Bachelor thesis

Engineering Graph Partitioning Algorithms to Minimize Communication Volume

Daniel Seemaier

Date: November 8, 2017

Supervisors: Prof. Dr. rer. nat. Peter Sanders
M. Sc. Sebastian Schlag

Dr. rer. nat. Christian Schulz

Institute of Theoretical Informatics, Algorithmics
Department of Informatics
Karlsruhe Institute of Technology

Abstract

The graph partitioning problem divides the nodes of a graph $G=(V, E)$ into k blocks such that the blocks are balanced up to some imbalance factor and that an objective is optimized. Most software products available focus on optimizing the edge cut of the partition, that is, they aim to minimize the number of edges that run between different blocks.

This thesis extends the graph partitioning framework KaHIP with the ability to minimize another objective that arises in the context of parallel computation, namely the total communication volume. To that end, we try to adjust techniques that are known to produce good results for the edge cut objective and that are already implemented in the KaHIP graph partitioning framework to the total communication volume objective. We then compare our results with METIS.

\section*{Zusammenfassung}

Das Graphpartitionierungsproblem partitioniert einen Graphen $G=(V, E)$ in k Blöcke derart, dass die Blöcke der Partition bis auf einen bestimmten Faktor balanciert sind und dass eine Zielfunktion optimiert wird. Viele der verfügbaren Softwareprodukte zur Graphpartitionierung minimieren den Kantenschnitt der Partition, also die Anzahl der Kanten, die zwischen verschiedenen Blöcken verlaufen. In dieser Bachelorarbeit erweitern wir das Graphpartitionierungsframework KaHIP mit einer neuen Zielfunktion die im Kontext von parallelen Berechnungssystemen auftritt, nämlich dem totalen Kommunikationsvolumen der Partition. Dazu passen wir die Techniken, die bereits in KaHIP implementiert sind und bekannt dafür sind, gut für die Kantenschnitt Zielfunktion zu funktionieren, an die neue Zielfunktion an. Anschließend vergleichen wir unsere Resultate mit METIS.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Contents

Abstract iii
1 Introduction 1
1.1 Contribution 1
1.2 Structure of Thesis 2
2 Fundamentals 3
2.1 Graph Theory 3
2.2 Graph Partitioning 4
3 Related Work 7
3.1 Multi-Level Graph Partitioning 7
3.1.1 V-Cycles 8
3.1.2 Local Search 9
3.2 KaHIP 11
4 Algorithms for Communication Volume 13
4.1 Computation of Gain Values 13
$4.2 \quad$ V-Cycle for Communication Volume 16
5 Experimental Evaluation 19
5.1 Environment and Instances 19
5.1.1 Instances 19
5.2 Partitioning Steps and Tuning Parameters 19
5.3 Experimentals and Results 21
5.3.1 METIS, KaHIP and our Algorithms 22
5.3.2 FM and Multi-try FM 24
5.3.3 Normal V-Cycle and Novel V-Cycle 26
5.3.4 Novel V-Cycles and Single-Level Refinement 26
6 Discussion 31
6.1 Conclusion 31
6.2 Future Work 31
A Implementation Details 33
B Detailed Experimental Results 35
B. 1 Eco 35
B. 2 Strong 42
Bibliography 49

1 Introduction

Graph partitioning is the problem to partition the nodes of a graph into roughly balanced blocks such that some objective is optimized. While the problem sounds abstract at first, it has applications across various disciplines.
For instance, an algorithm for customizable route planning [3] uses graph partitioning to divide road networks into cells that are then preprocessed such that the shortest paths between two boundary nodes of the same cell are already known in advance. This technique speeds up the well-known Dijkstra algorithm by several orders of magnitude.

In the context of parallel computation, graph partitioning is used to map processes onto processing nodes such that the communication between nodes is minimized.
Various software products are available for general purpose graph partitioning, for instance METIS [9], KaHIP [15] or even software that is spezialized on specific types of graphs, such as PUNCH [4] for road networks.

All of those partitioners optimize a common objective, namely the edge cut. That is, they optimize partitions such that only few edges have endpoints in different blocks. While edge cut is the most prominent objective and is de facto established as the standard objective for benchmarks, it is well known that many real-world applications of graph partitioning ask for objectives that are only loosely approximated by the edge cut objective [6].

In this thesis, we extend KaHIP with the ability to minimize the total communication volume, an objective that arises in the context of parallel computation. As a side effect of our work, we decouple local search algorithms from the objective such that new objectives can be implemented more easily.

1.1 Contribution

We extend KaHIP such that is produces better results for the total communication volume objective. We observe that V-cycles as they are known in literature do not strictly improve the total communication volume of a partition. Thus, we suggest a new V-cycle that is designed to prevent a worsening of the total communication volume of a partition if local search guarantees no worsening.

1.2 Structure of Thesis

In Chapter 2, we present general definitions and notation that are used throughout the rest of this thesis and give a more formal introduction to graph partitioning. Next, we summarize multi-level graph partitioning and other techniques that are relevant to this thesis as well as the graph partitioning framework we use, namely KaHIP, in Chapter 3. When then move on to algorithms that are explicitly designed to minimize communication volume in Chapter 4 before we give an experimental evaluation of them in Chapter 5 .

2 Fundamentals

This chapter introduces general definitions and notation that are used in the thesis. Moreover, the graph partitioning problem is introduced formally.

2.1 Graph Theory

An (undirected, weighted) graph $G=(V, E, c, \omega)$ consists of a finite set V and a binary relation on $V, E \subseteq\{\{u, v\} \mid u, v \in V\}$. We set $n:=|V|$ and $m:=|E|$. When we talk about multiple graphs, we use $V(G)$ and $E(G)$ to denote the node and edge set of graph G. The elements of V are called nodes and the elements of E are called edges. We say that a graph is simple, if it is undirected and does not contain any edge $\{v, v\}$ with $v \in V$. If not stated otherwise, every graph is a simple graph throughout this thesis. The function $c: V \rightarrow \mathbb{R}$ assigns weights to the nodes while $\omega: E \rightarrow \mathbb{R}$ assigns weights to the edges. We extend c and ω to sets in a natural way, i.e. $c\left(V^{\prime} \subseteq V\right):=\sum_{v \in V^{\prime}} c(v)$ and $\omega\left(E^{\prime} \subseteq E\right):=\sum_{e \in E^{\prime}} \omega(e)$. Note that the input graphs used in this thesis have unit edge weights and thus $c(V)=n$. This, however, changes in the course of the algorithm.
Two nodes $u, v \in V$ are called adjacent or connected if $\{u, v\} \in E$. Likewise, two edges $i, j \in E$ are said to be incident if $i \cap j \neq \emptyset$. Finally, a node $v \in V$ and an edge $e \in E$ are incident if $v \in e$. The set of all nodes that are adjacent to a node $v \in V$ is called the neighborhood of v and is denoted by $\Gamma(v)$. Its size is the degree of v, denoted by $d(v)=|\Gamma(v)|$. Asymptotic running times sometimes depend on the maximum degree $\Delta(G):=\max _{v \in V} d(v)$ that occurs in G.
A matching M is a subset of $E, M \subseteq E$, with the characteristic property that $e \cap e^{\prime}=\emptyset$ for all $e, e^{\prime} \in M$. A maximal matching is one with the property that there is no $e \in E \backslash M$ such that $M \cup\{e\}$ is still a matching.

A k-way partition of V is a set of k disjoint blocks V_{1}, \ldots, V_{k} that covers V, i.e. $V=$ $\bigcup_{i} V_{i}$. A 2-way partition is also called bipartition. A node that is adjacent to at least on node in another block is a boundary node. Edges that connect nodes in different blocks are cut edges. We define the set of all cut edges between two blocks i and j, $E_{i j}:=\left\{\{u, v\} \in E \mid u \in V_{i}\right.$ and $\left.v \in V_{j}\right\}$.

2.2 Graph Partitioning

The graph partitioning problem takes a graph $G=(V, E, c, \omega)$ and an integer $k \geq 2$ and provides a k-way partition of V that optimizes some objective $J\left(V_{1}, \ldots, V_{k}\right)$. The partition must further fulfill a balance constraint that limits the size of each block, $\left|V_{i}\right| \leq(1+\epsilon)\left\lceil\frac{n}{k}\right\rceil$, where $\epsilon \geq 0$ is some imbalance parameter. This problem is known to be $\mathcal{N} \mathcal{P}$-complete [8] and therefore, we focus on heuristics rather than exact algorithms.
The most prominent objective is to minimize the edge cut,

$$
J=\sum_{i<j} \omega\left(E_{i j}\right) .
$$

In this thesis, we will focus on another objective, namely the total communication volume of a partition. It is defined as follows.

Total Communication Volume. This objective models the communication required between applications spread across a parallel computation system. It is given by

$$
J=\sum_{v \in V} c(v) D(v),
$$

where $D(v)$ denotes the number of blocks that contain elements adjacent to v, excluding the one that contains v. Figure 2.1 shows a graph with its total communication volume.

Maximum Communication Volume. If only the computation unit with the highest communication volume is relevant, the maximum communication volume is a more suitable objective, given by

$$
J=\max _{i} \sum_{v \in V_{i}} c(v) D(v) .
$$

Figure 2.1: A graph with unit node weights. Nodes are labeled with their $D(\cdot)$ value. The total communication volume is $2+2+5=9$ and the maximum communication volume is 5.

3 Related Work

In this chapter, we describe important graph partitioning techniques and software that we use in this thesis. This includes the multi-level partitioning scheme, local search algorithms and KaHIP [15]. We also outline the benefits of these techniques when used with the edge cut objective. Only in Chapter 4, we focus more on the total communication volume objective.
An extensive overview of graph partitioning techniques and heuristics is available at [2]. Here, we only summarize techniques that are relevant to our work.

3.1 Multi-Level Graph Partitioning

Hendrickson and Leland [7] described a multi-level graph partitioning scheme in 1995 that has since been used successfully in multiple graph partitioning software, including KaHIP [15] and METIS [9]. In its most rudimentary form, the scheme partitions a graph $G_{0}=\left(V_{0}, E_{0}, c_{0}, \omega_{0}\right)$ in three phases: Coarsening, initial partitioning and uncoarsening.

Coarsening. During the coarsening phase, the scheme produces a hierarchy of smaller graphs G_{1}, \ldots, G_{N} by repeatedly contracting a set of edges.
Edge contraction describes the following operation: Given an edge $\left\{v_{1}, v_{2}\right\} \in E$, remove v_{1} and v_{2} from G and all edges incident to them. Then, insert a new node v with $c(v)=$ $c\left(v_{1}\right)+c\left(v_{2}\right)$ and neighborhood $\Gamma(v)=\Gamma\left(v_{1}\right) \cup \Gamma\left(v_{2}\right)$. If this process would produce two parallel edges, a single edge with weight equal to the sum of both edge weights is inserted instead. Figure 3.1 illustrates the contraction of a single edge in a graph without node weights.
This process is aborted once the number of nodes falls below a certain threshold. In the context of this hierarchy, the input graph G_{0} is called the finest graph or simply input graph whereas G_{N} is called the coarsest graph. Hendrickson et al. use a maximal matching algorithm to identify the set of edges that are to be contracted. KaHIP also implements label propagation to obtain the set, see Section 3.2.

Initial Partitioning. Once the coarsest graph has been obtained, an initial partitioning algorithm is used to compute a k-way partition. Since the coarsest graph contains few nodes compared to the finest graph, this algorithm can be relatively slow.

Uncoarsening. Finally, the initial partition is iteratively projected onto the next finer graph by uncontracting the contracted edges. After each step, a local search algorithm is executed to optimize the objective. We describe the local search algorithms that we use in Section 3.1.2.

