
Maximum Independent Set Algorithms
on the GPU

Eric Waldherr

March 7, 2025

4231309

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisor:
Ernestine Großmann

ii

Acknowledgments

First of all, I would like to thank Prof. Dr. Christian Schulz for allowing me to work on
this project. Additionally, I would like to thank Ernestine Großman and Prof. Dr. Chris-
tian Schulz for addressing all my questions with patience and giving me valuable advice
throughout this project. Furthermore, I acknowledge the support provided by the state of
Baden-Württemberg through bwHPC. Finally, I thank my parents and my girlfriend for the
unwavering support I received from them on every step of the way to my bachelor’s degree.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, March 7, 2025

Eric Waldherr

iii

iv

Abstract

The maximum independent set problem describes the task of computing a set of vertices
of maximum cardinality such that no vertices of the set are adjacent. Since the problem is
NP-hard, we focus on heuristic algorithms in this thesis. There are multiple closely related
problems to the maximum independent set problem, including the maximum clique and
the minimum vertex cover problem. Therefore, there exist applications for the problem in
various fields of computer science, for instance, to computer graphics and route planning.

In this thesis, we develop GPU-accelerated algorithms to address the maximum indepen-
dent set problem. Furthermore, we apply known improvements to our algorithms, leading
to the design of our three algorithms: LUMIS, DUMIS, and IDUMIS. LUMIS is based
on Luby’s Monte Carlo algorithm and forms the basis of our work. Mainly, our improved
algorithm DUMIS prioritizes low-degree over high-degree vertices. This concept improves
the runtime and quality of our algorithm. Moreover, IDUMIS improves an initial solution
over a given time limit by applying randomized adjustments to the preceding solution.

We investigated the performance of our algorithms through numerous experiments by
comparing them with recently published algorithms in the field. We show that IDUMIS can
outperform the MMWIS algorithm for short time limits. In addition, DUMIS is capable of
producing larger independent sets than the similarly designed algorithm ECL-MIS, while
requiring less execution time for large graph instances. Finally, a reflection on the results
of this thesis is provided, along with input for potential future work.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 2

2 Fundamentals 3
2.1 General Definitions . 3
2.2 Maximum Independent Set Problem . 4
2.3 Data Reductions . 4

3 Related Work 5
3.1 Exact Algorithms . 5
3.2 Heuristic Algorithms . 6

3.2.1 Local Search Algorithms . 6
3.2.2 Evolutionary Algorithms . 6
3.2.3 Parallel Algorithms . 7

4 Proposed Algorithms 9
4.1 Development with Kokkos . 9
4.2 Data structure . 10
4.3 LUMIS . 10
4.4 DUMIS . 12
4.5 IDUMIS . 15

5 Data Reductions 19
5.1 Description of the Data Reductions . 19
5.2 Implementation of the Data Reductions 20

6 Experimental Evaluation 23
6.1 Methodology . 23

vii

Contents

6.2 Datasets . 24
6.3 Proposed Algorithms . 26
6.4 Data Reductions . 32
6.5 Comparison with Competing Algorithms 32

7 Discussion 37
7.1 Conclusion . 37
7.2 Future Work . 38

A Appendix 39
A.1 Implementation Details . 39
A.2 Further Results . 40

Abstract (German) 49

Bibliography 51

viii

CHAPTER 1
Introduction

1.1 Motivation

The maximum independent set (MIS) problem describes the issue of finding a set of ver-
tices in a graph such that no vertices in that set are adjacent. Moreover, the objective is
to find the largest possible set that fulfills this requirement. There are many other prob-
lems in graph theory that are closely related to the MIS problem, such as the minimum
vertex cover, the maximum clique [46], the maximum matching, and the maximal set pack-
ing problem [6]. Consequently, advances in algorithms for solving the MIS problem can
have a significant impact on multiple fields of computer science. In addition, there are
various applications for the MIS problem in many fields of interest, including computer
graphics [15], route planning [17], and RNA kinetics [36]. Thus, there exist numerous
different approaches to solve the MIS problem (for instance, see [7, 20, 42, 43]).

The MIS problem is known to be NP-hard [46]. Therefore, heuristic algorithms are a
common approach to the problem. The objective of such algorithms is to identify near-
optimal solutions in polynomial time. Consequently, these algorithms do not require ex-
ponential execution times in contrast to exact MIS algorithms. In this thesis, we focus
on heuristic algorithms.

Furthermore, graphics processing units (GPUs) have emerged as an acceleration tool in
the field of graph processing. The massive degree of parallelism that GPUs provide has
the potential to significantly accelerate graph processing algorithms [33]. Therefore, the
main objective of this work was to design GPU-accelerated MIS algorithms that provide
high-quality maximal independent sets. Moreover, our goal is to achieve low execution
times due to the usage of GPUs.

1

1 Introduction

1.2 Our Contribution

There are numerous different approaches to solving the MIS problem effectively. Recently,
studies have been published that apply machine learning and graph neural networks to the
issue [42, 44]. Other state-of-the-art algorithms are based on local search [20, 28, 41]. De-
spite the various advantages of these approaches, we engineered an algorithm based on
Luby’s algorithm [7], which was among the first heuristic algorithms solving the prob-
lem in parallel. This decision was made based on the assumption that Luby’s algorithm is
more suitable for GPU algorithms. Therefore, we designed our algorithm to take advan-
tage of the large degree of parallelism of GPUs to significantly accelerate execution time.
The result is our proposed algorithm, LUMIS. Additionally, we introduce known improve-
ments to Luby’s algorithm to improve the quality of the results. Eventually, this led to the
design of our improved algorithm, DUMIS. Both of these algorithms compute a solution
once. Contrary to other algorithms, these algorithms do not improve their initial solutions.
Therefore, we designed IDUMIS, an algorithm that runs multiple rounds of DUMIS. Fur-
thermore, IDUMIS improves the solution over a given time limit by applying randomized
adjustments to the preceding solution.

Moreover, there are different reductions that can be applied to the MIS problem [29, 35].
Therefore, we included a portion of these reductions in our approach. We designed the
reductions for parallel execution on GPUs. Our experiments show, that the reductions can
significantly increase the quality of a MIS algorithm.
In order to investigate the performance of the proposed algorithms, we conducted exper-
iments on various graph instances. Furthermore, we evaluated the results and compared
our algorithms to recently published MIS algorithms. We found that the convergence time
of our algorithm IDUMIS is faster than the convergence time of other MIS algorithms.
Therefore, the proposed algorithms can outperform competing algorithms for applications
with limited time available for computing a maximal independent set. Moreover, DUMIS
is capable of producing larger sets than a comparable MIS GPU algorithm, while requiring
less execution time on large graph instances.

1.3 Structure

The remainder of this thesis is structured as follows: First, the fundamental and problem-
related definitions required to understand the following contents are given in Chapter 2.
Subsequently, different previously developed approaches to the MIS problem are presented
briefly in Chapter 3. Chapter 4 outlines the proposed algorithms and illustrates how they
are implemented in detail. Afterwards, in Chapter 5, reductions for the MIS problem that
were implemented are described and explained. Thereafter, the experiments conducted in
the course of this work are presented in Chapter 6. Lastly, the results of the thesis and
potential future work are discussed in Chapter 7.

2

CHAPTER 2
Fundamentals

2.1 General Definitions

Graphs: Let G = (V,E) be a graph with a set of vertices V and a set of edges
E ⊆ V × V . The number of vertices in G is denoted by n = |V | and the number of edges
by m = |E|. If G is undirected, each edge (u, v) ∈ E, u, v ∈ V connects u to v and vice
versa. Therefore, (u, v) and (v, u) refer to the same edge in an undirected graph.

IDs: To distinguish vertices from each other, each vertex v ∈ V is assigned a vertex ID.
A vertex v with ID i is denoted as vi. Additionally, vi can be referred to as vertex i.

Self-loops: A self-loop is an edge that goes from a vertex v ∈ V to itself: (v, v) ∈ E. In
this thesis, we only consider graphs that do not contain self-loops. Therefore, all self-loops
were removed from the graph instances used in the experiments.

Neighborhoods: Each vertex v ∈ V in the graph has its own neighborhood. It is
defined as N(v) = {u ∈ V : (u, v) ∈ E}. In addition, N [v] = N(v) ∪ {v} denotes the
closed neighborhood of vertex v.

Degrees: The degree of a vertex is an important property, especially in the context
of the MIS problem. The degree of a vertex v ∈ V in an undirected graph is defined
as deg(v) = |N(v)|. Including vertices with high degrees is disadvantageous because it is
unlikely that such vertices are in large independent sets [28, 32]. Therefore, this property
is essential for finding large maximal independent sets.

Cliques: A clique is a set of vertices. In a clique C ⊆ V , each vertex is adjacent to
every other vertex of the clique: ∀u, v ∈ C with u ̸= v : (u, v) ∈ E.

3

2 Fundamentals

Independent Set Maximal Independent Set Maximum Independent Set

Figure 2.1: Illustration of different categories of independent sets.

2.2 Maximum Independent Set Problem

An independent set of an undirected graph G is defined as a subset of vertices I ⊆ V
such that no two vertices in I are adjacent: ∀u, v ∈ I : (u, v) /∈ E. Furthermore, an
independent set I of G is maximal if ∄v ∈ V, v /∈ I : I ∪ {v} is independent. In other
words, an independent set is maximal if there is no vertex in the graph that can be added
to the set without breaking its independence constraint. I is a maximum independent set
if it is a maximal independent set with the largest cardinality achievable: ∄J ⊆ V : J is
independent ∧ |I| < |J |. The cardinality of a maximum independent set of the graph G
is denoted as |MIS(G)|. Figure 2.1 illustrates the difference between the categories of
independent sets in an example graph. In this example, vertices marked in blue are part of
the independent set.

2.3 Data Reductions

Data reductions are rules or algorithms that can be applied to the input graph G = (V,E).
The objective of reductions is to decrease the size of the original graph and form a reduced
graph G′ = (V ′, E ′): |V ′| < |V |. In this thesis, we use two types of reductions. On one
hand, there are reductions that remove vertices from the original graph. This can be done
by proving that there exists a MIS that does not contain these specific vertices. On the other
hand, there are reductions that add vertices to the independent set because it can be proven
that there is a MIS that contains these vertices. Subsequently, the neighborhoods of such
vertices can be removed from the graph. This process simplifies the input graph and can
potentially increase the quality of MIS algorithms.

4

CHAPTER 3
Related Work

In this chapter, we present an overview of different approaches to the MIS problem. First,
we give a brief overview of exact MIS algorithms. Thereafter, we focus on heuristic algo-
rithms, especially parallel algorithms that inspired our work.

3.1 Exact Algorithms

Brach-and-bound algorithms are an approach for a variety of combinatorial optimization
problems [5], especially for the MIS problem. The fundamental idea of branch-and-bound
algorithms is to branch on a specific vertex v ∈ V . This process divides the problem
into two subproblems, one with v in the independent set and one with v not part of the
independent set. This way, the solution space is searched systematically, and an optimal
solution can be identified. Furthermore, data reductions are an effective technique for
MIS algorithms [27]. Therefore, various exact MIS algorithms use a branch-and-reduce
approach. This combines the concept of branch-and-bound with reductions that are applied
before each branching phase.

There exist numerous different branching strategies for such algorithms. Branching on
the vertex with the highest degree and with a minimal number of edges connecting its
neighbors is a frequently used method (for instance, see [21, 31]). Akiba and Iwata [27]
propose a state-of-the-art algorithm that uses that strategy. More recently, Hespe et al. [37]
propose a branching strategy that branches on vertices that hinder certain reductions.
Therefore, data reductions can be applied to more vertices. In their study, they demon-
strate that this strategy achieves equal or improved performance compared with highest
degree branching.

5

3 Related Work

3.2 Heuristic Algorithms

As noted above, the MIS problem is NP-hard. Thus, known exact algorithms addressing
this problem require exponential time. Consequently, there are many heuristic algorithms
that address this problem, which will be examined in the following section.

