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Abstract

The graph partitioning problem divides the nodes of a graph G = (V,E) into k blocks such
that the blocks are balanced up to some imbalance factor and that an objective is optimized.
Most software products available focus on optimizing the edge cut of the partition, that is,
they aim to minimize the number of edges that run between different blocks.
This thesis extends the graph partitioning framework KaHIP with the ability to minimize
another objective that arises in the context of parallel computation, namely the total com-
munication volume. To that end, we try to adjust techniques that are known to produce
good results for the edge cut objective and that are already implemented in the KaHIP graph
partitioning framework to the total communication volume objective. We then compare our
results with METIS.

Zusammenfassung

Das Graphpartitionierungsproblem partitioniert einen Graphen G = (V,E) in k Blöcke
derart, dass die Blöcke der Partition bis auf einen bestimmten Faktor balanciert sind und
dass eine Zielfunktion optimiert wird. Viele der verfügbaren Softwareprodukte zur Graph-
partitionierung minimieren den Kantenschnitt der Partition, also die Anzahl der Kanten, die
zwischen verschiedenen Blöcken verlaufen.
In dieser Bachelorarbeit erweitern wir das Graphpartitionierungsframework KaHIP mit einer
neuen Zielfunktion die im Kontext von parallelen Berechnungssystemen auftritt, nämlich
dem totalen Kommunikationsvolumen der Partition. Dazu passen wir die Techniken, die
bereits in KaHIP implementiert sind und bekannt dafür sind, gut für die Kantenschnitt
Zielfunktion zu funktionieren, an die neue Zielfunktion an. Anschließend vergleichen wir
unsere Resultate mit METIS.
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1 Introduction

Graph partitioning is the problem to partition the nodes of a graph into roughly balanced
blocks such that some objective is optimized. While the problem sounds abstract at first, it
has applications across various disciplines.

For instance, an algorithm for customizable route planning [3] uses graph partitioning
to divide road networks into cells that are then preprocessed such that the shortest paths
between two boundary nodes of the same cell are already known in advance. This technique
speeds up the well-known Dijkstra algorithm by several orders of magnitude.

In the context of parallel computation, graph partitioning is used to map processes onto
processing nodes such that the communication between nodes is minimized.

Various software products are available for general purpose graph partitioning, for instance
METIS [9], KaHIP [15] or even software that is spezialized on specific types of graphs,
such as PUNCH [4] for road networks.

All of those partitioners optimize a common objective, namely the edge cut. That is, they
optimize partitions such that only few edges have endpoints in different blocks. While edge
cut is the most prominent objective and is de facto established as the standard objective for
benchmarks, it is well known that many real-world applications of graph partitioning ask
for objectives that are only loosely approximated by the edge cut objective [6].

In this thesis, we extend KaHIP with the ability to minimize the total communication volume,
an objective that arises in the context of parallel computation. As a side effect of our work,
we decouple local search algorithms from the objective such that new objectives can be
implemented more easily.

1.1 Contribution

We extend KaHIP such that is produces better results for the total communication volume
objective. We observe that V-cycles as they are known in literature do not strictly improve
the total communication volume of a partition. Thus, we suggest a new V-cycle that is
designed to prevent a worsening of the total communication volume of a partition if local
search guarantees no worsening.
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1 Introduction

1.2 Structure of Thesis

In Chapter 2, we present general definitions and notation that are used throughout the rest of
this thesis and give a more formal introduction to graph partitioning. Next, we summarize
multi-level graph partitioning and other techniques that are relevant to this thesis as well as
the graph partitioning framework we use, namely KaHIP, in Chapter 3. When then move on
to algorithms that are explicitly designed to minimize communication volume in Chapter 4
before we give an experimental evaluation of them in Chapter 5.
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2 Fundamentals

This chapter introduces general definitions and notation that are used in the thesis. Moreover,
the graph partitioning problem is introduced formally.

2.1 Graph Theory

An (undirected, weighted) graph G = (V,E, c, ω) consists of a finite set V and a binary
relation on V , E ⊆ {{u, v} | u, v ∈ V }. We set n := |V | and m := |E|. When we
talk about multiple graphs, we use V (G) and E(G) to denote the node and edge set of
graph G. The elements of V are called nodes and the elements of E are called edges. We
say that a graph is simple, if it is undirected and does not contain any edge {v, v} with
v ∈ V . If not stated otherwise, every graph is a simple graph throughout this thesis. The
function c : V → R assigns weights to the nodes while ω : E → R assigns weights to
the edges. We extend c and ω to sets in a natural way, i.e. c(V ′ ⊆ V ) :=

∑
v∈V ′ c(v) and

ω(E ′ ⊆ E) :=
∑

e∈E′ ω(e). Note that the input graphs used in this thesis have unit edge
weights and thus c(V ) = n. This, however, changes in the course of the algorithm.

Two nodes u, v ∈ V are called adjacent or connected if {u, v} ∈ E. Likewise, two edges
i, j ∈ E are said to be incident if i ∩ j 6= ∅. Finally, a node v ∈ V and an edge e ∈ E
are incident if v ∈ e. The set of all nodes that are adjacent to a node v ∈ V is called
the neighborhood of v and is denoted by Γ(v). Its size is the degree of v, denoted by
d(v) = |Γ(v)|. Asymptotic running times sometimes depend on the maximum degree
∆(G) := maxv∈V d(v) that occurs in G.

A matching M is a subset of E, M ⊆ E, with the characteristic property that e ∩ e′ = ∅ for
all e, e′ ∈M . A maximal matching is one with the property that there is no e ∈ E \M such
that M ∪ {e} is still a matching.

A k–way partition of V is a set of k disjoint blocks V1, . . . , Vk that covers V , i.e. V =⋃
i Vi. A 2–way partition is also called bipartition. A node that is adjacent to at least

on node in another block is a boundary node. Edges that connect nodes in different
blocks are cut edges. We define the set of all cut edges between two blocks i and j,
Eij := {{u, v} ∈ E | u ∈ Vi and v ∈ Vj}.

3



2 Fundamentals

2.2 Graph Partitioning

The graph partitioning problem takes a graph G = (V,E, c, ω) and an integer k ≥ 2 and
provides a k–way partition of V that optimizes some objective J(V1, . . . , Vk). The partition
must further fulfill a balance constraint that limits the size of each block, |Vi| ≤ (1 + ε)dn

k
e,

where ε ≥ 0 is some imbalance parameter. This problem is known to be NP-complete [8]
and therefore, we focus on heuristics rather than exact algorithms.
The most prominent objective is to minimize the edge cut,

J =
∑
i<j

ω(Eij).

In this thesis, we will focus on another objective, namely the total communication volume
of a partition. It is defined as follows.

Total Communication Volume. This objective models the communication required
between applications spread across a parallel computation system. It is given by

J =
∑
v∈V

c(v)D(v),

where D(v) denotes the number of blocks that contain elements adjacent to v, excluding the
one that contains v. Figure 2.1 shows a graph with its total communication volume.

Maximum Communication Volume. If only the computation unit with the highest
communication volume is relevant, the maximum communication volume is a more suitable
objective, given by

J = max
i

∑
v∈Vi

c(v)D(v).
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2.2 Graph Partitioning
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Figure 2.1: A graph with unit node weights. Nodes are labeled with their D(·) value. The total
communication volume is 2 + 2 + 5 = 9 and the maximum communication volume is
5.

5



2 Fundamentals

6



3 Related Work

In this chapter, we describe important graph partitioning techniques and software that we use
in this thesis. This includes the multi-level partitioning scheme, local search algorithms and
KaHIP [15]. We also outline the benefits of these techniques when used with the edge cut
objective. Only in Chapter 4, we focus more on the total communication volume objective.
An extensive overview of graph partitioning techniques and heuristics is available at [2].
Here, we only summarize techniques that are relevant to our work.

3.1 Multi-Level Graph Partitioning

Hendrickson and Leland [7] described a multi-level graph partitioning scheme in 1995
that has since been used successfully in multiple graph partitioning software, including
KaHIP [15] and METIS [9]. In its most rudimentary form, the scheme partitions a graph
G0 = (V0, E0, c0, ω0) in three phases: Coarsening, initial partitioning and uncoarsening.

Coarsening. During the coarsening phase, the scheme produces a hierarchy of smaller
graphs G1, . . . , GN by repeatedly contracting a set of edges.
Edge contraction describes the following operation: Given an edge {v1, v2} ∈ E, remove
v1 and v2 from G and all edges incident to them. Then, insert a new node v with c(v) =
c(v1) + c(v2) and neighborhood Γ(v) = Γ(v1) ∪ Γ(v2). If this process would produce two
parallel edges, a single edge with weight equal to the sum of both edge weights is inserted
instead. Figure 3.1 illustrates the contraction of a single edge in a graph without node
weights.
This process is aborted once the number of nodes falls below a certain threshold. In the
context of this hierarchy, the input graph G0 is called the finest graph or simply input graph
whereas GN is called the coarsest graph. Hendrickson et al. use a maximal matching
algorithm to identify the set of edges that are to be contracted. KaHIP also implements label
propagation to obtain the set, see Section 3.2.

Initial Partitioning. Once the coarsest graph has been obtained, an initial partitioning
algorithm is used to compute a k–way partition. Since the coarsest graph contains few nodes
compared to the finest graph, this algorithm can be relatively slow.

7
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Uncoarsening. Finally, the initial partition is iteratively projected onto the next finer
graph by uncontracting the contracted edges. After each step, a local search algorithm is
executed to optimize the objective. We describe the local search algorithms that we use in
Section 3.1.2.

v2

v3

v0 v1

1 1

2

1 3 contract {v2,v3}−−−−−−−−→

v′

v1v0

42

Figure 3.1: Contraction of edge {v2, v3}. Node weights are omitted.

Note that the edge cut is preserved throughout the hierarchy: the weight of an edge {v, u}
on a coarser level is equal to the number of edges between the nodes that correspond to v
and u on the finest level. Thus, an improvement of the edge cut on a coarser level is also an
improvement on the input graph.
With this in mind, the intuition behind multi-level graph partitioning is clear. A movement
of a coarser node corresponds to the movement of a whole set of nodes on the input graph.
Therefore, local search algorithms in a multi-level approach achieve a more global view,
leading to improved partition quality compared to an approach that only uses local search
on the input graph.