Figure 3.1: Contraction of edge $\left\{v_{2}, v_{3}\right\}$. Node weights are omitted.
Note that the edge cut is preserved throughout the hierarchy: the weight of an edge $\{v, u\}$ on a coarser level is equal to the number of edges between the nodes that correspond to v and u on the finest level. Thus, an improvement of the edge cut on a coarser level is also an improvement on the input graph.
With this in mind, the intuition behind multi-level graph partitioning is clear. A movement of a coarser node corresponds to the movement of a whole set of nodes on the input graph. Therefore, local search algorithms in a multi-level approach achieve a more global view, leading to improved partition quality compared to an approach that only uses local search on the input graph.

3.1.1 V-Cycles

Walshaw [16] suggested an iterated multi-level partitioning scheme that aims to improve a given partition. A single run of the scheme is known as V-cycle and is similar to the multi-level partitioning scheme that computes a partition from scratch. It works as follows. First, repeat the coarsening phase as described in Section 3.1. This time, however, exclude any boundary edge from contraction. Nodes of the input graph that belong to the same coarsest node now also belong to the same block. Thus, the input partition can be used as initial partition on the coarsest level. Finally, repeat the uncoarsening phase as already described.
If edge cut is the objective, it is useful to execute multiple V-cycles after a partition has been obtained. This is due to the fact that a V-cycle can never worsen the partition as long as local search guarantees no worsening since the edge cut is preserved throughout the

Figure 3.2: The first three steps of the FM algorithm. The boxes show all nodes that are currently in the priority queue (top row) with their corresponding gain values (bottom row, based on the total communication volume objective). In each step, deleteMax returns the left-most node. The objective is total communication volume. The balance constraint is assumed to be flexible enough to allow for all movements.
hierarchy. However, a random matching algorithm or random tie-breaking in the coarsening phase leads to different boundaries in each cycle. Hence, local search algorithms can find improvements even though they were unable to climb out of a local optima in the previous cycle. We will discuss V-cycles with the total communication volume objective in mind in Chapter 4

3.1.2 Local Search

In this section, we describe the local search algorithms that we use in our experiments. Both algorithms assign gain values to nodes, that is, the change in the objective when moving a node to another partition. We denote the gain value of a node v when moved to block p by $g_{p}(v)$. Since we always move nodes to blocks that maximize their gain values, we define $g(v):=\max _{p} g_{p}(v)$ and say that $g(v)$ is the gain value of v.
Note that both local search algorithms are already implemented in KaHIP, but since they are central to the thesis, we cover them here regardless.

Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses (FM) algorithm was first invented by Fiduccia and Mattheyses [5] as a local search algorithm for 2-way partitions. Here, we describe an improved version of the algorithm by Karypis and Kumar [10] that can improve k-way partitions. The algorithm works as follows.

First, some start nodes are inserted into a priority queue with their gain values as keys. Karypis and Kumar use only boundary nodes for initialization. However, since some
objectives could profit from the movement of non-boundary nodes, we declare the nodes that are used for initialization as input parameter of the algorithm. Next, the algorithm retrieves the node v with the highest gain from the priority queue and tries to move the node to its corresponding block. If the movement would violate the balance constraint, it is skipped. Otherwise, the movement is performed and the gain values of other nodes that are affected by the movement and that still reside in the priority queue are updated. If neighbors of v become boundary nodes due to the movement, they are inserted into the priority queue (but only if they were not previously moved). Figure 3.2 illustrates three steps of this algorithm.
After a certain number of nodes were moved without improving the partition, we stop the search after and revert all movements until the best partition that occurred during the process is restored.

Modification. The original version of FM as well as the improved one use bucket queues as priority queues. This allows the algorithm to update gain values in amortized constant time. However, bucket queues can only be used if the gain values have certain properties; see [5] for details. Since not all objectives fulfill these requirements (and our implementation should be independent from the objective), we use binary heaps instead.

Running Time. The running time of the algorithm depends on the priority queue as well as on the objective. Regarding the priority queue, each node movement requires one deleteMax operation and one insert operation. After a movement, the gain values of some other nodes might change and thus require a changeKey operation for each of them. Assuming that the gain value of single node can be updated in constant time, this yields

$$
T=n\left(T_{\text {insert }}+T_{\text {deleteMax }}\right)+n \sigma T_{\text {changeKey }},
$$

where σ denotes the number of nodes whose gain values might have changed after a movement. This value depends on the objective.
We cover two cases of σ.

- The edge cut objective only requires to update the gain value of each neighbor after a node movement. In this case, $n \sigma$ can be replaced by m since $\sum_{v \in V} d(v)=2 m$.
- Other objectives like total communication volume or graph and index compression additionally require to update the gain value of each neighbor's neighbor. Analogously, this yields $n \sigma \approx m \Delta$.
Binary heaps implement each operation in $\log (n)$ time. Hence, the total running time of the algorithm is $\mathcal{O}(m \log (n))$ in the first case and $\mathcal{O}(m \Delta \log (n))$ in the second case. Note that an implementation for edge cut in $\mathcal{O}(m)$ is possible if bucket queues are used instead; see [5].

Multi-try FM

Sanders et. al. were able to achieve partitions of higher quality by using a highly localized version [12] of the FM algorithm described above. Instead of initializing the priority queue with all boundary nodes, they repeatedly initialize the queue with a single boundary node. Again, after a node was moved, its neighbors are added to the priority queue and thus become eligible for movement. A node that was eligible for movement at some point in time is said to be touched. Once the search stopped, a new search with another boundary node that hasn't been touched yet is started. This process is repeated until all nodes or, to reduce running time, a configurable percentage of nodes were touched.
Since already touched nodes don't become eligible for movement in later searches, the algorithm can be implemented with the same asymptotic running time as the normal FM algorithm as described in Section 3.1.2.
We use the adaptive stopping criteria introduced in [11] to determine when to stop a search round.

3.2 KaHIP

We use the KaHIP framework (Karlsruhe High Quality Graph Partitioning) [15] to implement and evaluate our experiments. Its manual is available at [14]. KaHIP consists of multiple programs, but we only use its multi-level graph partitioner, KaFFPa (Karlsruhe Fast Flow Partitioner).
The software implements several novel techniques to obtain partitions of high quality. They are described extensively in [13].
KaFFPa offers several pre-configurations that we use in our experiments, namely fast, eco and strong. Each configuration provides a different trade-offs between partition quality and running time with fast offering the lowest running time and strong the best partition quality. An extensive description of each configuration is available at [13, p. 62f]. Furthermore, there are-social pre-configurations specially designed to partition large social networks. Most importantly, they use label propagation to cluster and contract the graph rather than matchings; see [13, p. 121ff]. We use them whenever we experiment on social graphs since they are known to produce the best results for them.

4 Algorithms for Communication Volume

We use the FM and Multi-try FM algorithms to improve the total communication volume of a partition. While both algorithms are already implemented in KaHIP, we change them such that the calculation of gain values is based on the total communication volume objective rather than edge cut. To this end, we describe how to calculate these gain values and how to update them efficiently after a node movement.
Secondly, we suggest a modified V-cycle that is designed to guarantee no worsening of the total communication volume during the course of the V-cycle.

4.1 Computation of Gain Values

In this section, we describe how we calculate and update gain values for the total communication volume objective.
To begin with, let $G=(V, E, c, \omega)$ be a graph with a k-way partition $V=\bigcup_{i} V_{i}$. We use $d_{p}(v):=\left|\Gamma(v) \cap V_{p}\right|$ to denote the number of neighbors of node v in block p. Recall that the cost contribution of a single node v is given by $J(v)=c(v) D(v)$. The node weight $c(v)$ is constant and movements only change $D(v)$.
Consider the movement of $v \in V_{p}$ from block p, the source partition, to p^{\prime}, the target partition. We analyze how this changes the $D(\cdot)$ values of v and its neighbors.

- If v is not adjacent to p^{\prime}, but is adjacent to p, its cost increases. On the other hand, its cost decreases if it is adjacent to p^{\prime} but not to p. In the other cases, i.e. it is adjacent or not adjacent to both blocks, its cost doesn't change.
- The neighborhood of a neighbor $u \in \Gamma(v)$ changes as follows. It loses a neighbor in block p and gains a neighbor in block p^{\prime}. The loss decreases u 's cost if v is its only neighbor in block p and u itself does not belong to block p. Likewise, u 's cost increases if it does not belong to block p^{\prime} and has no neighbors in that block.
Thus, the gain value of a node can be written as

$$
\begin{aligned}
g_{p^{\prime}}(v):= & \left(\mathbb{1}_{\left\{d_{p}(v)=0 \text { and } d_{p^{\prime}}(v)>0\right\}}-\mathbb{1}_{\left\{d_{p}(v)>0 \text { and } d_{p^{\prime}}(v)=0\right\}}\right) c(v) \\
& +\sum_{u \in \Gamma(v) \backslash V_{p}} \mathbb{1}_{\left\{d_{p}(v)=1\right\}} c(u)-\sum_{u \in \Gamma(v) \backslash V_{p^{\prime}}} \mathbb{1}_{\left\{d_{p}(u)=0\right\}} c(u),
\end{aligned}
$$

where we make use of indicator variables to ease notation, $\mathbb{1}_{\{\text {cond. }\}}:=\left\{\begin{array}{ll}1, & \text { cond. is met } \\ 0, & \text { otherwise }\end{array}\right.$. The running time of this step is as follows. First, we need $\mathcal{O}(m)$ time to compute the $d_{p}(\cdot)$ values for all blocks p. To calculate the gain value of a single node for a single partition, we must look at all of its neighbors. Therefore we need $\mathcal{O}(m k)$ time to calculate all gain values or $\mathcal{O}(\Delta k)$ time to calculate the gain value of a single node.
Next, consider that node v was moved from partition p to p^{\prime}. We need to decrease $d_{p}(u)$ and increase $d_{p^{\prime}}(u)$ by one for each $u \in \Gamma(v)$. Thus, the gain values of $\Gamma(v)$ and $\bigcup_{u \in \Gamma(v)} \Gamma(u)$ might change. This leads to $\mathcal{O}\left(\Delta^{2}\right)$ updates after a single node movement, compared to $\mathcal{O}(\Delta)$ updates if edge cut is used as objective.
The movement only affects $g_{p}(\cdot)$ and $g_{p^{\prime}}(\cdot)$ because other gain values are not influenced by $d_{p}(v)$ or $d_{p^{\prime}}(v)$. After updating the gain values of a node, we must check whether a new partition yields the best gain value for that node. This requires $\mathcal{O}(k)$ time if the updates decreased the maximum gain of the node, because then we must compare the new gain value to all other gain values. Thus, the overall worst time complexity of this process is $\mathcal{O}\left(\Delta^{2} k\right)$. Since the calculation of the gain value of a single node from scratch takes more than constant time, we rather calculate the differences of all gain values that might have changed. We do this in three steps. First, we observe how the movement of v itself, that is, without considering $d(\cdot)$, affects other gain values. Secondly, we consider the changes in $d(\cdot)$ and describe how they influence the gain values of neighbors of v before we, thirdly, describe how they influence the gain values of neighbors of v 's neighbors. In each and every case, we describe why the change occurs and then give a more algorithmic instruction on how to implement it. Note that we use a star as subscript, e.g. $g_{\star}(x)$, if the change applies to all $g_{\tilde{p}}(x)$ for all blocks \tilde{p}.

- If v has only one neighbor u in p, moving that neighbor to another block decreases the partition's cost. This was not previously accounted for in u 's gain value and thus, we must increase its gain value by $c(v)$.
For all $u \in \Gamma(v) \cap V_{p}$: increase $g_{\star}(u)$ by $c(v)$ if $d_{p}(v)=1$.
- On the other hand, if v has no neighbors in block p, then moving any neighbor $u \in \Gamma(v)$ to block p increases the partition's cost. This was not previously accounted for and thus, we must decrease their gain values by $c(v)$.
For all $u \in \Gamma(v) \backslash V_{p}$: decrease $g_{p}(u)$ by $c(v)$ if $d_{p}(v)=0$.
- If v has precisely one neighbor u in block p^{\prime}, then moving v to another block no longer decreases $D(v)$. Thus, we must decrease its gain value by $c(v)$.
For all $u \in \Gamma(v) \cap V_{p^{\prime}}$: decrease $g_{\star}(u)$ by $c(v)$ if $d_{p^{\prime}}(v)=1$.
- Finally, if v has no neighbors in block p^{\prime}, then the movement of another neighbor to block p^{\prime} no longer increases $D(v)$ (but it did before). Thus, we must increase the gain values of all neighbors by $c(v)$.
For all $u \in \Gamma(v) \backslash V_{p^{\prime}}$: increase $g_{p^{\prime}}(u)$ by $c(v)$ if $d_{p^{\prime}}(v)=0$.

