
Arc-Flags for Public Transit
Routing

Patrick Steil
patricksteil@freenet.de

October 26, 2022

3653914

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisors:
Ernestine Großmann
Jonas Sauer (KIT)

ii

Acknowledgments

I would like to express my gratitude to my supervisor, Prof. Christian Schulz, who
guided me throughout this project and my semesters at the university.
Many thanks to Ernestine Großmann and Jonas Sauer, who helped me with every
open question and with whom I had many interesting discussions in weekly meetings.
I would also like to thank Prof. Yordan Todorov on this occasion. Last but not least,
I thank my family and friends for their continuous support throughout my life.
Likewise, I thank Patrick Brosi for providing us with the S/RE, IC/ICE and Germany
datasets from his website https://gtfs.de/.I would like to thank Rick A. for never
giving up on me.

I hereby declare that I have written this thesis independently and have not used any
sources or aids other than those indicated.

Heidelberg, October 26, 2022

Patrick Steil

iii

https://gtfs.de/

iv

Abstract

This work is about route planning on public transit networks, more specifically it is
about improving an existing algorithm with respect to query time. On country-sized
networks, other state-of-the-art algorithms are clearly too slow with more than 10ms
per query. Our algorithm outperforms them by a speed-up of 10−18 resulting in query
times less than a millisecond on such networks. The new Arc-TB algorithm consists
of the Trip-Based Public Transit Routing (TB) and an adapted version of the
Arc-Flags speed-up technique. It is described how the two underlying algorithms
work and how Arc-Flags can be applied to the TB algorithm.

v

vi

Contents

Contents

Abstract v

1 Introduction 1

2 Preliminaries 3
2.1 Trip-Based Public Transit Routing 3
2.2 Arc-Flags . 5

3 Related Work 7
3.1 Trip-Based Public Transit Routing 9

3.1.1 Preprocessing . 9
3.1.2 Query . 11

3.2 Arc-Flags . 12
3.2.1 Overview . 14
3.2.2 Partitioning . 15
3.2.3 Computation . 17

4 Arc-Flags Meet Trip-Based Public Transit Routing 19
4.1 Preprocessing . 19

4.1.1 Partitioning . 20
4.1.2 Flag-computation . 20

4.2 Query . 22

5 Experiments 25
5.1 Datasets . 25
5.2 Results . 26

6 Future Work 33

Abstract (German) 35

Bibliography 37

vii

Contents

Algorithms 41

viii

CHAPTER 1
Introduction

Route planning is an important part of our everyday lives, whether we are looking for
the fastest route between two places using a car, or we want to get to work using public
transport. In the past, for longer car rides, you had to look up on maps yourself which
route you wanted to take. You were at the mercy of problems such as traffic jams or
road work. Even journeys by public transport had to be planned either by looking at
timetables or by asking staff at local stations. Nowadays, there are online services,
such as Google Maps 1 or Apple Maps 2, which answer queries automatically. In
addition, live data such as traffic jams or train delays are also taken into account when
calculating the route. For road networks, algorithms have been optimized to such an
extent that queries on large networks, such as Europe, are answered in the millisecond
range [1]. Especially speed-up techniques play an important role in archieving such
query times. But these algorithms and techniques are not as well suited for public
transit networks [4]. This may be because the topology of the underlying graph is
different and the optimization criteria are completely different. Car drivers are more
interested in the shortest routes between origin and destination, whereas users of
public transport often want to optimize not only the arrival time but also the number
of transfers or even the length of the walking distance. Information from timetables
can be modelled as a graph, and thus solved using Dijkstras Algorithm variants.
Two different approaches to graph modelling are known: the time-expanded and time-
dependent model [18]. One disadvantage of Dijkstras Algorithm is the costly use
of a priority queue, so current algorithms such as RAPTOR [8], CSA [9] or Trip-
Based Public Transit Routing (TB) [23] avoid using one. More information
on this in Chapter 3.

Our contribution. The current problem with the above algorithms is that they are
all significantly too slow for interactive use on country-sized networks. There are

1https://www.google.de/maps
2https://www.apple.com/de/maps/

1

https://www.google.de/maps
https://www.apple.com/de/maps/

1 Introduction

approaches, such as Public Transit Labelling (PTL), which achieve very fast
query times at the expense of higher memory consumption. However, the memory
consumption for large networks is enormous and unusable in practice. Therefore,
in this work, we present the Arc-TB algorithm, which is based on Trip-Based
Public Transit Routing and the speed-up technique Arc-Flags et al. [17].
This technique was originally developed for road networks. Especially on large-scale
networks, Arc-TB beats other state-of-the-art algorithms without consuming too
much additional memory. The new algorithm depends on a freely selectable parameter
k, which can either be increased (resulting in more memory consumption and pre-
computation time, but faster queries) or decreased depending on the application.

Structure. This work is structured as follows. First, the necessary notation is in-
troduced (see Chapter 2), and then the state-of-the-art algorithms are explained in
Chapter 3, as well as the TB algorithm and the concept of Arc-Flags in more
detail (see 3.1, 3.2). Our new algorithm Arc-TB is first introduced in Chapter 4
and then in Chapter 5 compared with other algorithms like RAPTOR and CSA on
different datasets. At the very end, an outlook on future work is given.

2

CHAPTER 2
Preliminaries

Public transit networks are described using aperiodic timetables, consisting of a set
of stops, routes, trips and transfers. A stop is a physical location where users can
get on or off trains, buses or similar. A transfer allows users to move between two
stops, for examle on foot or with a rental bike. Routes are sequences of stops that
are served by trips at specific times. Trips are vehicles that travel along a route. An
important aspect of this model is that trips on the same route cannot overtake each
other. Two vehicles on the same route overtake each other if the latter of the two
arrives at a stop earlier than the other.
As mentioned before, several problems exist in the context of time-dependent net-
works like public transit. Solutions to multi-criteria problems are Pareto sets repre-
senting journeys. A journey dominates another one if it is not worse in any criterion.
It is known that general multi-criteria Pareto optimization is NP-hard [19], but natu-
ral criteria are efficiently managed. Among known problems, one is the earliest arrival
problem, which given an origin stop, destination stop, and departure time computes a
journey with the earliest arrival time possible. Combined with minimizing the num-
ber of transfers, solutions in the Pareto-set are tupel (πn,n), where πn represents the
arrival time using n transfers.

2.1 Trip-Based Public Transit Routing
We follow the notation introduced by Witt [23] in his work and explain it in this
section.

Trip. A trip t travels along a sequence of stops p⃗(t) =
〈
p0

t ,p1
t , . . .

〉
. The set of all

stops is denoted by P .

Times. For a stop pi
t of trip t, we define the arrival time τarr(t, i), the departure time

τdep(t, i) and the minimum change time inside a stop by ∆τch(pi
t).

3

2 Preliminaries

Line. Lines are routes, meaning trips with the same stop sequence are grouped into
lines. We denote the set of all lines by R. Since trips of the same line cannot
overtake each other, one can order them by

t⪯ u ⇐⇒ ∀i ∈ [0, |p⃗(t)|) : τarr(t,pi
t)≤ τarr(u,pi

u)

and thus define

t≺ u ⇐⇒ t⪯ u∧∃i ∈ [0, |p⃗(t)|) : τarr(t,pi
t) < τarr(u,pi

u)

One defines p⃗(Lt) = p⃗(t) as the stop sequence of the line of trip t and

L(p) =
{
(L,i) | p = pi

L, L ∈R, p⃗(L) =
〈
p0

L,p1
L, . . .

〉}
as the set of lines at a stop p.

Trip segment. The trip segment pb
t → pe

t is a section of the trip t between stop pb
t

and pe
t where b < e.

