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Abstract

Small node separators for large graphs are used in a variety of ways, from divide-and-
conquer algorithms to efficient route planning algorithms. We present a new algorithm for
finding small k-way node separators on connected undirected graphs. We use an evolution-
ary algorithm to combine different separators in order to generate improved offsprings with
locally good parts of both parent separators. Additionally, we also propose a new k-way
local search to further improve already existing separators. Our experimental evaluation of
our algorithm shows that we have an average improvement of 18% and 23% respectively
for our two different configurations and a maximum improvement of 64% compared to the
already existing algorithm in KaHIP for finding k-way node separators.

Zusammenfassung

Kleine Knotenseparatoren für große Graphen werden auf verschiedene Arten verwendet,
von teile-und-herrsche Algorithmen bis zu Routenplanungsalgorithmen. Wir stellen einen
neuen Algorithmus zum Finden von kleinen k-Wege Knotenseparatoren auf zusammen-
hängenden, ungerichteten Graphen vor. Wir benutzen einen Evolutionären Algorithmus
um verschiedene Separatoren zu kombinieren, was zur Erzeugung von neuen Separatorn
führt, die lokal gute Teile von beiden Anfangsseparatoren enthalten. Die experimentelle
Auswertung unseres Algorithmus zeigt, dass wir eine durchschnittliche Verbesserung von
18% beziehungsweise 23% für unsere beiden Konfigurationen und eine maximale Verbes-
serung von 64% haben gegenüber des bereits existierenden Algorithmus in KaHIP zum
finden von k-Wege Knotenseparatoren.
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1 Introduction

1.1 Motivation

A frequently used algorithmic design pattern is the divide-and-conquer strategy. It is used
for a multitude of problems from sorting with Mergesort or Quicksort to matrix multipli-
cation with the Strassen algorithm [13]. The basic idea of the divide-and-conquer strategy
is to divide a given problem into smaller subproblems and then solving these easier sub-
problems. The solutions of the subproblems are then combined to give the solution of
the original problem. The divide-and-conquer strategy is often used recursively on the sub-
problems until the subproblems are sufficiently small to be solved by a base case algorithm.
The prerequisites for this strategy are such that the decomposition of the problem instance
into subproblems and the recombination of the subsolutions is fairly efficient and the sub-
problems should be independent and of roughly the same size [4].

The divide-and-conquer strategy can also often be applied to graph problems where a well-
known approach to implement this strategy is to use node separators. Given a graph, we
divide it into k blocks and an additional separator block such that no node in one block
is adjacent to a vertex in any other block except for the separator. This ensures the pre-
requisite that the subproblems, in this case the different blocks, are independent of each
other. To ensure that the subproblems are roughly the same size, the blocks have to fulfill
a balance constraint which limits the size difference of the blocks. In order for the divide-
and-conquer strategy to be efficient, the separator block has to be as small as possible in
order to minimize the effort to recombine the solutions of the subproblems.

Our approach to computing a node separator which divides the graph into k blocks, also
called a k-way separator, is to use a multilevel method in conjunction with an evolutionary
algorithm. Since finding the best solution to the node separator problem is NP hard on
general graphs [5], we use this approach in order to find equally sized blocks as well as
a small node separator. The multilevel method iteratively coarsens the input graph and
then computes an initial node separator on the smallest graph. We use the node separator
algorithm of the KaHIP (Karlsruhe High Quality Partitioning) library [10] to compute the
initial separator. We then uncoarsen the graph together with the initial separator until we
reach the original input graph. In each of these uncoarsening steps we perform a novel
local search refinement which reduces the size of the node separator while still fulfilling
the balance constraint on the k blocks.
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1 Introduction

In order to further improve the node separator we use an evolutionary algorithm which
computes multiple node separators with the multilevel method and then combines these to
composite a new separator of locally “good” parts of the input separators to obtain a smaller
node separator solution. Since our algorithm is not dependent on a specific implementa-
tion for computing the initial separator, it can be used to improve any previously existing
separator for a given graph.

1.2 Overview

The thesis is structured as follows: In Section 2, we introduce notations and definitions
which are used throughout the thesis and explain the node separator problem in detail. In
Section 3 we present work which is related to the topic of this thesis and explain the basic
idea of the multilevel approach we use. Our k-way local search algorithm is introduced in
Section 4 where we also explain a k-way balancing method and the corresponding runtime
analysis. The evolutionary algorithm and the different operations we use as part of our
evolutionary algorithm are explained in Section 5. The evaluation of our algorithm in com-
parison to an already existing KaHIP algorithm is presented in Section 6. We summarize
the results and give an outlook on future work for our algorithm in Section 7.
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2 Preliminaries

In this chapter, we introduce notations and definitions which are used throughout the thesis.
We first give an overview of common definitions from graph theory and then introduce
more specific notations for the node separator problem.

2.1 General Definitions

Throughout this thesis G = (V,E) denotes a connected undirected graph. An undirected
graph G = (V,E) is defined as a tuple of a set of vertices V and a set of edges E ⊆ V ×V
connecting the vertices. We denote the number of vertices in a graph by n = |V | and the
number of edges by m = |E|.
Given a graph G = (V,E), we define a weight function c : V → R≥0 which assigns each
node in V a non-negative weight. This weight function can be extended to sets of vertices
such that c(V ) =

∑
v∈V c(v).

A connected graph G = (V,E) is a graph where for every pair of vertices u, v ∈ V there
exists a path between those vertices in G.
A graph G′ = (V ′, E ′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E ∩ (V ′ ×
V ′). A subgraph G′ of G is induced by a set of vertices V ′ ⊆ V is G′ = (V ′, E ′) where
E ′ = {{u, v} ∈ E |u, v ∈ V ′}. A subgraph G′′ of G is induced by a set of edges E ′′ ⊆ E
is G′′ = (V ′′, E ′′) where V ′′ = {u, v ∈ V | {u, v} ∈ E ′′}.
P is called a partition of a graph G = (V,E) if P is a partition of the set of vertices V into
disjoint subsets P = {V1, V2, . . . , Vk}. Each Vi is called a block. Given such a partition, the
quotient graph Q = (VQ, EQ) is defined as follows. For each of the blocks Vi ∈ P there
exists one vertex vi in VQ. The set of edges EQ is defined as EQ = {{vi, vj} | ∃{u,w} ∈
E : u ∈ Vi, w ∈ Vj, i, j ∈ {1, . . . , k}, i 6= j}. Therefore a quotient graph Q of a graph
G = (V,E) represents the blocks of G and if there is an edge in G connecting two nodes of
two distinct blocks then there is an edge in Q connecting the respective vertices. We also
call two blocks adjacent to each other if there exists an edge in the quotient graph between
the corresponding block-vertices.
We define the neighborhood N(v) of a node v ∈ V to be the set of all nodes which are
adjacent to v in G. Given a partition P = {V1, V2, . . . , Vk} we can divide the neighborhood
of a node into multiple disjunct sets, one for each block in the partition. We defineNi(v) :=
N(v) ∩ Vi to be the subset of the neighborhood of a node v where all nodes u ∈ Ni(v) are
part of the block Vi.
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2 Preliminaries

2.2 Node Separators

2.2.1 Node Separator Problem

Given a graph G = (V,E), a weight function c : V → R≥0, a weighting parameter ε and
k ∈ N>1, the node separator problem is to partition V into k subsets V1, V2, . . . , Vk and the
node separator S such that:

(i) Vi ∩ Vj = ∅ ∀i, j ∈ {1, . . . , k}, i 6= j,
(ii) Vi ∩ S = ∅ ∀i ∈ {1, . . . , k},

(iii)
⋃k

i=1 Vi ∪ S = V ,
(iv) {{u, v} ∈ E | u ∈ Vi, v ∈ Vj, ∀i, j ∈ {1, . . . , k}, i 6= j} = ∅,
(v) c(S) is minimized,

(vi) ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax := (1 + ε) dc(V )/ke.

