
BACHELORARBEIT
PRACTICAL KERNELIZATION FOR THE EDGE

CLIQUE COVER PROBLEM

Verfasser

Jonathan Trummer

angestrebter akademischer Grad

Bachelor of Science (BSc)

Wien, 2019

Studienkennzahl lt. Studienblatt: A 033 521

Fachrichtung: Informatik - Scientific Computing

Betreuer: Dipl.-Math. Dipl.-Inform. Dr. Christian Schulz
Co-Betreuer: Darren Strash, PhD, Hamilton College

ii

Abstract

The edge clique cover problem is the problem of finding a set of complete subgraphs for
a given graph, such that every edge of the graph is contained in at least one complete
subgraph.

As the edge clique cover problem is NP-hard, computing exact solutions is only feasible
for very small graphs. Therefore, heuristics are used to approximate exact solutions as
closely as possible. Additionally, reduction rules have been proposed for the edge clique
cover problem – which reduce a given graph to a smaller problem kernel, though they have
only been combined with exact solvers but not with heuristics.

In this thesis, we combine kernelization and a clique selection heuristic in an attempt
to achieve an improvement on the solution quality whilst maintaining a fast running time.
We evaluate our algorithm by comparing results of our algorithm with the results of the
currently best known heuristic on a wide variety of graphs. Additionally, we evaluate a
combination of kernelization and the currently best known heuristic. Our results suggest,
that the combined approach can lead to smaller clique covers on many instances and thus
better results. Therefore, the combined approach is very promising.

iii

iv

Acknowledgments

I would like to thank my supervisors, Christian and Darren, for their incredible help and
guidance throughout my thesis project. Without their ideas and feedback this thesis wouldn’t
have been possible. I would also like to thank Darren and the Hamilton College team for
setting up access to the HPC cluster at Hamilton College. It was a tedious process to get
things set up, however, Debby and Steven from Hamilton College were extremely patient
and helpful throughout the process.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt und die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht. Weiterhin wurde diese Arbeit keiner
anderen Prüfungsbehörde übergeben.

Wien, den 7. Juli 2019

v

vi

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Preliminaries 3
2.1 General Definitions . 3

2.1.1 Graphs . 3
2.1.2 Cliques and Clique Covers . 3
2.1.3 Erdős-Rényi Graphs . 3

2.2 Fixed-Parameter Tractability . 4
2.3 Kernelization and Data Reduction Rules 4

3 Related Work 5
3.1 Maximal Clique Enumeration . 5
3.2 Keyword Conflict and NP-completeness 5
3.3 Edge Clique Cover . 6

3.3.1 Data Reduction . 6
3.3.2 Exact Algorithms . 6
3.3.3 Heuristics . 6

4 Reduction-based Heuristic 9
4.1 Reduction Rules . 9
4.2 Our Algorithm . 10

4.2.1 Pre-Processing . 11
4.2.2 Initialization . 12
4.2.3 Applying Rule 1 . 13
4.2.4 Applying Rule 2 . 14
4.2.5 Post-Processing . 15
4.2.6 A New Heuristic . 16

vii

Contents

5 Experimental Evaluation 21
5.1 Experimental Setup . 21

5.1.1 Environment . 21
5.1.2 Methodology . 21
5.1.3 Instances . 22

5.2 Evaluation of Pre-Processing . 23
5.3 Evaluation of Lazy Initialization . 25
5.4 Clique Covers . 26

5.4.1 Kernel+cgm Versus cgm . 26
5.4.2 Our Algorithm Versus cgm . 28
5.4.3 Instances Solved Over Time . 31

6 Discussion 35
6.1 Future Work . 35

Bibliography 37

A Implementation Details 39

B Detailed Results 41
B.1 Kernel Sizes . 41
B.2 Pre-Processing . 43
B.3 Lazy Initialization . 43
B.4 Clique Cover Measures . 44

B.4.1 Kernel+cgm Versus cgm . 44
B.4.2 Our Algorithm Versus cgm . 44

viii

1 Introduction

An edge clique cover is a set C of complete sub-graphs – called cliques – of a graph such
that every edge of the graph is contained in at least one clique in C. Computing a cover of
minimum cardinality is known as the edge clique cover problem. The edge clique cover
problem is NP-hard [20, 22], which suggests that a polynomial time exact algorithm is
unlikely. The minimum number of cliques covering all edges of a graph is equivalent to
the intersection number of a graph [24].

Applications for edge clique covers can be found in diverse fields. When doing compiler
optimizations, clique covers are used to help determine which tasks can and cannot be done
in parallel. Here, an edge in the complement graphG′ connects two operations if they share
resources and can therefore not be executed in parallel, a clique C in G′ represents a set of
operations which can’t be executed in parallel and a minimum edge clique cover C on G′

results in an optimal resource assignment [23]. In computational geometry clique covers
can be used to store visibility graphs compactly [2]. Further applications can be found
in the field of statistics, where multiple-pairwise comparisons are commonly needed [14].
Letter displays are used to compactly represent the results of such comparisons, which is
equivalent to the edge clique cover problem [14].

1.1 Motivation

As the edge clique cover problem is NP-hard [20, 22], we do not expect an efficient exact
algorithm to exist. However, we can apply reductions and kernelization – where we try
to reduce a problem to a smaller problem kernel such that a solution on the kernel can be
transformed to a solution on the original input in polynomial time.

Reductions and kernelization have been successfully applied to other problems, such
as the vertex cover problem [1, 6, 9]. However, the vertex cover problem has a simpler
structure than the edge clique cover problem, as each vertex only resides in one of two
states: included in the vertex cover or not included in the vertex cover.

Therefore, there are at most 2n different vertex covers possible, where n denotes the
number of vertices. With the clique cover problem, however, every edge can belong to
many different cliques, it is not simply a binary problem. Therefore, the number of different
possible solutions is dependent on the number of edges, which can be as large as n2.

Thus, there are more than 2n possible configurations for the edge clique cover problem.

1

1 Introduction

For this reason, exact solvers are very slow [13] and not feasible for larger problems, as
they often employ clique enumeration algorithms. Instead, we wish to define heuristics [4,
7, 15, 19], which approximate the optimal solution as closely as possible whilst computing
significantly faster than the exact algorithms. However, heuristics have never been tested
alongside the reductions so far.

1.2 Contribution

So far, reduction rules and heuristic approaches for the edge clique cover problem have
been investigated separately. In this thesis we build upon the work of Gramm et al. [13, 15],
who defined a set of data reduction rules to reduce the edge clique cover problem to a
problem kernel. We combine these reduction rules with a heuristic computing a clique
likely to be in a small clique cover using local search and a maximal clique heuristic. By
selecting a clique likely to be in a small clique cover, we hope that the kernel is modified
such that data reduction rules may be applied again. Our results suggest that combining
kernelization with a clique selection heuristic can lead to better results on a majority of the
tested graphs.

1.3 Structure of Thesis

In Chapter 2 we discuss definitions and notations used throughout this thesis. In Chapter 3
we explore work related to the edge clique cover problem and discuss some of the findings.
Chapter 4 gives a detailed description of our algorithm and how the different routines work
together. In Chapter 5 we perform experiments on the algorithm defined in this thesis and
compare the results against the state of the art heuristic currently available. Additionally,
we evaluate a combination of the reduction rules described in Chapter 4 with the currently
best known heuristic. Finally, in Chapter 6 we discuss our results and outline some of the
future work we wish to do on the topic. Appendix A contains some information about our
implementation and Appendix B contains more detailed results of the experiments.

2

2 Preliminaries

In this chapter we give the definitions used throughout the thesis.

2.1 General Definitions

2.1.1 Graphs

Let G = (V = {v1, v2, ..., vn}, E ⊆ V × V) be an undirected, unweighted, simple graph,
where V denotes the set of vertices and E denotes the set of edges, with n = |V | and
m = |E|. The neighborhood of a vertex v is defined as N(v) = {u : {u, v} ∈ E} and the
degree d(v) of the vertex v is defined as d(v) = |N(v)|. The closed neighborhood N [v] of
a vertex v is defined as N [v] = N(v) ∪ {v}. A vertex v is isolated if there doesn’t exist
any vertex u ∈ V such that {u, v} ∈ E.

2.1.2 Cliques and Clique Covers

Given a graph G = (V,E) a clique is a set of vertices C = {v1, v2, ..., vl} such that
∀ vi 6= vj ∈ C : {vi, vj} ∈ E. In words, a clique is a set of vertices, such that every
vertex in the clique is adjacent to every other vertex in the clique. An edge clique cover of
a graphG = (V,E) is a set of cliques C = {C1, C2, ...} such that for each edge {u, v} ∈ E
there exists at least one clique Ci ∈ C such that {u, v} ⊆ Ci. The uncovered neighbor-
hood U(v) of a vertex v is defined as U(v) = {w | w ∈ N(v) ∧ {w, v} /∈ C}. In words,
the uncovered neighbors U(v) of a vertex v is a set of vertices w ∈ N(v) such that the
edge {w, v} is not contained in any clique C. The common neighborhood N [u, v] of two
vertices u and v is defined as N [u, v] = N(u) ∩N(v).

2.1.3 Erdős-Rényi Graphs

Erdős-Rényi Gn,p graphs [11, 12] are randomly generated graphs. Given a positive integer
n and 0 ≤ p ≤ 1 a Gn,p graph is generated such that the resulting graph consists of n
vertices. Vertices are randomly connected by an edge, such that the probability of each
edge is equal to p. On average a Gn,p graph has

(
n
2

)
p edges.

3

2 Preliminaries

2.2 Fixed-Parameter Tractability

A problem is fixed-parameter tractable if for a given input size n and a parameter k there
is an algorithm, which in O(f(k)nα) – with α being a constant independent of n and
k – computes a solution to the problem [10, 16]. This means that the complexity of an
algorithm is shifted from the input size n to the function f(k). In the case of the edge
clique cover problem, given a graph G = (V,E) and a parameter k we wish to find an edge
clique cover of G of size k.

2.3 Kernelization and Data Reduction Rules

We wish to reduce a problem to a problem kernel. The idea is to take an instance I and
apply reduction rules, which reduce the instance I into a smaller instance I ′, with the size
n′ of I ′ being bounded by a function of the parameter k′ [10]. To reduce a problem I to a
kernel I ′ – this process is called kernelization – data reduction rules are applied. A data
reduction rule is a mapping φ from (n, k) to (n′, k′), where φ is computable in polynomial
time in n and k and |n′| ≤ |n| and k′ ≤ k [17]. A solution on the kernel I ′ can be
transformed to a solution of the original instance I in polynomial time.

