) will be added to the matchingMi+1 = Mi∪{(u, v)}, which is then maximal
on Gi+1. Since M0 = {} is a maximal matching for G0 = (V, {}), this algorithm
will maintain a maximal matching for an arbitrary long incremental edge update
sequence performed on an initially empty graph.

4.1.2 Edge Deletion

When removing an edge (u, v), we also have to distinguish two cases: An edge,
that is to be removed, can either be matched or unmatched. Removing an
unmatched edge has neither an effect on the matching size nor does it change
the state of an incident vertex, therefore we can simply remove it from the graph.
However removing a matched edge does leave the two incident and previously
matched vertices free as well as it does decrease the size of the matching by
one. These vertices are of special intereset, since, if at least one of them has
unmatched neighbours, freeing them has created at least one edge, that could be
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added to the matching without corrupting the matching condition. Therefore
the remaining matching would not be maximal anymore.

In order to fix this issue, we have to check the surroundings of the freed
vertices u and v. Checking if there exists a free vertex by scanning through all
neighbours of a vertex w ∈ u, v and if applicable match it, is the most simple
way to at least assure that our matching remains maximal. This approach takes
O(deg(u) + deg(v)) time, where deg(u) is the vertex degree of a vertex u and
the vertices u, v are the endpoints to the removed edge. The vertex degree in a
simple graph is at most n− 1, where n = |V |. Therefore runtime complexity is

O(deg(u) + deg(v)) ⊂ O(n).

4.1.3 Complexity and Approximation

As already mentioned, computing an update for the maintained matching costs
O(1), if we handle an edge insertion, and O(n), if we handle an edge deletion.
The outlined naive approach maintains a maximal matching in a deterministic
way. A maximal matching is known to be a 2-approximate maximum matching,
which means that it contains at least 1/2 the amount of edges contained in any
maximum matching.

4.2 Random Walk Methods

As a simple heuristic we extended the naive algorithm by performing random
walks whenever an edge is removed in order to detect augmenting paths. We
implemented different versions of this random walk algorithm which we will
further explain as follows.

Our random walk algorithms handle edge insertions exactly like the naive
algorithm does. As shown in the previous Section 4.1.1 this approach maintains
a maximal matching in O(1) time.

4.2.1 Edge Deletion and Random Walk

As mentioned in the naive algorithm, deleting a matched edge (u, v) leaves the
two endpoints u and v free. This can give rise to unmatched edges with free
endpoints iff there exists a free neighbour for at least one vertex from {u, v}. If
such an unmatched edge exists, that could be added to the matching M after the
deletion of (u, v) without conflicting with the matching condition, the matching
M is not maximal. We already explained how to maintain the matching maximal
in O(n) time.

If the freed vertices have no free neighbours and the matching before the
edge deletion was maximal, then the matching remains maximal. However a
free vertex may be starting point to an augmenting path of arbitrary length.
Finding such augmenting paths of arbitrary length k in a naive manner costs
O(nk) time and is therefore not a trivial task. We now present our random
walk approach and four variants which are used as an heuristic approach to find
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augmenting paths and increase the matching size in order to achieve a better
matching quality than the naive algorithm does.

Random Walk: As an heuristic approach we do a random walk where we
assume the walked path to be an augmenting path. We will finish our walk
after a maximum of k = 1/ε steps latest, where ε is an algorithm parameter.
Starting at a free vertex u, which at k = 0 is one of the vertices freed from
the deletion of the matched edge, we randomly choose a neighbour w of u. If
this neighbour is free, then we match the edge (u,w) and our random walk has
finished. Otherwise if w is matched, then we unmatch (w,mate(w)) and match
(u,w). Note that u 6= mate(w) since u is free in the beginning and therefore
mate(u) = ⊥, but mate(mate(w)) = w and w 6= ⊥. Afterwards mate(w)
remains free, therefore we continue our random walk, but starting the next step
from mate(w). Since the decision on where to continue the random walk is done
randomly, we do not have to scan anyhow through the neighbours of a vertex.
Note that we provide the necessary data structure to retrieve a single neighbour
from a vertex in O(1) time. A step in our random walk therefore costs O(1)
time, a complete update O(k) = O(1/ε) time.

A closer look at the presented random walk algorithm reveals, that this al-
gorithm cannot guarantee some lower bound for the matching quality. Consider
the following scenario.

Example 4.2.1. There exists a free vertex x which has a neighbour w which
is matched with v and which is neighbour of u. Our random walk is at its
penultimate step, which starts at vertex u. Note that the vertices u, v, w, x form
an augmenting path of length 3. Our random walk now chooses v randomly
from its neighbours. Since v is matched with w, we unmatch (v, w) and match
(u, v). Our random walk has now performed k steps, it simply breaks out from
the recursion. The matching calculated from this update is not maximal, since
the two adjacent vertices w and x remain free and the edge (w, x) unmatched.

max-random-walk: The presented issue leads us to our first variation of the
random walk algorithm. Instead of letting the random walk just suddenly end,
we settle the last vertex z naively by scanning through its neighbours for a
free vertex. This guarantees, that any matchable edge incident to z will be
matched, but takes O(deg(z)) time. As we already examined in Section 4.1.2
this is theoretically of cost O(n).

√
m-random-walk: As a second variant we determined the size of the random

walk k = 1/ε in dependence of the number of edges present in the graph at time
of the update. The maximum length of the random walk is set to k =

√
m, with

m = |E|. Further this variant does also settle the last node before breaking out
from the recursion.

low-degree-settle: A third variant checks the degree of every vertex u before
continuing its random walk of length k = 1/ε. If deg(u) < 1/ε, then the
algorithms tries to settle the vertex naively by scanning through the neighbours
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of u. If settling the vertex was successful, then the we break out from the
recursion. Otherwise we keep performing the random walk. The last vertex of
our random walk is settled naively as in variant 1, regardless of its degree.

extended-naive: Our fourth variant basically extends the naive algorithm by
a conditional random walk. When a matched edge gets removed, the algorithm
tries to settle both endpoints naively just as the naive algorithm does. This
assures, that the matching remains maximal. However if a vertex remains free
after scanning through all its neighbours for a new mate, then it could be the
starting point to an augmenting path. Therefore we perform a random walk
of length k = 1/ε, to possibly detect and augment it. As before, we perform a
naive settle at the last step of our random walk in order to guarantee a maximal
matching.

4.2.2 Complexity and Approximation

We outlined in the previous section, that our basic variant of the random walk
algorithm does not guarantee any particular matching quality. The probability
of the described scenario to actually occur seems quite small, wherefore it will
be interesting, how the algorithm will perform in terms of matching size in
the experiments. This lack of a performance guarantee is compensated by the
runtime complexity of O(1/ε).

It is the declared goal of the max-random-walk algorithm to guarantee
that our matching remains maximal. As stated previously in Section 2 any
maximal matching is a 2-approximate maximum matching. This guarantee
happens at cost of runtime complexity, which is increased to O(1/ε+ n).

Since the
√
m-random-walk of the random walk algorithm is actually just

a differently parametrized variant, that deduces the length of the random walk k
from the number of edgesm present in the graph as k =

√
m, runtime complexity

is O(
√
m + n). Settling the end vertex of the random walk in a naive manner

assures, that our matching is maximal and therefore a 2-approximate maximum
matching.

Regarding update time of the low-degree-settle algorithm, querying the
degree of a vertex can be accomplished in O(1) time. Performing a naive settle
on a vertex is of O(deg(u)) cost. Therefore it costs O(1/ε) time, if we try to
perform a naive settle on a vertex during our random walk. Yet if we do not
find a vertex during the random walk that we settle, settling the last vertex at
the end of the random walk costs O(n) time. Total update time therefore costs
O(n+ 1/ε) time. We suspect that probability of actually having to perform all
k = 1/ε steps to be low. Performing naive settle on the last step of our random
walk assures, that our matching is maximal after any update.

Since the extended-naive algorithm is basically the naive algorithm with
the extension of performing a conditional random walk, when no mate was found
by scanning naively through the neighbours of a vertex u, we have runtime
complexity O(n + 1/ε). As in the previous variants, we perform a naive settle
on the last vertex of the random walk, wherefore this algorithm guarantees the
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matching to be maximal after any update. Time complexity remains unchanged,
since O(2n+ 1/ε) ∈ O(n+ 1/ε).

4.3 Randomized algorithm by Baswana, Gupta and Sen

Baswana, Gupta and Sen presented an randomized algorithm in [17], that main-
tains a 2-approximate maximal matching in a dynamic graph in amortized
O(
√
n) time with high probability. This algorithm shows how to improve the

runtime of O(deg(u) + deg(v)) for the earlier mentioned naive approach, where
we scan all neighbours of a freed vertex in order to find an appropriate new
mate. This improvement is achieved by introducing a concept of ownership for
edges and maintaining a partition of the set of vertices into two disjunct sets
based on the concept of ownership.

4.3.1 Levels and Ownership of Edges

Baswana, Gupta and Sen partition the set of vertices into two levels 0 and 1
based upon the number of edges owned by a vertex. An edge is always owned
by at least one of its endpoints. If both endpoints are at level 0, both own the
edge. If only one endpoint is at level 1, this endpoint owns the edge. If both
endpoints are at level 1, then simply the edge mentioned first will own the edge.
A new edge (u, v) with level(u) = level(v) = 1 inserted will therefore be owned
by the vertex u. Ou denotes the set of edges owned by a vertex u. Derived
from the partition of the vertices into two levels, Baswana, Gupta and Sen also
define the level of an edge (u, v) as level(u, v) = max(level(u), level(v)).

Furthermore the following invariants are introduced:

Invariant 1. Every vertex at level 1 is matched. Every free vertex at level 0
has all its neighbours matched.

Invariant 2. Every vertex at level 0 owns less then
√
n edges at any moment

of time.

Invariant 3. Both endpoints of every matched edge are at the same level.

4.3.2 Edge Insertion

If an edge (u, v) gets inserted and at least one endpoint is at level 1, the edge can
not be naively added to the matching as because of Invariant 1 every vertex at
level 1 is matched. In this case, in order to maintain the data structures needed
to represent ownership of edges, we add the edge (u, v) to Ou if level(u) = 1 or
to Ov if level(v) = 1. Note, that if both vertices are at level 1, the edge will be
assigned to u only.