3.2.1 Local Search Algorithms

Local search is a common approach of different state-of-the-art MIS algorithms. The fun-
damental idea of local search is to modify and improve the current solution trough insertion,
deletion, and swap operations. Andrade et al. [20] introduced one of the first successful
heuristic local search MIS algorithms called ARW [28]. Their most interesting idea is
called (1,2) swap. Essentially, (1,2) swaps are local situations that allow one vertex to be
removed from the solution and two neighboring vertices to be added to the solution instead.
This process can remarkably improve the solution over time.

After the introduction of ARW, there were multiple attempts to improve it. For example,
Dahlum et al. [28] introduced OnlineMIS, an algorithm that accelerates the local search
introduced by ARW. OnlineMIS performs exact reductions as well as inexact reduction
rules to significantly reduce the size of the graph. Thereafter, the reduced graph is handled
by a modified and efficient version of ARW. Furthermore, Chang et al. [30] introduce mul-
tiple MIS algorithms, especially a linear and a near-linear time algorithm. These are called
LinearTime and NearLinear, respectively. They used these algorithms to successfully ac-
celerate the ARW algorithm. Their Reducing-Peeling framework applies reduction rules on
low-degree vertices (reducing). In addition, the vertex with the highest degree is removed
from the graph (peeling). To date, these local search approaches represent state-of-the-art
MIS algorithms [41].

3.2.2 Evolutionary Algorithms

There have been multiple evolutionary approaches to the MIS problem (for example,
see [8, 25]). In this thesis, we focus on the evolutionary algorithm MMWIS [43]. MMWIS
is an algorithm for the maximum weighted independent set problem (MWIS). However, it
is capable of producing solutions for unweighted graphs. It was demonstrated that MMWIS
can produce larger independent sets than other state-of-the-art MWIS algorithms. There-
fore, we used MMWIS in the experiments.

MMWIS operates by repeating three fundamental steps: exact reduction, memetic
search, and heuristic reduction. Since the reductions implemented in MMWIS are reduc-
tions of the MWIS problem, we do not examine them in further detail. These reductions
are used to reduce the size of the graph by including vertices in the solution and removing
their neighborhood from the graph. Thereafter, a population is generated consisting of mul-
tiple maximal independent sets. Subsequently, the individual solutions of the population

6

3.2 Heuristic Algorithms

are combined, which creates new solutions, called offsprings. This process improves the
quality of the population in multiple rounds. Finally, the best individual of the population
is used to perform heuristic reductions. Vertices of this individual solution are then added
to the independent set, and their neighborhoods are removed from the graph. Since this
process reduces the size of the graph, a portion of the exact reductions can potentially be
applied again. Therefore, the three steps are repeated until a given time limit is reached.

3.2.3 Parallel Algorithms
Despite being one of the first parallel algorithms for the MIS problem, the fundamental
concepts of Luby’s algorithm [7] are of great importance for modern MIS algorithms (for
example, see [32, 34]). The algorithm assigns random numbers to each vertex in the graph
during each iteration. Subsequently, a vertex is added to the independent set if it has the
lowest random number assigned in its neighborhood. Afterwards, the entire closed neigh-
borhood of each vertex added to the independent set is removed from the graph. This
procedure is repeated until the residual graph is empty. This procedure computes maximal
independent sets and can be executed in parallel effectively.

In their study, Imanaga et al. [34] present a parallel algorithm for GPUs that addresses
the MIS problem. The algorithm they propose is based on the fundamental concepts of
Luby’s algorithm. In contrast to Luby’s algorithm, their algorithm chooses a vertex if it
has the lowest degree of its neighborhood. They only use random numbers, similar to
Luby’s approach, for tie-breaking situations that include multiple vertices with the same
degree. Furthermore, they propose an algorithm that calculates a large number of solutions
for each graph instance. After each computation of a solution, the algorithm removes
vertices of the maximal independent set at random. Afterwards, these vertices and their
neighborhoods are added back to the residual graph. Based on the resulting graph, a new
solution is computed. During this process, the algorithm stores the best solution that was
found overall. Furthermore, the authors demonstrate that their algorithm requires shorter
execution times than other algorithms for GPUs or CPUs on random graphs. Additionally,
their algorithm produced 22.6%-38.5% larger independent sets for large graph instances
relative to the alternative algorithms employed in their experiment.

Burtscher et al. [32] propose an algorithm that is based on Luby’s algorithm. They
present improvements to the memory footprint, the execution time, and the quality of
Luby’s approach. In contrast to Luby’s algorithm, the vertex with the highest number
assigned in its neighborhood is included in the independent set. Moreover, instead of using
purely random numbers, they define a function that assigns a high number, called priority,
to low-degree vertices. Vertices with a high degree get a low priority assigned. Further-
more, this priority function is based on random numbers to differentiate the priorities of
vertices that share the same degree. These improvements have a significant impact on the
performance of their proposed algorithm. Therefore, the algorithm outperformed other
MIS GPU implementations, both in speed and quality.

7

3 Related Work

These studies illustrate the potential for implementing Luby’s algorithm on GPUs. Fur-
thermore, they show the significant impact of preferring low-degree vertices and modifying
Luby’s approach accordingly. These results are fundamental for our approach to the prob-
lem and have inspired our work.

8

CHAPTER 4
Proposed Algorithms

In this chapter, the framework used to develop GPU algorithms is examined. In addition,
the data structure utilized by all proposed algorithms is explained. Lastly, the three algo-
rithms developed in the course of this work are described in detail.

4.1 Development with Kokkos

The Kokkos framework [23, 38, 40] was employed to achieve the objective of solving
the MIS problem on GPUs. This section focuses on the fundamentals of developing an
algorithm with the Kokkos framework because this is crucial to understand the following
algorithms in detail.

In general, the purpose of Kokkos is to develop performance-portable code that can be
executed on a variety of architectures, especially on GPUs. Kokkos enables the creation of
functions that work similarly to the kernel functions of CUDA [45]. These functions are
then called in parallel by a user-specified amount of threads. Depending on the number of
threads that are executed in parallel, the Kokkos framework can run the code on different
parts of the underlying architecture (CPU or GPU). For instance, it is advantageous to run
a large amount of threads on a GPU, while it is beneficial to run the code on the CPU cores
if only a few threads are requested.

Furthermore, Kokkos allows one to execute the exact same code specifically on GPUs or
CPUs in parallel as well as on a single CPU core in serial. This was helpful for conducting
the experiments because it provided an excellent comparison of the proposed algorithms
executed on different architectures. Therefore, the impact of the high degree of parallelism
of GPUs could be analyzed more thoroughly. Further details on the development with
Kokkos can be found in Section A.1.

9

4 Proposed Algorithms

4

0

1 2

3

i 0 1 2 3 4 5 6 7 8 9
xadj[i] 0 1 4 6 9 10
adjncy[i] 1 0 2 3 1 3 1 2 4 3

Figure 4.1: An example graph and the two arrays to store its data.

4.2 Data structure

This section focuses on the data structure utilized by the algorithms. An adjacency matrix
is a common data structure for storing graph data. However, this structure requires a large
amount of memory. In addition, GPUs have limited memory available. Therefore, the
Compressed Sparse Row (CSR) format is used for the algorithms, which requires less
memory. This format stores the entire graph data in two arrays, xadj and adjncy. The
array adjncy stores the destination of each edge, starting from the edges of the vertex v0.
For a vertex vi ∈ V , xadj[i] points to the first entry of adjncy that belongs to vi. Thus, all
edges of vi are listed from adjncy[xadj[i]] to adjncy[xadj[i+ 1]− 1]. The size of adjncy
is 2 ∗ m and the size of xadj is n + 1, because the last entry of xadj points to the end
of the adjncy array. Furthermore, the degree of each vertex v can be obtained by xadj:
deg(vi) = xadj[i+ 1]− xadj[i]. An example graph and its corresponding arrays xadj and
adjncy are shown in Figure 4.1.

An additional array state is used to determine whether a specific vertex is inside of the
calculated independent set. If a vertex vi is part of the independent set, state[i] equals 1 and
0 otherwise. Initially, the entry of each vertex in the array state is set to -1, representing
that a vertex is still in the residual graph, and a decision on whether it is in the independent
set is yet to be made.

The algorithms DUMIS and IDUMIS require information on the degree of the vertices
in the residual graph. Therefore, an array degree is used to store and maintain this in-
formation. Lastly, another array priority saves a randomly generated number between 0
and 1 for each vertex in the graph. This array is required for the proposed algorithms and
its purpose is explained in further detail in Section 4.3 and Section 4.4.

4.3 LUMIS

This first algorithm that was implemented is based on Luby’s algorithm. The fundamental
idea of LUMIS is to assign a random priority to each vertex. In each iteration of the
algorithm, a vertex is added to the solution if it has the highest priority in its neighborhood.
If a vertex is added to the graph, its neighborhood is removed from the graph. This is

10

4.3 LUMIS

Algorithm 1 LUMIS

1: Input: Graph G = (V,E)
2: Output: Maximal independent set I ⊆ V
3: Initialize I ← ∅
4: Initialize array state
5: for all v ∈ V do
6: state[v]← −1
7: end for
8: Initialize array priority ← InitializePriorities() ▷ Assigns a random priority to

each vertex
9: while ∃v ∈ V : state[v] = −1 do

10: for all v ∈ V with state[v] = −1 do
11: if state[u] ̸= 1 ∀u ∈ N(v) then
12: if priority[v] > priority[u] ∀u ∈ N(v) with state[u] = −1 then
13: state[v]← 1
14: state[u]← 0 ∀u ∈ N(v) ▷ Remove neighborhood of vertex in solution
15: end if
16: end if
17: end for
18: end while
19: I ← {v ∈ V : state[v] = 1}
20: return I

repeated until the residual graph is empty. This procedure ensures both independence and
maximality of the solution by design. Algorithm 1 outlines the functionality of LUMIS.

The actual implementation for GPUs is more complex and structured as follows: Ini-
tially, each vertex vi is assigned a priority priority[vi] ∈ [0; 1] at random. To establish that,
a kernel function was implemented. This kernel function is called for each vertex in the
graph and utilizes the Kokkos-Random-Library. This is crucial because common libraries
and functions for random number generation, like the random library of C++, cannot be
executed on GPUs. This form of parallelism that executes a specific kernel function for
each vertex in the graph is used throughout the project.

Thereafter, another kernel function is called that checks for each vertex if it is the vertex
with the highest priority in its neighborhood. This corresponds to Step 12 of Algorithm 1.
It is essential to note that vertices that have been removed from the graph in previous iter-
ations are not considered. If a vertex has the highest priority in its neighborhood, its entry
in the state array is set to 1. Afterwards, the neighborhood of that vertex gets removed
from the graph by setting the state array entry of each vertex in the neighborhood to 0.
Figure 4.2 illustrates the functionality of LUMIS on an example graph.

Additionally, a counter is incremented that represents the number of vertices that were
added to the solution during the current iteration. This counter is shared among all threads

11

4 Proposed Algorithms

4

0

3 1

7

5

6

2

4

0

3 1

7

5

6

2

4

0

3 1

7

5

6

2

x Vertex with priority x

Figure 4.2: Illustration of the execution of the LUMIS algorithm.

and is accessed with atomic operations to prevent race conditions. If the counter is zero
at the end of an iteration, the algorithm concludes and the calculated independent set is
returned. Thus, in contrast to Step 9 of Algorithm 1, the algorithm does not check if there
are any vertices left in the residual graph. Using the counter instead avoids the need for an
additional kernel function. Consequently, the algorithm runs for an additional iteration in
which no changes are made. However, we found that employing the counter requires less
computation time.

Furthermore, the algorithm only includes a vertex in the solution if it has the highest pri-
ority in its neighborhood. This design of Luby’s algorithm ensures the independence of the
calculated solution. In addition, this prevents race conditions, because no adjacent vertices
can be added to the independent set at the same time due to their different priorities. Thus,
the main steps of the algorithm can be executed in parallel using a single kernel function.