This means that we want to find disjoint sets V1, V2, . . . , Vk and a node separator S such
that there exists no edge between any two nodes of different blocks Vi and Vj . We also
want the weight of S to be minimized while the weight of the blocks Vi does not surpass a
given maximum block weight.
If no weight function is given we define a new weight function c(v) = 1 ∀v ∈ V . This is
equivalent to searching for a node separator of minimum cardinality |S|.
The partition P = {V1, V2, . . . , Vk} and the blocks Vi ∈ P are also said to be induced by
the separator S and ε is also called the imbalance or imbalance parameter of G.
Lmax denotes the maximum block weight and it implies a balancing constraint for any block
Vi. The separator block S has no such constraint. For small ε the balancing constraint
implies that the weight difference of any two blocks in G is small. As ε increases the
difference in weights of the blocks is allowed to get bigger. This also increases the number
of valid solutions for the node separator problem which will likely lead to smaller node
separators. Note that choosing large values for ε can lead to entire blocks being empty.
Also note that choosing ε = 0 does not imply that all blocks of G have the same weight.
Some of the total weight of all nodes is contained in the separator S which in turn allows
for a variance in block weights even though ε = 0.
A block Vi is called balanced if it fulfills the balance constraint and a node separator S is
called balanced if all blocks induced by S are themselves balanced. Conversely we call a
block or separator imbalanced if it is not balanced.
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2.2 Node Separators

2.2.2 Additional Definitions

We define the similarity σ of two node separators S1 and S2 of a graph G = (V,E) as the
cardinality of the symmetric difference of both separators:
σ = |S1 ∆S2| = |(S1 \ S2) ∪ (S2 \ S1)|. Therefore σ denotes the number of nodes con-
tained in one separator but not in the other. If σ = 0, both separators are identical and as σ
grows the separators become less similar.
In a partition P induced by a node separator all blocks Vi ∈ P will only be adjacent to the
separator block S or to no block at all by the standard definition of adjacency given above.
We provide a more convenient definition for node separators: two different blocks Vi and
Vj are adjoint to each other if there exists a separator node s ∈ S such that ∃u ∈ Vi, v ∈
Vj ∧ ∃{u, s}, {s, v} ∈ E. Such a node s directly separates Vi and Vj . Note that s can
directly separate more than two blocks. This definition is also equivalent to the existence
of a path of length 2 from a node u ∈ Vi over a separator node s ∈ S to a node v ∈ Vj .
Similarly in a quotient graph Q = (VQ, EQ) of a graph G with node separator S all nodes
in VQ will only have an edge to the node s corresponding to the separator block or to no
node at all. We again provide a more convenient definition for node separators: for each
block Vi there exists a vertex vi in VQ and for each two blocks Vi and Vj which are adjoint
there exists an edge {vi, vj} in EQ.

5



2 Preliminaries

6



3 Related Work

One of the most well-known contributions to research of node separators is the Planar Sep-
arator Theorem of Lipton and Tarjan [7]. It states that on planar graphs a small node sepa-
rator can always be found in linear time. Planar graphs are graphs which can be embedded
in the plane such that no two edges cross one another. Given a planar graph G = (V,E)
there therefore exists a separator S which splits the graph into two blocks A and B whose
size does not exceed 2 |V | /3. The size of the separator additionally fulfills the constraint
|S| = O

(√
|V |
)

.

3.1 Multilevel Approach

In general, finding a minimum weight node separator on arbitrary graphs is NP-hard [5].
Therefore, different methods and heuristics are used to compute a small node separator.
One of the methods, which is also the base of thesis, is the multilevel approach [9], which
is divided into three different phases:

Coarsening. First a hierarchy of graphs is created through multiple coarsening steps.
The result of one coarsening step is a graph which has a reduced number of nodes compared
to the input graph. Iterating coarsening creates a graph hierarchy where each new graph
level is coarser (has fewer nodes) than the level before it.
One method of implementing a coarsening step is by constructing an edge matching. Each
edge of the matching is incident to two nodes which are themselves not incident to any
other edge in the matching. These edges are contracted so that the two incident nodes are
combined into a new node which inherits the incident edges of both nodes.

Initial Separator Computation. After generating a hierarchy of coarser graphs, we
compute an initial node separator on the coarsest graph.

7



3 Related Work

Uncoarsening. The coarsening is undone by replacing each node by its two source
nodes from the previous level starting at the coarsest level. The separator nodes are there-
fore projected from the coarser graphs to the finer ones. After each uncoarsening of a level
local search can be applied to the reduce the separator size.
One iteration of coarsening, computing the initial separator and uncoarsening, is also called
a V-cycle and iterating multiple V-cycles of a multilevel approach is called an iterated
multilevel approach [14]. In each of these phases additional heuristics can be used to
further improve the separator.
One possible way to compute the initial node separator which is used in KaHIP [10] is to
construct a partition for the given graph and then transform it into the initial node separator.
The transformation can be done by looking at each adjacent pair of blocks in the partition
separately. For each such pair Pi = (Va, Vb) we define the edges between the blocks
Ei := {(v, u) ∈ E | v ∈ Va, u ∈ Vb} and the borders ∂aPi := {v ∈ Va | ∃u ∈ Vb :
(v, u) ∈ Ei} and ∂bPi := {v ∈ Vb | ∃u ∈ Va : (v, u) ∈ Ei}. We find the smaller of
both borders by weight, which we denote by ∂minPi. ∂minPi separates Va and Vb, therefore
combining all these borders for all adjacent pairs into one set gives us our initial separator
S :=

⋃
Pi
∂minPi.

contract

match local improvement

uncontract

local improvement

uncontract

inital separator
Figure 3.1: Illustration of the multilevel approach with the coarsening phase on the left side from

top to bottom, the initial separator computation on the bottom on the uncoarsening
phase on the right side from bottom to the top. The edges of the matching are depicted
in blue and the separator nodes in red.
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3.2 Evolutionary Partitioning

Since finding optimal solutions for optimization problems like the node separator problem
or the partitioning problem is usually hard and time intensive, randomized algorithms are
often used to compute solutions in a short amount of time which are close to the opti-
mal solution. These algorithms produce different solutions of different quality depending
on the initial random seed and therefore multiple iterations are performed in order to be
able to chose the best solution. Sanders and Schulz [9] use an evolutionary algorithm for
finding better partitions by not only performing multiple iterations but also using different,
biologically inspired operations on the results of these iterations.
When performing an evolutionary algorithm, first a population of multiple individuals is
produced by simply iterating an already existing partitioning algorithm. When the popu-
lation is filled, two individuals from the population are selected and then combined in a
specific way such that the quality of the resulting partition is at least as good as the best of
both input partitions. Alternatively only one individual is selected and then mutated such
that the result is again a partition of equal or better quality. The resulting individuals are
then reinserted into the population by replacing an individual from the population with the
new individual. These operations are iterated in order to find better solutions.