Now if no endpoint of an ede (u, v) is at level 1, then the edge will be owned
by both endpoints. If both endpoints are free the edge will further be added to
the matching. Note that the behaviour of the algorithm matches the behaviour
of the naive algorithm so far. The matching maintained is therefore maximal.
Adding the edge (u, v) to the sets Ou and Ov obviously increases the number of
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1: procedure Random-Settle(u)
2: y ← randomly chosen element from Ou
3: for all x ∈ Oy do
4: remove y from Oy
5: end for
6: z ← mate(y)
7: if z 6= null then
8: M ←M \ {(y, z)}
9: end if

10: M ←M ∪ {(u, y)}
11: level(u)← 1, level(y)← 1
12: return z
13: end procedure

Figure 1: Pseudocode for procedure Random-Settle

edges owned by u and v. This may contradict Invariant 2. If at least one set Ou
or Ov exceeds the threshold of

√
n in size, the vertex w ∈ u, v with the higher

number of owned edges will be repaired. Repairing a vertex w is done by calling
the procedure Random-Settle on w. Since |Ow| >

√
n the vertex w will be

risen to level 1 at the end of the procedure Random-Settle. Hence we have
to remove all edges (w, x), more precisely the vertex w, from Ox for all vertices
x ∈ Ou, since an edge can not be owned by two vertices at level 1. Note that
for any vertex u the set Ou holds the endpoints for all edges owned by u.

The procedure Random-Settle (see Figure 1) performed on a vertex u
picks a mate y for u randomly from the set of owned edges Ou. In order to
maintain Invariant 3 y will be risen to level 1 at the end of the procedure.
Therefore we have to do the same we did with u earlier, namely remove the
vertex y from Ox for all vertices x ∈ Oy. We do so because we stated earlier,
that an edge at level 1 is always owned by only one of its endpoints. Further
if y was matched, we unmatch (y,mate(y)), so that we can then match (u, y).
Afterwards we set the level of both vertices u and y to 1. In the end we return
the previous mate of y. If y was free, we obviously return null.

After performing Random-Settle on u, Invariant 2 is reestablished. Note
that it suffices to handle only u, even when both endpoints of the inserted edge
(u, v) own more than

√
n edges after inserting (u, v). This is because when u

rises to level 1, it takes sole ownership of the edge (u, v). The size of Ov is
therefore reduce by one again and back at its inital size. Naturally the same
holds the other way around where only v would be processed.

Furthermore the procedure may leave two vertices free, namely the mate
of u from before performing Random-Settle on u, if u was matched, as well
as the vertex z returned by the procedure. In order to guarantee, that the
matching is maximal, the algorithm tries to settle both vertices mate(u) and z
by scanning through the set of owned edges in search for a free vertex, which
can then become the mate of mate(u) and z respectively. Note the difference to
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the settle performed by the naive algorithm examined in Section 4.1.2, where
we scan through all neighbours.

4.3.3 Edge Deletion

An edge (u, v) can be matched or unmatched when it gets deleted. As we know
from the naive algorithm, an unmatched edge being deleted does not affect the
matching. For this particular algorithm we can also see, that it does not violate
any of the invariants. Note that Invariant 2 does not state, that no vertex at
level 1 is allowed to own less than

√
n edges.

Obviously no vertex can own the edge (u, v) after it got removed from the
graph. It follows that we have to update the according data structures Ou and
Ov in any case, whether the edges was matched or not. If the edge was not
matched, this is the only processing that needs to be done. Otherwise, if the
edge was matched, removing it will leave both endpoints u and v free. This
might lead to a potential violation of Invariant 1.

We distinguish two cases: If the edge was at level 0, we settle both endpoints
u and v naively. Note that because of Invariant 3 we know that level(u) =
level(v) and therefore can handle both endpoints in the same way. Now if
the edge (u, v) was at level 1, we handle each endpoint w ∈ {u, v} by passing
ownership about all edges (w, x) at level 1 to the respective endpoint z. This
decreases the size of the set Ow. If the size |Ow| still exceeds or is equal to√
n, the vertex has to remain at level 1 because of Invariant 2 and to be settled

(according to Invariant 1). We settle a vertex at level 1 by performing the
earlier introduced routine Random-Settle on it (see Figure 1). Similar to
edge insertion before, the vertex returned by the routine, if it is not null, as
well as the previous mate of w, if there was one, have to be settled naively. In
contrast, if the size |Ow| is now less than

√
n, the vertex can fall back to level

0. Since every edge at level 0 is owned by both its endpoints, we have to add
every owned edge (w, x), that is at level 0, to the set of owned edges of the
respective vertex x. Afterwards we perform a naive settle on the vertex w to
guarantee that Invariant 1 holds. Adding edges to the ownership of x as we
did before may increase the size of the set |Ox| so that it exceeds or is equal to√
n and hence violates Invariant 2. Therefore we scan through all owned edges

(w, x) and if the size |Ox| is greater or equal to
√
n, we repair this issue by

first performing Random-Settle on the vertex x and then settling the vertex
returned by the rountine as well as the previous mate of the vertex x on which
Random-Settle was performed naively, given that they are not null. We
would like to mention, that the particular task of settling the previous mate of
x is not mentioned in the original paper by Baswana, Gupta and Sen in the
section about edge deletion. In order to maintain Invariant 1, it is however
crucial to do so.
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4.3.4 Approximation and Complexity

The algorithm proposed by Baswana, Gupta and Sen guarantees that the match-
ing is a 2-approximate maximal matching after every update. Processing an
insertion is done quite similiar to the naive approach, except the processing
which is triggered, when a vertex rises to level 1. In thise case the algorithm is
able to detect an augmenting path up to length 5. This is when the vertex u
was matched before we perform Random-Settle on it and further the vertex
z returned by the procedure as well as the previous mate of u, which has to be
free after Random-Settle, are both settled successfully. For an incremental
sequence this may increase the quality of the matching over the naive algorithm,
however there is no guarantee that this case occurs.

The same case can occur when a matched edge at level 1 is deleted, falls
to level 0 and thus forces the endpoint of an owned vertex to rise to level 1,
because then Random-Settle has to be performed on this vertex and the
previously mentioned scenario can arise. Again, this may lead to an increase
of the matching quality in a particular scenario, but does not affect the lower
bound on the matching quality.

The fact that the matching is maximal is guaranteed by Invariant 1. Since
no vertex at level 1 is free, all free vertices have to be at level 0. Since no vertex
at level 0 has a free neighbour at level 0, there is no edge that we could add to
the matching, that would increase its size. The matching is therefore maximal
and a 2-approximate maximum matching.

A key concept of the presented algorithm in order to reduce time complexity is to
settle vertices u, that have small Ou using the naive approach and settling those
with large Ou in a randomized manner. In this particular case the threshold
between small and large is

√
n. This approach reduces the costs of settling

a vertex naively to O(
√
n). However if we examine the procedure Random-

Settle, we can easily see, that it is of cost O(n). In the particular case where an
edge at level 1 is removed, the vertex u on which Random-Settle is performed
may own up to n edges. If further none of these edges other endpoints is at
level 1, then we will not remove any edges from the set of edges owned by u.
The loop in line 3 in Figure 1 will therefore run for Ou = n times.

Baswana, Gupta and Sen present a sophisticated analysis of their algorithm
in order to prove that it achieves amortized runtime of O(

√
n). Reproducing

their analysis would go beyond the scope of this work. Please refer to their
paper [17] for detailed examination of the runtime.

4.4 Deterministic Algorithm by Neiman and Solomon

Unlike Baswana, Gupta and Sen in [17], whose algorithm is randomized, Neiman
and Solomon [35] show a deterministic algorithm for maintaining a maximal
matching in a dynamic graph. Their approach guarantees, that the matching
calculated is a 3/2-approximate maximum matching and that update time is
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Figure 2: Illustration of Example 4.4.1

of O(
√
m) in worst case, where m denotes the number of edges present in the

graph in the moment of the update.

4.4.1 Edge insertion

As mentioned earlier, any matching without augmenting paths of length at
most 2k − 3 is a (k/(k − 1))-approximate maximum matching, meaning that
the matching contains at least (k− 1)/k fraction of the matching number ν(G).
Remember that the matching number is the size of any maximum matching.
Therefore a 3/2-approximate matching, as Neiman and Solomon guarantee it,
is free of any augmenting paths of length at most 3, which follows from setting
k = 3 for the above equations.

In order to guarantee the approximation of the matching, we have to as-
sure already after each insertion step, that no augmenting path of length 3 is
present. The earlier mentioned, naive approach does only exclude the presence
of augmenting paths of length 1, which is the equivalent to assuring that the
matching is maximal. Consider the following example illustrated in Figure 2 for
a more detailed explanation.

Example 4.4.1. Our dynamic graph G in this minimal example consists of
V = {u, v, w, x} and the dynamic edge set E = (E0) with E0 = {} on which we
apply the sequence S = ((1, v, w), (1, u, v), (1, w, x)). Note that our matching in
the beginning is empty, therefore M0 = {}. Using the naive approach applying
(1, v, w) to the graph, where the 1 signs that we add the edge in this step, results
in the matching M1 = {(v, w)}, since both vertices were free. If we now apply
the next two sequence steps, the naive approach will not match any further edges,
since for (1, u, v) v is already matched, and for (1, w, x) w is already matched.
Therefore the matching after applying the last sequence step is M3 = {(v, w)}. It
is easy to see, that we also have created an augmenting path of length 3, starting
at vertex u and ending on x.