4

3 Related Work

In this chapter we describe all work which is related to the thesis topic at hand.

3.1 Maximal Clique Enumeration

The maximal clique enumeration problem differs from the edge clique cover problem, as
with the maximal clique enumeration problem one is interested in finding all cliques which
are not properly contained in another clique. However, enumerating all maximal cliques of
a graph also results in an edge clique cover for that graph, as the maximal cliques cover all
edges of the graph. As our heuristic utilizes a heuristic for finding a maximal clique for the
common neighbors of an edge {u, v} we would like to give a brief overview of the work
done on the maximal clique enumeration problem. Bron and Kerbosch [5] defined two
recursive backtracking algorithms to enumerate maximal cliques. Additionally, Tomita
et al. [25] proved that the worst-case running time complexity of the algorithm where a
pivot p is chosen to maximize |P \N(v)| is O(3n/3) for a graph with n vertices .

3.2 Keyword Conflict and NP-completeness

Kellerman [19] defined a method for finding keyword conflicts and a heuristic algorithm
for solving a combinatorial problem related to the method. Later, Kou et al. [20] showed
not only that the keyword conflict problem is equivalent to edge clique covers, they also de-
scribed a relationship between edge clique covering and graph coloring problems. Further-
more, Kou et al. [20] improved the Kellerman heuristic by introducing a post-processing
step, which ensures that no clique is a subset of the union of subsequent cliques.

Additionally, Kou et al. [20] showed the edge clique cover – and by consequence also
the keyword conflict problem – to be NP-hard. Independently, Orlin [22] provided a differ-
ent proof which came to the same conclusion, namely that the edge clique cover problem
is NP-hard.

5

3 Related Work

3.3 Edge Clique Cover

3.3.1 Data Reduction

Though NP-hard problems probably can’t be solved exactly efficiently, they can often be
reduced to a smaller problem kernel. Problems which can be reduced to a kernel depending
on a parameter k are called fixed-parameter tractable problems [16]. Gramm et al. [13, 15]
have shown that the edge clique cover problem is reducible to a kernel size of at most 2k

vertices – where k denotes the size of the clique cover – or otherwise does not have a clique
cover of size k.

Cygan et al. [8] have shown that the parameterized problem doesn’t admit a kernel-
ization with a guarantee of a polynomial output size parameterized by k, where k again
denotes the size of the clique cover.

Gramm et al. [13, 15] defined four reduction rules and showed that a graph reduced
with respect to Rule 1 and 3 produces a kernel with at most 2k vertices or else cannot have
a solution of size k, where k denotes the size of the clique cover. This thesis builds heavily
on these reduction rules.

3.3.2 Exact Algorithms

Gramm et al. [13, 15] proposed a recursive backtracking algorithm for exactly solving
the edge clique cover problem. The algorithm chooses an uncovered edge {u, v} and enu-
merates all maximal cliques C that contain {u, v}. Next, the algorithm branches for every
maximal clique in C. This recursively continues until either a solution is found or k cliques
have been chosen without finding a clique cover [13, 15].

Unfortunately, the exact algorithm can be very slow. In their paper, Gramm et al. [13]
present results for random Erdős-Rényi Gn,p graphs. The results show that – depending on
the structure of the random graph – even for small graphs with n = 85 and p = 0.15 the
running time varies between 0.01 seconds and 25 minutes.

3.3.3 Heuristics

Gramm et al. [15] additionally proposed an improvement to the Kellerman heuristic [19],
which reduces the theoretical running time complexity from O(nm2) to O(nm). An-
other heuristic for solving the edge clique cover problem is given by Conte, Grossi and
Marino [7]. The described heuristic selects uniformly at random an uncovered edge and
then adds as many neighbors of the edge as possible to a set, such that the vertices of the
set make up a complete subgraph. The proposed algorithm seems to be the state of the art
according to their measurements, which compared their algorithm to the improved Keller-
man heuristic by Gramm et al. [15]. Conte, Grossi and Marino [7] report their algorithm

6

3.3 Edge Clique Cover

to on average find clique covers 5% smaller than using the Gramm et al. [15] heuristic, re-
quiring only about one third of the running time. Conte, Grossi and Marino [7] empirically
observed the running time in practice to be close to linear, with the theoretical running time
being O(∆m), where ∆ denotes the maximum vertex degree.

Behrisch and Taraz [4] provide a different heuristic for covering the edges of a graph
with cliques: for k vertices test their common neighborhood for completeness. The largest
complete neighborhood is selected as a clique. Behrisch and Taraz [4] either chose k based
on prior knowledge of the instances, or – if no prior knowledge existed – set k ∈ {1, 2}
and some unspecified values of k > 2. This algorithm doesn’t guarantee that every edge of
the graph is contained in at least one clique and thus doesn’t fulfill the edge clique cover
definition. Though, as we will see later on, with k = 2 this algorithm is equivalent to
Rule 2 by Gramm et al. [13, 15].

7

3 Related Work

8

4 Reduction-based Heuristic

In this chapter we describe the core principles used by our algorithm. We describe the
initialization, reductions and post-processing required for the kernelization, as well as the
algorithm and post-processing for the heuristic. Our algorithm makes use of the reduction
rules defined by Gramm et al. [13, 15] as well as an algorithm for finding a maximal clique
within a given common neighborhood N [u, v] of some edge {u, v}.

4.1 Reduction Rules

We now discuss the reduction rules used by our algorithm. The reduction rules are based
on the work of Gramm et al. [13, 15]. For completeness we present the first two reduction
rules by Gramm et al., which are the rules we use for our implementation.

In order to make the reduction rules efficient we first perform an initialization step where
we construct an auxiliary data structure. In this data structure, for every edge {u, v} ∈ E
we store the common neighborhood N [u, v] = N(u) ∩ N(v) together with a connectivity
number cu,v, which is defined to be

cu,v = |{(x, y) ∈ E : ∀ {x, y} ∈ N [u, v]|.

The connectivity number cu,v of an edge {u, v} is the number of edges between the vertices
of the common neighborhood N [u, v]. This lets us compute in constant time, whether the
vertices of N [u, v] induce a clique by simply checking if cu,v is equal to the maximum
number of possible edges for N [u, v], which is given by |N [u, v]| ∗ (|N [u, v]| − 1) ∗ 0.5.

This initialization can be done inO(∆2m) time, since for every edge calculating the set
of common neighbors N [u, v] takes O(∆) time and calculating cu,v takes O(∆2) time –
where ∆ is the maximum degree of G. Doing this for every edge results in O(∆2m) time.

Rule 1. Remove any vertex which is isolated or only connected to covered edges.

Rule 1 is obviously correct, as every isolated vertex doesn’t have any edges which could
belong to a clique. Every vertex, which is only connected to covered edges, can be removed
as there aren’t any further maximal cliques to which this vertex can be added.

Proof. Suppose there is a clique which contains an isolated vertex u. Since N [u] = {u}
the clique C is {u}. However, the clique C covers no edges, removing C leads to a smaller
clique cover C and therefore a contradiction.

9

4 Reduction-based Heuristic

Similarly, suppose there is a vertex v with U(v) = ∅. Let C1, ..., Ck be the cliques that
cover the edges incident to v. Then, any other clique C where v ∈ C can be replaced with
C∗ = C \N [v] and still be a clique cover of the same cardinality.

Checking whether Rule 1 applies can be done in O(n) time. Applying the rule requires
an update to the auxiliary data structure created during the initialization. When deleting
a vertex w, N [u, v] is updated for all u, v ∈ N(w) such that N [u, v] = N [u, v] \ {w}.
Additionally, cu,v is updated to cu,v = cu,v − |N [u, v] ∩N(w)|. These updates can be done
in O(∆) time, resulting in an overall running time of O(∆m) for all Rule 1 applications.

Rule 2. For every uncovered edge contained in exactly one maximal clique, add the edge
and its common neighborsN [u, v] to a new cliqueC and mark the edges {w, r} ∈ N [u, v]∪
{u, v} as covered. In other words, if there exists a N [u, v] with cu,v = |N [u, v]| ×
(|N [u, v]| − 1) ∗ 0.5 add the clique C = N [u, v] ∪ {u, v} to the clique cover C and mark
the edges of C as covered.

Every application of Rule 2 introduces exactly one new clique to the clique cover. Ex-
haustively applying Rule 2 can be done in O(m) time, as it requires a scan through the
auxiliary data structure and performing the O(1) time calculation as defined in the rule.
The algorithm then works as follows: apply Rule 1 and Rule 2, as long as there was a rule
application, repeatedly invoke Rule 1 and then Rule 2.

Putting it all together results in a running time of O(∆2m + ∆m + n) = O(∆2m). In
practice, instead of always scanning through the nodes and the auxiliary data structure to
check for possible candidates of the reduction rules we keep a list of candidates for every
reduction rule. New candidates for these lists can only occur during initialization and
when a reduction rule is applied. During initialization we can in constant time determine
candidates for both rules by simply checking if a vertex is isolated (Rule 1) or by comparing
the connectivity number to the number of maximal possible edges for N [u, v] (Rule 2).
When invoking Rule 1 we can determine candidates for Rule 2 by simply checking the
connectivity number of entries affected by the deleted vertex. When invoking Rule 2 we
can determine candidates for Rule 1 by looking at the number of uncovered edges for
all vertices that are part of the newly formed clique. This is illustrated more detailed in
Algorithms 4.2.3, 4.2.4 and 4.2.5

4.2 Our Algorithm

In this section we explain our novel approach. Algorithm 4.2.1 gives a brief overview
of the algorithm, in the following subsections we go into more depth of each part of the
algorithm.

We start with an empty set of cliques. Next, we apply a pre-processing step to pro-
cess degree-1 vertices and mark their single edge as a covered clique C. Following the

10

4.2 Our Algorithm

pre-processing comes the actual reduction. For as long as there are uninitialized edges,
initialize the edges of the next vertex and apply the reduction rules until none apply any-
more. After all edges are initialized and all reductions are done we do a post-processing
step, to ensure correct results. If a given graph should not only be kernelized but solved
completely instead, we apply our heuristic on the kernel and add a post-processing step for
the heuristic.