Transfer. A transfer between trip t and u (with t ̸= u) is defined by pb
t → pe

u, i. e. a
passenger can transfer between stop pb

t and pe
u in time ∆τfp(pb

t ,p
e
u) via e.g. a

footpath. Only stops that are geographically close to each other are connected
by transfers. An example of this would be the different tracks of a stop.
A transfer is called valid if the following holds:

pb
t → pe

u =⇒ τarr(t, b)+∆τfp(pb
t ,p

e
u)≤ τdep(u,e)

See Figure 2.1 as an example.

p0
r p1

r

(
p2

r → p0
g

)
p3

r p4
r

p1
g p2

g p3
g

12:15→12:2012:10→12:1512:05→12:1012:00→12:05

12:30→12:40

12:40→12:50 12:50→13:00

Figure 2.1: Example to illustrate the notation: Let r be the red trip and g be the green
one. There is a valid transfer p2

r→ p0
g (with ∆τfp(p2

r ,p0
g) < 20min), and L

(
p2

r

)
=

{(g,0) ,(r,2)}. And for example τarr(r,1) = 12:05 or τdep(g,0) = 12:30.

4

2.2 Arc-Flags

2.2 Arc-Flags
Important concepts for the Arc-Flags technique are now explained. The idea be-
hind Arc-Flags is to store additional information about shortest paths on edges
(“arcs”). These can then be used during the query to limit the search space and thus
speed it up.

Graph. A graph G = (V,E) is a tuple of a set of nodes V and a set of edges E ⊆
V × V . Edges connect two nodes, can be directed or undirected and they can be
assigned weights using a function l : E→ R. For example, in road networks, such a
weight can represent the length of a road or the duration of its travel. Node weights
can also be introduced using a weight function c : V → R. We denote by n = |V | the
number of nodes and m = |E| the number of edges. A path p =

〈
v1,v2, . . . ,v|p|

〉
is a

sequence of nodes between v1 and v|p| such that two consecutive nodes are connected
by an edge. The weight of a path is the sum of all edge weights. If v1 = v|p|, p is
called a cycle.

Shortest Path. If no cylce with negative weight (so-called negative cycles) exists,
then given a source node s and a target node t, the shortest path problem is well-
defined. The path p = ⟨s, . . . , t⟩ is called the shortest path if there is no other path p′

between s and t with a smaller weight. In the following, we denote the shortest path
between nodes s, t by pmin(s, t). The shortest distance between s and t is denoted by
πs,t, and if no path between them exists, πs,t is ∞. Otherwise, the shortest distance
πs,t is equal to the weight of pmin(s, t). If edge weights are non-negative, then Dijk-
stras Algorithm finds the shortest paths between two nodes inO (m+n logn) [10].
For arbitrary edge weights, the Bellman-Ford Algorithm yields correct shortest
paths in O (nm) [3].

Partitioning Problem. The partitioning problem asks for a partition of a graph
G = (V,E) into k ∈ N pairwise disjoint blocks Vi, i ∈ [0,k) such that the number of
edges passing between two distinct blocks is minimized. In addition, one wants to
limit the size of the blocks so that each block has approximately the same size. For
a subset W ⊆ V , we denote by c(W) = ∑

v∈W
c(v) the total weight of the nodes W if

node weights are present. Otherwise, the weight of a node is 1, thus c(W) = |W |. To
limit the size of one block, one uses an imbalance parameter ε > 0 and introduces the
so-called balancing constraint (2.1).

∀i ∈ [0,k) : |Vi| ≤ (1+ ε)
⌈

c(V)
k

⌉
(2.1)

For more details on recent advances in (hyper–) graph partitioning, see e. g. [5] or [6].

5

2 Preliminaries

6

CHAPTER 3
Related Work

Many different approaches exist to solve the various routing problems such as the
earliest arrival problem or more complex multi-criterion problems. The latter consist
of finding Pareto-optimal journeys that meet certain criteria for a given source and
target stop and departure time.

CSA. One approach is the Connection Scan Algorithm (CSA) [9] which in
its basic variant only minimizes the arrival time. The algorithm is based on an array
of connections sorted in ascending order by departure time. A connection c is a trip
segment of length 1 and describes the travel of a vehicle between two stops cdep, carr
with departure and arrival time πc

dep, πc
arr. Given source stop psrc, target stop ptgt

and departure time πdep, the algorithm works in a dynamic programming fashion.
For each stop p, the current best arrival time πp is stored based on the connections
already scanned. The algorithm iterates over all connections c that depart later than
the given departure time of the query (πc

dep≥ πdep) and updates the arrival time of the
current stop πcarr if necessary. As soon as a connection is scanned that departs later
than the current best arrival time at the goal destination, the algorithm terminates.
It is very cache-efficient, but on large networks, many “unnecessary” connections are
scanned. However, this algorithm is very effective for smaller networks, such as those
of a transport association like Rhein-Neckar-Verbund1. Such networks have about
5 000 stops and nearly 50 000 trips. Country-sized networks consist of over half a
million stops and several million trips. To obtain faster query times on country-sized
networks, Strasser and Wagner [21] introduced the Accelerated Connection
Scan Algorithm (ACSA) extension. The basic idea here is a combination of
multilevel overlay graphs and CSA. For more information on overlay graphs, see [14].
This reduces the number of “unnecessary” connections that are scanned during a
query.

1https://www.rnv-online.de/fahrtinfo/

7

https://www.rnv-online.de/fahrtinfo/

3 Related Work

RAPTOR. Another approach is Round-bAsed Public Transit Optimized
Router (RAPTOR) [8], which works on lines and calculates Pareto-optimal so-
lutions for arrival time and number of transfers. The algorithm works in rounds,
where in each round k ∈ N a best arrival time is calculated. During a query, RAP-
TOR traverses the routes in a breadth-first search manner, i. e. it collects routes in
a queue, iterates over them, and checks if transfers to new routes are possible. In
each round, the current best arrival time at every stop is stored until it finds no
improvements. Advantages of RAPTOR are the absence of pre-computation and
the possibility of parallelization, e. g. when iterating over the stops of the routes. See
Figure 3.1 as an illustration of the query.

◦ •

• •

• • ptgt •

psrc • • • •

◦ •

r1

r2

r3

r4

Figure 3.1: Illustration of the RAPTOR query from psrc to ptgt. The two routes r1, r2 are
scanned in the first round and after that, the remaining routes r3, r4. Stops
denoted by ◦ are not scanned by the algorithm.

PTL. A very efficient speed-up technique is Public Transit Labelling
(PTL) [7], which is based on the idea of Hub Labelling [11]. For each node
v ∈ V one stores a set of nodes, so-called hubs, together with the shortest distances
to v. Shortest paths queries between two nodes can be answered very fast by just
computing the intersection of the two hubs. However, this method only returns the
shortest distance between u and v, not the path. To obtain the shortest path, each
hub must also store the path that leads to it, which results in extremely high memory
consumption. Delling et al. [7] achieve fast results, which are orders of magnitude
faster than state-of-the-art, but the memory consumption is already very large and
they do not perform path unpacking, meaning their algorithm only reports arrival
times.

8

3.1 Trip-Based Public Transit Routing

Graph based. In addition, two major graph-based models exist, a time-expanded
and time-dependent model. The idea of the time-expanded model is to introduce
nodes for each event (e. g. boarding or changing). Edges connect stops either because
they belong to the same trip or because transfers are possible at these events. A
big advantage of this way of modelling is the fact that all edges have equal weight.
Therefore, speed-up techniques are easily adaptable. Moreover, the time component
of the graph makes it a directed acyclic graph (DAG). To compute shortest paths,
one does not need a priority queue, because breadth-first searches provide correct
shortest paths (see [15], chapter “Shortest Paths”). Despite the fact that this model
has a simple structure, speed-up techniques, which are known from road networks,
are not effective [4]. Moreover, graphs of this type become very large. On the other
hand, the time-dependent approach models stops as nodes and connections between
them as edges. Weights of edges are piecewise linear functions mapping departure
to arrival times. For this type of graph, Dijkstras Algorithm variants are able
to solve multi-criteria problems, see e. g. [12] or [22]. As an illustration of the two
models described, see Figure 3.2. For an overview of recent advances in algorithms
for route planning, refer to [2].

3.1 Trip-Based Public Transit Routing
The Trip-Based Public Transit Routing (TB) algorithm was published by
Sascha Witt in 2015 [23]. The basic idea of the TB algorithm is based on a breadth-
first search through a time-expanded graph, where the levels of the breadth first search
(BFS) indicate the number of transfers. Thus, the algorithm provides Pareto-optimal
results in terms of arrival time and the number of transfers. The DAG property of
the underlying graph allows correct computation of shortest paths without a costly
priority queue. The algorithm consists of two phases: the pre-computation and the
query. Both are explained in the next sections.