9



3 Related Work

10



4 Local Search

Local search is used to improve an already given solution to the node separator problem.
As the term implies we locally search for a better separator in the solution space around
an already given separator in order to find a new locally optimal solution. Since the initial
separator is included in the search space the local search operates on and the local search
finds the optimum of that search space, the weight of the separator resulting from it is
guaranteed to be nonincreasing.
In this chapter we first give an overview of how we use multiple local search iterations to
improve a separator. We then give an outline of flow-based local search [11] which is used
to improve separators where k = 2. We also show how to use this local search to construct
a more general local search for improving arbitrary k-way separators.

4.1 Overview

As seen in Algorithm 1, we use multiple local search iterations to increase the chance
of improving the separator. The first step is to preprocess and if necessary balance the
separator S. Then we iteratively perform a k-way local search on S. We start with a
predefined maximum value for the expansion α of the flow problem used in our local search
and we reduce this value in each iteration. As we explain in Section 4.2, a larger expansion
value α can lead to larger improvements in separator weight for S but it can no longer be
guaranteed that S is balanced. If we find an improved separator S which is balanced then
we return this separator. If after n iterations no balanced separator has been found then
we perform a final k-way local search with no expansion of the flow problem which will
produce a balanced separator. Since our k-way local search always produces a balanced
separator if the input separator is balanced, we can guarantee that if a balanced separator S
is given as input into our algorithm we will also output a balanced separator.

4.2 Flow-based Local Search

The local search we apply uses a flow-based technique [11] in order to find the smallest
separator from a given subgraph where k = 2. The idea is to expand the separator S into
S ′ by performing two breadth first searches (BFS) into both blocks V1 and V2 and then find
the best separator in S ′ by solving a node-capacitated flow problem F induced by S ′.

11



4 Local Search

Algorithm 1: Separator refinement algorithm which uses k-way local search
Input: graph G and separator S

1 preprocess S
2 if S imbalanced then
3 balance S

4 α = maximum expansion value // parameter for expansion of flow problem
5 while less than n iterations do // do at most n iterations
6 perform k-way local search on S with maximum imbalance of (1 + α)Lmax

7 if S balanced then
8 break
9 else

10 α = α/2 // decrease expansion value
11 reset S to last balanced state

12 if S imbalanced then
13 perform k-way local search on S with maximum imbalance of Lmax

14 return separator S

A border of A ⊂ V is defined as ∂A := {u ∈ A | ∃{u, v} ∈ E : v /∈ A} as well as the left
border ∂1A := ∂A ∩ V1 and the right border ∂2A := ∂A ∩ V2.

The subgraph is selected by doing two BFSs. Each BFS is initialized with S. The first BFS
only traverses nodes in V1 and any touched nodes are added to a vertex set S1. Similarly
the second BFS only traverses V2 and adds its nodes to S2. The first BFS stops as soon as
the weight of S1 would exceed Lmax− c(V1)− c(S) and the second BFS stops if the weight
of S2 would exceed Lmax− c(V2)− c(S). These stopping criteria ensure that each possible
separator which can be found in S ′ = S1 ∪ S2 fulfills the balance constraint.

The set of vertices S ′ induces a node-capacitated flow problem F = (VF , EF ). F is a
directed graph containing all nodes of S ′ and additionally the nodes s and t where s is the
source of the flow problem and t the sink. For each undirected edge {u, v} in the subgraph
induced by S ′ both directed edges (u, v) and (v, u) are contained in EF . EF also contains
all directed edges from s to ∂1S ′ as well as all directed edges from ∂2S

′ to t. The edge-
capacities of all edges are ∞ and the node-capacities are the weights of the nodes in the
original graph G.

By solving the maximum flow problem stated above we obtain the smallest separator that
can be found in S ′. The nodes with maxed capacities directly translate to a balanced sepa-
rator in G.

In order to find even smaller node separators, it is possible to expand S ′ even further by
defining a new stopping criterion with a parameter α: (1 +α)Lmax− c(Vi)− c(S). Here, a
bigger value for α leads to a greater depth of the BFSs and therefore a larger search space
for the flow problem. Note that by setting α to zero we obtain the original criterion.

12



4.3 k-way Local Search

4.3 k-way Local Search

Our k-way local search builds on top of the flow-based search which is intended for im-
proving a separator with k = 2. The idea is to find pairs of adjoint blocks and then perform
the local search on the subgraph induced by these block pairs.

4.3.1 Preprocessing

In order to find pairs of adjoint blocks, we look at separator nodes which directly separate
two different blocks, meaning these separator nodes are adjacent to nodes from at least
two different blocks not including the separator block. We denote these pairs by P =
{{Vi, Vj} | ∃s ∈ S such that s directly separates Vi and Vj}.
In general these separator nodes do not have to exist which means that although a separator
divides two blocks, the shortest distance from one block to the other block through the
separator is greater than two. In this case, we move nodes from the separator to an adjacent
block to narrow the separator. We do this by first moving all separator nodes into a queue
and then iterating through all nodes in the queue until it is empty. For each node in the
queue, we look at the neighboring nodes and move it into an adjacent block if possible or
discard the node if it cannot be moved. Let s be the next separator node in the queue.
If s only has neighbors from one block Vi in addition to the separator block, we can directly
move this node to block Vi. If there are two or more neighboring non-separator nodes
belonging to different blocks, we found a separator node which cannot be moved to another
block because it already directly separates at least two blocks. We mark s and then discard
it.

(a) Graph before preprocessing (b) Graph after preprocessing

Figure 4.1: Illustration of the preprocessing algorithm for a graph with blocks V1 (green), V2 (blue)
and separator S (red).
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4 Local Search

The final case which can occur is that s only has other separator nodes as neighbors. Here,
we differentiate between two subcases. If all neighboring nodes are already marked, then
none of these nodes are eligible to move to another block and s can be discarded. Otherwise
at least one node is still eligible to move and we enqueue s again.
A problem that can occur is that a group of non-marked separator nodes can be surrounded
by marked separator nodes in which case the non marked nodes will be repeatedly en-
queued resulting in an infinite loop. To circumvent this problem we use two separate
queues, one for dequeuing nodes and one for enqueuing nodes. After emptying the dequeu-
ing queue we check if we moved any separator nodes to other blocks while dequeuing. If
this is not the case then either the enqueuing queue is empty or it contains the aforemen-
tioned circumscribed separator nodes which either way indicates the end of the separator
node moving algorithm.
By moving the separator nodes, we have ensured that we can find adjoint pairs of blocks
through looking only at the separator nodes which directly separate two or more different
blocks. A drawback to this preprocessing step is that we can no longer guarantee that
the balance constraint is met. We remedy this with a separate balance operation which is
discussed in detail in Section 4.4.