4.4 DUMIS

This algorithm is designed similarly to the LUMIS algorithm, which is described in detail
in Section 4.3. The fundamental idea of DUMIS is to add the vertex with the lowest degree
in its neighborhood to the independent set. The enforcement of this idea likely increases the
quality of the solution [30], because adding vertices with a low degree to the independent
set leads to fewer vertices that are removed from the graph afterwards. In a graph, multiple
vertices can have the same degree in a neighborhood. In that case, random priorities are
used to handle these tie-breaks. In the scenario of a tie, the vertex with the highest priority
is selected over the other vertices of the same degree. Each iteration of this algorithm
works similarly to an iteration of LUMIS. The only differences are additional checks that
prioritize a low-degree vertices over vertices of higher degree. This fundamental idea is
taken from Imanaga et al. [34]. Their proposed algorithm is explained in Chapter 3. The
functionality of DUMIS is outlined in Algorithm 2.

Initially, the degree of each vertex is determined by the information stored in the array
xadj, as explained in Section 4.2. Similarly to the algorithm of Imanaga et al. [34], the

12

4.4 DUMIS

Algorithm 2 DUMIS

1: Input: Graph G = (V,E)
2: Output: Maximal independent set I ⊆ V
3: Initialize I ← ∅
4: Initialize array state
5: for all v ∈ V do
6: state[v]← −1
7: end for
8: Initialize array priority ← InitializePriorities() ▷ Assigns a random priority to

each vertex
9: while ∃v ∈ V : state[v] = −1 do

10: for all v ∈ V with state[v] = −1 do
11: if state[u] ̸= 1 ∀u ∈ N(v) then
12: if IsPrioritizedOver(v, u) ∀u ∈ N(v) with state[u] = −1 then
13: state[v]← 1
14: state[u]← 0 ∀u ∈ N(v) ▷ Remove neighborhood of vertex in solution
15: end if
16: end if
17: end for
18: end while
19: I ← {v ∈ V : state[v] = 1}
20: return I
21:
22: function ISPRIORITIZEDOVER(Vertex v, Vertex u)
23: if degree[v] < degree[u] then
24: return True
25: else if degree[v] = degree[u] ∧ priority[v] > priority[u] then
26: return True
27: else
28: return False
29: end if
30: end function

degree is not updated between iterations of the algorithm by default. In later stages of
development, a parameter was introduced to DUMIS to modify the degree updates. The
update frequency f ∈ N determines how often the degree of each vertex in the residual
graph is updated. An update frequency of f implies that degrees are updated every f -th
iteration. We denote a small number for f as a high frequency and vice versa. A higher
update frequency can significantly increase the quality of the calculated solution. However,
more updates come with a crucial computational cost and thus increase the runtime of the
algorithm. An update frequency of 2 was found to provide a high-quality solution without

13

4 Proposed Algorithms

requiring a large amount of additional execution time. This is discussed in more detail
in Section 6.3.

The update of the degrees works as follows: for each vertex v that is inside the residual
graph, meaning that state[v] = −1, a thread is launched that counts the adjacent vertices
of v that are in the remaining graph. This information is then stored in the array degree.
This array is required because the xadj array is not modified based on the residual graph.
Therefore, xadj is only capable of displaying the information of the degree of each vertex
at the beginning of the algorithm.

Figure 4.3 demonstrates how the DUMIS algorithm computes a maximal independent set
while selecting vertices with the lowest degree of a neighborhood. In addition, it illustrates
the impact of the update frequency on the quality of the solution. Due to the higher update
frequency, DUMIS computes a larger independent set, shown in Figure 4.3a, than without
intermediate degree updates, displayed in Figure 4.3b. The first iteration is identical for
both instances. The difference lies in the second iteration. With an update frequency of one,
the degrees of the vertices with priorities 0 and 1 are updated to one, while the degree of the

4

10

1

3

7

8

6

0

x Vertex with priority x

295

4

10

1

3

7

8

6

0

295

4

10

1

3

7

8

6

0

295

(a) Illustration of the execution of the DUMIS algorithm using an update frequency of one.

4

10

1

3

7

8

6

0

x Vertex with priority x

295

4

10

1

3

7

8

6

0

295

4

10

1

3

7

8

6

0

295

(b) Illustration of the execution of the DUMIS algorithm using no intermediate degree updates.

Figure 4.3: Comparison of the DUMIS algorithm with different update frequencies

14

4.5 IDUMIS

vertex with priority 3 is adjusted to two, respectively. Therefore, the vertices with degree
one are selected over the other vertex. Without updating the degrees, all three vertices in
the residual graph have degree three. Thus, the priorities induce a tie-break in which only
the vertex with the highest priority is added to the set. This observation demonstrates that
a higher update frequency can lead to the computation of larger independent sets.

4.5 IDUMIS

Imanaga et al. [34] present another crucial idea that is part of the approach used in this
thesis. LUMIS and DUMIS only calculate a solution once and then conclude. In contrast,
many MIS algorithms calculate an initial solution that is then improved over time until a
local maximum is found or a time limit is reached (for instance, see [20, 28, 41, 43]). There-
fore, we designed the algorithm IDUMIS that runs multiple rounds of DUMIS improving
the initial solution over time. However, IDUMIS does not strategically improve the initial
maximal independent set I provided by the DUMIS algorithm. Instead, each vertex v ∈ I
is removed from the solution by a chance of 50%. Subsequently, the removed vertices
and their respective neighborhoods are added back to the residual graph. Thereafter, DU-
MIS is executed again on the resulting graph. This process likely computes a different
solution as in the previous round. This procedure is repeated until a user-specified time
limit is reached. During this process, the best solution found so far is stored. Technically,
this process can be performed with the LUMIS and the DUMIS algorithms. However, we
show that DUMIS produces significantly larger solutions than LUMIS. Therefore, DUMIS
is used with an update frequency of 1, since the objective of this approach is to achieve a
high-quality solution within a given time limit. The fundamental concepts of IDUMIS are
examined in Algorithm 3.

In detail, if a vertex v of the current solution is removed, state[v] and state[u] are set
to -1 ∀u ∈ N(v). This process adds the closed neighborhood of v back to the residual
graph. Thus, they are involved in the next execution of the DUMIS algorithm. How-
ever, there can be conflicts by adding back the whole closed neighborhood of the vertices
that have been removed from the solution. It is possible that these vertices remain adja-
cent to a different vertex that was not removed from the solution during the preceding step.
Therefore, a kernel function is called for each vertex v that remains in the solution. The
entry in the array state of each vertex adjacent to v is then set to zero. This ensures the
independence of the consecutive solution and resolves the conflict.

The concept of IDUMIS can produce larger maximal independent sets. This is illustrated
in Figure 4.4. The initial round of IDUMIS produces an independent set of size four,
which can be observed in Figure 4.4a. Subsequently, the vertices with priorities 3 and 6
are removed from the independent set. Consequently, both the vertices and part of their
neighborhoods are added to the residual graph. Not all vertices of their neighborhoods can
be added back to the residual graph because a portion of them is adjacent to a vertex that
remains in the solution. For example, the vertex with priority 2 is in the neighborhood of

15

4 Proposed Algorithms

6

0

1

3

7

10

4

5

x Vertex with priority x

298

6

0

1

3

7

10

4

5

298

6

0

1

3

7

10

4

5

298

(a) Round one of the IDUMIS algorithm.

6

0

1

3

7

10

4

5

x Vertex with priority x

298

6

0

1

3

7

10

4

5

298

6

0

1

3

7

10

4

5

298

(b) Round two of the IDUMIS algorithm.

Figure 4.4: Illustration of the execution of the IDUMIS algorithm.

the vertex with priority 3. However, it cannot be added to the residual graph because it
is adjacent to the vertex with priority 9, which is part of the independent set. Figure 4.4b
shows the second round of IDUMIS that is performed on the residual graph. Since IDUMIS
uses DUMIS with an update frequency of 1, the degree of each vertex in the residual graph
is updated. Therefore, the resulting independent sets after the first and second round differ.
Since the solution after the second round is larger, IDUMIS stores that solution. This
overwrites the initial independent set improving the quality.

16

4.5 IDUMIS

Algorithm 3 IDUMIS

1: Input: Graph G = (V,E)
2: Output: Maximal independent set I ⊆ V
3: Initialize Imax ← ∅
4: Initialize I ← ∅
5: Initialize J ← ∅
6: while time limit is not reached do
7: J ← DUMIS(G \ I)
8: I ← I ∪ J
9: if | I | > | Imax | then

10: Imax ← I
11: end if
12: I ← RemoveV ertices(I)
13: end while
14: return I
15:
16: function REMOVEVERTICES(Set of Vertices I)
17: for all v ∈ I do
18: Initialize random number r ∈ [0; 1]
19: if r < 0.5 then
20: I ← I \ {v}
21: end if
22: end for
23: return I
24: end function

17

4 Proposed Algorithms

18

CHAPTER 5
Data Reductions

There are multiple known data reductions of the MIS problem. Using data reductions can
significantly improve the performance and quality of MIS algorithms [29, 35]. Hence, three
reductions were implemented. In this chapter, the reductions are outlined and their impact
is analyzed in the experiments in Chapter 6.

5.1 Description of the Data Reductions

Theorem 1 (Degree-one reduction [35])
Vertices of degree one are always part of at least one maximum independent set. Therefore,
|MIS(G)| = |MIS(G\N [v])∪{v}| for v ∈ V with deg(v) = 1. If two vertices of degree
one are adjacent to each other, only one of those vertices can be inside of the MIS.

The first and most simple reduction is called degree-one reduction (see Theorem 1). This
reduction rule is illustrated in Figure 5.1a. The vertices 0, 2 and 3 have degree one in
this example, while vertices 0 and 3 are adjacent to each other. To resolve the tie-break
of vertices 0 and 3, only one of them is added to the independent set (selecting the ver-
tex with lower vertex ID). Subsequently, the neighbors of the added vertices are removed
from the graph.

Definition 1 (Isolated vertex)
An isolated vertex v is a vertex that is part of a clique C and has no adjacent vertices outside
of C: N [v] = C.

Theorem 2 (Isolated vertex reduction [29])
Consider the isolated vertex v ∈ V of the clique C ⊆ V . By definition, v is only adjacent
to other vertices of C. Vertex v must be in at least one maximum independent set. Thus,
|MIS(G)| = |MIS(G \ C) ∪ {v}|. If multiple vertices of the same clique are isolated,
either one of them can be included in the MIS.

19

5 Data Reductions

3

5

4

0

1

2

6

(a) Degree-one reduction.

3

54

01

2

6

x Vertex with ID x

(b) Isolated vertex reduction.

3

54

01

2

(c) Domination reduction.

Figure 5.1: Illustration of the reduction rules.

The next reduction, outlined in Theorem 2, is connected to cliques, which are a structure
that can be found within graphs. Furthermore, a clique is a crucial structure for the
MIS problem, because one vertex of a clique can be part of a MIS at most. Figure 5.1b
shows a graph that contains a clique, made up of vertices 0, 1, 2 and 3. By definition,
vertices 0 and 1 are isolated. Therefore, either one of the two vertices can be added to the
independent set, while the remainder of the clique can be removed.

Definition 2 (Domination)
Consider two vertices u, v ∈ V . The vertex u dominates v if N [u] ⊆ N [v].

Theorem 3 (Domination reduction [35])
Consider two vertices u, v ∈ V such that u dominates v. Then v can be removed from
the graph: |MIS(G)| = |MIS(G \ {v})|. In the special case that two vertices share
the same closed neighborhood (N [u] = N [v]), either of the two vertices can be removed
from the graph.

The domination reduction (see Theorem 3) is illustrated in Figure 5.1c. In this example,
vertex 1 has a closed neighborhood consisting of the vertices 0, 1, 2, and 3. The closed
neighborhood of vertex 0 contains the same vertices, but in addition, vertex 5 is also a part
of it. Therefore, vertex 1 dominates vertex 0 and vertex 0 is removed from the graph.

5.2 Implementation of the Data Reductions

The objective was to implement the reductions for parallel execution on GPUs. The rea-
son for that was to potentially reduce the time required to apply the reductions and hence
improve the performance of the algorithm. It should be noted that the degree one and the
isolated vertex reduction do not improve the quality of the calculated solution for the DU-
MIS algorithm. This is the case because those reductions strongly depend on the degrees

20

5.2 Implementation of the Data Reductions

of the vertices. As described in detail in Section 4.4, DUMIS includes vertices with the
lowest degree in its neighborhood to the solution. Therefore, DUMIS conducts the same
decisions that are induced by these reductions. The only difference is in the handling of
tie-breaks. While DUMIS relies on random numbers for tie-breaks, the reductions prefer
the vertex with the lower vertex ID. Therefore, only the domination reduction has a positive
effect on the independent set size produced by DUMIS. Thus, we conducted experiments
with the reductions using the LUMIS algorithm in Section 6.4.