3.1.1 Preprocessing
In the preprocessing, all possible transfers between trips are calculated, although
some of them are not necessary to compute Pareto-optimal solutions. Therefore, the
pre-computation is also divided into two steps: initial computation and reduction.
The initial computation consists of iterating over all trips t and their stops pi

t, ∀i ∈
[0, |p⃗(t)|), collecting every (transfer-) reachable stop q. Next, one finds the earliest
trip u of a line L by iterating over (L,j) ∈ L(q) in order to create a valid transfer
pi

t→ pj
u. Since trips of the same route do not overtake each other, one does not need

to compute transfers to later trips of line L. The reason is that a passenger cannot
improve his arrival time by taking a later trip. Another observation is that there is no
need to calculate transfers between the first and the last stop of a trip, as passengers

9

3 Related Work

• •

• • • •

• •

•

•

10:15

10:00

10:10 10:40

10:20 10:30

10:50

10:30

10:25 10:35

11:1511:2511:35

11:00
11:10

11:20

11:30

11:30

11:40

11:50

(a) time-dependent model.

•10:00 •10:10 •10:20 •10:30 •10:40

•10:15 •10:25 •10:35 •10:45

•10:30 •10:40 •10:50 •11:00

•11:00 •11:10 •11:20 •11:30 •11:40

(b) time-expanded model.

Figure 3.2: Example graphs to show the differences between between time-dependent and
time-expanded. Note: Both graphs model the same timetable. Due to space
reasons, not the entire time-expanded graph is shown.

10

3.1 Trip-Based Public Transit Routing

do not board a train to get off at the same stop and start another trip.
After the initial computation, some transfers can be removed since they do not con-
tribute to any Pareto-optimal solution. For example let pi

t→ pj
u be a transfer where

pj+1
u = pi−1

t and
τarr(t, i−1)+∆τch(pi−1

t)≤ τdep(u,j +1)

holds. This unnecessary transfer is called a U-turn transfer since one can access u
from t at the preceding stop.
Another approach to reduce the number of transfers is to keep only those transfers
that lead to improved arrival times. For each stop pi

t along a trip t, one remembers
both the earliest arrival time τA

(
pi

t

)
and the earliest change time τC

(
pi

t

)
. If there is

no minimum change time, only τA is used. Subsequently, one runs “backwards” over
the stops of a trip t, meaning i ∈ {|p⃗(t)|−1, |p⃗(t)|−2, . . . ,0}. For each stop pi

t, one
updates both times τA, τC according to (3.1) and (3.2).

τA
(
pi

t

)
= min

{
τA

(
pi

t

)
,τarr(t, i)

}
(3.1)

τC
(
pi

t

)
= min

{
τC

(
pi

t

)
,τarr(t, i)+∆τch(pi

t)
}

(3.2)

Similarly, the times for all stops accessible by foot are updated. Now one checks for
each transfer pi

t→ pj
u whether it is necessary to improve at least one of the two times

τA, τC. To do this, the algorithm iterates over all stops pk
u, ∀k ∈ (j, |p⃗(u)|) along the

trip u and also over all stops that can be reached by foot to see if it can improve one
of the times. If yes, it keeps the transfer, otherwise it discards it.
The entire pre-computation can be parallelized, as each trip can be processed inde-
pendently. This allows a pre-computation of a few minutes on country-sized networks
(if the given transfer set is not too big). The author mentions that the number of
transfers can be reduced even further by computing all possible earliest arrival queries
between all stops and keeping only the used transfers. However, Witt [23] says that
this is too costly and would make the pre-computation much slower compared to the
fast reduction steps. But exactly such “unnecessary” transfers are found during the
Arc-Flags pre-calculation and subsequently removed, see Section 4.1.

3.1.2 Query
Given a source stop psrc, target stop ptgt and departure time τdep, a query runs as
follows: in a queue, the algorithm collects trips that are reachable from the source stop
and then iterates in a breadth-first search over all trip segments that are reachable via
transfers. More precisely: the algorithm has n distinct queues Qn of trip segments,
where n corresponds to the maximum number of transfers. In his work, Witt bounded
the number of distinct queues by n≤ 15. Additionally, one maintains an index R(t)
for every trip t indicating which parts of t the algorithm already scanned. In the

11

3 Related Work

following set L (see 3.3) one stores all lines that lead to the destination, either because
the destination is served by the line or because a passenger arrives at a station from
which he can reach the destination by walking:

L={(L,i,0) | (L,i) ∈ L(ptgt)}
∪

{(
L,i,∆τfp(q,ptgt)

)
| (L,i) ∈ L(q)∧∃transfer from q to ptgt

} (3.3)

To store the Pareto-optimal results, one maintains a result set J with tupels of arrival
time and number of transfers. The algorithm starts collecting all reachable lines

(L,i) ∈ L(q) : ∀q ∈ {psrc}∪{b ∈ P | ∃ transfer from stop psrc to b} , (3.4)

and the first trip t (reachable at time τ) from each line and inserts the trip segment
pi

t → p
R(t)
t into Q0. Then, the algorithm updates R(u)← min{R(u), i} for every

trip u where t ⪯ u∧Lt = Lu to avoid scanning the same stop sequence of this route
using later trips again. Now the algorithm starts the actual BFS work on the queues
Q0,Q1, For every trip segment pb

t → pe
t ∈ Qk, k ∈ [0,n], the algorithm takes the

following three steps:

1. Reached: It is checked whether we reach our target ptgt. If yes, we iterate
over all tripels (Lt, i,∆τ) ∈ L with i > b and insert (τarr(t, i)+∆τ,k) into the
result set J . The tuple is only inserted if the current arrival time τarr(t, i)+∆τ

is better than the previous arrival time τprev from (τprev,k) ∈ J . If the tupel is
inserted, the previous arrival time is replaced.

2. Pruning: We test if this trip segment can be omitted by checking if τarr(t, i)
is worse than the previously found arrival time at the target.

3. Expanding: If the trip segment was not discarded in the previous step, the
algorithm looks at all transfers originating from that trip segment. We only
add transfer pi

t→ pj
u (with b < i≤ e) to the queue Qk+1 if j < R(u). If we add

the transfer, we update R(u) analogously as before.

A high-level pseudocode can be found in Algorithm 1; the full algorithm can be found
in Appendix 6.

3.2 Arc-Flags
Arc-Flags is a speed-up technique for traditional shortest path algorithms like
Dijkstras Algorithm. Möhring et al. [17] report a speed-up factor of 500 when
using bidirectional Dijkstras Algorithm. The original Dijkstras Algorithm
algorithm maintains the current best distance for each node and orders all unfinished

12

3.2 Arc-Flags

Algorithm 1: Earliest arrival query - this pseudocode is from Witt’s paper [23]
Input : Timetable, transfer set T , source stop psrc, target stop ptgt,

departure time τ

Output: Result set J
/* initialise every data structure needed */
/* see the other pseudocode 6 for more detail */
/* now we start the BFS phase */

1 τmin←∞
2 n← 0
3 while Qn ̸= ∅ do
4 foreach trip segment pb

t → pe
t ∈Qn do

5 foreach (Lt, i,∆τ) ∈ L with b < i∧τarr(t, i)+∆τ < τmin do
6 τmin← τarr(t, i)+∆τ

7 update result set and J ← J ∪{(τmin,n)}
8 end
9 if τarr(t, b+1) < τmin then

10 foreach transfer pi
t→ pj

u ∈ T with b < i≤ e do ENQUEUE(u,j,n+1)
11 end
12 end
13 n← n+1
14 end
15 procedure ENQUEUE(trip t, index i, number of transfers k):
16 if i < R(t) then
17 Qn←Qn∪

{
pi

t← p
R(t)
t

}
18 foreach trip u with t⪯ u∧Lt = Lu do R(u)←min{R(u), i}
19 end

nodes according to their current distance. In each step, the algorithm considers all
outgoing edges of the node with the minimum distance and thus tries to improve
the distances of the neighbours. In this way, the algorithm explores the graph and
eventually finds the correct distances and paths to all nodes in the graph. The
basic idea of bidirectional Dijkstras Algorithm is to search for the shortest path
between two nodes simultaneously from the source, but also backwards from the target
(on the reverse graph). If parallelized, bidirectional Dijkstras Algorithm is on
average a factor of 4 faster than the original Dijkstras Algorithm algorithm.
See Algorithm 5 for the pseudocode of bidirectional Dijkstras Algorithm and
Figure 3.3 to compare the search spaces of the different algorithms.