Next, we describe how the change of the $d(\cdot)$ values affect gain values of v 's neighbors. Let $u \in \Gamma(v)$.

- If $d_{p}(u)$ changed to 0 , then u lost its last neighbor in block p. Thus, moving u to block p no longer decreases the number of adjacent partitions of u.
For all $u \in \Gamma(v) \backslash V_{p}$: decrease $g_{p}(u)$ by $c(u)$ if $d_{p}(u)=0$.
- If, however, $u \in V_{p}$ and $d_{p}(u)$ changed to 0 , then moving u to any other partition no longer increases the number of blocks that u is adjacent to. Thus, we need to increase its gain value by $c(u)$.
For all $u \in \Gamma(v) \cap V_{p}$: increase $g_{\star}(u)$ by $c(u)$ if $d_{p}(u)=0$.
- If $d_{p^{\prime}}(u)$ changed to 1 , then u gained a new neighbor in block p^{\prime}. Thus, moving u to block p^{\prime} no longer decreases the number of blocks that u is adjacent to.
For all $u \in \Gamma(v) \backslash V_{p^{\prime}}$: increase $g_{p^{\prime}}(u)$ by $c(u)$ if $d_{p^{\prime}}(u)=1$.
- Lastly, if $u \in V_{p^{\prime}}$ and $d_{p^{\prime}}(u)$ changed to 1 , then moving u to any other partition no longer increases the number of blocks that u is adjacent to. Thus, we must decrease its gain value by $c(u)$.
For all $u \in \Gamma(v) \cap V_{p^{\prime}}$: decrease $g_{\star}(u)$ by $c(u)$ if $d_{p^{\prime}}(u)=1$.
Finally, we need to update the gain values of nodes that share a neighbor with v, i.e. neighbors of neighbors of v. Again, let $u \in \Gamma(v)$.
- If $d_{p}(u)$ changed to 1 , there is only one neighbor of u left in block p. When moving that neighbor to another block, $D(u)$ decreases and thus, we must increase that nodes gain value, unless u itself is in block p.
For all $w \in \Gamma(u) \cap V_{p}$: increase $g_{\star}(w)$ by $c(u)$ if $d_{p}(u)=1$ and $u \notin V_{p}$.
- If $d_{p}(u)$ changed to $0, u$ has no more neighbors in block p. Thus, moving any other neighbor to block p increases $D(u)$, unless u itself is in block p.
For all $w \in \Gamma(u) \backslash V_{p}$: decrease $g_{p}(w)$ by $c(u)$ if $d_{p}(u)=0$ and $u \notin V_{p}$.
- For neighbors of u in block p^{\prime}, we must look at two cases. Both cases only apply if u itself is not in block p^{\prime}. First, assume $d_{p^{\prime}}(u)=1$: Then there is one neighbor in block p^{\prime} and moving it decreases $D(u)$ by one. On the other hand, assume that $d_{p^{\prime}}(u)=2$. Then before the movement, there was only one neighbor in block p^{\prime}. Moving that one decreases $D(u)$. But since there are two neighbors now, that can no longer happen due to a single movement. Thus, its gain value decreases.
If $u \notin V_{p^{\prime}}$: for all $w \in \Gamma(u) \cap V_{p^{\prime}}$: increase $g_{\star}(w)$ by $c(u)$ if $d_{p^{\prime}}(u)=1$ and decrease it if $d_{p^{\prime}}(u)=2$.
- Finally, consider neighbors of u that are not in block p^{\prime}. If $d_{p^{\prime}}(u)=1$ and u itself is not in block p^{\prime}, moving them to longer increases $D(u)$. Thus, their gain values increase.
For all $w \in \Gamma(u) \backslash V_{p^{\prime}}$: increase $g_{p^{\prime}}(w)$ by $c(u)$ if $d_{p^{\prime}}(u)=1$ and $u \notin V_{p^{\prime}}$.

(a) TCV: 6 on coarser level, 4 on finer level.

(b) TCV: 5 on coarser level, 5 on finer level.

Figure 4.1: Example showing that an improvement on a coarser level might be a worsening on a finer level. Big bubbles represent coarser nodes. Small bubbles inside are finer nodes with unit node weights that correspond to them. Label: (1st) node weight, (2nd) cost contribution on the coarser level, (3rd) cost contribution on the finer level.

4.2 V-Cycle for Communication Volume

Recall that coarsening and uncoarsening preserves the edge-cut and thus a V-cycle cannot worsen the objective. Unfortunately, this does not apply to the total communication volume objective as demonstrated in Figure 4.1.
To fix this, we suggest to modify the contraction scheme such that edges incident to boundary nodes are no longer contracted. We illustrate the difference to the normal V-cycle in Figure 4.2. Indeed, we can show that this prevents a worsening of the objective through repeated V-cycles.
Lemma 4.2.1. Our modified V-cycle preserves the total communication volume during coarsening.

Proof. Since no edges adjacent to boundary nodes are contracted, both graphs share the same boundary nodes. Furthermore, $D(v)$ and $c(v)$ are the same on both graphs for all boundary nodes v. Thus, the total communication volumes of both graphs are the same.

Lemma 4.2.2. Let J_{i} be the total communication volume of graph G_{i}. Then, $J_{i-1} \leq J_{i}$.
Proof. Consider the contribution of a single node $v \in V_{i}$ to the objective on level $i>0$, namely $J_{i}(v)=c_{i}(v) D_{i}(v)$. The node v corresponds to a set of nodes $S=\left\{v_{1}^{\prime}, \ldots, v_{N}^{\prime}\right\}$ on level $i-1$ with $c_{i}(v)=c_{i-1}(S)$. Since $D_{i}(v) \geq D_{i-1}\left(v_{j}^{\prime}\right), 1 \leq j \leq N$, we have

$$
J_{i-1}(S)=\sum_{1 \leq j \leq N} c_{i-1}\left(v_{j}^{\prime}\right) D_{i-1}\left(v_{j}^{\prime}\right) \leq \sum_{1 \leq j \leq N} c_{i-1}\left(v_{j}^{\prime}\right) D_{i}(v)=c_{i}(v) D_{i}(v)=J_{i}(v) .
$$

Thus, $J_{i-1}=\sum_{v^{\prime} \in V_{i-1}} J_{i-1}\left(v^{\prime}\right) \leq \sum_{v \in V_{i}} J_{i}(v)=J_{i}$.

Figure 4.2: Graph (b) could be the result of a contraction made by the normal V-cycle. While the partition is preserved, boundary nodes might get contracted. Graph (c) shows a contraction that could be the result of our V-cycle: All boundary nodes are preserved and only edges incident to non-boundary nodes are potentially contracted.

Corollary 4.2.3. Our modified V-cycle guarantees no worsening of the total communication volume if local search guarantees no worsening.

Proof. Let J_{i} and J_{i}^{\prime} be the total communication volume on level i before and after local search, respectively. Then, $J_{0}=J_{N}$ by Lemma 4.2.1, $J_{i}^{\prime} \leq J_{i}$ by assumption and $J_{i-1} \leq J_{i}^{\prime}$ by Lemma 4.2.2. The claim $J_{0}^{\prime} \leq J_{0}$ follows by induction.

We implement our novel V-cycle by extending the algorithm that is already implemented in KaHIP. Suppose that KaHIP already generated the coarser graphs G_{1}, \ldots, G_{i}. Now, it generates a mapping $f: V\left(G_{i}\right) \rightarrow V\left(G_{i+1}\right)$ such that the coarser node v in G_{i+1} corresponds to the node set $f^{-1}(v)$ in G_{i}. Based on this mapping, it generates the coarser graph.
We alter $V\left(G_{i+1}\right)$ and f as depicted in Algorithm1. The idea is to add a node to G_{i+1} for each boundary node in G and change f such that boundary nodes map to their individual nodes. Finally, we remove nodes from G_{i+1} such that f is a surjection.
The running time of this extension is dominated by determining which nodes are boundary nodes. All other steps run linear in the number of nodes.
Note that the algorithm could be simplified if the input mapping was restricted to matchings. We scan for the gaps after the boundary nodes were remapped because KaHIP also implements label propagation, see Section 3.2. In this case, more than two nodes might be mapped to the same coarser node.

```
Algorithm 1: Maps boundary nodes to their individual coarser nodes.
Data: Mapping \(f: V\left(G_{i}\right) \rightarrow V\left(G_{i+1}\right)\). Assume \(V\left(G_{i+1}\right)=\left\{0, \ldots,\left|V\left(G_{i+1}\right)\right|-1\right\}\).
Result: Altered coarser mapping such that the boundary of \(G_{i}\) is preserved.
\(B \leftarrow\) boundary nodes in \(G_{i}\)
\(s \leftarrow\left|V\left(G_{i+1}\right)\right|\)
// create new nodes and alter mapping
foreach \(v \in B\) do
    \(V\left(G_{i+1}\right) \leftarrow V\left(G_{i+1}\right) \cup\{s\}\)
    \(f(v) \leftarrow s\)
    \(s \leftarrow s+1\)
assert \(s=\left|V\left(G_{i+1}\right)\right|\)
assert for all \(v \in B: f(v)\) is unique, i.e. there is no \(u \neq v\) with \(f(u)=f(v)\)
// detect gaps in mapping
hit \(\leftarrow\) new Array of size \(s\) and initialized with false
foreach \(v \in V\left(G_{i+1}\right)\) do
    hit \([f(v)] \leftarrow\) true
// accumulate gaps to calculate the offsets that close them
offset \(\leftarrow\) new Array of size \(s\) and initialized with 0
\(d \leftarrow 0\)
foreach \(v \in V\left(G_{i+1}\right)\) do
    if hit \([v]\) then
        offset \([v] \leftarrow d\)
    else
        \(d \leftarrow d+1\)
// close the gaps
foreach \(v \in V\left(G_{i+1}\right)\) do
    \(f(v) \leftarrow f(v)-\) offset \([f(v)]\)
assert the last d nodes in \(V\left(G_{i+1}\right)\) are no longer mapped
\(V\left(G_{i+1}\right) \leftarrow V\left(G_{i+1}\right) \backslash\{s-\mathrm{d}, \ldots, \mathrm{s}-1\}\)
```


5 Experimental Evaluation

The structure of this chapter is as follows. We begin by describing the environment of our experiments. Afterwards, we describe individual steps of our experiments and their tuning parameters without a specific experiment in mind. Finally, we describe and evaluate our experiments using those steps in Section 5.3 .

5.1 Environment and Instances

All algorithms were implemented in C++ within the KaHIP graph partition framework [14] in version 2.0. The code was compiled using GCC in version 4.8.5 and the following compiler flags: -funroll-loops, -fno-stack-limit and -O3.

Hardware. Our experiments were executed on two machines. Machine A has four Intel Xeon E5-4640, 512 GiB ECC main memory and is running Ubuntu 12.04. Machine B has two Intel Xeon E5-2670 v3, 128 GiB ECC main memory and is running Ubuntu 14.04LTS.

5.1.1 Instances

The graphs used in our experiments are divided into two different categories: Social graphs, listed in Table 5.1, and normal graphs, listed in Table 5.2. All graphs are unweighted and were taken from [1].
Social graphs listed in Table 5.1 were initially partitioned using KaHIP's ecosocial and (or) strongsocial preconfigurations. On the other hand, for graphs listed in Table 5.2 , the preconfigurations eco and strong were used to obtain the initial partition. We do this because these preconfigurations are known to yield the best results for each category.
Whenever we refer to the "eco (social)" preconfiguration, we mean ecosocial if the graph is in Table 5.1 and eco otherwise. The same applies to strong (social).