Neiman and Solomon address this issue by scanning the surroundings of any
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edge, that cannot be simply added to the matching for the reason that one
endpoint of the edge is already matched. More specifically, if an edge (u, v)
cannot be added to the matching, because e.g. u is already matched, we scan
the neighbours of the mate of u, which we call u′ = mate(u), for a free vertex x.
By providing appropriate data structures this can be achieved in O(

√
n) time,

which we will examine further in Section 4.4.4. If such a free vertex exists, we
have found an augmenting path of length 3, which we augment. This increases
the matching size by one. Further an edge insertion, where both endpoints are
free, is processed as we already know, namely by simply adding this edge to the
matching. Although detecting a vertex as free can be achieved in O(1) time,
matching an edge however entails updating several data structures, which takes
O(
√
n+m) time as we will explain in a bit (see Section 4.4.4). An edge with

both endpoints matched does not entail any further processing than the one
needed to detect them as unfree. Reconsider the earlier Example 4.4.1, but this
time using Neiman and Solomons approach to update the matching.

Example 4.4.2. As before let the dynamic graph be G = (V, E) = (V, (E0)) =
({u, v, w, x}, ({})) and the sequence S = ((1, v, w), (1, u, v), (1, w, x)). We now
apply S on G, where i denotes the step and at each step we apply Si.

i=0: Since for the first step M0 = {} and therefore v, w /∈ M0 apply, the first
edge (v, w) is added directly to the matching.

i=1: In the next step, we add (u, v) to G. Since v is already matched, we check
the surroundings of mate(v) for a free neighbour, however there exists none
because the only neighbours of v are u, which is v’s mate, and w, which is
the other endpoint of the just added edge.

i=2: In the last step we add (w, x). Again one endpoint is free, namely x,
and the other one, w, is already matched. We scan the surroundings of
v = mate(w) and detect u as free neighbour of v. Therefore we have
found an augmenting path starting at x and ending at u. By inverting the
augmenting path we receive the matching M3 = {(u, v), (w, x)}.

Note that for this particular example the matching M3 is a perfect maximum
matching. We call a matching perfect if there is exists no free vertex.

4.4.2 Edge Deletion

As mentioned in Section 4.1.2 the process of edge deletion may create new
augmenting paths of length 1, which are simply edges with two free endpoints,
but moreover may also create other augmenting paths of arbitrary length. In
oder to tackle the augmenting paths of length 1, the algorithm from Neiman
and Solomon checks for both freed vertices whether they have free neighbours
and if so matches the freed vertices with those free neighbours. This is done in
O(
√
m) time. We examine this improvement in runtime over the naive approach

with runtime O(n) more thoroughly in Section 4.4.4.
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We now focus on guaranteeing that no augmenting paths of length at most 3
are present in the graph. First we will explain how augmenting paths of length
3 can rise from an edge deletion using the following example.

Example 4.4.3. Let G be a dynamic graph with V = {u, v, w, x, y} and E =
{E0}, where E0 = {(u, v), (v, w), (w, x), (x, y)} and let M0 = {(u, v), (w, x)}.
Note that this graph and the respective matching can be easily obtained from
applying the sequence R = ((1, u, v), (1, w, x), (1, v, w), (1, x, y)) to an empty dy-
namic graph G′ = (V, ({})).

We now apply a single sequence step S0 = (0, u, v)) to the dynamic graph G.
Removing (u, v) from the graph entails removing the edge also from the match-
ing. This leaves the node u free, but isolated, wherefore it can not be matched
again. v at the other hand is then starting point to an augmenting path of
length 3, which ends at the free node y. Note that the matching M1 = {(v, w)}
is maximal, but only a 2-approximate to a maximum matching.

Neiman and Solomon approach this by checking both freed vertices u and v, if
they are starting points to augmenting paths. This however does only happen,
if the vertex degree is not more than a threshold of

√
2m, where m denotes

the amount of edges present in the graph at the moment of the update. For
simplicity we will explain the further behaviour of the algorithm for the node
u, the processing for v is anyhow the same. Finding an augmenting path is
done by scanning through all neighbours w of u and checking if mate(w) has a
free neighbour. Naively this would take O(min(n,m)) time, since the runtime
complexity of checking all neighbours is dominated by the vertex degree. How-
ever as we mentioned previously, this approach is only taken for vertices with
a degree less than

√
2m, time complexity is therefore reduced to O(

√
2m). The

alternative behaviour will be explained subsequently. Now if an augmenting
path has been found, we can invert it in O(log n) time (see Section 4.4.4), hence
the update time taken from this routine is O(

√
m).

For vertices with degree greater than
√

2m, we find a surrogate z for u
with degree of at most

√
2m who is the mate of a neighbour of u. We find

such a surrogate by scanning linear through the neighbours of u, retrieving
z = mate(w), w ∈ N(u), where N(u) denotes the set of neighbours of u, and
then checking if deg(z) ≤

√
2m. Neiman and Solomon claim, that finding such

a surrogate z is done in at most
√

2m steps, since otherwise the sum of degrees
in the graph would be more than

√
2m ·

√
2m = 2m, which is impossible. Now

that a surrogate vertex z is found, we unmatch the edge (w, z), match (u,w)
and handle z then just as u and v were handled before. Since it is guaranteed,
that deg z <

√
2m, an infinite loop can be foreclosed.

4.4.3 Approximation

As we tried to outline throughout the section, the goal of the algorithm is to
maintain a maximal matching that is free from augmenting paths of length at
most 3. According to [27], this approach guarantees that the matching main-
tained is a 3/2-approximate maximum matching.
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4.4.4 Complexity

In order to bound runtime complexity and guarantee deterministic behaviour,
Neiman and Solomon use and maintain the following data structures.

• The matching M is saved in an AVL-tree which suppports insertion and
deletion in O(log n) time.

• For each vertex x ∈ V an AVL-tree N(x) is maintained, that holds all
neighbours of x.

• A custom data structure F (x) for each vertex x ∈ V, that contains all free
neighbours of x and supports insertion, deletion and querying, if a free
neighbour exists, in O(1) time and further allows retrieving a free node in
O(
√
n) time.

• Finally an addressable maximum heap Fmax, which contains all free vetices
indexed by their degree. This data structure supports insertion, deletion
and updating keys in O(log n) time, as well retrieving the vertex with
highest degree in O(1) time.

As mentioned earlier, detecting an augmenting path or detecting free vertices
can be achieved in O(

√
n) or O(1) time. However matching an edge is not as

trivial as it might appear as it does entail updates on the data structure F (w)
for all w ∈ N(x) for all x ∈ {u, v}. Naively this would mean update costs of
O(deg(u) + deg(v)) time, which is O(n), since the maximum degree for a vertex
in a simple graph is n−1, where n. In order to bound this update time, Neiman
and Solomon introduce two invariants, that state that:

Invariant 4. All free vertices have degree at most
√

2n+ 2m.

Invariant 5. All vertices, that became free in round i have degree at most
√
m.

The handling of Invariant 5 has been already introduced, but implicitly. The
action of finding a surrogate z with deg(z) ≤

√
2m for a freed vertex u with

deg(u) >
√

2m, where u remains matched by matching the edge (u,mate(z)),
guarantees that any vertex freed in round i has degree not more than

√
2m.

Invariant 4 however has to be handled explicitly by identifying problematic
vertices, that are close to violate Invariant 4. They call a vertex problematic,
if it is free and its degree exceeds

√
2m. Neiman and Solomon prove, that it is

sufficient to handle one vertex per sequence step additionally to the two vertices,
which are already handled by being involved in the performed edge update.
This one vertex is the vertex with maximal degree from all free vertices, which
can be obtained from the maximum heap Fmax in O(log n) time (including
removing this vertex from the heap as well as restoring the heap condition).
This problematic vertex x is then handled like a vertex u of a freed edge (u, v)
with deg(u) >

√
2m is handled. This is, we find a surrogate z for x, where

z = mate(y), with y ∈ N(x), unmatch (z, y) in order to be able to match (x, y)
and let the surrogate vertex z possibly become free. This however could create
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new augmenting paths of length 3 which is why we then call the same procedure,
which we use to find augmenting paths from a freed vertex after deletion of a
matched edge, to assure that no such augmenting path exists.
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5 Experimental Evaluation

In this section we present how we evaluated the implemented algorithms experi-
mentally and what results we gathered. Our tests were performed on real-world
graphs taken from the KONECT database [29]. Since unfortunately, there are
only few fully dynamic graphs available on KONECT, we also present methods,
that we used to create fully dynamic sequences based upon static or incremen-
tal dynamic real-world graphs. We evaluate runtime and matching quality of
the different algorithms in comparison to each other but also in comparison to
the theoretically elaborated upper and lower bounds for runtime and matching
quality respectively.

5.1 Implementation and Environment

In order to evaluate the previously presented algorithms experimentally, we
implemented them in C++11 using g++ version 5.5.0 as compiler. As a base
for writing the code we used the KaHIP project [40]. Unfortunately this project
cannot be seen as an extension to KaHIP. The whole code is available at GitHub1

and is licensed under GPLv3.02.
Our experiments consisted of running different sequences, which will be fur-

ther described in Section 5.2.2 & 5.3. The sequences were processed by the
different algorithms listed in Table 2 and data about time taken per update,
graph edge cardinality, matching edge cardinality, average vertex degree and
average vertex degree of matched vertices was gathered all r steps, where r is a
custom parameter. In order to avoid corruption of data, especially the running
time, caused by external events on the test machine, every experiment was run
several times and the runtime was averaged. Because of the randomized nature
of some of the algorithms, we also averaged the matching sizes compute in each
run.

As a benchmark we used the Global Path Algorithm [30], [39] for maximal
matching in static graphs to calculate the matchings for the static instances Gi
of the dynamic graph G at the points i in time, where we also gathered the
above mentioned data.

As a test machine we used a system running Ubuntu 18.04.1 LTS on 4 Intel
Xeon cores with 2.20GHz, with 16GB RAM and 100GB disc space. Execution
of experiments was done using gnu screen [44] sessions and also using gnu

parallel [43] in order to execute several sequential experiments in parallel.
This however turned out to be a problem for very big input sequences (about
10M steps), causing memory issues. Regarding the exhaustive use of RAM, we
would like to mention, that we could not find any memory leaks using valgrind

[36] on our test programs.

1https://github.com/ripaul/dynamic_matching
2https://www.gnu.org/licenses/gpl-3.0.html
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5.2 Input Graphs and Sequences

We present some different approaches used to create fully dynamic sequences
from static graphs. Further we give an overview about the real-world graph
instances from which we created dynamic sequences in order to run experiments.