When investigating the reductions thoroughly, one can notice that implementing the
domination reduction already includes the isolated vertex reduction as well as the degree-
one vertex reduction. In detail, a vertex v ∈ V with degree one always dominates its only
adjacent vertex u ∈ V . The adjacent vertex u must have at least degree one because it is
adjacent to v. However, it may have additional neighbors. Therefore, N [v] ⊆ N [u], which
implies that v dominates u. Thus, according to the domination reduction, u can be removed
from the graph. Figure 5.2a demonstrates this principle.

Furthermore, an isolated vertex v ∈ V is part of a clique C. By definition, all ver-
tices of C are adjacent to each other, while v is only adjacent to the members of the
clique. Therefore, the closed neighborhood of v and the clique C represent the same
set of vertices: N [v] = C. Moreover, this implies N [v] ⊆ N [u] ∀u ∈ C. Thus, v dom-
inates each vertex of the clique. According to the domination reduction, this means that
all vertices of C, except for v, can be removed from the graph. Figure 5.2b illustrates
this principle in detail. The only difference is that the domination reduction only removes
vertices. In contrast, the other reductions add vertices to the independent set and remove
their neighborhood. However, the domination reduction removes the entire neighborhood
of degree-one vertices and isolated vertices. Therefore, it is ensured that the subsequently
executed algorithm includes such vertices in the independent set.

3

54

01

N[v]1 N[v]0

2

6

(a) Degree-one reduction based on the domina-
tion reduction.

3

54

01

N[v]1 N[v]6

2

6

(b) Isolated vertex reduction based on the domi-
nation reduction.

Figure 5.2: Illustration of the relationship between the reductions.

21

5 Data Reductions

As shown, properly implementing the domination reduction covers the degree-one re-
duction and the isolated vertex reduction. The domination reduction was added to the
implementation by defining a kernel function that is executed for each vertex in the graph.
An outline of the implementation is shown in Algorithm 4. In detail, the algorithm de-
termines for each vertex if it is dominated by another vertex. We found that sorting the
edges of the input graph allows us to implement the reductions more effectively, so that
they require significantly less execution time. Therefore, using reductions in our approach
requires sorted input graphs. To check if a vertex v ∈ V is dominated by another vertex,
we check each adjacent vertex u ∈ N(v) at a time. It is checked if each neighbor of u
is also a neighbor of v. As we presuppose sorted input graphs for this process, we only
need to go through the neighborhoods of v and u once. If u dominates v, v is removed
from the graph. Otherwise, this process is repeated for the next vertex in N(v). If v is not
dominated by another vertex, it remains in the graph. This process reduces the size of the
graph. Consequently, the reduction can be repeated if vertices have been removed during
the preceding execution.

Algorithm 4 Domination Reduction

1: Input: Graph G = (V,E), Array state
2: Output: Array state
3: for all v ∈ V do
4: for all u ∈ N(v) do
5: if N [u] ⊆ N [v] then
6: if N [u] ! = N [v] ∨ vID > uID then ▷ Tie-breaks via vertex ID
7: state[v]← 0
8: end if
9: end if

10: end for
11: end for
12: return state

22

CHAPTER 6
Experimental Evaluation

In this chapter, the experiments conducted over the course of this work are presented. First,
the experimental environment is described in detail in Section 6.1. Thereafter, informa-
tion about the datasets used for the experiments is provided in Section 6.2. Subsequently,
the performances of the proposed algorithms are compared for different parameters in
Section 6.3. Section 6.4 focuses on the runtime and the impact on the quality of the so-
lution introduced by the reductions. Finally, the proposed algorithms are compared with
recently published algorithms in the field in Section 6.5.

6.1 Methodology

The proposed algorithms are executed on a CPU and on a GPU. This allows an analysis of
the impact of the high degree of parallelism of GPUs on a MIS algorithm. Furthermore, the
MMWIS algorithm [43] was used in the experiment, which is a CPU algorithm. MMWIS
was executed with the mmwiss configuration. In addition, ECL-MIS [32] was used in the
experiment. There exist two versions of ECL-MIS: one using OpenMP for the CPU, the
other one utilizing CUDA for the GPU. For the following experiments, only the GPU-based
version of ECL was used. Therefore, it provides a comparison of the proposed algorithms
with another GPU implementation. ECL utilizes deterministic random numbers. Addition-
ally, ECL does not accept arguments like seeds to adjust the generation of random numbers.
Therefore, each execution of the algorithm produces the same maximal independent set.

All experiments were carried out on the BwUniCluster2.0 [1]. The algorithms running
on CPUs were executed on the single partition of the cluster with an Intel Xeon Gold 6230
(20 cores) running at 2.1 GHz. The GPU-based algorithms were executed on the gpu_4
partition using an Intel Xeon Gold 6230 (20 cores) running at 2.1 GHz and a NVIDIA Tesla
V100 with 32 GB VRAM. However, MMWIS is a serial algorithm. Therefore, MMWIS
could only utilize one of the 20 CPU cores provided. To compare the proposed algorithms

23

6 Experimental Evaluation

more accurately to MMWIS, the proposed algorithms were also executed in serial mode.
Moreover, all experiments were executed with 150GB of RAM available.

The proposed algorithms are implemented in C++ and compiled with gcc 13.3.0 using
the -O3 flag for full optimization. For executions on the GPU, the code was compiled with
nvcc 12.2. To run the proposed algorithms on the different architectures (GPU, CPU, and
in serial), the project was compiled using three different Kokkos installations: one that
uses OpenMP, another that uses CUDA, and finally one that executes the code in serial on
a single CPU core. To distinguish the different architectures used for the proposed algo-
rithms, the results are denoted as follows: AlgorithmArchitecture. For example, DUMISGPU

denotes the results of the DUMIS algorithm executed on the GPU. Moreover, for some of
the results, LUMIS and DUMIS are abbreviated as L and D, respectively.

If not stated otherwise, each algorithm was executed five times for each graph instance
using seeds 1000, 2000, 3000, 4000, and 5000 for random number generation. Afterwards,
the average size of the maximal independent sets as well as the average execution time were
calculated to produce the displayed results. As previously mentioned, ECL is completely
deterministic. Therefore, each execution produced the same solution size. Despite that, the
average of the five runs of ECL was calculated for its execution times for each instance.
For progress charts showing the size of the best solution found over time (see Figure 6.5),
the algorithms were executed once for each graph instance with a time limit of one hour
using seed 1000 for random number generation.

Furthermore, we use performance profiles [10] to compare the execution times and so-
lution sizes of LUMIS, DUMIS, and ECL. Let P be the set of graph instances on which
the experiment was conducted. In addition, tpAlg denotes the runtime and spAlg the solution
size the Algorithm Alg delivered for the graph instance p ∈ P . Moreover, tpbest and spbest
describe the best time and size achieved for graph p among all algorithms, respectively. For
execution times, a performance profile shows the fraction of all graphs an algorithm Alg

solved within a factor of τ of the best execution time:
|{p∈P :tpAlg≤τ ·tpBest}|

|P | . If execution times
are displayed, τ ≥ 1. For solution quality, performance profiles display the fraction of all
graphs algorithm Alg solved with a solution size greater than τ times the largest solution:
|{p∈P :spAlg≥τ ·spBest}|

|P | . In this case, 0 < τ ≤ 1. In general, if an algorithm shows that it solved
instances with τ = 1, it performed better than the competing algorithms for such instances.
Furthermore, the higher the fraction of instances that were solved with a value for τ close
to 1, the better the algorithm performed.

6.2 Datasets

In total, 32 different graph instances were used in the experiment. Their proportions and
the source they originate from are displayed in Table 6.1. The graphs were converted
from the SNAP to the METIS format, since all of our proposed algorithms and MMWIS
use this graph format. Thereafter, self-loops were removed from each instance, and the

24

6.2 Datasets

Graph Vertices Edges Origin

webbase-2001 118 142 155 868 338 910 [12, 19]
friendster 65 608 366 1 806 067 135 [24, 26]
twitter-2010 41 652 230 1 202 513 046 [12, 19, 18]
it-2004 41 291 594 1 034 978 210 [12, 19]
uk-2005 39 454 746 1 566 054 250 [12, 19, 11]
gsh-2015-tpd 30 809 122 489 675 683 [12, 19, 22]
arabic-2005 22 744 080 558 325 967 [12, 19, 11]
uk-2002 18 520 486 264 722 307 [12, 19, 11]
eu-2015-tpd 6 650 532 112 106 091 [12, 19, 22]
enwiki-2013 4 206 785 91 961 847 [12, 19]
livejournal 3 997 962 34 681 189 [24, 26]
orkut 3 072 441 117 185 083 [24, 26]
hollywood-2011 2 180 759 114 492 816 [12, 19]
roadNet-CA 1 965 206 2 766 607 [24, 16]
as-skitter 1 696 415 11 095 298 [24, 13]
dewiki-2013 1 532 354 33 095 282 [12, 19]
in-2004 1 382 870 13 591 473 [12, 19]
roadNet-TX 1 379 917 1 921 660 [24, 16]
youtube 1 134 890 2 987 624 [24, 26]
roadNet-PA 1 088 092 1 541 898 [24, 16]
web-Google 875 713 4 322 051 [24, 16]
eu-2005 862 664 16 138 468 [12, 19]
amazon-2008 735 323 3 523 472 [12, 19]
web-BerkStan 685 230 6 649 470 [24, 16]
web-NotreDam 325 729 1 103 835 [24, 16, 9]
cnr-2000 325 557 2 738 969 [12, 19]
web-Stanford 281 903 1 992 636 [24, 16]
ca-CondMat 23 133 93 468 [24, 14]
ca-AstroPh 18 772 198 080 [24, 14]
ca-HepPh 12 008 118 505 [24, 14]
ca-HepTh 9 877 25 985 [24, 14]
ca-GrQc 5 242 14 490 [24, 14]

Table 6.1: Origin and number of vertices and edges of the graphs used for the experiment.

graphs were converted to undirected graphs. This conversion process was performed using
the networkit framework [39]. MMWIS as well as the proposed reductions in Chapter 5
require sorted METIS graph files. Therefore, the edges were sorted using an algorithm
provided by KaMIS[2], the framework from which MMWIS originates. ECL requires
graphs in a different graph format. However, the developers of ECL provided a conversion

25

6 Experimental Evaluation

algorithm in their framework, which allowed us to convert the sorted METIS graph files to
the required format. Furthermore, the graphs were obtained from the Laboratory for Web
Algorithmics[4] as well as the Stanford Large Network Dataset Collection [3].

6.3 Proposed Algorithms

The results of the experiments presented in this section demonstrate the impact of certain
design decisions made during the development of the proposed algorithms.

The most significant design decision was to introduce the fundamental concept of pre-
ferring low-degree vertices over high-degree vertices. The impact of this concept can
be demonstrated by comparing the quality and execution time of LUMIS and DUMIS.
Table 6.2 shows the execution time of both algorithms on the different architectures for
a portion of the graph instances. Furthermore, it is notable that the algorithms produce
different maximal independent sets on the different architectures. This is the case because
the algorithms involve random number generation, which generates different outputs for
the same seed when executed on different architectures. However, the proposed algorithms
produce similar independent set sizes for all of the architectures. Therefore, only the sizes
produced on the GPU are displayed in Figure 6.1. Furthermore, we executed MMWIS for
this chart once for each graph instance using seed 1000 and a time limit of 10 hours. In that
time, MMWIS is able to produce exact or high-quality solutions for most graph instances.
This provides a comparative value for the proposed algorithms and allows us to evaluate
their produced sets more accurately. Moreover, the figure displays the sizes produced by
IDUMIS with a time limit of one hour.