Algorithm 4.2.1: ECC: The Reduction-based Heuristic algorithm for the Edge
Clique Cover Problem
Input: G = (V,E)
Output: a clique cover C and a kernel
// global variables

1 C ←− ∅ // set of cliques in solution
2 R1 ←− ∅ // candidates for Rule 1
3 R2 ←− ∅ // candidates for Rule 2
4 PreProcess()
5 while not all edges initialized do
6 Initialize()
7 repeat
8 ApplyRuleOne()
9 ApplyRuleTwo()

10 until no rule applied

11 PostProcess() // if only the kernelization is required
12 Heuristic() // if a complete edge clique cover is required

4.2.1 Pre-Processing

The pre-processing step isn’t required for running the algorithm, however, it can achieve
a small speed-up for some graphs. See Section 5.2 and Table B.2 for an evaluation of the
effect of toggling the pre-processing on and off.

The pre-processing iterates over all degree-1 vertices and marks their single edge as a
clique. As the single edge of every degree-1 vertex v needs to be a clique, no unnecessary
cliques are created here. If the edge were not a clique, the edge wouldn’t be covered by any
clique at – as the vertices adjacent to the edge do not share any common neighbors – and
thus we would not have an edge clique cover. Additionally, as marking an edge as covered
can cause other vertices to effectively become degree-1 vertices – in the sense that for a
vertex v, |U(v)| = 1 – these vertices are also considered, until there are no more degree-1
vertices left.

As mentioned before, the pre-processing step isn’t required to ensure a correct result,

11

4 Reduction-based Heuristic

Algorithm 4.2.2: PreProcess: pre-process all degree-1 vertices
Input: G = (V,E)
Output: a reduced graph, list of covered cliques

1 V ←− ∅ // set of degree-one vertices
2 for v ∈ V do
3 if |U(v)| = 1 then
4 V ←− V ∪ {v}

5 for v ∈ V do
6 C ←− {v} ∪ U(v)
7 C ←− C ∪ {C}
8 if |U(v)| = 1 then
9 V ←− V ∪ {v}

10 V ←− V \ {v}

however, by eliminating a few vertices before hand we no longer need to consider these
vertices in the initialization step, which, as we will see later, is a very costly step.

4.2.2 Initialization

The initialization step is required by the reduction rules, as explained in Section 4.1. In
the initialization step we build a lookup table, which, in constant time, lets us determine
whether the common neighbors N [u, v] of an edge (u, v) form a clique. This step is very
costly, as for every edge (u, v) we need to determine the common neighborsN [u, v], as well
as cu,v, the number of edges connecting the vertices in N [u, v]. As explained in Section
4.1 this step takes O(∆2m) time, where ∆ denotes the maximum degree of G. However,
the constant factor can be reduced significantly. Instead of first finishing the initializations
and afterwards doing the reductions, we can initialize the edges of vertices until we find a
clique. When a clique is found the initialization is stopped and the reduction rules are ap-
plied until none are applicable anymore. Only then do we continue doing the initialization.
We call this version of the initialization step lazy initialization. With lazy initialization, we
reduce the number of edges which need to be initialized. As the initialization only needs
to build the common neighborhood N [u, v] and connectivity cu,v for uncovered edges, we
can skip edges which are already covered by cliques. This means that if we find a clique C
with many vertices early on during the initialization we can skip the initialization for many
edges. See Section 5.3 for an experimental evaluation of the running time improvements.

12

4.2 Our Algorithm

Algorithm 4.2.3: Initialize the lookup data-structure used by the reduction rules
Input: G = (V,E)
Output: a lookup data-structure

1 cliqueFound←− False
2 while there are un-initialized vertices in G and cliqueFound is False do
3 for every un-initialized vertex u in G do
4 if u isolated or U(u) = ∅ then
5 R1 ←− R1 ∪ {u}
6 for v ∈ U(u) do
7 N [u, v] = N(u) ∩N(v)
8 cu,v ←− number of edges between vertices ∈ N [u, v]
9 if (|N [u, v]| ∗ (|N [u, v]| − 1) ∗ 0.5) = cu,v then

// clique found, therefore stop initialization after completing the
// initialization for the edges adjacent to the vertex u

10 R2 ←− R2 ∪ {{u, v}}
11 cliqueFound←− True

12 if cliqueFound is True then
13 return

4.2.3 Applying Rule 1

Rule 1 is responsible for deleting vertices which are only adjacent to covered edges. Delet-
ing a vertex requires updates to the lookup table. In particular, the vertex u needs to be
removed from the common neighborhoods N [v, w] of all neighbors v, w ∈ N(u). Ad-
ditionally, the connectivity cv,w for N [v, w] needs to be adjusted by decrementing the
connectivity cv,w by the number of vertices of N [v, w] adjacent to u. Or, more formally,
cv,w = cv,w − |N [v, w] ∩N(u)|.

As discussed previously, we would like to avoid having to iterate through the lookup
table to find candidates for Rule 1 and Rule 2. Instead, we keep a list of candidates. Candi-
dates for Rule 1 can either be generated during initialization or during Rule 2 applications.
Candidates for Rule 2 can either be generated during initialization or when entries of the
lookup table are altered. An entry for an edge {u, v} in the lookup table is a candidate for
Rule 2 when |N [u, v]| ∗ (|N [u, v]| − 1) ∗ 0.5 = cu,v. Rule 1 is the only place where entries
of the lookup table are altered, therefore, after altering an entry in the Rule 1 algorithm, we
can simply check if the altered entry is a candidate for Rule 2.

13

4 Reduction-based Heuristic

Algorithm 4.2.4: ApplyRuleOne: Rule 1 implementation
Input: Rule One candiatesR1

1 for u ∈ R1 do
2 for v ∈ N(u) do
3 for w 6= v ∈ N(u) do
4 N [v, w]←− N [v, w] \ {u}
5 cv,w ←− cv,w − |N [v, w] ∩N(u)|
6 if cv,w = (|N [v, w]| ∗ (|N [v, w]| − 1) ∗ 0.5) then
7 R2 ←− R2 ∪ {{v, w}}

8 remove N [u, v] and cu,v from the lookup table

9 V ←− V \ {u}

4.2.4 Applying Rule 2

Rule 2 is responsible for finding cliques in the lookup table and marking the edges of these
cliques as covered. By marking an edge {u, v} as covered we need to remove the entries
for the common neighborhood N [u, v] of {u, v} and the connectivity cu,v from the lookup
table. Failing to do so could result in non-optimal results. If an edge {u, v} is contained
in a maximal clique, creating a new clique {u, v} ∪ N [u, v] may result in a non-optimal
clique and therefore a non-minimum clique cover. In Section 4.2.3 we have shown that
Rule 1 generates candidates for Rule 2. Similarly, Rule 1 candidates are generated during
invocations of Rule 2. A vertex is a candidate for Rule 1 when it is either isolated or only
adjacent to covered edges. Rule 2 is the only place where edges are marked as covered.
Therefore, after marking all edges of a clique as covered, we can simply check for all
vertices v ∈ C if U(v) = ∅. If there are such vertices, they are candidates for Rule 1

Algorithm 4.2.5: ApplyRuleTwo: Rule 2 implementation
1 {u, v} ←− extract candidate fromR2

2 C ←− {u, v} ∪N [u, v]
3 for r ∈ C do
4 for s 6= r ∈ C do
5 mark {r, s} as covered
6 remove N [r, s] and cr,s from lookup table

7 if U(r) = ∅ then
8 R1 ←− R1 ∪ {r}

9 C ←− C ∪ {C}

14

4.2 Our Algorithm

Figure 4.1: A graph consisting of 4 vertices and 4 edges. Applying the reduction rules once leads
to a clique being reduced, however it doesn’t lead to any vertex being deleted, as
∀v ∈ V : d(v) = 2 and every clique contains exactly one edge. Thus for no vertex
v is U(v) = ∅ after one application of the reduction rules and therefore Rule 1 can’t
apply.

v0 v1

v2 v3

4.2.5 Post-Processing

Gramm et al. [13, 15] claim that every application of Rule 2 results in at least one new
candidate for Rule 1. Which means that after an application of Rule 2 – which reduces a
new clique C – there is some v ∈ C such that U(v) = ∅. Unfortunately, this is not true,
which can be shown very easily.

Consider a square where the corners represent four vertices, as in Figure 4.1. Applying
Rule 2 to such a graph once doesn’t result in any vertex being adjacent to only covered
edges and therefore being deleted. Rule 2 will reduce one of the following edges {v0, v1},
{v1, v2}, {v2, v3} or {v3, v0}. This leads to ∀v ∈ V : |U(v)| ∈ {1, 2} and therefore
@v ∈ V : U(v) = ∅. Note that this post-processing is not required if a heuristic run on
the kernel is aware of which edges are covered and which edges are uncovered – as is the
case with our heuristic, which utilizes the data structures of the kernelization. However,
if another algorithm operates on the output of the kernelization, it is not aware of which
edges were covered, yet kept in the kernel. We note that the final kernel contains edges that
may be covered by some already computed clique(s).

The post-processing step ensures that all cliques with only non-deleted vertices are re-
moved from the clique cover C. This is done by simply iterating through cliques and
removing any clique where all vertices are present in the kernel.

In practice, this step can be sped up significantly by making use of the fact that Algo-
rithm 4.2.5 checks for Rule 1 candidates. Whenever Algorithm 4.2.5 for a clique C finds a
candidate for Rule 1 we already know that there’s at least one vertex within C, which will
be deleted, and therefore C will remain in clique cover C. However, when Algorithm 4.2.5
doesn’t find any Rule 1 candidates for the vertices of a clique, we need to check C during
the post-processing step.

In practice, using this differentiation between cliques that are definitely kept in the solu-
tion C and those which may be removed, speeds up the post-processing step significantly,
as the number of cliques which need to be checked is reduced immensely. The theoretical
running time complexity isO(∆m), as there are at most m cliques and for every clique we
need to check for at most ∆ vertices if that vertex is deleted.

We note, that the post-processing is not optimal, as is illustrated in Figure 4.2. Assume

15

4 Reduction-based Heuristic

Figure 4.2: Illustration of why the post-processing step is not optimal.

that in step a) the kernelization reduces the highlighted triangle as a clique, as a result, the
highlighted vertex is deleted. If we now consider the remaining graph to be the kernel,
another algorithm run on the kernel will in step b) reduce the three highlighted cliques. As
we can clearly see in step c), this leads to a non-optimal clique cover, as the green triangle
is redundant. Therefore, even with the post-processing step in place, running an algorithm
on the kernel may skew the results and lead to non-optimal clique covers. As our algorithm
operates on the data structures created by the reduction rules, we do not have this problem.
However, when the kernel is explicitly stored and fed into another program, this issue will
occur.