5.2.1 Creating Dynamic Sequences

We used several graphs from the Koblenz network collection (KONECT ) [29]
as test data. Unfortunately only few of the provided graphs match our require-
ments of being dynamic, undirected, loop-free and without parallel edges. Since
most of the graphs from KONECT are static, we used the following approaches
to create dynamic graphs from the static ones provided.

addition-only: As the name already implies this approach does construct the
static input graph by subsequently adding the edges of the static graph to the
dynamic one in order of appearance. If the input graph provides time stamps
as some of the KONECT graphs do, the edges are first sorted by time stamp
and then added. The maximal size of such a sequence is therefore the size of
the input sequence. Note that any unprocessed KONECT graph can be seen as
a sequence.

random-step: Before a new sequence step is randomly set to either be an edge
insertion or an edge deletion. If it is an edge insertion the next edge in order
of appearance or if applicable sorted by time stamps is added to the sequence.
Furthermore we maintain an array that contains all edges, that are present in
the graph after the recently added sequence step. Hence if the next step is to
be an edge deletion, an edge is randomly taken from the array of present edges
added as edge deletion to the sequence. Further it gets deleted from the array
of edges present in the graph. The maximal size of such a sequence is 2 · l, where
l is the length of the input sequence.

sliding-window: This approach takes an additional parameter ws to determine
the window size of the sliding window. For the first ws sequence steps edges
are added in order of appearance or sorted by time stamp. Note that we use
0-based counting. Afterwards every edge (u, v) added at step k is removed again
at step i = ws + k. For a input sequence of length l, that we convert into a
sliding-window sequence, no edges are left to be inserted at step 2 · l−ws. After
this point we continue by deconstructing the graph again by removing edges
for the next ws steps as before. The overall maximum length is then 2 · l for a
given input sequence of length l, further the window size ws must not exceed
the sequence length l.

simple-outage: As suggested from Bergamini and Meyerhenke [18] we created
sequences, where we remove a randomly chosen edge (u, v) from the graph and
then reinsert it in the next step. This approach simulates the outage of a network
connection. Similar to the sliding-window method, the first ws sequence steps

24



Name n ≈ |V | ≈ k Type Reference

dbpedia 4M 13.8M S [15], [1]
edit-enwiktionary 2.2M 9M T [12], [46]
edit-frwiktionary 1.9M 7.4M T [13], [46]
facebook-wosn-links 63.7k 817k T [45], [2]
flickr-growth 2.3M 33.1M T [32], [3]
link-dynamic-dewiki 2.2M 86.3M D [6], [37]
link-dynamic-frwiki 2.2M 59M D [7], [37]
link-dynamic-itwiki 1.2M 34.8M D [8], [37]
link-dynamic-nlwiki 1M 20M D [9], [37]
link-dynamic-plwiki 1M 25M D [10], [37]
link-dynamic-simplewiki 100k 1.6M D [11], [37]
livejournal-groupmemberships 13.9M 112.3M S [4], [33]
orkut-groupmemberships 14.3M 327M S [5], [33]

Table 1: Input graphs from KONECT. k denotes the sequence length. For all graphs,
except the dynamic ones, m = |E| = k is valid. Regarding the type, S stands for
a static graph instance, T for graphs with time stamps and D for real fully dynamic
graphs.

fill the graph up with edges. In the following phase we continue as already
mentioned by removing and reinserting a randomly chosen edge. This method
can be used to create arbitrary long sequences, however the window size ws
must not exceed the length of the input sequence l.

pooled-outage: As an extension to the simple-outage method this approach
does not delete and then reinsert only one edge, but right after the insertion
phase creates a pool of size ps by removing ps randomly selected edges. Af-
terwards we randomly decide for each step whether an edge from the pool is
reinserted or another edge is deleted from the graph and therefore added to
the pool. The edge cardinality is then expected to be approximately ws − ps,
where ws is the parameter determining the window size. Like the simple-outage
method this approach can be used to create arbitrary long sequences, again the
parameter ws must not exceed the length of the input sequence l.

5.2.2 Input Graphs and Parameters

In Table 1 we list all graphs that we either used to create dynamic sequences
or that already were real dynamic graphs and could therefore be also processed
natively.

Because of the earlier mentioned problem of exhaustive memory usage, we
could not run our test programs on the full sized instances, but had to truncate
them. We did this by creating sequences with up to 250 thousand vertices and
about 8 million sequence steps.

The algorithms by Baswana, Gupta and Sen and Neiman and Solomon use
thresholds to determine between low and high degree vertices. In order to test
the behaviour of the algorithms for a dense dynamic graph, we also created
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Algorithm Abbreviation ε

Baswana, Gupta and Sen bgs -
Naive naive -
Neiman and Solomon ns -
Random Walk rw0.5 0.5

rw0.1 0.1
rw0.01 0.01

max-random-walk mrw0.5 0.5
mrw0.1 0.1
mrw0.01 0.01√

m-random-walk mrw√
m -

low-degree-settle lds0.5 0.5
lds0.1 0.1
lds0.01 0.01

extended-naive en0.5 0.5
en0.1 0.1
en0.01 0.01

Table 2: Algorithms and respective parametrization tested throughout the experiments.

sequences using the pooled-outage approach with only up to 5000 vertices but
up to 6.25 million edges present in the graph.

The random walk algorithm as well as its variants 1,3 and 4 take a pa-
rameter ε to determine the maximal length of the random walk k = 1/ε. We
tested the random walk algorithm and each of the mentioned variants with
the following three different ε = 0.5, 0.1, 0.01, which results in maximal length
k = 2, 10, 100 respectively. An overview about all algorithms tested during
experiments is given in Thable 2.

5.3 Results

In this section we present our results from running the algorithms presented in
Section 4 on different sequences. Our main interest lies in the runtime and the
matching size achieved by the different algorithms. The graphs used for creating
the fully dynamic sequences, that we used in our experiments, were all taken
from KONECT [29] and are listed in Table 1.

We performed our first experiments on sequences created using the sliding-
window and simple-outage approaches. However the results gathered from those
experiments appeared rather odd. Although some of these odd phenomenas
were caused by bugs in our testing software, we also concluded that the used
approaches are rather weak in order to simulate real dynamic graphs as they
always do alternating insertions and deletions, which is a quite predictable pat-
tern. As an improvement we switched to using the pooled-outage approach, as
it gives the whole sequence a more randomized structure.
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graph ≈ nG ≈ m̄G ≈ dG ≈ max(|M̄|) by ≈ min(t̄u) by

dbpedia 150k 185.8k 2.77 8777 ns 9 ms naive
enwikt 142.8k 305.3k 4.66 3762 ns 7.21 ms naive
frwikt 149.8k 318.3k 4.6 606 ns 5.83 ms naive
facebook 56.1k 501.2k 18.46 24209 mrw√m 11.81 ms naive

flickr 42.8k 463.6k 23.15 1845 ns 7.84 ms rw0.5
dewiki 60.3k 279.7k 10.14 8090 ns 8.38 ms naive
frwiki 65.9k 337.9k 11 15377 ns 9.9 ms naive
itwiki 71.5k 367.1k 10.94 17500 mrw√m 10.76 ms naive

nlwiki 62.8k 335.9k 11.34 17581 ns 9.81 ms naive
plwiki 49.6k 336k 14.44 13723 ns 9.76 ms naive
simplewiki 48.9k 251.7k 11.02 15514 ns 9.33 ms naive
livejournal 150k 500.6k 7.48 8276 ns 8.62 ms naive
orkut 112.7k 501k 9.69 20059 ns 10.19 ms naive

Table 3: Properties and results of pooled-outage sequences. mG denotes average amount
of edges present throughout the sequence, dG denotes the average degree throughout the
sequence.

5.3.1 Experiments on Pooled-Outage Sequences

As we stated before, we created pooled-outage sequences for our further tests
from the graphs in Table 1 with up to 150k vertices, up to 600k edges present
in the graph and approximately 8 million sequence steps. All of these sequences
were processed by all algorithms from Table 2. As mentioned in Section 5.2.2
the basic random walk algorithm as well as the max-random-walk, low-degree-
settle and extended-naive variants were run with three different parameters
ε = 0.5, 0.1, 0.01. In order to give a general overview we listed detailed proper-
ties of the sequences as well as the results from running all algorithms on the
according sequence in Table 3. Further we show the largest average matching
size max(|M̄ |) achieved and the best average update time min(t̄u) achieved as
well as the corresponding algorithms. In Figure 3 we plotted the distribution of
the results computed from the sequences from Table 3. Every data point in this
plot represents the result computed by an algorithm on a particular sequence.
The coordinates (x, y) of a data point in the plot are computed as follows.

Let i be a particular experiment, then

x =
min(t̄ui)

t̄ui

, y =
|M̄i|

max(|M̄i|)
.

The large circles mark the average quality of the respective algorithm, the
diameter of the circle represents to the variance of all results computed by the
algorithm.

As a main result we observed that the naive algorithm outperforms all other al-
gorithms in terms of runtime, as one can easily see in Table 3. This is rather odd
since theoretically speaking the naive algorithm has worse runtime complexity
than the algorithms by Baswana, Gupta and Sen and Neiman and Solomon.
However the more sophisticated algorithms maintain additional data strucutes,
which of course takes additional time. The naive algorithm on the other hand is
very light-weight in comparison and does not need any additional data structure
apart from those needed to store the graph and the matching.

If we take a look at the average degrees of the sequences, we can see that they
are quite low with the maximal average degree being only 23.15 ≈ n

1848 . This
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Figure 3: Distribution of all experiment results on sequences from Table 3. Matching
size and runtime are relative to the respective best result, large circle represent average
quality and variance of results of the respective algorithm.

may be a cause why the naive algorithm performs so well, since its expected
runtime at any point in time i is O(d(Gi)), where d(Gi) denotes the average
vertex degree for the graph Gi. As already mentioned earlier, Baswana, Gupta
and Sen and Neiman and Solomon use thresholds to distinguish low degree ver-
tices from high degree vertices. These thresholds are crucial for the theoretical
runtime complexity presented by the authors. The algorithms should perform
best in comparison to the naive algorithm when many vertices exceed these
thresholds because then O(

√
m+ n) < O(d(Gi)) (for Neiman and Solomon)

and O(
√
n) < O(d(Gi)) (for Baswana, Gupta and Sen) become more likely.