Figure 6.1 shows that the selection of low-degree vertices over high-degree vertices has
a crucial impact on the size of the solution. For each graph, DUMIS computes a larger
maximal independent set than LUMIS. In addition, the figure shows that the concept of
IDUMIS works, since it produces even larger independent sets than DUMIS for all in-

Graphs LGPU LCPU LSERIAL DGPU DCPU DSERIAL

webbase-2001 77.48 711.53 5 516.43 79.78 702.34 5 273.47
it-2004 131.02 402.26 2 582.63 126.44 443.40 3 023.72
arabic-2005 72.30 216.10 1 463.24 62.83 223.02 1 535.69
uk-2002 25.83 186.40 970.37 22.58 186.34 926.96
as-skitter 3.97 16.31 86.93 3.08 14.72 80.34
dewiki-2013 6.11 32.81 151.58 5.07 26.24 132.64
web-Google 1.51 7.04 48.41 1.27 5.87 38.21
ca-HepTh 0.19 0.15 0.33 0.12 0.10 0.30

Table 6.2: Time required to compute MIS for the different approaches and architectures
in milliseconds.

26

6.3 Proposed Algorithms

ca-HepTh

web-Google

dewiki-2013
as-sk

itter
uk-2002

arabic-2
005

it-2004

webbase-2001

Instances

104

105

106

107

108

So
lu

tio
n

Si
ze

LUMIS
DUMIS
IDUMIS
MMWIS

Figure 6.1: Average solution sizes of LUMIS, DUMIS, and IDUMIS compared to the solution of
MMWIS. IDUMIS was executed with a time limit of one hour and MMWIS with a
ten hour time limit.

Graphs LUMIS DUMIS

webbase-2001 7.8 11.0
it-2004 7.8 28.2
arabic-2005 6.6 10.0
uk-2002 6.6 7.2
as-skitter 6.4 6.0
dewiki-2013 7.2 6.0
web-Google 6.2 5.4
ca-HepTh 5.6 3.4

Table 6.3: Amount of iterations the different algorithms required when executed on the GPU.

stances. Table A.1 shows further results of this comparison. On average, LUMIS produced
87.3%, DUMIS 97.1%, and IDUMIS 99.6% of the independent set sizes of MMWIS on
the graph instances displayed in the table.
Furthermore, the results in Table 6.2 demonstrate that the algorithms are most effective
when executed on the GPU. The only exception is the smallest graph, which is displayed at
the bottom of the table. In that case, the CPU architecture provides the solution faster. This
can be explained by the small size of the graph. The high degree of parallelism offered by
GPUs outperforms the CPU execution only for larger graphs. As expected, executing the
algorithms in serial results in the slowest execution times.

27

6 Experimental Evaluation

Moreover, DUMIS outperforms LUMIS in terms of runtime in most cases, which may
seem unexpected because LUMIS and DUMIS are structured similarly, but DUMIS re-
quires additional checks and functions. To determine the cause of this observation, the
number of iterations required by the algorithms is measured for the GPU. The results of
this analysis are shown in Table 6.3. Each iteration required by the algorithms comes
with a computational cost. Thus, if LUMIS needs more iterations than DUMIS for the
same graph instance, it could explain the observed shorter runtimes of DUMIS. In general,
there are different structures that lead to more iterations. For example, the graph shown
in Figure 6.2 is solved by DUMIS in a single iteration, while LUMIS requires an addi-
tional iteration. Figure 6.3 displays another example graph. In this case, LUMIS solves
the problem in a single iteration, while DUMIS needs two iterations. Table 6.3 shows
that LUMIS requires more iterations on average than DUMIS for smaller graph instances.
However, especially for the largest graph instances, at the top of the table, DUMIS requires
significantly more iterations.

Another aspect to consider is the number of vertices that remain in the residual graph
per iteration. The runtime of a single iteration is strongly dependent on the amount of
vertices that remain to be checked. Figure 6.4 compares LUMIS and DUMIS on that prop-
erty. All of these figures show a similar pattern: although DUMIS needs more iterations
than LUMIS for these graphs, the additional iterations are executed with a low amount of
vertices. In most cases with fewer than 103 vertices. Therefore, these additional iterations

1

4 7

6 2

5

x Vertex with priority x

3

LUMIS:

1

4 7

6 2

5

3

1

4 7

6 2

5

3

1

4 7

6 2

5

3

DUMIS:

1

4 7

6 2

5

3

Figure 6.2: Example graph that requires more iterations to solve for LUMIS.

28

6.3 Proposed Algorithms

x Vertex with priority x

LUMIS:

4 7

6

5

3

DUMIS:

4 7

6

5

3

4 7

6

5

3

4 7

6

5

3

4 7

6

5

3

Figure 6.3: Example graph that requires more iterations to solve for DUMIS.

consume a small amount of time compared to the iterations at the beginning with a larger
number of vertices. Especially during the first three iterations, DUMIS removed most of
the vertices from the graph. At the same time, LUMIS removes notably fewer vertices.
Thus, these iterations consume a large amount of time. This observation explains why
DUMIS outperforms LUMIS in terms of execution time for most graph instances.

Overall, these experiments show that GPUs can significantly accelerate MIS algorithms.
Furthermore, they demonstrate that DUMIS introduces crucial improvements and outper-
forms LUMIS in quality and runtime. Even for the graph instance LUMIS solves slightly
faster, the lack of quality of the solutions is decisive. For that reason, IDUMIS is based on
DUMIS. Furthermore, these results show that IDUMIS is capable of significantly improv-
ing the initial solution provided.

In Section 4.4, we introduced the update frequency parameter. To analyze its impact
on DUMIS, we measured the execution time and independent set size for different update
frequency values. The results are listed in Table 6.4. Furthermore, we denote DUMISf

as DUMIS with an update frequency of f . As expected, a higher update frequency in-
creases the execution time of DUMIS for most instances. Additionally, a higher update
frequency results in larger independent sets. However, we want to highlight the differ-
ence between the update frequencies 1 and 2. The quality of the solutions produced by
DUMIS1 is only slightly better than the quality of DUMIS2. However, the execution time
of DUMIS1 is significantly longer. Consequently, we conclude that 2 is the optimal update

29

6 Experimental Evaluation

frequency for DUMIS, since it provides comparably low execution times while achieving
relatively large solutions.

LUMIS DUMIS

2 4 6
Iteration

101

102

103

104

105

106

107

Re
m

ai
ni

ng
 v

er
tic

es

uk-2002

(a) Vertices in the residual graph per iteration for the
graph uk-2002.

2 4 6 8
Iteration

101

102

103

104

105

106

107

Re
m

ai
ni

ng
 v

er
tic

es

arabic-2005

(b) Vertices in the residual graph per iteration for the
graph arabic-2005.

0 5 10 15 20 25
Iteration

101

103

105

107

Re
m

ai
ni

ng
 v

er
tic

es

it-2004

(c) Vertices in the residual graph per iteration for the
graph it-2004.

2 4 6 8 10
Iteration

101

103

105

107

Re
m

ai
ni

ng
 v

er
tic

es

webbase-2001

(d) Vertices in the residual graph per iteration for the
graph webbase-2001.

Figure 6.4: Diagrams that investigate the amount of vertices that are in the residual graph for
LUMIS and DUMIS per iteration.

30

6.3
Proposed

A
lgorithm

s

Frequencies 1 2 3 None

Instance s t s t s t s t

friendster 35 880 760 1 205.43 35 880 750 264.10 35 856 011 250.24 35 855 467 249.40
gsh-2015-tpd 20 594 726 1 146.79 20 594 678 187.00 20 578 861 179.02 20 578 315 176.95
livejournal 2 058 441 20.47 2 058 442 8.20 2 057 180 7.72 2 057 160 7.68
hollywood-2011 327 857 28.08 327 857 7.30 327 847 7.21 327 847 7.18
roadNet-CA 896 238 1.45 896 237 1.18 892 977 1.18 892 811 1.20
youtube 855 275 8.27 855 274 1.70 855 199 1.60 855 199 1.57
cnr-2000 225 492 6.85 225 492 1.32 225 405 1.08 225 394 1.03
ca-HepPh 4 986 0.37 4 986 0.20 4 986 0.21 4 986 0.20

Table 6.4: Average best solution size s and time t in milliseconds for different update frequencies of DUMIS. Best sizes and times among
all update frequencies are marked bold.

31

6 Experimental Evaluation

6.4 Data Reductions

This section analyzes the performance of the data reductions implemented. As previously
explained, DUMIS is not affected by the reductions to the same extent as LUMIS. There-
fore, we compare LUMIS with and without reductions applied to the graph. The results
of the LUMIS algorithm with reductions enabled are denoted with LUMISRED. After ap-
plying the reductions to the initial graph, its size is reduced. Therefore, the connectivity
of the graph has changed, and it is possible that the reductions can be executed again, re-
ducing the size of the graph even further. We applied the reductions only once, denoted by
LUMIS1

RED. Furthermore, we applied the reductions repeatedly until no further reductions
were possible. This process is denoted by LUMISR

RED.
Table A.2 displays the results of the experiment for each graph instance. Most impor-

tantly, it can be observed that the reductions largely increase the sizes of the independent
sets produced by LUMIS. However, the execution time increases significantly when reduc-
tions are used, especially for larger graphs. The time required for the reductions varies
greatly for different graph instances. As expected, applying the reductions repeatedly in-
creases the quality as well as the execution time even further. Considering the high exe-
cution times of LUMISRED for large graph instances, the reductions should only be used
in non-time-critical applications or on small graphs. Therefore, it can be advantageous to
use LUMIS1

RED instead of LUMISR
RED, depending on the available time. However, the

experiments show that GPUs are capable of performing reductions on various graph in-
stances effectively. In addition, we note that LUMISR

RED solves the five smallest graph
instances and the graph hollywood-2011 optimally, showing the potential of implementing
data reductions for MIS algorithm.

6.5 Comparison with Competing Algorithms

In this section, the proposed algorithms are compared with the other MIS algorithms, which
we mention in Section 6.1. First, we present experiments comparing the proposed algo-
rithms with the serial CPU implementation of MMWIS. Subsequently, experiments that
compare the proposed algorithms with the GPU implementation ECL are evaluated.

Figures 6.5a and 6.5b illustrate the development of the maximal independent set size for
the different algorithms over time for small and medium-sized graphs. The time limit of all
progression experiments was set to one hour for each algorithm. Firstly, it can be observed
that IDUMIS converges quickly for all of the different architectures used in the experi-
ment. Moreover, the execution on the GPU is the quickest, followed by the execution on
multiple CPU cores. As expected, serial execution of IDUMIS is the slowest of the three
architectures. However, IDUMIS converges faster than MMWIS for all architectures. Dur-
ing the later stages of the execution, MMWIS manages to find larger maximal independent
sets than IDUMIS.

32

6.5 Comparison with Competing Algorithms

IDUMISGPU IDUMISCPU IDUMISSERIAL MMWIS

10 1 101 103

Time (in seconds)

395 000

397 500

400 000

402 500

405 000

407 500

Be
st

 so
lu

tio
n

siz
e

web-BerkStan

(a) Progression chart for the graph web-BerkStan.

10 2 100 102

Time (in seconds)

640 000

650 000

660 000

670 000

Be
st

 so
lu

tio
n

siz
e

roadNet-TX

(b) Progression chart for the graph roadNet-TX.

10 1 100 101 102 103

Time (in seconds)

1.165

1.170

1.175

1.180

1.185

1.190

Be
st

 so
lu

tio
n

siz
e

1e7 uk-2002

(c) Progression chart for the graph uk-2002.

100 101 102 103

Time (in seconds)
1.34

1.35

1.36

1.37

1.38

Be
st

 so
lu

tio
n

siz
e

1e7 arabic-2005

(d) Progression chart for the graph arabic-2005.

Figure 6.5: Progression charts for different graph instances that show the development of the com-
puted independent set over time for the algorithms.

For larger instances, shown in Figures 6.5c and 6.5d, a similar performance can be ob-
served. IDUMIS also converges quickly for large instances. However, towards the end of
the time limit, MMWIS finds solutions of higher quality than IDUMIS. In summary, the
progression charts show that MMWIS outperforms IDUMIS for long time limits. However,
IDUMIS shows excellent scalability and convergence speed. Therefore, IDUMIS outper-
forms MMWIS for short time limits. Furthermore, the results demonstrate the acceleration
that can be achieved by the execution of IDUMISGPU over the other architectures. Further
results of this experiment are shown in Figure A.1.