Algorithm 4.2.6: PostProcessing: remove all cliques with only non-deleted ver-
tices

1 for C ∈ C do
2 if only non-deleted vertices in C then
3 C ←− C \ {C}

4.2.6 A New Heuristic

Our newly developed heuristic for solving the edge clique cover problem makes use of the
data structures and reduction rules described in Section 4.1. After the reduction rules finish
reducing the input graph into a kernel, the heuristic selects a clique in the kernel to cover,
so that the reduction rules may be applicable again. This is done by computing a maximal
clique covering a single edge and as many of its common neighbors as possible and then
updating the data structures. For finding a maximal clique a heuristic is used, which, given
a lookup table entry {u, v}, tries to find a maximal clique within the common neighborhood
N [u, v]. At the beginning of the edge clique cover heuristic we sort all remaining entries

16

4.2 Our Algorithm

of the lookup table based on the size of their common neighborhood in descending order.
Whenever we need to apply the maximal clique finding heuristic, we take the next entry
{u, v} of this sorted set and try to find a maximal clique in the common neighborhood
N [u, v]. As we wish to achieve a small clique cover, we perform a post-processing step,
where redundant cliques are removed.

Algorithm 4.2.7: Heuristic
1 Cheuristic ←− ∅ // maximal cliques found by the heuristic
2 Q ←− {u, v} sorted by |N [u, v]| in descending order
3 while not all edges covered do
4 extract next {u, v} from Q
5 C ←− FindMaximalClique({u, v})
6 Cheuristic ←− Cheuristic ∪ {C}

// mark edges of clique as covered, same as in Algorithm 4.2.5
7 for r ∈ C do
8 for s 6= r ∈ C do
9 mark {r, s} as covered

10 remove N [r, s] and cr,s from lookup table

11 if U(r) = ∅ then
12 R1 ←− R1 ∪ {r}

// repeatedly apply the rules, same as in Algorithm 4.2.1
13 repeat
14 ApplyRuleOne()
15 ApplyRuleTwo()

16 until no rule applied

17 HeuristicPostProcessing()

The heuristic for finding a maximal clique is given an entry for an edge {u, v} from
the lookup table. For every vertex w ∈ N [u, v] we determine ew = |N(w) ∩ N [u, v]|.
The vertices w ∈ N [u, v] are sorted by ew in ascending order. This means that for every
vertex w ∈ N [u, v] we know to how many vertices r ∈ N [u, v] the vertex w is adjacent
to. Next, we repeatedly remove a vertex w from N [u, v] such that ew = min

∀r∈N [u,v]
{er} and

update er for all r ∈ N [u, v] ∩N(w) by decrementing the values by one. Additionally, the
connectivity cu,v is updated to be cu,v ←− cu,v − |N(w) ∩N [u, v]|. We remove the vertex
w with minimum ew, as vertices w with ew smaller than er for r 6= w ∈ N [u, v] are less
likely to be in a maximal clique, due to being adjacent to fewer vertices r ∈ N [u, v]. We
repeatedly remove the vertexw with minimum ew until |N [u, v]|∗(|N [u, v]|−1)∗0.5 = cu,v
and thus the vertices {u, v} ∪N [u, v] now form a clique C.

One iteration of this algorithm is of complexity O(∆2 log ∆). Calculating all ew re-

17

4 Reduction-based Heuristic

quires O(∆2) time, sorting the vertices w ∈ N [u, v] takes O(∆ log ∆) time. Removing
w from N [u, v] and updating cu,v can be done in constant O(1) time, however, re-sorting
the vertices w ∈ N [u, v] takes O(∆ log ∆) time and decrementing er for r 6= w ∈ N [u, v]
takes O(∆) time. As the while-loop will run at most O(∆) times, this results in an overall
running time of O(∆2 log ∆). This algorithm will be run at most m times – once on every
edge, therefore the algorithm takes at most O(m∆2 log ∆) time.

Algorithm 4.2.8: FindMaximalClique
Input: an edge {u, v}
Output: a clique C

1 for w ∈ N [u, v] do
2 ew ←− |N(w) ∩N [u, v]|
3 sort vertices w ∈ N [u, v] by ew in ascending order
4 while cu,v ≤ (|N [u, v]| ∗ (|N [u, v]| − 1) ∗ 0.5) do
5 w ←− next vertex from N [u, v]
6 cu,v ←− cu,v − |ew|
7 N [u, v]←− N [u, v] \ {w}
8 for r ∈ N(w) ∩N [u, v] do
9 er ←− er − 1

10 re-sort vertices r ∈ N [u, v] by er in ascending order

11 C ←− {u, v} ∪N [u, v]
12 return C

The heuristic requires a different post-processing than the kernelization. Furthermore,
as the heuristic immediately follows the kernelization and utilizes the data structures built
by the kernelization, the post-processing of the kernelization can be omitted. As the heuris-
tic leads to all vertices being deleted, the post-processing of the kernelization doesn’t need
to clean-up cliques with only non-deleted vertices. Instead, all of those cliques can remain
in the solution.

However, there may be many cliquesC ∈ Cheuristic – where Cheuristic denotes the cliques
found by the maximal clique heuristic – which turn out to be redundant, as all edges covered
by C are additionally covered by other cliques. Therefore, to remove redundant cliques, we
perform a slightly modified version of the post-processing step defined by Kou et al. [20].
Their post-processing removes any cliques which are a subset of the union of all subsequent
cliques. In our post-processing, we remove any clique from Cheuristic if all of its edges are
covered by subsequent maximal cliques C ∈ Cheuristic or by the cliques C ∈ Creductions,
where Creductions denotes the set of cliques found by the reduction rules. Formally, a clique
C ∈ Cheuristic is redundant, when C ⊂

⋃
Ci ∈ Creductions ∪ Cheuristic \ {C}. To perform

the post-processing we initialize a data structure, where for every edge {u, v} we store the
number of cliques in which that edge is contained as nu,v. This is done for all cliques in

18

4.2 Our Algorithm

Creductions as well as the cliques in Cheuristic. Next, we iterate over the cliques in Cheuristic,
and check the counters nu,v for every edge {u, v} in a clique C. If and only if at least one of
these counters nu,v is set to 1 the clique C is added to the solution C, as it is the only clique,
which covers the edge {u, v}. If for no edge {u, v} of a clique C the counter nu,v = 1
the clique C is redundant. Therefore, we decrement nu,v by one for every {u, v} ⊆ C and
discard the clique C.

Claim 1. This post-processing is optimal in that it removes any redundancy in the cliques
C ∈ Cheuristic such that for all cliques C ∈ C – where C denotes the solution – C *

⋃
Ci ∈

C \ {C}.

Proof. Assume that there’s a clique C in the solution C which is redundant. This implies
that for all edges {u, v} ⊆ C: nu,v > 1. By the criteria in Algorithm 4.2.9 at Line 7, the
clique C isn’t added to the solution C, as it requires an edge {u, v} ⊆ C such that nu,v = 1.
This leads to a contradiction, therefore C is not added to the solution C.

It is sufficient to only check the cliques C ∈ Cheuristic for redundancy, as the cliques
C ∈ Creductions aren’t redundant, due to how Rule 2 is defined. As Rule 2 marks a clique C
as covered, if there’s an edge {u, v} ∈ C that belongs to exactly one maximal clique, there
can’t be another clique C ′ which covers {u, v} as well.

Algorithm 4.2.9: HeuristicPostProcessing
Input: Creductions and Cheuristic
Output: C such that C is an edge clique cover

1 C ←− Creductions
2 N ←− ∅
3 for C ∈ C ∪ Cheuristic do
4 for {u, v} ⊆ C do
5 nu,v ←− nu,v + 1

6 for C ∈ Cheuristic do
7 if ∃{u, v} ⊆ C : nu,v = 1 then
8 C ←− C ∪ {C}
9 else

// clique is redundant
10 for {u, v} ⊆ C do
11 nu,v ←− nu,v − 1

12 return C

19

4 Reduction-based Heuristic

20

5 Experimental Evaluation

In this chapter we benchmark the algorithm defined in Chapter 4 – which we denote by
our – against the currently best known heuristic by Conte, Grossi and Marino [7], which
we will from now on reference to as cgm. Additionally, we compare cgm against the
reduction rules described in Section 4.1 combined with cgm run on the kernel. We refer to
this combination of the reduction rules and cgm as kernel+cgm.

We first evaluate the effects of the pre-processing described in Section 4.2.1 on the
running time. Next, we evaluate the speed-up we achieve by using lazy initialization (as
described in Section 4.2.2). Then, we benchmark kernel+cgm against cgm. And finally,
we benchmark our algorithm – our – against cgm.

5.1 Experimental Setup

5.1.1 Environment

All experiments where run on a machine powered by an Intel ® Xeon ® X5650 processor
with six cores and 2.67 GHz per core. Although the CPU has multiple cores, the experi-
ments were run on a single core. The machine has 20GB of memory and is running on Cen-
tOS 7 with Linux Kernel version 3.10.0-957.1.3.el7.x86_64. cgm was run using openjdk
version 1.8.0_191, our implementation was compiled with g++ 4.8.5 and optimization
flag -O3.

5.1.2 Methodology

cgm uses a random choice to determine the next edge to be expanded [7]. This randomness
can cause fluctuations in the results, given different random seeds. Therefore, we run the al-
gorithms ten times on the graphs to get representative results. When running kernel+cgm,
we run cgm five times on the kernel and pick the best result in terms of minimum clique
cover size whilst summing up all running times. We run kernel+cgm ten times on the
graphs and average the results.

We evaluate the following metrics:
- clique cover size
- maximum clique size

21

5 Experimental Evaluation

- average clique size

- running time

The clique cover size is the number of cliques such that all edges of the given graph are
covered by at least one clique, the maximum clique size is the largest clique found and the
average clique size is the average over all cliques in the clique cover.

Though we strive to achieve the smallest clique cover possible, we take the average
clique cover number over all runs, in order to guarantee a fair comparison of the heuristics.
Secondary – though nonetheless still interesting – parameters are the average and maximum
clique size. For the maximum clique size and the average clique size we take the average
over all runs. Similarly, the running time is averaged over all runs as well. For the running
times we use the running times as reported by the implementations, which don’t include
the time required for reading in the graph file and writing results. When running cgm on
a kernel, we take the result with the minimum clique cover and sum up all running times.
For the averages across runs on the same graph we use the arithmetic mean, defined as
x̄ = 1

n

∑n
i=1 xi. We use the geometric mean – defined as x̄ = (

∏n
i=1 xi)

(1
n
) – over values

across multiple data sets (i.e. average clique sizes across all data sets, maximum clique
sizes across all data sets, etc.).