3.1.1 V-Cycles

Walshaw [16] suggested an iterated multi-level partitioning scheme that aims to improve
a given partition. A single run of the scheme is known as V-cycle and is similar to the
multi-level partitioning scheme that computes a partition from scratch. It works as follows.
First, repeat the coarsening phase as described in Section 3.1. This time, however, exclude
any boundary edge from contraction. Nodes of the input graph that belong to the same
coarsest node now also belong to the same block. Thus, the input partition can be used
as initial partition on the coarsest level. Finally, repeat the uncoarsening phase as already
described.
If edge cut is the objective, it is useful to execute multiple V-cycles after a partition has
been obtained. This is due to the fact that a V-cycle can never worsen the partition as long
as local search guarantees no worsening since the edge cut is preserved throughout the
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Figure 3.2: The first three steps of the FM algorithm. The boxes show all nodes that are currently
in the priority queue (top row) with their corresponding gain values (bottom row, based
on the total communication volume objective). In each step, deleteMax returns the
left-most node. The objective is total communication volume. The balance constraint
is assumed to be flexible enough to allow for all movements.

hierarchy. However, a random matching algorithm or random tie-breaking in the coarsening
phase leads to different boundaries in each cycle. Hence, local search algorithms can find
improvements even though they were unable to climb out of a local optima in the previous
cycle. We will discuss V-cycles with the total communication volume objective in mind in
Chapter 4.

3.1.2 Local Search

In this section, we describe the local search algorithms that we use in our experiments. Both
algorithms assign gain values to nodes, that is, the change in the objective when moving a
node to another partition. We denote the gain value of a node v when moved to block p by
gp(v). Since we always move nodes to blocks that maximize their gain values, we define
g(v) := maxp gp(v) and say that g(v) is the gain value of v.
Note that both local search algorithms are already implemented in KaHIP, but since they are
central to the thesis, we cover them here regardless.

Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses (FM) algorithm was first invented by Fiduccia and Mattheyses [5]
as a local search algorithm for 2–way partitions. Here, we describe an improved version of
the algorithm by Karypis and Kumar [10] that can improve k–way partitions. The algorithm
works as follows.
First, some start nodes are inserted into a priority queue with their gain values as keys.
Karypis and Kumar use only boundary nodes for initialization. However, since some

9
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objectives could profit from the movement of non-boundary nodes, we declare the nodes that
are used for initialization as input parameter of the algorithm. Next, the algorithm retrieves
the node v with the highest gain from the priority queue and tries to move the node to its
corresponding block. If the movement would violate the balance constraint, it is skipped.
Otherwise, the movement is performed and the gain values of other nodes that are affected
by the movement and that still reside in the priority queue are updated. If neighbors of v
become boundary nodes due to the movement, they are inserted into the priority queue (but
only if they were not previously moved). Figure 3.2 illustrates three steps of this algorithm.

After a certain number of nodes were moved without improving the partition, we stop the
search after and revert all movements until the best partition that occurred during the process
is restored.

Modification. The original version of FM as well as the improved one use bucket queues
as priority queues. This allows the algorithm to update gain values in amortized constant
time. However, bucket queues can only be used if the gain values have certain properties; see
[5] for details. Since not all objectives fulfill these requirements (and our implementation
should be independent from the objective), we use binary heaps instead.

Running Time. The running time of the algorithm depends on the priority queue as
well as on the objective. Regarding the priority queue, each node movement requires one
deleteMax operation and one insert operation. After a movement, the gain values of
some other nodes might change and thus require a changeKey operation for each of them.
Assuming that the gain value of single node can be updated in constant time, this yields

T = n(Tinsert + TdeleteMax) + nσTchangeKey,

where σ denotes the number of nodes whose gain values might have changed after a
movement. This value depends on the objective.

We cover two cases of σ.

• The edge cut objective only requires to update the gain value of each neighbor after a
node movement. In this case, nσ can be replaced by m since

∑
v∈V d(v) = 2m.

• Other objectives like total communication volume or graph and index compression
additionally require to update the gain value of each neighbor’s neighbor. Analogously,
this yields nσ ≈ m∆.

Binary heaps implement each operation in log(n) time. Hence, the total running time of
the algorithm is O(m log(n)) in the first case and O(m∆ log(n)) in the second case. Note
that an implementation for edge cut in O(m) is possible if bucket queues are used instead;
see [5].

10
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Multi-try FM

Sanders et. al. were able to achieve partitions of higher quality by using a highly localized
version [12] of the FM algorithm described above. Instead of initializing the priority queue
with all boundary nodes, they repeatedly initialize the queue with a single boundary node.
Again, after a node was moved, its neighbors are added to the priority queue and thus
become eligible for movement. A node that was eligible for movement at some point in
time is said to be touched. Once the search stopped, a new search with another boundary
node that hasn’t been touched yet is started. This process is repeated until all nodes or, to
reduce running time, a configurable percentage of nodes were touched.
Since already touched nodes don’t become eligible for movement in later searches, the
algorithm can be implemented with the same asymptotic running time as the normal FM
algorithm as described in Section 3.1.2.
We use the adaptive stopping criteria introduced in [11] to determine when to stop a search
round.

3.2 KaHIP

We use the KaHIP framework (Karlsruhe High Quality Graph Partitioning) [15] to implement
and evaluate our experiments. Its manual is available at [14]. KaHIP consists of multiple
programs, but we only use its multi-level graph partitioner, KaFFPa (Karlsruhe Fast Flow
Partitioner).
The software implements several novel techniques to obtain partitions of high quality. They
are described extensively in [13].
KaFFPa offers several pre-configurations that we use in our experiments, namely fast,
eco and strong. Each configuration provides a different trade-offs between partition
quality and running time with fast offering the lowest running time and strong the best
partition quality. An extensive description of each configuration is available at [13, p. 62f].
Furthermore, there are -social pre-configurations specially designed to partition large
social networks. Most importantly, they use label propagation to cluster and contract the
graph rather than matchings; see [13, p. 121ff]. We use them whenever we experiment on
social graphs since they are known to produce the best results for them.

11
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4 Algorithms for Communication
Volume

We use the FM and Multi-try FM algorithms to improve the total communication volume of
a partition. While both algorithms are already implemented in KaHIP, we change them such
that the calculation of gain values is based on the total communication volume objective
rather than edge cut. To this end, we describe how to calculate these gain values and how to
update them efficiently after a node movement.
Secondly, we suggest a modified V-cycle that is designed to guarantee no worsening of the
total communication volume during the course of the V-cycle.

4.1 Computation of Gain Values

In this section, we describe how we calculate and update gain values for the total communi-
cation volume objective.
To begin with, let G = (V,E, c, ω) be a graph with a k-way partition V =

⋃
i Vi. We use

dp(v) := |Γ(v) ∩ Vp| to denote the number of neighbors of node v in block p. Recall that
the cost contribution of a single node v is given by J(v) = c(v)D(v). The node weight c(v)
is constant and movements only change D(v).
Consider the movement of v ∈ Vp from block p, the source partition, to p′, the target
partition. We analyze how this changes the D(·) values of v and its neighbors.

• If v is not adjacent to p′, but is adjacent to p, its cost increases. On the other hand, its
cost decreases if it is adjacent to p′ but not to p. In the other cases, i.e. it is adjacent or
not adjacent to both blocks, its cost doesn’t change.

• The neighborhood of a neighbor u ∈ Γ(v) changes as follows. It loses a neighbor
in block p and gains a neighbor in block p′. The loss decreases u’s cost if v is its
only neighbor in block p and u itself does not belong to block p. Likewise, u’s cost
increases if it does not belong to block p′ and has no neighbors in that block.

Thus, the gain value of a node can be written as

gp′(v) :=
(
1{dp(v)=0 and dp′ (v)>0} − 1{dp(v)>0 and dp′ (v)=0}

)
c(v)

+
∑

u∈Γ(v)\Vp

1{dp(v)=1}c(u)−
∑

u∈Γ(v)\Vp′

1{dp(u)=0}c(u),

13



4 Algorithms for Communication Volume

where we make use of indicator variables to ease notation, 1{cond.} :=

{
1, cond. is met
0, otherwise .

The running time of this step is as follows. First, we need O(m) time to compute the dp(·)
values for all blocks p. To calculate the gain value of a single node for a single partition, we
must look at all of its neighbors. Therefore we need O(mk) time to calculate all gain values
or O(∆k) time to calculate the gain value of a single node.
Next, consider that node v was moved from partition p to p′. We need to decrease dp(u) and
increase dp′(u) by one for each u ∈ Γ(v). Thus, the gain values of Γ(v) and

⋃
u∈Γ(v) Γ(u)

might change. This leads to O(∆2) updates after a single node movement, compared to
O(∆) updates if edge cut is used as objective.
The movement only affects gp(·) and gp′(·) because other gain values are not influenced by
dp(v) or dp′(v). After updating the gain values of a node, we must check whether a new
partition yields the best gain value for that node. This requires O(k) time if the updates
decreased the maximum gain of the node, because then we must compare the new gain value
to all other gain values. Thus, the overall worst time complexity of this process is O(∆2k).
Since the calculation of the gain value of a single node from scratch takes more than constant
time, we rather calculate the differences of all gain values that might have changed. We
do this in three steps. First, we observe how the movement of v itself, that is, without
considering d(·), affects other gain values. Secondly, we consider the changes in d(·) and
describe how they influence the gain values of neighbors of v before we, thirdly, describe
how they influence the gain values of neighbors of v’s neighbors. In each and every case,
we describe why the change occurs and then give a more algorithmic instruction on how to
implement it. Note that we use a star as subscript, e.g. g?(x), if the change applies to all
gp̃(x) for all blocks p̃.

• If v has only one neighbor u in p, moving that neighbor to another block decreases
the partition’s cost. This was not previously accounted for in u’s gain value and thus,
we must increase its gain value by c(v).
For all u ∈ Γ(v) ∩ Vp: increase g?(u) by c(v) if dp(v) = 1.

• On the other hand, if v has no neighbors in block p, then moving any neighbor
u ∈ Γ(v) to block p increases the partition’s cost. This was not previously accounted
for and thus, we must decrease their gain values by c(v).
For all u ∈ Γ(v) \ Vp: decrease gp(u) by c(v) if dp(v) = 0.

• If v has precisely one neighbor u in block p′, then moving v to another block no longer
decreases D(v). Thus, we must decrease its gain value by c(v).
For all u ∈ Γ(v) ∩ Vp′: decrease g?(u) by c(v) if dp′(v) = 1.

• Finally, if v has no neighbors in block p′, then the movement of another neighbor to
block p′ no longer increases D(v) (but it did before). Thus, we must increase the gain
values of all neighbors by c(v).
For all u ∈ Γ(v) \ Vp′: increase gp′(u) by c(v) if dp′(v) = 0.

14
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Next, we describe how the change of the d(·) values affect gain values of v’s neighbors. Let
u ∈ Γ(v).

• If dp(u) changed to 0, then u lost its last neighbor in block p. Thus, moving u to block
p no longer decreases the number of adjacent partitions of u.
For all u ∈ Γ(v) \ Vp: decrease gp(u) by c(u) if dp(u) = 0.

• If, however, u ∈ Vp and dp(u) changed to 0, then moving u to any other partition no
longer increases the number of blocks that u is adjacent to. Thus, we need to increase
its gain value by c(u).
For all u ∈ Γ(v) ∩ Vp: increase g?(u) by c(u) if dp(u) = 0.

• If dp′(u) changed to 1, then u gained a new neighbor in block p′. Thus, moving u to
block p′ no longer decreases the number of blocks that u is adjacent to.
For all u ∈ Γ(v) \ Vp′: increase gp′(u) by c(u) if dp′(u) = 1.

