
Exploring Edge Orientation Algorithms
in the Static and Dynamic Case

Fabian Walliser

May 13, 2024

4173801

Bachelor Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisors:
Ernestine Großmann
Henrik Reinstädtler

ii

Acknowledgments

I would like to express my gratitude to Prof. Dr. Christian Schulz for the opportunity to
work on this fascinating topic under his supervision. His encouragement and flexibility
greatly enriched this journey, allowing me the creative freedom to incorporate numerous
personal ideas into this project. I would also like to thank Ernestine Großmann, who sup-
ported me from the very beginning and was always on hand with advice. A special note
of appreciation goes to Henrik Reinstädtler as well for the considerable effort and time he
devoted to helping me.

Furthermore, I would like to extend my gratitude to my family, who have consistently
provided me with the best possible support throughout my entire life. Finally, I would like
to give a special thanks to all of my friends, whose endless encouragement and love always
carried me. I want each person to feel individually addressed.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, May 13, 2024

Fabian Walliser

iii

iv

Abstract

The edge orientation problem asks for assigning directions to the edges of an undirected
graph G to form a directed graphO, with the objective of minimizing the maximum outde-
gree within O. This problem finds applications across various domains and can be solved
optimally in polynomial time. However, due to the scarcity of linear-time approaches in
the current literature, we explore a number of strategies for approximating the solution.
Furthermore, the dynamic variant of this problem involves maintaining edge orientations
through a sequence of update operations. To address this, we present an approach based on
concepts of two existing algorithms, employing multiple iterations of a breadth-first search
for descending nodes. Moreover, we propose a novel algorithm for optimally solving the
dynamic edge orientation problem through invariants, supported by a proof. Building upon
an existing optimal static algorithm, this approach operates by manipulating improving
paths. We conduct experimental evaluations of our implementations against state-of-the-
art algorithms. This demonstrates that even the best non-optimal competitor, utilizing a
basic breadth-first search, is on average only 75.4% faster than our dynamic optimal algo-
rithm while achieving 92% of the best solutions.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 General Definitions . 5

3 Related Work 9
3.1 Static Edge Orientation Algorithms . 9
3.2 Fully Dynamic Edge Orientation Algorithms 10

4 Algorithms 11
4.1 Underlying Data Structures: An Overview 11
4.2 Static Algorithms . 13
4.3 Dynamic Algorithms . 28

5 Experimental Evaluation 43
5.1 Methodology . 43
5.2 Static Results . 47
5.3 Fully Dynamic Results . 53
5.4 Overall Comparison . 56

6 Discussion 63
6.1 Conclusion . 63
6.2 Future Work . 63

A Appendix 65
A.1 Further Results . 65
A.2 Instances . 69

vii

Contents

A.3 Implementation Details . 72

Abstract (German) 77

Bibliography 79

viii

CHAPTER 1
Introduction

1.1 Motivation

Graph-based data modeling provides the basis for numerous applications in our daily lives,
ranging from social networks and search engines to telecommunication and bioinformatics
for simulating complex systems like the human brain. These applications often involve
graphs with billions of nodes and edges, posing significant challenges in terms of data stor-
age and processing. Since these graphs are typically sparse - meaning the number of edges
is much lower than the maximal amount - efficiently managing them is an important area
of computer science. A simple example of this is social networks, where despite the vast
number of users, each individual typically connects to only a limited subset of the network.
Accordingly, the storing of such a sparse graph with low memory requirements and yet fast
adjacency queries is crucial. This also provides a foundation for more complex algorithms
that operate on these data structures and are dependent on fast elementary requests.

Adjacency queries determine whether an edge {u, v} ∈ E exists between two nodes
u and v, returning true if it does and false otherwise, which takes constant time in the
best case. Traditional data structures mostly provide trade-offs. For example, adjacency
arrays require only O(n + m) memory but may necessitate traversing a potentially large
neighborhood for each adjacency query. In contrast, adjacency matrices are able to answer
such queries in O(1), but conversely also require O(n2) of memory.

A data structure, which requires linear storage space O(n + m) and is able to answer
adjacency queries in O(α) was proposed by Kannan et al. [25]. Here, α is defined as the
minimum amount of forests into which a graph can be partitioned, referred to as the ar-
boricity. Briefly described, each node maintains an adjacency list of its neighbors, whereas
edges are only stored for exactly one of their endpoints. Since these are thus directed,
a graph O = (V,AO) that contains exactly (u, v) or (v, u) for each edge {u, v} ∈ E is
called an orientation of G = (V,E). An adjacency query can now be performed simply by
having both nodes search for the other in their lists, which is limited by the corresponding

1

1 Introduction

list length. To ensure fast queries, the length of these lists, equivalent to the outdegree of
the nodes, should therefore be bounded by a constant ∆. Minimizing ∆ is the task of the
edge orientation problem, which is also closely related to computing the pseudoarboricity
as well as the maximum average density of graphs.

The edge orientation problem finds applications in various fields, such as storing op-
timal graphs [1]. For more examples and further details, we are referring the reader to
Georgakopoulos and Politopoulos [21]. Given our primary focus on approximations in the
static case, we are also stating an example where these excel. Specifically, they can serve
as a preprocessing step for optimal algorithms, minimizing the need for resource-intensive
actions, like the FastImprove method used by Reinstädtler et al. [38].

In real-world applications, graphs most often undergo changes over time, such as users
following or unfollowing others in social networks. Consequently, the edge orienta-
tion problem extends to the dynamic case, where the focus shifts to maintaining a ∆-
orientation over a sequence of insertions and deletions. This is used as a foundation for
numerous dynamic graph algorithms [26]. For instance, it can be utilized to maintain a
fully dynamic maximal matching with an amortized update time O(logn

log logn
) [34]. Ad-

ditionally, it is valuable for reporting all maximum independent sets [15] and counting
subgraphs in sparse graphs [14].

1.2 Our Contribution

While numerous polynomial-time algorithms exist for computing the optimal edge orien-
tation [3, 28, 39], the literature offers only a few linear-time approximation approaches,
one of the most renowned being a simple 2-approximation [2, 9, 21]. Therefore, a part
of this thesis is devoted to developing and evaluating several strategies aimed at approxi-
mating the optimal solution. More specifically, we model strategies similar to the known
2-approximation, several approaches utilizing FOREST [31], and an algorithm that uses
a lower bound obtained by the 2-approximation for increased solution quality. Further-
more, we combine two established dynamic algorithms (BFS, DescDegrees [7]) to de-
velop a novel approach to the dynamic edge orientation problem. We also propose an
optimal dynamic edge orientation algorithm based on concepts for the static problem by
Venkateswaran [39]. For this algorithm, we also provide proof of correctness. More-
over, we engineer and evaluate these algorithms in comparison to each other as well as
to algorithms from the current literature [7] on real-world dynamic graphs (for dynamic
algorithms) as well as on real-world static graphs that have been modeled as dynamic se-
quences. Our results show a number of algorithms that improve on the 2-approximation, as
well as strategies that fail to compete with it. Additionally, we compare the best algorithms
in terms of quality with the ideal results of the dynamic optimal algorithm.