Deduced from this observation we performed further experiments, where we
tried to achieve particularly high average vertex degrees. We present the results
later in the paper in Section 5.3.3.

Another interesting observation is the particular bad performance of the basic
random walk algorithm with ε = 0.5 in terms of matching size in Figure 3.
Although the algorithm is the second fastest, the matching size is also the worst
among all algorithms. This fact can be explained by the issue, that the matching
maintained by the basic random walk algorithm is not maximal, as we already
examined in Section 4.2.1 and Example 4.2.1. We see, that the matching size
of the random walk algorithm increases with the length of the random walk
k = 1/ε, however we can also clearly see, that it always performs worse than any
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(a) |M | = 2 (b) |M | = 2 (c) |M | = 3

Figure 4: In (a) u was the endpoint of a deleted matched edge, wherefore it remains
free right after the edge deletion. In (b) we see a possible outcome of random walk
variant 1, in (c) the outcome of variant 4 for the same scenario. Matched edges are
indicated as bold line.

of the random walk variants, which guarantee to maintain a maximal matching.
From the last observation follows also, that the attempt of improving the

matching quality made by the random walk variants is quite successful. We can
see in the scatter plot in Figure 3 that the max-random-walk variant, which
extends the basic random walk algorithm by settling the last vertex naively,
does always return a larger average matching size. However the extended-naive
does return even better results. A random walk performed by the max-random-
walk algorithm always carries the risk, that the vertex u, on which the random
walk was started, could have been settled with some neighbour v but is instead
matched with a vertex w, that was already matched and was therefore freed.
In Figure 4a we illustrated this initial scenario. If the last vertex z of such a
random walk remains free, because it has no free neighbour, the matching size
remains the same. Further such a random walk creates a new augmenting path
starting at its last vertex z and ending at the free neighbour v of the vertex u,
where the random walk started (see Figure 4b). The extended-naive algorithm
tries to match the freed vertices of a removed matched edge naively and only if a
vertex could not be matched with some new mate, a random walk is performed
on that vertex. By doing so, it reduces the number of previously mentioned
random walks, that don’t increase the matching size and therefore anticipates
the creation of the mentioned augmenting path. The result for our illustrated
scenario can be seen in Figure 4c. The extended-naive algorithm scans through
the neighbours of u, finds v as a free neighbour and therefore matches the edge
(u, v).

Regarding the particular good runtime of the naive algorithm in Figure 3 we
can assume that performing a naive settle is averagely achieved faster than a
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Figure 5: Matching size results and average matching size from random walk algorithms
in dependence of length of the random walk k.

random walk, at least on the particular test graphs. This explains the runtime
improvement of the extended-naive variant over the max-random-walk variant,
since extended-naive performs less random walks than max-random-walk.

Although quite expectable we find it noteworthy that increasing the length
of the random walks of the different random walk algorithms does result in
an improved matching size. This indicates that the declared goal of finding
augmenting paths of arbitrary length l < k in order to increase the matching
size is quite successful. In Figure 5 we visualized the matching size and average
matching size of the random walk algorithm results as well as the respective ε
used to achieve those results. We expect the matching quality to increase with
smaller ε, since a high maximal random walk length does give the chance of
finding more augmenting paths. Obviously an arbitrary random walk of length
k cannot detect an augmenting path of length l = k + 1. As we can see, with
increasing length of the random walk the average matching quality converges
asymptotically, most probably towards the size of the maximum matching.

However this improvement comes at the cost of increased update time per
sequence step as we can deduce from Figure 3. We raise the question, if we can
determine some ε experimentally for which further decrease, and hence increase
of the random walk length, does not improve the matching size significantly. In
Section 5.3.4 we peformed further experiments where we ran the random walk
algorithms with a variety of different ε in order to answer the raised question.
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Figure 6: Average matching size over time for the dewiki sequence from Table 3. Each
algorithm was run 5 times, results were averaged. Neiman-Solomon and Baswana-
Gupta-Sen are highlighted.

As stated in Table 3 and observable in Figure 3 the algorithm by Neiman and
Solomon does averagely compute the best matching sizes for the given test
graphs. This is most probably because of the fact, that it is the only algorithm
of the ones we tested, that guarantees that no augmenting path of length at
most 3 exists. Note that all other algorithms do only guarantee the matching
to be a 2-approximate maximum matching and therefore to be free of trivial
augmenting paths of length 1.

In Figure 6 we plotted the matching size per sequence step for the experiment
on the dewiki sequence from Table 3. This figure shows a very common result,
that we achieved from running our algorithms on the pooled-outage sequences
described in Section 2.2. For the first 600k steps we perform only additions, then
for a very short subsequence of 60k steps we perform only deletions in order to
create the pool, afterwards we start doing insertions and deletions randomly,
either from the pool into the graph or the other way around.

A noteworthy phenomena we would like to mention is the gap between the
matching size calculated by the Neiman-Solomon algorithm and all other algo-
rithms. As we already mentioned, the Neiman-Solomon algorithm is the only
one to assure the absence of augmenting paths of length at most 3 and there-
fore guaranteeing a 3/2-approximate maximum matching. This obviously has
to hold for a pure incremental sequence as well as for a fully dynamic sequence.
The gap between the result from the Neiman-Solomon algorithm and the other
algorithms indicates that this additional effort does have a significant impact
on the matching quality.

In contrary almost all the other algorithms, except Baswana, Gupta and Sen,
do handle edge insertions in the naive manner described in Section 4.1.1. This
does guarantee us a maximal matching and therefore 2-approximate maximum
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cardinality matching in O(1) time. This naive approach works deterministically,
which is the reason for the exact similarity of the result of all random walk
algorithms as well as the naive algorithm for the pure incremental phase.

By having a look to the close-up in Figure 6, we can see that the result
of Baswana, Gupta and Sen does improve slightly over the result of the naive
algorithm already during the pure incremental phase. This can be explained
by recalling Invariant 2, which states, that every vertex at level 0 owns less
then

√
n edges at any moment of time. Naturally the set of owned edges can

increase when new edges are inserted in the graph and therefore also exceed√
n. If this threshold is exceeded, the algorithm fixes the issue by moving the

dirty vertex, which violates the invariant, to level 1, which again is done by
performing the routine Random-Settle (see Figure 1) on it. As we examined
in Section 4.3.4, calling Random-Settle can detect augmenting paths up to
length 3 and augment them. This results in an increased matching size over the
naive insertion process.

Another observation worth remarking is the sudden change in matching quality
for all algorithms except Neiman-Solomon after the pure incremental phase of
the pooled-outage sequence at about 600k steps. On the one hand we have
the random walk algorithms that perform mainly a steep improvement in the
matching size as soon as the sequence starts to contain edge deletions as well
as edge insertions. We can observe that the slope increases with smaller ε and
therefore larger maximal random walk length k = 1

ε . On the other hand we have
the naive algorithm as well as the algorithm by Baswana, Gupta and Sen, which
improve more slowly, but grow to outperform the random walk algorithms with
ε ≥ 0.1.

Generally, we assume the improvement that sets in when first edge deletions
occur to be caused by the fact, that the naive insertion process which is used
by these algorithms can create maximal matchings with a high number of aug-
menting paths. Our assumption is encouraged by the previously mentioned gap
between Neiman-Solomon and the other algorithms, which is caused by the ex-
clusion of augmenting paths of length 3. In such a matching, where no effort has
been made to detect and exclude augmenting paths, the number of augmenting
paths present in the graph obviously increases. Generally speaking, the deletion
of a matched edge can lead to the scenario, where we delete the middle edge of
an augmenting path of length 3. The probability of occurence of such a scenario
increases with the number of augmenting paths present in the graph, which is,
as we presume, quite high if no effort has been made, to resolve any augment-
ing paths. In this case the naive algorithm as well as Baswana-Gupta-Sen and
the extended-naive algorithm do find new mates for the freed endpoints of the
deleted edge. This results in an improved matching size of |Mi+1| = |Mi|+ 1.

The random walks do have the capability of finding augmenting paths up
to length k = 1

ε , but since they try to detect these augmenting paths in a
randomized manner, there is obviously no guarantee, that an augmenting path
is found even if there exists one. However the steep slope in matching size
of the random walk algorithms does indicate, that the approach of performing
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random walks does indeed help to find more augmenting paths and therefore
to increase the matching size significantly. Further we can also see that more
augmenting paths are found with a larger random walk length k, which confirms
the observations from Figure 5 addressing the effect of the parameter ε on the
resulting matching quality.

We explain the slower increase in matching size for Baswana-Gupta-Sen and
the naive algorithm by the fact, that obviously the number cl≥3 of augmenting
paths with length l ≥ 3 is at least as high as the number cl=3 of augmenting
paths with length exactly 3, but more probably does exceed cl=3 significantly.
This alone does not suffice to explain the stronger increase of the random walk
algorithms over Baswana-Gupta-Sen and the naive one, since the random walk
algorithms do not necessarily have to find such an augmenting path even if
there exists one, whereas Baswana-Gupta-Sen and the naive algorithm will find
an augmenting path of length 3, if there exists one starting from the respectively
handled vertices. However the results of our experiments imply, that the prob-
ability of finding an augmenting path of arbitrary length l ≤ k with a random
walk of maximal length k is at this point indeed higher than the probability,
that a matched edge is deleted, which was the middle edge of an augmenting
path of length 3.

