
CluStRE: Streaming Graph Clustering
with Multi-Stage Refinement

Shai Dorian Peretz

March 14, 2025

4222895

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Referee:
Adil Chhabra

ii

Acknowledgments

First and foremost, I want to express my profound gratitude to Prof. Dr. Christian
Schulz for granting me the incredible opportunity to work on this project under his guid-
ance. I will always be grateful for the countless opportunities he has presented me
with throughout these years starting with the beginner’s research internship, and now
with the ability to continue this fascinating project as a student research assistant at the
Algorithm Engineering Group. I would also like to extend my sincere gratitude to Adil
Chhabra, whose guidance was invaluable. Knowing that I could always reach out to him at
any time with my questions gave me an incredible sense of confidence and direction. His
willingness to offer insights and help whenever needed made a significant difference, and I
cannot thank him enough for that.
Beyond academia, I owe the deepest thanks to my family, whose unwavering love and sac-
rifices have shaped me into the person I am today. Lastly, I sincerely appreciate all my
friends, who have stood by me through the various phases of my life, making this journey
all the more memorable.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, March 14, 2025

Shai Dorian Peretz

iii

iv

Abstract

Clustering a graph into disjoint communities is a crucial technique in data analysis for
evaluating interactions and similarities between entities within a dataset. In this work,
we propose a novel streaming graph clustering algorithm, CLUSTRE, that balances com-
putational efficiency with high-quality clustering using a multi-stage refinement scheme.
CLUSTRE processes the graph in a node-streaming setting, significantly reducing over-
all memory consumption while leveraging re-streaming and evolutionary heuristics to im-
prove solution quality. During streaming, CLUSTRE dynamically constructs a quotient
graph, capturing key structural properties of the original graph. This method allows for
efficient modularity-based optimizations for large graphs. CLUSTRE offers multiple con-
figurations, providing trade-offs between runtime, memory consumption, and clustering
quality, further highlighting its versatility. Our approach produces state-of-the-art results,
improving solution quality by more than 92%, while operating 1.36× faster and requiring
only 72.76% of the memory consumption compared to existing state-of-the-art streaming
methods. Furthermore, our strongest mode, CLUSTRE enhances solution quality by more
than 140%. Moreover, CLUSTRE achieves solution quality that is highly comparable to
in-memory clustering algorithms, reaching over 97% of the solution quality produced by
state-of-the-art in-memory algorithms such as LOUVAIN, effectively bridging the gap be-
tween streaming and in-memory clustering algorithms.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 Basic Concepts . 5
2.2 Graph Clustering . 5

2.2.1 Objective Functions . 6
2.3 Multilevel Scheme . 7
2.4 Evolutionary Algorithms . 7
2.5 Streaming Models . 8

3 Related Work 9
3.1 In-Memory Graph Clustering . 10

3.1.1 Global Clustering Algorithms . 10
3.1.2 Local Clustering Algorithms . 10
3.1.3 Multi-Level Clustering Algorithms 11
3.1.4 VieClus . 13

3.2 Streaming Graph Clustering . 15

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement 17
4.1 Overall Algorithm . 17
4.2 One-Pass Streaming with Modularity Gain Scoring 19
4.3 Modularity Refinement via Memetic Clustering 22
4.4 Modularity Refinement via Re-Streaming with Local Search 24

5 Experimental Evaluation 27
5.1 Hardware . 27
5.2 Methodology . 27

vii

Contents

5.3 Dataset . 30
5.4 Tuning Study . 30

5.4.1 Memetic Refinement Time Limit 32
5.4.2 Number of Re-streams . 35
5.4.3 Local Search Limit . 38
5.4.4 Maximum Number of Clusters . 42

5.5 CluStRE Performance Evaluation . 44
5.6 Comparison against State-of-the-Art . 46

5.6.1 Ground-Truth Communities Performance 52

6 Discussion 55
6.1 Conclusion . 55
6.2 Future Work . 56

A Appendix 57
A.1 Modularity Equivalence Proof . 57
A.2 vmax Tuning for Hollocou . 58
A.3 Further Results . 60

Abstract (German) 63

Bibliography 65

viii

CHAPTER 1
Introduction

1.1 Motivation

Graph clustering, also known as community detection, refers to the problem of identify-
ing densely connected regions of a graph to reveal structures and relationships in data.
Graph clustering has a wide range of applications, as systems and datasets with interacting
or coexisting entities can often be represented as graphs. Common applications for the
graph clustering problem include improving recommendation systems by clustering simi-
lar users or items together [48], detecting functional modules in Protein-Protein Interaction
(PPI) networks and grouping proteins with similar functions [45], image analysis and seg-
mentation [36], anomaly detection in cybersecurity [26], and analyzing the formation and
recruitment patterns of terrorist groups [54].
Since, in practical cases, the ground-truth communities of entities are not known, clustering
algorithms often assess clustering quality using various objective functions, with modular-
ity being among the most widely used [39]. Modularity quantifies clustering quality by
considering the density of the connections within communities and the connections be-
tween different communities, compared to what would be expected in a random network
while preserving expected node degrees [21, 40]. Therefore, to identify densely connected
regions of a graph, we optimize the clustering using modularity. However, it has been
shown that modularity optimization is strongly NP-complete [10]; thus, heuristic algo-
rithms are used in practice.
There exist many algorithms that tackle the graph clustering problem using modularity op-
timization, such as LOUVAIN [5] and VIECLUS [4]. These and other in-memory clustering
algorithms operate by storing the entire graph in memory. On the one hand, they achieve
high-quality results by leveraging complete global information, enabling high-quality deci-
sion making when assigning entities to clusters. On the other hand, they come with a major
drawback: high memory consumption, as the entire graph must be stored in memory. This
drawback is especially significant given the sizes of modern graphs used to represent vari-

1

1 Introduction

ous networks and systems. Most modern graphs are massive, exceeding millions of nodes
and billions of edges, making in-memory storage and clustering computations infeasible
due to their sheer size, often requiring hundreds of gigabytes of memory. Hence, there has
been a growing interest in graph clustering algorithms that scale well and require signifi-
cantly less memory. Reducing the memory consumption of clustering algorithms not only
addresses the challenge of computational feasibility but also enables clustering of large
graphs on small, cost-effective machines.
To tackle this problem, there has been a growing interest in streaming algorithms across
various fields and applications. Streaming algorithms provide a scalable alternative to in-
memory graph clustering algorithms. However, they typically sacrifice solution quality.
The idea behind streaming algorithms is that only a fraction of the graph is loaded into
memory at a time. Once a set of nodes and edges is loaded, the algorithm assigns the
nodes to specific clusters. Subsequently, the algorithm processes the next set of nodes and
edges while discarding the previously assigned set. This approach significantly reduces
the memory overhead compared to in-memory algorithms but often results in lower clus-
tering quality due to the lack of global graph knowledge when making decisions. While
streaming algorithms have been extensively studied for related problems such as the graph
partitioning problem [11, 16], the same level of attention has not been given to the graph
clustering problem. One of the few streaming graph clustering algorithms is proposed
by Hollocou et al. [25]. Hollocou et al. [25] iterate over the set of edges once, loading
only a single edge and its endpoints into memory before making a decision. However,
research on improving clustering quality through various techniques such as re-streaming
or multi-stage refinement to leverage partial global information is limited. These tech-
niques have been shown to deliver high-quality solutions, as seen in state-of-the-art re-
streaming [43] and buffered streaming [16] approaches for the similar partitioning prob-
lem, demonstrating their potential. Thus, various techniques can be utilized to develop a
streaming graph clustering algorithm that reduces memory consumption while minimizing
the compromise in solution quality.

1.2 Our Contribution

In this thesis, we propose a new streaming algorithm for the graph clustering problem. Our
algorithm achieves state-of-the-art solution quality, comparable to in-memory algorithms,
while drastically reducing memory consumption, requiring only a fraction of the memory
consumed by in-memory algorithms. More specifically:

1. We propose CLUSTRE, a streaming graph Clustering algorithm with multi-stage
refinement using Re-streaming and Evolutionary heuristics to leverage partial global
information. CLUSTRE is a node-processing streaming algorithm that dynamically
constructs a quotient graph, enabling refinement and modularity optimization on a
global scale.

2

1.3 Structure

2. We provide four configurations for CLUSTRE. Each configuration incorporates dif-
ferent refinement algorithms, offering a trade-off between runtime, memory con-
sumption, and solution quality.

3. Through experimental analysis, we demonstrate that the lightest mode, which con-
sumes the least memory among the four configurations, yields 92.50% higher solu-
tion quality, runs 1.36× faster, and requires only 72.76% of the memory compared to
the current state-of-the-art streaming graph clustering algorithm. Furthermore, using
our strongest mode, we improve solution quality by an average of 140% over the
current state-of-the-art streaming algorithm, thus setting a new benchmark.

4. We also show that CLUSTRE extracts ground-truth communities from real-world
networks more efficiently than the current state-of-the-art streaming algorithm. Our
lightest mode improves the Normalized Mutual Information (NMI) score by approx-
imately 20.04%, whereas our strongest mode achieves an improvement of about
39.65% over the current state-of-the-art.

1.3 Structure

The remainder of this thesis is organized as follows: Chapter 2 introduces basic concepts
and notation used throughout this thesis, including the formal definition of the graph clus-
tering problem and concepts related to the multi-level scheme, evolutionary algorithms,
and streaming approaches. Chapter 3 surveys related work, beginning with an overview of
in-memory graph clustering algorithms and different approaches used to balance runtime,
solution quality, and memory consumption. Additionally, we examine existing streaming
algorithms for the graph clustering problem. Chapter 4 presents our newly developed algo-
rithm, CLUSTRE, a streaming graph clustering algorithm that utilizes multi-stage refine-
ment. We begin by outlining the overall structure of the algorithm, followed by a detailed
discussion of our one-pass streaming algorithm for modularity optimization. Subsequently,
we explain the first refinement phase, consisting of an evolutionary in-memory algorithm
applied to the dynamically constructed quotient graph. Finally, we present our last refine-
ment phase, which incorporates re-streaming and local search to further optimize clustering
quality. In Chapter 5, we present the empirical results of CLUSTRE. We describe our ex-
perimental methodology and the dataset used, followed by a tuning experiment to evaluate
the effect of various parameters on different configurations of our algorithm. We then com-
pare CLUSTRE to other state-of-the-art clustering algorithms. Chapter 6 concludes by
summarizing our work and highlighting possibilities for future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

2.1 Basic Concepts

A graph G = (V,E) is a tuple defined by a set of vertices V , also known as nodes, and
a set of edges E ⊆ V × V . A weighted graph is further defined by a vertex weight
function c : V → R≥0 and an edge weight function ω : E → R≥0. The number of ver-
tices of a graph G is denoted by n = |V |, while m = |E| represents the total number of
edges. For an undirected graph, the presence of an edge (u, v) ∈ E implies the existence
of (v, u) ∈ E. The graph G is said to be simple if it does not contain multiple or self-loops.
An edge e = (u, v) is said to be incident on vertices u and v. The cost functions c and ω
can also be extended to sets, such that c(V ′) =

∑
v∈V ′ c(v) and ω(E ′) =

∑
e∈E′ ω(e).

The neighborhood of a vertex u is defined as N(u) = {v | (u, v) ∈ E}, and its de-
gree d(u) = |N(u)| is the total number of neighbors. The weighted degree of a vertex
is the sum of the weights of all its incident edges. The input graphs in this thesis are
unweighted and simple, i.e., ∀u ∈ V : c(u) = 1 and ∀e ∈ E : ω(e) = 1, with no mul-
tiple or self-loops. A graph S = (V ′, E ′) is a subgraph of G = (V,E) if and only if
V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ × V ′).

2.2 Graph Clustering

Given an undirected graph G = (V,E), the graph clustering problem seeks to cluster the
set of vertices V into natural blocks, also known as clusters, C1, C2, . . . , Ck with

1. C1 ∪ C2 ∪ · · · ∪ Ck = V

2. Ci ∩ Cj = ∅ ∀i ̸= j

such that the intra-cluster edge density is significantly higher than the inter-cluster edge
density, i.e. inter-cluster edge sparsity. C = (C1, C2, . . . , Ck) is called a clustering of G.

5

2 Fundamentals

A clustering is trivial if k = 1 or if each cluster Ci contains only a single element, also
known as a singleton. The set of intra-cluster edges is defined as E(C) := E∩(∪iCi×Ci),
while E\E(C) is the set of inter-cluster edges. m(C) := |E(C)| represents the intra-
cluster edge density and similarly, m(C) := |E\E(C)| represents inter-cluster edge
density. It is important to note that the number of clusters, k, is not provided in advance.

2.2.1 Objective Functions

To achieve the desired intra-cluster edge density and inter-cluster edge sparsity in a
clustering, several objective functions have been defined. One such naturally arising
objective function is coverage [9]. The coverage cov(C) of a graph clustering C is defined
as the ratio of all intra-cluster edges to the total number of edges in the graph.

cov(C) =
m(C)

m
(2.1)

Ideally, the higher the coverage value, the better the quality of the clustering C. At first
glance, this definition seems to capture the essence of a good clustering C quite well.
However, when used as an objective function to maximize, one quickly realizes that
coverage always reaches its maximum value of 1 when the clustering of a graph is the
trivial clustering where all vertices are assigned to the same cluster. Such a clustering, for
obvious reasons, is not useful.
To address this issue, the modularity equation [41] has been introduced. Modularity
evaluates the quality of a clustering by comparing the coverage of the resulting clustering
with the expected coverage of the same clustering applied to a graph with identical degree
distribution but randomized edges. Thus, the modularity objective function is defined as:

mod(C) = cov(C)− E[cov(C)] (2.2)

The expected coverage E[cov(C)] is defined as:

E[cov(C)] =
1

4m2

∑
c∈C

(
∑
v∈c

deg(v))2 (2.3)

Maximizing modularity in graph clustering has been shown to be NP-complete, without
an efficient approximation algorithm [10]. Although modularity addresses the issue of
the trivial clustering, by assigning it a quality score of 0, and captures the concept of
intra-cluster edge density and inter-cluster edge sparsity well, it is not without limita-
tions. One main issue that modularity faces is resolution limit [18]. A resolution limit
is a constraint in the objective function that hinders the accurate identification of smaller
communities within large graphs. The resolution limit in modularity arises, because the

6

2.3 Multilevel Scheme

expected coverage E[cov(C)] depends on the total number of edges in the graph. This
causes smaller communities to contribute less to the modularity score in large graphs. As
a result, modularity may overlook small communities and merge them into larger ones,
leading to scale-dependent clustering results.
Several modifications to modularity [23] and many other objective functions such as perfor-
mance [63], inter-cluster conductance [27], surprise [1], CPM [61], and map equation [49]
have been proposed, each with its own set of advantages and disadvantages. During this
thesis, we focus on the modularity objective function in equation 2.2, as it is a widely ac-
cepted quality function and has been the main objective function in many implementation
challenges such as the 10th DIMACS challenge [3].

2.3 Multilevel Scheme

As previously mentioned, graph clustering via modularity maximization is NP-complete.
Furthermore, most objective functions for the graph clustering problem have been shown
to be NP-hard to optimize and resilient for efficient approximations [2, 10]; hence, heuris-
tic algorithms are used in practice. One popular heuristic scheme, which has gained a lot
of traction for the graph clustering problem is the multilevel scheme. This approach can
be divided into three phases: the coarsening or contraction phase, the initial partitioning
phase, and the refinement or uncoarsening phase. In the coarsening phase, the graph G
is repeatedly reduced (contracted) to obtain smaller, i.e. coarser, graphs until no more re-
ductions can be applied or a certain threshold size is reached, at which point the graph is
referred to as the coarsest graph. Notably, the applied reductions preserve the structural
properties of the original graph G. As the name suggests, during the initial partitioning
phase, a clustering algorithm is applied to the coarsest graph to obtain an initial clustering.
Since the coarsest graph is relatively small, even computationally expensive algorithms can
efficiently compute a clustering. In the uncoarsening phase, the contractions of the coars-
est graph are recursively reversed until the original graph is reached. At each uncoarsening
level, a local search algorithm refines the clustering obtained at the coarsest level by opti-
mizing an objective function.

2.4 Evolutionary Algorithms

Evolutionary or memetic algorithms are heuristic-based algorithms that mimic natural evo-
lution, also known as survival of the fittest, to optimize solutions to a given problem. These
algorithms have seen much success for various optimization problems [4, 20]. Evolution-
ary algorithms consist of five key phases, initialization, selection, recombination, mutation,
and eviction. Each of these phases mimics an important step in natural evolution. First, in
the initialization phase, the algorithm creates an initial population P , a set of candidate
solutions to the given problem. Subsequently, the selection phase begins by selecting a

7

2 Fundamentals

set of parents, typically two individuals. There exist many methods to select the parents.
A widely used method is the tournament selection [38]. Tournament selection randomly
selects a subset s from the population P to compete with each other based on their fitness
values. The fittest individual from s is then chosen to be a parent. Once the desired number
of parents is selected, the recombination phase begins where, similar to nature, structural
attributes and features are taken from all the selected parents to create an offspring. During
the creation of the offspring, there is a probability pm [15] that a mutation occurs. In the
mutation phase, the offspring experiences a mutation, as in nature. The mutation phase
introduces more diversity into the population P , which is essential to obtain high-quality
results and escape from local optima. Finally, after creating a new offspring with a po-
tential mutation, the algorithm enters the eviction phase, where an individual is removed
from the population P . There are many eviction methods, but the most popular one is to
evict the least fit individual in terms of solution quality. This completes one round of the
evolutionary algorithm. Evolutionary algorithms operate when runtime constraints are not
a major concern, mimicking the natural evolution of the initial population to ultimately
obtain a high-quality solution.

2.5 Streaming Models

Streaming algorithms generally follow an iterative load-compute-store approach. Most
streaming algorithms adopt the one-pass model, where the vertices of the graph are pro-
cessed sequentially. In this model, each vertex and its neighbors are loaded into memory
one at a time. Then, a decision process permanently assigns the streamed vertex to a clus-
ter, based on the assignments of previously processed vertices. Other variations of the
one-pass streaming model exist, where instead of streaming vertices, individual edges and
their endpoints are simultaneously loaded into memory [25] one at a time. In this setting,
an endpoint is assigned to the cluster of the other endpoint, based on previously assigned
vertices. In general, many more streaming models exist, such as the buffered streaming
model [16], where instead of a single vertex, a set of vertices is loaded into memory at
once. However, in this thesis, we adopt the one-pass vertex streaming model to further
minimize memory consumption.