2

1.3 Structure

1.3 Structure

The remainder of this thesis is organized as follows. Chapter 2 introduces the definitions
and notations that are used for the rest of the thesis. In Chapter 3 we delve into the existing
literature, examining previous studies on the static and dynamic edge orientation problem.
Next, Chapter 4 outlines the functionality of the newly proposed algorithms. It begins with
a discussion of two foundational data structures and follows with a series of simple static
algorithms for edge orientation approximation. More specifically, we discuss strategies
analogous to the known 2-approximation [2, 9, 21], an algorithm that uses a lower bound
obtained by the 2-approximation for increased solution quality and several approaches uti-
lizing FOREST [31]. The subsequent sections introduce the Descending BFS Algorithm
as our first dynamic approach, followed by an optimal algorithm for the dynamic edge ori-
entation problem, complete with a detailed proof of correctness. In Chapter 5, we assess
the performance of the proposed algorithms, comparing them against established methods.
We begin by determining the best variations and parameters through a categorized evalua-
tion of the algorithms. This is initially done separately for static and dynamic algorithms,
with each category evaluated independently, and ends with an overall comparison. Chap-
ter 6 completes this thesis by giving a conclusion from the experiments and providing an
outlook on future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

2.1 General Definitions

Directed and Undirected Graphs. Let V = {0, . . . , n − 1} denote the set of nodes. A
directed edge is defined as a tuple of two nodes (u, v) and is described as an outgoing
edge of u as well as an incoming edge of v. An undirected edge is represented by
{u, v}. Accordingly, we denote A = {(u, v) | u, v ∈ V } as a set of directed edges and
E = {{u, v} | u, v ∈ V } as a set of undirected edges. A directed graph is a tuple (V,A)
containing directed edges, whereas an undirected graph (V,E) consists of undirected
edges. Let G = (V,E) be an undirected graph with E ⊆

(
V
2

)
. A Graph is always assumed

to be simple, i.e., without self-loops or multiple edges. We denote G = (V,A) when
considering G as a directed graph. As is typical in graph theory, n = |V | represents the
number of nodes, while m = |E| denotes the number of edges.

Orientation and Graph-Sequence. The edge orientation or orientation of G is a directed
graph O = (VO, AO) such that for each edge {u, v} ∈ E, either e = (u, v) or its inverse
edge e−1 = (v, u) is an element of AO. The edge e is then said to be oriented towards
v. We call the process of deleting an edge (u, v) ∈ AO and in return inserting (v, u), a
flip. Furthermore, for any t ∈ N0 we call G = (G0, . . . , Gt) an edit-sequence of graphs
if there is a single insertion or deletion that distinguishes Gi from Gi+1. In other words,
there exists an edge e ∈ V 2 such that Gi = Gi−1 + e or Gi = Gi−1 − e for every update
0 < i ≤ t. The initial graph, denoted as G0, may either be empty or contain any number
of edges. Similarly, a sequence of orientations of G is a sequence of directed graphs
O = (O0, . . . ,Ot) where every Oi is an edge orientation of Gi. In this case, an arbitrary
number of edges may be flipped during the transition from Oi−1 to Oi.

5

2 Fundamentals

Outdegree and ∆-Orientation. The outdegree (indegree) of a node u ∈ V in-
dicates the number of edges starting from (ending in) u, or more precisely:
odeg(u,G) := |{v ∈ V | (u, v) ∈ A}| and ideg(u,G) := |{v ∈ V | (v, u) ∈ A}|.
Further, the maximum outdegree of G is defined as ∆G = maxv∈V (odeg(v,G)) as well as
∆O = maxv∈O(odeg(v,O)) for the orientation of G. If ∆O ≤ ∆ for some ∆ ∈ N0, O is
called a ∆-orientation of G. Correspondingly, if all Oi of O are ∆-orientations, we obtain
a sequence of ∆-orientations.

Path. A path p = ⟨u0, u1, . . . , ut⟩ ⊆ V is a sequence of distinct nodes such that
there is a connecting edge for all consecutive nodes. In the case of directed graphs
(orientations), the edge must be aligned according to the order of objects in the path.
By definition, a path therefore does not contain any cycles. Depending on the situ-
ation, we are using an equivalent representation by a sequence of edges to display
p = ⟨e0 = (u0, u1), . . . , et−1 = (ut−1, ut)⟩ ⊆ A. In this case, t = |p| is called the length
of p. We flip p by flipping every edge once and denote the obtained result as the inverse
path p−1 of p. Two paths, p and q, are said to share edges if there is an edge e ∈ p
such that e ∈ q. At last, p = ⟨u0, u1, . . . , ut⟩ is also considered an improving path if
odeg(ut, G) < odeg(u0, G)− 1.

Connected Component, Induced Subgraph and Maximum Average Density. A
connected component is a subset C ⊆ G in which every pair of nodes is connected to
each other by a path. For an induced subgraph S ⊆ V , we determine nS = |S| and
eS = |{{u, v} ∈ E | u, v ∈ S}|. The maximum average density of a graph G is defined as
d∗(G) = maxS⊆V ⌈eS/nS⌉.

BFS and DFS. A breadth-first search (BFS) algorithm systematically explores a graph to
locate a node with a certain property. It begins at a chosen node and exhaustively explores
all nodes at the current depth before proceeding to the next level. Conversely, a depth-first
search (DFS) algorithm traverses along each path as far as possible before backtracking
to the previous node.

Neighborhood. The neighborhood of a node v ∈ V is defined as the set of direct
neighbors, i.e., N(v) = {u ∈ V | (v, u) ∈ A}. Accordingly, a d-neighborhood contains all
nodes for which a path p = ⟨u0, u1, . . . , ut⟩ of length |p| ≤ d exists in A. Using this, a BFS
is considered bounded by d if it only scans nodes within the d-neighborhood of the source.

(Pseudo-)arboricity. A spanning tree of a connected, undirected graph G is a subgraph
T that is a tree and includes all vertices of G. Subsequently, a spanning forest of a graph
G is a union of vertex disjoint spanning trees. By the arboricity α(G) we refer to the
minimum number of spanning forests required to obtain a complete partition of G. For
graph sequences, if α(Gi) ≤ α for all Gi ∈ G, we say that G has bounded arboricity α.
Moreover, a connected graph that contains at most one cycle is called a pseudotree. The

6

2.1 General Definitions

corresponding further definitions of spanning pseudotrees, spanning pseudoforests, the
pseudoarboricity ρ(G), and bounded pseudoarboricity are derived from pseudotrees in the
same way as the non-pseudo versions are derived from trees. We write α and ρ where the
graph is clear from context.

Problem Definition. The objective of the static edge orientation problem is to minimize
∆O for a given graph G and a corresponding orientation O. One may also be interested in
finding the optimal solution. On the other hand, the fully dynamic edge orientation problem
requires minimizing ∆Oi

during each step Gi of an edit-sequence of graphs G, while the
optimal version also always requires the best solution after each insertion or deletion.

7

2 Fundamentals

8

CHAPTER 3
Related Work

This section presents an overview of research concerning edge orientations. Given
our exploration of both static and dynamic algorithms in this work, each topic
is addressed separately.