5.1.3 Instances

The instances used for evaluation of the algorithms were taken from the 10th DIMACS
Implementation Challenge [3] and from the Stanford Large Network Dataset Collection
(SNAP) [21]. Additionally, we generated Gn,p Erdős-Rényi graphs [11, 12] with n ∈
{100, 1000, 3000} and p = 0.1. All graph instances used are listed in Table 5.1.

The instances astro-ph, cond-mat-2003, cond-mat-2005,
citationCiteseer, coAuthorsDBLP, coPapersCiteseer and
coPapersDBLP [3] as well as ca-HepPh [21] represent collaborations between authors
and papers in scientific research. The graph as-22july06 [3] represents a snapshot of
the structure of the internet at the level of autonomous systems, as-Skitter [21] repre-
sents the results of many traceroutes from several scattered sources to million destinations
and caidaRouterLevel [3] represents measurements of the adjacency matrix of the
Internet router-level graph.

The instances eu-2005 and in-2004 [3] represent small webcrawls of the top-level
domains eu and in, the instance cnr-2000 represents a webcrawl of the domain cnr.it [3].
The instance amazon0601 [21] represents a co-purchasing graph from Amazon.com Inc.
Lastly, the instances deezer_ro, deezer_hr, com-youtube,
soc-pokec-relationships and soc-LiveJournal1 [21] represent social net-
works. We chose these instances, as they provide a range of different graph sizes, ranging
from small instances, such as the Gn,p graphs and as-22july06, to large instances, such
as soc-LiveJournal1.

22

5.2 Evaluation of Pre-Processing

Table 5.1: Graph instances used for evaluation, grouped by the source we got the graph from and
sorted by n

source graph n m

Erdős-Rényi graphs
Gn=100,p=0.1 100 488
Gn=1000,p=0.1 1 000 49 576
Gn=3000,p=0.1 3 000 450 085

DIMACS

astro-ph 16 706 121 251
as-22july06 22 963 48 436
cond-mat-2003 31 163 120 029
cond-mat-2005 40 421 175 691
caidaRouterLevel 192 244 1 218 132
citationCiteseer 268 495 2 313 294
coAuthorsDBLP 299 067 977 676
cnr-2000 325 557 2 738 969
coPapersCiteseer 434 102 16 036 720
coPapersDBLP 540 486 15 245 729
eu-2005 862 664 16 138 468
in-2004 1 382 908 13 591 473

SNAP

ca-HepPh 12 006 118 489
deezer_ro 41 773 125 826
deezer_hr 54 573 498 202
amazon0601 403 394 2 443 408
com-youtube 1 134 890 2 987 624
soc-pokec-relationships 1 632 803 22 301 964
as-Skitter 1 696 415 11 095 298
soc-LiveJournal1 4 846 609 42 851 237

5.2 Evaluation of Pre-Processing

Here, we experimentally evaluate the effects of the pre-processing step from Section 4.2.2
on the running time. We ran the algorithm with the pre-processing turned on and off on all
instances listed in Table 5.1 and compared the results. The running time was averaged over
five runs.

As we can see in Figure 5.1, turning on the pre-processing has a positive effect on al-
most all instances, except on the six instances citationCiteseer, coPapersDBLP,
as-Skitter, soc-LiveJournal1, soc-pokec-relationships and
Gn=100,p=0.1. If we look at the running time in Table B.2, we can see that for the instances
citationCiteseer, coPapersDBLP and Gn=100,p=0.1 the difference in running time

23

5 Experimental Evaluation

is very small and therefore negligible.

The pre-processing has a negative effect on the running time, when the overhead of
checking for degree-1 vertices outweighs the gain made by marking the edges as cliques.
In theory, this should be visible in the instances Gn,p with n ∈ {100, 1 000, 3 000}, as
the pre-processing is unable to reduce any cliques at all. However, for Gn,p graphs with
n ∈ {1 000, 3 000} the running time is actually slightly reduced, though as we can see in
Table B.2, the difference in running time is very small on both instances and may be due to
some measurement error or some caching phenomenon.

Overall, the geometric mean of 5.867 seconds over the running times with pre-processing
enabled versus 5.906 seconds with the pre-processing disabled suggests, that the pre-
processing overall has a slightly positive effect on the running time.

If prior knowledge regarding the number of degree-1 vertices exists, the pre-processing
can be toggled based on that knowledge, as a graph with a high ratio of degree-1 vertices
is more likely to benefit from the pre-processing, whereas graphs with no degree-1 vertices
are more likely to be slightly slowed down by the pre-processing.

Figure 5.1: Speedup when using preprocessing (tp) versus without preprocessing (tnp). See Table
B.2 for more detailed results.

24

5.3 Evaluation of Lazy Initialization

5.3 Evaluation of Lazy Initialization

As described in Section 4.2.3 we perform a lazy initialization (instead of the regular initial-
ization), where we interrupt the initialization to reduce cliques as soon as we find them. In
this section we present experimental data on the speedup of the lazy initialization over the
regular initialization.

Figure 5.2: Speedup when using lazy initialization (tlazy) instead of regular initialization
(tregular). Red dashed line marks y = 1.0. See Table B.3 for more detailed results.

As we can see in Figure 5.2 the lazy initialization leads to an improvement on almost all
instances. Exceptions are as-22july06, Gn=3000,p=0.1 and Gn=100,p=0.1. However, the
difference in those running times is negligible, as can be seen in Table B.3.

The geometric mean of 6.137 seconds over the running times with lazy initialization
versus the geometric mean of 11.433 seconds with regular initialization clearly shows the
significant advantage lazy initialization has over regular initialization.

The speedup is especially valuable on the instances eu-2005, in-2004 and
soc-LiveJournal1, as the running time on these instances is fairly slow, which can
be seen in Table B.11. The running time for the graph eu-2005 is reduced from 2 481
seconds to 2 020 seconds and for the graph soc-LiveJournal1 the running time is
reduced from 1 926 seconds to 1 634 seconds.

In absolute numbers, the speedup on the instance in-2004 is largest, with the running
time being reduced from 2 130 seconds to 632 seconds (about 25 minutes faster).

25

5 Experimental Evaluation

The speedup occurs, as early on during the initialization many cliques are found and thus
eliminate the need to initialize the covered edges. For example, on coPapersCiteseer
a clique of size 845 is found early on during the lazy initialization. A clique of size 845
contains 356 590 edges, due to the lazy initialization lookup table entries are created only
for a small fraction of these edges. When multiple large cliques are reduced during the
lazy initialization, the number of edges, for which a lookup table entry needs to be created,
is reduced significantly. As the initialization phase is of complexity O(∆2m), this has a
significant impact on some of these graphs.

On the Gn,p graphs n ∈ {1 000, 3 000} most of the work is done by the heuristic rather
than by the reduction rules, therefore the lazy initialization barely has an advantage over
regular initialization. On the Gn,p graph with n = 100 the reduction rules fully reduce the
graph, without the need of the heuristic. However, as the graph is very small, the difference
between lazy and regular initialization is very small as well.

Caching may be a factor here as well, as when during initialization a lookup table entry
is created which forms a clique, that entry may still reside in cache when the clique is
reduced. As access to entries in cache is faster than access to entries in memory, this may
lead to an increase in performance. With regular initialization, however, the chance that a
lookup table entry is still in cache is greatly reduced.

5.4 Clique Covers

In this section we present an evaluation of the average and maximum clique size as well as
clique cover size of our algorithm compared to cgm, as well as reduction rules paired with
cgm (kernel+cgm). We ran the implementations on all instances listed in Table 5.1 and
averaged the results over ten runs.

5.4.1 Kernel+cgm Versus cgm

First, we compare the combination of the reduction rules and cgm – denoted as ker-
nel+cgm – against cgm. We define kernel+cgm to be the kernelization followed by five
runs of cgm, where we take the best result. Therefore, the running time of kernel+cgm
consists of the running time required for the kernelization as well as the running times
required by the five runs of cgm on the kernel.

The most important indicator of result quality is the clique cover size. In Figure 5.3 we
can see that the clique cover sizes of both approaches are very similar, though kernel+cgm
on average results in a slightly larger clique cover. This is additionally confirmed by a
geometric mean of 204 934 for cgm and a geometric mean of 206 414 for kernel+cgm,
which again suggests that the clique covers by kernel+cgm are slightly larger.

Looking at Table B.4 we can see that kernel+cgm leads to a smaller clique cover on
the instances cond-mat-2005, Gn=100,p=0.1, cond-mat-2003, Gn=1000,p=0.1,

26

5.4 Clique Covers

Figure 5.3: Comparison of clique cover sizes (cc). A value smaller than 1 indicates that ker-
nel+cgm results in a smaller clique cover. See Table B.4 for more detailed results.

deezer_ro, coPapersCiteseer¸Gn=3000,p=0.1, coPapersDBLP and
coAuthorsDBLP. cgm reports smaller clique covers on the remaining 14 instances.

This result indicates, that running kernel+cgm leads to poorer results. Though keep in
mind, as we noted in Section 4.2.5, due to the structure of the kernel, the heuristic may find
redundant cliques on the kernel and therefore lead to worse clique covers.

Next, we compare the average clique sizes reported by both approaches. If we look
at Figure 5.4, we can see that kernel+cgm reports larger average clique sizes on almost
all instances, except Gn=3000,p=0.1, where kernel+cgm and cgm report the same average
clique size. The average clique size reported by kernel+cgm is 3.641, whereas the average
clique size reported by cgm is 3.416. This suggests, that on average kernel+cgm leads to
larger average cliques.

Next, we compare the maximum clique sizes. In Figure 5.5 and Table B.6 we can
see that cgm reports slightly larger maximum cliques on the two instances eu-2005 and
in-2004, whereas kernel+cgm reports larger maximum clique sizes on the instances
soc-LiveJournal1, citationCiteseer and deezer_ro. The geometric mean
of the maximum clique size report by kernel+cgm is 40.537, whereas the geometric mean
for cgm is 40.120. This suggests that kernel+cgm on average reports slightly larger max-
imum cliques.