8

CHAPTER 3
Related Work

There has been a significant amount of research over the years on the graph clustering
problem. We refer the reader to [17, 24, 34, 67] for a more thorough examination of the
contributions to this field, which may include techniques and approaches that are not part
of this thesis. These approaches include distributed graph clustering frameworks such as
PREGEL [35] and TERAHAC [13], which utilize hierarchical agglomerative clustering tech-
niques. Furthermore, there has been a growing interest in recent years to explore the graph
clustering problem using deep learning and graph neural networks. We refer the reader
to [33, 58, 66] for a comprehensive analysis.
In this chapter, we first explore well-known in-memory graph clustering algorithms such as
SPECTRAL CLUSTERING [65], and the MARKOV CLUSTER PROCESS (MCL) [64]. Addi-
tionally, we examine more computationally efficient in-memory clustering algorithms, such
as LABEL PROPAGATION, first introduced by Raghavan et al. [46], and local search [5].
We then explore some multilevel schemes, as outlined in Section 2.3, such as the LOU-
VAIN [5] method and its refinement, the LEIDEN [60] algorithm. To conclude this section,
we analyze the state-of-the-art in-memory graph clustering algorithm, VIECLUS by Bie-
dermann et al. [4], which employs an evolutionary approach, as explained in Section 2.4.
Since the work in this thesis utilizes the VIECLUS algorithm, we use Section 3.1.4 to pro-
vide a detailed overview of VIECLUS.
Subsequently, we focus on existing streaming graph clustering algorithm, which is the
main focus of this thesis. Streaming algorithms have the main advantage of consum-
ing significantly less memory in comparison to in-memory algorithms due to the stream-
ing model, explained in Section 2.5, which ensures, that only a fraction of the graph is
stored in-memory at a time. The typical downside of streaming algorithms is that they
yield lower-quality solutions than in-memory graph clustering algorithms, due to their
lack of global graph knowledge.

9

3 Related Work

3.1 In-Memory Graph Clustering

3.1.1 Global Clustering Algorithms
When tackling the in-memory graph clustering problem, two approaches can be taken. The
first is to construct an algorithm, which considers the entire graph when clustering, meaning
all nodes and edges are analyzed before any decisions are made. This method is commonly
referred to as a global clustering algorithm. This approach typically yields high-quality
solutions, as each decision is made with complete knowledge of the global graph structure.
One prominent global clustering algorithm, where linear algebra and graph theory meet, is
the SPECTRAL CLUSTERING ALGORITHM [65], specifically the technique covered by Ng
et al. [42], which constitutes the construction of a symmetric normalized Laplacian matrix
Lsym. Once built, the algorithm computes the eigenvectors and their corresponding eigen-
values of Lsym, which identify the total number of connected components and the overall
connectivity of the graph. The computed eigenvectors then form a new n × k matrix U .
With the help of the k-means algorithm [12], each node is then assigned to the cluster cor-
responding to its row in the matrix U .
Another popular global in-memory clustering algorithm is the MARKOV CLUSTER PRO-
CESS (MCL), first introduced by Van Dongen [64]. The basic idea behind the MCL algo-
rithm revolves around an exploration phase and a reward phase of a random walk moving
around the graph. The MCL algorithm alternates between the two phases, allowing the
random walk to first explore, also known as expansion, and then reward, also known as in-
flation, paths it frequently traverses. This process gradually isolates and identifies clusters
by making intra-cluster paths more attractive than inter-cluster paths.
While global clustering algorithms usually yield high-quality clustering, their application
is highly restrictive when dealing with large graphs. This is because in-memory algorithms
often require high computational and memory cost, such as computing the eigenvectors and
their corresponding eigenvalues, which has a complexity ofO(n3). Furthermore, global al-
gorithms scale poorly for large graphs, to the extent that even storing the adjacency matrix
can be a challenge if the graph has millions or billions of nodes.

3.1.2 Local Clustering Algorithms
The other approach to tackle the graph clustering problem is to use local graph cluster-
ing algorithms. In comparison to global graph clustering algorithms, local algorithms
do not consider the entire graph when making a decision but instead require informa-
tion only for a small subset of the graph. Therefore, local graph clustering algorithms
require significantly less time for each decision, making them faster in practice compared
to global clustering algorithms.
LABEL PROPAGATION (LPA), first introduced by Raghavan et al. [46], is a quintessential
example of a linear local clustering algorithm. At first, each vertex is assigned to a singleton
cluster; subsequently, the algorithm proceeds in rounds, where in each round it traverses

10

3.1 In-Memory Graph Clustering

the nodes uniformly at random and assigns the currently traversed vertex to the cluster that
is most prevalent in its neighborhood. Ties are broken uniformly at random. The algo-
rithm terminates either upon convergence or when a cut-off variable, such as a time limit
is met. Oscillations are avoided by updating nodes asynchronously, using the most recent
clustering labels from the neighbors, instead of waiting for an entire iteration to complete.
An interesting attribute of the LPA algorithm is that it can find a clustering solely based on
node connections to various clusters, independently of any objective function.
Building on the idea of the LPA algorithm is the common local search algorithm [5]. Local
search shares many similarities with the LPA, namely, it is also a linear-time algorithm,
with the same random node traversal approach as the LPA algorithm, where each node
initially starts in its own singleton cluster. The key difference between the LPA and local
search is the criteria by which the nodes are assigned to their neighboring clusters. In the
LPA, only the connectivity to the neighbors is used to assess the best movement for the cur-
rently visited vertex. In the local search algorithm, this evaluation is based on optimizing
a specific objective function, with nodes moved to the neighboring cluster that yields the
highest gain to the objective function. The objective function can be chosen freely, such as
those introduced in Section 2.2.1, namely the modularity score [41] or the CPM objective
function [61]. Different objective functions directly affect the clustering outcome; while
modularity strongly favors more populated clusters, the CPM objective function can iden-
tify clusters of smaller size [61].
Although local algorithms and methods are highly computationally efficient, they typi-
cally yield relatively poor results [44]. The poor results stem from the lack of global
graph information when making decisions, as they only consider the neighbors of a specific
node. To partially address the poor performance of local algorithms while still maintain-
ing computational efficiency, multi-level algorithms have been developed that build upon
local graph clustering algorithms.

3.1.3 Multi-Level Clustering Algorithms
One of the most popular and widely used multi-level algorithm for the clustering prob-
lem is the LOUVAIN method by Blondel et al. [5]. The algorithm can be divided into two
different phases. The main components consist of a local search and a contraction phase,
which alternate until the local search algorithm converges. First, a local search algorithm
is applied to the graph to find a clustering. The local search used is the same as described
in Section 3.1.2, with the modularity objective function. Once the local search phase is
complete, the graph is contracted. The contracted graph is induced by the clustering found
in the local search phase, where each node in the contracted graph represents a cluster in
the original graph.
An edge exists between two nodes u and v in the contracted graph if and only if the re-
spective clusters are connected by at least one edge in G. The weight of an edge between
two nodes u and v in the contracted graph is set to the sum of the weights of the edges
that span between the corresponding clusters of nodes u and v in G. Self-loops are added

11

3 Related Work

to each node in the contracted graph, where the weight of the self-loop is defined as the
total weight of the intra-cluster edges in the corresponding cluster. Note that the objective
function of the contracted graph is the same as the original graph G due to the added and
modified edge weights. Thus, the same cluster features and structures found in the cluster-
ing of the original graph G are also found in the contracted graph. After the graph has been
contracted, the local search algorithm is applied again but solely to the contracted graph.
Now, moving a single node in the contracted graph indirectly moves multiple nodes of the
original graph at once. This allows for significant changes in the cluster structure, resulting
in potentially high jumps in quality. The local search algorithm is always executed on the
coarsest graph found at each stage. Once the local search phase converges and no more
contractions can be made, uncoarsening starts, where the clustering of the coarsest graph is
projected back to the original graph. It has been shown that this method excels in terms of
running time. For most graphs only a few iterations of local search and contraction are nec-
essary to obtain high-quality clustering, as demonstrated by Lancichinetti et al. [29]. This
is because local search is applied continuously only to the coarsest graphs, where moving
a node results in moving a set of nodes of the original graph, which helps the algorithm
converge faster. Furthermore, by using the local search phase, where only a single node
is considered to be moved at a time, the modularity resolution limit, as explained in Sec-
tion 2.2.1 is partially mitigated [5].
One challenge that the LOUVAIN algorithm faces is that the resulting clustering may be
internally disconnected [60], which for some use cases is undesirable. The LEIDEN algo-
rithm introduced by Traag et al. [60] builds on the LOUVAIN method but ensures that all
nodes in a cluster are connected, by incorporating a new phase called the refinement phase.
The refinement phase is executed between the local search and contraction phases, which
work identically to those in the LOUVAIN method. In the refinement phase, the algorithm
inspects each cluster to check whether every node in the cluster is part of a single con-
nected component. If a cluster is not internally connected, then the algorithm splits it into
connected components, such that each connected component corresponds to a new cluster.
This guarantees that no cluster is disconnected.
While multi-level algorithms tend to deliver relatively good results in a short period of time,
they often converge to local optima. This is because of the local algorithms playing a major
role in the multi-level algorithms, where the optimal decision in a local setting might not be
the optimal decision towards reaching the global optimum. Many different strategies ex-
ist to combat this phenomenon. One approach is to introduce controlled randomness [22],
where suboptimal cluster assignments are allowed by some probability p. Furthermore, one
could also execute multiple runs with different node orderings [29]. Applying these tech-
niques to the LOUVAIN or LEIDEN algorithm can help escape local optima. When piecing
these strategies together, it becomes evident that the mentioned techniques strongly resem-
ble the phases of an evolutionary algorithm.

12

3.1 In-Memory Graph Clustering

3.1.4 VieClus

To escape local optima, Biedermann et al. [4] developed VIECLUS. The VIECLUS al-
gorithm is an evolutionary algorithm that optimizes modularity and utilizes methods in-
troduced in Section 3.1.2 and Section 3.1.3. The key aspects making VIECLUS the
state-of-the-art in-memory graph clustering algorithm lie in the recombination and mu-
tation operations. The algorithm, as detailed in Section 2.4, can be divided into five
phases: initialization, selection, recombination, mutation, and eviction. The VIECLUS

algorithm runs through these phases until a given time limit is reached, at which point the
fittest individual is the output.
VIECLUS starts by generating p clusterings, referred to in the context of evolutionary algo-
rithms as individuals, using a modified LOUVAIN method [5]. The order in which the nodes
are traversed during the LOUVAIN method is randomized in each round, ensuring some di-
versity in the population. To increase diversification, VIECLUS modifies the LOUVAIN

method, such that for the first λ ∈ [0, 4] rounds, the LOUVAIN method uses the SIZE CON-
STRAINT LABEL PROPAGATION (SCLP) algorithm [37] to compute the clustering instead
of the local search algorithm. The SCLP algorithm works similarly to the LPA algorithm
but ensures that the size of each cluster does not exceed a certain limit. The upper bound
of a cluster size is set to U ∈ [n

10
, n] at the beginning of the algorithm. After the initial λ

rounds, the LOUVAIN method switches back to the local search algorithm to compute the
clustering. Note that for λ = 0 the initialization of all clusterings is the normal LOUVAIN

method. The population size is set to p ≤ 100 to ensure sufficient competition among in-
dividuals. As observed by Eiben et al. [15], this is essential for maintaining a consistently
high-quality population while preserving computational efficiency.
Once the population is initialized, the selection phase begins, where a set of individu-
als is selected for reproduction. VIECLUS employs the tournament-based selection ap-
proach [38], which, as explained in Section 2.4, randomly selects s individuals from the
population, and from the s individuals, selects the fittest with respect to the modularity
score. The tournament size is set to s = 2 to ensure a lower selection pressure [38], reduc-
ing the risk of premature convergence to a local optimum caused by repeatedly selecting
the fittest individuals for reproduction.
For the recombination phase, VIECLUS defines two different approaches: the flat- and
multi-level recombination operations. Both approaches rely on the notion of the maxi-
mum overlap, introduced by Ovelgönne et al. [44], which is applied to the two parent
clusterings. The principle behind the maximum overlap method is to identify common
node cluster assignments between the parent clusterings. Two nodes from the graph belong
to the same cluster in the overlay clustering if and only if they are clustered together in
both parents; otherwise, they belong to different clusters. The overlay clustering method
enforces an agreement process, with the idea being that if both parents agree that two spe-
cific nodes should belong to the same cluster, then there is a high confidence that they
should be grouped together.
The flat recombination approach includes four different techniques, which are selected at

13

3 Related Work

random. The PLAIN recombination method is the most basic, where the first step is to
compute the maximum overlap of both parents selected in the selection phase. The overlay
graph is then contracted. The contraction scheme applied to the overlay graph mirrors that
of the LOUVAIN method, ensuring that the modularity score on the contracted graph re-
mains the same as that of the original graph. The LOUVAIN method is then applied starting
from singleton clusters on the contracted overlay graph to create the offspring. Note that
due to the construction of the contracted graph, nodes that are clustered together in both
parents belong to the same cluster in the offspring. Solely nodes that are split by a parent’s
clustering are affected by the LOUVAIN method. The algorithm therefore focuses on the
regions of the graph where the parents disagree. Similarly, APPLIED INPUT CLUSTER-
ING follows the same steps as the PLAIN recombination technique. The only difference is
that the overlay graph is not initialized with singleton clusters but with the clustering of
the fitter of the two parents. As a result, the algorithm can expect the offspring to be less
diverse, but its potential to improve on the parent is significant. The CLUSTER RECOMBI-
NATION method differs from the others in that only one parent is selected in the selection
phase. The other parent is generated dynamically using the SCLP algorithm, as described
above. Once the two parents have been selected and initialized, the algorithm continues
as in the APPLIED INPUT CLUSTERING method. Finally, PARTITION RECOMBINATION

works identically to the CLUSTER RECOMBINATION technique. The only difference lies
in the way the second parent is created; instead of using the SCLP algorithm, this method
uses the graph partitioning tool KAHIP [53, 55] with a random value for the partition size
k ∈ [2, 64] and the balance constraint ϵ ∈ [0.03, 0.5]. The partitioning problem is closely
related to the clustering problem, with two key differences: the number of partitions k
is predetermined, and a balance constraint ensures that the total weight of each partition
does not exceed (1 + ϵ) ∗ ⌈ c(V)

k
⌉. The objective function is typically to minimize the cut

size, being the total number of edges spanning between two nodes of different partitions.
A key feature of the last three flat recombination operations is that the offspring main-
tains at least the same solution quality as the better of the two parents, since the better
clustering of the parents is applied to the overlay contracted graph, which is then refined
using the LOUVAIN algorithm.
The multi-level recombination operation works by first selecting two individuals C1 and C2
from the population to be the parents, as detailed in the selection phase above. Then, both
individuals are used as input to a modified LOUVAIN algorithm as follows. In the modified
LOUVAIN algorithm, the graph restricts the way in which contraction takes place. Let ε
be the set of inter-cluster edges of C1 and C2. The edges in ε are blocked during the LOU-
VAIN coarsening phase, meaning that these edges are not contracted during the multi-level
scheme. The contraction phase is stopped when no more contractible edges exist, resulting
in the coarsest graph. The algorithm then applies the clustering of the better of the two par-
ents with respect to solution quality to the coarsest graph to be used as an initial clustering,
after which the uncoarsening phase begins. Note that the modularity score of the coarsest
graph matches that of the fitter parent. During the uncoarsening phase, local search is re-
peatedly applied to optimize modularity on each level of the contraction hierarchy. This

14

3.2 Streaming Graph Clustering

ensures that, in the end, the found clustering is at least as good as the better of the two
parents with respect to the modularity score. By not contracting edges that were identified
as inter-cluster edges, the algorithm combines structural properties from both parents.
An important aspect to mention is that during the recombination operation, the number of
clusters can only decrease compared to the number of clusters of the parents. The mutation
phase counteracts this behavior and is executed with probability pm instead of the recom-
bination phase, where a random subset of the clusters of the two chosen parents is split
in half. The splitting operation is performed using the KAHIP [53, 55] graph partitioning
framework, which splits a cluster into two balanced blocks while minimizing inter-cluster
edges between the two new blocks. The two modified individuals are then used as part of
the multi-level recombination operation. Initially, the two mutant individuals may have re-
duced scores, but using them in the multi-level recombination operation can improve their
scores and introduce more diversity into the population upon insertion, as nodes are more
likely to be moved out of smaller clusters by local search.
As the VIECLUS algorithm has a population size constraint, choosing which individual
to evict is a crucial task in maintaining a high-quality but diverse population to prevent
premature convergence of the algorithm. To achieve this, VIECLUS evicts the individual
whose inter-cluster edge set most closely resembles that of the offspring, provided that its
solution quality is lower. If no such individual exists, the offspring is evicted.
VIECLUS can be run asynchronously in parallel and uses a parallelization scheme that has
been successful for the graph partitioning problem [52]. We refer the reader to [4] for a
more detailed overview of the parallel implementation.
While VIECLUS produces high-quality solutions in a relatively short time, it is a memory-
intensive algorithm for large graphs, as storing multiple clustering instances of the graph
in-memory could become a challenge. Since most modern graphs are massive, with mil-
lions of nodes and billions of edges, there has been a growing interest in-memory efficient
algorithms that still produce high-quality results within a short time-frame.

3.2 Streaming Graph Clustering

One approach to achieve a memory-efficient algorithm is by using a streaming algorithm.
When observing the research conducted around the graph clustering problem, most of the
state-of-the-art solutions are in-memory algorithms, with limited research on streaming
graph clustering algorithms.
The algorithm introduced by Hollocou et al. [25], which we refer to as HOLLOCOU, is one
of the few streaming graph clustering algorithms that directly optimizes modularity. We
refer the reader to [25] for a full proof of this claim. The streaming model used throughout
the algorithm is a one-pass edge-streaming model, as explained in Section 2.5, where only
a single edge e = (u, v) ∈ E is loaded into memory at a time.
The intuition behind the HOLLOCOU algorithm is based on the definition of a clustering,
following the paradigm of intra-cluster density versus inter-cluster sparsity. Nodes tend

15

3 Related Work

to be more connected within their cluster than to nodes in different clusters. With this
in mind, Hollocou et al. [25] argue that if one picks a random edge, it is more likely to
be an intra-cluster edge than an inter-cluster edge. Therefore, they claim that if one can
assume that the edges are streamed in a random order, then it is expected that more intra-
cluster edges arrive before inter-cluster edges. This assumption is the cornerstone of the
algorithm, where, for each streamed edge, the two endpoints are placed in the same cluster
if the edge is an early edge. An edge is classified as early if the current cluster volume of
both endpoints does not exceed a chosen threshold vmax. The volume of a cluster is defined
as the sum of the degrees of the nodes in the same cluster.
The algorithm starts with all nodes as singletons. For each streamed edge e = (u, v), the
algorithm either (a) assigns u to the cluster of v, (b) assigns v to the cluster of u, or (c)
does nothing and leaves the nodes in their original clusters. The choice of action solely
depends on the updated cluster volumes of the endpoints with respect to all previously
streamed edges. If the cluster volumes of nodes u and v are both below the threshold vmax,
indicating the arrival of an early edge, the node belonging to the smaller cluster is assigned
to the cluster of the other endpoint. If this condition is not met, HOLLOCOU takes no action
and proceeds to the next edge.
The algorithm is a linear-time algorithm with complexity O(m) and has a linear space
complexity of O(n), since for each node, the algorithm only needs to store three integers:
the node degree du, the cluster assignment cu, and the corresponding cluster volume vk.
On the one hand, the HOLLOCOU algorithm has shown to be a memory- and runtime-
efficient clustering algorithm, able to efficiently cluster huge graphs with millions of nodes
and billions of edges. On the other hand, our experiments indicate that the solution quality
is low. This could be because all node assignment decisions are made while having limited
global graph knowledge, which can lead to suboptimal decisions.