3.1 Static Edge Orientation Algorithms

There are numerous studies that deal with the solution of the static edge orientation prob-
lem. To begin with, a linear time 2-approximation algorithm for pseudoarboricity and
maximum average density has been extensively investigated [2, 9, 21] and can also be ap-
plied to the static edge orientation problem. This is explained in more detail in Section 4.2
and is used as a comparison for the static algorithms investigated in this thesis. Picard and
Queyranne [36] show a connection between pseudoarboricity ρ(G) and maximum average
density d∗(G): ρ(G) = ⌈d∗(G)⌉. This value also equals the lowest maximum outde-
gree [16, 1, 28]. Venkateswaran [39] proposes an optimal algorithm with a worst-case
running time of O(m2) that searches for improving paths for all nodes with maximum
outdegree. This approach was recently further developed and practically evaluated by Re-
instädtler et al. [38]. This is also the underlying algorithm for one of our proposed dynamic
approaches in Section 4.3.2. Georgakopoulos and Politopoulos [21] also propose an al-
gorithm using binary search for determining the maximum average density of a subgraph,
which can be used to calculate the maximum outdegree but does not give an edge orien-
tation. This is an extended approach to the method of Goldberg [22]. Asahiro et al. [3]
offer a flow-based method that achieves a running time of O(m3/2 log d∗) for computing
the exact solution d∗. Similarly, Kowalik [28] also utilizes flows to approximate the solu-
tion, which runs in O(m log nmax(1, log d∗)/ϵ) and results in an orientation with bound
⌈(1 + ϵ)d∗⌉ for ϵ > 0. This algorithm can also be used to determine the optimal solution.

9

3 Related Work

For an extensive practical evaluation of these flow-based solutions and specific bounds, we
refer the reader to Blumenstock [6], who also reports that the best known worst-case time
complexity is O(m3/2

√
log log d∗).

3.2 Fully Dynamic Edge Orientation Algorithms

We are now giving a brief overview of related work regarding dynamic approaches to
the edge orientation problem. For a more in-depth discussion, we direct the reader
to Borowitz et al. [7].

Brodal and Fagerberg [8] are the first to consider the edge orientation problem in the dy-
namic case by introducing a linear space data structure for storing graphs bounded by the
arboricity α. A bound c for the arboricity is required as input, whereas adjacency queries
require O(c) time complexity. Furthermore, edge insertions can be performed in amor-
tized time O(1) just as edge deletions take amortized time O(c + log n). These updates
are allowed as long as the changes to the forest partition maintain a bounded arboricity.
Kowalik [27] further develops this by showing that the algorithm can maintain an orien-
tation of O(α log n) with α bounded by c. Insertions and deletions are here performed in
amortized time O(1). An algorithm without the requirement of a bound for the arboricity
is provided by Kopelowitz et al. [26], maintaining a O(log n) edge orientation by perform-
ing both update operations in O(log n) for a constant arboricity α. He et al.[23] present
a trade-off between the objective function (maximum outdegree of the edge orientation)
and the costs of updates. For variable β, an O(βα) orientation is obtained with insertions
and deletions requiring amortized time of O(log(n/(βα))

β
) and O(βα), respectively. Berglin

and Brodal [5] present an algorithm that, depending on an input parameter k, also pro-
vides such a trade-off. This allows for either an O(α + log n) orientation with O(log n)
running time or an O(α log2 n) orientation in O(1) time, both of which are worst-cases.
The report by Christiansen et al. [10] also features several algorithms, one of which main-
tains an O(α) orientation while using a worst-case O(log2 n logα) time for update oper-
ations. Another algorithm maintains an O(α + log n) orientation for a worst-case update
time O(log n logα). Finally, Borowitz et al. [7] also introduce some new algorithms with
promising results. For instance, the best of their algorithms in regards to quality is based
on a breadth-first search and features a worst-case insertion time of O(∆d

O) and deletion
time of O(∆O) depending on the search depth d. We use the implementations of [7] for
comparison and briefly explain the algorithms in Section 5.1.

10

CHAPTER 4
Algorithms

This chapter provides a detailed examination of the algorithms discussed in this work. We
begin with a concise overview of the two data structures that are predominantly employed
by the presented algorithms. Following that, we explore a range of static algorithms that
utilize different approaches to approximate the optimal edge orientation. Afterward, we
propose two fully dynamic algorithms, with the latter guaranteeing an optimal solution.

4.1 Underlying Data Structures: An Overview

There are multiple methods for storing graphs, each offering its own advantages in distinct
scenarios. Therefore, choosing an appropriate data structure is crucial. This is especially
important given that we are featuring both static and fully dynamic algorithms. In this
work, we mainly focus on the two simple structures explained in detail below.

4.1.1 Concatenated Adjacency Arrays

The first concept is based on a pair of arrays. The first array holds indices representing
the set of edges, sorted in ascending order based on the index of their respective source
nodes. The second array contains markers to indicate where one source node transitions to
the next, thus enclosing the set of outgoing nodes for each edge. That results in a clear as-
signment of a node to its outgoing edges. This setup is particularly inefficient for inserting
or deleting nodes, hence making it more suitable for static algorithms. An edge orientation
is represented by an additional array, marking each edge as included or not. In this context,
if elements are added to or removed from a set of edges A in the pseudocode, then this
is merely to be understood as a corresponding mark. As many algorithms require access
to the inverse edge (v, u) given an edge (u, v), we also maintain an array containing the
position of the inverse edges for those cases. It is possible to integrate its creation into the
initialization of the graph while retaining linear complexity. This is done by simultaneously

11

4 Algorithms

x3

x1 x2

x4

1 3 6 9

3 1 3 4 1 2 4 2 3

x1 x2 x3 x4
V

E 2

I 6 1 7 9 2 4 10 5 83

...

Figure 4.1: Concatenated adjacency array data structure with an inverse edge array I applied to an
example graph G1

inserting both the edge and its counterpart into the data structure. Consequently, their posi-
tions are instantly determinable, enabling saving them in the inverse edges array. Although
preserving the inverse edges array does not impact the running time complexity, it adds
unnecessary overhead. Therefore, for algorithms that solely necessitate access to the edges
themselves, we omit this additional array. Since the second approach also utilizes arrays,
we are referring to this concept by concatenated adjacency arrays from now on. Figure 4.1
shows an example of this data structure combined with an inverse edge array.

4.1.2 Individual Adjacency Arrays

The following data structure is well-suited for dynamic algorithms and offers an intuitive
structure. Each node u maintains its own array Adj[u] to store its adjacent nodes. These
arrays are in turn grouped into a main array ordered by the index of the source nodes.
To maintain dynamism despite the use of arrays, insertions can be achieved by pushing
the new target node to the adjacency array of the source. Additionally, edges are deleted
by swapping the target node with the last element of its corresponding array and then
removing the last item. The position of inversed edges can be stored similarly as before,
using a parallel data structure. These positions can be easily adjusted during update
operations. Even within static scenarios, this version provides the advantage of enabling
real edge deletions during algorithm execution, thereby eliminating the need to query the
inverse edge. To differentiate this data structure from the first one, we refer to it as indi-
vidual adjacency arrays. We provide an example of this data structure in Figure 4.2 as well.

In the experimental evaluation, we also use the MinDegNode algorithm to compare the
speed of the two data structures for static scenarios and assess whether deleting edges
can be beneficial in terms of time efficiency. Please refer to section 5.2 for details of
the results. Otherwise, we generally assume the use of concatenated adjacency arrays for
static algorithms and individual adjacency arrays for dynamic algorithms. However, we are
mentioning whether an array for the inverse edges is mandatory.

12

4.2 Static Algorithms

x3

x1 x2

x4

V E
x1
x2
x3
x4

2 3

1 3 4

1 2 4

2 3
.

.