33

6 Experimental Evaluation

Table A.3 shows the average sizes of the maximal independent sets that were produced
by the algorithms within a time limit of one hour for all graph instances. It can be observed
that MMWIS produced a significantly larger independent set for nearly all graph instances.
Moreover, these results show that the GPU execution achieves the best solutions in com-
parison to the other architectures on which IDUMIS was executed. Each round on the GPU
is notably faster than a round on the CPU (see Table 6.2). Therefore, the GPU execution
performs more rounds within the given time limit. Thus, it achieves better solutions for the
majority of instances. Furthermore, MMWIS was unable to compute a solution in the given
time limit of one hour for four graph instances. The three graphs with the highest number
of edges (uk-2005, twitter-2010, friendster) exceed the graph size limit of MMWIS. It can
only compute solutions of graphs that have 231 edges or less because it uses 32-bit integers
to store edge data. In addition, each algorithm used in the experiments stores both direc-
tions of each edge (u, v) ∈ E: (u, v) and (v, u). Therefore, graphs with more than 231

edges exceed that limit.
To analyze the convergence speed of each algorithm, Table A.3 shows the average time

required to produce a solution within 99.5% of the size of the largest solution found by each
algorithm. The results show that IDUMIS converges significantly quicker than MMWIS.
This highlights that IDUMIS outperforms MMWIS for small time limits. However, IDU-
MIS converges within 1% of the given time limit for nearly all graph instances. Conse-
quently, IDUMIS should be improved to utilize the given time more effectively, especially
for large time limits. For example, the reductions explained in Chapter 5 can be applied
to the graph before IDUMIS is executed. Half of the given time limit could be used to
perform the reductions repeatedly. This adjustment could lead to a more efficient usage of
the given time and could increase the independent set size produced by IDUMIS.

Finally, we compare the proposed algorithms executed on the GPU with ECL. ECL only
produces one solution when executed. In contrast, IDUMIS produces a large number of
solutions within a given time limit. Therefore, ECL is compared to LUMIS and DUMIS in
this section, since these algorithms are designed similarly.

We compared the solution size and execution times of the algorithms using performance
profiles in Figure 6.6. The graphs uk-2005, twitter-2010, and friendster were excluded
from this experiment since ECL is unable to provide a solution for these instances (see
Table A.4). Figure 6.6a displays the performance profile for execution times. ECL solves
approximately 55% of the instances fastest. In contrast, LUMIS and DUMIS2 solved ap-
proximately 20% of the instances faster than the other algorithms. In addition, ECL shows
the least deviation of the fastest time for the instances it did not solve fastest. Therefore,
ECL performed best in terms of execution time among the algorithms. Contrary, LUMIS
showed the longest execution times with a factor of up to almost 6.5 compared to the best
runtime, indicating it performs poorly in this regard. Moreover, DUMIS2 and DUMISNone

achieved almost identical runtimes.
The performance profile for the solution sizes is shown in Figure 6.6b. This figure clearly

illustrates that LUMIS achieved the smallest independent sets by a large margin. LUMIS
produced solutions ranging from approximately 93 to 82 % of the best solutions. We

34

6.5 Comparison with Competing Algorithms

DUMIS2 DUMISNone ECL LUMIS

1 2 3 4 5 6 70.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

(a) Execution times.

0.8000.8250.8500.8750.9000.9250.9500.9751.0000.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

(b) Independent set sizes, LUMIS included.

0.9920.9930.9940.9950.9960.9970.9980.9991.0000.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

(c) Independent set sizes, LUMIS excluded.

Figure 6.6: Performance profiles for solution size and execution time. ECL cannot solve the
graphs uk-2005, twitter-2010, and friendster. Therefore, these instances were excluded
from this experiment.

adjusted the limits of the x-axis of the diagram to analyze the performance of the other
algorithms more thoroughly. The resulting performance profile is shown in Figure 6.6c.
The figure illustrates that DUMIS2 achieves the best solution sizes for over 95% of the
instances. In terms of solution sizes, DUMISNone and ECL perform almost identically.
Both algorithms show a decrease in quality of up to 0.7% and solve approximately 80% of
the graphs within 99.8% of the best solution size achieved.

35

6 Experimental Evaluation

Furthermore, the exact results for each graph instance are shown in Table A.4. ECL did
not compute a solution for the graphs uk-2005, twitter-2010, and friendster due to its 32-bit
integer size limit. The execution time of ECL is significantly lower than the execution times
of the proposed algorithms for small and medium-sized graphs. However, for large graph
instances, LUMIS and DUMIS compute their solutions faster than ECL. This demonstrates
that the proposed algorithms achieve better scalability than ECL.

The experiments conducted identify weaknesses of the proposed algorithms. Especially
IDUMIS indicates room for improvement when executed with large time limits. Further-
more, the execution time of LUMIS and DUMIS is relatively long for small graph in-
stances. However, we showed that DUMIS and IDUMIS can outperform other MIS algo-
rithms for certain time limits or graph sizes. In addition, we demonstrated that LUMIS and
DUMIS show remarkable scalability.

36

CHAPTER 7
Discussion

Finally, we reflect on the experiments of this thesis and summarize the issues and advan-
tages of the proposed algorithms in Section 7.1. Thereafter, we provide input for potential
future work in Section 7.2.

7.1 Conclusion

In this thesis, we explained in detail how we implemented Luby’s algorithm for GPUs us-
ing the Kokkos framework. Furthermore, we proposed three algorithms: LUMIS, DUMIS,
and IDUMIS. We implemented various improvements to Luby’s approach. The main im-
provement was prioritizing low-degree over high-degree vertices. These improvements led
to DUMIS, which produces larger maximal independent sets than LUMIS, while requiring
less execution time for most graph instances.

Furthermore, we demonstrated that the frequency of updating the degrees of the ver-
tices in the residual graph has a significant impact on the performance of DUMIS. A higher
update frequency requires more runtime for most graph instances, but produces larger max-
imal independent sets at the same time. DUMIS with a high update frequency produces
larger independent sets than ECL. Although DUMIS is slower for small and medium-sized
graph instances, DUMIS is capable of outperforming ECL for large graph instances in
terms of speed and quality.

In order to improve the produced set sizes even further, we introduced IDUMIS, which
calculates a large amount of solutions for the input graph instances. By utilizing this con-
cept, we were able to increase the independent set size over a given time limit. IDUMIS
converges quickly compared to MMWIS. This is an advantage for applications where speed
is prioritized over quality. However, after IDUMIS converges, it only finds small improve-
ments for the remaining duration of the time limit. Therefore, it is ultimately outperformed
by high-quality MIS algorithms after a certain point in time.

37

7 Discussion

Moreover, we introduced known reductions to the MIS problem to LUMIS. We imple-
mented these reductions to be executed on the GPU. We demonstrated that the reductions
remarkably improve the size of the independent sets produced by LUMIS. LUMIS is able
to solve certain small graph instances optimally due to the reductions. However, especially
for large graphs, the reduction process requires a large amount of time. Depending on the
input proportions, reductions can be a valuable tool for MIS algorithms.

Additionally, we showed that the proposed algorithms run on the GPU more effectively
than on the CPU. For small graph instances, the CPU achieves solutions slightly faster.
However, for larger instances, the usage of a GPU significantly accelerated our algorithms.
This demonstrates the potential of designing GPU-accelerated algorithms.

7.2 Future Work

This thesis suggests various possibilities for future work. Mainly, the proposed algorithms
can be improved even further. Although the reductions introduced improve the quality
of LUMIS, they come with a significant computational cost. Therefore, the reductions
implemented in the current state can be improved in terms of execution time.

Especially IDUMIS can be improved significantly. While it provides relatively good so-
lutions very quickly, only small improvements are made during the majority of the execu-
tion time. Instead of searching for improvements at random, techniques of local search al-
gorithms can be introduced. The current state of IDUMIS could be used to find a large solu-
tion using 1% of the available runtime, for instance. The rest of the time, the solution could
be strategically improved by local search techniques, resulting in remarkably larger inde-
pendent sets. Therefore, we hope that future experiments investigate this idea thoroughly.

Furthermore, the size of the input graph is limited by the available memory. Especially
for the execution on the GPU, this is an issue, since GPUs have limited memory resources.
However, using multiple GPUs simultaneously could solve this issue. This would require
an initial step where the graph is partitioned into multiple parts. For each part, the algo-
rithms could then be executed on different GPUs. This could improve the issue of memory
limitations. Moreover, the utilization of multiple GPUs has the potential to further accel-
erate the algorithms. However, this requires additional functions that prevent conflicts that
may occur between the different parts of the graph.

In conclusion, it is our hope that our research will lead to more experiments and im-
proved algorithms in the field of the MIS problem in the future. Furthermore, it is our hope
that such improvements will lead to an acceleration of the various applications and closely
related issues of the MIS problem.

38

APPENDIX A
Appendix

A.1 Implementation Details

As mentioned in Section 4.1, the proposed algorithms were implemented utilizing the
Kokkos framework. To execute code on GPUs with Kokkos, it is essential to transfer
the graph data from the main memory of the program to the memory of the GPU and vice
versa. This is especially important for I/O operations because they cannot be executed
by a GPU. Therefore, this process was used throughout the implementation to enable the
utilization of input data files and the generation of output files that contain the computed
maximal independent set. The data transfer enables the GPU to access and manipulate data
that originates from the main memory. After the data is transferred back to the CPU, the
data can be stored in an output file or displayed on the console.

Furthermore, the Kokkos framework introduces multidimensional arrays, called Views.
Due to their multi-dimensionality, Views can store matrices or higher-dimensional struc-
tures. However, the graph data was stored in the CSR format as explained in detail in
Section 4.2. Therefore, only one-dimensional Views were used in the implementation,
which behave identically to arrays. This was done to minimize the memory usage of the
program because GPUs usually have limited memory resources. This allowed us to execute
the proposed algorithms for large graph instances.

Moreover, the kernel functions of the implementation are designed to terminate as
quickly as possible for each vertex in the graph. In detail, a vertex is only included in
the maximal independent set if multiple conditions are fulfilled. As soon as one of those
conditions is broken, the thread immediately moves on to the next vertex in the graph that
has not been checked yet. This process slightly improves the runtime of the algorithm.
However, for large graph instances, this behavior remarkably improves the execution time.

39

A Appendix

A.2 Further Results

IDUMISGPU IDUMISCPU IDUMISSERIAL MMWIS

10 1 101 103

Time (in seconds)

226 000

227 000

228 000

229 000

230 000

Be
st

 so
lu

tio
n

siz
e

cnr-2000

(a) Progression chart for the graph cnr-2000.

10 1 100 101 102 103

Time (in seconds)
440 000

442 000

444 000

446 000

448 000

450 000

452 000
Be

st
 so

lu
tio

n
siz

e
eu-2005

(b) Progression chart for the graph eu-2005.

10 1 100 101 102 103

Time (in seconds)

620 000

630 000

640 000

650 000

660 000

670 000

Be
st

 so
lu

tio
n

siz
e

dewiki-2013

(c) Progression chart for the graph dewiki-2013.

10 1 100 101 102 103

Time (in seconds)

2 040 000

2 060 000

2 080 000

2 100 000

2 120 000

2 140 000

2 160 000

Be
st

 so
lu

tio
n

siz
e

enwiki-2013

(d) Progression chart for the graph enwiki-2013.

Figure A.1: Progression charts for different graph instances that show the development of the com-
puted independent set over time for the algorithms.