5.2 Partitioning Steps and Tuning Parameters

Steps described in this section don't represent full experiments but rather building blocks. The experiments that we describe in Section 5.3 are build with these blocks and concrete

Graph	$\|V\|$	$\|E\|$
Web Graphs		
uk-2002	18520486	261787258
eu-2005	862664	16138468
in-2004	1382908	13591473
cnr-2000	325557	2738969
Citation Network Graphs		
coPapersCiteseer	434102	16036720
coPapersDBLP	540486	15245729
citationCiteseer	268495	1156647
coAuthorsDBLP	299067	977676
coAuthorsCiteseer	227320	814134

Table 5.1: Social graphs.
values for tuning parameters. Most of these steps were already described in Chapter 3 and Chapter 4 . We repeat them here briefly to lay down the vocabulary used in the following sections.

KaHIP. This step obtains or refines a partition by running KaHIP with a certain preconfiguration. We use this step to obtain an initial partition of the graph. Note that partitions obtained this way are optimized for edge cut rather than total communication volume.
KaHIP supports several preconfigurations that offer a trade of between partition quality and running time. We use two of those to observe the influence of a better initial partition (in terms of edge cut). Namely, we use the preconfigurations eco, ecosocial, strong and strongsocial. strong finds partitions of higher quality than eco but takes longer. The -social variants of those preconfigurations use label propagation rather than matchings to contract the graph. This achieves better results for social graphs and thus, we use them whenever we experiment on social graphs. Since it is clear whether we use the -social variant of a preconfiguration or not, we omit this difference in naming in the following experiments.
Tuning parameters: Preconfiguration

FM refinement. This step uses the FM algorithm as described in Section 3.1.2. The algorithm is stopped after $\alpha \frac{n}{100}$ (but at least 15) consecutive movements worsened the objective. Thereby is $\alpha=1$ if the preconfiguration is eco and $\alpha=3$ if it is strong. These values are from KaHIP. We schedule rounds until a maximum number of rounds is reached or a round did not yield an improvement. The refinement can be used single-level or with one of the two V-cycles.
Tuning parameters: Maximum number of rounds, refinement type

| Graph | $\|V\|$ | \|E| | Graph | V\| | \|E| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Walshaw Graphs | | | Walshaw Graphs | | |
| auto | 448695 | 3314611 | fe_pwt | 36519 | 144794 |
| m14b | 214765 | 1679018 | wing | 62032 | 121544 |
| 144 | 144649 | 1074393 | t60k | 60005 | 89440 |
| wave | 156317 | 1059331 | wing_nodal | 10937 | 75488 |
| bcsstk30 | 28924 | 1007284 | memplus | 17758 | 54196 |
| bcsstk32 | 44609 | 985046 | fe_sphere | 16386 | 49152 |
| 598a | 110971 | 741934 | cti | 16840 | 48232 |
| fe_rotor | 99617 | 662431 | 4elt | 15606 | 45878 |
| bcsstk31 | 35588 | 572914 | cs4 | 22499 | 43858 |
| fe_tooth | 78136 | 452591 | fe_4elt2 | 11143 | 32818 |
| fe_ocean | 143437 | 409593 | crack | 10240 | 30380 |
| brack2 | 62631 | 366559 | whitaker3 | 9800 | 28989 |
| bcsstk29 | 13992 | 302748 | data | 2851 | 15093 |
| bcsstk33 | 8738 | 291583 | 3 elt | 4720 | 13722 |
| finan512 | 74752 | 261120 | add32 | 4960 | 9462 |
| vibrobox | 12328 | 165250 | add20 | 2395 | 7462 |
| fe_body | 45087 | 163734 | uk | 4824 | 6837 |

Table 5.2: Normal graphs.

Multi-try FM refinement: This step is similar to the previous one but uses Multi-try FM as described in Section 3.1.2, We stop the search using the adaptive stopping criteria from [11] with $\alpha=3$ and $\beta=\log (|V|)$.
Tuning parameters: Maximum number of rounds, refinement type

Refinement Types. The FM or Multi-try FM refinement can be used together with one of the following refinement types. They can be used with the normal V-cycle as described in Section 3.1.1, with our novel V-cycle that we describe in Section 4.2 or single-level. In the last case, we only run the local search algorithm on the input graph, i.e. we don't build a graph hierarchy at all.

5.3 Experimentals and Results

This section presents and discusses our main experiments. First, we show the performance of different algorithms and compare them to KaHIP and METIS. Secondly, we compare our novel V-cycle with the normal V-cycle and thirdly, we compare the performance of our novel V-cycle with single-level refinement. In all experiments, all partitions have a maximum imbalance of 3%.

5.3.1 METIS, KaHIP and our Algorithms

In this experiment, we compare the performance of KaHIP, Metis and our own algorithms. We partition the graphs ($u k-2002$ from Table 5.1 is not included) with each algorithm into $k=2,4,8,16,32$ blocks and compare the total communication volumes of the resulting partitions. This experiment was executed on Machine A. The algorithms are as follows.

KaHIP(Eco), KaHIP(Strong) These numbers were obtained by partitioning the graphs using KaHIP without any modification. In particular, these partitions are optimized for edge cut rather than total communication volume. KaHIP (Eco) uses KaHIP's eco or ecosocial preconfiguration and KaHIP (Strong) uses its strong or strongsocial preconfiguration.

METIS These numbers come from METIS in version 5.1.0. METIS was executed with the $-o . b j t y p e=v o l$ argument, i.e. the partitions were optimized for total communication volume rather than edge cut. We ran METIS 10 times and took the median of those runs.

The other experiments are based on our own algorithms. Each of them starts by obtaining a partition by KaHIP. Each time, the suffix indicates whether we use KaHIP (Eco) or KaHIP (Strong) in this first step.

V-Cycle In these experiments, we refine the initial partition further by using FM with at most 5 rounds and our novel V-cycle. We repeat this configuration 7 times. Then, we use Multi-try FM with our novel V-cycle to further refine the previously obtained partition. Again, we execute 7 cycles with this configuration.
Single-Level These experiments also refine the initial partition further by using FM, but this time, we only use it single-level. Afterwards, we run Multi-try FM single-level. We run both refinements at most 7 times.

The performance of each algorithm is depicted in Figure 5.1. Numeric values are shown in Table 5.3. The raw numbers are available in Appendix B.1 and Appendix B.2. We observe several points.
First, we notice that KaHIP(Strong) outperforms METIS on almost every instance. This does not come with much of a surprise, considering that KaHIP(Strong) achieves much better results than METIS if the objective to minimize is edge cut. Secondly, we can improve the result of KaHIP by up to $29,89 \%$ or $2,90 \%$ on average. Against METIS, our improvement ranges up to $65,09 \%$ and on average $7,59 \%$. We achieve the best results on medium to large sized social graphs. Thirdly, we notice that the performance difference between our novel V-cycle and single-level refinement is virtually absent, with a median improvement of 0,09\% (V-Cycle (Strong) to Single-Level (Strong)). This motivates us to do further experiments in Section 5.3.4.

Figure 5.1: Performance plots that compare our algorithms to KaHIP and METIS.

Category	Min	0.25-Quantile	Median	0.75-Quantile	Max	
Improvement: METIS to V-Cycle(Strong)						
All	$-38,04 \%$	$5,18 \%$	$7,59 \%$	$12,44 \%$	$65,09 \%$	
Walshaw	$-38,04 \%$	$4,80 \%$	$6,99 \%$	$11,15 \%$	$34,90 \%$	
Citation	$2,38 \%$	$6,00 \%$	$9,49 \%$	$14,34 \%$	$25,74 \%$	
Web	$28,93 \%$	$30,34 \%$	$43,37 \%$	$48,10 \%$	$65,09 \%$	
Improvement: KaHIP(Strong) to V-Cycle(Strong)						
All	$0,00 \%$	$0,75 \%$	$2,90 \%$	$7,01 \%$	$29,89 \%$	
Walshaw	$0,00 \%$	$0,30 \%$	$2,48 \%$	$6,59 \%$	$29,89 \%$	
Citation	$2,90 \%$	$4,29 \%$	$7,10 \%$	$12,64 \%$	$18,86 \%$	
Web	$0,00 \%$	$4,57 \%$	$5,59 \%$	$7,92 \%$	$13,29 \%$	
Improvement: V-Cycle	(Eco) to V-Cycle(Strong)					
All	$-51,44 \%$	$0,43 \%$	$2,19 \%$	$4,17 \%$	$47,54 \%$	
Walshaw	$-51,44 \%$	$0,25 \%$	$2,04 \%$	$3,73 \%$	$47,54 \%$	
Citation	$-0,13 \%$	$2,06 \%$	$3,09 \%$	$3,77 \%$	$6,45 \%$	
Web	$-10,06 \%$	$-0,82 \%$	$6,79 \%$	$14,45 \%$	$44,29 \%$	

Table 5.3: Improvement of our algorithms over KaHIP and METIS and the influence of a better input partition.

Category	Min	0.25-Quantile	Median	0.75-Quantile	Max
All	$0,00 \%$	$0,29 \%$	$0,84 \%$	$1,62 \%$	$16,73 \%$
Walshaw	$0,00 \%$	$0,18 \%$	$0,69 \%$	$1,38 \%$	$16,73 \%$
Citation	$0,41 \%$	$0,77 \%$	$0,96 \%$	$1,14 \%$	$3,33 \%$
Web	$0,45 \%$	$2,39 \%$	$3,46 \%$	$4,45 \%$	$7,08 \%$

Table 5.4: Improvement achieved by Multi-try FM for all graphs and for each category.

5.3.2 FM and Multi-try FM

We also test the performance gain of Multi-try FM in a separate experiment, depicted in Figure 5.2 and Table 5.4. The labels describe the following algorithms.

FM This algorithm executes novel V-cycles with FM. We execute 7 cycles, each with at most 5 FM rounds. As always, we take a partition found by KaHIP as input partition. KaHIP is run with the preconfiguration eco(social).
Multi-try FM This algorithm takes the resulting partition of FM as input and tries to further improve it by executing Multi-try FM with our novel V-cycle. Again, we execute 7 cycles, each with at most 5 Multi-try FM rounds.

(a) All graphs

(c) Citation network graphs

- KaHIP(Eco) - Single-Level FM • V-Cycle FM - Metis - Single-Level Multi-try FM • V-Cycle Multi-try FM
(b) Walshaw graphs

(d) Web graphs

Figure 5.2: Performance plots that show the effect of Multi-try FM.

5.3.3 Normal V-Cycle and Novel V-Cycle

We only use citation network graphs and web graphs in this experiment. Moreover, we partition the graphs into $k=4,8,16,32$ blocks, except for $u k-2004$, which we only partition into $k=4$ blocks. This experiment was executed on Machine B.
We use the following configurations.
KaHIP These numbers were obtained from KaHIP using the ecosocial preconfiguration. We use these partitions as initial partitions for the other algorithms.
First V-cycle, 7nth V-cycle We execute 7 normal V-cycles with FM (with up to 5 rounds) as local search on the input partition. The numbers labeled First V-cycle are the result of the first v-cycle whereas the numbers labeled 7nth V-cycle are the results after the last V-cycle.
Novel V-cycle For comparison, we include the performance of our novel V-cycle on the same instances. These numbers are from Section 5.3.1, labeled V-cycle.

The results are depicted in Figure 5.3. We observe that normal V-cycles do not always lead to improvements in the partition's quality. In fact, refining KaHIP's partition with only one normal V-cycle worsens the partition in about half of all test instances. More V-cycles seem to yield an improvement, but they never reach the performance of our novel V-cycle or single-level refinement.