Figure 4.2: Individual adjacency array data structure applied to an example graph G1

4.2 Static Algorithms

Several papers have already proposed methods for linearly approaching a solution to the
static edge orientation problem, including the 2-approximation [2, 9, 21]. The result of a
2-approximation is guaranteed to be at most two times worse than the optimal solution. In
this work, we compare this algorithm (MinDegNode) with novel greedy approaches that, to
the best of our knowledge, have not been previously investigated. These new strategies are
based on rather simple ideas, which may not necessarily guarantee approximation factors
for the optimal solution, as we can observe in the experimental evaluation. Nevertheless,
we include them for a comprehensive evaluation, which can either confirm their unsuitabil-
ity or potentially reveal their effectiveness. We require each algorithm to be able to generate
both the result of the edge orientation and the corresponding orientation of the edges.

4.2.1 Removing Nodes with Minimum Degree (MinDegNode)

We begin by introducing the strategy for computing a 2-approximation [2, 9, 21] for the
edge orientation problem and give pseudocode in Algorithm 1. The algorithm consis-
tently selects a node with minimum outdegree and orients all edges outwards. Selecting
nodes based on outdegree can be efficiently implemented using a bucket priority queue.
Therefore, at the beginning, we insert every node into the bucket corresponding to their
initial outdegree. During each step of the algorithm, we delete one node inside the low-
est bucket and demote all of its unscanned neighbors by one. This maintains an over-
all linear time complexity as it only requires decreasing the priority of a node by one
for a total of m times during the entire execution. Furthermore, instead of removing
incoming edges, we can successively add selected edges to an initially empty edge set
AO. This makes a data structure for inverse edges obsolete. The resulting costs amount
to O

(∑
x∈V (odeg(x,G) + 1)

)
= (n + m). As previously mentioned, we are testing

two versions: one utilizing concatenated adjacency arrays, indicated by MinDegNode,

13

4 Algorithms

Algorithm 1: Removing Nodes with Minimum Degree
1 procedure MinDegNode (G = (V,A)):
2 AO := ∅; O := (V,AO)
3 Label all nodes v ∈ V "unscanned"
4 while ∃ unscanned node in V do
5 u := argmin{v∈V |v is unscanned}(odeg(v, (A \ {(v, u) | (u, v) ∈ AO})))
6 foreach e = (u, v) ∈ A with v unscanned do
7 AO = AO ∪ {e} // edge oriented: u −→ v

8 end foreach
9 mark u scanned

10 end while
11 return (O,∆(O))

and another one using individual adjacency arrays, named MinDegNodeList. We aim to
investigate the viability of deleting edges in order to establish an orientation. Particularly,
since the corresponding inverse edges have been removed, subsequent queries concerning
them can be avoided.

Removing Nodes with Maximum Degree (MaxDegNode). In addition, let us compare
this with the opposite strategy, which consistently removes a node with maximum outde-
gree and orients all edges towards it. The explicit pseudocode for MaxDegNode can be
found in Algorithm 2. In this scenario, we initiate with an edge set AO = A, containing
all edges of G. Subsequently, through the exclusion of edges adjacent to the current node
from this set, the algorithm efficiently computes an edge orientation without necessitating
an inverse edge array as well. Furthermore, a bucket priority is only required for sort-
ing the nodes at the beginning. However, as no nodes are relocated to other buckets, this
time overhead is avoided. Otherwise, the algorithm operates similarly to MinDegNode,
including the running time complexity.

4.2.2 Orienting Edges Based on Progressive Degree
(EdgeProgDeg)

We are presenting a similar algorithm to the one used by Reinstädtler et al. [38] for the
FastImprove method of their static optimal algorithm. See Algorithm 3 for the detailed
pseudocode. We begin by initializing an empty set AO, which contains all the edges se-
lected during execution. Since this algorithm does not require the nodes to be processed
in a specific order, we iterate through them based on their index. Each edge incident to
such a node is then oriented towards the endpoint with the higher outdegree within AO. If
there is a tie, the corresponding edge is oriented towards the current node. Accordingly, the
outdegree of nodes within AO is maintained in a bucket priority queue, equivalent to the

14

4.2 Static Algorithms

Algorithm 2: Removing Nodes with Maximum Degree
1 procedure MaxDegNode(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V "unscanned"
4 while ∃ unscanned node in V do
5 u := argmax{v∈V |v is unscanned}(odeg(v,O))
6 foreach e = (u, v) ∈ A with v unscanned do
7 AO = AO\{e} // edge oriented: u←− v

8 end foreach
9 mark u scanned

10 end while
11 return (O,∆(O))

Algorithm 3: Orienting Edges Based on Progressive Degree
1 procedure EdgeProgDeg(G = (V,A)):
2 AO := ∅; O := (V,AO)
3 Label all nodes v ∈ V "unscanned"
4 foreach u ∈ V do
5 foreach e = (u, v) ∈ A with v unscanned do
6 if odeg(u,O) < odeg(v,O) then
7 AO = AO ∪ {e} // edge oriented: u −→ v

8 else
9 AO = AO ∪ {e−1 = (v, u)} // edge oriented: u←− v

10 end if
11 end foreach
12 mark u scanned
13 end foreach
14 return (O,∆(O))

one used in MinDegNode. As both edge and inverse edge can be added to the orientation,
we require an inverse edge array in this case. Utilizing the same bucket priority queue as
for MinDegNode ensures a running time complexity of O(n+m) as well.

Orienting Edges Based on Initial Degree (EdgeInitDeg). We now discuss a modifica-
tion to EdgeProgDeg, which is detailed in Algorithm 4. This algorithm involves orienting
edges not based on an initially empty set AO but rather according to the initial outdegree of
the nodes. The initial positions within the bucket priority queue are therefore introduced by
inserting nodes based on their outdegree within G. The outdegree is then subsequently de-
creased whenever an adjacent edge is removed. Otherwise, this approach works identically.

15

4 Algorithms

Algorithm 4: Orienting Edges Based on Initial Degree
1 procedure EdgeInitDeg(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V "unscanned"
4 foreach u ∈ V do
5 foreach e = (u, v) ∈ A with v unscanned do
6 if odeg(u,O) < odeg(v,O) then
7 AO = AO\{e−1 = (v, u)} // edge oriented: u −→ v

8 else
9 AO = AO\{e} // edge oriented: u←− v

10 end if
11 end foreach
12 mark u scanned
13 end foreach
14 return (O,∆(O))

4.2.3 Orienting Individual Edges with a Minimum Degree Node
(MinDegEdge)

We also propose an approach in Algorithm 5 that individually processes each edge, as
opposed to sequentially handling entire nodes. Therefore, an unscanned node with min-
imum outdegree is successively selected, and exactly one of its yet unscanned edges is
oriented outward each time. This process continues until no more unscanned edges are
remaining. The outdegree of the nodes is again continuously corrected and managed
using a bucket priority queue. Note that we must use an inverse edge array to ensure
that both the edge and its inverse are marked as scanned after the inverse edge is re-
moved from the orientation. This is to prevent processing from the opposite direction.
This can be observed in Line 8 of Algorithm 5.

Orienting Individual Edges with a Maximum Degree Node (MaxDegEdge). We are
also exploring the opposite approach to MinDegEdge. Similar to the previous method, we
successively select an unscanned node with maximum outdegree and orient exactly one
of its unscanned edges towards it. The implementation remains consistent in every other
aspect and can be found in more detail in Algorithm 6.