13

3 Related Work

(a) plain Dijkstra (b) Bidirectional Dijkstra

(c) Arc-Flag & Dijkstra

Figure 3.3: Plotted in green are edges scanned by the mentioned algorithms during the same
shortest path query.

3.2.1 Overview
The basic idea of Arc-Flags is to perform most of the work during the preprocessing
phase and to save time during a query.
For each vertex v ∈ V , let S(v) be the set of edges that lie on a shortest path from v.
During a shortest path query starting from v, Dijkstra only needs to check the edges
e ∈ S(v) ⊆ E, i. e. only consider edges from any shortest path from v. Clearly, it is
pointless memory-wise to store these sets for all nodes. Therefore, one partitions the
set of nodes into k blocks of approximately the same size. More precisely, one defines
a function r : V → {1, . . . ,k} which assigns a number between 1 and k to each node.
For each edge e ∈E one defines a bit vector be : {1, . . . ,k}→ {1,0} of length k, where
bit i represents block i. These bits are also called flags, hence the name Arc-Flags.
The bits for an edge e ∈ E are defined using Equation (3.5). The flag i is set to 1 as
soon as the edge is part of a shortest path that leads to a node of block i.

be(i) = 1 ⇐⇒ ∃pmin(s, t), s, t ∈ V : r(t) = i∧ e = (u,v) ∈ pmin(s, t) (3.5)

Thus one can restrict Dijkstras Algorithm in finding the shortest path between
s, t, namely one now only looks at edges e for which be(r(t)) = 1 holds. See Algo-

14

3.2 Arc-Flags

rithm 14 for pseudocode for the original Dijkstras Algorithm algorithm combined
with Arc-Flags. The additional memory consumption is Θ(km) since exactly k bits
must be stored for each of the m edges and is manageable for k≪ n. The larger k, the
smaller the partitions and the smaller the search space during the query. Figure 3.4
illustrates an example.

•

• •

•

•

• •

•

y

gy

g
y

gy

gy

gy

y

gy

v

g

Figure 3.4: Example graph with Arc-Flags. Nodes with same color denote same partition.
The flags set to 1 are denoted by the starting character of the colour, yellow,
violet and green.

3.2.2 Partitioning
The question with Arc-Flags is: how do you partition a given graph to get “good”
flags? To answer this question, we define NG (P) to be the number of bits set to
1 on all edges of G given the partition P . The fewer bits set to 1, the smaller the
search space of the Dijkstras Algorithm search, since more edges can be excluded.
Therefore, the query will be better on average, the smaller NG (P) is. Thus, we can
describe which partitions are “better” than others (given graph G). Let P ,P ′ be two
partitions:

P ⪯ P ′ ⇐⇒ NG(P)≤NG(P ′)

Möhring et al. [17] describe 4 different ways to compute partitions. The simplest
method is the so-called grid method. The basic idea here is to plot the graph on
a two-dimensional plane and then place a grid on top of it. Each cell in the grid
corresponds to a partition block. But since this grid approach does not transfer any

15

3 Related Work

Algorithm 2: Dijkstras Algorithm with Arc-Flags.
Input : graph G = (V,E), edge weight function l : E→ R+

0 , source node s,
target node t, block function r : V →{1, . . . ,k}, bit vectors
be : {1, . . . ,k}→ {1,0} ∀e ∈ E

/* d[v] keeps track of the distance from s to v */
/* s[v] marks if node v has already been scanned */

1 foreach v ∈ V do d[v]←∞, s[v]← 0
2 d[s]← 0
3 Q←{(s,0)}
4 while Q ̸= ∅ do
5 u←Q.deleteMin(), s[u]← 1
6 if u = t then return
7 foreach e = (u,v) ∈ E do
8 if be(r(t)) = 1 ∧ s[v] = 0 ∧ d[u]+ l(e) < d[v] then
9 d[v]← d[u]+ l(e)

10 if v ∈Q then Q.decreaseKey(v,d[v])
11 else Q.insert(v,d[v])
12 end
13 end
14 end

topological properties of the graph into the partition, this method performed the
worst. The next two approaches are very similar in that partitions are computed
using data structures that store points in space. The first of the two methods uses a
quad-tree, a tree structure which divides the underlying space into four quadrants in
each iteration. This recursion can be stopped if there are fewer than b∈N nodes in the
current region. “Node-dense” parts of the graph are partitioned into multiple regions,
thus to some extent, the topology of the graph is carried over into the partition. The
other approach is based on the use of k-d-trees, which also recursively divides the
space, not in equal-sized quarters, but depending on the distribution of the nodes. In
each step, the median of a region is calculated w.r.t. an alternating component (such
as latitude or longitude) and based on the median, the region is thus divided into two.
Thus, the partition of the k-d-trees becomes even “finer” than that of the quad-trees.
The last, and best approach compared to the other methods, is to use a black–box
partitioner, such as METIS 2 or KaHIP 3. A major advantage of this approach is that
the partitioner does not operate on an embedding of the graph, but makes decisions
based only on the topology. Moreover, since the partitions have significantly fewer
cross-edges, i. e. edges which run between different blocks, the pre-computation time

2https://github.com/KarypisLab/METIS
3https://github.com/KaHIP/KaHIP

16

https://github.com/KarypisLab/METIS
https://github.com/KaHIP/KaHIP

3.2 Arc-Flags

is significantly lower than for all three previous methods. This is because an efficient
calculation of the flags calculates the shortest paths starting from all cross-edges,
and therefore, the number of cross-edges is crucial for the pre-computation time.
We elaborate on pre-computation in Section 3.2.3. Figure 3.5 shows the difference
between the grid method and the use of a black–box partitioner.

(a) 3×3 grid-method (b) KaHIP with k = 9, imbalance 20%

Figure 3.5: Comparison between partitioning with grid-method and using KaHIP on a ger-
man long distance train network.

3.2.3 Computation
A direct but very inefficient way to compute all flags is to compute all shortest paths
from all nodes to all other nodes (so called all-pair-shortest-path). Thus, the effort
is O

(
nm+n2 logn

)
if Dijkstras Algorithm can be used to find shortest paths.

Otherwise, it is O
(
n2m

)
. But Möhring et al. show in [13] that one can compute

correct flags without all-pair-shortest-path. The basic idea is based on the observation
that all shortest paths to a node v ∈ V in a block j pass through so-called boundary
arcs. An edge e = (u,v) is called boundary arc if r(u) ̸= r(v) holds; u,v are called
boundary nodes. Therefore, it is sufficient to compute shortest paths to all boundary
nodes, or equivalently: backward shortest paths from all boundary nodes. For all
edges e within a block j, be(j) = 1 is set, and the bits of the other blocks depend on
the backward shortest paths tree from the boundary nodes.