40

A.2 Further Results

Graphs LUMIS DUMIS IDUMIS MMWIS

webbase-2001 69 038 402 76 079 178 77 242 628 77 516 755
it-2004 22 543 494 24 881 230 25 511 639 25 608 217
uk-2005 20 588 802 23 116 429 23 626 679 23 684 619
gsh-2015-tpd 18 980 774 20 578 315 20 868 912 20 892 996
arabic-2005 12 225 004 13 387 812 13 832 410 13 884 838
uk-2002 10 488 832 11 603 198 11 877 495 11 914 750
eu-2015-tpd 4 397 816 4 708 783 4 761 632 4 765 583
enwiki-2013 1 837 983 2 030 483 2 162 041 2 174 945
livejournal 1 812 659 2 057 160 2 078 773 2 085 626
hollywood-2011 286 392 327 847 327 947 327 949
roadNet-CA 828 190 892 811 937 370 960 777
as-skitter 1 042 260 1 138 832 1 168 811 1 170 580
dewiki-2013 549 273 611 259 669 477 675 682
in-2004 805 597 878 223 891 482 896 724
roadNet-TX 585 565 631 192 662 433 677 674
youtube 797 264 855 199 857 772 857 945
roadNet-PA 459 449 496 456 520 732 533 208
web-Google 455 562 523 093 528 480 529 138
eu-2005 396 821 439 704 450 995 452 300
amazon-2008 248 554 301 773 307 749 309 793
web-BerkStan 355 572 393 002 404 195 408 478
web-NotreDame 232 584 249 153 251 143 251 849
cnr-2000 206 584 225 394 229 035 230 030
web-Stanford 142 087 154 818 160 815 163 387
ca-CondMat 8 200 9 597 9 612 9 612
ca-AstroPh 5 681 6 735 6 760 6 760
ca-HepPh 4 342 4 986 4 996 4 996
ca-HepTh 4 250 4 876 4 896 4 896
ca-GrQc 2 152 2 453 2 459 2 459

Table A.1: Average solution size of the proposed algorithms compared to the results of MMWIS.
MMWIS was executed once with seed 1000 and a time limit of 10 hours. IDUMIS was
executed with a time limit of one hour. Graphs for which MMWIS did not produce
feasible solutions are excluded. All results of the proposed algorithms were computed
by execution on the GPU.

41

A
A

ppendix

Table A.2: Average solution size s and time t in milliseconds. Best sizes and times among all algorithms are marked bold. Cases in which
an algorithm did not find a solution in sufficient time (one hour) are indicated by ’—’. All results were computed by execution
on the GPU.

LUMIS LUMIS1
RED LUMISR

RED

Instance s t s t s t

webbase-2001 69 038 402 77.48 — — — —
friendster 32 474 405 239.43 34 115 270 2 564.64 35 835 640 79 863.88
twitter-2010 26 555 759 204.67 26 790 344 91 057.08 28 738 422 130 881.92
it-2004 22 543 494 131.02 24 200 686 81 835.46 — —
uk-2005 20 588 802 130.37 22 759 514 1 344 810.16 23 276 587 185 454.78
gsh-2015-tpd 18 980 774 131.68 19 702 388 17 845.31 20 783 188 173 853.64
arabic-2005 12 225 004 72.30 13 099 300 376 891.03 — —
uk-2002 10 488 832 25.83 11 354 708 7 060.51 11 631 067 506 381.85
eu-2015-tpd 4 397 816 16.31 4 546 966 1 233.36 4 759 531 3 179.05
enwiki-2013 1 837 983 15.01 1 858 954 1 705.94 2 089 174 30 432.13
livejournal 1 812 659 10.44 1 976 396 142.42 2 081 292 1 871.94
orkut 651 252 15.03 662 987 593.11 669 015 15 679.29
hollywood-2011 286 392 7.94 327 616 28.83 327 949 450.65
roadNet-CA 828 190 1.04 872 112 1.34 900 512 17.51
as-skitter 1 042 260 3.97 1 094 638 12 397.02 1 151 797 1 443.12
dewiki-2013 549 273 6.11 555 399 935.93 609 218 40 362.01
in-2004 805 597 4.82 863 935 1 944.76 885 186 303 568.48
roadNet-TX 585 565 1.16 619 287 1.31 640 708 12.40
youtube 797 264 1.74 850 952 26.47 857 931 47.07
roadNet-PA 459 449 0.97 485 195 1.23 501 807 7.97
web-Google 455 562 1.51 510 621 6.97 526 099 55.46
eu-2005 396 821 3.36 420 904 591.83 434 768 199 028.14

Continued on next page

42

A
.2

FurtherR
esults

Table A.2 – Continued from previous page
LUMIS LUMIS1

RED LUMISR
RED

Instance s t s t s t

amazon-2008 248 554 1.23 277 002 6.05 302 214 46.87
web-BerkStan 355 572 1.83 381 641 287.04 395 814 3 118.70
web-NotreDame 232 584 0.80 245 935 407.73 249 178 60 866.72
cnr-2000 206 584 0.99 219 755 463.95 223 961 30 303.68
web-Stanford 142 087 1.03 151 055 36.32 158 190 6 132.74
ca-CondMat 8 200 0.22 9 556 0.50 9 612 0.82
ca-AstroPh 5 681 0.32 6 682 0.89 6 760 2.46
ca-HepPh 4 342 0.30 4 944 1.34 4 996 2.16
ca-HepTh 4 264 0.19 4 841 0.38 4 896 0.59
ca-GrQc 2 157 0.16 2 445 0.28 2 459 0.44

43

A
A

ppendix

Table A.3: Average solution size s after one hour runtime and average time t in milliseconds to achieve 99.5% of the best solution of each
algorithm. Best sizes and times among all algorithms are marked bold. Instances for which an algorithm did not find a solution
within the time limit of one hour are indicated by ’—’.

IDUMISGPU IDUMISCPU IDUMISSERIAL MMWIS

Instance s t s t s t s t

webbase-2001 77 242 628 514.24 77 240 816 4 535.83 77 236 859 41 569.87 77 501 671 1 886 839.66
friendster 36 196 982 1 729.80 36 197 014 13 901.04 36 197 259 82 606.10 — —
twitter-2010 28 702 301 2 271.03 28 702 264 15 577.44 28 702 273 45 299.08 — —
it-2004 25 511 639 951.03 25 508 751 4 127.41 25 506 195 22 816.13 25 577 685 2 999 531.86
uk-2005 23 626 679 1 204.71 23 625 611 3 967.04 23 624 088 17 772.31 — —
gsh-2015-tpd 20 868 912 1 433.19 20 868 587 4 188.79 20 868 233 16 238.94 — —
arabic-2005 13 832 410 595.53 13 831 885 2 499.82 13 830 461 14 791.25 13 876 714 1 123 095.30
uk-2002 11 877 495 200.68 11 877 078 1 057.37 11 875 568 7 287.41 11 909 624 544 943.04
eu-2015-tpd 4 761 632 157.25 4 761 540 392.54 4 761 487 2 512.32 4 765 581 148 636.64
enwiki-2013 2 162 041 246.87 2 161 976 811.50 2 161 863 5 499.55 2 170 001 219 547.04
livejournal 2 078 773 34.06 2 078 756 276.33 2 078 818 1 368.21 2 085 626 8 744.31
orkut 819 525 164.09 819 519 554.63 819 524 3 812.56 806 262 3 115 002.98
hollywood-2011 327 947 27.42 327 946 126.64 327 946 685.90 327 949 34 926.68
roadNet-CA 937 370 16.32 937 242 155.12 937 220 1 245.16 973 352 69 760.44
as-skitter 1 168 811 25.93 1 168 795 94.56 1 168 766 601.25 1 170 579 87 367.38
dewiki-2013 669 477 81.84 669 456 410.90 669 410 1 991.27 671 743 192 196.47
in-2004 891 482 26.74 891 453 59.72 891 453 341.79 896 724 11 331.92
roadNet-TX 662 433 13.80 662 431 119.24 662 328 1 250.16 677 705 66 364.48
youtube 857 772 7.67 857 759 18.27 857 760 77.29 857 945 553.13
roadNet-PA 520 732 11.77 520 719 111.76 520 699 820.94 533 184 65 358.52
web-Google 528 480 6.34 528 468 23.25 528 465 194.96 529 138 911.61
eu-2005 450 995 51.77 450 987 78.25 450 952 432.49 451 994 98 146.70

Continued on next page

44

A
.2

FurtherR
esults

Table A.3 – Continued from previous page
IDUMISGPU IDUMISCPU IDUMISSERIAL MMWIS

Instance s t s t s t s t

amazon-2008 307 749 5.42 307 745 35.59 307 723 321.95 309 632 66 272.52
web-BerkStan 404 195 24.83 404 164 58.68 404 093 302.74 408 476 63 749.50
web-NotreDame 251 143 3.71 251 145 7.28 251 125 41.2 251 849 66 285.16
cnr-2000 229 035 10.38 229 025 31.21 229 017 97.06 229 961 62 340.18
web-Stanford 160 815 15.99 160 792 26.76 160 763 175.24 163 375 60 759.26
ca-CondMat 9 612 0.34 9 612 0.48 9 612 1.43 9 612 3.82
ca-AstroPh 6 760 0.41 6 760 0.56 6 760 1.56 6 760 3.78
ca-HepPh 4 996 0.50 4 996 0.39 4 996 1.03 4 996 2.04
ca-HepTh 4 896 0.29 4 896 0.25 4 896 0.58 4 896 1.06
ca-GrQc 2 459 0.32 2 459 0.18 2 459 0.33 2 459 0.53

45

A
A

ppendix

Table A.4: Average solution size s and time t in milliseconds. Best solution size and time among all algorithms are marked bold. Instances
for which an algorithm did not find a solution due to graph size limits (32-bit edges) are indicated by ’—’. All results were
computed by execution on the GPU.

LUMIS DUMIS2 DUMISNone ECL

Instance s t s t s t s t

webbase-2001 69 038 402 77.48 76 128 351 82.48 76 079 178 79.78 76 086 905 284.53
friendster 32 474 405 239.43 35 880 750 264.10 35 855 467 249.40 — —
twitter-2010 26 555 759 204.67 28 182 002 293.68 28 147 055 279.38 — —
it-2004 22 543 494 131.02 24 911 930 121.71 24 881 230 126.44 24 894 824 232.96
uk-2005 20 588 802 130.37 23 136 326 105.98 23 116 429 105.11 — —
gsh-2015-tpd 18 980 774 131.68 20 594 678 187.00 20 578 315 176.95 20 578 562 234.89
arabic-2005 12 225 004 72.30 13 403 311 63.52 13 387 812 62.83 13 392 648 113.71
uk-2002 10 488 832 25.83 11 612 577 23.30 11 603 198 22.58 11 606 381 52.75
eu-2015-tpd 4 397 816 16.31 4 710 802 24.91 4 708 783 23.46 4 708 695 31.56
enwiki-2013 1 837 983 15.01 2 037 282 18.79 2 030 483 17.41 2 030 659 17.67
livejournal 1 812 659 10.44 2 058 442 8.20 2 057 160 7.68 2 056 904 5.01
orkut 651 252 15.03 791 724 17.59 786 111 16.11 785 895 9.87
hollywood-2011 286 392 7.94 327 857 7.30 327 847 7.18 327 840 12.35
roadNet-CA 828 190 1.04 896 237 1.18 892 811 1.20 892 582 0.25
as-skitter 1 042 260 3.97 1 140 208 3.19 1 138 832 3.08 1 138 512 3.66
dewiki-2013 549 273 6.11 614 699 5.66 611 259 5.07 611 307 6.15
in-2004 805 597 4.82 878 502 4.26 878 223 3.72 878 294 1.64
roadNet-TX 585 565 1.16 633 685 0.92 631 192 0.96 630 908 0.19
youtube 797 264 1.74 855 274 1.70 855 199 1.57 855 189 0.78
roadNet-PA 459 449 0.97 498 403 0.80 496 456 0.81 496 364 0.15
web-Google 455 562 1.51 523 321 1.28 523 093 1.27 523 231 0.60
eu-2005 396 821 3.36 440 099 5.45 439 704 4.34 440 021 5.80

Continued on next page

46

A
.2

FurtherR
esults

Table A.4 – Continued from previous page
LUMIS DUMIS2 DUMISNone ECL

Instance s t s t s t s t

amazon-2008 248 554 1.23 302 332 0.98 301 773 0.94 301 936 0.22
web-BerkStan 355 572 1.83 393 530 1.31 393 002 1.31 393 122 0.98
web-NotreDame 232 584 0.80 249 181 0.81 249 153 0.78 249 111 0.50
cnr-2000 206 584 0.99 225 492 1.32 225 394 1.03 225 406 0.81
web-Stanford 142 087 1.03 154 926 0.95 154 818 0.96 154 656 1.03
ca-CondMat 8 200 0.22 9 597 0.14 9 597 0.15 9 597 0.06
ca-AstroPh 5 681 0.32 6 736 0.17 6 736 0.18 6 735 0.12
ca-HepPh 4 342 0.30 4 986 0.20 4 986 0.20 4 984 0.26
ca-HepTh 4 264 0.19 4 876 0.13 4 876 0.12 4 878 0.06
ca-GrQc 2 157 0.16 2 453 0.12 2 453 0.12 2 452 0.07

47

A Appendix

48

A.2 Further Results

Zusammenfassung

Das Problem der maximalen unabhängigen Menge beschreibt die Aufgabe, eine Menge
von Knoten maximaler Kardinalität zu berechnen, sodass keine Knoten der Menge be-
nachbart sind. Da das Problem NP-schwer ist, konzentrieren wir uns in dieser Arbeit auf
heuristische Algorithmen. Es gibt mehrere eng verwandte Probleme mit dem Problem der
maximalen unabhängigen Menge, darunter das Problem der maximalen Clique und das
Problem der minimalen Knotenüberdeckung. Daher gibt es Anwendungen für das Prob-
lem in verschiedenen Bereichen der Informatik, wie zum Beispiel in der Computergrafik
und der Routenplanung.