16

4.2 Static Algorithms

Algorithm 5: Orienting Individual Edges with a Minimum Degree Node
1 procedure MinDegEdge(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V and all edges e ∈ A "unscanned"
4 while ∃ unscanned node in V do
5 u := argmin{v∈V |v is unscanned}(odeg(v,O))
6 if ∃ unscanned edge e = (u, v) ∈ A then
7 AO = AO \ {e−1 = (v, u)} // edge oriented: u −→ v

8 mark e and e−1 scanned
9 else

10 mark u scanned
11 end if
12 end while
13 return (O,∆(O))

One specialty of these two algorithms is, that they react sensitively to the ordering of the
edges, meaning that the outcome may vary based on how the edges are sorted. Since this
usually depends on how the graph was stored in the first place, this offers an opportunity to
adjust the reading process into the data structure accordingly. As explained in Section 4.1.1,
both the edge and its inverse counterpart get inserted into the data structure simultaneously.
While reading a node, the corresponding inverse edges are placed at the next free positions
for all adjacent nodes. This results in them being potentially processed earlier during the
execution of the algorithm. Hence, we aim to arrange the insertion of nodes based on their
degree. If nodes are inserted in ascending order, we mark the corresponding algorithm by
o = min. Conversely, if they are included in descending order, we indicate the algorithm
by o = max. Note that sorting n nodes requires O(n) time when using a bucket priority
queue because every node has a maximum outdegree of n− 1 and is necessarily an integer.

4.2.4 Using 2-Approximation as Lower Bound (2ApproxMix)

The fundamental idea of this algorithm is calculating a lower bound and utilizing it to
achieve a closer approximation for the edge orientation. The algorithmic framework is
explicitly laid out in the pseudocode of Algorithm 7. We start by using the property of
the MinDegNode algorithm for the computation of a 2-approximation, denoted as dapprox.
This is then used to calculate a lower bound for the edge orientation:

dbound =
dapprox

2
(4.1)

17

4 Algorithms

Algorithm 6: Orienting Individual Edges with a Maximum Degree Node
1 procedure MaxDegEdge(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V and all edges e ∈ A "unscanned"
4 while ∃ unscanned node in V do
5 u := argmax{v∈V |v is unscanned}(odeg(v,O))
6 if ∃ unscanned edge e = (u, v) ∈ A then
7 AO = AO \ {e} // edge oriented: u←− v

8 mark e and e−1 = (v, u) scanned
9 else

10 mark u scanned
11 end if
12 end while
13 return (O,∆(O))

In the second step, at most dbound edges are oriented outward for each node, with the or-
der determined by the smallest degree. The degree is updated iteratively again during
the process within a bucket priority queue. Any node with an outdegree still less than
or equal to dbound is subsequently removed. In step 3 we make use of one of the most
promising linear time algorithms MinDegEdge (see Section 5.2 for the experimental eval-
uation) to align the remaining edges. The implementation is thus based on using under-
lying algorithms, which is why an inverse edge array is also required here. And since we
exclusively execute algorithms with linear running time in each step, the total time only
increases by a constant factor.

For this algorithm, it is evident that obtaining as sharp a lower bound as possible is sig-
nificant. Although the factor σ = 2 provides a guaranteed bound, it may be significantly
distant from the optimum if the solution of the 2-approximation of MinDegNode is good.
Therefore, we also introduce some additional factors σ ∈ (1, 2], which are not definite
bounds but might get closer to the optimal value on average. We intentionally disregard
factors less than or equal to 1, as this essentially results in a MinDegNode algorithm. Fur-
thermore, a value above 2 only further approximates the behavior of MinDegEdge.

18

4.2 Static Algorithms

Algorithm 7: Using 2-Approximation as Lower Bound
input: approximation factor σ

1 procedure 2ApproxMix(G = (V,A)):
2 // Phase 1: compute lower bound

3 (G′, dapprox) := MinDegNode(G)
4 dbound := dapprox/σ

5 // Phase 2: orient at most dbound edges for every node

6 AO := A; O := (V,AO)
7 Label all nodes v ∈ V and all edges e ∈ AO "unscanned"
8 while ∃ unscanned node in V do
9 u := argmin{v∈V |v is unscanned}(odeg(v,O))

10 for i = 0 to min(odeg(u,O), dbound) do
11 e := unscanned edge (u, v) ∈ AO
12 AO = AO\{e−1 = (v, u)} // edge oriented: u −→ v

13 mark e scanned
14 end for
15 mark u scanned
16 end while

17 // Phase 3: orient remaining edges

18 // perform MinDegEdge but the labelling of the edges in line 3

is adopted from AO
19 O := MinDegEdge(O)
20 return (O,∆(O))

19

4 Algorithms

4.2.5 Edge Orientation Using Spanning Forests

Borowitz et al. [7] described the following technique, which we first explain before dis-
cussing potential algorithms. A closely related problem to finding the edge orientation
is to fully partition a graph into the minimum number of spanning forests, denoted as α.
Once such a decomposition has been calculated, we can use it as the basis for constructing
an edge orientation. This is achieved by selecting an arbitrary root for each tree within a
forest and orienting each edge of the respective tree towards it. As a result, within these
forests, every node can only have a maximum outdegree of one. This arrangement yields a
maximum edge orientation of α, as there are at most α forest partitions.

First of all, there is always an α-orientation for static graphs. According to Nash-
Williams [32, 33, 11] , a graph G possesses arboricity α if and only if its edge set E can be
partitioned into E1, . . . , Eα, where each (V,Ei) forms a forest for all i ∈ {1, . . . , α}. Such
a decomposition of the graph into the minimum number of spanning forests can be done
in polynomial time and has already been well researched [36, 18, 19].

FOREST. Since we are focusing on fast linear-time algorithms, we are exploring a
different approach that approximates α rather than aiming for an exact solution. FOREST,
developed by Nagamochi and Ibaraki [31], is such a linear-time approach for finding a
sparse k-connected spanning subgraph. Moreover, this algorithm also results in a partition
of G into the spanning forests (V,E1), (V,E2), . . . , (V,E|V |−1). Specifically, they proved
that each (V,Ei) is a maximum spanning forest in (V,E \ (E1 ∪ E2 ∪ · · · ∪ Ei−1)) for
i ∈ {1, 2, . . . , |V | − 1} ([31], Lemma 2.5). The algorithm consistently selects the node
that currently belongs to the most forests and adds all its unscanned neighbors to the next
available forest. We now delve into the specifics and refer to the pseudocode provided
in Algorithm 8 for more details. First of all, the number of forests a node belongs to is
consistently maintained in a bucket priority queue denoted by r. This way, each forest is
labeled with a unique index between 1 and |V | − 1. During execution, an unscanned node
u with maximal r[u] is systematically chosen and processed completely. This means that
every unscanned neighbor v is integrated into the next feasible forest, which is achieved
by adding the respective edge to the set Er[v]+1 and increasing the value in r accordingly.
Thus, an edge is always assigned to the forest indexed by r[v] + 1. Furthermore, cycles
cannot form within a set Ei, as edges are only added if one of its endpoints is not yet part of
that forest. Note that employing a bucket priority queue does not compromise the running
time complexity, since only |E| entries are incremented during execution. An example of
the final result of FOREST applied to the graph in Figure 4.3 is illustrated in Figure 4.4.