16

CHAPTER 4
CluStRE: Streaming Graph Clustering
with Multi-Stage Refinement

In this chapter, we introduce, CLUSTRE, our algorithm for computing a Clustering in
a Streaming fashion using multi-stage refinement techniques including Re-streaming and
Evolutionary heuristics. Our primary goal with CLUSTRE is to bridge the gap between
high-quality in-memory clustering algorithms and streaming graph clustering algorithms.
More specifically, we aim to achieve a solution quality that is comparable to state-of-the-
art in-memory algorithms while maintaining peak memory consumption comparable to
that of current state-of-the-art streaming graph clustering algorithms. A key challenge
for streaming algorithms is their limited access to global graph knowledge when making
decisions, often resulting in suboptimal cluster assignments. The CLUSTRE algorithm
overcomes this well-known limitation by incorporating multiple refinement stages, each of
which leverages graph knowledge through various techniques.
We begin by providing an overview of the overall structure of CLUSTRE and its
lightweight streaming approach to the graph clustering problem in Section 4.1. Next, in
Section 4.2, we present our approach to modularity optimization in a streaming setting.
We then introduce various optional refinement approaches to enhance solution quality and
exploit partial global information. These approaches include constructing a dynamic quo-
tient graph model, which serves as input to a memetic in-memory graph clustering algo-
rithm, elaborated in Section 4.3, and a re-streaming phase combined with a local search,
discussed in Section 4.4.

4.1 Overall Algorithm

CLUSTRE is a multi-stage streaming graph clustering algorithm that addresses the qual-
ity limitations of conventional streaming algorithms by incorporating global knowledge

17

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

Algorithm 1: Overall Structure of the CLUSTRE algorithm
Input: Graph G = (V,E), Flags: refineGQ, restreamLS
Output: Clustering C
C[v]← v ∀v ∈ V ; // node cluster assignments Θ(n) memory
Initialize empty quotient graph GQ ; // O(|EGQ

|) memory
foreach v ∈ V (node stream) do
C[v]← COMPUTECLUSTER(v,N(v), C) ; // max modularity gain
if refineGQ then

UPDATEQUOTIENTGRAPH(v, C, GQ) ; // on-the-fly GQ update

if refineGQ then
C ← MEMETICREFINEMENT(GQ) ; // memetic clustering

if restreamLS then
RESTREAMLOCALSEARCH(C) ; // re-streaming + local search

return C;

through memetic clustering, re-streaming, and local search. CLUSTRE is a node stream-
ing model that only loads a single streamed node v and all of its neighbors N(v) to memory
(RAM) at a time. For each streamed node v, we compute its optimal clustering assignment
C∗ and assign it to v. We achieve this by considering a set of candidate clusters C(N(v))
and the possibility of assigning the streamed node v to a cluster of its own. The decision is
based on selecting the cluster that yields the highest modularity gain in the current setting.
Optionally, during the node streaming, CLUSTRE constructs a dynamic quotient graph
data structure that represents the input graph in a compressed form while preserving essen-
tial structural features. Each node in the quotient graph GQ corresponds to a cluster in G.
Edges between distinct nodes in the quotient graph represent inter-cluster edges in the orig-
inal graph, while self-edges in GQ model intra-cluster edges in G. The quotient graph GQ

retains essential properties, one of which is that the modularity of any clustering computed
on GQ is equivalent to that of the corresponding clustering on G. This claim is formally
proven in Theorem 2 (Section A.1) of the Appendix. After completing the streaming phase
and fully constructing the quotient graph GQ, the algorithm optionally performs further en-
hancement to modularity by using the compressed data structure GQ as the input graph for
a memetic clustering algorithm. The approach combines and splits clusters, significantly
expanding the search space to optimize modularity. Once the memetic algorithm has fin-
ished processing, the clustering with the highest score is projected back onto GQ. At this
stage, the algorithm either outputs the clustering by projecting the clustering of GQ back
onto G, or proceeds to an additional refinement phase incorporating re-streaming and local
search, iterating until a stopping criterion is met. The overall implementation of CLUSTRE
is outlined in Algorithm 1, with details for each step given in the following sections.

18

4.2 One-Pass Streaming with Modularity Gain Scoring

4.2 One-Pass Streaming with Modularity Gain
Scoring

When streaming the graph, CLUSTRE employs a one-pass node streaming model, loading
only one node v and its neighbors N(v) into memory at a time. Initially, each node is
assumed to belong to its own singleton cluster. As streaming begins, our algorithm assigns
the streamed node v to the cluster C∗ that maximizes the modularity gain ∆Qv:Ccur→Ccan ,
where Ccur corresponds to the current cluster assignment and Ccan represents a candidate
cluster to which the streamed node v can be assigned. The modularity gain ∆Qv:Ccur→Ccan

is computed using Equation 4.1, which is also used in the LOUVAIN algorithm [5] and
noted in other papers [50].

∆Qv:Ccur→Ccan =
1

m
(Kv→Ccan−Kv→Ccur)−

dw(v)

2m2
(dw(v)+vol(Ccan)−vol(Ccur)) (4.1)

Here we set Kv→Ci
, where Ci is a cluster, to be the total number of edges spanning from

the node v to any node u such that u ∈ Ci. We denote dw(v) to be the weighted degree of a
vertex v. Lastly, vol(Ci) corresponds to the volume of cluster Ci being

∑
v∈Ci

dw(v). Note
that the delta modularity function in Equation 4.1 outputs the change in modularity when
moving a node v from its current cluster Ccur to a candidate cluster.
An important consideration is that candidate clusters must consist only of nodes that have
already been streamed. The volume of a cluster is unknown beforehand since the degrees of
the nodes are only available when streamed. As a result, clusters containing non-streamed
nodes are infeasible for the delta modularity Equation 4.1, whereas feasible clusters are
those whose assigned nodes have all been streamed. Therefore, all streamed nodes are
initially singletons, as their clusters were previously deemed infeasible. At first, it might
appear that the candidate clusters correspond to all feasible clusters. However, calculating
the modularity gain for each feasible cluster would be computationally expensive. This
inefficiency can be avoided by the following observation:

Theorem 1. Assigning a streamed singleton node to a cluster it is not adjacent to will
never lead to a positive modularity gain; that is, ∆Qv:Ccur→Ccan ≤ 0.

Proof. Consider a streamed node v initially belonging to its own singleton cluster Ccur for
reasons mentioned above. Since v is a singleton, it has no intra-cluster edges, only inter-
cluster edges. Additionally, we know that the volume of a singleton cluster is equivalent
to the weighted degree of the node v, denoted by dw(v). Therefore, we can simplify and
adapt Equation 4.1 to:

∆Qv:Ccur→Ccan =
1

m
(Kv→Ccan)−

dw(v)

2m2
(dw(v) + vol(Ccan)− dw(v)) , (4.2)

19

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

Now, if node v is not adjacent to any node in Ccan, then by definition:

Kv→Ccan = 0.

Substituting this into the equation simplifies the delta modularity gain function as follows:

∆Qv:Ccur→Ccan = 0− dw(v)

2m2
· vol(Ccan) = −

dw(v) · vol(Ccan)

2m2
. (4.3)

Since dw(v) ≥ 0, vol(Ccan) ≥ 0, and m ≥ 0 the resulting modularity gain ∆Qv:Ccur→Ccan

is non positive:
∆Qv:Ccur→Ccan ≤ 0.

Therefore, no positive modularity gain (∆Q > 0) can be achieved by assigning v to a
non-adjacent cluster. ■

Theorem 1 shows that we can disregard all clusters that are not adjacent to the streamed
node, since their gain will never be > 0, thereby improving computational efficiency.
Hence, the candidate clusters for a streamed singleton node are always its feasible neigh-
boring clusters C(N(v)). Only when all feasible neighboring clusters deem to result in a
negative modularity gain do we leave the streamed node as a singleton.

C∗ = argmax
Ccan∈C(N(v))

∆Qv:Ccur→Ccan (4.4)

As indicated in Equation 4.1, the delta modularity function requires determining the vol-
ume of neighboring clusters. To efficiently retrieve the volume of a feasible cluster, we
maintain an initially empty vector. For each feasible cluster, we allocate memory and adjust
its volume accordingly each time a node is streamed and assigned to a cluster. We do not
allocate memory for infeasible clusters, as the volume of such a cluster is unknown, render-
ing this allocation unnecessary. Memory is allocated only after a node has been streamed
and assigned to a feasible cluster. This approach saves memory allocation in cases where
a streamed node yields a positive gain with one of its neighboring clusters. In such cases,
we assign the neighboring cluster to the streamed node and adjust the cluster volume ac-
cordingly without allocating any additional memory in the vector for the singleton node,
thereby saving crucial memory resources.
Figure 4.1 illustrates a small implementation detail in our program that allows for fast
and efficient computation of the delta modularity function. To facilitate this, we update
a vector ArtNodes while processing the neighboring nodes, which stores the total edges
to different clusters. This vector can be interpreted as a set of artificial nodes ArtNodes
that are initialized and continuously updated as neighboring nodes are streamed from disk.
Ultimately, each artificial node corresponds to tuple of a unique cluster-ID, with the total
number of edges connecting the streamed node v to the specific cluster. This vector enables
efficient retrieval of the parameter Kv→Ccan for each candidate cluster C(N(v)) in the delta
modularity function. Notably, the ArtNodes vector is reset for each streamed node.

20

4.2 One-Pass Streaming with Modularity Gain Scoring

1
1

1
1

1

1

2

Figure 4.1: The construction of the artificial nodes. On the left, the initial representation of the
streamed node (black) and its neighbors. The colors and shapes represent the clus-
ter assignments of the nodes. On the right, the construction of the artificial nodes is
shown. The black node now has only one edge with weight 2 to the red cluster, rep-
resenting the two initial edges spanning between two nodes in the red cluster and the
streamed node.

In cases where the streamed node v is an isolated node, meaning it does not share edges
with any other nodes in the graph, we assign it its own singleton cluster. Note that any
cluster assignment of v does not affect the overall modularity score. As shown in Sec-
tion 2.2.1, the modularity function only considers edge density (intra-cluster density and
inter-cluster sparsity) and neglects node density. This means that the modularity scores
of a set of clusterings, where only the cluster assignment of v changes, all have the same
modularity score. A formal proof is omitted, as this result can be extracted directly from
the modularity objective function (the degree of an isolated node deg(v) = 0) specified in
Section 2.2.1. Our decision to assign it its own cluster stems from the idea that a cluster
with no neighbors has no similarities or common attributes with the rest of the graph and
is therefore likely to be in its own group.
Currently, there is no restriction on the total number of clusters that can be initialized dur-
ing the streaming phase. This could pose a problem when the algorithm is executed on a
machine with limited resources. Imposing an upper limit on the total number of clusters
enables a trade-off between solution quality and memory consumption. Once this limit is
reached, the streamed node can no longer remain a singleton. Instead, it is assigned to the
cluster that yields the best modularity gain among the candidate clusters C(N(v)) even if
they all yield a negative gain, to maintain computational efficiency.
For each streamed node v we compute the clustering in O(deg(v)) time. The overall run-
time of the streaming phase is O(n ∗ ∆), where ∆ is the maximum degree of a node in
the graph. This efficiency is achieved through the aforementioned data structures, which
allow constant-time access to the information required by the delta modularity function.
The modularity maximization approach used in this streaming phase is nearly identical to
the first phase of the LOUVAIN method [5], with the exception that each node is visited
only once, in the streaming order provided by the input graph.

21

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

4 4

3

2

1 1

8 12

6

Figure 4.2: An illustration of the quotient graph construction GQ (right) from the input graph G
(left) with all unitary weights. Clusters are represented by unique colors and shapes.
Thick lines illustrate inter-cluster edges, while dashed lines depict intra-cluster edges.
Each cluster in the input graph G is represented by a single node in the quotient graph
GQ, with a weight corresponding to the total number of nodes assigned to the cluster
in G. Weighted edges between nodes in the quotient graph represent the number of
inter-cluster edges connecting the corresponding clusters in G. Intra-cluster edges in
G are represented by weighted self-loops in GQ, counted twice, once for each directed
intra-cluster edge in G.

4.3 Modularity Refinement via Memetic Clustering

The first refinement option in the CLUSTRE algorithm is memetic refinement, where we
enhance solution quality by integrating partial global information and evolutionary heuris-
tics. To achieve this, CLUSTRE constructs a dynamic quotient graph GQ during the stream-
ing phase, which serves as the input to the state-of-the-art in-memory memetic graph clus-
tering algorithm VIECLUS [4]. This approach closely resembles the LOUVAIN method,
with the key difference being that the quotient graph is computed on-the-fly rather than
after all nodes have been processed. Computing the quotient graph on-the-fly is crucial
because a node’s edges become inaccessible after processing, making post-streaming con-
struction infeasible.
The quotient graph GQ captures the structural properties of the input graph in a compressed
form by introducing edge and node weights, as illustrated in Figure 4.2. Each initialized
cluster Ci of the input graph G is represented as a single supernode v′i. Each supernode v′i is
assigned a weight, which corresponds to the total number of nodes belonging to cluster Ci

in G. Edges in the quotient graph are derived from the input graph with the following rules:
an edge between two supernodes v′i and v′j exists if and only if at least one inter-cluster edge
exists between clusters Ci and Cj . Each edge between two supernodes is weighted and cor-
responds to the total number of inter-cluster edges between the respective clusters in the
input graph G. A supernode v′i may also contain self-loops. A self-loop on v′i in GQ is
inserted if and only if cluster Ci in G has at least one intra-cluster edge. This self-loop
is also weighted and corresponds to the total number of intra-cluster edges in Ci. Each
undirected intra-cluster edge is counted twice, once for each directed intra-cluster edge, to

22

4.3 Modularity Refinement via Memetic Clustering

Algorithm 2: UPDATEQUOTIENTGRAPH
(
v,GQ, C

)
: On-the-Fly GQ update

Input: v (streamed node), GQ representing quotient graph edges (where
GQ[(Ci, Cj)] stores edge weights), Array C of cluster IDs for all nodes

Output: Updated hashmap for GQ

Ci ← C[v] ; // cluster ID of current node v
foreach u ∈ ArtNodes do

Cj ← ucluster ; // cluster ID of neighboring cluster ucluster

w ← uweight ; // edge weight from v to neighbor ucluster

if Ci = Cj then
w ← 2 ∗ w ; // double the weight for self-loops

if (Ci, Cj) /∈ GQ then
GQ[(Ci, Cj)]← w ; // Insert new edge (Ci, Cj) with w

else
GQ[(Ci, Cj)]← GQ[(Ci, Cj)] + w ; // Update edge weight

return GQ;

correctly set w(v′i, v
′
i) = KCi→Ci

.
By constructing the quotient graph as detailed above, we ensure that key properties of
G are preserved. A major feature is that the modularity score of any clustering com-
puted in the quotient graph GQ remains equivalent to that of the input graph G when the
cluster assignments of GQ are projected back onto G. The claim is formally proven in
Theorem 2 of the Appendix. This result demonstrates that the quotient graph serves as a
low-memory representation of the input graph G and its clustering. GQ enables efficient
access to partial global information for modularity optimization using in-memory cluster-
ing algorithms, such as VIECLUS in our case. Clustering computations on the quotient
graph are more efficient because moving a single node in GQ effectively relocates an entire
set of nodes in G, considering node and edge weights. This results in larger and faster
modularity score improvements.
To construct the quotient graph GQ on-the-fly, we update GQ after a cluster assignment
to the stream node is made. The quotient graph data structure is implemented as a hash
map, where keys are pairs representing the quotient graph edges EGQ

, allowing an average
time complexity of O(1) for insert and update operations. By utilizing the artificial nodes
constructed during the streaming stage, we can efficiently update the quotient graph data
structure. However, constructing the quotient graph requires additional O(|EGQ

|) memory
and takes linear time in the size of EGQ

. Algorithm 2 outlines the update operations for the
quotient graph. Note that we iterate over the artificial nodes to optimize runtime.
As previously mentioned, after the streaming phase has ended and the quotient graph has
been constructed, GQ is the input to the state-of-the-art in-memory clustering algorithm
VIECLUS. As elaborated earlier in Section 3.1.4, this heuristic consists of five stages:

23

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

the initialization phase, selection phase, recombination phase, mutation phase, and evic-
tion phase. Upon completion, VIECLUS outputs the clustering with the highest modular-
ity score. Notably, the algorithm optimizes modularity while considering node and edge
weights. Thus, the modularity score of any clustering computed on the quotient graph GQ

remains equivalent to that of the input graph G.
An important aspect to highlight is that the evolutionary heuristic executes until a prede-
fined time limit is reached. The time limit is a tunable parameter provided as input to
VIECLUS. Optimally setting this tunable parameter is part of the tuning study. We expect
this parameter to serve as a trade-off between runtime, solution quality, and peak memory
consumption. Particularly, the more time provided to the memetic refinement, the higher
we expect the solution quality to be, while simultaneously also increasing the peak mem-
ory consumption, as the more time VIECLUS is given, the larger the explored solution
space becomes, and the more instances are generated. Both factors contribute to increased
solution quality and peak memory.