• Lastly, if u ∈ Vp′ and dp′(u) changed to 1, then moving u to any other partition no
longer increases the number of blocks that u is adjacent to. Thus, we must decrease
its gain value by c(u).
For all u ∈ Γ(v) ∩ Vp′: decrease g?(u) by c(u) if dp′(u) = 1.

Finally, we need to update the gain values of nodes that share a neighbor with v, i.e.
neighbors of neighbors of v. Again, let u ∈ Γ(v).

• If dp(u) changed to 1, there is only one neighbor of u left in block p. When moving
that neighbor to another block, D(u) decreases and thus, we must increase that nodes
gain value, unless u itself is in block p.
For all w ∈ Γ(u) ∩ Vp: increase g?(w) by c(u) if dp(u) = 1 and u /∈ Vp.

• If dp(u) changed to 0, u has no more neighbors in block p. Thus, moving any other
neighbor to block p increases D(u), unless u itself is in block p.
For all w ∈ Γ(u) \ Vp: decrease gp(w) by c(u) if dp(u) = 0 and u /∈ Vp.

• For neighbors of u in block p′, we must look at two cases. Both cases only apply if u
itself is not in block p′. First, assume dp′(u) = 1: Then there is one neighbor in block
p′ and moving it decreases D(u) by one. On the other hand, assume that dp′(u) = 2.
Then before the movement, there was only one neighbor in block p′. Moving that one
decreases D(u). But since there are two neighbors now, that can no longer happen
due to a single movement. Thus, its gain value decreases.
If u /∈ Vp′ : for all w ∈ Γ(u) ∩ Vp′ : increase g?(w) by c(u) if dp′(u) = 1 and decrease
it if dp′(u) = 2.

• Finally, consider neighbors of u that are not in block p′. If dp′(u) = 1 and u itself
is not in block p′, moving them to longer increases D(u). Thus, their gain values
increase.
For all w ∈ Γ(u) \ Vp′: increase gp′(w) by c(u) if dp′(u) = 1 and u /∈ Vp′ .
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4 Algorithms for Communication Volume

3 | 3 | 1

1 | 1 | 1

1 | 1 | 1

1 | 1 | 1

(a) TCV: 6 on coarser level, 4 on finer
level.

move−−→

3 | 3 | 3

1 | 1 | 1

1 | 0 | 0

1 | 1 | 1

(b) TCV: 5 on coarser level, 5 on finer
level.

Figure 4.1: Example showing that an improvement on a coarser level might be a worsening on a
finer level. Big bubbles represent coarser nodes. Small bubbles inside are finer nodes
with unit node weights that correspond to them. Label: (1st) node weight, (2nd) cost
contribution on the coarser level, (3rd) cost contribution on the finer level.

4.2 V-Cycle for Communication Volume

Recall that coarsening and uncoarsening preserves the edge-cut and thus a V-cycle cannot
worsen the objective. Unfortunately, this does not apply to the total communication volume
objective as demonstrated in Figure 4.1.
To fix this, we suggest to modify the contraction scheme such that edges incident to
boundary nodes are no longer contracted. We illustrate the difference to the normal V-cycle
in Figure 4.2. Indeed, we can show that this prevents a worsening of the objective through
repeated V-cycles.

Lemma 4.2.1. Our modified V-cycle preserves the total communication volume during
coarsening.

Proof. Since no edges adjacent to boundary nodes are contracted, both graphs share the
same boundary nodes. Furthermore, D(v) and c(v) are the same on both graphs for all
boundary nodes v. Thus, the total communication volumes of both graphs are the same.

Lemma 4.2.2. Let Ji be the total communication volume of graph Gi. Then, Ji−1 ≤ Ji.

Proof. Consider the contribution of a single node v ∈ Vi to the objective on level i > 0,
namely Ji(v) = ci(v)Di(v). The node v corresponds to a set of nodes S = {v′1, . . . , v′N} on
level i− 1 with ci(v) = ci−1(S). Since Di(v) ≥ Di−1(v′j), 1 ≤ j ≤ N , we have

Ji−1(S) =
∑

1≤j≤N

ci−1(v′j)Di−1(v′j) ≤
∑

1≤j≤N

ci−1(v′j)Di(v) = ci(v)Di(v) = Ji(v).

Thus, Ji−1 =
∑

v′∈Vi−1
Ji−1(v′) ≤

∑
v∈Vi

Ji(v) = Ji.
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4.2 V-Cycle for Communication Volume

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

(a) Uncontracted graph.

v0, v1

v2, v3

v8

v9

v6, v7

v4, v5

(b) Normal V-cycle.

v0

v1

v2, v3

v4

v5

v6

v7

v8, v9

(c) Our V-cycle.

Figure 4.2: Graph (b) could be the result of a contraction made by the normal V-cycle. While
the partition is preserved, boundary nodes might get contracted. Graph (c) shows a
contraction that could be the result of our V-cycle: All boundary nodes are preserved
and only edges incident to non-boundary nodes are potentially contracted.

Corollary 4.2.3. Our modified V-cycle guarantees no worsening of the total communication
volume if local search guarantees no worsening.

Proof. Let Ji and J ′i be the total communication volume on level i before and after local
search, respectively. Then, J0 = JN by Lemma 4.2.1, J ′i ≤ Ji by assumption and Ji−1 ≤ J ′i
by Lemma 4.2.2. The claim J ′0 ≤ J0 follows by induction.

We implement our novel V-cycle by extending the algorithm that is already implemented
in KaHIP. Suppose that KaHIP already generated the coarser graphs G1, . . . , Gi. Now,
it generates a mapping f : V (Gi) → V (Gi+1) such that the coarser node v in Gi+1

corresponds to the node set f−1(v) in Gi. Based on this mapping, it generates the coarser
graph.
We alter V (Gi+1) and f as depicted in Algorithm 1. The idea is to add a node to Gi+1 for
each boundary node in G and change f such that boundary nodes map to their individual
nodes. Finally, we remove nodes from Gi+1 such that f is a surjection.
The running time of this extension is dominated by determining which nodes are boundary
nodes. All other steps run linear in the number of nodes.
Note that the algorithm could be simplified if the input mapping was restricted to match-
ings. We scan for the gaps after the boundary nodes were remapped because KaHIP also
implements label propagation, see Section 3.2. In this case, more than two nodes might be
mapped to the same coarser node.
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4 Algorithms for Communication Volume

Algorithm 1: Maps boundary nodes to their individual coarser nodes.
Data: Mapping f : V (Gi)→ V (Gi+1). Assume V (Gi+1) = {0, . . . , |V (Gi+1)| − 1}.
Result: Altered coarser mapping such that the boundary of Gi is preserved.

1 B ← boundary nodes in Gi

2 s← |V (Gi+1)|
3

4 // create new nodes and alter mapping
5 foreach v ∈ B do
6 V (Gi+1)← V (Gi+1) ∪ {s}
7 f(v)← s
8 s← s+ 1

9 assert s = |V (Gi+1)|
10 assert for all v ∈ B: f(v) is unique, i.e. there is no u 6= v with f(u) = f(v)
11

12 // detect gaps in mapping
13 hit← new Array of size s and initialized with false
14 foreach v ∈ V (Gi+1) do
15 hit[f(v)]← true

16

17 // accumulate gaps to calculate the offsets that close them
18 offset← new Array of size s and initialized with 0
19 d← 0
20 foreach v ∈ V (Gi+1) do
21 if hit[v] then
22 offset[v]← d

23 else
24 d← d + 1

25

26 // close the gaps
27 foreach v ∈ V (Gi+1) do
28 f(v)← f(v)− offset[f(v)]

29

30 assert the last d nodes in V (Gi+1) are no longer mapped
31 V (Gi+1)← V (Gi+1) \ {s - d, . . . ,s− 1}
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5 Experimental Evaluation

The structure of this chapter is as follows. We begin by describing the environment of our
experiments. Afterwards, we describe individual steps of our experiments and their tuning
parameters without a specific experiment in mind. Finally, we describe and evaluate our
experiments using those steps in Section 5.3.

5.1 Environment and Instances

All algorithms were implemented in C++ within the KaHIP graph partition framework [14]
in version 2.0. The code was compiled using GCC in version 4.8.5 and the following
compiler flags: -funroll-loops, -fno-stack-limit and -O3.

Hardware. Our experiments were executed on two machines. Machine A has four Intel
Xeon E5-4640, 512 GiB ECC main memory and is running Ubuntu 12.04. Machine B has
two Intel Xeon E5-2670 v3, 128 GiB ECC main memory and is running Ubuntu 14.04LTS.

5.1.1 Instances

The graphs used in our experiments are divided into two different categories: Social graphs,
listed in Table 5.1, and normal graphs, listed in Table 5.2. All graphs are unweighted and
were taken from [1].
Social graphs listed in Table 5.1 were initially partitioned using KaHIP’s ecosocial and
(or) strongsocial preconfigurations. On the other hand, for graphs listed in Table 5.2,
the preconfigurations eco and strong were used to obtain the initial partition. We do this
because these preconfigurations are known to yield the best results for each category.
Whenever we refer to the "eco(social)" preconfiguration, we mean ecosocial if the
graph is in Table 5.1 and eco otherwise. The same applies to strong(social).

5.2 Partitioning Steps and Tuning Parameters

Steps described in this section don’t represent full experiments but rather building blocks.
The experiments that we describe in Section 5.3 are build with these blocks and concrete
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5 Experimental Evaluation

Graph |V | |E|
Web Graphs

uk-2002 18 520 486 261 787 258
eu-2005 862 664 16 138 468
in-2004 1 382 908 13 591 473
cnr-2000 325 557 2 738 969

Citation Network Graphs
coPapersCiteseer 434 102 16 036 720
coPapersDBLP 540 486 15 245 729
citationCiteseer 268 495 1 156 647
coAuthorsDBLP 299 067 977 676
coAuthorsCiteseer 227 320 814 134

Table 5.1: Social graphs.

values for tuning parameters. Most of these steps were already described in Chapter 3 and
Chapter 4. We repeat them here briefly to lay down the vocabulary used in the following
sections.