Edge Orientation. In order to transform FOREST into the edge orientation algorithm
NI, we additionally have to find a root for every tree and align the edges accordingly. Nag-
amoshi and Ibaraki observed that each nontrivial tree (a tree containing at least one edge)
has exactly one root node, which is the first scanned node of that tree. This is due to
the nature of the FOREST algorithm, which does not permit merging trees. Using Fig-

20

4.2 Static Algorithms

Algorithm 8: FOREST by Nagamochi and Ibaraki [31]
1 procedure FOREST(G = (V,E)):
2 E1 := E2 := · · · := E|E| := ∅
3 Label all nodes v ∈ V and all edges e ∈ E "unscanned"
4 r[v] := 0 for all v ∈ V // Let r[v] := i denote that v has been reached

by an edge of the forest Fi = (V,Ei)

5 while ∃ unscanned node in V do
6 u := argmax{v∈V |v is unscanned}(r[v])

7 foreach unscanned edge e = {u, v} ∈ E do
8 Er[v]+1 = Er[v]+1 ∪ {e}
9 if r[u] = r[v] then r[u] = r[u] + 1

10 r[v] = r[v] + 1
11 mark e scanned
12 end foreach
13 mark u scanned
14 end while
15 return E1, E2, . . . , E|E|

Figure 4.3: Example graph G2 with ∆G2 = 7

ure 4.4 as an example, E1, E2 and E4 contain exactly one nontrivial tree, while E3 is a
forest of two nontrivial trees. A new tree is initiated whenever the current node u and
one of its unscanned neighbors v belong to an equal number of forests, i.e., r[u] = r[v].
In this scenario, node u becomes the root of a tree that belongs to the forest (V,Er[u]+1).

21

4 Algorithms

e3

e7e1

e9 e2
e8

e13

e10

e11

e12

e14

e16

e15

e4

e19

e22

e21

e17

e5

e18

e6

e20

x1

x2

x3x4

x5

x6

x7
x8

x10

x9

Figure 4.4: Partition of G2 = (V,E1∪E2∪E3∪E4) obtained by FOREST. Edges in E1: ;
edges in E2: ; edges in E3: ; edges in E4: . Nodes and Edges
are indexed in the order they were scanned.

Consequently, all unscanned edges containing u are oriented towards u, as this is either the
root of the new tree or lies along the path to the corresponding root node. This results in a
∆-orientation, where ∆ corresponds precisely to the resulting number of spanning forests
as the following theorem shows.

Theorem 1: For a graph G = (V,E), let O be the orientation obtained by Algorithm 9,
then ∆O = maxv∈V (r[v]).

Proof. Theorem 1
Let us denote the resulting value after the execution by k = maxv∈V (r[v]). Consider a
step in the algorithm where we process an edge e = (u, v) with r[u] = r[v] = k − 1.
Such a situation must occur, as priorities of r only get increased by one and only the
lower priority out of r[u] and r[v] gets increased. Therefore, e is oriented towards u.
Since v is an unscanned node whose scanned edges are all oriented outwards and part
of k spanning forests, v now has k scanned edges. That implies k ≤ ∆O. ∆O ≤ k is
immediate, as each node has only one outgoing edge per spanning forest.

Since |Ei| ≤ |V | − 1 for all i ∈ {1, . . . , |V | − 1}, we also obtain a formula for calculating
an upper bound δ for ∆O (see [31]):

|E| ≤ δ|V | − δ(δ + 1)/2 (4.2)

22

4.2 Static Algorithms

Algorithm 9: Edge Orientation Algorithm Using FOREST
1 procedure NI(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V and all edges e ∈ AO "unscanned"
4 r[v] := 0 for all v ∈ V
5 while ∃ unscanned node in V do
6 u := argmax{v∈V |v is unscanned}(r[v])

7 foreach e = (u, v) ∈ A with v unscanned do
8 r[v] = r[v] + 1
9 AO = AO\{e} // edge oriented: u←− v

10 end foreach
11 mark u scanned
12 end while
13 return (O,∆(O))

Please refer to Algorithm 9 for the extended pseudocode and to Figure 4.5 for an exemplary
result on an example graph G2. In our implementation, we utilized concatenated adjacency
arrays without an inverse edges array, as we do not require access to them. Also, note
that Line 9 in Algorithm 8 is unnecessary for our purpose and therefore omitted in the
NI approach as we do not calculate the forest partition itself. It is evident that the time
complexity O(n+m) is the same as for FOREST.

Selecting the Starting Node. Previously, the starting node was selected solely based
on the index, which depends on the order in which the edges were stored. By introducing
selection criteria, we aim to investigate the extent to which the starting node influences
the outcome. To identify a suitable node in advance, we require an indicator, which in
our scenario is the initial degree of the node. For the experimental evaluation, we are
proposing two representative strategies: one selecting nodes based on the lowest degree
(NIStartMinDeg) and another based on the highest degree (NIStartMaxDeg). The adapted
pseudocode for both can be found in Algorithm 10, where for NIStartMaxDeg in Line 7, the
argmin function has to be replaced with an argmax function. More specifically, a starting
node must be selected for each connected component of a graph. This is the case if r[u] = 0
applies for each unscanned node u, as the following theorem shows.

Theorem 2: Let G = (V,E) be an undirected graph. If r[u] = 0 holds for all unscanned
nodes u ∈ V during a step in the execution of Algorithm 10, then every connected compo-
nent C ⊆ G that contains an unscanned node exclusively consists of unscanned nodes.

23

4 Algorithms

e3

e7e1

e9 e2
e8

e13

e10

e11

e12

e14

e16

e15

e4

e19

e22

e21

e17

e5

e18

e6

e20

x1

x2

x3x4

x5

x6

x7
x8

x10

x9

Figure 4.5: Edge Orientation O1 of G2 obtained by NI with ∆O1 = 4. For better visualization,
the different forests (V,Ei) have been marked distinctively. Edges in E1: ;
edges in E2: ; edges in E3: ; edges in E4: . Nodes and Edges
are indexed in the order they were scanned.

Proof. Theorem 2
Let C denote a connected component of G with at least one unscanned node u ∈ C.
Assume that C also contains a scanned node v ∈ C. According to the definition of
connected components, there is a path p = ⟨v, . . . , u⟩ in C. As p contains either
scanned or unscanned nodes, there must be an edge e = (x, y) with a scanned node x ∈
C and an unscanned node y ∈ C. Consequently, according to Algorithm 10, for every
unscanned neighbor w of x holds r[w] > 0, contradicting the precondition r[y] = 0. E

Improving the Forest Approach: Pseudoarboricity. Overall, there are two possi-
ble improvements in this derivation of the edge orientation. As stated previously, the
algorithm of Nagamochi and Ibaraki only provides an approximation of the arboricity.
Secondly, even an α-orientation is not necessarily optimal. The latter can easily be
demonstrated by examining a circle of three nodes. In this scenario, the optimal solution
achieves a 1-approximation, whereas the arboricity is two. This aligns with an observa-
tion from our previous approach: the root nodes of each forest lacked outgoing edges,
leaving room for one to be added without violating the 1-approximation criterion. Con-
sequently, we are extending our approach beyond forests to also include pseudoforests
in the partitioning process.