5.3.4 Novel V-Cycles and Single-Level Refinement

Motivated by the observation that our novel V-cycle and single-refinement perform almost the same, we do some more experiments dedicated to this phenomenon. This experiments was executed on Machine B. We use the citation network graphs and web graphs in this experiment, and partition them into $k=4,8,16,32$ blocks. Except for $u k-2004$, which we only partition into $k=4$ blocks. We use KaHIP with preconfiguration fastsocial to obtain an initial partition.
We coarsen the graph using our novel V-cycle and execute up to 10 FM rounds on the coarsest level of the graph hierarchy. The total communication volume of this step is labeled Coarsest in Figures 5.4a and 5.4b After uncoarsening, we execute additional 1 (Figure 5.4a) or 4 (Figure 5.4b) rounds of FM on the finest level. These results are labeled Both. We compare these results with the data set that is labeled Finest. To obtain this, we simply execute 1 (Figure 5.4a) or 4 (Figure 5.4b) rounds of FM on the finest level, independent of the other experiment.
We observe that while the work that is done on the coarsest level benefits the result in Figure 5.4a, the benefit is below 1% in Figure 5.4 b and vanishes if replace the work that is done on the coarsest level by another round of FM on the finest level (Figure 5.5).
A closer look reveals that the number of weighted nodes that get moved by the FM algorithm on a coarser level is below one tenth of a percent on all web graphs for $k=4,8$. This indi-

Figure 5.3: Comparison between KaHIP's result, normal V-cycles and our novel V-cycle.

(b) 10 rounds on the coarsest level, 4 on the finest vs 4 rounds single-level

Figure 5.4: Shows the performance difference between V-cycle and single-level refinement. The advantage of our novel V-cycle versus single-level refinement is below 1% on almost every instance.
cates that coarsening the graph limits the refinement to unweighted nodes, i.e. uncontracted nodes that are also present on the input graph. In terms of quality, an improvement seems therefore to be impossible. Furthermore, the time that it takes to construct the coarser graph is several orders of magnitude bigger than the running time of the FM algorithm on all tested graph instances. Thus, it seems doubtful that an improvement by our V-cycle is possible in regards to partition quality or running time.

Figure 5.5: Shows the difference between doing 10 FM rounds on the coarsest and 3 FM rounds on the finest level versus only 4 rounds FM on the finest level. The labels are analogous to Figure 5.4 .

6 Discussion

6.1 Conclusion

We observe that KaHIP produces partitions with lower total communication volume than METIS on almost every instance that we've tested, even though KaHIP only tries to minimize the edge cut of the partition. We were able to further minimize the total communication volume of partitions found by KaHIP through FM and Multi-try FM.
However, we are unable to observe an advantage of multi-level V-cycles over simple local search on the input graph. After coarsening the graph, the objective is overestimated and an improvement on a coarser level might lead to a worsening on the finest level of the graph hierarchy. Thus, V-cycles in the way they are used to further minimize the edge cut of a partition seem to be unsuitable for the total communication volume objective if no exact gain values are used.
Our own variant of a V-cycle is specially designed to prevent a worsening of the total communication volume but seems to be too restrictive. On coarser levels, experiments show that movements are practically restricted to the uncontracted boundary. Thus, it can be seen as a restricted local search on the finest level of the graph. In terms of running time, the contraction of the graph dominates the V-cycle. In conclusion, local search that is only executed on the finest level of the graph is faster and produces results of equal quality than our novel V-cycle.

6.2 Future Work

The main drawback of our algorithm, so it seems, is that the objective isn't preserved throughout the graph hierarchy and thus, improvements on a coarser level might not correspond to an improvement on the finest level. We believe that an improvement is possible by using precise gain values on coarser levels. In other words, one should calculate the objective such that the gain values of coarser nodes are the same as the change in the objective on the finest level of the graph hierarchy when the movements are made. To this end, one has to develop a way to calculate these precise gain values efficiently.
Another field of future work is to implement further objectives within KaHIP. We designed the implementation of the local search algorithms that we use such that the calculation of gain values can exchanged easily.

A Implementation Details

Our compiled software must be called with the following arguments,
\$./app [--seed=SEED] CONFIG GRAPH K
where --seed is optional and specifies the random seed, CONFIG is the path to a configuration file (see below), GRAPH is the path to the graph that should be partitioned and K is the number of blocks.
The configuration file specifies and configures the steps that should be executed to partition the graph. The file uses the well-known INI file formal ${ }^{1}$ and is structured as follows.
The sections are numbered consecutively starting at 0 and represent processing steps. The first section is responsible for calculating the initial partition. All other sections get the resulting partition from the preceding section as input partition if not specified otherwise. The entries that a section configure are listed and described in Table A.1. If a section omits an entry, the value from the previous section is implicitly copied. If an entry is never specified, the default value is used.
Upon completion, a file containing some metrics of the resulting partitions of each step is written to the hard disk.

[^0]
A Implementation Details

Key	Possible Values	Description
Preconfiguration	standard, fast, eco, strong, fastsocial, ecosocial, strongsocial	Preconfiguration that is passed to KaHIP. Default: standard
Refinement	KaHIP, fm, multitry	If KaHIP, use KaHIP to obtain a partition (edge cut). Otherwise, use FM or Multi-try FM as specified. Default: none, error if omitted
Objective	edgecut, totalcommvol, null	Objective for the FM or Multi-try FM algorithm. Has no effect if Refinement is set to KaHIP. De- fault: null
FmStopRule	Simple, Adaptive	Stopping criteria for the FM or Multi-try FM algorithm. Default: Simple
NumberOfFmRounds	\mathbb{N}_{0}	Maximal number of rounds that the FM or Multi-try FM algorithm should execute. Default: 1
NumberOfVCycles	\mathbb{N}_{0}	Number of V-Cycles that should be executed with this configuration. Default: 1
UseModifiedVCycle	false, true	Whether our modified V-Cycle should be used or not. Default: false
OnlyRefineFinest	false, true	Whether V-Cycles should be exe- cuted at all; if set to true, refine- ment is only done on the finest level of the graph. Default: false
Reset	If set, the resulting partition from the specified section is used as in- put partition rather than the resulting partition from the previous section. Default: -1 (no effect)	

Table A.1: Structure of the configuration file.

B Detailed Experimental Results

All numbers are medians of 8 runs with different seeds. The prozentual improvements of V-cycle and Finest is in regards to the left-most Vol column. See Section 5.3.1 for evaluation.

B. 1 Eco

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
eu-2005	18278	5,98	0,51	16653	5,98	0,4	16698	28762
in-2004	2763	5,19	1,48	2503	4,59	1,7	2515	4853
cnr-2000	468	5,42	0,36	438	4,77	1,06	383	699
$k=4$								
eu-2005	55896	7,88	3,29	49822	6,8	3,32	49803	86186
in-2004	7491	4,12	2,94	6890	4,08	2,67	6902	11830
cnr-2000	2234	3,39	5,99	2021	2,46	5,83	2000	2785
$k=8$								
eu-2005	113063	6,77	2,33	99103	5,99	2,42	100192	159648
in-2004	12279	3,77	2,29	11443	3,81	2,66	11468	20179
cnr-2000	4742	2,72	2,61	4425	2,41	2,4	4414	5449
$k=16$								
eu-2005	210818	8,02	3,32	188085	7,74	3,22	189269	270445
in-2004	18288	3,84	1,63	17216	3,84	1,55	17237	29317
cnr-2000	7700	4,47	2,21	7052	4,41	2,43	7057	8598
$k=32$								
eu-2005	450310	8,82	4,39	392093	8,35	3,97	402878	541359
in-2004	24579	3,66	1,67	23109	3,62	1,52	23148	39962
cnr-2000	36194	7,07	3,44	30631	6,55	4,03	30874	54533

Table B.1: Web graphs with ecosocial preconfiguration. From left to right: \langle Vol \rangle TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with Vcycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, $\langle\mathbf{F M}\rangle$ \%-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to \langle FM \rangle,\langle Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
coPapersCiteseer	104776	13,42	1,56	90071	14,25	1,32	89756	98173
citationCiteseer	31025	8,11	0,62	28442	8,06	0,75	28438	29173
coPapersDBLP	204070	19,19	0,92	167477	21,15	0,92	165219	166205
coAuthorsDBLP	41659	4,79	1,53	38606	4,83	1,64	38593	38452
coAuthorsCiteseer	21504	4,73	2,56	19586	4,4	2,76	19700	19906
$k=4$								
coPapersCiteseer	196897	12,87	1,09	171316	13,73	0,88	171142	192353
citationCiteseer	64669	8,21	0,71	58755	8,25	0,75	58778	61639
coPapersDBLP	387927	19,74	0,95	317421	19,48	1,03	317892	332215
coAuthorsDBLP	77460	4,42	1,01	73036	4,41	1,15	73071	75661
coAuthorsCiteseer	38169	3,61	1,26	36177	3,61	1,21	36244	38193
$k=8$								
coPapersCiteseer	275645	12,47	0,93	241313	12,77	0,66	241240	290055
citationCiteseer	100148	8,1	0,59	91555	8,03	0,63	91581	95124
coPapersDBLP	589037	21,59	0,84	475122	21,95	0,82	473401	524287
coAuthorsDBLP	110388	3,97	0,66	104838	4,12	0,63	105027	110917
coAuthorsCiteseer	55155	3,05	0,77	52844	3,28	0,67	52900	57712
$k=16$								
coPapersCiteseer	344682	11,15	0,79	305850	10,75	0,69	307175	388575
citationCiteseer	141179	7,35	0,87	129517	7,2	1,03	129632	134394
coPapersDBLP	777186	20,49	0,81	632067	19,95	0,85	634326	737583
coAuthorsDBLP	140347	3,54	0,55	134034	3,52	0,64	134253	143508
coAuthorsCiteseer	68990	3,0	0,48	66346	3,08	0,4	66447	74691
$k=32$								
coPapersCiteseer	402869	9,67	0,76	362021	9,16	0,74	363054	478638
citationCiteseer	189165	6,88	0,82	174041	6,99	0,98	174088	183579
coPapersDBLP	952567	17,72	0,98	792050	16,87	1,45	795411	911204
coAuthorsDBLP	169676	3,4	0,47	162780	3,45	0,5	162748	175635
coAuthorsCiteseer	80641	2,69	0,34	78091	2,76	0,31	78104	89567

Table B.2: Citation Network graphs with ecosocial preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
3elt	91	0,0	0,0	88	0,0	0,0	88	95
auto	5193	2,51	0,91	4993	2,48	0,62	5004	5325
data	132	0,0	0,0	132	0,0	0,0	132	130
add32	16	0,0	0,0	16	0,0	0,0	16	11
cs4	779	10,5	0,0	700	10,63	0,0	697	671
fe-pwt	240	0,0	0,0	240	0,0	0,0	240	244
t60k	166	8,65	0,0	145	10,57	0,0	147	170
fe-tooth	2590	1,11	0,16	2543	1,11	0,09	2558	2588
fe-ocean	622	6,76	0,26	568	7,24	0,0	567	620
wing-nodal	933	3,83	0,0	894	3,95	0,1	890	925
wave	5172	5,13	1,26	4779	5,14	1,33	4778	4859
vibrobox	2510	4,49	9,62	2080	4,58	9,24	2128	2282
crack	185	0,0	0,0	185	0,0	0,0	185	202
598a	1300	1,8	0,07	1273	1,72	0,0	1274	1332
uk	37	0,0	0,0	36	0,0	0,0	36	42
cti	632	18,42	0,0	532	17,91	0,0	532	606
add20	308	23,57	2,47	234	34,39	0,65	227	184
bcsstk29	360	0,0	0,0	360	0,0	0,0	360	426
fe-body	273	2,64	0,65	263	3,18	0,17	263	229
fe-rotor	1262	3,02	0,16	1216	3,18	0,16	1212	1188
m14b	1846	2,04	0,04	1800	2,1	0,07	1797	1875
4 elt	139	0,0	0,0	139	0,0	0,0	139	149
fe-4elt2	132	0,0	0,0	132	0,0	0,0	132	132
fe-sphere	384	0,0	0,0	384	0,0	0,0	384	429
144	3373	1,81	0,35	3296	1,79	0,24	3291	3442
bcsstk30	527	0,0	0,0	527	0,0	0,0	527	644
bcsstk31	708	1,14	0,0	690	1,14	0,0	695	887
bcsstk32	1140	2,08	1,67	1082	2,16	2,43	1083	1113
whitaker3	129	0,0	0,0	128	0,0	0,0	129	134
brack2	461	0,1	0,0	461	0,42	0,0	461	491
finan512	151	3,4	0,0	146	3,76	0,0	146	148
memplus	3067	0,21	0,44	3029	0,08	0,35	3038	3293
wing	1584	9,94	0,0	1422	10,54	0,03	1422	1459
bcsstk33	920	0,0	0,32	908	0,0	0,0	908	1047