KaHIP. This step obtains or refines a partition by running KaHIP with a certain precon-
figuration. We use this step to obtain an initial partition of the graph. Note that partitions
obtained this way are optimized for edge cut rather than total communication volume.
KaHIP supports several preconfigurations that offer a trade of between partition quality and
running time. We use two of those to observe the influence of a better initial partition (in
terms of edge cut). Namely, we use the preconfigurations eco, ecosocial, strong
and strongsocial. strong finds partitions of higher quality than eco but takes
longer. The -social variants of those preconfigurations use label propagation rather than
matchings to contract the graph. This achieves better results for social graphs and thus,
we use them whenever we experiment on social graphs. Since it is clear whether we use
the -social variant of a preconfiguration or not, we omit this difference in naming in the
following experiments.
Tuning parameters: Preconfiguration

FM refinement. This step uses the FM algorithm as described in Section 3.1.2. The
algorithm is stopped after α n

100
(but at least 15) consecutive movements worsened the

objective. Thereby is α = 1 if the preconfiguration is eco and α = 3 if it is strong.
These values are from KaHIP. We schedule rounds until a maximum number of rounds is
reached or a round did not yield an improvement. The refinement can be used single-level
or with one of the two V-cycles.
Tuning parameters: Maximum number of rounds, refinement type
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5.3 Experimentals and Results

Graph |V | |E|
Walshaw Graphs

auto 448 695 3 314 611
m14b 214 765 1 679 018
144 144 649 1 074 393
wave 156 317 1 059 331
bcsstk30 28 924 1 007 284
bcsstk32 44 609 985 046
598a 110 971 741 934
fe_rotor 99 617 662 431
bcsstk31 35 588 572 914
fe_tooth 78 136 452 591
fe_ocean 143 437 409 593
brack2 62 631 366 559
bcsstk29 13 992 302 748
bcsstk33 8 738 291 583
finan512 74 752 261 120
vibrobox 12 328 165 250
fe_body 45 087 163 734

Graph |V | |E|
Walshaw Graphs

fe_pwt 36 519 144 794
wing 62 032 121 544
t60k 60 005 89 440
wing_nodal 10 937 75 488
memplus 17 758 54 196
fe_sphere 16 386 49 152
cti 16 840 48 232
4elt 15 606 45 878
cs4 22 499 43 858
fe_4elt2 11 143 32 818
crack 10 240 30 380
whitaker3 9 800 28 989
data 2 851 15 093
3elt 4 720 13 722
add32 4 960 9 462
add20 2 395 7 462
uk 4 824 6 837

Table 5.2: Normal graphs.

Multi-try FM refinement: This step is similar to the previous one but uses Multi-try
FM as described in Section 3.1.2. We stop the search using the adaptive stopping criteria
from [11] with α = 3 and β = log(|V |).
Tuning parameters: Maximum number of rounds, refinement type

Refinement Types. The FM or Multi-try FM refinement can be used together with one
of the following refinement types. They can be used with the normal V-cycle as described in
Section 3.1.1, with our novel V-cycle that we describe in Section 4.2 or single-level. In the
last case, we only run the local search algorithm on the input graph, i.e. we don’t build a
graph hierarchy at all.

5.3 Experimentals and Results

This section presents and discusses our main experiments. First, we show the performance
of different algorithms and compare them to KaHIP and METIS. Secondly, we compare
our novel V-cycle with the normal V-cycle and thirdly, we compare the performance of
our novel V-cycle with single-level refinement. In all experiments, all partitions have a
maximum imbalance of 3%.
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5 Experimental Evaluation

5.3.1 METIS, KaHIP and our Algorithms

In this experiment, we compare the performance of KaHIP, Metis and our own algorithms.
We partition the graphs (uk-2002 from Table 5.1 is not included) with each algorithm into
k = 2, 4, 8, 16, 32 blocks and compare the total communication volumes of the resulting
partitions. This experiment was executed on Machine A. The algorithms are as follows.

KaHIP(Eco), KaHIP(Strong) These numbers were obtained by partitioning the graphs
using KaHIP without any modification. In particular, these partitions are optimized
for edge cut rather than total communication volume. KaHIP(Eco) uses KaHIP’s
eco or ecosocial preconfiguration and KaHIP(Strong) uses its strong or
strongsocial preconfiguration.

METIS These numbers come from METIS in version 5.1.0. METIS was executed with the
-objtype=vol argument, i.e. the partitions were optimized for total communication
volume rather than edge cut. We ran METIS 10 times and took the median of those
runs.

The other experiments are based on our own algorithms. Each of them starts by obtaining
a partition by KaHIP. Each time, the suffix indicates whether we use KaHIP(Eco) or
KaHIP(Strong) in this first step.

V-Cycle In these experiments, we refine the initial partition further by using FM with at
most 5 rounds and our novel V-cycle. We repeat this configuration 7 times. Then,
we use Multi-try FM with our novel V-cycle to further refine the previously obtained
partition. Again, we execute 7 cycles with this configuration.

Single-Level These experiments also refine the initial partition further by using FM, but
this time, we only use it single-level. Afterwards, we run Multi-try FM single-level.
We run both refinements at most 7 times.

The performance of each algorithm is depicted in Figure 5.1. Numeric values are shown in
Table 5.3. The raw numbers are available in Appendix B.1 and Appendix B.2. We observe
several points.

First, we notice that KaHIP(Strong) outperforms METIS on almost every instance. This does
not come with much of a surprise, considering that KaHIP(Strong) achieves much better
results than METIS if the objective to minimize is edge cut. Secondly, we can improve the
result of KaHIP by up to 29,89% or 2,90% on average. Against METIS, our improvement
ranges up to 65,09% and on average 7,59%. We achieve the best results on medium to large
sized social graphs. Thirdly, we notice that the performance difference between our novel
V-cycle and single-level refinement is virtually absent, with a median improvement of 0,09%
(V-Cycle(Strong) to Single-Level(Strong)). This motivates us to do further
experiments in Section 5.3.4.
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5.3 Experimentals and Results
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(b) Walshaw graphs
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(c) Citation network graphs
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(d) Web graphs

Figure 5.1: Performance plots that compare our algorithms to KaHIP and METIS.
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5 Experimental Evaluation

Category Min 0.25-Quantile Median 0.75-Quantile Max
Improvement: METIS to V-Cycle(Strong)
All −38,04% 5,18% 7,59% 12,44% 65,09%
Walshaw −38,04% 4,80% 6,99% 11,15% 34,90%
Citation 2,38% 6,00% 9,49% 14,34% 25,74%
Web 28,93% 30,34% 43,37% 48,10% 65,09%
Improvement: KaHIP(Strong) to V-Cycle(Strong)
All 0,00% 0,75% 2,90% 7,01% 29,89%
Walshaw 0,00% 0,30% 2,48% 6,59% 29,89%
Citation 2,90% 4,29% 7,10% 12,64% 18,86%
Web 0,00% 4,57% 5,59% 7,92% 13,29%
Improvement: V-Cycle(Eco) to V-Cycle(Strong)
All −51,44% 0,43% 2,19% 4,17% 47,54%
Walshaw −51,44% 0,25% 2,04% 3,73% 47,54%
Citation −0,13% 2,06% 3,09% 3,77% 6,45%
Web −10,06% −0,82% 6,79% 14,45% 44,29%

Table 5.3: Improvement of our algorithms over KaHIP and METIS and the influence of a better
input partition.

Category Min 0.25-Quantile Median 0.75-Quantile Max
All 0,00% 0,29% 0,84% 1,62% 16,73%
Walshaw 0,00% 0,18% 0,69% 1,38% 16,73%
Citation 0,41% 0,77% 0,96% 1,14% 3,33%
Web 0,45% 2,39% 3,46% 4,45% 7,08%

Table 5.4: Improvement achieved by Multi-try FM for all graphs and for each category.

5.3.2 FM and Multi-try FM

We also test the performance gain of Multi-try FM in a separate experiment, depicted in
Figure 5.2 and Table 5.4. The labels describe the following algorithms.

FM This algorithm executes novel V-cycles with FM. We execute 7 cycles, each with at
most 5 FM rounds. As always, we take a partition found by KaHIP as input partition.
KaHIP is run with the preconfiguration eco(social).

Multi-try FM This algorithm takes the resulting partition of FM as input and tries to further
improve it by executing Multi-try FM with our novel V-cycle. Again, we execute 7
cycles, each with at most 5 Multi-try FM rounds.
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5.3 Experimentals and Results
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(b) Walshaw graphs
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(c) Citation network graphs
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(d) Web graphs

Figure 5.2: Performance plots that show the effect of Multi-try FM.
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5 Experimental Evaluation

5.3.3 Normal V-Cycle and Novel V-Cycle

We only use citation network graphs and web graphs in this experiment. Moreover, we
partition the graphs into k = 4, 8, 16, 32 blocks, except for uk-2004, which we only
partition into k = 4 blocks. This experiment was executed on Machine B.
We use the following configurations.

KaHIP These numbers were obtained from KaHIP using the ecosocial preconfigura-
tion. We use these partitions as initial partitions for the other algorithms.

First V-cycle, 7nth V-cycle We execute 7 normal V-cycles with FM (with up to 5 rounds)
as local search on the input partition. The numbers labeled First V-cycle are the result
of the first v-cycle whereas the numbers labeled 7nth V-cycle are the results after the
last V-cycle.

Novel V-cycle For comparison, we include the performance of our novel V-cycle on the
same instances. These numbers are from Section 5.3.1, labeled V-cycle.

The results are depicted in Figure 5.3. We observe that normal V-cycles do not always lead
to improvements in the partition’s quality. In fact, refining KaHIP’s partition with only one
normal V-cycle worsens the partition in about half of all test instances. More V-cycles seem
to yield an improvement, but they never reach the performance of our novel V-cycle or
single-level refinement.

5.3.4 Novel V-Cycles and Single-Level Refinement

Motivated by the observation that our novel V-cycle and single-refinement perform almost
the same, we do some more experiments dedicated to this phenomenon. This experiments
was executed on Machine B. We use the citation network graphs and web graphs in this
experiment, and partition them into k = 4, 8, 16, 32 blocks. Except for uk-2004, which
we only partition into k = 4 blocks. We use KaHIP with preconfiguration fastsocial to
obtain an initial partition.
We coarsen the graph using our novel V-cycle and execute up to 10 FM rounds on the
coarsest level of the graph hierarchy. The total communication volume of this step is labeled
Coarsest in Figures 5.4a and 5.4b. After uncoarsening, we execute additional 1 (Figure 5.4a)
or 4 (Figure 5.4b) rounds of FM on the finest level. These results are labeled Both. We
compare these results with the data set that is labeled Finest. To obtain this, we simply
execute 1 (Figure 5.4a) or 4 (Figure 5.4b) rounds of FM on the finest level, independent of
the other experiment.
We observe that while the work that is done on the coarsest level benefits the result in
Figure 5.4a, the benefit is below 1% in Figure 5.4b and vanishes if replace the work that is
done on the coarsest level by another round of FM on the finest level (Figure 5.5).
A closer look reveals that the number of weighted nodes that get moved by the FM algorithm
on a coarser level is below one tenth of a percent on all web graphs for k = 4, 8. This indi-
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5.3 Experimentals and Results
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Figure 5.3: Comparison between KaHIP’s result, normal V-cycles and our novel V-cycle.
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(a) 10 rounds of FM on the coarsest level, then 1
round on the finest vs single-level
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Figure 5.4: Shows the performance difference between V-cycle and single-level refinement. The
advantage of our novel V-cycle versus single-level refinement is below 1% on almost
every instance.

cates that coarsening the graph limits the refinement to unweighted nodes, i.e. uncontracted
nodes that are also present on the input graph. In terms of quality, an improvement seems
therefore to be impossible. Furthermore, the time that it takes to construct the coarser graph
is several orders of magnitude bigger than the running time of the FM algorithm on all tested
graph instances. Thus, it seems doubtful that an improvement by our V-cycle is possible in
regards to partition quality or running time.
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Figure 5.5: Shows the difference between doing 10 FM rounds on the coarsest and 3 FM rounds on
the finest level versus only 4 rounds FM on the finest level. The labels are analogous to
Figure 5.4.
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6 Discussion

6.1 Conclusion

We observe that KaHIP produces partitions with lower total communication volume than
METIS on almost every instance that we’ve tested, even though KaHIP only tries to minimize
the edge cut of the partition. We were able to further minimize the total communication
volume of partitions found by KaHIP through FM and Multi-try FM.
However, we are unable to observe an advantage of multi-level V-cycles over simple local
search on the input graph. After coarsening the graph, the objective is overestimated and an
improvement on a coarser level might lead to a worsening on the finest level of the graph
hierarchy. Thus, V-cycles in the way they are used to further minimize the edge cut of a
partition seem to be unsuitable for the total communication volume objective if no exact
gain values are used.
Our own variant of a V-cycle is specially designed to prevent a worsening of the total
communication volume but seems to be too restrictive. On coarser levels, experiments show
that movements are practically restricted to the uncontracted boundary. Thus, it can be seen
as a restricted local search on the finest level of the graph. In terms of running time, the
contraction of the graph dominates the V-cycle. In conclusion, local search that is only
executed on the finest level of the graph is faster and produces results of equal quality than
our novel V-cycle.