As we mentioned, we can see in Figure 6 Baswana-Gupta-Sen and the naive
algorithm outperform the random walk algorithms with ε ≥ 0.1 approximately
between the sequence steps 2 and 5 million. Throughout this subsequence we
have approximately the same amount of edge insertions and deletions. We
suspect the reason, that Baswana-Gupta-Sen and the naive algorithm start to
outperform the random walk algorithms to lay in the previously mentioned
probability of finding augmenting paths of arbitrary length l ≤ k. By finding
augmenting paths and resolving them, we reduce the number of free vertices by
two for every augmenting path resolved. This obviously reduces the probability
of finding an augmenting path, since there can be maximally nf,i/2 augmenting
paths being resolved, where we use nf,i to denote the number of free vertices in
the graph Gi. At some point the probability of finding further augmenting paths
of length l ≤ k using random walks of maximal length k does therefore seem
to get so low, that no further improvement in matching size can be observed,
although there might still exist free vertices. Although Baswana-Gupta-Sen and
the naive algorithm cannot detect augmenting paths of length l > 3, the de-
tection of an augmenting path with length 3 of which the middle edge is being
deleted is guaranteed, whereas the random walk algorithms can detect such an

augmenting path only with probability free(u)
deg(u) , where free(u) returns the num-

ber of free vertices in the neighbourhood of u. Apparently the probability to find
an augmenting path or a free neighbour for a freed vertex randomly is smaller
than the probability of deleting such a middle edge of an augmenting path with
decreasing nf , which causes the Baswana-Gupta-Sen and naive algorithm to
pass the random-walk algorithms with ε ≥ 0.1.
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Figure 7: Distribution of all experiment results on sequences from Table 3. Matching
size and runtime are relative to the respective best result, large circles represent average
quality and variance of results of the respective algorithm. Results from the static Global
Path Algorithm are included here.

5.3.2 Comparing With Static Algorithm GPA

Developing algorithms to dynamically update maximal matchings on a dynamic
graph is obviously motivated by the fact, that recomputing the matching after
each edge update from scratch seems to be a wasteful approach. Hence, we com-
pared our dynamic algorithms to the results computed by the GPA algorithm
proposed by Maue and Sanders in [30] by using the GPA implementation by
Sanders and Schulz [39].

We computed the matchings using the GPA algorithm on static snapshots of
the dynamic graphs used for testing the dynamic algorithms. These snapshots
were obtained after performing some fixed number of edge updates, which in
our case was 10k updates for most experiments.

In Figure 7 we present the results of the previous Section 5.3.1 but include
the static results in order to compare them. As we can see, its results rank in
quality as well as in update time below almost all dynamic algorithms. For the
update time this is quite expectable. Note that GPA was only performed every
10k sequence steps. Recomputing the matching using it after every step would
therefore take 10k times longer.

Regarding the matching sizes, the results in Figure 7 do not match the
expectations. GPA does compute a 1

2 -approximate maximum matching in the
worst case, but achieves better results empirically according to [30]. However all
our algorithms except Neiman-Solomon and the extended insertion algorithms
from Section 5.3.6 do also compute 1

2 -approximate maximum matchings, still
Figure 7 implies that the dynammic algorithms return better results regarding
matching quality. A reason for the averagely better performance of the dynamic
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Figure 8: Average matching size over time for the dewiki sequence from Table 3 with
the results from the static Global Path Algorithm included.

algorithms can be found when looking at the matching size growth of particular
experiments. In Figure 8 we show the result of the paritcular experiment on
the dewiki sequence from Table 3 with the GPA results included. We can see
that during the pure incremental phase the GPA algorithm is able to compute a
better matching than the algorithms using the naive insertion process. However
at the point, where the edge deletions set in, which we already identified as a
moment of high interest in Section 5.3.1, the dynamic algorithms start outper-
forming the static one. This reveals a key advantage of the dynamic algorithms,
as they have the ability to improve previously computed matchings, whereas
the static algorithm can not improve a previously computed matching since it
starts its computations from scratch each time. Further the particular shape of
our pooled-outage sequences favours some of our algorithms, since during the
long phase of mixed insertions and deletions, the dynamic algorithms do out-
run the static algorithm by steadly improving their results and also the average
matching size throughout the whole sequence is therefore shifted in there favour,
which gives us then the results as presented in Figure 7.

Overall this comparison outlines very clear, that recalculating the static
matching after every edge update is a wasteful approach. Further our experi-
ments imply, that the dynamic algorithms are able to compute larger matchings
than at least the GPA algorithm by steadily improving their results over time.

5.3.3 High Average Degree Sequences

We observed that the naive algorithm performs best on our test sequences re-
garding update time. This does not match the expected update times regarding
the theoretical time complexity of the respective algorithms. We suspect that
our test graphs might be too small and not dense enough to observe the theo-
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(a) Average update time for all algo-
rithms.

(b) Average update time for naive algo-
rithm only.

Figure 9: Average running time throughout five randomly created pooled-outage se-
quences with constant n = 1000 and increasing density.

retical disadvantage of the naive algorithm compared to Neiman-Solomon and
Baswana-Gupta-Sen. In order to examine the scalability of the algorithms re-
garding update time, we tried to create test sequences, which achieve a particular
high density.

In an undirected simple graph with n vertices, the maximum degree of a
single vertex can not exceed n − 1. The maximal number of edges in a simple

graph is therefore n(n−1)
2 . We tried creating pooled-outage sequences from the

real world graphs from the KONECT data base, but where not able to create
high average degree sequences due to the overall low average degree of the real
world graphs. We therefore switched to creating high average degree sequences
randomly with equally distributed edges. Our first experiments were run on
pooled-outage sequences with n = 1000, mi ≤ 125k, 250k, 375k, 499.5k edges
and 2 million sequence steps. This results in an expected average edge degree
dGi
≈ n

4 ,
n
2 ,

3n
4 , n− 1 = 250, 500, 750, 999 respectively.

In Figure 9a we show the average update time achieved by the different
algorithms and with growing number of edges present in the graph. A close
look at the naive algorithm as provided in Figure 9b shows, that the update
time of the naive algorithms grows with increasing density. Regarding Figure
9a the update time of the naive algorithms seems to be almost constant in
comparison with the update times of the other algorithms. Although an increase
in update time of the naive algorithm with increasing density was expected and
can be observed here, we also expected to see the naive algorithm scale worse
than Baswana-Gupta-Sen and Neiman-Solomon. Figure 9a show, that the two
algorithms scale worse than the naive algorithm in this particular scenario. We
conjecture, that this observations comes from the overall small problem size.
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(a) n = 2000 (b) n = 5000

Figure 10: Average running time throughout five randomly created pooled-outage se-
quences with constant n = 2000, 5000 respectively and increasing density. See Figure
9 for legend.

In order to further examine the runtime complexity of the algorithms, we
performed experiments on larger graphs with more vertices and comparable
average vertex degrees. We created pooled-outage sequences with n′ = 2000,
m′i ≤ 250k, 500k, 750k, 1000k, 1500k, 2000k and 4 to 6 million sequence steps
and also with n′′ = 5000, m′′i ≤ 625k, 1250k, 2500k, 6250k and 6 to 20 mil-
lion sequence steps. For the sequences with n′ = 2000, this resulted in se-
quences with an expected average degree of dG′i ≈

n′

8 ,
n′

4 ,
3n′

8 ,
n′

2 ,
3n′

4 , n
′ − 1 =

250, 500, 750, 1000, 1500, 1999 and for n′′ = 5000 in sequences with an expected
average degree of dG′′i ≈

n′′

20 ,
n′′

10 ,
n′′

5 ,
n′′

2 = 250, 500, 1000, 2500.
Figure 10 present the results on those larger test sequences. The results are

quite similar to the earlier results shown in Figure 9. Compared to Baswana-
Gupta-Sen and Neiman-Solomon, the naive algorithm seems to have constant
update time regardless of the average vertex degree. The closer look on the
update time of the naive algorithm reveals, that its update time actually grows
with increasing average vertex degree. However we observe the same phenomena
as in the previous experiments, where the algorithms by Baswana-Gupta-Sen
and Neiman-Solomon still scale worse than the naive algorithm.

Noteworthy are the peaks, that we can see in the update time of the naive
algorithm in Figure 9b and 10a. The update time does drop for average degrees
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(a) Growth of the relative matching size
per random walk length.

(b) Relative improvement of the matching
per additional random walk step.

Figure 11: Results of running the sequences from Table 3 with the random walk al-
gorithms low-degree-settle, extended-naive and max-random-walk multiple times
with increasing random walk lengths.

of more than n
2 , where n is the number of vertices in the graph. However an

high vertex degree does not necessarily mean, that the naive algorithm scans
through all neighbours. Instead the algorithm will break as soon as a free
neighbour which is to become the new mate of a freed vertex is found. The
probability of finding a free neighbour grows, if a free neighbours is added to
some vertex u, since the probability, that a randomly picked neighbour of u

is free, is p = free(u)
deg(u) , where free(u) denotes the number of free neighbours

of u. We conjecture, that a growing vertex degree deg(u) does increase the
probability of finding a free neighbour for u and that this increased probability
has a reducing effect on the update time. Apparently from some average vertex
degree on this effect outweighs the increased time complexity caused by a higher
vertex degree.

Further we can see a significant improvement in the achieved update time of
the random walk algorithms with increasing density. This is an interesting result
as runtime complexity of all random walk algorithms except the basic variant
is O(n). We presume that also this improvement comes from an increase in
probability of finding a free vertex in a high average degree graph.

5.3.4 Determining an Optimal ε

We observed that longer random walks result in an improved matching size,
however we also observed, that the length of the random walk is a key factor for
the running time of our random walk algorithms and further that the matching
size seems to grow asymptotically against some upper limit. The latter makes
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clearly sense as the size of any maximal matching can not exceed the size of
a maximum matching ν(G). Increasing the length of the random walk l = 1

ε
arbitrarily is not meaningful, as it increases the average update time of our
algorithms and further the relative improvement on the matching size achieved
by each additional step does drop with increasing l.

We performed extended experiments on the test sequences from Table 3 in
order to determine some ε up to which it makes sense to increase the length
of the random walk. In order to do so we determined three thresholds ϕ1 =
0.001, ϕ2 = 0.0005 and ϕ3 = 0.0001. Using these thresholds, we want to
examine from which point on the relative improvement achieved by an addi-
tional random walk step does drop below the defined thresholds. For these
experiments, we only ran the random walk algorithms max-random-walk,
low-degree-settle and extended-naive, each one parametrized with ε =
0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001.