Table B.3: Walshaw graphs with eco preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, $\langle\mathbf{F M}\rangle$ \%-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=4$								
3 elt	214	0,0	0,0	211	0,0	0,0	211	227
auto	14486	2,0	0,47	14099	1,95	0,44	14111	14368
data	259	1,16	0,0	243	1,5	0,0	243	282
add32	73	1,33	9,49	61	1,33	6,62	61	38
cs4	2020	13,98	0,38	1745	13,49	0,04	1762	1774
fe-pwt	546	0,18	0,0	543	0,18	0,0	543	515
t60k	496	0,0	0,0	494	0,0	0,0	496	478
fe-tooth	4488	0,55	0,07	4450	0,56	0,03	4450	4989
fe-ocean	3281	20,58	1,94	2511	19,77	2,27	2515	2627
wing-nodal	2087	2,85	0,13	2010	2,84	0,06	2016	2098
wave	10995	2,39	0,74	10640	2,33	0,89	10624	10863
vibrobox	4681	0,88	0,0	4628	0,89	0,0	4634	5286
crack	380	0,0	0,0	379	0,0	0,0	379	420
598a	4458	2,03	0,18	4343	2,01	0,22	4346	4562
uk	89	1,11	0,0	86	1,11	0,0	86	101
cti	1941	18,05	0,12	1624	17,76	0,08	1620	1685
add20	590	0,0	5,4	526	0,0	0,09	531	451
bcsstk29	1334	3,23	6,51	1164	1,07	5,65	1170	1329
fe-body	588	2,77	1,47	560	2,89	1,18	562	551
fe-rotor	4529	1,96	0,25	4395	2,0	0,14	4394	4536
m14b	6346	1,72	0,07	6204	1,76	0,13	6209	6568
4 elt	359	0,0	0,0	356	0,0	0,0	355	378
fe-4elt2	362	0,0	0,0	357	0,0	0,0	360	363
fe-sphere	832	0,4	0,3	806	0,48	0,36	808	851
144	8761	2,18	0,52	8487	2,15	0,58	8491	8529
bcsstk30	1547	0,9	0,0	1521	0,84	0,23	1521	1817
bcsstk31	1987	2,29	0,95	1889	1,95	0,74	1875	2139
bcsstk32	1864	1,32	1,79	1769	1,02	2,25	1779	2602
whitaker3	415	0,12	0,0	407	0,36	0,0	409	405
brack2	1840	0,45	0,1	1829	0,42	0,0	1830	2039
finan512	292	0,0	0,0	292	0,0	0,0	292	296
memplus	5323	0,49	1,2	5185	0,31	1,15	5198	5275
wing	3329	10,5	0,27	2995	10,17	0,18	3010	3110
bcsstk33	2497	2,58	0,0	2434	2,46	0,0	2434	2889

Table B.4: Walshaw graphs with eco preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathbf{F M}\rangle,\langle\mathbf{V o l}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, \langle MT $\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=8$								
3 elt	382	0,0	0,0	378	0,0	0,0	378	392
auto	25414	2,04	0,51	24697	2,02	0,56	24715	25135
data	466	3,0	0,0	439	2,32	0,0	440	472
add32	130	0,0	0,0	119	0,0	0,4	127	91
cs4	3110	11,73	0,17	2767	11,89	0,05	2762	2787
fe-pwt	1019	0,29	0,0	1016	0,29	0,0	1016	1083
t60k	988	1,38	0,2	959	1,75	0,0	956	1049
fe-tooth	7988	1,18	0,3	7844	1,12	0,26	7849	8189
fe-ocean	8117	21,39	1,29	6442	21,05	1,2	6451	6754
wing-nodal	3343	3,4	0,29	3220	3,38	0,27	3219	3382
wave	17777	2,41	0,68	17250	2,47	0,61	17274	17760
vibrobox	10897	11,12	2,85	9235	11,33	2,97	9256	9341
crack	719	0,19	0,0	715	0,2	0,13	714	765
598a	9705	3,01	1,42	9224	2,83	1,34	9241	9332
uk	186	2,96	0,0	174	3,04	0,0	176	201
cti	3482	16,4	0,38	2893	16,44	0,28	2909	3134
add20	1048	3,8	0,78	968	2,06	0,38	984	781
bcsstk29	3541	4,63	15,12	2753	2,97	15,92	2837	2910
fe-body	993	2,72	1,99	937	2,83	1,5	929	955
fe-rotor	7718	1,83	0,47	7463	1,85	0,59	7463	8034
m14b	13072	1,75	0,61	12720	1,74	0,69	12727	13387
4elt	570	0,0	0,0	564	0,0	0,0	563	628
fe-4elt2	648	0,07	1,05	636	0,0	0,22	640	657
fe-sphere	1298	2,68	0,4	1253	1,38	0,35	1258	1296
144	14043	2,3	0,84	13575	2,24	0,87	13594	14159
bcsstk30	3378	0,86	0,0	3330	0,91	0,0	3342	3845
bcsstk31	3946	2,59	2,43	3694	2,31	1,76	3773	4109
bcsstk32	4492	1,68	3,76	4201	1,31	2,41	4264	5051
whitaker3	692	0,21	0,07	686	0,14	0,07	686	718
brack2	4753	0,99	0,4	4662	0,91	0,09	4672	4858
finan512	657	0,0	0,0	657	0,0	0,0	657	592
memplus	7850	1,48	1,7	7517	1,25	1,28	7609	6989
wing	5228	10,37	0,22	4701	10,32	0,28	4696	4888
bcsstk33	4877	6,43	1,21	4419	5,43	0,17	4512	5364

Table B.5: Walshaw graphs with eco preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle$ \%-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle$ \%-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathbf{V o l}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle\mathbf{V o l}\rangle$ resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
¢ $k=16$								
3elt	632	0,45	0,08	621	0,87	0,07	621	650
auto	42173	2,36	0,74	40814	2,31	0,73	40835	43527
data	825	3,53	0,18	778	3,06	0,0	778	837
add32	193	0,0	0,0	192	0,0	0,0	193	169
cs4	4497	12,33	0,3	3952	12,3	0,11	3964	4045
fe-pwt	1978	1,55	0,07	1924	1,27	0,22	1925	2000
t60k	1801	2,16	0,41	1731	2,28	0,23	1731	2002
fe-tooth	12268	1,46	0,31	11988	1,53	0,46	11974	12397
fe-ocean	15706	20,77	0,81	12626	20,57	0,97	12619	13144
wing-nodal	5274	3,18	0,41	5074	3,0	0,24	5089	5338
wave	26692	2,29	0,74	25769	2,25	0,73	25789	26946
vibrobox	15614	12,93	1,57	13450	11,74	1,6	13577	14159
crack	1214	0,93	0,2	1194	0,7	0,04	1199	1238
598a	16035	2,57	1,07	15386	2,55	1,11	15376	15872
uk	348	4,06	0,29	324	4,55	0,6	323	337
cti	5796	23,71	0,17	4604	23,21	0,27	4572	4723
add20	1686	5,37	0,48	1495	3,94	0,09	1513	1343
bcsstk29	5384	2,31	13,44	4468	1,48	9,66	4671	5002
fe-body	1796	3,38	2,15	1674	3,32	2,11	1667	1715
fe-rotor	12994	1,84	0,52	12626	1,86	0,47	12639	13033
m14b	22868	1,89	0,75	22170	1,89	0,85	22158	23479
4 elt	1051	0,09	0,04	1044	0,18	0,04	1041	1075
fe-4elt2	1094	0,09	0,44	1079	0,0	0,26	1082	1147
fe-sphere	1961	2,46	0,59	1880	2,79	0,67	1874	1962
144	21692	2,25	0,91	20909	2,18	0,91	20967	22046
bcsstk30	7979	1,39	0,0	7839	1,17	0,0	7871	8992
bcsstk31	6730	2,23	3,24	6391	1,91	2,95	6361	7447
bcsstk32	7911	1,94	3,63	7332	1,95	3,13	7409	9106
whitaker3	1193	1,0	0,33	1168	0,7	0,36	1169	1210
brack2	7988	1,33	0,42	7809	1,24	0,42	7826	8160
finan512	1168	0,0	0,0	1168	0,0	0,0	1168	1257
memplus	9628	0,87	0,78	9299	0,61	0,26	9379	8969
wing	8271	11,78	0,31	7307	11,84	0,39	7298	7464
bcsstk33	8327	8,02	0,85	7531	5,88	0,14	7630	9045

Table B.6: Walshaw graphs with eco preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathbf{F M}\rangle,\langle\mathbf{V o l}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=32$								
3 elt	1097	0,72	0,0	1081	0,85	0,27	1078	1115
auto	68203	2,38	0,95	65776	2,36	0,85	65878	68110
data	1349	3,03	0,38	1289	2,67	0,03	1286	1355
add32	374	0,28	0,0	360	0,0	0,12	363	329
cs4	6246	12,12	0,15	5520	11,75	0,09	5532	5722
fe-pwt	3984	2,31	0,21	3841	2,01	0,13	3850	4437
t60k	2956	3,44	0,38	2814	3,43	0,55	2818	3192
fe-tooth	17803	1,67	0,51	17358	1,67	0,52	17370	18190
fe-ocean	26368	30,59	0,71	19447	30,06	0,85	19425	20941
wing-nodal	7909	3,13	0,28	7627	2,99	0,14	7635	7910
wave	37941	2,6	0,87	36500	2,66	0,78	36584	38744
vibrobox	21194	10,05	0,79	18836	8,76	0,98	18964	19780
crack	1894	0,82	0,12	1863	0,86	0,07	1866	1904
598a	24502	2,65	1,05	23528	2,7	0,96	23557	24619
uk	581	4,13	0,36	543	3,43	0,26	544	575
cti	8312	22,25	0,19	6675	22,3	0,2	6675	6765
add20	2454	0,27	0,34	2414	0,22	0,03	2432	2063
bcsstk29	7502	0,94	5,6	6819	0,44	3,59	7045	7839
fe-body	2769	4,03	2,48	2568	3,64	2,45	2573	2760
fe-rotor	20322	2,46	0,57	19701	2,34	0,7	19638	20740
m14b	36271	2,01	0,91	35010	2,0	0,83	35103	36202
4 elt	1742	0,35	0,34	1718	0,53	0,05	1726	1791
fe-4elt2	1804	0,4	0,28	1771	0,33	0,47	1769	1818
fe-sphere	2844	2,57	0,56	2734	2,47	0,43	2736	2863
144	32401	2,22	0,97	31232	2,19	0,98	31292	32761
bcsstk30	13988	3,19	0,1	13426	2,97	0,0	13551	15306
bcsstk31	11798	3,73	3,88	10824	2,77	3,92	10900	12535
bcsstk32	13014	2,78	3,99	12073	2,42	3,23	12207	14538
whitaker3	1841	0,75	0,19	1814	0,63	0,09	1813	1853
brack2	12243	1,24	0,41	12007	1,23	0,34	12025	12849
finan512	2336	0,0	0,0	2336	0,0	0,0	2336	2367
memplus	12435	0,66	1,31	11949	0,26	0,65	12031	11709
wing	11939	11,8	0,4	10548	11,82	0,37	10540	10937
bcsstk33	12938	4,16	1,62	11981	2,75	1,48	12128	14216

Table B.7: Walshaw graphs with eco preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, $\langle\mathbf{F M}\rangle$ \%-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, \langle METIS \rangle TCV after METIS.