4.4 Modularity Refinement via Re-Streaming with
Local Search

The second refinement strategy used in the multi-stage CLUSTRE algorithm is re-
streaming with local search. More specifically, this stage consists of two phases: a re-
streaming phase and a local search phase. This refinement can be applied either directly
after the initial streaming phase or after the memetic refinement stage.
In the re-streaming phase, the graph is processed again, similar to the initial streaming
phase. The main benefit of re-streaming is that, from the first re-streaming iteration, all
nodes have already been assigned to feasible clusters. This means that modularity compu-
tation is more informed, as the set of candidate clusters always corresponds to the whole
set of neighboring clusters. This improves the modularity computation, enabling higher-
quality decisions. During the re-streaming phase, we use the same approach to compute
the delta modularity gain as described in Equation 4.1, with the exception that we do not
consider the possibility of assigning the streamed node a new cluster to become a single-
ton. Instead, only the neighboring clusters are considered to determine whether moving the
node results in a modularity gain.
It is important to note that the algorithm allows for multiple re-streams of the graph, which
is a tunable parameter. This parameter is assessed and evaluated in the tuning experiments
and serves as a trade-off between solution quality and runtime. We expect to improve solu-
tion quality by increasing the number of re-streams. However, the key question is by how
much and whether multiple re-streams are worth it, given the high I/O and computational
costs of each additional re-stream iteration.
While the re-streaming phase processes the entire graph as a whole, the local search phase
uses an optimization technique that significantly reduces the runtime by minimizing I/O

24

4.4 Modularity Refinement via Re-Streaming with Local Search

Algorithm 3: RESTREAMLOCALSEARCH
(
C
)

Input: ActiveNodes,∆Qcurr ←∞, startT ime← CURRTIME, lscutoff ∈
[0, 1], lstime_frac, lstime_limit

while
ActiveNodes ̸= ∅ and ∆Qtotal ≥ lscutoff ∗Qcurr and CURRTIME − startTime <
lstime_frac and CURRTIME − startTime < lstime_limit do

NextActiveNodes← ∅ , ∆Qcurr ← 0 ; // ∆Qcurr = mod current round
foreach v ∈ ActiveNodes do

C∗ ← COMPUTECLUSTER(v,N(v), C);
if C∗ ̸= C[v] then
C[v]← C∗;
foreach u ∈ N(v) do

Add u to NextActiveNodes;

∆Qcurr ← ∆Qcurr +∆Qv ; // ∆Qv = mod gain by moving v

ActiveNodes← NextActiveNodes;
Qtotal ← Qtotal +∆Qcurr ; // ∆Qtotal = overall mod score of C

return C;

operations. During the final re-streaming iteration, we track a set of nodes, which we call
active nodes. A node is labeled as an active node if and only if at least one of its neigh-
boring nodes has changed its cluster assignment. In the local search phase, we load only
individual active nodes and their neighbors from disk, significantly reducing I/O opera-
tions. Then, we iteratively evaluate each active node’s optimal cluster assignment using
the delta modularity gain function in Equation 4.1. For each local search iteration, we
keep track of a new set of active nodes, which serve as the set for the next local search
iteration to further optimize the clustering. We restrict the cluster reassignment evaluation
to active nodes, due to the following observation: only nodes whose neighbors have been
reassigned exhibit different values for the first component of the modularity gain function
in Equation 4.1. We refer to the first component of the modularity gain function as:

1

m

(
Kv→Ccan −Kv→Ccur

)
(4.5)

More specifically, when a node’s neighborhood is reassigned, it alters the total edge weight
between the node and its neighbors, which are assigned to the same cluster, relative to the
edge weight between the node and the candidate cluster. Conversely, if a node’s neigh-
borhood assignments remain unchanged, the value of the first component in Equation 4.1
also remains unchanged across consecutive re-streams. The relative total edge weights re-
main the same across all candidate clusters. This indicates that the delta modularity gain of
nodes whose neighborhoods have not been reassigned does not change significantly. Only

25

4 CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

the second component, which accounts for the volume of the candidate clusters, may yield
a different value. By focusing only on active nodes, we strike a balance between optimiz-
ing I/O efficiency and preserving nodes that could significantly impact the clustering due
to substantial changes in their delta modularity scores.
To efficiently extract the neighbors of active nodes, we store the positions of nodes in the
input graph in a vector during the final re-streaming iteration of the entire graph. The vec-
tor allows quick access to the neighbors of each node. To maintain memory efficiency, we
only store the position of every 10th node. Therefore, in practice, we compute the position
(using the mod function) of the nearest stored node and then iterate up to nine consecutive
times. This actively saves many I/O operations, thereby decreasing the overall runtime.
Note, however, that at least one re-stream phase is required before the local search phase
can take place to initialize the active node set.
The local search phase executes until one of the following conditions is met: (a) the lo-
cal search reaches convergence, meaning no active nodes exist; (b) the modularity im-
provement of the current round falls below a certain threshold, lscutoff, where lscutoff is a
tunable parameter; or (c) a certain time limit is reached, controlled by two tunable param-
eters: lstime_frac, which defines a relative time value to spend in the local search phase, and
lstime_limit, which sets an absolute time limit for the local search phase.

26

CHAPTER 5
Experimental Evaluation

After introducing our streaming graph clustering algorithm, CLUSTRE, in Chapter 4, we
now provide an experimental evaluation of CLUSTRE. We begin by detailing the hard-
ware used for the experiments in Section 5.1, followed by an explanation of our method-
ology in Section 5.2, and a description of the datasets in Section 5.3. Then, we show-
case, in Section 5.4, several tuning experiments to identify the best parameter values for
CLUSTRE. Subsequently, we introduce, in Section 5.5, various configurations of our
algorithm and compare them, highlighting their respective use cases. Finally, in Sec-
tion 5.6, we compare CLUSTRE against state-of-the-art in-memory and streaming algo-
rithms to evaluate its performance.

5.1 Hardware

Each experimental instance was executed on a single core of a machine equipped with
an Intel Xeon Silver 4216 CPU, 93 GB of RAM, 16 MB of L2 cache, and 22 MB of
L3 cache. The CPU has 16 physical cores, each supporting two threads. The machine
operates at a base clock speed of 2.1 GHz, with dynamic scaling between 0.8 GHz and
3.2 GHz. The system runs Ubuntu 20.04.01 LTS with a Linux kernel version 5.4.0-152-
generic, running on an x86_64 architecture.

5.2 Methodology

The experiments are structured into two distinct phases: the tuning phase and the test phase.
In the tuning phase, we conduct a series of experiments to identify the best configuration
for our algorithm. We begin with the base configuration of CLUSTRE, where no upper
limit is set on the total number of clusters, and the local search refinement phase runs until
convergence. The duration of the memetic refinement is initially unfixed, as it is the first

27

5 Experimental Evaluation

Research Question Description
RQ1 What is the impact of evolutionary clustering and re-streaming on the

clustering quality, runtime, and memory consumption of CLUSTRE?
RQ2 How does CLUSTRE’s solution quality compare to the state-of-the-art

streaming clustering algorithm and in-memory clustering methods? Can
CLUSTRE bridge the gap between existing streaming and in-memory
clustering algorithms?

RQ3 How does CLUSTRE balance runtime and memory consumption with
solution quality, compared to other streaming and in-memory clustering
algorithms?

RQ4 How well does CLUSTRE retrieve ground-truth communities compared
to existing streaming algorithms?

Table 5.1: Research questions investigated throughout this experimental evaluation

parameter we tune. Once we determine the best configuration, we examine our research
questions, listed in Table 5.1.

The first aspect we are interested in is evaluating the impact of evolutionary clustering and
re-streaming on the solution quality of CLUSTRE, serving as our first research question
RQ1. In the test phase, we compare our algorithm with other state-of-the-art clustering
algorithms. Specifically, we analyze how the solution quality of CLUSTRE compares with
state-of-the-art streaming clustering algorithms and in-memory clustering techniques. In
particular, we examine whether we can bridge the solution quality gap between stream-
ing and in-memory graph clustering algorithms, which is addressed in RQ2. With RQ3,
we aim to evaluate how effectively CLUSTRE balances runtime, memory consumption,
and solution quality compared to state-of-the-art streaming and in-memory clustering algo-
rithms. Finally, in RQ4, we compare CLUSTRE’s ability to retrieve ground-truth commu-
nities against existing state-of-the-art streaming clustering algorithms. The state-of-the-art
clustering algorithms used for comparison with CLUSTRE include the multi-level LOU-
VAIN algorithm [5], the evolutionary VIECLUS algorithm [4], and the streaming graph
clustering algorithm by Hollocou et al. [25].
It is important to note that we obtained the C++ implementation of the HOLLOCOU al-
gorithm from its official GitHub repository. We observed that the implementation does
not support streaming from disk. Instead, it loads the entire edge set into memory be-
fore individually processing each edge. To ensure a fair comparison, particularly regarding
memory consumption, we modified the implementation to support edge streaming from
disk. As mentioned in Chapter 3, the HOLLOCOU algorithm also requires the parameter
vmax, which defines the maximum volume constraint for each cluster and must be specified
in advance. However, the original authors provide no guidance on how to choose an appro-
priate value for this parameter, nor do they specify the value used in their experiments. To
ensure fairness, we also conduct a tuning study on the vmax parameter in Appendix A.2.

28

5.2 Methodology

All algorithms listed for the experiments are implemented in C++. While all competitor
algorithms are implemented with C++11, our algorithm is implemented with C++20. Ad-
ditionally, all algorithms are compiled with g++ version 11.4.0 using the full optimization
flag -O3. When incorporating the memetic graph clustering algorithm, we run each in-
stance with three different seeds and compute their geometric mean. In these experiments,
we measure running time, including the I/O time for all algorithms, solution quality, mea-
sured by the modularity score, and the memory consumption. To measure the memory
consumption, we extract the maximum resident set size given in kilobytes. When running
our experiments, we use the GNU parallel tool [59] to run eight instances independently in
parallel on our machine.
To visually benchmark our algorithms we often plot the results in the form of a performance
profile, introduced by Dolan and Moré [14]. We use performance profiles to compare dif-
ferent objectives, such as peak memory consumption, runtime or solution quality. The plot
is a 2D graph where the x-axis represents the performance ratio τ , which always begins
at one and increases for minimization problems and decreases for maximization problems.
The y-axis represents the fraction of all tests, ranging from zero to one, being the entire
test set. For each algorithm A, we plot a separate line on the graph. Every point (frac, τ)
on the line of the algorithm represents the fraction frac of all instances of A where the
current measured objective is less than or equal to τ times the measured objective of the
best algorithm for the same instance. As instances may have different algorithms on which
they perform best, a point (frac, τ) indicates that the algorithm A is for a fraction frac of
the instances never more than τ times worse than the best algorithm on a per-instance level.
The advantages in performance profiles are that they are less sensitive to outliers. A single
bad performance for one instance does not disproportionately affect the overall comparison
of the algorithm. Additionally, we use box plots to illustrate the distribution of runtime and
memory consumption. A box plot displays the five-number summary of a dataset. The
five-number summary consists of the minimum, first quartile (Q1), median, third quartile
(Q3), and maximum values. In a box plot, the box spans from the first quartile (Q1) to the
third quartile (Q3). A vertical line inside the box indicates the median value of the dataset.
Furthermore, let a measured objective result be denoted by σA for some clustering out-
put found by algorithm A. We compare this result with other results found by different
algorithms using the following tools: improvement over an algorithm B, computed as a
percentage with the formula (σA

σB
− 1) ∗ 100 and the relative value over an algorithm B,

calculated as σA

σB
. When the average of all instances is required, we use the geometric

mean, which minimizes the influence of outliers by giving each instance the same influ-
ence on the final score. To assess and compare the performance of our algorithm in retriev-
ing ground-truth communities we utilize the Normalized Mutual Information [30] metric
to evaluate the similarity between two clusterings of the same instance, which is widely
recognized as reliable [32].

29

5 Experimental Evaluation

5.3 Dataset

The graphs used in our experiments are listed in Table 5.2. We define two different datasets.
The first set of ten graphs is for our tuning phase to obtain the appropriate configuration
for our algorithm, while the second set of 20 graphs is used to evaluate the performance of
CLUSTRE and test it against state-of-the-art clustering algorithms. To test for robustness
and ensure that our algorithm performs well across different graph types and structures, we
selected graphs from various benchmark datasets. We sourced the social network graphs
from the SNAP dataset [31], as well as from the Laboratory for Web Algorithmics [7, 8, 6],
the Koblenz Network Collection [28], and Facebook friendship networks [62]. Web, road,
and citation graphs were sourced from the Network Repository [47] and the 10th DIMACS
Graph Clustering Implementation Challenge [3]. To conduct our experiments, we con-
verted all graphs to an undirected METIS node-stream format, removing any parallel or
self-loops, while assigning unit weights to all nodes and edges.
In addition, our dataset includes a 2D random geometric graph (RGG2D), as well as a 2D
random hyperbolic graph (RHG2D) created using KAGEN [19], which model real-world
scale-free networks. The RGG2D is formed by randomly distributing nodes within a unit
square in Euclidean space. An edge is created between two nodes if the distance between
them is less than or equal to a given radius r, which is approximated by Newton’s method.
An RHG2D graph extends the concept of an RGG2D graph by placing the vertices in hy-
perbolic space rather than Euclidean space.
An important aspect to mention is that the ground-truth communities provided in the
SNAP [31] dataset are not suitable for our ground-truth retrieval performance evaluation,
as nodes can belong to multiple clusters. Ground-truth communities represent the true clus-
tering of entities in a dataset. In our algorithm and definition of a clustering, we restrict the
assignment of nodes to exactly one cluster. Therefore, we incorporate citation [68] and co-
purchase networks [56] with feasible ground-truth communities from PyTorch Geometric.
In the citation networks, each node represents a scientific paper, the edges correspond to
citations, and the communities correspond to different research topics. For the co-purchase
network, each node represents a product, and an edge between two products indicates a
frequent co-purchase relationship, with the communities being the product categories.

5.4 Tuning Study

In this section, we conduct experiments to tune parameters used in CLUSTRE, presented
in Table 5.3, while also exploring its performance under various configurations. When
performing the tuning experiments, we begin with the base configuration of our CLUSTRE
algorithm, with no maximum cluster bound, and running local search until convergence. In
each tuning study, we determine the best configuration for a specific parameter, which then
serves as the default value for the next set of tuning experiments. The nodes are streamed
in their natural order as they appear in the input graphs.

30

5.4 Tuning Study

Graph n m Type

Tuning Graphs

Maryland58 20,871 744,862 Social Network
Texas84 36,371 1,590,655 Social Network
coAuthorsDBLP 299,067 977,676 Citations
web-Google 356,648 2,093,324 Web
amazon-2008 735,323 3,523,472 Web
rhg1m10m 1,000,000 10,047,330 Rand. Geo.
in-2004 1,382,908 13,591,473 Web
netherlands 2,216,688 2,441,238 Roads
ljournal-2008 5,363,260 49,514,271 Social Network
germany 11,548,845 12,369,181 Roads

Test Graphs

Penn94 41,554 1,362,229 Social Network
libimseti 220,970 17,233,144 Social Network
wiki-Talk 232,314 1,458,806 Web
citationCiteseer 268,495 1,156,647 Citations
com-amazon 334,863 925,872 Social Network
coPapersDBLP 540,486 15,245,729 Citations
eu-2005 862,664 16,138,468 Web
hollywood-2011 2,180,759 114,492,816 Social Network
enwiki-2013 4,206,785 91,939,728 Social Network
italy 6,686,493 7,013,978 Roads
great-britain 7,733,822 8,156,517 Roads
arabic-2005 22,744,080 553,903,073 Web
it-2004 41,291,594 1,027,474,947 Web
sk-2005 50,636,154 1,810,063,330 Web
europe 50,912,018 54,054,660 Roads
com-friendster 65,608,366 1,806,067,135 Social Network
rgg_n26 67,108,864 574,553,645 Rand. Geo.
rhg2b 100,000,000 1,999,544,833 Rand Hyp.
uk-2007-05 105,896,555 3,301,876,564 Web
webbase-2001 118,142,155 854,809,761 web

Table 5.2. Graphs for the different phases of the experiments with their node and edge size and
type.

31

5 Experimental Evaluation

Parameter Symbol Description
Memetic Refinement Duration D Time limit for memetic refinement

Number of Re-streams R Number of re-streams before performing local search
Local Search Cutoff lscutoff Local search cutoff based on solution quality

Local Search Time Constraint lsfrac_time Local search constraint based on runtime
Max Clusters cluster_frac Relative limit on the number of clusters

Table 5.3. Tunable Parameters of CLUSTRE

5.4.1 Memetic Refinement Time Limit

Our tuning experiments begin with the selection of the appropriate duration D in sec-
onds for the memetic refinement phase using the VIECLUS algorithm. To perform this
experiment, we exclude the re-streaming and local search refinement from the base con-
figuration of CLUSTRE; thus, it only undergoes the streaming phase, where the dynamic
quotient graph is constructed, as explained in Chapter 4, followed by the memetic refine-
ment phase. Other phases are excluded to accurately distinguish the improvement provided
solely by the VIECLUS algorithm. Note that after the streaming phase, the solution quality
of the dynamic quotient graph remains consistent under different proposed memetic dura-
tion configurations. This is because our streaming phase does not involve randomness, and
the streaming order of the nodes remains consistent, as it is determined by the input graph.
In particular, we aim to evaluate our claim regarding the trade-off between memory con-
sumption and solution quality, as discussed in Chapter 4. This claim posits that spending
more time in the memetic refinement phase leads to better solution quality but also results
in higher memory consumption. To evaluate this claim, we propose five different durations
for the VIECLUS algorithm: D ∈ {15, 30, 60, 300, 600} seconds.
It is important to note that the time limit specified for the VIECLUS algorithm serves only
as an estimate and is not treated as a strict cut-off parameter. Many tested instances ex-
ceeded this limit; however, the relative additional time spent remained consistent across all
instances and durations.
First of all, figure 5.1 illustrates the impact that an evolutionary algorithm has compared
to the streaming phase alone (D = 0). From Figure 5.1, it is evident that the memetic
refinement algorithm significantly improves solution quality. Even for the shortest dura-
tion, D = 15, the algorithm improves solution quality by 25.56% compared to no memetic
refinement (D = 0), but requires 6.37× more memory and is 29.52× slower on average
across all tuning instances. The high memory consumption stems from constructing the
quotient graph and the evolutionary scheme, while the slower runtime is due to instances
like Texas84, which require only 0.1 seconds without memetic refinement. In such cases,
an additional 15 seconds results in a larger relative runtime increase.
Figure 5.2 presents the results using a performance profile analysis. Runtime analysis is
omitted from this figure, as the runtime comparison between different algorithms in our
proposed configuration is straightforward and thus provided in Appendix A.3. The runtime

32

5.4 Tuning Study

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
a
n
ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

Ratio to Best (τ)

Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

0.650.700.750.800.850.900.951.00

Ratio to Best (τ)

Modularity

d = 15 d = 0

Figure 5.1. Tuning Experiment: Memetic Refinement. Performance profiles for runtime, peak
memory consumption, and modularity score. For all algorithms, we use the base-
line CLUSTRE configuration with no restriction on the maximum number of clus-
ters. The algorithms underwent a streaming phase followed by a memetic refine-
ment phase with varying duration values (D). Note that D = 0 indicates no memetic
refinement was applied.

of our proposed configuration consists of the streaming phase plus the memetic refinement
duration. Since the streaming phase duration remains similar for each instance across all
proposed configurations, the only module that affects the runtime is the memetic refinement
phase, which we explicitly vary for each configuration.
Figure 5.2 demonstrates that our expectation from Chapter 4 holds true. When analyzing
the performance profile showing memory consumption, we observe that the algorithm run-
ning the memetic refinement for the shortest possible time, 15 seconds, also exhibits the
lowest memory peak. On average, across all tuning instances, the algorithm with D = 15
requires only 62.21% of the memory used by D = 600 and 90.47% of the memory required
by the second-lowest memory consumption configuration with D = 30. The performance
profile reveals a correlation between memory consumption and runtime: the longer the
runtime, the higher the memory peak. This is mainly because the more time the memetic
refinement algorithm is given, the more instances of the quotient graph are initialized, re-
sulting in higher memory consumption. It is interesting to note that the curves for the
D = 300 and D = 600 configurations in the memory peak performance profile are very
similar, even though the latter configuration is given twice the time. On average across
all instances, the algorithm with D = 300 consumes 98.68% of the memory used by the
algorithm with D = 600, which is practically the same. One reason for this behavior could
be that the total number of initialized quotient graph instances has reached its limit in both
configurations for most instances. As shown in our graph dataset (Table 5.2), some algo-
rithms operate on graphs with fewer than 50,000 total nodes. This results in a quotient
graph with an even smaller number of nodes, which, in turn, makes initializing multiple
instances of the quotient graph highly time-efficient.
The analysis of the solution quality performance profile confirms our claim, showing that

33

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

0.99850.99900.99951.0000

Ratio to Best (τ)

Modularity

d = 15 d = 30 d = 300 d = 60 d = 600

Figure 5.2. Tuning Experiment: Memetic Refinement. Performance profiles for peak memory con-
sumption and modularity score. For all algorithms, we use the baseline CLUSTRE
configuration with no restriction on the maximum number of clusters. The algorithms
underwent a streaming phase followed by a memetic refinement phase with varying du-
ration values (D).

the algorithm with the highest memetic refinement duration, D = 600, yields the best
solution quality in about 90% of the instances. This is followed by the algorithm with
the second-highest duration, D = 300, which yields the best solution for 80% of the in-
stances. However, the three configurations with the shortest memetic refinement time, that
is, D ∈ {15, 30, 60}, all produce almost identical solution quality results, differing by only
0.01% on average across all tuning instances. This phenomenon could be due to a low
number of evolutionary cycles performed in the refinement phase, resulting from the lim-
ited time provided, which hinders the algorithm’s ability to explore new solutions. This
argument could also explain why the algorithm with the D = 600 configuration produces,
on average across all instances, only about 0.03% better solution quality than the other
configurations, suggesting that even ten minutes may not be sufficient for the evolutionary
algorithm to thoroughly explore the solution space.