In Figure 11a we present a figure quite similar to Figure 5, where we pre-
sented the relative matching size achieved with the respective random walk
length. The observations, that we already could do in the earlier figure, do
come out even clearer for this experiment. We can see that with increasing
random walk length l, the matching size does grow asymptotically against some
upper limit. For the first approximately 50 to 100 steps, we can easily see a
significant improvement in matching quality between the different random walk
lengths.

In Figure 11b we present the relative improvement in matching size for by
additional random walk step. Since we did not perform experiments for all
random walk lengths between 2 and 1000, we interpolated the results linearly.
Let ya and yb be the relative matching sizes achieved by random walks of length
a and b respectively with a < b, then

Y =
yb − ya
b− a

is the the relative improvement achieved per random walk step between the
lengths b and a. We can see that for most experiments the relative improve-
ment per additional step increases at least for the first 100 steps. Afterwards
the relative improvement drops. Further we also display the average relative
improvement for each of the three algorithms as well as the thresholds ϕ1, ϕ2

and ϕ3. We can see, that the average relative improvment of the extended-naive
algorithm does drop below ϕ1 after a random walk of approximately 20 steps,
the other two algorithms drop below ϕ1 at approximately 40 steps.

Obviously the relative improvement does not drop below the thresholds at
the same step for all experiments. In Figure 12 we present the random walk
length lϕ at which the relative improvement drops below the corresponding
threshold ϕ as well as the respective average vertex degree for every experiment
in a scatter plot.

The scatter plots imply, that there exists a correlation between the average
vertex degree of the input graph and the optimal random walk length. A first
assumption led us to examine if there exists a correlation between the average
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(a) ϕ1 = 0.001 (b) ϕ2 = 0.0005 (c) ϕ3 = 0.0001

Figure 12: Relation between the average vertex degree throughout the test sequence and
the optimal random walk length lϕ.

number of edges and/or the number of vertices in the graph, as this would have
indicated, that larger graphs require longer random walks in order to compute
a good matching. We could however find no such correlation when comparing
the optimal random walk length with the respective properties.

We conjecture, that the actual vertex degrees are not equally distributed
at the average vertex degree and further presume, that therefore in real-world
graphs regions of density above and also below the average vertex degree exist.
A random walk, that enters a dense region of the graph has a high probability
to stay in this dense area, as presumably most edges of a vertex in such a
region do lead to other vertices of the same region whereas only few edges lead
either to a sparse or another dense region. Thus a free vertex in such a region,
which is what we try to find by performing a random walk, is more likely to be
detected than in a sparse region. As in our pooled-outage test graphs the pool
of edges being inserted and removed is actually constant, there is presumably
only small change in the distribution of dense and sparse regions. Hence we
further presume, that after performing a long sequence of approximately equally
distributed insertions and deletions, most free vertices and therefore augmenting
paths within dense regions are found and resolved as presumably most random
walks will at some point enter a dense region and will most likely find a free
vertex in such a region as long as there exist some. Increasing the random
walk length increases the probability to find a way out of the dense region into
regions, where free vertices may still be found and hence the matching size be
further improved. This corresponds the results seen in 12, which imply that
with increasing average vertex degree of a dynamic graph, the length of the
random walk in order to further improve the matching size grows.

This theory however needs further examination. Performing similar exper-
iments on randomly generated graphs with nearly equally distributed edges
between the set of vertices might give further insight, as such graphs do not
have regions, which differ largely in density. Also tracking the average degree
per step of a large number of random walks could give further insight, since
we expect the degree per step to stay on an approximately high level above the
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graph ≈ nG ≈ m̄G ≈ dG ≈ max(|M̄|) by ≈ min(t̄u) by

dewiki 250k 545.9k 7.99 7124 ns 6.03 ms rw0.5
frwiki 250k 893.6k 11.19 20307 mrw√m 6.51 ms naive

simplewiki 100.3k 362.4k 11.38 19279 mrw√m 6.44 ms naive

Table 4: Properties and results of the real dynamic test sequences. m̄G denotes the
average amount of edges present throughout the sequence, dG denotes the average degree
throughout the sequence.

average vertex degree after entering a dense region. Further we could also try to
create heat maps indicating which regions of the graph have been visited more
often than others.

5.3.5 Experiments on Real Dynamic Graphs

Most of the graphs we used to create test sequences were static or only incre-
mental dynamic graphs, wherefore we used different approaches to create fully
dynamic sequences as we presented in Section 5.2.1. In this section we exam-
ine the results of our algorithms when ran on real-world fully dynamic graphs
and compare the results with the observations made when running them on the
rather synthetic pooled-outage sequences.

The only real-world fully dynamic graphs found on KONECT are a group of
graphs that represent the evolution of hyperlinks between articles on Wikipedia
of different languages. As we mentioned in Section 5.1, we encountered prob-
lems with exhaustive memory consumption, which caused some experiments
to fail. As a conclusion, we truncated the real input graphs in order to only
process the first 250k vertices and further only the first 8M sequence steps. Un-
fortunately, for the graphs itwiki, nlwiki and plwiki the experiments still failed,
wherefore we focused on the remaining experiments on the graphs dewiki, frwiki
and simplewiki.

Like the results for the pooled-outage sequences in Table 3 the results in
Table 4 show that the naive algorithm is mostly the fastest one. Unlike the
previous results the algorithm

√
m-random-walk does achieve most often the

best average matching quality.
In Figure 13a, 13b and 13c we plotted the amount of edges present in the

graph as well as the matching size throughout the sequence. A main difference
between the pooled-outage sequences and all of the real-world fully dynamic se-
quences presented here, lays in the fact that there exists no long and strictly dis-
tinguishable incremental phase in the beginning of the real dynamic sequences.
Instead first edge deletions start to happen already very soon in the sequence.
Throughout the whole sequence we have an overall increase of number of edges,
but always also edge deletions. Furthermore we can see peaks in the number of
edges after which short subsequences occur, in which edge deletions outweigh.

Regarding the matching size we can see that the gap in the beginning of the
sequence between the result of Neiman-Solomon and the other algorithms, that
we observed for pooled-outage sequences in Section 5.3.1, is not as noticeably as
before. In fact having a closer look at the initial phase, shows a still noticeable
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(a) Edge cardinality and matching size for dewiki throughout the sequence.

(b) Edge cardinality and matching size for frwiki throughout the sequence.

(c) Edge cardinality and matching size for simplewiki throughout the sequence.

Figure 13: Edge cardinality and matching size for real dynamic graphs.
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improvement of Neiman-Solomon against the other algorithms, however not as
distinctive as for the pooled-outage sequences.

This observation can be explained with the phenomena of matching size im-
provement caused by edge deletions, that we already described in Section 5.3.1.
The gap in matching size between Neiman-Solomon and the other matchings re-
sults from many unluckily matched edges, that cause the creation of augmenting
paths of length 3. With increasing length of the pure incremental subsequence,
the size of the gap increase, because more and more edges are matched unluck-
ily. As we concluded in Section 5.3.1, the edge deletion process of all algorithms
except Neiman-Solomon can lead to an improvement of the matching size by de-
tecting and resolving such augmenting paths of length 3. Since for our real-world
fully dynamic sequences edge insertions and deletions happen in a mixed ratio
from the beginning on, such unluckily matched edges may be detected shortly
after their creation, which results in a smaller gap between the matching size
from Neiman-Solomon and the other algorithms.

Another noteworthy difference to the results from Section 5.3.1 is the perfor-
mance of Baswana-Gupta-Sen and the naive algorithm. For the pooled-outage
sequences we observed the matching sizes of Baswana-Gupta-Sen and the naive
algorithm to grow remarkably and outperform random walk algorithms with
ε ≥ 0.1. This growth is only observable for the results of the dewiki sequence
in Figure 13a, although less distinctive. Further we cannot observe this kind of
growth for the results of the frwiki and simplewiki sequences.

Unlike the pooled-outage sequences the real dynamic sequences do not have
a long subsequence, where edge insertions and deletions happen almost equally
often. Instead we can see from Figure 13 that edge insertions overweigh the
deletions overall. As we stated before, edge insertions handled in the naive
manner described in Section 4.1.1 do have a probability to create augmenting
paths. Therefore it does not come to the situation, where so many augmenting
paths have been resolved, that the probability to find further, does grow so
small, it hardly occurs and has no more significant effect on growth of the
matching size, since new augmenting paths are most probably created constantly
throughout the sequence.

As a conclusion to this observation, we conjecture, that a long subsequence,
where edge insertions and deletions happen in an almost equal ratio, is a particu-
lar good scenario for the naive algorithm as well as the algorithm from Baswana,
Gupta and Sen [17].

5.3.6 Improving Edge Insertion

In Section 5.3.1 and 5.3.5 we discussed the phenomena, that the naive insertion
routine as performed by all algorithms except Neiman-Solomon (and actually
also Baswana-Gupta-Sen, though the change is quite small), seem to create a
lot of augmenting paths of length 3. Although this insertion routine guarantees
a maximal matching, we could observe that the edge deletion routines have a
significant effect on the matching size. In Figure 6 the mentioned effect is es-
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Insertion Deletion Abbreviation ε

naive-search naive ei-n-naive -
combined naive ei-n+rw-naive 0.5

0.1
0.05

random-walk extended-naive ei-rw-en 0.5
0.1
0.05

combined extended-naive ei-n+rw-en 0.5
0.1
0.05

Table 5: Algorithms which we obtained from combining an extended insertion routine
with the naive and extended-naive algorithms from Section 4.

pecially noticeable. Up until sequence step 600k, edges are only being inserted.
As soon as edge deletions set in, the matching size improves drastically. Mo-
tivated by these observations we tried to improve the insertion routines of our
algorithms by combining elements of the edge deletion routines.