17

3 Related Work

18

CHAPTER 4
Arc-Flags Meet Trip-Based Public
Transit Routing

In the following, we will explain how the Arc-Flags technique can be adapted to
the TB algorithm. We call the resulting algorithm Arc-TB. As with Arc-Flags,
there are two phases, the pre-computation and the query.
Unlike Arc-Flags, in the TB algorithm one does not look for the shortest path,
but for Pareto-optimal paths in terms of arrival time and the number of transfers.
As explained in Section 3.1, the query is based on a breadth-first search. Edges
in this time-expanded graph correspond to transfers, i. e. in the Arc-TB algorithm
one flags transfers between trips. This makes sense because a user only transfers if
this transfer takes him to the destination. More formally: one defines a bit vector
bpb

t→pe
u

: {1, . . . ,k}→{1,0} for every transfer pb
t→ pe

u and a function r : P →{1, . . . ,k},
which maps stops to blocks. Let pJ(psrc,ptgt,τ) be a Pareto-optimal path between
stops psrc,ptgt ∈ P departing at time τ, meaning this path corresponds to one entry
in the result set J of the TB Algorithm. Then, the flags for any transfer pb

t → pe
u are

defined using Equation (4.1). This means that the ith bit of a transfer is set if that
transfer is part of some Pareto-optimal path leading to a stop in the ith partition.

bpb
t→pe

u
(i) = 1 ⇐⇒∃pJ(psrc,ptgt,τ), psrc,ptgt ∈ P, timeτ :

r(ptgt) = i∧pb
t → pe

u ∈ pJ(psrc,ptgt,τ)
(4.1)

4.1 Preprocessing
The pre-computation includes the partitioning as well as the flag calculation; both
are explained in the following.

19

4 Arc-Flags Meet Trip-Based Public Transit Routing

•4

•1 •2 •3

•7 •5 •8

•6

•4

•1 •2 •3

•7 •5 •8

•6

11

1 2

1

1

121

Figure 4.1: On the left is an example network with 4 trips (red, green, blue, purple) and
a transfer (dashed arrows). On the right you can see the (partitioned) layout
graph, where only edge weights were calculated using the trips and transfers.
Note that the colours represent the partitions.

4.1.1 Partitioning
Given a data set, the so-called layout graph is generated first (see Figure 4.1). The
node set V = P corresponds to all stops and edges correspond to connections between
two nodes, i. e. for each trip segment of length 1 and each transfer one edge is gener-
ated. The weight ce of an edge e = (u,v) between stops u,v ∈ V corresponds to the
number of trips which operate between u and v.
Based on this graph, one creates the partition P , which is needed for the flag pre-
computation using the partitioning program KaHIP1. KaHIP is a set of open-source
graph partitioning algorithms developed by Sanders and Schulz [20, 16]. We used the
program kaffpaE with the configuration –preconfiguration=ssocial and an im-
balance of 20% in all of our experiments. KaHIP is based on a multilevel approach,
i.e. the input graph is coarsened, initially partitioned and locally improved during
uncoarsening. It has been shown that overall better results are obtained when coars-
ening is computed using clustering, rather than edge matching as usual (hence we
use preconfiguration=ssocial). The number of partitions k ∈ N can be chosen
depending on the application. The larger k, the fewer stops are in a partition, there-
fore the search space is more restricted during a query and the algorithm is faster.
However, this comes at the cost of pre-computation time and memory consumption.

4.1.2 Flag-computation

For each trip t and all stops pi
t on the trip, the algorithm performs calcArcFlags and

computes the Pareto sets with respect to arrival time and the number of transfers
to all stops in P (all-to-all pre-computation). See Algorithm 3 for the pseudocode

1https://github.com/KaHIP/KaHIP

20

https://github.com/KaHIP/KaHIP

4.1 Preprocessing

of calcArcFlags. After each BFS round, the current best path is unpacked from all
stops using stored parent pointers, correctly flagging all transfers. For each stop, one
remembers which trip t and stop index i led to the current best arrival time, and for
each tuple (t, i) of trip and stop index, one stores the transfer that led to that trip.
This step is called unwindParentPointer.

Improvements. Some parts of the algorithm can be optimized. The simplest im-
provement is in unwindParentPointer: One does not need to check all stops in each
iteration, but only the stops where the arrival time has improved.
Another aspect lies in the breadth-first search of calcArcFlags because every outgoing
transfer of a trip segment is considered. This means that the breadth-first search
traverses the whole graph. Clearly, this is inefficient. In the normal query (see Al-
gorithm 1), transfers of trips are not considered if they result in “too late” trips
(compared to the previous best arrival time τmin). Similar considerations now apply
here. For every stop p ∈ P one keeps track of the current best arrival time τmin(p).
Then, transfers of trip segments pb

t → pe
t are not considered if the following equation

holds:

τarr(t, b) > max
{
τmin

(
pi

t

)
;∀i ∈ [b,e]

}
Another speed-up aspect is based on so-called transferless stops. A stop pi

t of a trip
t is called a transferless stop if there is no transfer of the form pi

t→ pj
u. The naive

approach executes calcArcFlags from all stops pi
t, i.e., from each stop a kind of one-to-

all query. But for correct flag computation, it is not necessary to perform calcArcFlags
from a transferless stop, thus one can skip these nodes. See Figure 4.2 for an example.

p0
r p1

r p2
r p3

r p4
r

p0
g p1

g p2
g p3

g

p2
r→p1

g

Figure 4.2: Example to demonstrate transferless stops. It is not necessary to run the calcAr-
cFlags method from, p0

r or p1
r , since in both cases the first transfer is found only

from p2
r . I.e. for the red trip the method calcArcFlags of p2

r has to be executed
only once to calculate flags of transfers correctly.

Taking advantage of transferless stops, we can disregard between 25− 50% of all
stops pi

t in the data sets we use. However, this does not correlate with a speed-
up factor, as transferless stops which are very late in the evening do not save the

21

4 Arc-Flags Meet Trip-Based Public Transit Routing

same amount of time as a transferless stop early in the morning. This is because
a passenger can reach more trips during the day if he starts travelling early in the
morning rather than in the evening. In the experiments, we achieve a speed-up of
about 2− 4 by skipping transferless stops. The computation calcArcFlags can be
parallelized, since each execution of calcArcFlags can be performed independently.
This can be achieved by each process executing calcArcFlags for each stop along
an assigned trip. Finally, the flags of all processes are merged using logical OR
operations. As already mentioned in Section 3.1.1, all transfers which have no flags
set to 1 can be removed, as they do not belong to any Pareto-optimal solution. In
the experiments, we show that the proportion of these edges is 2−5%.

4.2 Query
The Arc-TB query is only a slight modification of the original query. One is only
allowed to add transfers that have the correct flag set to the next queue. See Algo-
rithm 4 for pseudocode of this modified query.

22

4.2 Query

Algorithm 3: calcArcFlags - one to all preprocessing
Input : Timetable, transfer set T , trip u, stop index i

1 J ←∅
2 foreach k = 0,1, . . . do Qk←∅
3 foreach trip t do
4 R(t)←∞
5 foreach i ∈ [0, |p⃗(t)|) do par(t, i) = NULL
6 end
7 foreach q ∈ P do τmin,q←∞, stopEventPar(q) = (NULL,NULL)
8 ENQUEUE(u, i, 0)
9 n← 0

10 while Qn ̸= ∅ do
11 foreach trip segment pb

t → pe
t ∈Qn do

12 foreach i ∈ [b,e] do
13 if τarr(t, i)≥ τmin,pi

t
then continue

14 τmin,pi
t
← τarr(t, i)

15 stopEventPar
(
pi

t

)
← (t, i)

16 foreach transfer pi
t→ pj

u ∈ T do
17 par(u,j)←

(
pi

t→ pj
u

)
18 ENQUEUE(u,j,n+1)
19 end
20 end
21 end
22 n← n+1
23 unwindParentPointer()
24 end
25 procedure unwindParentPointer():
26 foreach p ∈ P do
27 (t, i)← stopEventPar(p)
28 transfer tr← par(t, i)
29 flags f ←{0, . . . ,0}
30 f (r(p)) = 1
31 while tr ̸= NULL do

/* ⊕ means bitwise or */
32 btr← btr⊕f

/* transfer tr has the form po
k→ pj

u */
33 tr← par(k,o)
34 end
35 end

23

4 Arc-Flags Meet Trip-Based Public Transit Routing

Algorithm 4: Arc-TB - Earliest arrival query
Input : Timetable, transfer set T , source stop psrc, target stop ptgt,

departure time τ, partition function r : P →{1, . . . ,k}, for all
transfer pb

t → pe
u : bpb

t→pe
u

: {1, . . . ,k}→ {1,0}
Output: Result set J
/* ... */
/* main query is same as before, only difference is in the BFS */