4.3.2 Pair Refinement

Subsequent to the preprocessing step we can now identify the set of all adjoint block pairs
P by simply iterating through all separator nodes and their adjacent blocks. We iterate
through all pairs pi = (Vi1 , Vi2) ∈ P and build the respective subgraph Gi. Gi is induced
by the set of nodes consisting of all nodes in Vi1 and in Vi2 as well as all separator nodes
which directly separate Vi1 and Vi2 . After building Gi, we run local search designed for
2-way separators on this subgraph as shown in Section 4.2.
In order to increase the total improvement and because the graph changes each time we run
local search, we repeatedly run local searches on the pairs of blocks. We do this by iterating
over the set P of all pairs and performing local search on all pairs p ∈ P until P is empty.
We refer to the number of iterations as maximum pair refinement steps. After each local
search on a pair p we record the improvement of the local search. If it does not improve the
separator then we refrain from doing another local search on p and remove p from P . If it
does improve the separator but we have already performed the specified maximum number
of local searches we also remove p from P . In all other cases we move p to the back of P
and perform another local search on p after all other pairs in P have been visited.

14
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4.4 k-way Balancing

4.4.1 Algorithm

To guarantee that the balance constraint is fulfilled by the resulting separator of our node
separator refinement, we need a balanced separator before calling our k-way local search.
We now present a balance operation which given an arbitrary separator of a graph G =
(V,E), will produce a balanced separator for G. The idea is to move nodes from the imbal-
anced and therefore heavy blocks towards the lightest block until all blocks are balanced
again as is illustrated in Figure 4.2. As long as there are imbalanced blocks in the G we
iteratively repeat the following steps, each iteration of which will improve the balance in
the graph.

Finding the path

First we identify the currently heaviest block Vmax and lightest block Vmin. Then we com-
pute the quotient graph Q from G and search a path P from Vmax to Vmin in Q. We can
always find such a path because G is a connected graph which implies that the quotient
graph of G is also connected. We represent P as a list of directed edges in the form
P = ( (A1, A2), (A2, A3), . . . , (Ap−1, Ap) ) where Ai ∈ {V1, . . . , Vk}, A1 = Vmax and
Ap = Vmin.

Figure 4.2: Illustration of the quotient graph and the balancing path (blue) from an imbalanced
block (red) to the lightest block (green).
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Moving nodes

Next we iterate through the edges (Ai, Ai+1) ∈ P and push nodes from Ai into Ai+1 until
Ai is balanced. This is done by creating a priority queue of separator nodes where the
priority represents the expected gain of moving a node from the separator into Ai+1. Note
that when moving a node s from the separator S to Ai+1 we have to insert all adjacent
nodes Ni(s) of s which lie in Ai into the separator otherwise S would no longer be a valid
separator. We therefore define the gain g(s) of a separator node to be g(s) := c(s) −∑

v∈Ni(s)
c(v) which means g(s) is equal to the change of the separator weight if we move

s into Ai+1.
Other definitions for the gain of a node are also conceivable. We use this definition because
our primary target is to minimize the increase of the separator size.
We fill the priority queue with all separator nodes which are adjacent to both Ai and Ai+1.
Then we dequeue nodes from the queue untilAi is balanced. We move each dequeued node
s to Ai+1 and move its neighbors Ni(s) from Ai to the separator. We also check for any
other nodes in S which can be moved to Ai+1 without moving new nodes into the separator
and move them too. This is done so we don’t leave any nodes in the separator which touch
only one block and therefore retain the state of the separator which was created by the
preprocessing step in Section 4.3.1.
After moving the nodes Ai will be balanced and because we started from the beginning of
the path all Aj, j ≤ i along the path are now balanced. Should Ai+1 also be balanced, then
we don’t have to move any more nodes along the path and can continue with balancing the
next imbalanced block in G. If however Ai+1 is imbalanced we iterate further through the
path and move nodes along the next pair in P from Ai+1 to Ai+2.
In the case where Ai+1 is imbalanced and Ai+1 = Vmin, meaning there is no pair left in P ,
we simply push the excess weight into the separator. This is done to ensure termination of
the algorithm. Since most of the excess weight from the A1 has been distributed along the
path and also because practical tests have shown that this scenario is unlikely, the impact
on the separator size is minor.
Another way of handling this scenario would be to simply addAi+1 to the set of imbalanced
partitions. This will prevent unnecessary increase of the separator size but the termination
of the algorithm could theoretically no longer be guaranteed.
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4.4 k-way Balancing

4.4.2 Analysis

Termination

We now show that this procedure will balance all blocks in G and terminate in a finite
number of steps.

By always selecting the heaviest and lightest blocks to build our path along which we move
nodes, we end the movement of the nodes in one of two possible cases:

Case 1: We stop moving nodes because both blocks of the current edge (Ai, Ai+1) in the
path are balanced. Obviously this means that we now have at least one less imbalanced
block. At the beginning of the node movement phase we had at least one imbalanced block
(A1 = Vmax) along the path until Ai+1 and at the end all blocks up to and including Ai+1

are balanced. Additionally if there still exist other imbalanced blocks then Vmax will no
longer be the heaviest block, instead one of the other imbalanced blocks will now be the
new heaviest block.

Case 2: We stop moving nodes because we are at the end of the path and Vmin is now
imbalanced. Because we now push the excess weight of Vmin into the separator, which is
always possible, Vmin is now balanced too. By similar reasoning as above we now have at
least one less imbalanced block.

Summarizing, in each case the number of imbalanced blocks is reduced. Therefore this
algorithm will terminate after at most as many iterations as there are imbalanced blocks
and it will result in a graph where all blocks are balanced.

Runtime

We now determine an upper bound on the runtime of this algorithm. Let B be the set of
all imbalanced blocks. For each imbalanced block b ∈ B we calculate the shortest path to
the lightest block via BFS and balance the blocks along this path. To simplify the runtime
analysis we use the following insights:

(i) The path from the imbalanced block to the lightest block contains at most k pairs of
blocks, else there would be loops in this path and it would not be the shortest path.

(ii) If there are blocks along the path which are balanced then they can potentially store
some of the excess weight which we push along the path. We can disregard this
fact in our estimation since it would only lead to performing fewer operations when
balancing the other pairs in the path because we have less excess weight to move.

(iii) If there are blocks along the path P which are imbalanced then this means from this
point on we push the excess weight of more than one block along the path. How-
ever, at the end of balancing all remaining pairs in P all excess weight of all imbal-
anced partitions along the path has been distributed to other blocks and the separator.
In other words we performed the balancing of the paths of all theses imbalanced
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blocks on P together. We can consider each of these paths individually since the to-
tal amount of weight we push along the paths and therefore the number of operations
has not changed.

With these insights we can write out the runtime of the balancing algorithm as:

O

(∑
b∈B

balance b

)
= O

(∑
b∈B

balance path Pb

)
.

The runtime of finding the shortest path in the quotient graph Q = (VQ, EQ) is equal to the
runtime of the BFS which is in O(|VQ|+ |EQ|) = O(|EQ|).

The first step in each balance procedure for a pair p ∈ Pb is to initialize the queue with all
separator nodes which separate the two blocks of the pair and to calculate their gain value.
Since these separator nodes are mostly different for each pair p in the path we can estimate
the total amount of separator nodes which are initially moved into the queue to be inO(|S|)
for each path Pb. The calculation of the gain value for a separator node s is done by looking
at all its neighbors N(s). We use the fact that the number of adjacent nodes |N(n)| of any
node n ∈ V will always be less than or equal to the maximum node degree ∆. Therefore,
we have a runtime of O(∆ · |S|) for initializing all queues for a given path Pb.