24

4.2 Static Algorithms

Algorithm 10: NI with Minimum Degree Starting Node
1 procedure NIStartMinDeg(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V and all edges e ∈ AO "unscanned"
4 r[v] := 0 for all v ∈ V
5 while ∃ unscanned node in V do
6 if ∀ unscanned v ∈ V : r[v] = 0 then
7 u := argmin{v∈V |v is unscanned}(outdegree(v,O))
8 else
9 u := argmax{v∈V |v is unscanned}(r[v])

10 end if
11 foreach e = (u, v) ∈ A with v unscanned do
12 r[v] = r[v] + 1
13 AO = AO\{e}// edge oriented: u←− v

14 end foreach
15 mark u scanned
16 end while
17 return (O,∆(O))

Kowalik [28] demonstrated that the problems of partitioning a graph into ∆ pseud-
oforests and finding a ∆-orientation are equivalent. This means that conversions be-
tween the two problems can be done using only linear time proportional to the num-
ber of edges. Since there has been plenty of research about calculating the pseudoar-
boricity and constructing the corresponding decompositions in polynomial time, many
algorithmic solution approaches have been created [36, 20, 19, 28]. Of course, these
are thus also capable of solving the edge orientation problem. Furthermore, there
are additional correlations between arboricity and pseudoarboricity as it can be shown
that ρ(G) ≤ α(G) ≤ ρ(G) + 1 (see [36], Corollary 3-1).

However, since our primary focus is on preserving a linear time complexity, we intend
to propose an extension to the algorithm of Nagamochi and Ibaraki for pseudoforest parti-
tioning. A first observation is that by removing one edge from the circle of a 1-orientation
pseudotree, one endpoint of the former edge becomes the root of that tree, with all edges
oriented towards it. Accordingly, the natural idea is to allow the algorithm to proceed as
before, but upon the creation of each new tree, orient exactly one edge away from its root
to potentially form a cycle. As previously established, a new tree is initiated by an edge
e = (u, v) with r[u] = r[v]. If such a scenario occurs, it is primarily important to create at
most one cycle. The simplest approach to achieve this is to orient the first edge away from
u, as demonstrated in Algorithm 11. Note that the corresponding neighbor is not added
to the new forest for now (by not increasing r[u]), allowing it to potentially connect later
through another edge, which can result in a cycle. We also provide an illustration of this

25

4 Algorithms

Algorithm 11: NI for Approximating Pseudoarboricity
1 procedure NIPseudoFirst(G = (V,A)):
2 AO := A; O := (V,AO)
3 Label all nodes v ∈ V and all edges e ∈ AO "unscanned"
4 r[v] := 0 for all v ∈ V
5 while ∃ unscanned node in V do
6 u := argmax{v∈V |v is unscanned}(r[v])

7 counter := 0
8 foreach unscanned edge e = (u, v) ∈ AO do
9 if r[u] = r[v] and counter = 1 then

10 AO = AO\{e−1 = (v, u)} // edge oriented: u −→ v

11 mark e scanned
12 else
13 r[v] = r[v] + 1
14 AO = AO\{e} // edge oriented: u←− v

15 mark e−1 = (v, u) scanned
16 end if
17 counter++

18 end foreach
19 mark u scanned
20 end while
21 return (O,∆(O))

strategy applied to the graph G2 in Figure 4.6. Given the possibility that the first edge of
a tree might also be the last one, potentially rendering our initial alignment useless, we
try an alternative approach for comparison. This time, we are aligning the second edge
outwards, provided that the tree has at least two edges. To do this, we adapt Algorithm 11
by changing the condition of the if-statement in Line 9 to counter = 2. Note that we are
only approximating ρ and also require an inverse edge array for this extension, as access to
them is now necessary.

26

4.2 Static Algorithms

e3

e7e1

e8 e2
e22

e18

e9

e10

e11

e12

e14

e13

e4

e17

e21

e20

e15

e5

e16

e6

e19

x1

x10

x2x9

x3

x5

x4
x6

x7

x8

Figure 4.6: Edge Orientation O2 of G2 obtained by NIPseudoFirst with ∆O2 = 3. For bet-
ter visualization, the different pseudoforests (V,Ei) have been marked distinctively.
Edges in E1: ; edges in E2: ; edges in E3: . Nodes and Edges
are indexed in the order they were scanned.

27

4 Algorithms

4.3 Dynamic Algorithms

4.3.1 Descending BFS Algorithm (DescBFS)

The paper of Borowitz et al. [7] featured a variety of fully dynamic edge orientation algo-
rithms. We also add another version to this assemblage, which is intended to be a fusion be-
tween the Descending Degrees Algorithm and the Improving u-y-Path Search Algorithm.1

On that note, we proceed in the same way as with the Descending Degrees Algorithm,
but instead of only examining the immediate neighborhood for a suitable node, we extend
every search to the d-neighborhood. The search for the minimum node across the entire
d-neighborhood requires significant computational resources. However, considering that
paths to nodes with lower degrees may still be flipped due to the descending steps, this
extra effort is presumably not worth it. Therefore, we adapt the approach of the BFS Al-
gorithm and terminate the search upon encountering a feasible node. Please refer to the
pseudocode in Algorithm 12 for the precise procedure.

Let us now move on to a detailed explanation. The underlying data structure consists
of individual adjacency arrays Adj[u], storing all adjacent nodes of u. Additionally, we
utilize a bucket priority queue to maintain the outdegree for each node and keep the current
objective function value in a global variable ∆O.

When inserting an edge e = (u, v), v is added to the adjacency array Adj[u] as a new
neighbor of u. Subsequently, the algorithm immediately returns if the outdegree of u is
less than ∆O. This is a pruning step designed to prevent a time-consuming search when an
insertion does not affect the objective function. Another pruning condition for immediate
termination is ∆O = 1, as it is impossible to improve the current solution since an efficient
flip requires a node with an outdegree lower than odeg(u,O) − 1. These data reduction
strategies are adopted following the methodology of [7] for the sake of comparability.

If neither condition for a return is met, a search is then conducted in the d-neighborhood
of u. We do this by running a breadth-first search (BFS) that checks all paths of length d
with u as the source. If a candidate y is found such that odeg(y,O) < odeg(u,O) − 1,
the entire path p = ⟨u, . . . , y⟩ is flipped. Note that every edge in p is orientated towards y
so that, apart from u and y, all nodes of the path have both an incoming and an outgoing
edge. Therefore, only the outdegree of y increases, whereas the outdegree of u decreases
by one. During the BFS search, the positions of the individual nodes of the path can be
stored in the corresponding adjacency arrays, which is why the flipping of an entire path
can be implemented in O(|p|).

This process is then repeated by starting in y until a maximum of r searches
have been performed or no feasible node was found for some source node. If the
latter occurs, i.e. a search is unsuccessful even though the maximum number of
searches has not yet been reached, the process is restarted from the original node u.

1For more details, see Section 5.1 and consult Algorithm 18 and Algorithm 20 (Appendix A.3.1), or for a
more comprehensive version, see Borowitz et al. [7].