Observation 1. The configuration that offers the best trade-off between solution
quality and memory consumption is D = 15, the lowest examined value. Not only
does D = 15 achieve nearly identical results in terms of solution quality, just 0.03%
lower than the five-minute and ten-minute memetic refinement configurations, but it
also consumes only 62.21% of the memory required by D = 600 and 90.47% of that
used by D = 30 on average across all instances.

34

5.4 Tuning Study

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

r = 1 r = 2 r = 3 r = 4

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

r = 1 r = 2 r = 3 r = 4

0.0

0.2

0.4

0.6

0.8

1.0

0.750.800.850.900.951.00

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Modularity

r = 0 r = 1 r = 2 r = 3 r = 4

Figure 5.3. Tuning Experiment: Total Re-streams. No Memetic Refinement. Performance profiles
for runtime, memory consumption, and modularity score. For all algorithms, we use
the baseline CLUSTRE configuration with no memetic refinement, no restriction on
the maximum number of clusters, and with varying number of total graph re-streaming
indicated by the value of R.

5.4.2 Number of Re-streams

The next tuning parameter we want to investigate is the total number of re-streaming iter-
ations, denoted as R, applied to our algorithm after the initial streaming phase and before
the local search refinement phase. In this experiment, we use two different configura-
tions of our algorithm to accurately assess the impact of re-streaming. The first configu-
ration consists of the initial streaming phase, followed by a re-streaming phase in which
the graph is fully re-streamed R times to improve solution quality. The second configu-
ration includes a memetic refinement phase between the initial streaming phase and the
re-streaming phase. The purpose of these two different configurations is to accurately eval-
uate how re-streaming alone improves the quality of the initial solutions and evaluate its
impact across different configurations. The memetic refinement phase is set to the previ-
ously determined 15-second configuration. Local search refinement is excluded in both
configurations, as it would distort the effects of re-streaming on both solution quality and
runtime. These experiments evaluate the trade-off between solution quality and runtime.
We expect that by increasing the total number of re-streams, to improve the solution quality,
but at the same time, increase the runtime of our algorithm. Moreover, considering that the
active node set is initialized in the last re-streaming iteration, we want to evaluate how vary-
ing the number of graph re-streaming iterations affects the total number of active nodes.
We expect that the more re-streaming iterations we perform, the fewer active nodes remain.
The parameter values of R selected for this experiment are R ∈ {1, 2, 3, 4}. For reference,
we include the re-streaming value R = 0 in the solution quality performance profile to
establish a baseline for comparison. However, the re-streaming configuration with R = 0
is not feasible, as the graph must be re-streamed at least once to detect active nodes for the
subsequent local search refinement.
Figure 5.3 shows that an increase in the number of re-streams leads to a higher runtime
of our algorithm. On average, across all instances without memetic refinement before re-

35

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4 1.5

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

r = 1 r = 2 r = 3 r = 4

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15 1.20

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

r = 1 r = 2 r = 3 r = 4

0.0

0.2

0.4

0.6

0.8

1.0

0.850.900.951.00

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Modularity

r = 0 r = 1 r = 2 r = 3 r = 4

Figure 5.4. Tuning Experiment: Total Re-streams. With Memetic Refinement. Performance pro-
files for runtime, memory consumption, and modularity score. For all algorithms, we
use the baseline CLUSTRE configuration with memetic refinement, no restriction on
the maximum number of clusters, and with varying number of total graph re-streaming
indicated by the value of R.

streaming, the algorithm with R = 1 runs 1.43× faster than the second-fastest algorithm
with R = 2 and 2.33× faster than the slowest algorithm with R = 4. Since the memetic
refinement phase adds at least 15 seconds to the total runtime, the relative difference in
runtime between algorithms with the memetic configuration is much smaller than without
it, although the same trend remains observable, as seen in Figure 5.4. On average, across
all instances with the second configuration, where memetic refinement is performed before
re-streaming, the algorithm with R = 1 runs approximately 1.06× faster than the second-
fastest algorithm with R = 2 and 1.13× faster than the slowest algorithm with R = 4. This
occurs because each additional iteration requires re-streaming the entire graph, increasing
both computation time and I/O operations.
As expected, when analyzing the solution quality performance profiles of the two config-
urations, we can see, that increasing the number of re-streaming iterations leads to higher
solution quality. An interesting observation is that for both configurations, the quality im-
provement between one re-streaming iteration and no re-streaming iterations is significant,
while the improvement from one to four re-streaming iterations is not as substantial. For the
first configuration, the algorithm with R = 1 improves solution quality across all instances
by an average of 13.49% compared to no re-streaming iterations, while achieving solution
quality that is only 2.65% lower than the algorithm with R = 4. This can be attributed
to the technique used to stream the graph in the initial streaming phase. During the initial
streaming phase, the clusters of unvisited neighboring nodes are unknown and considered
infeasible (see Section 4.2). These unvisited neighboring nodes are ignored when assigning
nodes to clusters, resulting in suboptimal assignments for the first streamed nodes. How-
ever, starting from the first re-streaming phase, all nodes are assigned to a feasible cluster,
allowing each streamed node to consider all neighboring clusters when making decisions,
leading to higher-quality assignments. A similar pattern can be observed in the solution
quality performance profile for the memetic refinement configuration, although the effect
is not as pronounced, since the memetic refinement phase already significantly improves

36

5.4 Tuning Study

Configuration R = 1 R = 2 R = 3 R = 4

With memetic Refinement 32,378.79 9,798.74 3,489.32 1,666.42
Without memetic Refinement 210,828.29 82,481.39 41,436.74 23,746.67

Table 5.4. Geometric mean of the total number of active nodes for all tuning instances for each
configuration, with varying number of re-streams indicated by the value of R.

clustering quality. On average, across all tuning instances in the second configuration with
R = 1, solution quality improves by 3.66%, while achieving a solution quality that is only
0.73% lower than the algorithm with R = 4.
Another significant effect of re-streaming on our algorithm is the total number of active
nodes found after the last re-streaming phase. As shown in Table 5.4, the more re-streaming
operations are performed, the fewer active nodes are found in the final phase. This is due to
the continuous movement of nodes in each re-streaming iteration, where each change in a
node’s cluster assignment directs the node closer to its locally optimal assignment. For the
configuration with no memetic refinement (Figure 5.3), the performance profile indicates
that a higher number of active nodes corresponds to a higher peak memory usage. How-
ever, in the second configuration (Figure 5.4), we recognize that a greater number of active
nodes does not significantly affect memory consumption, suggesting that the additional
memory usage remains relatively small in absolute terms.

Observation 2. A single round of re-streaming (R = 1) offers the best trade-
off between runtime, memory consumption, and solution quality. We achieve a
13.49% increase in solution quality compared to no re-streaming iterations. Com-
pared to four re-stream iterations, a single re-stream achieves only 2.65% worse
solution quality while delivering 2.33× faster results. With memetic refinement, the
difference in solution quality is even lower between all number of re-stream iter-
ations. A single re-stream achieves only 0.73% lower solution quality than four
re-streams when memetic refinement is used before re-streaming. Since multi-
ple re-streaming iterations yield only marginal improvements in solution quality,
a single re-stream iteration enables a direct transition to the local search refine-
ment phase. This transition further enhances efficiency in both runtime and solution
quality by significantly reducing I/O operations and visiting fewer nodes, while still
improving clustering quality.

37

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

0.880.900.920.940.960.981.00

Ratio to Best (τ)

Modularity

cut = 0 cut = 0.005 d = 0.01 cut = 0.05

Figure 5.5. Tuning Experiment: Local Search Cut-off Constraint. No Memetic Refinement. Per-
formance profiles for runtime and modularity score. For all algorithms, we use the
baseline CLUSTRE configuration with no memetic refinement, no restriction on the
maximum number of clusters, and one re-stream iteration. The local search threshold
value lscutoff varies as indicated in the legend (CUT).

5.4.3 Local Search Limit

After determining the default value for the number of re-streams, we now explore restric-
tions for the local search refinement phase to provide greater control over our algorithm. To
achieve this, we introduce two user-selectable parameters. The first constraint for the local
search phase is a cut-off parameter (lscutoff) that defines the minimum relative improvement
in solution quality required in each iteration, relative to the overall computed solution qual-
ity. The second constraint is a time fraction (lsfrac_time) parameter, which determines the
fraction of the total runtime prior to the local search phase to allocate for the local search
phase. This study seeks to find the best configurations for lscutoff and lsfrac_time that best
balance the runtime-solution quality trade-off in the local search phase.
To conduct these experiments, we extend the two configurations used in the previous tuning
study. First, we apply the established baseline value of one re-streaming iteration before
adding the local search phase to both configurations. For the threshold parameter, we use
the following values: lscutoff ∈ {0.05, 0.01, 0.005, 0}. Note that lscutoff = 0 allows the local
search refinement to run until convergence, while for the lsfrac_time parameter we use the
values lsfrac_time ∈ {2, 1, 0.5}.
Note that the overall quality of the computed clustering preceding the local search refine-
ment is only an estimate. This is because, when assigning nodes to clusters in the first
streaming phase, the modularity gain does not consider the entire cluster volume, but only
of the nodes that have been visited. Additionally, when the memetic refinement is used, we
cannot incorporate its impact on the modularity score into our overall computed estimate,

38

5.4 Tuning Study

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

0.9800.9850.9900.9951.000

Ratio to Best (τ)

Modularity

cut = 0 cut = 0.005 d = 0.01 cut = 0.05

Figure 5.6. Tuning Experiment: Local Search Cut-off Constraint. With Memetic Refinement. Per-
formance profiles for runtime and modularity score. For all algorithms, we use the
baseline CLUSTRE configuration with memetic refinement, no restriction on the max-
imum number of clusters, and one re-stream iteration. The local search threshold value
lscutoff varies as indicated in the legend (CUT).

since only the cluster assignments are provided as output. This is the main reason we intro-
duced both parameters: to allow for greater flexibility in the algorithm’s computation. We
add the memory peak performance profiles to the appendix in Figures A.4 A.5 A.6 A.7,
since, during the local search phase, only the active node vector changes in size, an effect
already examined in the previous study.

We first analyze the performance profiles for the cut-off variable with the configuration
excluding memetic refinement, as shown in Figure 5.5. Based on these performance pro-
files, we infer that reducing the cut-off constraint significantly increases the runtime of our
algorithm while only marginally improving solution quality. With lscutoff = 0.05, solution
quality is, on average across all instances, 3.23% lower than the algorithm that runs until
convergence (lscutoff = 0). However, lscutoff = 0 has a significantly higher runtime, on
average, 1.89× longer than lscutoff = 0.05. The same trend is observed for the constraint
values lscutoff = 0.01 and lscutoff = 0.005, where a slight improvement in solution quality
is achieved compared to lscutoff = 0.05, but at the cost of a significantly higher runtime.
Across all instances, lscutoff = 0.005 decreases on average solution quality by 1.53% com-
pared to running with no constraints, which is only 1.7% better than lscutoff = 0.05, but
runs 1.44× slower compared to lscutoff = 0.05. Additionally, across all instances, the al-
gorithm that refines until convergence takes up to more than 7 × the runtime compared to
lscutoff = 0.05. Furthermore, in Figure 5.6 we observe that the algorithms with memetic
refinement before the local search yield only minor improvements in modularity across the
different values of lscutoff, with an average improvement of less than 1% across all instances.

39

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

0.9800.9850.9900.9951.000

Ratio to Best (τ)

Modularity

frac = 0.5 frac = 1 frac = 2

Figure 5.7. Tuning Experiment: Local Search Time Fraction Constraint. No Memetic Refinement.
Performance profiles for runtime and modularity score. For all algorithms, we use
the baseline CLUSTRE configuration with no memetic refinement, no restriction on
the maximum number of clusters, and one re-stream iteration. The local search time
fraction lsfrac_time varies as indicated in the legend (FRAC).

This is because after the memetic refinement, most nodes are already in their locally opti-
mal assignment. Thus, fewer nodes move during local search, as shown in Table 5.4, which
compares active node counts between memetic and non-memetic configurations.

Figure 5.7 shows a similar expected behavior when evaluating the time constraint lsfrac_time,
without memetic refinement before the local search. As expected, increasing lsfrac_time in-
creases runtime; however, the improvement in solution quality remains minimal. When
analyzing lsfrac_time = 0.5, we find that, on average across all instances, the solution quality
is 1.01% lower while achieving up to 1.35× faster results compared to the best-performing
algorithm in terms of modularity score, being the algorithm with lsfrac_time = 2. Further-
more, this solution quality gap is even smaller when using memetic refinement before local
search, as seen in Figure 5.8, for the reasons mentioned earlier. Across all instances, the
algorithm with lsfrac_time = 0.5 decreases the modularity score by less than 1%. The al-
gorithm with lsfrac_time = 1 yields better results than lsfrac_time = 0.5 but, as expected, is
significantly slower, on average across all instances, it is approximately 1.17× slower.
In the local search phase, we provide the option of specifying a value lstime_limit, which sets
an upper bound on the total time, in seconds, to be spent in the local search refinement
phase. lstime_limit is particularly useful for large graphs, where each iteration takes a sig-
nificant amount of time, and the modularity improvement per iteration is marginal, thus
providing additional control over the algorithm’s behavior.
In conclusion, the two tuning parameters emphasize different performance metrics. If so-
lution quality is a priority, tuning the lscutoff parameter allows direct control over the im-

40

5.4 Tuning Study

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.01 1.02 1.03 1.04 1.05 1.06

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

0.99850.99900.99951.0000

Ratio to Best (τ)

Modularity

frac = 0.5 frac = 1 frac = 2

Figure 5.8. Tuning Experiment: Local Search Time Fraction Constraint. With Memetic Refine-
ment. Performance profiles for runtime and modularity score. For all algorithms, we
use the baseline CLUSTRE configuration with memetic refinement, no restriction on
the maximum number of clusters, and one re-stream iteration. The local search time
fraction lsfrac_time varies as indicated in the legend (FRAC).

provements achieved by the local search algorithm, regardless of the number of iterations
or the time required. On the other hand, if runtime is of high concern, tuning lstime_limit

directly affects the runtime of the local search phase, independently of the current modu-
larity improvement. Since this thesis primarily emphasizes solution quality, our baseline
algorithm incorporates the lscutoff parameter and not the lsfrac_time parameter.

Observation 3. The constraint lscutoff specifies the minimum relative modularity im-
provement required per local search iteration, while lsfrac_time is the fraction of total
pre-local search runtime to allocate for the local search. The configurations that best
balance the runtime-solution quality trade-off in the local search are lscutoff = 0.05
and lsfrac_time = 0.5. lscutoff = 0.05 results in only a 3.23% decrease in solution qual-
ity on average while running 1.89× faster than no constraint configuration. Com-
pared to lscutoff = 0.005, lscutoff = 0.05 yields only 1.7% lower solution quality while
running 1.44× faster. On average, lsfrac_time = 0.5 decreases solution quality only
by 1.01% while delivering 1.35× faster results compared to no restrictions. With
memetic refinement before local search, the solution quality gap is even smaller
between different constraint values, remaining less than 1% compared to the best
performing configuration in terms of solution quality.

41

5 Experimental Evaluation

79.84%

10.13%

7.24%

2.79%

Quotient Graph
Node Assignment Vector
Cluster Vector
Rest

Figure 5.9. Memory distribution during quotient graph construction for the memetic refinement
phase. The pie chart is created using the geometric mean over all tuning graphs,
where the algorithms ran using the baseline CLUSTRE configuration with only
the streaming and memetic phase.

5.4.4 Maximum Number of Clusters

Finally, we assess the last tuning parameter: the total number of initialized clusters. As
seen in Figure 5.9, the memory consumption bottleneck of CLUSTRE lies in the size of the
quotient graph. Thus, we evaluate techniques to mitigate this bottleneck. By reducing the
quotient graph size we also significantly reduce the memory consumption of the memetic
refinement phase, as each instance in the population then requires less memory. One
approach is to set an upper limit to the total number of clusters initialized, which reduces
the size of the quotient graph and, in turn, saves memory. However, imposing an upper
limit may result in suboptimal cluster assignments. This study evaluates the trade-off
between solution quality and peak memory usage when applying an upper-bound variable.
To execute these experiments, we use the tuning parameter
cluster_frac ∈ {1, 0.1, 0.05, 0.01, 0.005}. The cluster_frac value corresponds
to the total number of clusters that can be initialized relative to the total number of
nodes. cluster_frac = 0.01 implies that at most 1% of the total number of nodes can
be initialized as clusters. The value cluster_frac = 1 indicates that no upper limit is
set, meaning each node can become its own cluster. Note that the quotient graph is only
constructed when the memetic refinement is used. Hence, the algorithm configuration
chosen for this study consists of the required streaming phase, followed by a memetic
phase using the previously determined baseline duration of 15 seconds. Limiting the
total number of clusters does not impact runtime, as all previously visited neighbors of
a streamed node are still evaluated. The only difference is that when the upper limit is
reached, the node is assigned to the neighboring cluster that yields the highest gain, even
if that gain is negative. Since all algorithms receive the same estimated amount of time in
the memetic phase, the runtime performance profile is presented in the Appendix A.8.