1 τmin←∞
2 n← 0
3 while Qn ̸= ∅ do
4 foreach trip segment pb

t → pe
t ∈Qn do

5 foreach (Lt, i,∆τ) ∈ L with b < i∧τarr(t, i)+∆τ < τmin do
6 τmin← τarr(t, i)+∆τ

7 update result set and J ← J ∪{(τmin,n)}
8 end
9 if τarr(t, b+1) < τmin then

10 foreach transfer pi
t→ pj

u ∈ T with b < i≤ e do
11 if b

pi
t→pj

u
(r (ptgt)) = 1 then

12 ENQUEUE(u,j,n+1)
13 end
14 end
15 end
16 end
17 n← n+1
18 end

24

CHAPTER 5
Experiments

We perform our experiments on two machines A and B. Machine B is used to com-
pute the experiments for the large country-sized instances and A for the rest of the
experiments. Machine A is an Intel Xeon Silver 4216, 16-Core CPU with 96GB
DDR4-2933 DIMM clocked at 2.10 GHz (max. 3.20 GHz), machine B is an AMD EPYC
7702P, 64-Core CPU with 1 024 GB DDR4-3200 DIM clocked at 2.00 GHz (max. 3.35
GHz). All algorithms are implemented in C++ and compiled with g++ and the follow-
ing parameters: –fopenmp –O3 –march=native –std=c++17 -pipe.
CSA computes solutions that minimize arrival time, whereas Arc-TB, TB, and
RAPTOR compute Pareto-optimal solutions, i.e., minimize the number of transfers
in addition to arrival time.
We do not expect a large speed-up on small datasets, but rather on country-sized net-
works such as Germany or Switzerland. This is due to the nature of the Arc-Flags
technique. The results confirm our assumption. All results are based on 10000 ran-
dom queries, meaning source, destination and departure time are chosen uniformly
at random.

5.1 Datasets

All datasets (Rhein-Neckar-Verbund1, IC/ICE2, Karlsruhe3, S/RE2, Paris4, Sweden5,
Switzerland6 and Germany2) used in our experiments are in GTFS format (General
Transit Feed Specification7) and are listed in Table 5.1.

1https://opendata.rnv-online.de/dataset/gtfs-general-transit-feed-specification
2https://gtfs.de/
3https://www.kvv.de/fahrplan/fahrplaene/open-data.html
4https://navitia.opendatasoft.com/explore/
5https://trafiklab.se/
6https://gtfs.geops.ch/

25

https://opendata.rnv-online.de/dataset/gtfs-general-transit-feed-specification
https://gtfs.de/
https://www.kvv.de/fahrplan/fahrplaene/open-data.html
https://navitia.opendatasoft.com/explore/
https://trafiklab.se/
https://gtfs.geops.ch/

5 Experiments

dataset stops routes trips local long-distance

IC/ICE 1 599 2 231 2 877 •
Rhein-Neckar-Verbund 2 080 1 078 15 843 •
Karlsruhe 4 014 2 929 50 970 •
S/RE 14 178 18 796 67 408 ◦ ◦
Paris 41 957 12 877 320 407 •
Switzerland 37 049 22 193 253 602 • •
Sweden 49 177 65 947 551 355 • •
Germany 663 875 573 851 3 338 502 • •

Table 5.1: An overview of the data sets with which the experiments are performed. A dis-
tinction is also made between local and long-distance traffic. These are indicated
by • in the corresponding columns. Note: S/RE trains (S-Bahn and Regional
Express) are cross-regional, which stop not only at large stations, but also at
smaller regional ones. Accordingly, we classify the dataset as a mixture of both
local and long-distance trains (denoted by ◦).

5.2 Results

In Figure 5.1 and Table 5.2, it can be seen that on smaller networks like RNV the
speed-up technique does not have a great effect, but only beats the other algorithms
(at the expense of memory) using more than 32 partitions. The algorithm behaves
similarly for Karlsruhe, Paris and the IC/ICE network. Such “dense” networks do
not partition well. By “dense” we mean that there are many trips in a short time
and a transfer is possible at almost every stop. This makes partitioning difficult.
On the S/RE dataset, Arc-TB with k = 512 creates a query time that is about a
factor of 4 faster than the original TB (see Figure 5.2 and Table 5.2). With this
number of partitions, the pre-computation takes just under 6 hours and the flags
have a memory consumption of 229 MB.
On the two countries, Switzerland and Sweden, Arc-TB shows its strength. On
Switzerland, it achieves an average runtime of 695µs (compared to TB: 12902µs,
CSA: 15604µs, and RAPTOR: 23643µs). This is a speed-up factor of more than
18,5. For more detail, see Figure 5.3 and Table 5.3. On the Sweden instance, Arc-TB
answers queries in 331µs, compared to TB 4521µs, CSA 16563µs and RAPTOR
10660µs, using an additional storage of around 3GB. For a detailed overview, see

7https://developers.google.com/transit/gtfs/reference/#general_transit_feed_
specification_reference

26

https://developers.google.com/transit/gtfs/reference/#general_transit_feed_specification_reference
https://developers.google.com/transit/gtfs/reference/#general_transit_feed_specification_reference

5.2 Results

k prepro. time query time [µs] memory [MB] % set flags

RNV

1 - 115 0 100%
8 00:00:14 140 41 34%

16 00:00:20 126 42 27%
32 00:00:33 102 43 23%
64 00:00:46 82 47 19%

128 00:01:24 71 53 16%
256 00:02:47 66 66 14%
512 00:05:37 66 92 12%

S/RE

1 - 1 127 0 100 %
8 00:11:31 1 372 99 35 %

16 00:16:01 1 072 101 27 %
32 00:27:16 784 105 21 %
64 00:43:50 543 113 17 %

128 01:24:42 390 129 14 %
256 02:01:51 347 160 13 %
512 05:50:28 266 229 11 %

Table 5.2: The tables show an overview of the results for the RNV & S/RE dataset depend-
ing on k, the number of partitions. The pre-computations were performed with
32 threads on the A machine. k = 1 shows the original TB Algorithm.

Figure 5.4 and Table 5.3. The largest dataset, the Germany network, could not be
processed using my algorithm, as this would take over 150 days.

27

5 Experiments

k prepro. time query time [µs] memory [MB] % set flags

Swiss

1 - 12 902 0 100%
8 07:09:55 6 830 1 331 25%

16 10:07:31 4 471 1 444 18%
32 17:38:33 2 672 1 536 14%
64 23:09:53 1 875 1 638 11%

128 12:19:37 1 306 1 843 9%
256 23:27:44 900 2 150 8%
512 46:07:37 695 3 072 7%

Sweden

1 - 4 521 0 100 %
8 01:44:04 2 806 847 24 %

16 02:29:54 2 115 884 17 %
32 04:01:00 1 458 919 13 %
64 06:23:03 1 043 968 10 %

128 12:09:12 731 1 229 8 %
256 19:32:12 555 1 434 7 %
512 10:30:57 385 1 946 6 %

1 024 20:39:26 331 3 072 5 %

Table 5.3: The tables show an overview of the results for the Swiss & Sweden dataset
depending on k, the number of partitions. All pre-computations (where k is not
bold) were performed with 32 threads on the A machine. Bold k denoted pre-
computation on the B machine with 128 threads. k = 1 shows the original TB
Algorithm.

28

5.2 Results

1 8 16 32 64 128 256 512
0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

k

nu
m

be
r

[w
/o

di
m

en
sio

n]

RNV experiments

preprocessing time [s]
scanned trips

0

50

100

150

200

250

300

350

400

450

500

115
140 126

102
82 71 66 66

qu
er

y
tim

e
[µ

s]

Arc-TB
RAPTOR

CSA

Figure 5.1: Plot of the experiments of the RNV data set. On the abscissa the number of
k ∈ N is plotted, query times (denoted by ▲) are plotted against the right axis
and pre-computation as well as the number of scanned trips per query (of the
Arc-TB) against the left.