The following two approaches apply only, when an edge can not be matched,
because at least one of its endpoints are already matched. If both vertices u, v
of an edge (u, v), that is being inserted, are free, we simply match the edge and
end the update.

naive-search: In Figure 2 we presented how the naive edge insertion process
creates augmenting paths of length 3. As a first improvement on the naive
insertion process we extended routine like Neiman and Solomon do an as we
explained in Example 4.4.2. Consider the scenario in Figure 2 at t = 2. If
we add the edge (w, x) to the graph, we cannot match it, since w is already
matched. We search for an augmenting path of length 3 by retrieving the
mate of w, which is v = mate(w) and then scanning through its neighbours
for a free vertex, which can become the new mate. In this example, we find
u, therefore match (u, v) and afterwards we are able to match (w, x). This
process eliminates the augmenting path of length 3. If no free neighbour of v
is available, we rematch (v, w). Further, if both vertices are already matched,
we perform this search for an augmenting path on both vertices w, x of the
edge (w, x) being inserted. Finally, when both endpoints have been handled,
we check if the vertices w, x are free and if so, we match them. Retrieving the
mate of w can be done in O(1) time, whereas scanning through the neighbours
of v = mate(w) does cost O(deg(v)) = O(n) time.

random-walk: As an alternative approach we tried to improve the insertion
process by adding random walks whenever an edge cannot be matched. Recon-
sider the example in Figure 2 at t = 2. Again we add the edge (w, x), but are
not able to match it, because w is already matched. We retrieve the mate of
w, which is v = mate(w), unmatch the edge (v, w) and then start our random
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Figure 14: Results from performing the extended insertion algorithms on the sequences
from Table 3. Previous results from Figure 3 included as reference.

walk from v. In this example, there is a 50% chance, that the random walk will
lead us back to w, which is obviously not a good solution. We handle this by
choosing a surrogate in case we randomly choose the vertex w, which is either
the subsequent vertex or the previous one. If no surrogate exists, we act as if
there was no vertex to randomly choose and end the random walk. After the
random walk has finished, we check if w and x are still free and if so, we match
them. As before we handle both endpoints w, x of the edge (w, x) being inserted
in the same way, if both are already matched.

We used the random walk as the extended-naive algorithm uses it, which
means, that at the last step of the random walk, we try to settle the last vertex
naively, if we couldn’t find a mate otherwise. This ensures, that the matching
maintained remains maximal.

combined: A third approach consisted of simply combining the two previously
mentioned approaches to improve the edge insertion routine. The naive-search
approach does find an augmenting path of length 3, if inserting the respective
edge will create one, however it is not capable to handle longer augmenting
paths. On the contrary the random-walk algorithm has no guarantee of really
finding any augmenting paths, but can detect augmenting paths of length l < 1

ε ,
where ε is the parameter determining the random walk length as introduced
in Section 4.2. Quite similar to the extended-naive algorithm, we combined
both approaches by first performing naive-search and, if naive-search was not
successful, also performing random-walk afterwards.

In order to test our algorithms, we implemented the insertion routines, combined
and parametrized them with our test algorithms from Section 4 as described in
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Figure 15: Close-up at the the results from performing the algorithms from Section 4
as well as the extended inseriton algorithms on the dewiki sequence from Table 3.

Table 5. We then let the algorithms run over the test sequences presented in
Table 3.

In Figure 14 we present the results of our extended insertion algorithms
on the sequences from Table 3. For better comparison, we also plotted the
previous results from Figure 3. We see in Figure 14 that all algorithms move
on the x-axis below a relative runtime of 0.2, which means the naive algorithm
achieves a speedup of at least 5 over the extended insertion algorithms. It is
quite obvious, that these algorithms are slower than the previously examined
ones, as the extended insertion process is more time consuming than the naive
inseriton process.

Regarding the size of the calculated matchings, the results do not match our
expectations, as we hoped to further improve the matching size by eliminating as
many augmenting paths as soon as possible. However in Figure 14 we observe,
that all extended insertion algorithms which perform a random walk, do achieve
worse results than most other algorithms, which have a comparable runtime. In
contrary the naive-search extended insertion algorithm ei-n-naive without any
conditional random walk does achieve the best results, not only among the
extended insertion algorithms, but also when compared to the Neiman-Solomon
algorithm. It achieves similarily good matching sizes, but is averagely a bit
faster than Neiman-Solomon. We presume, that this slight advance is rooted in
the relatively small problem size, for which we cannot observe the speedup, we
would expect from the Neiman-Solomon algorithm, which has worst-case time
complexity of O(

√
n+m).

We examined the bad performance of the approach of using random walks
in the edge insertion process in order to detect and resolve augmenting paths,
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by studying the results of particular experiments. In Figure 15 we present the
results of the extended insertion algorithms performed on the dewiki sequence
from Table 3. We see, that all extended insertion algorithms actually achieve the
task of computing better matchings than the naive insertion process during the
pure incremental subsequence. During the short subsequence, where the edge
pool is being created and we thus perform a pure decremental subsequence,
the matching size of all extended insertion algorithms drops again. This is
expectable up to some point, as probably many of the augmenting paths, which
the naive insertion process does create and which lead to the jumpy improvement
as described in Section 5.3.1, have been eliminated by the extended insertion.
However the matching size of some of the extended insertion algorithms using
random walks drop below the level, that the algorithms with naive insertion
reach after the jumpy improvement. As a cause we suspect, that performing
random walks during insertion and during deletion conflicts somehow. This
theory is fortified by the fact, that the extended insertion variants, which use a
naive-search, perform averagely better than the variants using only a random-
walk. However, we have no more precise theory by hand and this issue has to
be examined further.

Another odd observation is the decline in matching size from the extended
insertion algorithms with random-walk during the pure incremental phase. By
tracking the particular scenarios, in which such a decline happens, we found that
these declines are caused by the creation of augmenting paths. This happens,
when an edge being inserted has at least one matched endpoint. The random-
walk approach does try to match this edge at any cost, hence it will make its
endpoints free by unmatching the corresponding matched edges starting from
the unfree endpoints, match the newly inserted edge and start random walks
from the previous mates of the freed endpoints. If this random walk however
does not find an augmenting path, it will end on a free vertex, which it cannot
settle. In such a case, we have created a new augmenting path reaching from
the last vertex of the random walk to the freed previous mate of the endpoints
of our newly inserted edge.

There are however means to improve the random walk algorithms in order to
prevent such situations. For example we could compare the matching size before
and after performing the random walk and in case, we got a decline, undo the
random walk. Further, it might be also a profitable approach to use a random
walk similar to the one used in the low-degree-settle algorithm, which performs
naive searches on every vertex along the random walk, which has degree below
1
ε or maybe some other, more profitable vertex degree. Another interesting
variation could be creating an algorithm, that performs random walks only on
edge deletion and excludes augmenting paths of length 3 during insertion by
performing a naive-search, as random walks in order to handle edge deletions
turned out to be a profitable approach.
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6 Conclusion

In this thesis we presented different random walk-based algorithms for solving
dynamic maximal matching problems. We implemented these random walk
algorithms along a naive algorithm and two more sophisticated algorithms from
Neiman and Solomon [35] and Baswana, Gupta and Sen [17] in order to perform
an extensive experimental evaluation of all these algorithms.

As a result of our experiments, we have seen that the naive algorithm out-
performs all other algorithms in matters of runtime, computing also fairly good
results. We have not been able to observe the algorithms from Neiman, Solomon
or Baswana, Gupta and Sen achieve any speedup over the naive algorithm, al-
though they have better runtime complexity. We assume, that this phenomena
is due to the rather small problem size of the experiments we performed, which
had maximally up to 250k vertices and 800k edges.

Throughout most of our experiments, we have seen that Neiman-Solomon
computes the largest matchings and further we approved that this advantage
comes from guaranteeing there exists no augmenting paths of length 3. We
achieved approving this by extending the insertion process of the naive and
extended-naive algorithms described in this paper with different approaches
to search and resolve augmenting paths during edge insertion. All resulting
new algorithms achieved better performances for pure incremental edge update
sequences than the naive insertion process, but some approaches showed to drop
in performance below algorithms, that perform the naive insertion, as soon as
the sequence becomes fully dynamic. A naive algorithm combined with a naive
search for augmenting paths of length 3 at edge insertion was able to outperform
Neiman-Solomon in matters of times as well as sometines in matching size.

Further, we compared our results with the static Global Path Algorithm
[30], [39]. Most of our algorithms did averagely compute larger matchings for
the same input, however all algorithms showed to be able to compute a single
edge update dynamically way faster than the static algorithm. We therefore
approve experimentally, that maintaining a matching dynamically does give us
a speedup over computing the matching from scratch after every edge update.

In a detailed examination of the effect of the random walk length on matching
size, we discovered a correlation between the average vertex degree throughout
a dynamic graph and the optimal length of a random walk in order to achieve
good matching size.

6.1 Future Work

During the work on this thesis a lot of code has been created in order to perform
the mentioned and descibed experiments. This code might come in handy for
further research and turning it into valuable, publishable and reusable software
is therefore intended.

The detailed information we gathered especially about random walks moti-
vates further refinement, as on the one hand we showed, that random walks can
be a mean to detect augmenting paths and therefore improve matching qual-
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ity, on the other hand they come with different disadvantages. We presented
two algorithms, which improved the basic random walk idea significantly by
applying only small improvements. Further improvements might be achieved
likewise. As random walks are a well researched topic, there is most likely a lot
of literature to come in handy to further improve, analyse and evaluate them
in our context. Also we would like to combine the random walk ideas with the
more sophisticated algorithms from Baswana, Gupta and Sen, in order to try
to further improve them.

As we could not get so many real-world fully dynamic graphs from the
Koblenz network collection [29], we presented different approaches of creating
dynamic edge update sequences from static real-world graphs. We performed
most of our experiments using such an approach, which we called pooled-outage.
However the experiments, that we where able to perform on real-world fully dy-
namic graphs imply, that the approach we chose does not create real-world-like
sequences. Further we found that this issue has an impact especially on aver-
aged resutls, so it might be a valuable task to improve approaches to construct
more realistic dynamic graphs from static ones.

While working on this thesis, new results have been published by Kashyop
and Narayanaswamy [28], which present an algorithm for fully dynamic 3/2-
approximate maximum matching in O(sqrtn) update time. This algorithm is
basically a combination of the algorithm by Baswana, Gupta and Sen and the
deterministic search for an augmenting path of length 3 as Neiman and Solomon
present it and as we have applied to the naive and random walk algorithms. We
will implement and evaluate this algorithm as we did throughout this work.
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