42

5.4 Tuning Study

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.81.0

Ratio to Best (τ)

Modularity

mc = 0.005 mc = 0.01 mc = 0.05 mc = 0.1 mc = 1

Figure 5.10. Tuning Experiment: Maximum Number of Clusters. Performance profiles for memory
consumption and modularity score. For all algorithms, we use the baseline CLUSTRE
configuration with varying values for the maximum cluster fraction parameter (MC).
Each algorithm underwent a streaming phase followed by a 15-second memetic phase.

Figure 5.10 presents the results, confirming the expected trend: a lower cluster_frac re-
duces memory usage but significantly decreases modularity, by up to 80% compared to
the best solution found. The algorithm with the lowest cluster_frac = 0.005 yields on
average, the lowest memory peak, requiring only 80.50% of the memory compared to
cluster_frac = 0.01, and just 48.94% compared to the algorithm with cluster_frac = 1.
However, this algorithm performs the worst overall in terms of solution quality. For all
instances, the algorithm with the lowest cluster_frac produces, on average, a solution
quality 36.22% worse than the unrestricted algorithm, rendering this parameter value in-
feasible due to its significantly lower modularity performance. The same applies to the
second-lowest cluster_frac = 0.01, where the algorithm delivers slightly better solution
quality at the expense of slightly higher memory consumption. However, the improve-
ment in solution quality remains negligible. Therefore, cluster_frac = 0.01 is equally
infeasible due to its low modularity score. The highest two values of cluster_frac re-
sult in similar memory consumption. In 60% of the instances, the peak memory usage is
up to 2.25× higher for both algorithms. A similar pattern emerges on average across all
instances: the algorithm with cluster_frac = 1 consumes approximately 3.7× the mem-
ory peak of the best result found, while the algorithm with cluster_frac = 0.1 consumes
about 3.35× the memory peak. Across all instances, the unrestricted algorithm achieves
the best solution quality, while the algorithm with cluster_frac = 0.1 results in up to an
11% lower solution quality.
Note that the algorithm allows an absolute value MaxCluster to be specified to set

43

5 Experimental Evaluation

Parameter Symbol Baseline Value
Memetic Refinement Duration D 15 seconds

Number of Re-streams R 1 re-streaming iteration
Local Search Cutoff lscutoff 0.05

Local Search Time Constraint lsfrac_time 0.5
Max Clusters cluster_frac no cluster upper-limit

Table 5.5. Baseline Configuration of CLUSTRE

an upper bound on the total number of initialized clusters. This feature is particu-
larly useful in scenarios where only a limited amount of memory is available. Setting
MaxCluster ensures that the algorithm’s memory usage does not exceed a predefined
limit, while allowing smaller instances, where this limit is never reached, to use the opti-
mal local assignment in the streaming phase.

Observation 4. cluster_frac defines the total number of clusters that can be initial-
ized relative to the number of nodes in the graph. With cluster_frac = 0.005 and
cluster_frac = 0.01, memory consumption is minimized to 48.94% and 60.80%
of the unrestricted value, respectively. However, they significantly decrease solution
quality by approximately 36.22% and 26.00% respectively, making them infeasible.
The unrestricted value, cluster_frac = 1, offers the best balance between mem-
ory consumption and solution quality. It achieves the best results while consuming
only slightly more memory than the other feasible configurations, cluster_frac ∈
{0.1, 0.05}, requiring just 1.02× and 1.16× more memory, respectively.

5.5 CluStRE Performance Evaluation

Now that we have established the baseline configuration for our CLUSTRE algorithm,
summarized in Table 5.5, we now aim to answer our first research question, which exam-
ines the impact of multi-stage refinement, including memetic algorithms, re-streaming, and
local search, on solution quality, peak memory consumption, and runtime.
To evaluate this question, we introduce four selectable modes in our algorithm: STRONG,
EVO, LIGHT+, and LIGHT, also listed in Table 5.6. The LIGHT mode consists only of
the streaming phase, without any multi-stage refinement. The LIGHT+ mode builds upon
the LIGHT mode, adding a re-streaming and local search phase. The EVO mode, simi-
lar to the LIGHT+ mode, extends the LIGHT mode, but instead of re-streaming and local
search refinement, the algorithm undergoes the memetic refinement phase after the stream-
ing phase. Finally, the STRONG mode integrates all multi-stage refinements, starting with
memetic refinement, followed by re-streaming, and concluding with a local search phase.
We conduct this analysis using the Test dataset (Table 5.2) and the baseline configurations

44

5.5 CluStRE Performance Evaluation

Mode Initial Streaming Evolutionary Refinement Re-Streaming and Local Search
LIGHT ✓ - -

LIGHT+ ✓ - ✓

EVO ✓ ✓ -
STRONG ✓ ✓ ✓

Table 5.6. Outline of the different configurations of CLUSTRE.

for all refinement phases determined in the tuning study, summarized in Table 5.5. We ap-
ply the cut-off constraint parameter in the local search phase, to ensure we continue making
improvements if the rounds result in a significant increase in modularity. Additionally, we
set lstime_limit to ten minutes to prevent our algorithm from running for an excessive amount
of time. Furthermore, we set the MaxCluster to five million clusters, ensuring that all
experiments can run on our machine.
Based on the tuning experiments, we expect the CLUSTRE-LIGHT mode to be the fastest
algorithm with the lowest peak memory consumption but with the lowest solution qual-
ity. This is because it only applies the streaming phase, without constructing the quotient
graph, identified as the memory bottleneck in Figure 5.9, or utilizing additional refinement
phases to improve solution quality. We expect the CLUSTRE-LIGHT+ and CLUSTRE-
EVO modes to outperform the CLUSTRE-LIGHT mode, but at the cost of additional mem-
ory and runtime, since both modes go through an additional refinement phase after the
streaming phase, where either the quotient graph is constructed or the active node vector
is initialized. Finally, the CLUSTRE-STRONG mode is expected to yield the best solution
quality, but at the expense of significantly higher memory consumption and runtime, as it
incorporates all refinement phases of the multi-stage algorithm.
The comparative analysis of the four modes in Figure 5.11 highlights their unique per-
formance and potential applications, considering computational limitations and solution
quality requirements. As expected, the CLUSTRE-LIGHT mode is the fastest and has the
lowest memory peak across all instances, but at the same time, it also yields the lowest
modularity score. Next, we observe that the re-streaming and local search refinements im-
prove solution quality at the cost of slightly higher memory consumption and runtime. The
CLUSTRE-LIGHT+ mode improves solution quality by 14.93% over CLUSTRE-LIGHT,
while running 2.22× slower and consuming 1.74× more memory on average across all
instances. As seen in the performance of the CLUSTRE-EVO mode, the memetic refine-
ment phase alone also improves solution quality. On average, the CLUSTRE-EVO mode
yields 19.87% better solution quality, though it has a 4.70× higher memory consumption
and runs 9.97× slower than the CLUSTRE-LIGHT mode. As expected, the CLUSTRE-
STRONG mode achieves the best quality among the four modes but also results in the high-
est memory consumption and the slowest runtime. CLUSTRE-STRONG Improves solution
quality by 24.85% while running 10.35× slower and using 4.94× more memory on aver-
age across all instances. At first, it may appear that the CLUSTRE-STRONG mode requires

45

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
a
n
ce
s

Runtime

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14

Ratio to Best (τ)

Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

0.50.60.70.80.91.0

Ratio to Best (τ)

Modularity

Evo Light Light+ Strong

Figure 5.11. CLUSTRE Performance Evaluation: Performance profiles for runtime, peak memory
consumption, and modularity. For all algorithms, we use the baseline CLUSTRE con-
figuration, with different modes indicated in the legend.

large amounts of memory; however, when considering absolute values, the memory con-
sumption of the CLUSTRE-STRONG mode remains reasonable. For our largest instance,
uk-2007-05, with 105 million nodes and 3.3 billion edges, CLUSTRE-STRONG requires
only 2.26GB of peak memory, making it manageable for almost all computational devices.

Observation 5. The different modes of CLUSTRE (Table 5.6) emphasize different
criteria and can be used for different applications. CLUSTRE-LIGHT is the light-
est and most memory-efficient but yields the lowest quality. CLUSTRE-STRONG

achieves the highest quality, improving it by 24.85% but requires the longest run-
time and has the highest memory consumption. CLUSTRE-LIGHT+ strikes a bal-
ance between memory consumption, runtime, and solution quality, improving so-
lution quality by 14.93% over CLUSTRE-LIGHT while running 2.22× slower and
consuming 1.74× more memory on average. To answer RQ1, we can clearly state
that the re-streaming and memetic refinement stages significantly enhance the solu-
tion quality of the clustering. However, this comes at the expected cost of higher
memory consumption and a longer runtime.

5.6 Comparison against State-of-the-Art

We now provide experiments to evaluate the performance of CLUSTRE against current
state-of-the-art clustering algorithms. For our CLUSTRE algorithm, we test all different
modes with the baseline configuration determined in the tuning study, with their values
listed in Table 5.5. We first compare CLUSTRE to the current state-of-the-art streaming
graph clustering algorithm by Hollocou et al. [25]. For this algorithm, we apply the best
configuration we found for vmax determined in the Appendix A.2, which is set to a rel-

46

5.6 Comparison against State-of-the-Art

ative value of 1% of the total edges for each graph. We are also interested in how our
solution quality results compare to the current state-of-the-art in-memory graph clustering
algorithms. Specifically, we compare CLUSTRE to the well-known LOUVAIN algorithm
introduced by Blondel et al. [5] and to the state-of-the-art in-memory graph clustering al-
gorithm VIECLUS, which builds on the Louvain algorithm and uses a memetic approach
introduced by Biedermann et al. [4]. To ensure a fair runtime comparison, we allocate five
minutes for the VIECLUS evolutionary algorithm.

Goal. The main goal of these experiments is to tackle the two research questions we
posed at the beginning: whether CLUSTRE can bridge the solution quality gap when using
streaming algorithms compared to in-memory algorithms, as stated in RQ2. Furthermore,
with the different modes introduced by CLUSTRE, we investigate in RQ3 how well CLUS-
TRE balances runtime, peak memory consumption, and solution quality compared to other
state-of-the-art in-memory and streaming graph clustering algorithms.

Expectations. Before analyzing our experimental results, we expect in-memory algo-
rithms to yield the highest solution quality, as they have access to more global graph in-
formation than streaming algorithms when making decisions. In particular, we expect the
VIECLUS algorithm to outperform the LOUVAIN algorithm, due to its evolutionary nature,
which builds upon the LOUVAIN algorithm and explores a significantly larger solution
space. When examining the streaming graph clustering algorithms, we expect all modes
undergoing any refinement stage to yield higher solution quality than the HOLLOCOU al-
gorithm and the CLUSTRE-LIGHT mode, as previously observed in Section 5.5. A key
question then arises as to whether the CLUSTRE-LIGHT algorithm outperforms the HOL-
LOCOU algorithm, as both operate solely in a streaming fashion. In terms of memory
and runtime comparison, we expect the in-memory graph clustering algorithms to require
significantly more memory, as the entire graph must be stored in-memory. For all the
streaming algorithms, we expect significantly lower memory consumption. However, for
the modes that require the construction of the quotient graph, we anticipate higher memory
consumption than modes that do not. We expect a similar behavior regarding runtime. As
the evolutionary algorithm undergoes multiple rounds, we anticipate VIECLUS to require
the longest runtime. Additionally, we expect CLUSTRE-EVO, CLUSTRE-STRONG, and
LOUVAIN to have significantly longer runtimes, due to the memetic refinement phase in
the former two modes and the multiple rounds conducted by the LOUVAIN algorithm. We
expect the HOLLOCOU algorithm and the CLUSTRE-LIGHT mode to be the fastest algo-
rithms, as they are both purely streaming-based and do not incorporate any refinement or
additional processing phases.

Solution Quality Evaluation. The solution quality results of the experiments are de-
picted in Table 5.7. From Table 5.7, we observe that all CLUSTRE modes outperform
the current state-of-the-art streaming algorithm in terms of solution quality based on the

47

5 Experimental Evaluation

Graph Light Light+ Evo Strong Hollocou Louvain VieClus

arabic-2005 0.7407 0.9541 0.9850 0.9880 0.6579 0.9897 0.9899
citationCiteseer 0.4130 0.5525 0.7828 0.8148 0.2647 0.8184 0.8247
com-amazon 0.7637 0.7967 0.9106 0.9226 0.6238 0.9316 0.9344
com-friendster 0.5229 0.5838 0.5459 0.5870 0.0879 - -
enwiki-2013 0.5121 0.6243 0.5719 0.6385 0.0901 0.6611 0.6627
eu-2005 0.7364 0.8894 0.9204 0.9316 0.4223 0.9402 0.9408
great-britain 0.9248 0.9262 0.9972 0.9973 0.9344 0.9976 0.9977
hollywood-2011 0.5352 0.6924 0.6777 0.7286 0.2234 0.7531 0.7558
it-2004 0.7433 0.9403 0.9646 0.9693 0.6699 0.9763 0.9762
italy 0.9500 0.9517 0.9976 0.9976 0.9554 0.9980 0.9981
libimseti 0.3310 0.3829 0.3657 0.3949 0.0304 0.3945 0.3974
Penn94 0.3181 0.4006 0.4304 0.4869 0.0257 0.4896 0.4986
rgg_n26 0.9671 0.9733 0.9897 0.9909 0.9513 0.9956 0.9956
rhg2b 0.9920 0.9920 0.9921 0.9921 0.9446 - -
roadNet-CA 0.7802 0.7962 0.9919 0.9922 0.8388 0.9929 0.9935
roadNet-PA 0.7712 0.7864 0.9890 0.9894 0.8339 0.9901 0.9910
sk-2005 0.7237 0.9428 0.9664 0.9714 0.5015 - -
uk-2007-05 0.7135 0.8675 0.8216 0.8789 0.2315 - -
webbase-2001 0.6341 0.7865 0.7195 0.8085 0.7005 0.9824 0.9824
wiki-Talk 0.3156 0.3509 0.3338 0.3667 0.1068 0.3601 0.3845

GeoMean 0.6313 0.7256 0.7567 0.7882 0.3280 N/A N/A

Table 5.7. Test Experiment: Modularity Scores Comparison. Modularity scores achieved by our
proposed algorithms compared to competing in-memory and streaming clustering ap-
proaches across the test instances (Table 5.2). HOLLOCOU serves as the streaming com-
petitor, while LOUVAIN and VIECLUS represent state-of-the-art in-memory clustering
algorithms. Missing instances ("-") indicate failed runs due to exceeding the available
amount of memory on the machine.

geometric mean. On average, the CLUSTRE-LIGHT mode achieves 92.50% higher solu-
tion quality than the HOLLOCOU algorithm across all test instances, while the CLUSTRE-
STRONG algorithm improves solution quality by 140.33%, thus setting a new benchmark
for streaming graph clustering algorithms. Furthermore, we observe that for the Penn94
instance, the CLUSTRE-LIGHT mode achieves 12.37× higher solution quality than the
HOLLOCOU algorithm, while CLUSTRE-STRONG attains 18.95× the solution quality.
One prominent reason for the low solution quality of the HOLLOCOU algorithm is that
its performance strongly depends on the ordering of the streamed edges. This is because it
relies on the assumption that edges arriving early are more likely to be intra-cluster edges
than inter-cluster edges and therefore clusters incident nodes together early on. However,
this condition cannot be guaranteed. Moreover, in their official implementation, they first

48

5.6 Comparison against State-of-the-Art

stored all the edges in-memory, randomized their order, and then processed them to further
strengthen their assumption. However, we modified the HOLLOCOU algorithm to function
as a proper streaming algorithm, which reads the graph from disk, meaning that the order in
which the edges appear depends solely on the order provided by the graph. Hence, we en-
sure that every algorithm reads the graph in the same order, allowing for a fair comparison.
Notably, even with the original implementation, where all edges are stored in-memory and
randomized before processing, the solution quality of the HOLLOCOU algorithm does not
significantly improve but requires approximately 7.32× more memory on average across
all instances compared to the modified streaming version. Additionally, the HOLLOCOU

algorithm relies heavily on the vmax parameter, which we attempted to set as best as possible
during the tuning study in Appendix A.2. Nevertheless, since the authors do not provide
any guidance on how to select this parameter, it is likely that the parameter does not suit all
instances equally well, as observed with the Penn94 instance.
Analyzing the solution quality results confirms our expectations: the in-memory clustering
algorithms deliver the highest quality for every single instance, while the VIECLUS algo-
rithm provides slightly higher results than LOUVAIN due to its evolutionary nature. When
comparing the different modes of our CLUSTRE algorithms with the state-of-the-art in-
memory clustering algorithms, we observe a significant leap in solution quality. On aver-
age across all instances, our lightest and fastest mode, CLUSTRE-LIGHT, attains 77.36%
of LOUVAIN’s solution quality and 76.83% of VIECLUS’ solution quality. We observe
that with each additional refinement phase, the solution quality approaches that of the in-
memory algorithms. Specifically, with CLUSTRE-LIGHT+, we achieve 88.83% of LOU-
VAIN’s and 88.22% of VIECLUS’ solution quality, and with CLUSTRE-EVO, we achieve
94.19% of LOUVAIN’s and 93.55% of VIECLUS’ solution quality. In our best-performing
mode, which incorporates all refinement stages, CLUSTRE-STRONG reaches 98.21% of
LOUVAIN’s solution quality and 97.54% of VIECLUS’ solution quality on average across
all instances where the VIECLUS and LOUVAIN algorithms did not fail. As displayed in
Figure 5.7, the instances com-friendster, rhg2b, sk-2005, and uk-2007-05,
failed for the in-memory algorithms VIECLUS and LOUVAIN. This occurred because their
memory consumption exceeded the available memory on our 93 GB machine, further high-
lighting the necessity of a memory-efficient algorithm. These results clearly demonstrate
that the multi-stage refinements of CLUSTRE are highly effective at leveraging partial
global information through the quotient graph and the local search phase.