B. 2 Strong

Tables in this section use the strong or strongsocial preconfiguration.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
coPapersCiteseer	101187	12,43	1,91	87292	13,38	1,5	87045	98173
citationCiteseer	30656	7,03	0,3	28480	7,03	0,29	28471	29173
coPapersDBLP	192367	19,06	1,12	158773	20,45	0,94	156756	166205
coAuthorsDBLP	39314	3,9	1,0	37151	3,83	1,09	37200	38452
coAuthorsCiteseer	19179	3,08	1,2	18323	2,93	1,18	18357	19906
$k=4$								
coPapersCiteseer	187921	12,61	1,48	163718	12,41	1,24	164195	192353
citationCiteseer	61944	7,27	0,41	57186	7,07	0,56	57190	61639
coPapersDBLP	378255	20,51	1,12	306935	21,1	1,07	306317	332215
coAuthorsDBLP	75263	3,22	0,9	71533	3,14	1,07	71677	75661
coAuthorsCiteseer	36129	2,96	0,96	34570	3,0	0,9	34660	38193
$k=8$								
coPapersCiteseer	266557	11,94	1,37	232868	12,33	1,06	233226	290055
citationCiteseer	98485	6,82	0,43	91462	6,48	0,77	91459	95124
coPapersDBLP	568802	19,67	1,17	465413	19,03	1,13	466672	524287
coAuthorsDBLP	106859	3,19	0,63	102270	3,02	0,77	102458	110917
coAuthorsCiteseer	52352	2,49	0,57	50532	2,36	0,68	50575	57712
$k=16$								
coPapersCiteseer	333912	10,14	1,37	296583	9,69	1,05	297987	388575
citationCiteseer	136095	6,11	0,79	126330	5,66	1,19	126662	134394
coAuthorsDBLP	134197	2,75	0,68	129160	2,23	1,0	129443	143508
coAuthorsCiteseer	66229	2,33	0,61	63984	2,31	0,53	64043	74691
$k=32$								
coPapersCiteseer	394168	8,62	1,3	355459	8,48	1,19	357313	478638
citationCiteseer	184196	5,78	0,92	171352	5,53	1,08	171529	183579
coAuthorsDBLP	164518	2,76	0,57	158509	2,48	0,69	158620	175635
coAuthorsCiteseer	77848	2,27	0,41	75592	2,25	0,4	75628	89567

Table B.8: Citation Network graphs with strongsocial preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$ improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathbf{V o l}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle$ $\%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
eu-2005	16087	4,18	0,2	15342	3,96	0,0	15417	28762
in-2004	2629	3,66	1,48	2490	3,48	0,0	2543	4853
cnr-2000	265	8,48	0,68	244	8,24	0,0	245	699
$k=4$								
eu-2005	58443	4,89	0,14	54833	5,11	0,0	55434	86186
in-2004	6802	4,13	1,43	6422	3,8	0,07	6533	11830
cnr-2000	2089	4,03	0,96	1942	3,57	0,1	2011	2785
$k=8$								
eu-2005	108991	7,27	0,37	100421	7,67	0,01	101411	159648
in-2004	10942	3,62	0,69	10473	3,72	0,31	10503	20179
cnr-2000	3889	3,32	0,68	3700	3,38	0,13	3738	5449
$k=16$								
eu-2005	210545	5,25	2,65	192193	4,42	0,76	199383	270445
in-2004	16598	4,08	0,54	15840	3,65	0,62	15841	29317
cnr-2000	6319	3,66	0,98	6033	3,52	0,07	6145	8598
$k=32$								
eu-2005	434863	15,25	0,03	377090	9,36	1,36	385712	541359
in-2004	16598	0,0	0,0	16598	0,0	0,0	16598	39962
cnr-2000	35146	6,37	4,78	30881	5,34	1,38	32395	54533

Table B.9: Web graphs with strongsocial preconfiguration. From left to right: 〈Vol〉 TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=2$								
to	5054	2,14	0,36	4921	2,01	0,4	4926	5325
3 elt	88	0,0	0,0	88	0,0	0,0	88	95
data	122	0,0	0,0	122	0,0	0,0	122	130
cs4	712	7,85	0,0	653	7,77	0,0	657	671
add32	10	0,0	0,0	10	0,0	0,0	10	11
fe-pwt	243	0,0	0,0	240	0,0	0,41	240	244
fe-tooth	2486	0,24	0,0	2475	0,28	0,0	2477	2588
t60k	146	0,0	0,0	144	0,0	0,0	144	170
fe-ocean	622	6,5	0,0	566	7,13	0,0	571	620
wing-nodal	918	2,28	0,11	895	2,23	0,0	893	925
wave	4814	2,77	0,13	4654	2,75	0,06	4671	4859
vibrobox	3665	12,11	2,6	3150	10,18	3,33	3141	2282
crack	187	0,0	0,0	187	0,0	0,0	187	202
598a	1295	1,88	0,0	1268	1,95	0,0	1268	1332
uk	38	0,0	0,0	38	0,0	0,0	38	42
cti	632	14,12	0,0	532	12,98	0,0	532	606
add20	187	0,82	0,0	184	1,09	0,0	184	184
bcsstk29	360	0,0	0,0	360	0,0	0,0	360	426
fe-body	232	2,72	1,12	218	3,14	0,22	220	229
fe-rotor	1061	1,24	0,0	1045	1,28	0,0	1045	1188
4 elt	138	0,0	0,0	138	0,0	0,0	138	149
m14b	1841	1,65	0,09	1804	1,65	0,0	1805	1875
fe-4elt2	132	0,0	0,0	132	0,0	0,0	132	132
fe-sphere	384	0,0	0,0	384	0,0	0,0	384	429
144	3352	2,24	0,18	3267	2,29	0,17	3267	3442
bcsstk30	528	0,18	0,0	527	0,18	0,0	527	644
bcsstk31	820	3,14	0,31	766	3,14	0,12	792	887
bcsstk32	1050	1,05	3,75	977	1,05	3,28	979	1113
whitaker3	127	0,0	0,0	127	0,0	0,0	127	134
brack2	460	0,0	0,0	460	0,0	0,0	460	491
finan512	166	12,49	0,0	148	12,53	0,0	147	148
memplus	2930	0,64	0,08	2904	0,51	0,09	2916	3293
wing	1562	7,46	0,0	1457	7,51	0,0	1458	1459
bcsstk33	908	0,0	0,0	908	0,0	0,0	908	1047

Table B.10: Walshaw graphs with strong preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=4$								
auto	14076	1,92	0,34	13742	1,88	0,36	13741	14368
3elt	209	0,0	0,0	209	0,0	0,0	209	227
data	255	0,2	0,0	249	0,0	0,0	252	282
cs 4	1900	7,9	0,07	1749	7,51	0,0	1751	1774
add32	32	0,0	0,0	32	0,0	0,0	32	38
fe-pwt	482	0,0	0,0	480	0,0	0,0	480	515
fe-tooth	4530	0,59	0,02	4493	0,56	0,0	4499	4989
t60k	414	0,0	0,0	414	0,0	0,0	414	478
fe-ocean	3289	23,47	0,16	2494	23,25	0,22	2480	2627
wing-nodal	2066	2,15	0,06	2008	2,12	0,06	2013	2098
wave	9594	3,24	0,23	9240	3,2	0,2	9249	10863
vibrobox	7138	5,8	3,94	6370	5,11	3,04	6476	5286
crack	368	0,0	0,0	368	0,0	0,0	368	420
598a	4378	1,97	0,12	4280	1,95	0,16	4283	4562
uk	84	0,0	0,0	84	0,0	0,0	84	101
cti	1747	7,58	0,06	1615	7,15	0,0	1616	1685
add20	484	3,75	0,0	433	2,82	0,11	438	451
bcsstk29	2064	2,47	22,03	1447	1,52	21,46	1486	1329
fe-body	501	2,16	1,58	469	1,9	0,92	468	551
fe-rotor	4177	0,94	0,07	4127	0,95	0,06	4128	4536
4elt	335	0,0	0,0	335	0,0	0,0	335	378
m14b	6303	1,88	0,15	6156	1,8	0,16	6157	6568
fe-4elt2	356	0,0	0,0	356	0,0	0,0	356	363
fe-sphere	796	0,0	0,12	790	0,12	0,12	791	851
144	8208	1,82	0,39	8023	1,79	0,33	8024	8529
bcsstk30	1500	0,21	0,0	1489	0,21	0,0	1497	1817
bcsstk31	1946	1,84	1,22	1850	1,63	1,41	1861	2139
bcsstk32	1816	1,46	3,98	1694	1,2	3,34	1709	2602
whitaker3	382	0,0	0,0	382	0,0	0,0	382	405
brack2	1799	0,05	0,0	1796	0,05	0,0	1797	2039
finan512	331	12,17	0,0	296	11,98	0,0	296	296
memplus	5391	0,67	2,08	5226	0,42	1,78	5249	5275
wing	3239	7,7	0,01	3014	7,68	0,03	3015	3110
bcsstk33	2840	7,49	0,3	2534	7,17	0,39	2564	2889

Table B.11: Walshaw graphs with strong preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to \langle FM \rangle,\langle Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