This yields the following runtime for the whole balancing algorithm:

O

(∑
b∈B

balance path Pb

)
= O

(∑
b∈B

(
BFS + initialize queues +

∑
p∈Pb

balance pair p

))

= O

(∑
b∈B

(
|EQ|+ ∆ · |S|+

∑
p∈Pb

balance pair p

))
.

In each balancing procedure for a pair p = (Ai, Ai+1), p ∈ Pb we have to push the excess
weight of the imbalanced block b from Ai to Ai+1. Let Cb := c(b) − Lmax be the excess
weight of b ∈ B and CB =

∑
b∈B Cb the total excess weight of all imbalanced blocks. Let

Si be the set of all nodes s ∈ S which will be moved from the separator S to Ai+1. As
described in Section 4.4.1, for each such node s we also look at all its neighbors N(s). We
make the estimation that for each node s we move into Ai+1 we will also move on average
one node n ∈ Ai form Ai into S. Let Mi be the set of all such nodes which we move into
S. We again have to look at all neighbors.

We will look at the worst case where each node n ∈ V has weight c(n) = 1 meaning
we have to move Cb nodes from Ai to Ai+1. This also means by our prior estimation that
|Si| = |Mi| = Cb. By using the prior upper bound ∆ for |N(n)| we get the following
estimated runtime for a balancing procedure of a pair on the path Pb:
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O (balance pair p = (Ai, Ai+1)) = O

(∑
s∈Si

N(s) +
∑
m∈Mi

N(m)

)
= O (∆ · (|Si|+ |Mi|))

= O (2 ·∆ · Cb) = O (∆ · Cb) .

We can now combine this with our first runtime approximation:

O

(∑
b∈B

(
|EQ|+ ∆ · |S|+

∑
p∈Pb

balance pair p

))
= O

(∑
b∈B

(
|EQ|+ ∆ · |S|+

∑
p∈Pb

∆ · Cb

))

= O

(∑
b∈B

(|EQ|+ ∆ · |S|+ k ·∆ · Cb)

)

= O

(∑
b∈B

(|EQ|+ ∆ · |S|) +
∑
b∈B

(k ·∆ · Cb)

)

= O

(∑
b∈B

(|EQ|+ ∆ · |S|) + k ·∆ · CB

)
= O (|B| · (|EQ|+ ∆ · |S|) + k ·∆ · CB) .

Therefore our final runtime of the whole k-way balancing algorithm is:

O

(∑
b∈B

balance b

)
= O (|B| · (|EQ|+ ∆ · |S|) + k ·∆ · CB) .

This clearly shows that the runtime is divided into two parts. The preparation part which
includes the calculation of the shortest path and the initialization of the queues has runtime
O (|B| · (|EQ|+ ∆ · |S|)). The runtime of the actual movement of the nodes has runtime
O (k ·∆ · CB) and is thus only proportional to the number of blocks k, the maximum node
degree ∆ and the total excess weightCB of all imbalanced blocks. We can now simplify our
runtime by using the following upper bound approximations: O(|B|) = O(k), O(|EQ|) =
O(k2), O(|S|) = O(n) and O(CB) = O(n). Our simplified runtime is therefore:

O
(
k ·
(
k2 + ∆ · n

)
+ k ·∆ · n

)
= O

(
k3 + k ·∆ · n+ k ·∆ · n

)
= O

(
k3 + k ·∆ · n

)
.

For planar graphs the size of the separator can be approximated with O(|S|) = O(
√
n)

yielding a simplified runtime of O (k3 + k ·∆ ·
√
n).
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5 Evolutionary Algorithm

In this chapter, we explain our new approach to compute small node separators by using
an evolutionary algorithm. The intuition of this method is that different separators are
combined by compositing a new separator of locally “good” parts of the input separators
to obtain a smaller node separator solution. The different operations with which we realize
in our evolutionary algorithm are inspired by the techniques of Sanders and Schulz [9].

5.1 Overview

The basis of an evolutionary algorithm is a population of multiple individuals and a fitness
function to assess the quality of each individual. In our case, the population is composed of
different node separators and the fitness function is the size of the separator. The evolution-
ary algorithm then uses the biological concepts of recombination, mutation and selection
on individuals from the population to iteratively produce new individuals of better solution
quality.
One iteration consists of selecting two individuals from the population and combining them
to generate an improved offspring. An individual of the population is then chosen to be
replaced by the new offspring. To increase the diversity of the population an iteration can
alternatively consist of selecting a single individual and mutating it to increase diversity in
the population, therefore preventing the individuals from getting too similar.
Since our evolutionary algorithm generates only one offspring per iteration round and in-
serts it into the population by evicting another individual, the size of the population remains
constant. This algorithm is therefore also called steady-state [6].

Algorithm 2: A general evolutionary algorithm
1 create initial population P
2 while stopping criterion not fulfilled do
3 select parents p1, p2 from P
4 combine p1 with p2 to create offspring o
5 mutate offspring o
6 replace an individual from the population with o

7 return the fittest individual in the population
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5 Evolutionary Algorithm

5.2 Selection

The selection operation is the method of choosing individuals from the population which
are then used to generate a new offspring. The easiest method of choosing two parent
individuals is just taking two random individuals out of the population. This ensures that
every individual has the same chance of generating an offspring.
Another method of choosing the individuals is to choose the first one randomly and then
select the individual which is least similar to the first one. The idea behind this method is
that it could produce better offspring (given the right combination operation described in
Section 5.3) because the diversity of the parents increases the search space for the offspring.
The obvious drawback is the increased run time since the similarity between the first parent
and every other individual in the population has to be calculated.

Our approach. We use another selection rule which aims to improve the fitness of the
offspring, the tournament selection rule [8]. It selects two individuals at random from the
population and then chooses the fittest of these two for the first parent individual. This
is repeated for the second parent individual, although if the fittest of these two random
individuals is the same as the first chosen parent individual, the second random individual
is chosen as the second parent individual.

5.3 Combination

The combination operation takes two individuals and creates a new offspring with traits
from both parent individuals which is illustrated in Figure 5.1. In our case, we ensure that
the separator size of the offspring is at most the lowest of both parents (i.e. the fitness of
the offspring improves compared to the parents).
Our combination operation combines the parent node separators S1 and S2 by using the
iterated multilevel approach as described in Section 3.1. Let B1 = {V 1

1 , . . . , V
k
1 } be the

blocks induced by the parent separator S1. We define C1 = {{v, s} ∈ E1 | v ∈ V i
1 ∧

s ∈ S1, i ∈ {1, . . . , k}} to be the set of separating edges which connect a non-separator
node of a block inB1 node to a separator node in S1. We similarly define C2 for S2. During
the coarsening phase of the multilevel method, no edges in the set of all such separating
edges C = C1 ∪ C2 are matched or contracted.
At the end of the coarsening phase, we select the parent separator with the smaller weight
and apply it to the graph at the coarsest level. This also enables us to skip the next phase
where the initial node separator is normally calculated. Since the contraction of all sep-
arating edges was blocked, only edges which connect nodes of the same block will be
contracted. Therefore the remaining nodes in the coarsest graph represent sets of nodes
which belong to the same block and it is possible to directly apply the parent separator
to the coarsest graph. Since the following uncoarsening and refinement steps are guaran-