6.2 Future Work

The main drawback of our algorithm, so it seems, is that the objective isn’t preserved
throughout the graph hierarchy and thus, improvements on a coarser level might not corre-
spond to an improvement on the finest level. We believe that an improvement is possible
by using precise gain values on coarser levels. In other words, one should calculate the
objective such that the gain values of coarser nodes are the same as the change in the
objective on the finest level of the graph hierarchy when the movements are made. To this
end, one has to develop a way to calculate these precise gain values efficiently.
Another field of future work is to implement further objectives within KaHIP. We designed
the implementation of the local search algorithms that we use such that the calculation of
gain values can exchanged easily.
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6 Discussion
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A Implementation Details

Our compiled software must be called with the following arguments,

$ ./app [--seed=SEED] CONFIG GRAPH K

where --seed is optional and specifies the random seed, CONFIG is the path to a configu-
ration file (see below), GRAPH is the path to the graph that should be partitioned and K is
the number of blocks.
The configuration file specifies and configures the steps that should be executed to partition
the graph. The file uses the well-known INI file format1 and is structured as follows.
The sections are numbered consecutively starting at 0 and represent processing steps. The
first section is responsible for calculating the initial partition. All other sections get the
resulting partition from the preceding section as input partition if not specified otherwise.
The entries that a section configure are listed and described in Table A.1. If a section
omits an entry, the value from the previous section is implicitly copied. If an entry is never
specified, the default value is used.
Upon completion, a file containing some metrics of the resulting partitions of each step is
written to the hard disk.

1See https://technet.microsoft.com/en-us/library/cc731332.aspx
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A Implementation Details

Key Possible Values Description
Preconfiguration standard,

fast, eco, strong,
fastsocial,
ecosocial,
strongsocial

Preconfiguration that is passed to
KaHIP. Default: standard

Refinement KaHIP,
fm, multitry

If KaHIP, use KaHIP to obtain a
partition (edge cut). Otherwise, use
FM or Multi-try FM as specified.
Default: none, error if omitted

Objective edgecut,
totalcommvol,
null

Objective for the FM or Multi-try
FM algorithm. Has no effect if
Refinement is set to KaHIP. De-
fault: null

FmStopRule Simple, Adaptive Stopping criteria for the FM or
Multi-try FM algorithm. Default:
Simple

NumberOfFmRounds N0 Maximal number of rounds that
the FM or Multi-try FM algorithm
should execute. Default: 1

NumberOfVCycles N0 Number of V-Cycles that should
be executed with this configuration.
Default: 1

UseModifiedVCycle false, true Whether our modified V-Cycle
should be used or not. Default:
false

OnlyRefineFinest false, true Whether V-Cycles should be exe-
cuted at all; if set to true, refine-
ment is only done on the finest level
of the graph. Default: false

Reset N0 ∪ {−1} If set, the resulting partition from
the specified section is used as in-
put partition rather than the resulting
partition from the previous section.
Default: −1 (no effect)

Table A.1: Structure of the configuration file.
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B Detailed Experimental Results

All numbers are medians of 8 runs with different seeds. The prozentual improvements of
V-cycle and Finest is in regards to the left-most Vol column. See Section 5.3.1 for evaluation.

B.1 Eco

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
eu-2005 18 278 5,98 0,51 16 653 5,98 0,4 16 698 28 762
in-2004 2 763 5,19 1,48 2 503 4,59 1,7 2 515 4 853
cnr-2000 468 5,42 0,36 438 4,77 1,06 383 699
k = 4
eu-2005 55 896 7,88 3,29 49 822 6,8 3,32 49 803 86 186
in-2004 7 491 4,12 2,94 6 890 4,08 2,67 6 902 11 830
cnr-2000 2 234 3,39 5,99 2 021 2,46 5,83 2 000 2 785
k = 8
eu-2005 113 063 6,77 2,33 99 103 5,99 2,42 100 192 159 648
in-2004 12 279 3,77 2,29 11 443 3,81 2,66 11 468 20 179
cnr-2000 4 742 2,72 2,61 4 425 2,41 2,4 4 414 5 449
k = 16
eu-2005 210 818 8,02 3,32 188 085 7,74 3,22 189 269 270 445
in-2004 18 288 3,84 1,63 17 216 3,84 1,55 17 237 29 317
cnr-2000 7 700 4,47 2,21 7 052 4,41 2,43 7 057 8 598
k = 32
eu-2005 450 310 8,82 4,39 392 093 8,35 3,97 402 878 541 359
in-2004 24 579 3,66 1,67 23 109 3,62 1,52 23 148 39 962
cnr-2000 36 194 7,07 3,44 30 631 6,55 4,03 30 874 54 533

Table B.1: Web graphs with ecosocial preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-
cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉 %-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
coPapersCiteseer 104 776 13,42 1,56 90 071 14,25 1,32 89 756 98 173
citationCiteseer 31 025 8,11 0,62 28 442 8,06 0,75 28 438 29 173
coPapersDBLP 204 070 19,19 0,92 167 477 21,15 0,92 165 219 166 205
coAuthorsDBLP 41 659 4,79 1,53 38 606 4,83 1,64 38 593 38 452
coAuthorsCiteseer 21 504 4,73 2,56 19 586 4,4 2,76 19 700 19 906
k = 4
coPapersCiteseer 196 897 12,87 1,09 171 316 13,73 0,88 171 142 192 353
citationCiteseer 64 669 8,21 0,71 58 755 8,25 0,75 58 778 61 639
coPapersDBLP 387 927 19,74 0,95 317 421 19,48 1,03 317 892 332 215
coAuthorsDBLP 77 460 4,42 1,01 73 036 4,41 1,15 73 071 75 661
coAuthorsCiteseer 38 169 3,61 1,26 36 177 3,61 1,21 36 244 38 193
k = 8
coPapersCiteseer 275 645 12,47 0,93 241 313 12,77 0,66 241 240 290 055
citationCiteseer 100 148 8,1 0,59 91 555 8,03 0,63 91 581 95 124
coPapersDBLP 589 037 21,59 0,84 475 122 21,95 0,82 473 401 524 287
coAuthorsDBLP 110 388 3,97 0,66 104 838 4,12 0,63 105 027 110 917
coAuthorsCiteseer 55 155 3,05 0,77 52 844 3,28 0,67 52 900 57 712
k = 16
coPapersCiteseer 344 682 11,15 0,79 305 850 10,75 0,69 307 175 388 575
citationCiteseer 141 179 7,35 0,87 129 517 7,2 1,03 129 632 134 394
coPapersDBLP 777 186 20,49 0,81 632 067 19,95 0,85 634 326 737 583
coAuthorsDBLP 140 347 3,54 0,55 134 034 3,52 0,64 134 253 143 508
coAuthorsCiteseer 68 990 3,0 0,48 66 346 3,08 0,4 66 447 74 691
k = 32
coPapersCiteseer 402 869 9,67 0,76 362 021 9,16 0,74 363 054 478 638
citationCiteseer 189 165 6,88 0,82 174 041 6,99 0,98 174 088 183 579
coPapersDBLP 952 567 17,72 0,98 792 050 16,87 1,45 795 411 911 204
coAuthorsDBLP 169 676 3,4 0,47 162 780 3,45 0,5 162 748 175 635
coAuthorsCiteseer 80 641 2,69 0,34 78 091 2,76 0,31 78 104 89 567

Table B.2: Citation Network graphs with ecosocial preconfiguration. From left to right: 〈Vol〉
TCV after KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement
with V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉%-improvement
with single-level with FM, 〈MT〉 %-improvement with single-level with Multi-Try FM
to 〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B.1 Eco

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
3elt 91 0,0 0,0 88 0,0 0,0 88 95
auto 5 193 2,51 0,91 4 993 2,48 0,62 5 004 5 325
data 132 0,0 0,0 132 0,0 0,0 132 130
add32 16 0,0 0,0 16 0,0 0,0 16 11
cs4 779 10,5 0,0 700 10,63 0,0 697 671
fe-pwt 240 0,0 0,0 240 0,0 0,0 240 244
t60k 166 8,65 0,0 145 10,57 0,0 147 170
fe-tooth 2 590 1,11 0,16 2 543 1,11 0,09 2 558 2 588
fe-ocean 622 6,76 0,26 568 7,24 0,0 567 620
wing-nodal 933 3,83 0,0 894 3,95 0,1 890 925
wave 5 172 5,13 1,26 4 779 5,14 1,33 4 778 4 859
vibrobox 2 510 4,49 9,62 2 080 4,58 9,24 2 128 2 282
crack 185 0,0 0,0 185 0,0 0,0 185 202
598a 1 300 1,8 0,07 1 273 1,72 0,0 1 274 1 332
uk 37 0,0 0,0 36 0,0 0,0 36 42
cti 632 18,42 0,0 532 17,91 0,0 532 606
add20 308 23,57 2,47 234 34,39 0,65 227 184
bcsstk29 360 0,0 0,0 360 0,0 0,0 360 426
fe-body 273 2,64 0,65 263 3,18 0,17 263 229
fe-rotor 1 262 3,02 0,16 1 216 3,18 0,16 1 212 1 188
m14b 1 846 2,04 0,04 1 800 2,1 0,07 1 797 1 875
4elt 139 0,0 0,0 139 0,0 0,0 139 149
fe-4elt2 132 0,0 0,0 132 0,0 0,0 132 132
fe-sphere 384 0,0 0,0 384 0,0 0,0 384 429
144 3 373 1,81 0,35 3 296 1,79 0,24 3 291 3 442
bcsstk30 527 0,0 0,0 527 0,0 0,0 527 644
bcsstk31 708 1,14 0,0 690 1,14 0,0 695 887
bcsstk32 1 140 2,08 1,67 1 082 2,16 2,43 1 083 1 113
whitaker3 129 0,0 0,0 128 0,0 0,0 129 134
brack2 461 0,1 0,0 461 0,42 0,0 461 491
finan512 151 3,4 0,0 146 3,76 0,0 146 148
memplus 3 067 0,21 0,44 3 029 0,08 0,35 3 038 3 293
wing 1 584 9,94 0,0 1 422 10,54 0,03 1 422 1 459
bcsstk33 920 0,0 0,32 908 0,0 0,0 908 1 047