In terms of running times, kernel+cgm is slower on 16 out of 23 instances. This can
be seen in Figure 5.6. The geometric mean of 9.671 seconds for kernel+cgm versus 6.129

27

5 Experimental Evaluation

Figure 5.4: Comparison of average clique sizes. A value smaller than 1 indicates that kernel+cgm
results in a smaller average clique size. See Table B.5 for more detailed results.

seconds for cgm further indicates, that kernel+cgm is on average slower than cgm.
On the two instances eu-2005 and cnr-2000 kernel+cgm requires over 12 times

the running time of cgm. On both instances the majority of the running time is spent on
kernelization. More specifically, on the instance eu-2005 almost 1 100 seconds out of
the 1 400 seconds of running time is spent on kernelization, out of those 1 100 seconds the
initialization takes 1 040 seconds, the remainder is spent on the reduction rules. On the
instance cnr-2000 the kernelization takes 190 seconds and the heuristic only takes 30
seconds. The running time of the kernelization is split into 155 seconds for the initialization
and 35 seconds for the reduction rules.

5.4.2 Our Algorithm Versus cgm

We will now present experimental data on a comparison of our versus cgm. For our
implementation we use pre-processing and lazy initialization.

The most important indicator of result quality is the size of the clique cover. We can see
in Figure 5.7 and Table B.8 that our finds a smaller clique cover on 15 out of 23 instances,
whereas cgm finds a smaller clique cover on the remaining eight instances.

The geometric mean of the clique cover sizes for our is 209832, whereas for cgm the ge-
ometric mean is 204919, this suggests that although our algorithm finds smaller clique cov-
ers on more instances, on average the clique covers of our implementation are larger than

28

5.4 Clique Covers

Figure 5.5: Comparison of maximum clique sizes. A value smaller than 1 in indicates that ker-
nel+cgm results in a smaller maximum clique size. See Table B.6 for more detailed
results.

the clique covers by cgm. We can see in Table B.8 that on our best graph – amazon0601
– our clique cover is 2.5% smaller than cgm, however, on our worst graph – Gn=3000,p=0.1

– our clique cover is over 60% larger.

If we cross-reference the clique cover sizes with the size of the graph kernels of Table
B.1, we notice that the combined approach of kernelization and our heuristic seems to work
best on graphs where the kernelization admits a very small graph kernel. This suggests that
in our heuristic we may need to further investigate the choice of the lookup table entry
which is reduced, such that graphs with larger kernels may be solved with better results.
In Table B.1 we also see, that the instance Gn=100,p=0.1 is solved exactly, as the graph is
completely reduced by the reduction rules.

Next, we evaluate the average clique sizes computed by the algorithms. As we can
see in Figure 5.8, our results in a larger average clique size in all cases, except for the
Gn=3000,p=0.1 graph. The geometric mean over all average clique sizes for our is 3.887
whereas for cgm it’s 3.146, which again shows that our provides larger average clique
sizes. However, if we look at Table B.8 we can see that for the six instances Gn=1000,p=0.1,
as-Skitter, soc-LiveJournal1, in-2004, cnr-2000 and eu-2005 the clique
cover size calculated by our is much larger than the clique cover calculated by cgm. There-
fore, the large difference in average clique sizes on these instances may be caused by the
difference in clique cover sizes, as the average of a larger data set may increase naturally.

29

5 Experimental Evaluation

Figure 5.6: Comparison of running times. A value smaller than 1 indicates that kernel+cgm
results in a faster running time. Red dashed line marks y = 1.0. See Table B.7 for
more detailed results.

On almost all other instances, where we achieve a larger average clique size, our also
achieves a smaller clique cover size. This suggests, that on those instances our is able to
cover the graphs with fewer and larger cliques than cgm.

Next, we look at the maximum clique size found by the algorithms. As we can see in
Figure 5.9, the maximum clique found by cgm is larger on four instances, whereas on five
instances our algorithm finds a larger maximum clique. On the remaining 14 cliques the
maximum clique size is identical. The geometric mean over all maximum clique sizes for
our is 41.051, whereas for cgm it’s 40.408, which suggest that on average our algorithm
finds slightly larger maximum cliques.

Finally, we will take a look at the running times required by both implementations. As
we can see in Figure 5.10 and Table B.11, on a few instances our implementation outper-
forms cgm significantly, however, on two instances – eu-2005 and cnr-2000 – our
implementation takes 18 times longer than cgm. This result is similar to the comparison
of kernel+cgm and cgm. On the instance eu-2005 about 250 seconds are spent on the
maximal clique heuristic, 1 695 seconds are spent on initialization and reductions, 665 sec-
onds are spent on the reduction rules and 23 seconds are spent on post-processing. On
the instance cnr-2000 the maximal clique heuristic takes 43 seconds, the remaining 292
seconds are spent on initialization and reductions.

The geometric mean of 6.162 seconds for the running time of our versus 5.950 seconds

30

5.4 Clique Covers

Figure 5.7: Comparison of clique cover sizes (cc). A value smaller than 1 indicates that our algo-
rithm results in a smaller clique cover. See Table B.8 for more detailed results.

for cgm confirms that cgm is on average slightly faster.

5.4.3 Instances Solved Over Time

Lastly, we will compare the running times of our, kernel+cgm and cgm by plotting the
number of instances solved over time. The result can be seen in Figure 5.11 We can clearly
see, that cgm has an advantage over our and kernel+cgm, as it requires the least time to
solve all instances. kernel+cgm and our are very similar in terms of running time, though
our requires more running time on its slowest instance.

31

5 Experimental Evaluation

Figure 5.8: Comparison of average clique sizes. A value smaller than 1 indicates that our algo-
rithm results in a smaller average clique size. See Table B.9 for more detailed results.

Figure 5.9: Comparison of maximum clique sizes. A value smaller than 1 in indicates that our
algorithm results in a smaller maximum clique size. See Table B.10 for more detailed
results.

32

5.4 Clique Covers

Figure 5.10: Comparison of running times. A value smaller than 1 indicates that our algorithm
results in a faster running time. Red dashed line marks y = 1.0. See Table B.11 for
more detailed results.

Figure 5.11: Comparison of instances solved over time of our, kernel+cgm and cgm.

33

5 Experimental Evaluation

34

6 Discussion

In this thesis we presented a new approach for solving the edge clique cover problem, which
combined kernelization with our newly developed heuristic. Additionally, we evaluated a
combination of kernelization and the currently best known heuristic. We evaluated the
quality of our approach by comparing average clique sizes, maximum clique sizes, clique
cover size and running time against the currently best known heuristic. These comparisons
were made using a wide range of instances. The approach of combining kernelization
with a clique selection heuristic seems very promising. Our newly developed heuristic in
combination with the reduction rules beats the currently best known heuristic on 14 out
of 23 instances, in terms of minimum clique cover. Combining kernelization with the
currently best known heuristic beats the currently best known heuristic on a few graphs
as well, here it’s nine graphs out of 23. Together, both approaches of kernelization with
heuristic outperform current approaches on 16 out of 23 instances. Therefore, this new
approach is very promising and can lead to better results.

6.1 Future Work

As the running time of our algorithm is very slow on some instances, future research in
speeding up the the kernelization is of significant interest. Furthermore, the choice of
the lookup table entry in our heuristic may be improved, as that choice seems to be the
driving factor in reducing the clique cover number. Currently, we sort the remaining lookup
table entries once based on the size of the common neighborhood, however, it may be
interesting to re-sort after a certain number of reduced cliques, to reflect changes in the
common neighborhood sizes. Additionally, choosing a different sorting condition may lead
to improved results. It could be worth investigating different existing heuristics combined
with kernelization, as the combination can lead to an improvement in results.

35

6 Discussion

36

Bibliography

[1] ABU-KHZAM, F. N., COLLINS, R. L., FELLOWS, M. R., LANGSTON, M. A.,
SUTERS, W. H., AND SYMONS, C. T. Kernelization algorithms for the vertex cover
problem: Theory and experiments. ALENEX/ANALC 69 (2004).

[2] AGARWAL, P. K., ALON, N., ARONOV, B., AND SURI, S. Can visibility graphs
be represented compactly? Discrete & Computational Geometry 12, 3 (Sep 1994),
347–365.

[3] BADER, D. A., MEYERHENKE, H., SANDERS, P., SCHULZ, C., KAPPES, A., AND

WAGNER, D. Benchmarking for Graph Clustering and Partitioning. Springer New
York, New York, NY, 2014, pp. 73–82.

[4] BEHRISCH, M., AND TARAZ, A. Efficiently covering complex networks with cliques
of similar vertices. Theoretical Computer Science 355, 1 (2006), 37 – 47. Complex
Networks.

[5] BRON, C., AND KERBOSCH, J. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM 16, 9 (Sept. 1973), 575–577.

[6] CHLEBÍK, M., AND CHLEBÍKOVÁ, J. Crown reductions for the minimum weighted
vertex cover problem. Discrete Applied Mathematics 156, 3 (2008), 292–312.

[7] CONTE, A., GROSSI, R., AND MARINO, A. Clique covering of large real-world
networks. In Proceedings of the 31st Annual ACM Symposium on Applied Computing
(New York, NY, USA, 2016), SAC ’16, ACM, pp. 1134–1139.

[8] CYGAN, M., KRATSCH, S., PILIPCZUK, M., PILIPCZUK, M., AND WAHLSTRÖM,
M. Clique cover and graph separation: New incompressibility results. ACM Trans.
Comput. Theory 6, 2 (May 2014), 6:1–6:19.

[9] DEHNE, F., FELLOWS, M., ROSAMOND, F., AND SHAW, P. Greedy localization,
iterative compression, and modeled crown reductions: New fpt techniques, an im-
proved algorithm for set splitting, and a novel 2k kernelization for vertex cover.
In Parameterized and Exact Computation (Berlin, Heidelberg, 2004), R. Downey,
M. Fellows, and F. Dehne, Eds., Springer Berlin Heidelberg, pp. 271–280.

[10] DOWNEY, R. G., AND FELLOWS, M. R. Parameterized complexity. Springer Sci-
ence & Business Media, 1999.

[11] ERDŐS, P., AND RÉNI, A. On random graphs i. Publ. Math. Debrecen 6 (1959),
290–297.

[12] ERDS, P., AND RÉNYI, A. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci 5 (1960), 17–61.

37

Bibliography

[13] GRAMM, J., GUO, J., HÜFFNER, F., AND NIEDERMEIER, R. Data reduction and
exact algorithms for clique cover. J. Exp. Algorithmics 13 (Feb. 2009), 2:2.2–2:2.15.

[14] GRAMM, J., GUO, J., HÜFFNER, F., NIEDERMEIER, R., PIEPHO, H.-P., AND

SCHMID, R. Algorithms for compact letter displays: Comparison and evaluation.
Computational Statistics & Data Analysis 52, 2 (2007), 725–736.