In dieser Arbeit entwickeln wir GPU-beschleunigte Algorithmen zur Lösung des
Problems der maximalen unabhängigen Menge. Darüber hinaus wenden wir bekannte
Verbesserungen an unseren Algorithmen an, was zur Entwicklung unserer drei Algo-
rithmen führt: LUMIS, DUMIS, und IDUMIS. LUMIS basiert auf dem Monte-Carlo-
Algorithmus von Luby und bildet die Grundlage unserer Arbeit. Unser verbesserter
Algorithmus DUMIS priorisiert hauptsächlich Knoten mit niedrigem Grad gegenüber
Knoten mit hohem Grad. Dieses Konzept verbessert die Laufzeit und Qualität unseres
Algorithmus. Des Weiteren verbessert IDUMIS eine anfängliche Lösung über einen
bestimmten Zeitraum hinweg, indem er zufällige Anpassungen an der vorhergehenden
Lösung vornimmt.

Wir haben die Leistung unserer Algorithmen durch zahlreiche Experimente untersucht,
indem wir sie mit kürzlich veröffentlichten Algorithmen auf diesem Gebiet verglichen
haben. Wir zeigen, dass IDUMIS den MMWIS-Algorithmus für kurze Zeitlimits übertr-
effen kann. Darüber hinaus ist DUMIS in der Lage, größere unabhängige Mengen zu
erzeugen als der ähnlich konzipierte Algorithmus ECL-MIS, während für große Graphin-
stanzen weniger Ausführungszeit erforderlich ist. Abschließend wird eine Reflexion über
die Ergebnisse dieser Arbeit sowie Input für mögliche zukünftige Arbeiten bereitgestellt.

49

Bibliography

[1] bwUniCluster 2.0: High Performance Computing for Universities in Baden-
Württemberg. URL: https://wiki.bwhpc.de/e/BwUniCluster2.0.

[2] KaMIS Source Code. URL: https://github.com/KarlsruheMIS/KaMIS.

[3] Stanford Large Network Dataset Collection. URL: https://snap.stanford.
edu/data/.

[4] Laboratory for Web Algorithmics. URL: https://law.di.unimi.it/
datasets.php.

[5] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete pro-
gramming problems. Econometrica, 28(3):497–520, 1960.

[6] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal
independent set problem. J. ACM, 32(4):762–773, 1985.

[7] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., 15(4):1036–1053, 1986.

[8] Thomas Bäck and Sami Khuri. An evolutionary heuristic for the maximum indepen-
dent set problem. In Proceedings of the First IEEE Conference on Evolutionary Com-
putation, IEEE World Congress on Computational Intelligence, Orlando, Florida,
USA, June 27-29, 1994, pages 531–535. IEEE, 1994.

[9] Réka Albert, Hawoong Jeong, and Albert-László Barabási. The diameter of the world
wide web. CoRR, cond-mat/9907038, 1999.

[10] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91(2):201–213, 2002.

[11] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubi-
crawler: A scalable fully distributed web crawler. Software: Practice & Experience,
34(8):711–726, 2004.

51

https://wiki.bwhpc.de/e/BwUniCluster2.0
https://github.com/KarlsruheMIS/KaMIS
https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
https://law.di.unimi.it/datasets.php
https://law.di.unimi.it/datasets.php

Bibliography

[12] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression tech-
niques. In Proc. of the Thirteenth International World Wide Web Conference (WWW
2004), pages 595–601, Manhattan, USA, 2004. ACM Press.

[13] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In Robert Grossman,
Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Chicago, Illinois, USA, August 21-24, 2005, pages 177–187. ACM, 2005.

[14] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densifi-
cation and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2, 2007.

[15] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient traver-
sal of mesh edges using adjacency primitives. ACM Trans. Graph., 27(5):144, 2008.

[16] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Math., 6(1):29–123, 2009.

[17] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed time-
dependent contraction hierarchies. In Paola Festa, editor, Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22,
2010. Proceedings, volume 6049 of Lecture Notes in Computer Science, pages 83–
93. Springer, 2010.

[18] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue B. Moon. What is twitter,
a social network or a news media? In Michael Rappa, Paul Jones, Juliana Freire,
and Soumen Chakrabarti, editors, Proceedings of the 19th International Conference
on World Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,
pages 591–600. ACM, 2010.

[19] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for compressing social net-
works. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra,
Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th international confer-
ence on World Wide Web, pages 587–596. ACM Press, 2011.

[20] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck. Fast
local search for the maximum independent set problem. J. Heuristics, 18(4):525–547,
2012.

[21] Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan M. M. van
Rooij. Fast algorithms for max independent set. Algorithmica, 62(1-2):382–415,
2012.

52

Bibliography

[22] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna. BUbiNG:
Massive crawling for the masses. In Proceedings of the Companion Publication of
the 23rd International Conference on World Wide Web, pages 227–228. International
World Wide Web Conferences Steering Committee, 2014.

[23] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns. J.
Parallel Distributed Comput., 74(12):3202–3216, 2014.

[24] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, jun 2014.

[25] Sebastian Lamm, Peter Sanders, and Christian Schulz. Graph partitioning for inde-
pendent sets. In Evripidis Bampis, editor, Experimental Algorithms - 14th Interna-
tional Symposium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings,
volume 9125 of Lecture Notes in Computer Science, pages 68–81. Springer, 2015.

[26] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. Knowl. Inf. Syst., 42(1):181–213, 2015.

[27] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in
practice: A case study of vertex cover. Theor. Comput. Sci., 609:211–225, 2016.

[28] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and
Renato F. Werneck. Accelerating local search for the maximum independent set prob-
lem. In Andrew V. Goldberg and Alexander S. Kulikov, editors, Experimental Algo-
rithms - 15th International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8,
2016, Proceedings, volume 9685 of Lecture Notes in Computer Science, pages 118–
133. Springer, 2016.

[29] Darren Strash. On the power of simple reductions for the maximum independent set
problem. CoRR, abs/1608.00724, 2016.

[30] Lijun Chang, Wei Li, and Wenjie Zhang. Computing A near-maximum independent
set in linear time by reducing-peeling. In Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 1181–1196. ACM, 2017.

[31] Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent
set. Inf. Comput., 255:126–146, 2017.

[32] Martin Burtscher, Sindhu Devale, Sahar Azimi, Jayadharini Jaiganesh, and Evan
Powers. A high-quality and fast maximal independent set implementation for gpus.
ACM Trans. Parallel Comput., 5(2):8:1–8:27, 2018.

53

http://snap.stanford.edu/data

Bibliography

[33] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and Qiang-
Sheng Hua. Graph processing on gpus: A survey. ACM Comput. Surv., 50(6):81:1–
81:35, 2018.

[34] Tomohiro Imanaga, Koji Nakano, Masaki Tao, Ryota Yasudo, Yasuaki Ito, Yuya
Kawamata, Ryota Katsuki, Yusuke Tabata, Takashi Yazane, and Kenichiro Hamano.
Efficient GPU implementation for solving the maximum independent set problem.
In Eighth International Symposium on Computing and Networking, CANDAR 2020,
Naha, Japan, November 24-27, 2020, pages 29–38. IEEE, 2020.

[35] Chengzhi Piao, Weiguo Zheng, Yu Rong, and Hong Cheng. Maximizing the reduc-
tion ability for near-maximum independent set computation. Proc. VLDB Endow.,
13(11):2466–2478, 2020.

[36] Laurent Bulteau, Bertrand Marchand, and Yann Ponty. A new parametrization for in-
dependent set reconfiguration and applications to RNA kinetics. In Petr A. Golovach
and Meirav Zehavi, editors, 16th International Symposium on Parameterized and Ex-
act Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of
LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[37] Demian Hespe, Sebastian Lamm, and Christian Schorr. Targeted branching for the
maximum independent set problem. In David Coudert and Emanuele Natale, ed-
itors, 19th International Symposium on Experimental Algorithms, SEA 2021, June
7-9, 2021, Nice, France, volume 190 of LIPIcs, pages 17:1–17:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021.

[38] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam,
Damien Lebrun-Grandié, Jonathan R. Madsen, Nader Al Awar, Milos Gligoric,
Galen M. Shipman, and Geoff Womeldorff. The kokkos ecosystem: Comprehen-
sive performance portability for high performance computing. Comput. Sci. Eng.,
23(5):10–18, 2021.

[39] Eugenio Angriman, Alexander van der Grinten, Michael Hamann, Henning Mey-
erhenke, and Manuel Penschuck. Algorithms for large-scale network analysis and
the networkit toolkit. In Hannah Bast, Claudius Korzen, Ulrich Meyer, and Manuel
Penschuck, editors, Algorithms for Big Data - DFG Priority Program 1736, volume
13201 of Lecture Notes in Computer Science, pages 3–20. Springer, 2022.

[40] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Q. Dang,
Nathan D. Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan R. Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and
Jeremiah J. Wilke. Kokkos 3: Programming model extensions for the exascale era.
IEEE Trans. Parallel Distributed Syst., 33(4):805–817, 2022.

54

Bibliography

[41] Enqiang Zhu, Yu Zhang, and Chanjuan Liu. An adaptive repeated-intersection-
reduction local search for the maximum independent set problem. CoRR,
abs/2208.07777, 2022.

[42] Oualid Elissaouy and Karam Allali. Minimizing the maximum tardiness for a per-
mutation flow shop problem under the constraint of sequence independent setup time.
RAIRO Oper. Res., 58(1):373–395, 2024.

[43] Ernestine Großmann, Sebastian Lamm, Christian Schulz, and Darren Strash. Finding
near-optimal weight independent sets at scale. J. Graph Algorithms Appl., 28(1):439–
473, 2024.

[44] Kenneth Langedal, Demian Hespe, and Peter Sanders. Targeted branching for the
maximum independent set problem using graph neural networks. In Leo Liberti, edi-
tor, 22nd International Symposium on Experimental Algorithms, SEA 2024, July 23-
26, 2024, Vienna, Austria, volume 301 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2024.

[45] NVIDIA Corporation. CUDA Toolkit Documentation, 2023. Version 12.2, Available
at https://developer.nvidia.com/cuda-toolkit.

[46] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

55

https://developer.nvidia.com/cuda-toolkit

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	General Definitions
	Maximum Independent Set Problem
	Data Reductions

	Related Work
	Exact Algorithms
	Heuristic Algorithms
	Local Search Algorithms
	Evolutionary Algorithms
	Parallel Algorithms

	Proposed Algorithms
	Development with Kokkos
	Data structure
	LUMIS
	DUMIS
	IDUMIS

	Data Reductions
	Description of the Data Reductions
	Implementation of the Data Reductions

	Experimental Evaluation
	Methodology
	Datasets
	Proposed Algorithms
	Data Reductions
	Comparison with Competing Algorithms

	Discussion
	Conclusion
	Future Work

	Appendix
	Implementation Details
	Further Results

	Abstract (German)
	Bibliography