Observation 6. CLUSTRE outperforms HOLLOCOU in all configurations, improv-
ing solution quality by an average of 92.50% with CLUSTRE-LIGHT and 140.33%
with CLUSTRE-STRONG. To answer RQ2, we conclude that CLUSTRE effectively
bridges the solution quality gap between streaming and in-memory clustering algo-
rithms. CLUSTRE-STRONG establishes a new state-of-the-art standard in modular-
ity optimization, achieving over 97% of the solution quality of the state-of-the-art
in-memory clustering algorithms, such as LOUVAIN and VIECLUS.

49

5 Experimental Evaluation

1e-01

1e+00

1e+01

1e+02

1e+03

Light Light+ Evo Strong Hollocou

R
u
n
n
in
g
T
im

e
(s
)

Distribution of Running Time (s)

0.01

0.10

1.00

Light Light+ Evo Strong Hollocou

M
e
m
o
ry

C
o
n
su

m
p
ti
o
n

(G
B
)

Distribution of Memory Consumption (GB)

Light Light+ Evo Strong Hollocou

Figure 5.12. Comparison Against State-of-the-Art: Runtime and Peak Memory Consumption of
CLUSTRE Modes vs. HOLLOCOU. Box plots illustrate the runtime distribution (left)
and the peak memory consumption (right) across all test instances. Note the logarith-
mic scale on the y-axis.

Runtime and Memory Consumption Evaluation. To answer RQ3, we assess
the computational efficiency of our CLUSTRE algorithm compared to state-of-the-art in-
memory and streaming algorithms. Figure 5.12 and Figure 5.13 illustrate the distribution
of runtime and peak memory consumption as box plots for the different algorithms. Fig-
ure 5.12 benchmarks streaming algorithms across all instances, whereas Figure 5.13 il-
lustrates the distribution across all algorithms, excluding instances where VIECLUS and
LOUVAIN failed due to the 93 GB memory constraint imposed by the machine. As ex-
pected, the CLUSTRE-LIGHT mode is the fastest and most memory-efficient among all
streaming algorithms, even compared to the HOLLOCOU algorithm, with both the median
runtime and peak memory usage being lower. One possible reason is that HOLLOCOU

allocates a vector of size n at the start, solely to store the community volumes of single-
ton clusters. This step is omitted in our CLUSTRE algorithm, as the community volume
of a singleton cluster corresponds to the degree of the node. Therefore, CLUSTRE does
not directly allocate memory in the cluster volumes vector for every streamed node, as we
already know its community volume. Thus, in cases where assigning the streamed node
to an existing cluster results in higher modularity gain, we save one allocation in the clus-
ter volume vector since we only need to update the existing cluster volume. Furthermore,
Our approach is faster due to our streaming technique: only edges connected to already
streamed nodes are considered in our streaming algorithms, resulting in many edges being
left out of the initial streaming process. On average, across all instances, our CLUSTRE-
LIGHT mode runs 1.36× faster while requiring only 72.76% of the memory consumption
compared to HOLLOCOU. As a result, our CLUSTRE-LIGHT algorithm outperforms the
current state-of-the-art streaming approach across all key metrics, namely solution qual-
ity, peak memory consumption, and runtime. When comparing HOLLOCOU against the
modes that use refinements, we achieve, higher modularity score at the cost of increased

50

5.6 Comparison against State-of-the-Art

1e-01

1e+00

1e+01

1e+02

1e+03

Light Light+ Evo Strong Hollocou Louvain VieClus

R
u
n
n
in
g
T
im

e
(s
)

Distribution of Running Time (s)

1e-02

1e-01

1e+00

1e+01

1e+02

Light Light+ Evo Strong Hollocou Louvain VieClus

M
e
m
o
ry

C
o
n
su

m
p
ti
o
n

(G
B
)

Distribution of Memory Consumption (GB)

Light Light+ Evo Strong Hollocou Louvain VieClus

Figure 5.13. Comparison Against State-of-the-Art: Runtime and Peak Memory Consumption of
CLUSTRE Modes vs. HOLLOCOU, LOUVAIN, and VIECLUS. Box plots illustrate
the runtime distribution (left) and the memory consumption (right) across all test in-
stances. VIECLUS is given five minutes. Instances where the LOUVAIN and VIECLUS

algorithm fail ("-") are excluded from the plots.

computational resources. Our strongest mode, CLUSTRE-STRONG, improves the solution
quality of HOLLOCOU by an average of 140.33% across all instances, as seen in Table 5.7,
while requiring nearly 7.59×more runtime and 3.59×more memory. CLUSTRE-LIGHT+
offers a balanced alternative between solution quality and computational efficiency. On
average across all instances, CLUSTRE-LIGHT+ improves solution quality by 121.25%
while requiring only 1.63× longer and 1.27× more memory.
Figure 5.13 confirms our expectations that in-memory algorithms require significantly
more memory than all the streaming graph clustering algorithms. Furthermore, we ob-
serve that for CLUSTRE configurations where the quotient graph was constructed, specif-
ically, the CLUSTRE-EVO and CLUSTRE-STRONG modes, the memory distribution is
nearly identical. As shown in Figure 5.9, constructing the quotient graph accounts for
nearly 80% of the peak memory consumption. However, all CLUSTRE modes consume
significantly less memory than the LOUVAIN and VIECLUS algorithms. Our strongest
mode, CLUSTRE-STRONG, requires, on average, for all instances where VIECLUS and
LOUVAIN did not fail, only 10% of LOUVAIN’s and 5.64% of VIECLUS’ memory con-
sumption, while attaining over 97% of the solution quality, as shown in Table 5.7. By
excluding refinement stages, the median runtime and memory distribution significantly
decrease, especially for the modes where the quotient graph is not constructed, such as
CLUSTRE-LIGHT+ and CLUSTRE-LIGHT. Again, we observe that CLUSTRE-LIGHT+
optimizes computational costs while retaining most of the solution quality benefits. On
average across all feasible instances, CLUSTRE-LIGHT+ attains 88.83% of LOUVAIN’s
and 88.22% of VIECLUS’ solution quality, while requiring only 2.93% of LOUVAIN’s and
1.65% of VIECLUS’ peak memory consumption. Additionally, it runs 2.48× faster than
LOUVAIN and an impressive 65.84× faster than VIECLUS.

51

5 Experimental Evaluation

Observation 7. To address RQ3, we conclude that CLUSTRE effectively balances
runtime, memory consumption, and solution quality by providing multiple modes
tailored for specific applications. CLUSTRE-LIGHT runs 1.36× faster and con-
sumes only 72.76% of the memory consumption of HOLLOCOU while achieving
92.50% higher solution quality. Furthermore, CLUSTRE-STRONG attains 97% of
the solution quality of VIECLUS while requiring only 5.64% of the memory con-
sumption and running 9.85× faster than VIECLUS. The CLUSTRE-LIGHT+ mode
offers a balance between the two modes mentioned above while still achieving more
than double the solution quality compared to HOLLOCOU.

5.6.1 Ground-Truth Communities Performance
Finally we investigate RQ4, which questions the ability of CLUSTRE to find ground-truth
communities compared to the current state-of-the-art streaming clustering algorithm
HOLLOCOU. To evaluate our ability to uncover ground-truth communities we use the
ground-truth dataset and the Normalized Mutual Information (NMI) as the comparison
metric [30]. NMI quantifies the similarity between two clusterings by measuring the
mutual information they share, normalized by their individual uncertainties, irrespective
of label permutations. For this experiment we apply the baseline configuration for all
CLUSTRE algorithms and use the determined best value for the vmax parameter being the
relative value of 1% of the total edges for HOLLOCOU.
Before analyzing the results, we speculate CLUSTRE-STRONG to perform best and yield
the highest NMI score, while the HOLLOCOU algorithm to yield lower scores. This is
because, as observed in Section 5.6, CLUSTRE-STRONG yields the highest modularity
score, while the HOLLOCOU algorithm delivers the lowest. Note that the modularity
objective function assesses clusterings based on intra-cluster density and inter-cluster
sparsity. Therefore, we can assume that for a clustering of high modularity, the clusters
are likely well-defined and reflect real groupings in the graph, thereby increasing the
likelihood of these clustering to match the true labels, which, in turn, could result in a
higher NMI score.
Table 5.8 presents the results of our experiment. First of all, we observe that our specu-
lations are confirmed. The NMI score of our CLUSTRE-LIGHT mode is higher than the
HOLLOCOU algorithm for every single instance and yields a 20.04% better NMI score
on average across all instances. Furthermore, we observe an increase in NMI with each
additional refinement stage. With LIGHT+ and EVO modes, we improve the ground-truth
recovery ability by approximately 26.42% and 34.76% on average across all instances,
respectively. This highlights the significant impact of the memetic refinement stage alone.
By incorporating all multi-stage refinements, with CLUSTRE-STRONG, we attain the
highest NMI score out of all algorithms. In this case, the ground-truth recovery ability of
CLUSTRE-STRONG is about 39.65% higher than that of HOLLOCOU.

52

5.6 Comparison against State-of-the-Art

Graph Light Light+ Evo Strong Hollocou
Modularity NMI Modularity NMI Modularity NMI Modularity NMI Modularity NMI

Cora 0.7158 0.3993 0.7434 0.3993 0.7820 0.4274 0.7991 0.4419 0.5054 0.36
Citeseer 0.7926 0.3318 0.8108 0.3314 0.8781 0.3382 0.8867 0.3384 0.6730 0.3309
AmazonCP 0.5627 0.4397 0.6133 0.4679 0.5944 0.4507 0.6231 0.4784 0.1193 0.3404
PubMed 0.6388 0.1658 0.6775 0.1692 0.7301 0.1871 0.7552 0.1917 0.3258 0.1518
AmazonPH 0.5448 0.4698 0.6547 0.5291 0.7122 0.6188 0.7318 0.6452 0.2725 0.3174

GEOMEAN 0.6444 0.3399 0.6965 0.3538 0.7334 0.3763 0.7542 0.3885 0.3212 0.2883

Table 5.8. Test Experiment: Ground-Truth Comparisons. This experiment evaluates modularity
and Normalized Mutual Information (NMI) scores by comparing them against ground-
truth community structures in various benchmark graphs. Higher scores indicate a
stronger alignment with the known community structures.

Observation 8. To answer RQ4, we confidently conclude that CLUSTRE improves
the ability to recover ground-truth communities. Starting with CLUSTRE-LIGHT,
we outperform the HOLLOCOU algorithm by 20.04%, whereas CLUSTRE-STRONG

further enhances this ability, increasing the NMI score by 39.65%, demonstrating
the effectiveness of multi-stage refinement in ground-truth retrieval.

53

5 Experimental Evaluation

54

CHAPTER 6
Discussion

6.1 Conclusion

In this work, we propose CLUSTRE, a new graph Clustering algorithm that uses
a Streaming setting with multi-stage refinement, incorporating Re-streaming and
Evolutionary heuristics. CLUSTRE is a node-streaming algorithm that dynamically con-
structs a quotient graph data structure that portrays key structural properties and inter-
actions between clusters in the original graph. The quotient graph serves as input to a
state-of-the-art in-memory evolutionary graph clustering algorithm, VIECLUS, to further
optimize clustering quality. Furthermore, our algorithm includes a re-streaming and lo-
cal search stage, which also optimizes the solution quality by leveraging partial global
information. Overall, CLUSTRE bridges the solution quality gap between in-memory and
streaming graph clustering algorithms by achieving approximately 97% of the in-memory
solution quality, while only requiring about 5% of the memory consumption and operating
10 × faster compared to state-of-the-art in-memory clustering algorithms LOUVAIN and
VIECLUS. The experimental evaluation highlights the superiority of CLUSTRE compared
to other state-of-the-art streaming graph clustering algorithms, such as HOLLOCOU, in all
key metrics, including solution quality, memory consumption, runtime, and ground-truth
community retrieval. Even our lightest mode, CLUSTRE-LIGHT, significantly outper-
forms HOLLOCOU, improving solution quality by 92.50%, while requiring only 72.76%
of the total memory and running 1.36 × faster on average for all instances. Addition-
ally, our strongest mode, CLUSTRE-STRONG, improves solution quality by about 140%,
setting a new benchmark for streaming graph clustering algorithms. Most importantly,
our CLUSTRE algorithm improves the retrieval of ground-truth communities compared to
HOLLOCOU by up to 39.65%, making it the current best-performing streaming algorithm
for accurately identifying ground-truth communities. These results underline the versatility
of CLUSTRE, positioning it as a promising tool for high-quality clustering computations,
even in resource-constrained settings.

55

6 Discussion

6.2 Future Work

This work opens up several avenues for future research to further improve CLUSTRE with
respect to the key metrics mentioned above. First of all, as previously seen in Figure 5.9,
the quotient graph is the primary memory consumption bottleneck. One potential approach
to improve CLUSTRE’s peak memory efficiency is to explore alternative dynamic and ef-
ficient data structures for storing the quotient graph representation. A promising direction
is to explore compression algorithms, such as LIGRA+ [57]. This concept can also be
extended to VIECLUS in the memetic refinement phase. For the memetic refinement al-
gorithm, only a static compression algorithm is required, as the graph for each generated
instance remains unchanged; we simply create and discard instances. Applying compres-
sion algorithms is expected to significantly reduce overall memory consumption. This
would not only optimize memory usage during quotient graph construction but also de-
crease memory required for each generated instance in the memetic refinement phase.
Moreover, to improve solution quality and reduce runtime, we could integrate other in-
memory graph clustering algorithms for refining the quotient graph. For instance, we could
leverage in-memory algorithms discussed in Chapter 3, such as the LEIDEN or LOUVAIN

algorithm. In this case, we can expect a reduction in runtime and memory consumption, but
also a reduction in solution quality, as the evolutionary scheme is omitted, eliminating the
need to generate multiple instances and undergo the five phases of an evolutionary scheme.
Another promising approach is to explore parallelization in the local search phase of CLUS-
TRE. We could apply a technique similar to the Two-Phase Label Propagation intro-
duced by the TERAPART [51] algorithm for the graph partitioning problem. The Two-
Phase Label Propagation iterates over the set of nodes in parallel and in some cases over
the neighbors of nodes as well. This approach can be integrated into our local search
phase, as detailed in Section 4.4. We would iterate over the active node set in parallel,
using the same iteration scheme as in the Two-Phase Label Propagation algorithm, ex-
cept that, instead of moving nodes to the clusters with the strongest connection, we move
nodes to the cluster yielding the highest modularity gain. We expect this modification to
improve the algorithm’s runtime.
Finally, to improve solution quality when a maximum cluster limit is set, we suggest modi-
fying the gain function in Section 4.2. As shown in Section 5.4.4 of the tuning experiments,
setting an upper bound significantly reduces solution quality, even when using the memetic
refinement phase. One suggestion to mitigate this phenomenon is to modify the gain func-
tion to account for the current number of initialized clusters, assigning nodes to already
existing clusters if the modularity decrease is only minimal. This approach would later
allow nodes to be assigned to a new cluster if their neighborhood assignment drastically
decreases the modularity score. This modification could help counteract the rapid drop in
solution quality once the cluster boundary is reached.

56

APPENDIX A
Appendix

A.1 Modularity Equivalence Proof

Theorem 2. Let G = (V,E) be an undirected graph with edge weights w : E → R≥0,
and let C = {C1, C2, . . . , Ck} be a partition of V into clusters. The modularity of C in G is
defined as:

modG(C) =
1

m

∑
Ci∈C

(
KCi → Ci

− vol(Ci)
2

2m

)
, (A.1)

where:

• m =
∑

(u,v)∈E w(u, v) is the total edge weight,

• KCi → Ci
=

∑
u,v∈Ci,(u,v)∈E w(u, v) is the total intra-cluster edge weight,

• vol(Ci) =
∑

v∈Ci
dw(v) is the volume of Ci, where dw(v) =

∑
u∈N(v) w(v, u) is the

weighted degree

Consider the quotient graph GQ =
(
VQ, EQ

)
, where each cluster Ci in G is contracted

to a supernode v′i in GQ, with edge weights:

w′(v′i, v
′
j) = KCi → Cj

=
∑

u∈Ci, v∈Cj ,(u,v)∈E

w(u, v). (A.2)

and self-loop weights w′(v′i, v
′
i) = KCi → Ci

. Then:

• Define the clustering C ′ = {{v′i} | Ci ∈ C} in GQ. The modularity of the clustering
C ′ of the quotient graph GQ satisfies modGQ

(C ′) = modG(C).

57

A Appendix

• Given any clustering C ′ in GQ, its modularity is preserved when expanded to G, i.e.,
if Ĉ is the corresponding clustering in G, then modG(Ĉ) = modGQ

(C ′)

Proof. The total edge weight in GQ remains equivalent by construction:

m′ =
∑

(v′i,v
′
j)∈EQ

w′(v′i, v
′
j) =

∑
(u,v)∈E

w(u, v) = m. (A.3)

Since we defined C ′ = {{v′i} | Ci ∈ C} in GQ, we get that the modularity of C ′ in GQ is:

modGQ
(C ′) = 1

m

∑
v′i∈VQ

(
w′(v′i, v

′
i) −

vol(v′i)
2

2m

)
. (A.4)

where, by construction w′(v′i, v
′
i) = KCi →Ci

and vol(v′i) = vol(Ci) due to the weighted
self-loops. Thus we get:

modGQ
(C ′) = 1

m

∑
Ci∈C

(
KCi →Ci

− vol(Ci)
2

2m

)
= modG(C). (A.5)

Modularity is invariant under contraction.
For the reverse direction, consider a clustering C ′ in GQ. The expansion C ′ into G defines a
clustering Ĉ, where each supernode v′i ∈ C ′j is replaced by its original cluster Ci, forming
Ĉj = ∪v′i∈C′

j
Ci. The modularity of Ĉ in G is:

modG(Ĉ) =
1

m

∑
Ĉj∈Ĉ

(
KĈj →Ĉj

− vol(Ĉj)
2

2m

)
. (A.6)

By construction, KĈj →Ĉj
= KC′

j →C′
j

and vol(Ĉj) = vol(C ′j) =⇒ modG(Ĉ) =

modGQ
(C ′). Therefore, modularity is invariant under expansion. ■

A.2 vmax Tuning for Hollocou

As detailed above, the HOLLOCOU algorithm introduced by Hollocou et al. [25] requires
a predefined parameter, vmax. However, the authors provide no guidance on selecting vmax

and do not specify the value used in their experiments. Thus, we conduct this study to
determine an appropriate value for vmax, ensuring a fair comparison between our algorithm
and HOLLOCOU.
For this study, we take two approaches. The first approach involves defining an absolute
value, vabs ∈ {10k, 100k, 500k, 1m}, and the second involves using a relative parameter,
vrel ∈ {0.1, 0.05, 0.01, 0.005}. The parameter vrel represents the fraction of the total edges
used as vmax. This means that if vrel = 0.1, then the vmax is set to 10% of the total edges.