Table B.3: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP,
〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-cycle with
Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with single-level
with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to 〈FM〉, 〈Vol〉
resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 4
3elt 214 0,0 0,0 211 0,0 0,0 211 227
auto 14 486 2,0 0,47 14 099 1,95 0,44 14 111 14 368
data 259 1,16 0,0 243 1,5 0,0 243 282
add32 73 1,33 9,49 61 1,33 6,62 61 38
cs4 2 020 13,98 0,38 1 745 13,49 0,04 1 762 1 774
fe-pwt 546 0,18 0,0 543 0,18 0,0 543 515
t60k 496 0,0 0,0 494 0,0 0,0 496 478
fe-tooth 4 488 0,55 0,07 4 450 0,56 0,03 4 450 4 989
fe-ocean 3 281 20,58 1,94 2 511 19,77 2,27 2 515 2 627
wing-nodal 2 087 2,85 0,13 2 010 2,84 0,06 2 016 2 098
wave 10 995 2,39 0,74 10 640 2,33 0,89 10 624 10 863
vibrobox 4 681 0,88 0,0 4 628 0,89 0,0 4 634 5 286
crack 380 0,0 0,0 379 0,0 0,0 379 420
598a 4 458 2,03 0,18 4 343 2,01 0,22 4 346 4 562
uk 89 1,11 0,0 86 1,11 0,0 86 101
cti 1 941 18,05 0,12 1 624 17,76 0,08 1 620 1 685
add20 590 0,0 5,4 526 0,0 0,09 531 451
bcsstk29 1 334 3,23 6,51 1 164 1,07 5,65 1 170 1 329
fe-body 588 2,77 1,47 560 2,89 1,18 562 551
fe-rotor 4 529 1,96 0,25 4 395 2,0 0,14 4 394 4 536
m14b 6 346 1,72 0,07 6 204 1,76 0,13 6 209 6 568
4elt 359 0,0 0,0 356 0,0 0,0 355 378
fe-4elt2 362 0,0 0,0 357 0,0 0,0 360 363
fe-sphere 832 0,4 0,3 806 0,48 0,36 808 851
144 8 761 2,18 0,52 8 487 2,15 0,58 8 491 8 529
bcsstk30 1 547 0,9 0,0 1 521 0,84 0,23 1 521 1 817
bcsstk31 1 987 2,29 0,95 1 889 1,95 0,74 1 875 2 139
bcsstk32 1 864 1,32 1,79 1 769 1,02 2,25 1 779 2 602
whitaker3 415 0,12 0,0 407 0,36 0,0 409 405
brack2 1 840 0,45 0,1 1 829 0,42 0,0 1 830 2 039
finan512 292 0,0 0,0 292 0,0 0,0 292 296
memplus 5 323 0,49 1,2 5 185 0,31 1,15 5 198 5 275
wing 3 329 10,5 0,27 2 995 10,17 0,18 3 010 3 110
bcsstk33 2 497 2,58 0,0 2 434 2,46 0,0 2 434 2 889

Table B.4: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP,
〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-cycle with
Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with single-level
with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to 〈FM〉, 〈Vol〉
resulting TCV, 〈METIS〉 TCV after METIS.
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B.1 Eco

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 8
3elt 382 0,0 0,0 378 0,0 0,0 378 392
auto 25 414 2,04 0,51 24 697 2,02 0,56 24 715 25 135
data 466 3,0 0,0 439 2,32 0,0 440 472
add32 130 0,0 0,0 119 0,0 0,4 127 91
cs4 3 110 11,73 0,17 2 767 11,89 0,05 2 762 2 787
fe-pwt 1 019 0,29 0,0 1 016 0,29 0,0 1 016 1 083
t60k 988 1,38 0,2 959 1,75 0,0 956 1 049
fe-tooth 7 988 1,18 0,3 7 844 1,12 0,26 7 849 8 189
fe-ocean 8 117 21,39 1,29 6 442 21,05 1,2 6 451 6 754
wing-nodal 3 343 3,4 0,29 3 220 3,38 0,27 3 219 3 382
wave 17 777 2,41 0,68 17 250 2,47 0,61 17 274 17 760
vibrobox 10 897 11,12 2,85 9 235 11,33 2,97 9 256 9 341
crack 719 0,19 0,0 715 0,2 0,13 714 765
598a 9 705 3,01 1,42 9 224 2,83 1,34 9 241 9 332
uk 186 2,96 0,0 174 3,04 0,0 176 201
cti 3 482 16,4 0,38 2 893 16,44 0,28 2 909 3 134
add20 1 048 3,8 0,78 968 2,06 0,38 984 781
bcsstk29 3 541 4,63 15,12 2 753 2,97 15,92 2 837 2 910
fe-body 993 2,72 1,99 937 2,83 1,5 929 955
fe-rotor 7 718 1,83 0,47 7 463 1,85 0,59 7 463 8 034
m14b 13 072 1,75 0,61 12 720 1,74 0,69 12 727 13 387
4elt 570 0,0 0,0 564 0,0 0,0 563 628
fe-4elt2 648 0,07 1,05 636 0,0 0,22 640 657
fe-sphere 1 298 2,68 0,4 1 253 1,38 0,35 1 258 1 296
144 14 043 2,3 0,84 13 575 2,24 0,87 13 594 14 159
bcsstk30 3 378 0,86 0,0 3 330 0,91 0,0 3 342 3 845
bcsstk31 3 946 2,59 2,43 3 694 2,31 1,76 3 773 4 109
bcsstk32 4 492 1,68 3,76 4 201 1,31 2,41 4 264 5 051
whitaker3 692 0,21 0,07 686 0,14 0,07 686 718
brack2 4 753 0,99 0,4 4 662 0,91 0,09 4 672 4 858
finan512 657 0,0 0,0 657 0,0 0,0 657 592
memplus 7 850 1,48 1,7 7 517 1,25 1,28 7 609 6 989
wing 5 228 10,37 0,22 4 701 10,32 0,28 4 696 4 888
bcsstk33 4 877 6,43 1,21 4 419 5,43 0,17 4 512 5 364

Table B.5: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP,
〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-cycle with
Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with single-level
with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to 〈FM〉, 〈Vol〉
resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 16
3elt 632 0,45 0,08 621 0,87 0,07 621 650
auto 42 173 2,36 0,74 40 814 2,31 0,73 40 835 43 527
data 825 3,53 0,18 778 3,06 0,0 778 837
add32 193 0,0 0,0 192 0,0 0,0 193 169
cs4 4 497 12,33 0,3 3 952 12,3 0,11 3 964 4 045
fe-pwt 1 978 1,55 0,07 1 924 1,27 0,22 1 925 2 000
t60k 1 801 2,16 0,41 1 731 2,28 0,23 1 731 2 002
fe-tooth 12 268 1,46 0,31 11 988 1,53 0,46 11 974 12 397
fe-ocean 15 706 20,77 0,81 12 626 20,57 0,97 12 619 13 144
wing-nodal 5 274 3,18 0,41 5 074 3,0 0,24 5 089 5 338
wave 26 692 2,29 0,74 25 769 2,25 0,73 25 789 26 946
vibrobox 15 614 12,93 1,57 13 450 11,74 1,6 13 577 14 159
crack 1 214 0,93 0,2 1 194 0,7 0,04 1 199 1 238
598a 16 035 2,57 1,07 15 386 2,55 1,11 15 376 15 872
uk 348 4,06 0,29 324 4,55 0,6 323 337
cti 5 796 23,71 0,17 4 604 23,21 0,27 4 572 4 723
add20 1 686 5,37 0,48 1 495 3,94 0,09 1 513 1 343
bcsstk29 5 384 2,31 13,44 4 468 1,48 9,66 4 671 5 002
fe-body 1 796 3,38 2,15 1 674 3,32 2,11 1 667 1 715
fe-rotor 12 994 1,84 0,52 12 626 1,86 0,47 12 639 13 033
m14b 22 868 1,89 0,75 22 170 1,89 0,85 22 158 23 479
4elt 1 051 0,09 0,04 1 044 0,18 0,04 1 041 1 075
fe-4elt2 1 094 0,09 0,44 1 079 0,0 0,26 1 082 1 147
fe-sphere 1 961 2,46 0,59 1 880 2,79 0,67 1 874 1 962
144 21 692 2,25 0,91 20 909 2,18 0,91 20 967 22 046
bcsstk30 7 979 1,39 0,0 7 839 1,17 0,0 7 871 8 992
bcsstk31 6 730 2,23 3,24 6 391 1,91 2,95 6 361 7 447
bcsstk32 7 911 1,94 3,63 7 332 1,95 3,13 7 409 9 106
whitaker3 1 193 1,0 0,33 1 168 0,7 0,36 1 169 1 210
brack2 7 988 1,33 0,42 7 809 1,24 0,42 7 826 8 160
finan512 1 168 0,0 0,0 1 168 0,0 0,0 1 168 1 257
memplus 9 628 0,87 0,78 9 299 0,61 0,26 9 379 8 969
wing 8 271 11,78 0,31 7 307 11,84 0,39 7 298 7 464
bcsstk33 8 327 8,02 0,85 7 531 5,88 0,14 7 630 9 045

Table B.6: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP,
〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-cycle with
Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with single-level
with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to 〈FM〉, 〈Vol〉
resulting TCV, 〈METIS〉 TCV after METIS.
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B.1 Eco