[15] GRAMM, J., GUO, J., HÜFFNER, F., AND NIEDERMEIER, R. Data Reduction,
Exact, and Heuristic Algorithms for Clique Cover. pp. 86–94.

[16] GROHE, M. Descriptive and parameterized complexity. In Computer Science Logic
(Berlin, Heidelberg, 1999), J. Flum and M. Rodriguez-Artalejo, Eds., Springer Berlin
Heidelberg, pp. 14–31.

[17] GUO, J., AND NIEDERMEIER, R. Invitation to data reduction and problem kernel-
ization. SIGACT News 38, 1 (Mar. 2007), 31–45.

[18] KARYPIS, G., AND KUMAR, V. Metis—a software package for partitioning un-
structured graphs, partitioning meshes and computing fill-reducing ordering of sparse
matrices.

[19] KELLERMAN, E. Determination of keyword conflict. IBM Technical Disclosure
Bulletin 16, 2 (1973), 544–546.

[20] KOU, L. T., STOCKMEYER, L. J., AND WONG, C. K. Covering edges by cliques
with regard to keyword conflicts and intersection graphs. Commun. ACM 21, 2 (Feb.
1978), 135–139.

[21] LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[22] ORLIN, J. Contentment in graph theory: Covering graphs with cliques. Indagationes
Mathematicae (Proceedings) 80, 5 (1977), 406 – 424.

[23] RAJAGOPALAN, S., VACHHARAJANI, M., AND MALIK, S. Handling irregular ilp
within conventional vliw schedulers using artificial resource constraints. In Proceed-
ings of the 2000 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (New York, NY, USA, 2000), CASES ’00, ACM, pp. 157–164.

[24] ROBERTS, F. S. Applications of edge coverings by cliques. Discrete applied mathe-
matics 10, 1 (1985), 93–109.

[25] TOMITA, E., TANAKA, A., AND TAKAHASHI, H. The worst-case time complex-
ity for generating all maximal cliques and computational experiments. Theoretical
Computer Science 363, 1 (2006), 28–42.

38

http://snap.stanford.edu/data

A Implementation Details

Our implementation was done in C++11. The program is based on the KaHIP 1 framework.
Graphs must be provided in the METIS format [18]. Our implementation supports

undirected, unweighted graphs with no self loops. The following listing shows the helptext
of our program, which explains the possible commands.

The first parameter needs to be a path to a graph file in METIS format [18]. The pa-
rameter −−output_filename specifies the location where the kernel will be written
to, though note that this is not applicable, when the heuristic is enabled. The kernel will
be in the METIS format [18] as well. The parameters −−disable-preprocessing
and −−disable-lazy can be used to disable the preprocessing – which is described in
Section 4.2.1 – and the lazy initialization – described in Section 4.2.2. Lastly, the parameter
−−heuristic enables the heuristic described in Section 4.2.6.

Listing A.1: Helptext of our implementation
./deploy/edge_clique_cover --help
Usage: ./deploy/edge_clique_cover FILE options
where options are:
--help Print help.
FILE Path to graph file.
--output_filename=<string> Specify the name of the output file

that will contain the kernelized graph.
--disable-preprocessing disable preprocessing of degree-1 vertices
--disable-lazyinit disable lazy initialization
--heuristic enables heuristic after kernelization

1https://github.com/schulzchristian/KaHIP

39

https://github.com/schulzchristian/KaHIP

A Implementation Details

40

B Detailed Results

In this section we provide more detailed data of the experimental evaluations.

B.1 Kernel Sizes

Table B.1 lists all instances with the size of the kernel as computed by the kernelization
routine.

41

B
D

etailed
R

esults

Table B.1: Graph instances used for evaluation with the size of the computed kernel

original graph kernel kernel / graph
graph n m n m n m
Gn=100,p=0.1 100 488 0 0 0.000 0.000
Gn=1000,p=0.1 1 000 49 576 1 000 49 576 1.000 1.000
Gn=3000,p=0.1 3 000 450 085 3 000 450 085 1.000 1.000

astro-ph 16 706 121 251 242 3 409 0.014 0.028
as-22july06 22 963 48 436 487 5 814 0.021 0.120
cond-mat-2003 31 163 120 029 36 120 0.001 0.001
cond-mat-2005 40 421 175 691 29 95 0.001 0.001
caidaRouterLevel 192 244 1 218 132 17 949 158 696 0.093 0.130
citationCiteseer 268 495 2 313 294 34 763 277 332 0.129 0.120
coAuthorsDBLP 299 067 977 676 823 6 823 0.003 0.007
cnr-2000 325 557 2 738 969 41 875 928 467 0.129 0.339
coPapersCiteseer 434 102 16 036 720 50 1 203 0.001 0.000
coPapersDBLP 540 486 15 245 729 61 1 347 0.001 0.000
eu-2005 862 664 16 138 468 366 836 9 216 361 0.425 0.571
in-2004 1 382 908 13 591 473 200 772 3 617 400 0.145 0.266

ca-HepPh 12 006 118 489 378 5 907 0.031 0.050
deezer_ro 41 773 125 826 480 1 561 0.011 0.012
deezer_hr 54 573 498 202 21 594 291 232 0.396 0.585
amazon0601 403 394 2 443 408 95 229 571 406 0.236 0.234
com-youtube 1 134 890 2 987 624 41 370 815 540 0.036 0.273
soc-pokec-relationships 1 632 803 22 301 964 572 251 13 878 686 0.350 0.622
as-Skitter 1 696 415 11 095 298 374 438 5 964 615 0.221 0.538
soc-LiveJournal1 4 846 609 42 851 237 1 179 777 26 792 241 0.243 0.625

42

B.2 Pre-Processing

B.2 Pre-Processing

Table B.2 lists the speed-up when enabling the pre-processing, together with the actual
running times.

Table B.2: Speedup when using preprocessing (tp) versus without preprocessing (tnp).

running time in seconds
graph tnp tp tnp/tp
Gn=100,p=0.1 0.001 0.001 0.727
Gn=1000,p=0.1 0.358 0.340 1.054
Gn=3000,p=0.1 16.256 16.063 1.012
astro-ph 0.166 0.163 1.015
as-22july06 0.307 0.293 1.049
cond-mat-2003 0.123 0.120 1.029
cond-mat-2005 0.211 0.202 1.043
caidaRouterLevel 1.986 1.914 1.038
citationCiteseer 4.063 4.087 0.994
coAuthorsDBLP 1.376 1.345 1.022
cnr-2000 329.429 322.550 1.021
coPapersCiteseer 64.231 63.485 1.012
coPapersDBLP 43.272 43.826 0.987
eu-2005 2 003.436 1 969.593 1.017
in-2004 657.689 623.956 1.054
ca-HepPh 0.325 0.307 1.057
deezer_ro 0.172 0.167 1.031
deezer_hr 1.692 1.675 1.010
amazon0601 6.737 6.584 1.023
com-youtube 58.972 52.619 1.121
soc-pokec-relationships 186.984 199.159 0.939
as-Skitter 605.803 615.150 0.985
soc-LiveJournal1 1 610.910 1 643.717 0.980

B.3 Lazy Initialization

Table B.3 lists the speed-up of enabling lazy initialization over regular initialization to-
gether with the actual running times.

43

B Detailed Results

Table B.3: Speedup when using lazy initialization (tlazy) instead of regular initialization (tregular).

running time in seconds
graph tregular tlazy tregular/tlazy
Gn=100,p=0.1 0.001 0.001 1.152
Gn=1000,p=0.1 0.347 0.415 0.836
Gn=3000,p=0.1 16.255 16.424 0.990
astro-ph 0.497 0.192 2.591
as-22july06 0.343 0.346 0.992
cond-mat-2003 0.288 0.136 2.114
cond-mat-2005 0.478 0.222 2.149
caidaRouterLevel 2.643 1.949 1.356
citationCiteseer 5.602 4.070 1.376
coAuthorsDBLP 3.152 1.436 2.195
cnr-2000 414.949 335.937 1.235
coPapersCiteseer 1 188.033 62.937 18.876
coPapersDBLP 381.253 43.090 8.848
eu-2005 2 481.053 2 020.265 1.228
in-2004 2 130.850 632.648 3.368
ca-HepPh 3.050 0.361 8.442
deezer_ro 0.279 0.180 1.549
deezer_hr 2.164 1.737 1.246
amazon0601 9.882 6.750 1.464
com-youtube 59.132 53.893 1.097
soc-pokec-relationships 238.125 198.291 1.201
as-Skitter 686.773 603.628 1.138
soc-LiveJournal1 1 926.493 1 634.968 1.178

B.4 Clique Cover Measures

B.4.1 Kernel+cgm Versus cgm

Table B.4 lists a comparison of clique cover sizes. Table B.5 lists a comparison of average
clique sizes. Table B.6 lists a comparison of maximum clique sizes. Table B.7 lists a
comparison of running times.

B.4.2 Our Algorithm Versus cgm

Table B.8 lists a comparison of clique cover sizes. Table B.9 lists a comparison of average
clique sizes. Table B.10 lists a comparison of maximum clique sizes. Table B.11 lists a
comparison of running times.