29

5 Experiments

1 8 16 32 64 128 256 512
0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

k

nu
m

be
r

[w
/o

di
m

en
sio

n]

S/RE experiments

preprocessing time [s]
scan. trips

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1,127
1,372

1,072

784
543

390 347 266

qu
er

y
tim

e
[µ

s]
Arc-TB

RAPTOR
CSA

Figure 5.2: Plot of the experiments of the S/RE data set. On the abscissa the number of
k ∈ N is plotted, query times (denoted by ▲) are plotted against the right axis
and pre-computation as well as the number of scanned trips per query (of the
Arc-TB) against the left.

30

5.2 Results

1 8 16 32 64 128 256 512
0

17,000

34,000

51,000

68,000

85,000

1.02 ·105

1.19 ·105

1.36 ·105

1.53 ·105

1.7 ·105

k

nu
m

be
r

[w
/o

di
m

en
sio

n]

Swiss experiments

preprocessing time [s]
scan. trips

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

22,500

25,000

12,902

6,830

4,471

2,672
1,875 1,306 900 695

qu
er

y
tim

e
[µ

s]
Arc-TB

RAPTOR
CSA

Figure 5.3: Plot of the experiments of the Swiss data set. On the abscissa the number of
k ∈ N is plotted, query times (denoted by ▲) are plotted against the right axis
and pre-computation as well as the number of scanned trips per query (of the
Arc-TB) against the left. Note: For k < 128, the pre-computation has been
done on the A machine with 32 threads, for k ≥ 128, the B machine with 128
threads has been used.

31

5 Experiments

1 8 16 32 64 128 256 512 1024
0

7,500

15,000

22,500

30,000

37,500

45,000

52,500

60,000

67,500

75,000

k

nu
m

be
r

[w
/o

di
m

en
sio

n]

Sweden experiments

preprocessing time [s]
scan. trips

0

1,700

3,400

5,100

6,800

8,500

10,200

11,900

13,600

15,300

17,000

4,521

2,806
2,115

1,458 1,043 731 555 385 331

qu
er

y
tim

e
[µ

s]

Arc-TB
RAPTOR

CSA

Figure 5.4: Plot of the experiments of the Sweden data set. On the abscissa the number of
k ∈ N is plotted, query times (denoted by ▲) are plotted against the right axis
and pre-computation as well as the number of scanned trips per query (of the
Arc-TB) against the left. Note: For k < 512, the pre-computation has been
done on the A machine with 32 threads, for k ≥ 512, the B machine with 128
threads has been used.

32

CHAPTER 6
Future Work

It would be desirable to reduce the pre-computation time, as with our implementation,
large networks are not yet manageable. There is a more efficient algorithm, which
is expected to set better flags and has significantly faster pre-computation times.
This will be a project for the near future. Furthermore, it would be interesting to
think about delay-resistant Arc-Flags, as models that consider delays are of great
importance in reality, as well as using other speed-up techniques, which generate even
better runtimes, especially on large national networks.

33

6 Future Work

34

Abstract (German)

In dieser Arbeit geht es um Routenplanung in öffentlichen Verkehrsnetzen, genauer
gesagt um die Verbesserung eines bestehenden Algorithmus in Bezug auf die
Abfragezeit. Auf landesweiten Netzen sind andere state-of-the-art Algorithmen
eindeutig zu langsam, während unser Algorithmus auf solchen Netzen die größte
Geschwindigkeitssteigerung aufweist und daher die anderen Algorithmen um einiges
übertrifft. Der neue Arc-TB Algorithmus besteht aus dem Trip-Based Pub-
lic Transit Routing (TB) Algorithmus und einer angepassten Version der
Arc-Flags Beschleunigungstechnik. Es wird beschrieben, wie die beiden zugrun-
deliegenden Algorithmen funktionieren und wie Arc-Flags auf den TB-Algorithmus
angewendet werden kann.

35

Bibliography

[1] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. Route planning in transportation networks. CoRR, abs/1504.05140,
2015. URL http://arxiv.org/abs/1504.05140.

[2] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. Route planning in transportation networks. In Lasse Kliemann
and Peter Sanders, editors, Algorithm Engineering - Selected Results and
Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
2016. doi: 10.1007/978-3-319-49487-6_2. URL https://doi.org/10.1007/
978-3-319-49487-6_2.

[3] RICHARD BELLMAN. On a routing problem. Quarterly of Applied Mathemat-
ics, 16(1):87–90, 1958. ISSN 0033569X, 15524485. URL http://www.jstor.
org/stable/43634538.

[4] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller-
Hannemann. Accelerating Time-Dependent Multi-Criteria Timetable Informa-
tion is Harder Than Expected. In Jens Clausen and Gabriele Di Stefano, editors,
9th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’09), volume 12 of OpenAccess Series in Infor-
matics (OASIcs), Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-11-8. doi: 10.4230/OASIcs.ATMOS.2009.
2148. URL http://drops.dagstuhl.de/opus/volltexte/2009/2148.

[5] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Chris-
tian Schulz. Recent advances in graph partitioning. In Lasse Kliemann
and Peter Sanders, editors, Algorithm Engineering - Selected Results and Sur-
veys, volume 9220 of Lecture Notes in Computer Science, pages 117–158.
2016. doi: 10.1007/978-3-319-49487-6_4. URL https://doi.org/10.1007/
978-3-319-49487-6_4.

37

http://arxiv.org/abs/1504.05140
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
http://www.jstor.org/stable/43634538
http://www.jstor.org/stable/43634538
http://drops.dagstuhl.de/opus/volltexte/2009/2148
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4

Bibliography

[6] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren,
Tobias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian
Schulz, Daniel Seemaier, and Dorothea Wagner. More recent advances in (hy-
per)graph partitioning. CoRR, abs/2205.13202, 2022. doi: 10.48550/arXiv.2205.
13202. URL https://doi.org/10.48550/arXiv.2205.13202.

[7] Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. Public
transit labeling. In Evripidis Bampis, editor, Experimental Algorithms, pages
273–285, Cham, 2015. Springer International Publishing. ISBN 978-3-319-20086-
6.

[8] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public
transit routing. Transp. Sci., 49(3):591–604, 2015. doi: 10.1287/trsc.2014.0534.
URL https://doi.org/10.1287/trsc.2014.0534.

[9] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Connection
scan algorithm. ACM J. Exp. Algorithmics, 23, 2018. doi: 10.1145/3274661.
URL https://doi.org/10.1145/3274661.

[10] Edsger W Dijkstra. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[11] Andrew V. Goldberg. The hub labeling algorithm. In Vincenzo Bonifaci,
Camil Demetrescu, and Alberto Marchetti-Spaccamela, editors, Experimen-
tal Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June
5-7, 2013. Proceedings, volume 7933 of Lecture Notes in Computer Science,
page 4. Springer, 2013. doi: 10.1007/978-3-642-38527-8_2. URL https:
//doi.org/10.1007/978-3-642-38527-8_2.

[12] Pierre Hansen. Bicriterion path problems. In Günter Fandel and Tomas Gal,
editors, Multiple Criteria Decision Making Theory and Application, pages 109–
127, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg. ISBN 978-3-642-48782-
8.

[13] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast
point-to-point shortest path computations with arc-flags. In Camil Deme-
trescu, Andrew V. Goldberg, and David S. Johnson, editors, The Shortest Path
Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA,
November 13-14, 2006, volume 74 of DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, pages 41–72. DIMACS/AMS, 2006. doi:
10.1090/dimacs/074/03. URL https://doi.org/10.1090/dimacs/074/03.

[14] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering multi-level
overlay graphs for shortest-path queries. In Rajeev Raman and Matthias F.

38

https://doi.org/10.48550/arXiv.2205.13202
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1145/3274661
https://doi.org/10.1007/978-3-642-38527-8_2
https://doi.org/10.1007/978-3-642-38527-8_2
https://doi.org/10.1090/dimacs/074/03

Bibliography

Stallmann, editors, Proceedings of the Eighth Workshop on Algorithm Engi-
neering and Experiments, ALENEX 2006, Miami, Florida, USA, January 21,
2006, pages 156–170. SIAM, 2006. doi: 10.1137/1.9781611972863.15. URL
https://doi.org/10.1137/1.9781611972863.15.