58

A.2 vmax Tuning for Hollocou

0.0

0.2

0.4

0.6

0.8

1.0

0.00.20.40.60.81.0

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Modularity

abs = 100k abs = 10k abs = 1k abs = 1m

(a) Modularity Score - Absolute Values

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.81.0

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Modularity

rel = 0.005 rel = 0.01 rel = 0.05 rel = 0.1

(b) Modularity Score - Relative Values

Figure A.1. Tuning Experiment: vmax. Performance profiles for Modularity scores. For all ex-
periments, we use the HOLLOCOU algorithm with varying vmax values, as indicated
in the legend.

Absolute values set a fixed upper bound for each cluster, independent of graph size, while
the relative parameter dynamically adjusts the maximum cluster size, preventing any single
cluster from dominating the graph.
Note that memory consumption is independent of vmax. This is because the algorithm
initializes all vectors to size n, including the cluster volumes vector, with all nodes starting
as singletons, regardless of vmax. Furthermore, runtime is independent of vmax since it only
determines whether to merge the current edge’s endpoints. Thus, we omit performance
profiles comparing runtime and memory consumption, as vmax does not affect them.
Figure A.1 illustrates the performance of the different vmax values. Comparing the absolute
values, we observe that the algorithm with vabs = 10k performs best, achieving an average
modularity score 26.94% higher than the worst-performing algorithm, vabs = 1 million,
across all instances. Additionally, it attains 13.45% higher solution quality on average
across all instances compared to the second-best algorithm, vmax = 1k. Among the algo-
rithms with varying relative vmax values, vrel = 0.01 achieves an average modularity score
33.74% higher than the worst-performing algorithm, vrel = 0.1, while also outperforming
the second-best algorithm, vrel = 0.005, by 0.27%
Figure A.2 depicts the comparison of the two best-performing configurations of the relative
and absolute values, namely vabs = 10k, vabs = 1k, and vrel = 0.01, vrel = 0.005. There we
we observe that, the relative parameter values result in higher solution quality. Specifically,
vrel = 0.01 increases modularity score on average by 6.48% across all tuning instances
compared to the best-performing absolute value, vabs = 10k.
For the reasons mentioned above, the most suitable parameter to use as a base-
line for HOLLOCOU is the best-performing configuration of a relative value for vmax,
namely vrel = 0.01.

59

A Appendix

0.0

0.2

0.4

0.6

0.8

1.0

0.40.50.60.70.80.91.0

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Modularity

rel = 0.005 rel = 0.01 abs = 10k abs = 1k

Figure A.2. Tuning Experiment: vmax. Performance profiles for Modularity scores. For all experi-
ments, we use the HOLLOCOU algorithm with varying relative and absolute values for
vmax, as indicated in the legend.

A.3 Further Results

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Runtime

d = 15 d = 30 d = 300 d = 60 d = 600

Figure A.3. Tuning Experiment: Memetic Refinement. Performance profile for runtime. For all
algorithms, we use the baseline CLUSTRE configuration with no restriction on the
maximum number of clusters. The algorithms underwent a streaming phase followed
by a memetic refinement phase with varying duration values (D).

60

A.3 Further Results

0.0

0.2

0.4

0.6

0.8

1.0

1.000 1.002 1.004 1.006 1.008

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

cut = 0 cut = 0.005 cut = 0.01 cut = 0.05

Figure A.4. Tuning Experiment: Local Search Cut-off Constraint. No Memetic Refinement. Per-
formance profile for peak memory consumption. For all algorithms, we use the base-
line CLUSTRE configuration with no memetic refinement, no restriction on the maxi-
mum number of clusters, and one re-stream iteration. The local search threshold value
lscutoff varies as indicated in the legend (CUT).

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15 1.20

Ratio to Best (τ)

F
ra
ct
io
n
o
f
In
st
a
n
ce
s

Memory Consumption

cut = 0 cut = 0.005 cut = 0.01 cut = 0.05

Figure A.5. Tuning Experiment: Local Search Cut-off Constraint. With Memetic Refinement. Per-
formance profiles for peak memory consumption. For all algorithms, we use the base-
line CLUSTRE configuration with memetic refinement, no restriction on the maximum
number of clusters, and one re-stream iteration. The local search threshold value lscutoff
varies as indicated in the legend (CUT).

0.0

0.2

0.4

0.6

0.8

1.0

1.000 1.002 1.004 1.006 1.008 1.010 1.012 1.014

Ratio to Best (τ)

F
ra
ct
io
n
of

In
st
an

ce
s

Memory Consumption

frac = 0.5 frac = 1 frac = 2

Figure A.6. Tuning Experiment: Local Search Time Fraction Constraint. No Memetic Refinement.
Performance profiles for peak memory consumption. For all algorithms, we use the
baseline CLUSTRE configuration with no memetic refinement, no restriction on the
maximum number of clusters, and one re-stream iteration. The local search time frac-
tion lsfrac_time varies as indicated in the legend (FRAC).

61

A Appendix

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.02 1.04 1.06 1.08 1.10 1.12

Ratio to Best (τ)

F
ra
ct
io
n
o
f
In
st
a
n
ce
s

Memory Consumption

frac = 0.5 frac = 1 frac = 2

Figure A.7. Tuning Experiment: Local Search Cut-off Constraint. With Memetic Refinement. Per-
formance profiles for peak memory consumption. For all algorithms, we use the base-
line CLUSTRE configuration with memetic refinement, no restriction on the maximum
number of clusters, and one re-stream iteration. The local search time fraction lsfrac_time
varies as indicated in the legend (FRAC).

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0

Ratio to Best (τ)

F
ra
ct
io
n
o
f
In
st
a
n
ce
s

Runtime

mc = 0.001 mc = 0.005 mc = 0.05 mc = 0.1 mc = 1

Figure A.8. Tuning Experiment: Max Cluster. Performance profile for runtime. For all algorithms,
we use the baseline CLUSTRE configuration with varying values for the maximum
cluster fraction parameter (MC). Each algorithm underwent a streaming phase followed
by a 15-second memetic phase.

62

A.3 Further Results

Zusammenfassung

Das Clustern eines Graphen in dijunkte Gemeinschaften ist eine zentrale Technik der Da-
tenanalyse, um Interaktionen und ähnlichkeiten zwischen Entitäten innerhalb eines Daten-
satzes zu bewerten. In dieser Arbeit präsentieren wir den neuartigen Streaming-Graph-
Clustering-Algorithmus CLUSTRE, der mithilfe eines mehrstufigen Verfeinerungsschemas
ein ausgewogenes Verhältnis zwischen rechnerischer Effizienz und hochwertigem Cluster-
ing erreicht. CLUSTRE verarbeitet den Graphen in einer Streaming-Umgebung, wodurch
der Gesamtspeicherverbrauch erheblich reduziert wird. Gleichzeitig nutzt er Re-Streaming
und evolutionäre Heuristiken, um die Lösungsqualität weiter zu verbessern. Während des
Streamings erzeugt CLUSTRE dynamisch einen Quotientengraphen, der die wesentlichen
strukturellen Eigenschaften des ursprünglichen Graphen bewahrt. Diese Methode er-
möglicht effiziente, modularitätsbasierte Optimierungen für große Graphen. CLUSTRE
bietet verschiedene Konfigurationsoptionen, die unterschiedliche Kompromisse zwischen
Laufzeit, Speicherverbrauch und Clustering-Qualität erlauben und so seine Vielseitigkeit
unterstreichen. Unser Ansatz erzielt eine Lösungsqualität, die bestehende Streaming-
Clustering-Algorithmen um mehr als 92 % übertrifft, während er 1,36× schneller arbeitet
und nur 72,76 % des Speicherverbrauchs moderner Streaming-Methoden benötigt. Darüber
hinaus steigert CLUSTRE in seiner leistungsstärksten Konfiguration die Lösungsqualität
um mehr als 140 %. Diese Ergebnisse zeigen, dass CLUSTRE eine Lösungsqualität er-
reicht, die mit In-Memory-Clustering-Algorithmen weitgehend vergleichbar ist. Er erzielt
über 97 % der Qualität hochmoderner In-Memory-Algorithmen wie LOUVAIN und über-
brückt damit effektiv die Lücke zwischen Streaming- und In-Memory-Clustering.

63

Bibliography

[1] Vicente Arnau, Sergio Mars, and Ignacio Marín. Iterative cluster analysis of protein
interaction data. Bioinformatics, 21(3):364–378, 2005.

[2] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto
Marchetti-Spaccamela, and Marco Protasi. Complexity and approximation: Com-
binatorial optimization problems and their approximability properties. Springer Sci-
ence & Business Media, 2012.

[3] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors.
Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge
Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012.
Proceedings, volume 588 of Contemporary Mathematics. American Mathematical
Society, 2013.

[4] Sonja Biedermann, Monika Henzinger, Christian Schulz, and Bernhard Schuster.
Memetic Graph Clustering. In Proceedings of the 17th International Symposium
on Experimental Algorithms (SEA’18), LIPIcs. Dagstuhl, 2018. Technical Report,
arXiv:1802.07034.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10):P10008, October 2008.

[6] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. Bubing: Mas-
sive crawling for the masses. ACM Transactions on the Web (TWEB), 12(2):1–26,
2018.

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for compressing social net-
works. In Proceedings of the 20th international conference on World Wide Web, pages
587–596, 2011.

[8] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression tech-
niques. In Proceedings of the 13th international conference on World Wide Web,
pages 595–602, 2004.

65

Bibliography

[9] Ulrik Brandes. Network analysis: methodological foundations, volume 3418.
Springer Science & Business Media, 2005.

[10] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE transactions on
knowledge and data engineering, 20(2):172–188, 2007.

[11] Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier.
Buffered streaming edge partitioning. arXiv preprint arXiv:2402.11980, 2024.

[12] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. A unified view of kernel k-means,
spectral clustering and graph cuts. Citeseer, 2004.

[13] Laxman Dhulipala, Jakub Lkacki, Jason Lee, and Vahab Mirrokni. Terahac: Hierar-
chical agglomerative clustering of trillion-edge graphs. Proceedings of the ACM on
Management of Data, 1(3):1–27, 2023.

[14] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with per-
formance profiles. Mathematical programming, 91:201–213, 2002.

[15] Agoston E Eiben and James E Smith. Introduction to evolutionary computing.
Springer, 2015.

[16] Marcelo Fonseca Faraj and Christian Schulz. Buffered streaming graph partitioning.
ACM Journal of Experimental Algorithmics, 27:1–26, 2022.

[17] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,
2010.

[18] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proceedings of the national academy of sciences, 104(1):36–41, 2007.

[19] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders,
Christian Schulz, Darren Strash, and Moritz von Looz. Communication-free mas-
sively distributed graph generation. Journal of Parallel and Distributed Computing,
131:200–217, 2019.

[20] Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph color-
ing. Journal of combinatorial optimization, 3:379–397, 1999.

[21] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[22] Roger Guimera and Luís A Nunes Amaral. Functional cartography of complex
metabolic networks. nature, 433(7028):895–900, 2005.

66

Bibliography

[23] Jiahao Guo, Pramesh Singh, and Kevin E Bassler. Resolution limit revisited: commu-
nity detection using generalized modularity density. Journal of Physics: Complexity,
4(2):025001, 2023.

[24] Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz. Distributed graph
clustering using modularity and map equation. In European Conference on Parallel
Processing, pages 688–702. Springer, 2018.

[25] Alexandre Hollocou, Julien Maudet, Thomas Bonald, and Marc Lelarge. A streaming
algorithm for graph clustering. arXiv preprint arXiv:1712.04337, 2017.

[26] Rongqi Jing, Zhengwei Jiang, Qiuyun Wang, Shuwei Wang, Hao Li, and Xiao Chen.
From fine-grained to refined: Apt malware knowledge graph construction and attribu-
tion analysis driven by multi-stage graph computation. In International Conference
on Computational Science, pages 78–93. Springer, 2024.

[27] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM (JACM), 51(3):497–515, 2004.

[28] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the
22nd International Conference on World Wide Web, WWW ’13 Companion, pages
1343–1350, New York, NY, USA, 2013. Association for Computing Machinery.

[29] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: a com-
parative analysis. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,
80(5):056117, 2009.

[30] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New journal of physics,
11(3):033015, 2009.

[31] Jure Leskovec and R Sosič. Snap: Stanford network analysis platform, 2013.

[32] Jiakang Li, Songning Lai, Zhihao Shuai, Yuan Tan, Yifan Jia, Mianyang Yu, Zichen
Song, Xiaokang Peng, Ziyang Xu, Yongxin Ni, et al. A comprehensive review of
community detection in graphs. arXiv preprint arXiv:2309.11798, 2023.

[33] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya Nepal,
Jian Yang, and Philip S Yu. Deep learning for community detection: progress, chal-
lenges and opportunities. arXiv preprint arXiv:2005.08225, 2020.

[34] Yue Liu, Jun Xia, Sihang Zhou, Xihong Yang, Ke Liang, Chenchen Fan, Yan Zhuang,
Stan Z Li, Xinwang Liu, and Kunlun He. A survey of deep graph clustering: Tax-
onomy, challenge, application, and open resource. arXiv preprint arXiv:2211.12875,
2022.

67

Bibliography

[35] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135–146, 2010.

[36] Noeleene Mallia-Parfitt and Georgios Giasemidis. Graph clustering and variational
image segmentation for automated firearm detection in x-ray images. IET Image
Processing, 13(7):1105–1114, 2019.

[37] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Partitioning complex
networks via size-constrained clustering, 2014.

[38] Brad L Miller and David E Goldberg. Genetic algorithms, selection schemes, and the
varying effects of noise. Evolutionary computation, 4(2):113–131, 1996.

[39] Mark EJ Newman. Fast algorithm for detecting community structure in networks.
Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 69(6):066133,
2004.

[40] Mark EJ Newman. Modularity and community structure in networks. Proceedings of
the national academy of sciences, 103(23):8577–8582, 2006.

[41] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure
in networks. Physical review E, 69(2):026113, 2004.

[42] Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. Advances in neural information processing systems, 14, 2001.

[43] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versatile
algorithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 1106–1114,
2013.

[44] Michael Ovelgönne and Andreas Geyer-Schulz. An ensemble learning strategy for
graph clustering. Graph partitioning and graph clustering, 588:187, 2012.

[45] Jose B Pereira-Leal, Anton J Enright, and Christos A Ouzounis. Detection of func-
tional modules from protein interaction networks. Proteins: Structure, Function, and
Bioinformatics, 54(1):49–57, 2004.

[46] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time
algorithm to detect community structures in large-scale networks. Phys. Rev. E,
76:036106, Sep 2007.

68

Bibliography

[47] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the AAAI conference on artificial intel-
ligence, volume 29, 2015.

[48] Mehrdad Rostami, Mourad Oussalah, and Vahid Farrahi. A novel time-aware food
recommender-system based on deep learning and graph clustering. Ieee Access,
10:52508–52524, 2022.

[49] Martin Rosvall, Daniel Axelsson, and Carl T Bergstrom. The map equation. The
European Physical Journal Special Topics, 178(1):13–23, 2009.

[50] Subhajit Sahu. Heuristic-based dynamic leiden algorithm for efficient tracking of
communities on evolving graphs. arXiv preprint arXiv:2410.15451, 2024.

[51] Daniel Salwasser, Daniel Seemaier, Lars Gottesbüren, and Peter Sanders. Tera-scale
multilevel graph partitioning. arXiv preprint arXiv:2410.19119, 2024.

[52] Peter Sanders and Christian Schulz. Distributed evolutionary graph partitioning. In
2012 Proceedings of the fourteenth workshop on algorithm engineering and experi-
ments (ALENEX), pages 16–29. SIAM, 2012.

[53] Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced
graph partitioning. In International Symposium on Experimental Algorithms, pages
164–175. Springer, 2013.

[54] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.

[55] Christian Schulz. High quality graph partitioning. Citeseer, 2013.

[56] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868, 2018.

[57] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and faster: Parallel
processing of compressed graphs with ligra+. In 2015 Data Compression Conference,
pages 403–412. IEEE, 2015.

[58] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile
Paris, Surya Nepal, Di Jin, et al. A comprehensive survey on community detection
with deep learning. IEEE Transactions on Neural Networks and Learning Systems,
2022.

[59] Ole Tange. Gnu parallel-the command-line power tool. Usenix Mag, 36(1):42, 2011.

[60] V. A. Traag, L. Waltman, and N. J. van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific Reports, 9(1), March 2019.

69

Bibliography

[61] Vincent A Traag, Paul Van Dooren, and Yurii Nesterov. Narrow scope for resolution-
limit-free community detection. Physical Review E-Statistical, Nonlinear, and Soft
Matter Physics, 84(1):016114, 2011.

[62] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook
networks. Physica A: Statistical Mechanics and its Applications, 391(16):4165–4180,
August 2012.

[63] Stijn Van Dongen. Graph clustering by flow simulation. PhD thesis, University of
Utrecht, 2000.

[64] Stijn Van Dongen. Graph clustering via a discrete uncoupling process. SIAM Journal
on Matrix Analysis and Applications, 30(1):121–141, 2008.

[65] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17:395–416, 2007.

[66] Shiping Wang, Jinbin Yang, Jie Yao, Yang Bai, and William Zhu. An overview of
advanced deep graph node clustering. IEEE Transactions on Computational Social
Systems, 11(1):1302–1314, 2023.

[67] Timothé Watteau, Aubin Bonnefoy, Simon Illouz-Laurent, Joaquim Jusseau, and
Serge Iovleff. Advanced graph clustering methods: A comprehensive and in-depth
analysis. arXiv preprint arXiv:2407.09055, 2024.

[68] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised
learning with graph embeddings. In International conference on machine learning,
pages 40–48. PMLR, 2016.

70

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	Basic Concepts
	Graph Clustering
	Objective Functions

	Multilevel Scheme
	Evolutionary Algorithms
	Streaming Models

	Related Work
	In-Memory Graph Clustering
	Global Clustering Algorithms
	Local Clustering Algorithms
	Multi-Level Clustering Algorithms
	VieClus

	Streaming Graph Clustering

	CluStRE: Streaming Graph Clustering with Multi-Stage Refinement
	Overall Algorithm
	One-Pass Streaming with Modularity Gain Scoring
	Modularity Refinement via Memetic Clustering
	Modularity Refinement via Re-Streaming with Local Search

	Experimental Evaluation
	Hardware
	Methodology
	Dataset
	Tuning Study
	Memetic Refinement Time Limit
	Number of Re-streams
	Local Search Limit
	Maximum Number of Clusters

	CluStRE Performance Evaluation
	Comparison against State-of-the-Art
	Ground-Truth Communities Performance

	Discussion
	Conclusion
	Future Work

	Appendix
	Modularity Equivalence Proof
	vmax Tuning for Hollocou
	Further Results

	Abstract (German)
	Bibliography