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 32
3elt 1 097 0,72 0,0 1 081 0,85 0,27 1 078 1 115
auto 68 203 2,38 0,95 65 776 2,36 0,85 65 878 68 110
data 1 349 3,03 0,38 1 289 2,67 0,03 1 286 1 355
add32 374 0,28 0,0 360 0,0 0,12 363 329
cs4 6 246 12,12 0,15 5 520 11,75 0,09 5 532 5 722
fe-pwt 3 984 2,31 0,21 3 841 2,01 0,13 3 850 4 437
t60k 2 956 3,44 0,38 2 814 3,43 0,55 2 818 3 192
fe-tooth 17 803 1,67 0,51 17 358 1,67 0,52 17 370 18 190
fe-ocean 26 368 30,59 0,71 19 447 30,06 0,85 19 425 20 941
wing-nodal 7 909 3,13 0,28 7 627 2,99 0,14 7 635 7 910
wave 37 941 2,6 0,87 36 500 2,66 0,78 36 584 38 744
vibrobox 21 194 10,05 0,79 18 836 8,76 0,98 18 964 19 780
crack 1 894 0,82 0,12 1 863 0,86 0,07 1 866 1 904
598a 24 502 2,65 1,05 23 528 2,7 0,96 23 557 24 619
uk 581 4,13 0,36 543 3,43 0,26 544 575
cti 8 312 22,25 0,19 6 675 22,3 0,2 6 675 6 765
add20 2 454 0,27 0,34 2 414 0,22 0,03 2 432 2 063
bcsstk29 7 502 0,94 5,6 6 819 0,44 3,59 7 045 7 839
fe-body 2 769 4,03 2,48 2 568 3,64 2,45 2 573 2 760
fe-rotor 20 322 2,46 0,57 19 701 2,34 0,7 19 638 20 740
m14b 36 271 2,01 0,91 35 010 2,0 0,83 35 103 36 202
4elt 1 742 0,35 0,34 1 718 0,53 0,05 1 726 1 791
fe-4elt2 1 804 0,4 0,28 1 771 0,33 0,47 1 769 1 818
fe-sphere 2 844 2,57 0,56 2 734 2,47 0,43 2 736 2 863
144 32 401 2,22 0,97 31 232 2,19 0,98 31 292 32 761
bcsstk30 13 988 3,19 0,1 13 426 2,97 0,0 13 551 15 306
bcsstk31 11 798 3,73 3,88 10 824 2,77 3,92 10 900 12 535
bcsstk32 13 014 2,78 3,99 12 073 2,42 3,23 12 207 14 538
whitaker3 1 841 0,75 0,19 1 814 0,63 0,09 1 813 1 853
brack2 12 243 1,24 0,41 12 007 1,23 0,34 12 025 12 849
finan512 2 336 0,0 0,0 2 336 0,0 0,0 2 336 2 367
memplus 12 435 0,66 1,31 11 949 0,26 0,65 12 031 11 709
wing 11 939 11,8 0,4 10 548 11,82 0,37 10 540 10 937
bcsstk33 12 938 4,16 1,62 11 981 2,75 1,48 12 128 14 216

Table B.7: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP,
〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with V-cycle with
Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with single-level
with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to 〈FM〉, 〈Vol〉
resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

B.2 Strong

Tables in this section use the strong or strongsocial preconfiguration.

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
coPapersCiteseer 101 187 12,43 1,91 87 292 13,38 1,5 87 045 98 173
citationCiteseer 30 656 7,03 0,3 28 480 7,03 0,29 28 471 29 173
coPapersDBLP 192 367 19,06 1,12 158 773 20,45 0,94 156 756 166 205
coAuthorsDBLP 39 314 3,9 1,0 37 151 3,83 1,09 37 200 38 452
coAuthorsCiteseer 19 179 3,08 1,2 18 323 2,93 1,18 18 357 19 906
k = 4
coPapersCiteseer 187 921 12,61 1,48 163 718 12,41 1,24 164 195 192 353
citationCiteseer 61 944 7,27 0,41 57 186 7,07 0,56 57 190 61 639
coPapersDBLP 378 255 20,51 1,12 306 935 21,1 1,07 306 317 332 215
coAuthorsDBLP 75 263 3,22 0,9 71 533 3,14 1,07 71 677 75 661
coAuthorsCiteseer 36 129 2,96 0,96 34 570 3,0 0,9 34 660 38 193
k = 8
coPapersCiteseer 266 557 11,94 1,37 232 868 12,33 1,06 233 226 290 055
citationCiteseer 98 485 6,82 0,43 91 462 6,48 0,77 91 459 95 124
coPapersDBLP 568 802 19,67 1,17 465 413 19,03 1,13 466 672 524 287
coAuthorsDBLP 106 859 3,19 0,63 102 270 3,02 0,77 102 458 110 917
coAuthorsCiteseer 52 352 2,49 0,57 50 532 2,36 0,68 50 575 57 712
k = 16
coPapersCiteseer 333 912 10,14 1,37 296 583 9,69 1,05 297 987 388 575
citationCiteseer 136 095 6,11 0,79 126 330 5,66 1,19 126 662 134 394
coAuthorsDBLP 134 197 2,75 0,68 129 160 2,23 1,0 129 443 143 508
coAuthorsCiteseer 66 229 2,33 0,61 63 984 2,31 0,53 64 043 74 691
k = 32
coPapersCiteseer 394 168 8,62 1,3 355 459 8,48 1,19 357 313 478 638
citationCiteseer 184 196 5,78 0,92 171 352 5,53 1,08 171 529 183 579
coAuthorsDBLP 164 518 2,76 0,57 158 509 2,48 0,69 158 620 175 635
coAuthorsCiteseer 77 848 2,27 0,41 75 592 2,25 0,4 75 628 89 567

Table B.8: Citation Network graphs with strongsocial preconfiguration. From left to right:
〈Vol〉 TCV after KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-
improvement with V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉
%-improvement with single-level with FM, 〈MT〉 %-improvement with single-level
with Multi-Try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B.2 Strong

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
eu-2005 16 087 4,18 0,2 15 342 3,96 0,0 15 417 28 762
in-2004 2 629 3,66 1,48 2 490 3,48 0,0 2 543 4 853
cnr-2000 265 8,48 0,68 244 8,24 0,0 245 699
k = 4
eu-2005 58 443 4,89 0,14 54 833 5,11 0,0 55 434 86 186
in-2004 6 802 4,13 1,43 6 422 3,8 0,07 6 533 11 830
cnr-2000 2 089 4,03 0,96 1 942 3,57 0,1 2 011 2 785
k = 8
eu-2005 108 991 7,27 0,37 100 421 7,67 0,01 101 411 159 648
in-2004 10 942 3,62 0,69 10 473 3,72 0,31 10 503 20 179
cnr-2000 3 889 3,32 0,68 3 700 3,38 0,13 3 738 5 449
k = 16
eu-2005 210 545 5,25 2,65 192 193 4,42 0,76 199 383 270 445
in-2004 16 598 4,08 0,54 15 840 3,65 0,62 15 841 29 317
cnr-2000 6 319 3,66 0,98 6 033 3,52 0,07 6 145 8 598
k = 32
eu-2005 434 863 15,25 0,03 377 090 9,36 1,36 385 712 541 359
in-2004 16 598 0,0 0,0 16 598 0,0 0,0 16 598 39 962
cnr-2000 35 146 6,37 4,78 30 881 5,34 1,38 32 395 54 533

Table B.9: Web graphs with strongsocial preconfiguration. From left to right: 〈Vol〉 TCV
after KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉%-improvement with
single-level with FM, 〈MT〉 %-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 2
auto 5 054 2,14 0,36 4 921 2,01 0,4 4 926 5 325
3elt 88 0,0 0,0 88 0,0 0,0 88 95
data 122 0,0 0,0 122 0,0 0,0 122 130
cs4 712 7,85 0,0 653 7,77 0,0 657 671
add32 10 0,0 0,0 10 0,0 0,0 10 11
fe-pwt 243 0,0 0,0 240 0,0 0,41 240 244
fe-tooth 2 486 0,24 0,0 2 475 0,28 0,0 2 477 2 588
t60k 146 0,0 0,0 144 0,0 0,0 144 170
fe-ocean 622 6,5 0,0 566 7,13 0,0 571 620
wing-nodal 918 2,28 0,11 895 2,23 0,0 893 925
wave 4 814 2,77 0,13 4 654 2,75 0,06 4 671 4 859
vibrobox 3 665 12,11 2,6 3 150 10,18 3,33 3 141 2 282
crack 187 0,0 0,0 187 0,0 0,0 187 202
598a 1 295 1,88 0,0 1 268 1,95 0,0 1 268 1 332
uk 38 0,0 0,0 38 0,0 0,0 38 42
cti 632 14,12 0,0 532 12,98 0,0 532 606
add20 187 0,82 0,0 184 1,09 0,0 184 184
bcsstk29 360 0,0 0,0 360 0,0 0,0 360 426
fe-body 232 2,72 1,12 218 3,14 0,22 220 229
fe-rotor 1 061 1,24 0,0 1 045 1,28 0,0 1 045 1 188
4elt 138 0,0 0,0 138 0,0 0,0 138 149
m14b 1 841 1,65 0,09 1 804 1,65 0,0 1 805 1 875
fe-4elt2 132 0,0 0,0 132 0,0 0,0 132 132
fe-sphere 384 0,0 0,0 384 0,0 0,0 384 429
144 3 352 2,24 0,18 3 267 2,29 0,17 3 267 3 442
bcsstk30 528 0,18 0,0 527 0,18 0,0 527 644
bcsstk31 820 3,14 0,31 766 3,14 0,12 792 887
bcsstk32 1 050 1,05 3,75 977 1,05 3,28 979 1 113
whitaker3 127 0,0 0,0 127 0,0 0,0 127 134
brack2 460 0,0 0,0 460 0,0 0,0 460 491
finan512 166 12,49 0,0 148 12,53 0,0 147 148
memplus 2 930 0,64 0,08 2 904 0,51 0,09 2 916 3 293
wing 1 562 7,46 0,0 1 457 7,51 0,0 1 458 1 459
bcsstk33 908 0,0 0,0 908 0,0 0,0 908 1 047

Table B.10: Walshaw graphs with strong preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B.2 Strong

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 4
auto 14 076 1,92 0,34 13 742 1,88 0,36 13 741 14 368
3elt 209 0,0 0,0 209 0,0 0,0 209 227
data 255 0,2 0,0 249 0,0 0,0 252 282
cs4 1 900 7,9 0,07 1 749 7,51 0,0 1 751 1 774
add32 32 0,0 0,0 32 0,0 0,0 32 38
fe-pwt 482 0,0 0,0 480 0,0 0,0 480 515
fe-tooth 4 530 0,59 0,02 4 493 0,56 0,0 4 499 4 989
t60k 414 0,0 0,0 414 0,0 0,0 414 478
fe-ocean 3 289 23,47 0,16 2 494 23,25 0,22 2 480 2 627
wing-nodal 2 066 2,15 0,06 2 008 2,12 0,06 2 013 2 098
wave 9 594 3,24 0,23 9 240 3,2 0,2 9 249 10 863
vibrobox 7 138 5,8 3,94 6 370 5,11 3,04 6 476 5 286
crack 368 0,0 0,0 368 0,0 0,0 368 420
598a 4 378 1,97 0,12 4 280 1,95 0,16 4 283 4 562
uk 84 0,0 0,0 84 0,0 0,0 84 101
cti 1 747 7,58 0,06 1 615 7,15 0,0 1 616 1 685
add20 484 3,75 0,0 433 2,82 0,11 438 451
bcsstk29 2 064 2,47 22,03 1 447 1,52 21,46 1 486 1 329
fe-body 501 2,16 1,58 469 1,9 0,92 468 551
fe-rotor 4 177 0,94 0,07 4 127 0,95 0,06 4 128 4 536
4elt 335 0,0 0,0 335 0,0 0,0 335 378
m14b 6 303 1,88 0,15 6 156 1,8 0,16 6 157 6 568
fe-4elt2 356 0,0 0,0 356 0,0 0,0 356 363
fe-sphere 796 0,0 0,12 790 0,12 0,12 791 851
144 8 208 1,82 0,39 8 023 1,79 0,33 8 024 8 529
bcsstk30 1 500 0,21 0,0 1 489 0,21 0,0 1 497 1 817
bcsstk31 1 946 1,84 1,22 1 850 1,63 1,41 1 861 2 139
bcsstk32 1 816 1,46 3,98 1 694 1,2 3,34 1 709 2 602
whitaker3 382 0,0 0,0 382 0,0 0,0 382 405
brack2 1 799 0,05 0,0 1 796 0,05 0,0 1 797 2 039
finan512 331 12,17 0,0 296 11,98 0,0 296 296
memplus 5 391 0,67 2,08 5 226 0,42 1,78 5 249 5 275
wing 3 239 7,7 0,01 3 014 7,68 0,03 3 015 3 110
bcsstk33 2 840 7,49 0,3 2 534 7,17 0,39 2 564 2 889