44

B.4 Clique Cover Measures

Table B.4: Comparison of clique cover sizes (cc). A value smaller than 1 indicates that ker-
nel+cgm results in a smaller clique cover.

clique cover sizes
graph kernel+cgm cgm cckernel+cgm/cccgm
Gn=100,p=0.1 332 334 0.994
Gn=1000,p=0.1 15 567 15 639 0.995
Gn=3000,p=0.1 102 909 103 007 0.999
astro-ph 10 149 10 083 1.007
as-22july06 34 006 33 963 1.001
cond-mat-2003 20 429 20 544 0.994
cond-mat-2005 27 657 27 876 0.992
caidaRouterLevel 407 109 403 160 1.010
citationCiteseer 703 844 693 295 1.015
coAuthorsDBLP 223 642 223 679 1.000
cnr-2000 764 663 756 828 1.010
coPapersCiteseer 70 539 70 638 0.999
coPapersDBLP 100 476 100 559 0.999
eu-2005 2 945 228 2 883 492 1.021
in-2004 2 433 207 2 396 153 1.015
ca-HepPh 10 306 10 155 1.015
deezer_ro 95 287 95 462 0.998
deezer_hr 261 173 255 102 1.024
amazon0601 838 448 825 107 1.016
com-youtube 2 216 219 2 202 778 1.006
soc-pokec-relationships 12 875 812 12 631 035 1.019
as-Skitter 6 074 354 6 031 503 1.007
soc-LiveJournal1 18 020 359 17 510 992 1.029

45

B Detailed Results

Table B.5: Comparison of average clique sizes. A value smaller than 1 indicates that kernel+cgm
results in a smaller average clique size.

average clique size
graph kernel+cgm cgm avgkernel+cgm/avgcgm
Gn=100,p=0.1 2.313 2.275 1.017
Gn=1000,p=0.1 3.221 3.213 1.003
Gn=3000,p=0.1 3.745 3.744 1.000
astro-ph 4.753 4.602 1.033
as-22july06 2.424 2.346 1.033
cond-mat-2003 3.836 3.758 1.021
cond-mat-2005 4.010 3.908 1.026
caidaRouterLevel 2.438 2.344 1.040
citationCiteseer 2.561 2.436 1.051
coAuthorsDBLP 3.321 3.265 1.017
cnr-2000 5.344 3.890 1.374
coPapersCiteseer 11.931 11.838 1.008
coPapersDBLP 10.212 10.151 1.006
eu-2005 6.260 4.575 1.368
in-2004 5.604 4.397 1.275
ca-HepPh 3.720 3.500 1.063
deezer_ro 2.218 2.189 1.013
deezer_hr 2.623 2.556 1.026
amazon0601 3.352 3.027 1.107
com-youtube 2.309 2.253 1.025
soc-pokec-relationships 2.525 2.470 1.022
as-Skitter 2.801 2.652 1.056
soc-LiveJournal1 2.915 2.795 1.043

46

B.4 Clique Cover Measures

Table B.6: Comparison of maximum clique sizes. A value smaller than 1 indicates that ker-
nel+cgm results in a smaller maximum clique size.

maximum clique size
graph kernel+cgm cgm maxkernel+cgm/maxcgm
Gn=100,p=0.1 4 4 1.000
Gn=1000,p=0.1 5 5 1.000
Gn=3000,p=0.1 6 6 1.000
astro-ph 57 57 1.000
as-22july06 15 15 1.000
cond-mat-2003 25 25 1.000
cond-mat-2005 30 30 1.000
caidaRouterLevel 15 15 1.000
citationCiteseer 13 12 1.083
coAuthorsDBLP 115 115 1.000
cnr-2000 84 84 1.000
coPapersCiteseer 845 845 1.000
coPapersDBLP 337 337 1.000
eu-2005 385 387 0.995
in-2004 487 488 0.998
ca-HepPh 239 239 1.000
deezer_ro 7 6 1.167
deezer_hr 11 11 1.000
amazon0601 11 11 1.000
com-youtube 13 13 1.000
soc-pokec-relationships 29 29 1.000
as-Skitter 57 57 1.000
soc-LiveJournal1 284 281 1.011

47

B Detailed Results

Table B.7: Comparison of running times. A value smaller than 1 indicates that kernel+cgm results
in a faster running time.

running time in seconds
graph kernel+cgm cgm tkernel+cgm/tcgm
Gn=100,p=0.1 0.001 0.023 0.023
Gn=1000,p=0.1 2.691 0.506 5.320
Gn=3000,p=0.1 40.651 7.124 5.706
astro-ph 0.443 0.646 0.685
as-22july06 0.557 0.366 1.521
cond-mat-2003 0.170 0.594 0.286
cond-mat-2005 0.249 0.783 0.317
caidaRouterLevel 6.324 3.388 1.866
citationCiteseer 10.256 6.567 1.562
coAuthorsDBLP 1.641 3.372 0.487
cnr-2000 221.063 17.269 12.801
coPapersCiteseer 66.464 46.457 1.431
coPapersDBLP 45.767 49.062 0.933
eu-2005 1 406.322 112.526 12.498
in-2004 561.122 94.900 5.913
ca-HepPh 0.621 0.551 1.126
deezer_ro 0.350 0.837 0.419
deezer_hr 9.107 2.986 3.050
amazon0601 14.891 12.034 1.237
com-youtube 45.739 22.684 2.016
soc-pokec-relationships 668.845 233.738 2.862
as-Skitter 467.781 90.321 5.179
soc-LiveJournal1 1 702.030 564.351 3.016

48

B.4 Clique Cover Measures

Table B.8: Comparison of clique cover sizes (cc). A value smaller than 1 indicates that our results
in a smaller clique cover.

clique cover sizes
graph our cgm ccour/cccgm
Gn=100,p=0.1 332 334 0.994
Gn=1000,p=0.1 16 691 15 609 1.069
Gn=3000,p=0.1 171 807 103 005 1.668
astro-ph 9 998 10 082 0.992
as-22july06 33 975 33 960 1.000
cond-mat-2003 20 418 20 546 0.994
cond-mat-2005 27 646 27 882 0.992
caidaRouterLevel 401 440 403 186 0.996
citationCiteseer 685 931 693 211 0.989
coAuthorsDBLP 222 685 223 678 0.996
cnr-2000 762 226 756 863 1.007
coPapersCiteseer 70 538 70 642 0.999
coPapersDBLP 100 472 100 565 0.999
eu-2005 3 014 772 2 883 544 1.046
in-2004 2 419 956 2 396 168 1.010
ca-HepPh 10 054 10 155 0.990
deezer_ro 95 139 95 468 0.997
deezer_hr 252 266 255 090 0.989
amazon0601 804 237 825 130 0.975
com-youtube 2 201 402 2 202 740 0.999
soc-pokec-relationships 12 542 031 12 630 901 0.993
as-Skitter 6 049 483 6 031 413 1.003
soc-LiveJournal1 17 691 949 17 511 121 1.010

49

B Detailed Results

Table B.9: Comparison of average clique sizes. A value smaller than 1 indicates that our results
in a smaller average clique size.

average clique size
graph our cgm avgour/avgcgm
Gn=100,p=0.1 2.313 2.273 1.018
Gn=1000,p=0.1 3.670 3.217 1.141
Gn=3000,p=0.1 3.505 3.744 0.936
astro-ph 4.748 4.601 1.032
as-22july06 2.504 2.346 1.068
cond-mat-2003 3.837 3.757 1.021
cond-mat-2005 4.010 3.908 1.026
caidaRouterLevel 2.515 2.344 1.073
citationCiteseer 2.622 2.436 1.076
coAuthorsDBLP 3.324 3.265 1.018
cnr-2000 6.583 3.890 1.692
coPapersCiteseer 11.93 11.839 1.008
coPapersDBLP 10.212 10.151 1.006
eu-2005 9.088 4.575 1.986
in-2004 6.576 4.397 1.496
ca-HepPh 3.725 3.501 1.064
deezer_ro 2.217 2.189 1.013
deezer_hr 2.810 2.555 1.100
amazon0601 3.426 3.027 1.132
com-youtube 2.457 2.253 1.091
soc-pokec-relationships 2.755 2.470 1.115
as-Skitter 3.299 2.652 1.244
soc-LiveJournal1 3.591 2.795 1.285

50

B.4 Clique Cover Measures

Table B.10: Comparison of maximum clique sizes. A value smaller than 1 indicates that our
results in a smaller maximum clique size.

maximum clique size
graph our cgm maxour/maxcgm
Gn=100,p=0.1 4 4 1.000
Gn=1000,p=0.1 6 5 1.200
Gn=3000,p=0.1 6 6 1.000
astro-ph 57 57 1.000
as-22july06 16 15 1.067
cond-mat-2003 25 25 1.000
cond-mat-2005 30 30 1.000
caidaRouterLevel 14 15 0.933
citationCiteseer 13 12 1.083
coAuthorsDBLP 115 115 1.000
cnr-2000 84 84 1.000
coPapersCiteseer 845 845 1.000
coPapersDBLP 337 337 1.000
eu-2005 385 387 0.995
in-2004 487 488 0.998
ca-HepPh 239 239 1.000
deezer_ro 7 7 1.000
deezer_hr 11 11 1.000
amazon0601 11 11 1.000
com-youtube 14 13 1.077
soc-pokec-relationships 28 28 1.000
as-Skitter 62 59 1.051
soc-LiveJournal1 281 284 0.989

51

B Detailed Results

Table B.11: Comparison of running times. A value smaller than 1 indicates that our results in a
faster running time.

running time in seconds
graph our cgm tour/tcgm
Gn=100,p=0.1 0.001 0.024 0.038
Gn=1000,p=0.1 0.415 0.503 0.824
Gn=3000,p=0.1 16.424 7.225 2.273
astro-ph 0.192 0.520 0.369
as-22july06 0.346 0.333 1.040
cond-mat-2003 0.136 0.544 0.250
cond-mat-2005 0.222 0.702 0.317
caidaRouterLevel 1.949 3.197 0.610
citationCiteseer 4.070 6.396 0.636
coAuthorsDBLP 1.436 4.396 0.327
cnr-2000 335.937 18.178 18.481
coPapersCiteseer 62.937 40.020 1.573
coPapersDBLP 43.090 36.763 1.172
eu-2005 2020.265 111.967 18.043
in-2004 632.648 93.945 6.734
ca-HepPh 0.361 0.641 0.564
deezer_ro 0.180 0.849 0.212
deezer_hr 1.737 2.668 0.651
amazon0601 6.750 10.595 0.637
com-youtube 53.893 23.451 2.298
soc-pokec-relationships 198.291 239.586 0.828
as-Skitter 603.628 90.232 6.690
soc-LiveJournal1 1634.968 571.81 2.859

52

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Preliminaries
	General Definitions
	Graphs
	Cliques and Clique Covers
	Erdos-Rényi Graphs

	Fixed-Parameter Tractability
	Kernelization and Data Reduction Rules

	Related Work
	Maximal Clique Enumeration
	Keyword Conflict and NP-completeness
	Edge Clique Cover
	Data Reduction
	Exact Algorithms
	Heuristics

	Reduction-based Heuristic
	Reduction Rules
	Our Algorithm
	Pre-Processing
	Initialization
	Applying Rule 1
	Applying Rule 2
	Post-Processing
	A New Heuristic

	Experimental Evaluation
	Experimental Setup
	Environment
	Methodology
	Instances

	Evaluation of Pre-Processing
	Evaluation of Lazy Initialization
	Clique Covers
	Kernel+cgm Versus cgm
	Our Algorithm Versus cgm
	Instances Solved Over Time

	Discussion
	Future Work

	Bibliography
	Implementation Details
	Detailed Results
	Kernel Sizes
	Pre-Processing
	Lazy Initialization
	Clique Cover Measures
	Kernel+cgm Versus cgm
	Our Algorithm Versus cgm