22



5.3 Combination

teed to not increase the separator weight and the so far found solution is the weight of the
applied separator, we can guarantee the aforementioned improvement of the separator size.
Blocking the separating edges of one separator from contracting effectively contracts all
adjacent nodes of the same block into single nodes at the coarsest level. Additionally
blocking the separating edges of another separator will split these nodes with regards to the
second separator. Hence the following refinement step can easily exchange these sizable
parts by just moving a few nodes at the coarsest level and can thus bring together good
parts of both parent separators.

contract

block matching

parent separator 1 parent separator 2

uncontract

local improvement

combination

Figure 5.1: Illustration of the combination operation where both parent separators prevent edges
from being matched and contracted. The blocked edges of separator 1 are depicted in
red and the additional blocked edges of separator 2 in blue.
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5.4 Mutation

The mutation operation is used to modify a given individual in order to decrease the sim-
ilarity to its parent individuals and to the rest of the population. This increase in diversity
and the resulting expansion of the search space helps the algorithm avoid converging to
local optima and therefore finds a better global solution [3].
Usually the mutation operation is used on the offspring generated by the combination op-
eration as seen in Algorithm 2. In our implementation we either perform a combination
operation or we mutate a random individual from the population. The ratio between these
operations is predefined.
To mutate a given separator, we use a strategy similar to the combination operation. We
first coarsen the graph while restricting the contraction of edges between nodes of different
blocks induced by the separator. We then apply the separator to the graph on the coarsest
level and perform refinement and uncoarsening until we reach the topmost level. Applying
the separator at the coarsest level ensures nondecreasing quality of the separator. Since
our internal algorithms are randomized, this increases the chance of reducing the similarity
of the new separator to the given input separator. A mutation operation can potentially
be iterated multiple times to further reduce the similarity between the input and output
individuals and to increase the fitness even more.

5.5 Replacement

A replacement operation takes place whenever an individual is inserted into the population.
In order for the population to maintain a fixed size, an individual must be replaced by the
newer one. A naive approach would be to simply select a random individual from the
population and replace it. This is a less favorable method since it could lead to evicting
the fittest or one of the fittest individuals worsening the overall solution quality of the
population.
We therefore choose to only replace individuals with low fitness by ones with higher fit-
ness. This ensures that the average fitness of the population successively improves. This
leads to an other simple approach where we select the individual with the worst fitness for
replacement guaranteeing that average fitness in the population increases.
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5.5 Replacement

Our Approach. The approach we use also incorporates the similarity of the new indi-
vidual to the others in the population. We select the individual which is most similar to the
new individual out of the subset of the population which is eligible for replacement mean-
ing those individuals with lower fitness. This ensures that the diversity of the population
remains high and at the same time the overall quality of the population increases.
Using this approach also has the benefit that if there is already an individual identical to the
new individual in the population, it will be selected for replacement because it is obviously
the most similar. This means that if there are no two identical individuals in the initial
population, then this will also be the case for all future generations of the population.
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6.1 Implementation

We implemented all parts of our algorithm in the graph partitioning framework KaHIP [10].
We use the multilevel approach, described in Section 3.1, to compute a node separator.
The node separators on the coarsest level in our V-cycles are computed by constructing a
partition with KaFFPa (Karlsruhe Fast Flow Partitioner), a partitioning algorithm already
implemented in KaHIP. This partition is then transformed into a node separator according
to the method for creating an initial node separator described in Section 3.1. Afterwards we
apply our refinement algorithm (Algorithm 1) which uses k-way local search on the initial
node separator as well as after each uncoarsening step to improve the separator size.
The node separators generated by this method are then used as individuals in the initial
population in our evolutionary algorithm in Chapter 5. Each combination and mutation
operation we perform within the evolutionary algorithm also uses the multilevel approach
and therefore we also apply local search after each uncoarsening step.

6.2 Experimental Setup

6.2.1 Environment

All our experiments were done on a system equipped with 64 processors (Intel Xeon CPU
E5-2670 v3) which run at a clock speed of 2.3 GHz and with 512 GB of total main memory.
Our algorithms are written in C++ and compiled with gcc 4.8.5 with optimization level -O3.
The experiments were run in parallel, where each instance ran on its own core.

6.2.2 Tuning Parameters

We give an overview of different tuning parameters of our implementation. These parame-
ters affect the quality of the solution as well as the runtime of our whole algorithm.
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Evolutionary Algorithm

The size of the initial population determines how many individuals will be stored in the
population at any point. A bigger population obviously increases the time it takes to com-
pute the initial population for the evolutionary algorithm but it can also increase the diver-
sity in the population.
The selection operation can be realized in multiple ways which is explained in detail in
Section 5.2 which means the choice of a specific selection operation is a tuning parameter
of our algorithm. Similarly the choice of the replacement operation detailed in Section 5.5
is another tuning parameter.
In each iteration of the evolutionary algorithm we either perform a combination or a mu-
tation operation. The ration between these operations is a tuning parameter which affects
the diversity in the population and the final solution quality. The mutation operation will
generally increase the diversity of the population where as the combination operation will
find new node separators of better solution quality based on the diversity in the population.
We also have a parameter for the maximum runtime of our whole algorithm. The time
factor parameter specifies how long combination and mutation operations should be per-
formed in terms of multiples of the average runtime of the computation of one individual.
This average runtime is calculated by taking the average of all individual computations
from the initial population.

Local Search

Our k-way local search algorithm uses the tuning parameter maximum pair refinement steps
as described in Section 4.3.2 which determines how many times each adjoint pair of blocks
should be refined. Increasing this parameter leads to improved solution quality but also to
a large increase in run time.
Since we iterate our local search algorithm with different expansion values within one
call to our separator refinement algorithm as shown in Algorithm 1, the maximum BFS
expansion steps, which is the number of iterations for different expansion values, is also a
tuning parameters of our local search.
The final tuning parameter of our local search algorithm is the maximum local search repe-
titions which determines how often we perform the refinement algorithm per uncoarsening
step.
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Graph |Vcc| |Ecc| |V | |E|
Walshaw’s Benchmark Archive

wave 156 317 2 118 662 156 317 2 118 662
G2_circuit 150 102 576 572 150 102 576 572
2cubes_sphere 101 492 1 545 772 101 492 1 545 772
auto 48 695 6 629 222 448 695 6 629 222
fe_tooth 78 136 905 182 78 136 905 182
fe_body 30 581 226 848 45 087 327 468
vibrobox 12 328 330 500 12 328 330 500
bcsstk33 8 738 583 166 8 738 583 166

Road Networks
eur 18 010 545 44 424 394 18 297 721 44 435 372

Table 6.1: Graph instances with total number of nodes |V | and edges |E|. |Vcc| and |Ecc| denote
the number of nodes and edges of the biggest connected component in each graph.

6.2.3 Instances

The graph instances we use for our experiments are obtained from Walshaw’s Benchmark
Archive [12] and from the 10th DIMACS Implementation Challenge [1, 2] where many
graphs for benchmarking purposes are provided. These graphs are part of different cate-
gories such as sparse matrices, road networks and random geometric graphs which each
have different properties. The graphs we used as well as their properties can be found in
Table 6.1. Since our algorithm only works on connected graphs, we performed our experi-
ments on the largest connected component, which is the largest subgraph that is connected,
of each graph.
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6.3 Node Separator Evaluation

We evaluate our algorithm by first showing the effect of different tuning parameters on
solution quality and runtime. Through this evaluation we can define our fast and strong
configurations, which we then compare to the KaHIP node separator (KaHIP-NS) algo-
rithm by showing the improvement of our algorithm on different instances with different
values of k. We also show the best found solutions of a variation of our algorithm where
only our local search refinement is used and no evolutionary algorithm operations are ap-
plied. This variation will be referred to as K-Plain where as our normal algorithm will be
referred to as K-Evo in the experimental evaluation.