| | | V-cycle | | | | Finest | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Graph | Vol | FM | MT | Vol | FM | MT | Vol | METIS |
| $k=8$ | | | | | | | | |
| auto | 24941 | 1,96 | 0,39 | $\mathbf{2 4 3 0 3}$ | 1,93 | 0,37 | 24326 | 25135 |
| 3elt | 368 | 0,0 | 0,0 | $\mathbf{3 6 7}$ | 0,0 | 0,0 | 368 | 392 |
| data | 443 | 2,99 | 0,24 | $\mathbf{4 3 0}$ | 2,0 | 0,0 | 431 | 472 |
| cs4 | 2887 | 7,62 | 0,07 | $\mathbf{2 6 7 0}$ | 7,47 | 0,03 | 2672 | 2787 |
| add32 | $\mathbf{7 6}$ | 0,0 | 0,0 | $\mathbf{7 6}$ | 0,0 | 0,0 | $\mathbf{7 6}$ | 91 |
| fe-pwt | 1022 | 0,19 | 0,0 | $\mathbf{1 0 1 6}$ | 0,19 | 0,0 | $\mathbf{1 0 1 6}$ | 1083 |
| fe-tooth | 7461 | 0,74 | 0,02 | $\mathbf{7 3 9 8}$ | 0,68 | 0,0 | 7405 | 8189 |
| t60k | $\mathbf{9 1 9}$ | 0,0 | 0,0 | $\mathbf{9 1 9}$ | 0,0 | 0,0 | $\mathbf{9 1 9}$ | 1049 |
| fe-ocean | 7829 | 17,32 | 0,56 | $\mathbf{6 3 2 7}$ | 17,26 | 0,34 | 6396 | 6754 |
| wing-nodal | 3277 | 2,44 | 0,13 | $\mathbf{3 1 8 7}$ | 2,46 | 0,08 | 3192 | 3382 |
| wave | 16322 | 2,25 | 0,15 | $\mathbf{1 5 8 9 9}$ | 2,26 | 0,15 | 15902 | 17760 |
| vibrobox | 10005 | 4,1 | 2,79 | $\mathbf{9 0 5 5}$ | 3,81 | 2,04 | 9283 | 9341 |
| crack | 710 | 0,0 | 0,0 | $\mathbf{7 0 9}$ | 0,0 | 0,0 | 710 | 765 |
| 598a | 8968 | 2,04 | 0,25 | 8762 | 1,95 | 0,29 | $\mathbf{8 7 5 5}$ | 9332 |
| uk | $\mathbf{1 6 8}$ | 0,0 | 0,0 | $\mathbf{1 6 8}$ | 0,0 | 0,0 | $\mathbf{1 6 8}$ | 201 |
| cti | 3481 | 18,77 | 0,32 | $\mathbf{2 8 7 6}$ | 18,65 | 0,28 | 2907 | 3134 |
| add20 | 794 | 5,74 | 0,0 | $\mathbf{7 4 7}$ | 4,03 | 0,0 | 749 | 781 |
| bcsstk29 | 4006 | 2,73 | 15,43 | 2927 | 1,7 | 15,44 | 3145 | $\mathbf{2 9 1 0}$ |
| fe-body | 903 | 2,94 | 1,82 | $\mathbf{8 5 6}$ | 2,56 | 1,77 | 858 | 955 |
| fe-rotor | 7426 | 1,13 | 0,08 | $\mathbf{7 3 2 7}$ | 1,09 | 0,1 | $\mathbf{7 3 1 8}$ | 8034 |
| 4elt | 560 | 0,0 | 0,0 | $\mathbf{5 5 8}$ | 0,0 | 0,0 | 559 | 628 |
| m14b | 12885 | 1,51 | 0,24 | $\mathbf{1 2 6 2 1}$ | 1,47 | 0,31 | 12622 | 13387 |
| fe-4elt2 | $\mathbf{6 2 3}$ | 0,0 | 0,0 | $\mathbf{6 2 3}$ | 0,0 | 0,0 | $\mathbf{6 2 3}$ | 657 |
| fe-sphere | $\mathbf{1 2 2 2}$ | 0,0 | 0,0 | $\mathbf{1 2 2 2}$ | 0,0 | 0,0 | $\mathbf{1 2 2 2}$ | 1296 |
| 144 | 13646 | 1,82 | 0,43 | 13278 | 1,81 | 0,49 | $\mathbf{1 3 2 7 4}$ | 14159 |
| bcsstk30 | 3376 | 0,6 | 0,0 | $\mathbf{3 2 9 3}$ | 0,6 | 0,0 | 3324 | 3845 |
| bcsstk31 | 3802 | 2,19 | 1,12 | $\mathbf{3 6 1 9}$ | 1,67 | 0,96 | 3620 | 4109 |
| bcsstk32 | 4550 | 2,85 | 2,67 | $\mathbf{4 2 5 2}$ | 2,6 | 2,61 | 4283 | 5051 |
| whitaker3 | 677 | 0,0 | 0,0 | $\mathbf{6 7 6}$ | 0,0 | 0,0 | $\mathbf{6 7 6}$ | 718 |
| brack2 | 4572 | 0,7 | 0,07 | $\mathbf{4 5 2 7}$ | 0,7 | 0,06 | 4532 | 4858 |
| finan512 | 669 | 12,32 | 0,0 | $\mathbf{5 9 2}$ | 12,42 | 0,0 | $\mathbf{5 9 2}$ | $\mathbf{5 9 2}$ |
| memplus | 7082 | 0,47 | 1,85 | $\mathbf{6 9 0 5}$ | 0,18 | 1,42 | 6945 | 6989 |
| wing | 4930 | 7,02 | 0,02 | 4586 | 6,92 | 0,03 | $\mathbf{4 5 8 4}$ | 4888 |
| bcsstk33 | 4891 | 6,37 | 0,95 | $\mathbf{4 4 5 1}$ | 3,05 | 0,7 | 4500 | 5364 |

Table B.12: Walshaw graphs with strong preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to \langle FM \rangle,\langle Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
k=16								
auto	41131	2,07	0,43	40011	2,03	0,46	40022	43527
3elt	611	0,0	0,0	607	0,0	0,0	608	650
data	783	3,08	0,25	749	1,83	0,0	751	837
cs4	4141	6,99	0,06	3855	6,98	0,06	3856	4045
add32	138	0,0	0,0	138	0,0	0,0	138	169
fe-pwt	1945	0,53	0,0	1924	0,69	0,0	1922	2000
fe-tooth	11562	0,86	0,07	11439	0,8	0,03	11441	12397
t60k	1693	0,2	0,11	1688	0,16	0,05	1687	2002
fe-ocean	14947	24,93	0,45	11442	23,58	0,39	11489	13144
wing-nodal	5173	2,33	0,2	5008	2,42	0,14	5018	5338
wave	25079	2,02	0,29	24443	2,0	0,21	24461	26946
vibrobox	15688	9,56	2,77	13525	8,48	2,83	13814	14159
crack	1172	0,0	0,0	1170	0,0	0,0	1170	1238
598a	15252	2,02	0,27	14863	1,97	0,37	14873	15872
uk	317	0,3	0,0	313	0,16	0,0	313	337
cti	5567	21,9	0,14	4474	20,57	0,13	4482	4723
add20	1399	6,33	0,0	1238	4,31	0,21	1263	1343
bcsstk29	5381	0,95	11,99	4603	0,98	9,42	4699	5002
fe-body	1636	2,99	1,34	1545	3,0	1,5	1552	1715
fe-rotor	12359	1,35	0,15	12158	1,3	0,09	12171	13033
4 elt	1002	0,0	0,0	1001	0,0	0,0	1001	1075
m14b	21823	1,64	0,4	21348	1,62	0,39	21356	23479
fe-4elt2	1045	0,0	0,0	1045	0,0	0,0	1045	1147
fe-sphere	1789	0,07	0,02	1778	0,05	0,02	1784	1962
144	20992	1,78	0,44	20442	1,79	0,43	20480	22046
bcsstk30	8212	2,83	0,09	7926	2,65	0,01	7985	8992
bcsstk31	6822	2,85	2,36	6359	2,31	2,49	6414	7447
bcsstk32	7909	2,52	3,11	7410	2,15	2,8	7450	9106
whitaker3	1164	0,0	0,0	1163	0,0	0,0	1164	1210
brack2	7677	0,62	0,07	7604	0,6	0,02	7606	8160
finan512	1344	12,2	0,0	1184	12,24	0,03	1182	1257
memplus	8892	1,22	1,33	8638	1,4	0,81	8683	8969
wing	7599	6,73	0,06	7103	6,66	0,01	7114	7464
bcsstk33	8619	4,78	1,84	7881	3,39	1,42	7995	9045

Table B.13: Walshaw graphs with strong preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Graph	Vol	V-cycle			Finest			METIS
		FM	MT	Vol	FM	MT	Vol	
$k=32$								
auto	65560	1,99	0,53	63733	1,97	0,48	63809	68110
3elt	1062	0,0	0,0	1059	0,0	0,0	1059	1115
data	1324	3,0	0,23	1264	3,65	0,14	1265	1355
cs4	5788	6,78	0,03	5382	6,69	0,03	5392	5722
add32	298	0,0	0,0	298	0,0	0,0	298	329
fe-pwt	4180	3,78	0,16	3984	3,7	0,09	3979	4437
fe-tooth	17104	1,06	0,12	16886	0,98	0,09	16887	18190
t60k	2777	0,46	0,23	2748	0,38	0,17	2756	3192
fe-ocean	24366	21,51	0,49	19297	21,42	0,61	19277	20941
wing-nodal	7731	2,42	0,27	7513	2,2	0,19	7520	7910
wave	36628	1,93	0,3	35718	1,9	0,27	35750	38744
vibrobox	21109	7,86	1,34	19117	7,15	0,86	19175	19780
crack	1838	0,0	0,02	1835	0,0	0,0	1838	1904
598a	23426	2,0	0,31	22805	1,99	0,41	22814	24619
uk	532	0,18	0,28	530	0,09	0,0	531	575
cti	7970	21,67	0,21	6411	20,56	0,08	6459	6765
add20	2159	1,13	0,24	2087	0,98	0,14	2088	2063
bcsstk29	7386	0,56	5,36	6779	0,52	4,0	6914	7839
fe-body	2661	3,31	1,75	2515	2,99	1,71	2517	2760
fe-rotor	19622	1,6	0,24	19196	1,52	0,27	19207	20740
4 elt	1676	0,02	0,02	1673	0,0	0,0	1673	1791
m14b	34600	1,53	0,45	33823	1,52	0,42	33842	36202
fe-4elt2	1738	0,02	0,02	1735	0,0	0,0	1738	1818
fe-sphere	2669	0,06	0,03	2663	0,05	0,07	2663	2863
144	31320	1,81	0,49	30584	1,74	0,49	30610	32761
bcsstk30	13913	3,08	0,1	13392	2,38	0,1	13486	15306
bcsstk31	11632	3,73	2,92	10774	2,73	3,36	10841	12535
bcsstk32	12579	1,88	3,11	11913	1,78	2,48	11901	14538
whitaker3	1796	0,13	0,05	1791	0,07	0,0	1794	1853
brack2	11568	0,7	0,04	11468	0,71	0,02	11476	12849
finan512	2670	12,75	0,02	2364	12,75	0,04	2365	2367
memplus	11414	0,59	0,53	11220	0,45	0,34	11280	11709
wing	11036	6,65	0,04	10332	6,42	0,01	10344	10937
bcsstk33	13153	3,43	2,05	12276	2,95	1,6	12477	14216

Table B.14: Walshaw graphs with strong preconfiguration. From left to right: $\langle\mathbf{V o l}\rangle$ TCV after KaHIP, $\langle\mathbf{F M}\rangle \%$-improvement with V-cycle with FM, $\langle\mathbf{M T}\rangle \%$-improvement with V-cycle with Multi-try FM to $\langle\mathrm{FM}\rangle,\langle\mathrm{Vol}\rangle$ resulting TCV, $\langle\mathbf{F M}\rangle \%$-improvement with single-level with FM, $\langle\mathbf{M T}\rangle \%$-improvement with single-level with Multi-Try FM to $\langle\mathrm{FM}\rangle,\langle$ Vol \rangle resulting TCV, \langle METIS \rangle TCV after METIS.

Bibliography

[1] David A Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian Schulz, and Dorothea Wagner. Benchmarking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis and Mining, pages 73 - 82, Springer, 2014.
[2] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances in graph partitioning. CoRR, abs/1311.3144, 2013.
[3] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable route planning. In Proceedings of the 10th International Conference on Experimental Algorithms, SEA'11, pages 376-387, Berlin, Heidelberg, 2011. SpringerVerlag.
[4] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph partitioning with natural cuts. In Proceedings of the 2011 IEEE International Parallel \& Distributed Processing Symposium, IPDPS '11, pages 1135-1146, Washington, DC, USA, 2011. IEEE Computer Society.
[5] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions. In Proceedings of the 19th Design Automation Conference, DAC '82, pages 175-181, Piscataway, NJ, USA, 1982. IEEE Press.
[6] Bruce Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes?, pages 218-225. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.
[7] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. In Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, Supercomputing '95, New York, NY, USA, 1995. ACM.
[8] L. Hyafil and R. Rivest. Graph partitioning and constructing optimal decision trees are polynomial complete problems. IRIA-Laboria, Rocquencourt, France, 1973.
[9] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359-392, December 1998.
[10] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput., 48(1):96-129, January 1998.
[11] Vitaly Osipov and Peter Sanders. n-level graph partitioning. CoRR, abs/1004.4024, 2010.
[12] Vitaly Osipov, Peter Sanders, and Christian Schulz. Engineering Graph Partitioning Algorithms, pages 18-26. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
[13] Peter Sanders and Christian Schulz. High quality graph partitioning, 2013.
[14] Peter Sanders and Christian Schulz. Kahip v0.53 - karlsruhe high quality partitioning user guide. CoRR, abs/1311.1714, 2013.
[15] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proceedings of the 12th International Symposium on Experimental Algorithms (SEA'13), volume 7933 of LNCS, pages 164-175. Springer, 2013.
[16] Chris Walshaw. Multilevel refinement for combinatorial optimisation problems. Annals of Operations Research, 131(1):325-372, Oct 2004.

[^0]: ${ }^{1}$ See https://technet.microsoft.com/en-us/library/cc731332.aspx