[15] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures:
The Basic Toolbox. Springer, Berlin, 2008. ISBN 3540779779. URL
http://www.amazon.de/Algorithms-Data-Structures-Basic-Toolbox/
dp/3540779779%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%
26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%
3D3540779779.

[16] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel graph par-
titioning for complex networks. IEEE Trans. Parallel Distrib. Syst., 28(9):2625–
2638, 2017. doi: 10.1109/TPDS.2017.2671868. URL https://doi.org/10.
1109/TPDS.2017.2671868.

[17] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm. Partitioning graphs to speedup dijkstra’s algorithm. ACM J. Exp. Al-
gorithmics, 11:2.8–es, feb 2007. ISSN 1084-6654. doi: 10.1145/1187436.1216585.
URL https://doi.org/10.1145/1187436.1216585.

[18] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable information: Models and algorithms. In Frank Geraets,
Leo Kroon, Anita Schoebel, Dorothea Wagner, and Christos D. Zaroliagis, ed-
itors, Algorithmic Methods for Railway Optimization, pages 67–90, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74247-0.

[19] Matthias Müller-Hannemann and Karsten Weihe. On the cardinal-
ity of the Pareto set in bicriteria shortest path problems. An-
nals of Operations Research, 147(1):269–286, October 2006. doi: 10.
1007/s10479-006-0072-1. URL https://ideas.repec.org/a/spr/annopr/
v147y2006i1p269-28610.1007-s10479-006-0072-1.html.

[20] Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced
graph partitioning. In Experimental Algorithms, 12th International Symposium,
SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings, volume 7933, pages 164–
175. Springer, 2013.

[21] Ben Strasser and Dorothea Wagner. Connection scan accelerated. In Cather-
ine C. McGeoch and Ulrich Meyer, editors, 2014 Proceedings of the Sixteenth
Workshop on Algorithm Engineering and Experiments, ALENEX 2014, Port-
land, Oregon, USA, January 5, 2014, pages 125–137. SIAM, 2014. doi: 10.1137/
1.9781611973198.12. URL https://doi.org/10.1137/1.9781611973198.12.

39

https://doi.org/10.1137/1.9781611972863.15
http://www.amazon.de/Algorithms-Data-Structures-Basic-Toolbox/dp/3540779779%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D3540779779
http://www.amazon.de/Algorithms-Data-Structures-Basic-Toolbox/dp/3540779779%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D3540779779
http://www.amazon.de/Algorithms-Data-Structures-Basic-Toolbox/dp/3540779779%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D3540779779
http://www.amazon.de/Algorithms-Data-Structures-Basic-Toolbox/dp/3540779779%3FSubscriptionId%3D192BW6DQ43CK9FN0ZGG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D3540779779
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1109/TPDS.2017.2671868
https://doi.org/10.1145/1187436.1216585
https://ideas.repec.org/a/spr/annopr/v147y2006i1p269-28610.1007-s10479-006-0072-1.html
https://ideas.repec.org/a/spr/annopr/v147y2006i1p269-28610.1007-s10479-006-0072-1.html
https://doi.org/10.1137/1.9781611973198.12

Bibliography

[22] Gerth Stølting Brodal and Riko Jacob. Time-dependent networks as models to
achieve fast exact time-table queries. Electronic Notes in Theoretical Computer
Science, 92:3–15, 2004. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.
2003.12.019. URL https://www.sciencedirect.com/science/article/pii/
S1571066104000040. Proceedings of ATMOS Workshop 2003.

[23] Sascha Witt. Trip-based public transit routing. In Nikhil Bansal and
Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European
Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume
9294 of Lecture Notes in Computer Science, pages 1025–1036. Springer,
2015. doi: 10.1007/978-3-662-48350-3_85. URL https://doi.org/10.1007/
978-3-662-48350-3_85.

40

https://www.sciencedirect.com/science/article/pii/S1571066104000040
https://www.sciencedirect.com/science/article/pii/S1571066104000040
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.1007/978-3-662-48350-3_85

Algorithms

41

Algorithms

Algorithm 5: Pseudocode for bidirectional Dijkstras Algorithm
Input : graph G = (V,E), reverse graph Grev = (V,Erev), edge weight

function l : E→ R+
0 , reverse edge weight function lrev : Erev→ R+

0 ,
source node s, target node t

/* πs,t is the shortest path, df [v] keeps track of the distance
from s to v, db[v] keeps track of the distance from t to v, sf [v]
marks if node v has already been scanned by the forward
search, sb[v] analogously for the backward search */

1 foreach v ∈ V do
2 df [v]←∞, db[v]←∞
3 sf [v]← 0, sb[v]← 0
4 end
5 πs,t←∞
6 df [s]← 0, db[t]← 0
7 Qf ←{(s,0)}, Qb←{(t,0)}
8 while Qf ̸= ∅∧Qb ̸= ∅ do
9 u←Qf .deleteMin(),v←Qb.deleteMin()

10 sf [u]← 1, sb[v]← 1
11 foreach e = (u,w) ∈ E do
12 if sf [w] = 0∧df [u]+ l(e) < df [w] then
13 df [w]← df [u]+ l(e)
14 if w ∈Qf then Qf .decreaseKey(w,df [w])
15 else Qf .insert(w,df [w])
16 end
17 if sb[w] = 1 then πs,t←min

{
πs,t , df [w]+db[w]+ l(e)

}
18 end
19 foreach e = (v,w) ∈ Erev do
20 if sb[w] = 0∧db[u]+ lrev(e) < db[w] then
21 db[w]← db[u]+ l(e)
22 if w ∈Qb then Qb.decreaseKey(w,db[w])
23 else Qb.insert(w,db[w])
24 end
25 if sf [w] = 1 then πs,t←min

{
πs,t , df [w]+db[w]+ l(e)

}
26 end
27 if df [u]+db[w]≥ πs,t then return
28 end

42

Algorithm 6: Earliest arrival query-pseudocode is from Witt’s paper [23]
Input : Timetable, transfer set T , source stop psrc, target stop ptgt,

departure time τ

Output: Result set J
1 J ←∅, L← ∅
2 foreach k = 0,1, . . . do Qk←∅
3 foreach trip t do R(t)←∞
4 foreach stop q with ∆τfp(q,ptgt) <∞ do
5 if q = ptgt then ∆τ← 0
6 else ∆τ←∆τfp(q,ptgt)
7 foreach (L,i) ∈ L(q) do L←L∪{(L,i,∆τ)}
8 end
9 foreach stop q with ∆τfp(q,psrc) <∞ do

10 if q = psrc then ∆τ← 0
11 else ∆τ←∆τfp(q,psrc)
12 foreach (L,i) ∈ L(q) do
13 t← earliest reachable trip of lineLwithτ+∆τ≤ τdep(t, i)
14 ENQUEUE(t, i, 0)
15 end
16 end
17 τmin←∞
18 n← 0
19 while Qn ̸= ∅ do
20 foreach trip segment pb

t → pe
t ∈Qn do

21 foreach (Lt, i,∆τ) ∈ L with b < i∧τarr(t, i)+∆τ < τmin do
22 τmin← τarr(t, i)+∆τ

23 update result set and J ← J ∪{(τmin,n)}
24 end
25 if τarr(t, b+1) < τmin then
26 foreach transfer pi

t→ pj
u ∈ T with b < i≤ e do ENQUEUE(u,j,n+1)

27 end
28 end
29 n← n+1
30 end
31 procedure ENQUEUE(trip t, index i, number of transfers k):
32 if i < R(t) then
33 Qn←Qn∪

{
pi

t← p
R(t)
t

}
34 foreach trip u with t⪯ u∧Lt = Lu do R(u)←min{R(u), i}
35 end

43

	Abstract
	Introduction
	Preliminaries
	Trip-Based Public Transit Routing
	Arc-Flags

	Related Work
	Trip-Based Public Transit Routing
	Preprocessing
	Query

	Arc-Flags
	Overview
	Partitioning
	Computation

	Arc-Flags Meet Trip-Based Public Transit Routing
	Preprocessing
	Partitioning
	Flag-computation

	Query

	Experiments
	Datasets
	Results

	Future Work
	Abstract (German)
	Bibliography
	Algorithms