6.3.1 Parameter tuning

In this section we look at the most important tuning parameters and show how they effect
the solution quality and runtime of our algorithm. All results for parameter tuning are
obtained by running our algorithm K-Evo with the specific parameter on multiple graph
instances with three different random seeds. These three runs are averaged for each instance
and then the geometric mean is computed over all averages. We repeat these tests with
k = {2, 4, 16, 32, 64} blocks and then average over all result values for each k to get the
final results. In total the results therefore contain data from different instances, different
values of k and different random seeds.

Maximum pair refinement steps

First we look at the tuning parameter maximum pair refinement steps as explained in Sec-
tion 6.2.2. We refer to this parameter as M in this section. In Figure 6.1 we show how
different values of M improve the separator size.
The improvement values were obtained by running our algorithm with M = {1, . . . , 7}
as described above. The final results are shown in Figure 6.1. As we can see, a value of
M = 5 gives the most improvement for our algorithm with a decrease in separator size of
1% which is why we choose this value for our strong configuration. Since bigger values
for M actually increase the separator size, this tuning parameter seems counter productive
but the final results in the following sections show that the positive effect of this parameter
increases when it is used in conjunction with the other tuning parameters.
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Figure 6.1: Node separator weight (red) and runtime (blue) change for a given value for the
maximum pair refinement steps parameter compared to the minimum value of 1.

Maximum BFS expansion steps

Next we look at the tuning parameter maximum BFS expansion steps which is explained in
Section 6.2.2. We refer to this parameter as B in this section. In Figure 6.2 we show how
different values of B affect the separator weight as well as the runtime of our algorithm.
The improvement values were obtained by running the parameter tuning procedure with
parameter values B = {1, 3, 5, 7}. As we can see there is an increase in runtime duration
of more than 50% while the separator weight goes down by at most 3%.

Maximum local search repetitions

We look at the tuning parameter maximum local search repetitions which is explained in
Section 6.2.2. We refer to this parameter as L in this section. In Figure 6.3 we show how
different values ofL affect the separator weight as well as the runtime of our algorithm. The
improvement values were obtained by running the above described procedure for parameter
tuning with parameter values L = {1, . . . , 5}. As the value for L increases the runtime of
our algorithm increases linearly while the separator weight goes down by at most 2%.
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Figure 6.2: Node separator weight (red) and runtime (blue) change for a given value for the
maximum BFS expansion steps parameter compared to the minimum value of 1.
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Figure 6.3: Node separator weight (red) and runtime (blue) change for a given value for the
maximum local search repetition parameter compared to the minimum value of 1.
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6.3.2 Effect of k on Runtime

Local Search

In Figure 6.4 we show the effect of different values of k on the runtime of the computation
of a single individual for the initial population. Since no combine or mutation operation
is performed, the runtime is mostly dominated by the computation of the initial separator
and by our local search algorithm and the multilevel approach. We can see that as expected
the runtime increases with increasing k but the increase is sub-linear. The reason for this
is that although with increasing k the number of adjoint blocks and therefore the amount
of local search refinements between two adjoint blocks increases, the blocks themselves
are on average smaller. Since the number of nodes which are looked at by the refinement
algorithm are bounded by the size of the blocks, the runtime per refinement operation
decrease with increasing k.

Evolutionary Algorithm

In Figure 6.5, we show the effect of different values of k on the runtime of performing one
combination operation. We can see that the runtime increases linearly for increasing values
of k. A combination operation mainly prevents the matching algorithm in the coarsening
phase of the multilevel approach from matching any edges between nodes that are part
of the two node separators which are being combined. Larger values of k result in larger
separators and therefore more edges that must not be matched by the matching algorithm.
Since fewer edges are matched, the size reduction of the graph per coarsening step also
decreases. This leads to more coarsening iterations and an increase in runtime.
When performing a combination operation we also use our local search refinement in order
to improve the separator size. Comparing the effect of k on a combination operation and
on our local search algorithm, we can see that although the combination operation is also
performing local search refinement the overall runtime of one combination operation is
only a fraction of the computation of a new individual with local search. One reason for this
is that we do not have to compute a new initial separator during a combination operation.
The second reason is that the runtime of our local search is smaller when performing a
combination operation. This is due to the fact that only when the previous local search
refinement iteration between two adjoint blocks improves the separator, will a potential
next iteration be performed. This is less likely the case during the combination operation
because the separator has already been refined when it was created during the computation
of the individuals of the initial population.
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Figure 6.4: Time to generate a single node separator for a given value of k with a corresponding
trendline (red). Time values are geometric means of multiple graph instances.
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Figure 6.5: Time to perform to a single combination operation for a given value of k with a cor-
responding trendline (red). Time values are geometric means of multiple graph in-
stances.
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6.3.3 KaHIP Comparison

We now compare our algorithms K-Evo and K-Plain to KaHIP-NS, the already existing
k-way node separator algorithm in KaHIP. KaHIP-NS first computes a k-way partition and
then transforms the partition into a node separator by computing each partial separator
between all adjacent blocks and combining these into the final separator. This method is
also used to compute our initial separator which is described in more detail in Section 3.1.
The results were obtained by running each instance and parameter combination three times
with different random seeds and then averaging the three results. All algorithms are running
for the same amount of time in each particular instance we compare. Our results are divided
into subtables for each value of k that was used. Each table shows the graph instance
together with the node separator weight of the solution provided by all three algorithms.
The results shown are averaged over three runs with different random seeds. Each table
also shows the geometric mean over all results for each algorithm as well as the separator
weight improvement of our algorithms over KaHIP-NS. We used an imbalance value of
4 for all experiments. Since our algorithms as well as KaHIP-NS have different standard
configurations which determine the solution quality and runtime, we show results for two
of these configurations, the strong and the fast configuration.
The results show that K-Evo produces on average about 18% and 23% smaller node sep-
arators respectively, for our two different configurations than KaHIP-NS. The biggest im-
provement over KaHIP-NS is 64% in fast configuration on the instance vibrobox with
k = 8. Detailed improvement results are shown in Tables 6.4 and 6.5.
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6 Experimental Evaluation

Strong Configuration

The strong configuration is used to produce the best solution quality at the cost of longer
runtime of the algorithms. The parameters in this configuration for our algorithms can be
seen in Table 6.2.
In Table 6.4 we compare the results of K-Evo and K-Plain to the results of KaHIP-NS for
each instance and each value of k. Next to the node separator sizes we also show the im-
provement that K-Evo achieves. We can see that for the graph vibrobox and k = 16 we
achieve the biggest improvement in this configuration of 57% which means our algorithm
K-Evo found a separator 57% smaller than the separator computed by KaHIP-NS. We also
show the geometric means of the results for each value of k which are also depicted in Fig-
ure 6.6a for K-Evo. The improvement values of the geometric means indicate an average
improvement of 18% across all tested instances. In Figure 6.7 we show the improvement
ratios for each instance and value of k sorted by improvement. There we can see that one
graph (eur) has a worse separator for each value of k in comparison to KaHIP-NS. Since
this graph is the only graph where our algorithm consistently performs worse and also the
only road network graph we tested, it is likely that the lack of improvement is due to the
inherent structure of road networks.