Table B.11: Walshaw graphs with strong preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 8
auto 24 941 1,96 0,39 24 303 1,93 0,37 24 326 25 135
3elt 368 0,0 0,0 367 0,0 0,0 368 392
data 443 2,99 0,24 430 2,0 0,0 431 472
cs4 2 887 7,62 0,07 2 670 7,47 0,03 2 672 2 787
add32 76 0,0 0,0 76 0,0 0,0 76 91
fe-pwt 1 022 0,19 0,0 1 016 0,19 0,0 1 016 1 083
fe-tooth 7 461 0,74 0,02 7 398 0,68 0,0 7 405 8 189
t60k 919 0,0 0,0 919 0,0 0,0 919 1 049
fe-ocean 7 829 17,32 0,56 6 327 17,26 0,34 6 396 6 754
wing-nodal 3 277 2,44 0,13 3 187 2,46 0,08 3 192 3 382
wave 16 322 2,25 0,15 15 899 2,26 0,15 15 902 17 760
vibrobox 10 005 4,1 2,79 9 055 3,81 2,04 9 283 9 341
crack 710 0,0 0,0 709 0,0 0,0 710 765
598a 8 968 2,04 0,25 8 762 1,95 0,29 8 755 9 332
uk 168 0,0 0,0 168 0,0 0,0 168 201
cti 3 481 18,77 0,32 2 876 18,65 0,28 2 907 3 134
add20 794 5,74 0,0 747 4,03 0,0 749 781
bcsstk29 4 006 2,73 15,43 2 927 1,7 15,44 3 145 2 910
fe-body 903 2,94 1,82 856 2,56 1,77 858 955
fe-rotor 7 426 1,13 0,08 7 327 1,09 0,1 7 318 8 034
4elt 560 0,0 0,0 558 0,0 0,0 559 628
m14b 12 885 1,51 0,24 12 621 1,47 0,31 12 622 13 387
fe-4elt2 623 0,0 0,0 623 0,0 0,0 623 657
fe-sphere 1 222 0,0 0,0 1 222 0,0 0,0 1 222 1 296
144 13 646 1,82 0,43 13 278 1,81 0,49 13 274 14 159
bcsstk30 3 376 0,6 0,0 3 293 0,6 0,0 3 324 3 845
bcsstk31 3 802 2,19 1,12 3 619 1,67 0,96 3 620 4 109
bcsstk32 4 550 2,85 2,67 4 252 2,6 2,61 4 283 5 051
whitaker3 677 0,0 0,0 676 0,0 0,0 676 718
brack2 4 572 0,7 0,07 4 527 0,7 0,06 4 532 4 858
finan512 669 12,32 0,0 592 12,42 0,0 592 592
memplus 7 082 0,47 1,85 6 905 0,18 1,42 6 945 6 989
wing 4 930 7,02 0,02 4 586 6,92 0,03 4 584 4 888
bcsstk33 4 891 6,37 0,95 4 451 3,05 0,7 4 500 5 364

Table B.12: Walshaw graphs with strong preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B.2 Strong

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 16
auto 41 131 2,07 0,43 40 011 2,03 0,46 40 022 43 527
3elt 611 0,0 0,0 607 0,0 0,0 608 650
data 783 3,08 0,25 749 1,83 0,0 751 837
cs4 4 141 6,99 0,06 3 855 6,98 0,06 3 856 4 045
add32 138 0,0 0,0 138 0,0 0,0 138 169
fe-pwt 1 945 0,53 0,0 1 924 0,69 0,0 1 922 2 000
fe-tooth 11 562 0,86 0,07 11 439 0,8 0,03 11 441 12 397
t60k 1 693 0,2 0,11 1 688 0,16 0,05 1 687 2 002
fe-ocean 14 947 24,93 0,45 11 442 23,58 0,39 11 489 13 144
wing-nodal 5 173 2,33 0,2 5 008 2,42 0,14 5 018 5 338
wave 25 079 2,02 0,29 24 443 2,0 0,21 24 461 26 946
vibrobox 15 688 9,56 2,77 13 525 8,48 2,83 13 814 14 159
crack 1 172 0,0 0,0 1 170 0,0 0,0 1 170 1 238
598a 15 252 2,02 0,27 14 863 1,97 0,37 14 873 15 872
uk 317 0,3 0,0 313 0,16 0,0 313 337
cti 5 567 21,9 0,14 4 474 20,57 0,13 4 482 4 723
add20 1 399 6,33 0,0 1 238 4,31 0,21 1 263 1 343
bcsstk29 5 381 0,95 11,99 4 603 0,98 9,42 4 699 5 002
fe-body 1 636 2,99 1,34 1 545 3,0 1,5 1 552 1 715
fe-rotor 12 359 1,35 0,15 12 158 1,3 0,09 12 171 13 033
4elt 1 002 0,0 0,0 1 001 0,0 0,0 1 001 1 075
m14b 21 823 1,64 0,4 21 348 1,62 0,39 21 356 23 479
fe-4elt2 1 045 0,0 0,0 1 045 0,0 0,0 1 045 1 147
fe-sphere 1 789 0,07 0,02 1 778 0,05 0,02 1 784 1 962
144 20 992 1,78 0,44 20 442 1,79 0,43 20 480 22 046
bcsstk30 8 212 2,83 0,09 7 926 2,65 0,01 7 985 8 992
bcsstk31 6 822 2,85 2,36 6 359 2,31 2,49 6 414 7 447
bcsstk32 7 909 2,52 3,11 7 410 2,15 2,8 7 450 9 106
whitaker3 1 164 0,0 0,0 1 163 0,0 0,0 1 164 1 210
brack2 7 677 0,62 0,07 7 604 0,6 0,02 7 606 8 160
finan512 1 344 12,2 0,0 1 184 12,24 0,03 1 182 1 257
memplus 8 892 1,22 1,33 8 638 1,4 0,81 8 683 8 969
wing 7 599 6,73 0,06 7 103 6,66 0,01 7 114 7 464
bcsstk33 8 619 4,78 1,84 7 881 3,39 1,42 7 995 9 045

Table B.13: Walshaw graphs with strong preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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B Detailed Experimental Results

V-cycle Finest
Graph Vol FM MT Vol FM MT Vol METIS
k = 32
auto 65 560 1,99 0,53 63 733 1,97 0,48 63 809 68 110
3elt 1 062 0,0 0,0 1 059 0,0 0,0 1 059 1 115
data 1 324 3,0 0,23 1 264 3,65 0,14 1 265 1 355
cs4 5 788 6,78 0,03 5 382 6,69 0,03 5 392 5 722
add32 298 0,0 0,0 298 0,0 0,0 298 329
fe-pwt 4 180 3,78 0,16 3 984 3,7 0,09 3 979 4 437
fe-tooth 17 104 1,06 0,12 16 886 0,98 0,09 16 887 18 190
t60k 2 777 0,46 0,23 2 748 0,38 0,17 2 756 3 192
fe-ocean 24 366 21,51 0,49 19 297 21,42 0,61 19 277 20 941
wing-nodal 7 731 2,42 0,27 7 513 2,2 0,19 7 520 7 910
wave 36 628 1,93 0,3 35 718 1,9 0,27 35 750 38 744
vibrobox 21 109 7,86 1,34 19 117 7,15 0,86 19 175 19 780
crack 1 838 0,0 0,02 1 835 0,0 0,0 1 838 1 904
598a 23 426 2,0 0,31 22 805 1,99 0,41 22 814 24 619
uk 532 0,18 0,28 530 0,09 0,0 531 575
cti 7 970 21,67 0,21 6 411 20,56 0,08 6 459 6 765
add20 2 159 1,13 0,24 2 087 0,98 0,14 2 088 2 063
bcsstk29 7 386 0,56 5,36 6 779 0,52 4,0 6 914 7 839
fe-body 2 661 3,31 1,75 2 515 2,99 1,71 2 517 2 760
fe-rotor 19 622 1,6 0,24 19 196 1,52 0,27 19 207 20 740
4elt 1 676 0,02 0,02 1 673 0,0 0,0 1 673 1 791
m14b 34 600 1,53 0,45 33 823 1,52 0,42 33 842 36 202
fe-4elt2 1 738 0,02 0,02 1 735 0,0 0,0 1 738 1 818
fe-sphere 2 669 0,06 0,03 2 663 0,05 0,07 2 663 2 863
144 31 320 1,81 0,49 30 584 1,74 0,49 30 610 32 761
bcsstk30 13 913 3,08 0,1 13 392 2,38 0,1 13 486 15 306
bcsstk31 11 632 3,73 2,92 10 774 2,73 3,36 10 841 12 535
bcsstk32 12 579 1,88 3,11 11 913 1,78 2,48 11 901 14 538
whitaker3 1 796 0,13 0,05 1 791 0,07 0,0 1 794 1 853
brack2 11 568 0,7 0,04 11 468 0,71 0,02 11 476 12 849
finan512 2 670 12,75 0,02 2 364 12,75 0,04 2 365 2 367
memplus 11 414 0,59 0,53 11 220 0,45 0,34 11 280 11 709
wing 11 036 6,65 0,04 10 332 6,42 0,01 10 344 10 937
bcsstk33 13 153 3,43 2,05 12 276 2,95 1,6 12 477 14 216

Table B.14: Walshaw graphs with strong preconfiguration. From left to right: 〈Vol〉 TCV after
KaHIP, 〈FM〉 %-improvement with V-cycle with FM, 〈MT〉 %-improvement with
V-cycle with Multi-try FM to 〈FM〉, 〈Vol〉 resulting TCV, 〈FM〉 %-improvement with
single-level with FM, 〈MT〉%-improvement with single-level with Multi-Try FM to
〈FM〉, 〈Vol〉 resulting TCV, 〈METIS〉 TCV after METIS.
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