Fast Configuration

The fast configuration is designed to run as fast as possible while still producing acceptable
results. The main difference between this configuration and the strong configuration is that
we reduced the number of iterations for multiple operations as can be seen in the parameter
setting in Table 6.3.
In Table 6.5 we compare the results of K-Evo and K-Plain to the results of KaHIP-NS in
the same way as for the strong configuration. We can see that, for the graph vibrobox and
k = 8, K-Evo achieves an improvement of 64% which is the largest improvement value for
all tested instances and parameters in both configurations. The improvement values of the
geometric means shown in Figure 6.6b indicate an average improvement of 23% across all
tested instances. In Figure 6.8 we show the improvement ratios for each instance and value
of k sorted by improvement. There we can see that no tested instance has an improvement
ratio less than 1 which means K-Evo achieves better results than KaHIP-NS on all instances
in the fast configuration.
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6.3 Node Separator Evaluation

Parameter Value
inital population size 18
selection operation tournament selection

combine to mutation ratio 9 : 1
time factor 20

maximum pair refinement steps 5
maximum BFS expansion steps 10

maximum local search repetitions 5

Table 6.2: Parameter settings for our strong configuration. A detailed explanation for each param-
eter can be found in Section 6.2.2.

Parameter Value
inital population size 8
selection operation tournament selection

combine to mutation ratio 1 : 0
time factor 10

maximum pair refinement steps 1
maximum BFS expansion steps 1

maximum local search repetitions 1

Table 6.3: Parameter settings for our fast configuration. A detailed explanation for each parameter
can be found in Section 6.2.2.
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6 Experimental Evaluation
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Figure 6.7: Improvement ratios of K-Evo per instance over KaHIP-NS for k = {2, 4, 8, 16, 32, 64}
in strong configuration.

40



6.3 Node Separator Evaluation
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Figure 6.8: Improvement ratios of K-Evo per instance over KaHIP-NS for k = {2, 4, 8, 16, 32, 64}
in fast configuration.
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6 Experimental Evaluation

Analysis

The Figures 6.6a and 6.6b, which show the improvement means of K-Evo over KaHIP-NS
for different values of k, have a distinct peak at k = 16 for the strong configuration and
at k = 8 for the fast configuration where the maximum improvement values are reached.
This peak arises due to the two main techniques we use to improve the separator solution
quality: local search and the evolutionary algorithm.
Our local search refinement, as the name suggests, only locally improves the separator
because it only looks at two adjoint blocks at a time. This means that if there are only
few blocks in total, the local search looks at a larger percentage of the graph at a time
and is therefore more likely to find solutions close to the global optimum. With increasing
k the final separator size is predominantly determined by the initial separator used in the
multilevel approach and the local search refinements on the coarser levels of the graph
hierarchy where big parts of the graph are represented by just a few nodes. Local search on
the finer levels only looks at a small percentage of the graph at a time and can not modify
the overall structure of the separator. Therefore the overall improvement for bigger values
of k decreases.
On the other hand there is the combination operation of the evolutionary algorithm which
acts more globally than the local search. In conjunction with the multilevel approach it
can exchange large parts of the separator with a second separator. For bigger values of
k the separator is larger and more complex and is thus represented by many nodes even
in the coarsest level of the graph hierarchy where the combination operation takes place.
This means that we can more easily exchange parts of the separator when it is large in
comparison to the graph itself which happens when k is also large. When k is small then the
separator is only represented by very few nodes on the coarsest level and it is therefore more
unlikely that the combination operation can exchange any relevant parts of the separators
and bring a significant improvement in separator size.
To summarize, local which is more effective for smaller values of k because is acts locally
and we have the evolutionary algorithm which is more effective for bigger values of k
because it acts more globally. Since we combine these two techniques in our algorithm,
the effects of both techniques on the separator size accumulate. This results in a value of k
where both techniques noticeably contribute to the improvement, which is represented as
the peaks in the aforementioned improvement figures of both configurations.
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6.3 Node Separator Evaluation

Convergence

In Figures 6.9 and 6.10 we show the convergence behavior of K-Evo and K-Plain compared
against KaHIP-NS for different values of k in both configurations. Each curve in each
convergence plot corresponds to one of the three algorithms. A curve depicts the behavior
of the geometric mean of all tested instances over time. For each tested instance we record
the best separator size for each point in time throughout the runtime of the algorithm.
The time values of each instance are normalized by linearly mapping them to the interval
[0, 100] where 0 represents the start and 100 the end of the algorithm. The geometric mean
is computed by using the normalized time values. This means that each point P = (t, g)
on the curve represents the geometric mean g of the separator sizes of all instances at t%
of their runtime. This allows us to compare all algorithms at different percentages of their
runtime duration.
We can see that KaHIP-NS converges very fast in both configurations although the final
solution is always significantly worse than the solutions of K-Evo and of K-Plain. When
we compare K-Evo against K-Plain we notice that they converge similarly fast for the first
40% of the duration. In this time period K-Evo computes the initial population which is
basically the same procedure as K-Plain uses for the computation of the node separators.
In the remaining 60% of the duration K-Evo applies the evolutionary algorithm which can
be seen in the figures as a sudden improvement of the separator size. The improvement
arising from the evolutionary algorithm is more noticeable for bigger values of k which is
consistent with the conclusions of the analysis Section 6.3.3.
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Figure 6.9: Convergence comparison of KaHIP-NS (green), K-Plain (red) and K-Evo (blue) for
multiple values of k in strong configuration.
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(e) k = 32
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Figure 6.10: Convergence comparison of KaHIP-NS (green), K-Plain (red) and K-Evo (blue) for
multiple values of k in fast configuration.
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7 Conclusion

The goal of this thesis was to design and implement a new algorithm for computing small
k-way node separators which fulfill a given balance constraint. We developed a novel k-
way local search refinement method which also incorporates a new way of balancing k-way
node separators. Additionally, we presented an evolutionary algorithm which operates on
node separators. The idea of our algorithm is to combine the two ways of improving node
separators in order to improve our solutions locally with the local search and globally with
the evolutionary algorithm.
The experimental evaluation of our algorithm in comparison to the KaHIP k-way node sep-
arator algorithm shows that we can improve almost all node separator solutions of KaHIP-
NS for our tested instances with an average improvement of 18% and 23% respectively for
our strong and fast configuration. The evaluation also shows that the local search and the
evolutionary algorithm work well in conjunction with each other. The k-way local search
works best with smaller values of k where local optimization dominates the final separator
size whereas the evolutionary algorithm works best for large values of k where global op-
timization dominates the separator size. This allows our algorithm to produce small k-way
node separators for any value of k.

7.1 Future Work

A straightforward way to make our algorithm faster is to parallelize the computation of the
individuals of the initial population as well as perform multiple combination and mutation
operations in parallel. The local search refinement could also be parallelized using a shared
memory model. In order to increase the solution quality, other methods for the different
operations of the evolutionary algorithm and different gain functions for k-way balancing
could be implemented.
The balancing operation can be expanded to work on arbitrary graphs so that our whole
algorithm can be applied to arbitrary disconnected graphs. This enables our algorithm to
be used for other applications like shortest path computation for route planning or graph
compression.
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