28

4.3 Dynamic Algorithms

Algorithm 12: Descending BFS Algorithm
1 global variable: ∆O

input: depth d, # steps s
2 procedure Insertion(u, v):
3 Adj[u] = Adj[u] ∪ {v}
4 if odeg(u,O) < ∆O or ∆O = 1 then return
5 count := 0
6 while count < s and DescendingBFS(O, u, count) ;

7 procedure DescBFS(O = (VO, Adj), u, count):
8 // find a path p = (u, . . . , w) so that odeg(w,O) < odeg(u,O)− 1

9 p = BFS-Search(u, d) // bounded by depth d

10 count++
11 if p ̸= ∅ then
12 flip all edges of p
13 if count < s then
14 DescendingBFS(O, u, count)
15 end if
16 return True
17 else
18 return False
19 end if

20 procedure Deletion(u, v):
21 Adj[u] = Adj[u] \ {v}
22 Adj[v] = Adj[v] \ {u}

Of course, this procedure is instantly canceled if the original search is unsuccessful.
The deletions are kept simple in imitation of the competitors, simply removing
the respective nodes from the adjacency arrays.

Since the maximum amount of breadth-first searches cannot exceed r and every one of
them is bounded by d, the worst-case running time of an insertion is O(r(∆O)

d). On the
other hand, the deletion operation requires only a running time complexity of O(∆O).

29

4 Algorithms

4.3.2 Dynamic Optimal Edge Orientation Algorithm (DynOptEO)
The discussion so far has been primarily focused on algorithms lacking a guarantee of
optimality. However, in this section, we propose a dynamic algorithm designed to com-
pute the exact solution for each step within a graph sequence G. This approach is an
adaptation of a static algorithm initially proposed by Venkateswaran [39] and recently
further refined by Reinstädtler et al. [38]. Before exploring the new dynamic version,
we first review the underlying static algorithm. We are then detailing its connections to
the dynamic version while discussing adopted techniques and also outlining the neces-
sary basic components, including invariants. Next, we examine the update operations,
starting with insertions and followed by deletions, whose correctness we also prove.
This is concluded by a running time analysis.

Solving the Static Edge Orientation Problem

Venkateswaran [39]. The original algorithm minimizes the maximum indegree, but
since this can easily be transferred to the outdegree case, we are only considering
the latter. Venkateswaran begins with an arbitrary orientation and defines two sets
S = {v ∈ V | odeg(v,O) = k} and T = {v ∈ V | odeg(v,O) ≤ k − 2} that depend on
the maximum outdegree k = maxv∈V (odeg(v,O)). The core idea of this algorithm is
to search for improving paths, starting from nodes within S and ending in T . Upon
discovering such a path p = ⟨u, . . . , v⟩, it is flipped, consequently decreasing odeg(u,O).
Therefore, u is removed from S and if odeg(v,O) > k − 2, v is also removed from T . If
S becomes empty, the two sets S and T are formed again for k = k − 1. This process
continues until a complete run over all peak nodes in S fails to yield any improvement, at
which point the algorithm terminates. For a more in-depth explanation of this approach,
we refer to Reinstädtler et al. [38]. A significant part of the contribution provided in their
paper consists of proposing enhancing engineering techniques, some of which can also be
transferred to the dynamic variant.

Adapted Techniques. In the dynamic variant of the algorithm, we are able to utilize
previously gathered information to optimize our search for improving paths for each up-
date operation. This approach significantly reduces the need to re-solve the entire graph
for most updates. However, there are exceptional cases where it is unavoidable to regain
optimality by completely solving the graph. For these instances, we are using a modified
version of the algorithm provided by Reinstädtler et al. [38]. This especially includes some
engineering techniques, which can be transfered to the dynamic case. Those are discussed
in the following. The respective pseudocode for finding and potentially flipping an improv-
ing path is presented in FindPath and can be found in Algorithm 14. For a comprehensive
solution to the static edge orientation problem, please refer to the pseudocode for FindOp-
timal, which is provided in Algorithm 13 and extensively utilizes FindPath.

30

4.3 Dynamic Algorithms

Algorithm 13: DynOptEO: FindPath (see [38, 39])
1 global variables: maxOutDegree = 0, maxNodeCount = 0,

visited = [False]× |V |
2 procedure Flip(O = (VO, AO), e = (u, v)):
3 AO = (AO \ e) ∪ {(v, u)}
4 procedure FindPath(O = (VO, AO), u, d):
5 if visited[u] then return False
6 for e = (u, v) ∈ AO do
7 if odeg(v,O) < d− 1 then
8 Flip(O, e)
9 return True

10 end if
11 end for
12 visited[u] = True
13 for e = (u, v) ∈ AO do
14 if odeg(v,O) = d− 1 then
15 if FindPath(O, v, d) then
16 Flip(O, e)
17 visited[u] = False2

18 return True
19 end if
20 end if
21 end for
22 return False

Since the experimental evaluation in [38] suggests that the algorithm performs better
using a DFS compared to a BFS, we also adopt this for the dynamic variant. We further
refine our approach by using independent paths for the DFS, so that paths intersecting
nodes with maximum outdegree are not further explored. This is because flipping a path
that overlaps with another can invalidate that one. All possible paths of the other peak
node are explored anyway, which upon an improvement allows searches to run through
this node in the next iteration. Additionally, we maintain a shared visited array across
all peak nodes, which is reset only after a complete cycle over all peak nodes. This
strategy helps maintain efficiency by marking subgraphs that lacked improving nodes
during initial searches as visited, thereby preventing redundant searches by other peak
nodes during the same cycle.

31

4 Algorithms

Algorithm 14: DynOptEO: FindOptimal (see [38, 39])
1 global variables: maxOutDegree = 0, maxNodeCount = 0,

visited = [False]× |V |
2 procedure FindOptimal(O = (VO, AO)):
3 path_improved := True
4 while path_improved do
5 path_improved = False
6 all_paths_improved := True
7 for u ∈ VO with odeg(u,O) = maxOutDegree do
8 if FindPath(O, u, odeg(u,O)) then
9 path_improved = True

10 else
11 all_paths_improved = False
12 end if
13 end for
14 if all_paths_improved then
15 maxOutDegree−−
16 end if
17 reset visited
18 end while
19 maxNodeCount = |{v ∈ VO | odeg(v,O) = maxOutDegree}|

Engineering DynOptEO. We are now explaining the modifications for the dynamic
version of this algorithm. As already laid out in Algorithm 13, we maintain three variables
throughout the entire operation sequence: maxOutDegree, maxNodeCount and visited.
Implementing a shared visited array as a global variable has the advantage of avoiding
the need to rebuild the entire array after each individual search. This approach allows
precisely resetting the nodes that were traversed during the DFS after the search has been
performed. Considering that most often only one DFS is executed, resetting all nodes is
redundant. Note that the re-solving in FindOptimal requires resetting visited (Line 17)
only after a complete traversal over all peak nodes, as previously discussed. The other
two variables, maxOutDegree and maxNodeCount, are used to maintain the current
maximum outdegree and the count of peak nodes, respectively. To accommodate insertions
and deletions, the algorithm utilizes a modified version of individual adjacency arrays,
incorporating a strategy from Reinstädtler et al. [38] to store both outgoing and incoming
edges for each node. Consequently, each adjacency array is divided into two segments to
distinctly manage these two types of connections. Note that only the outgoing edges of a
node actively contribute to the orientation. Figure 4.7 provides an illustrated example of
the extended data structure.

32

4.3 Dynamic Algorithms

x3

x1 x2

x4

V E
x1
x2
x3
x4

3

1 4

2 4
.

.

2 3

1

3

2

Figure 4.7: Extended individual adjacency arrays data structure applied to an orientation of the
example graph G1

Invariants

Since re-solving after every insertion or deletion is very time-consuming, we aim to mini-
mize the number of searches for improving paths. To achieve this, we establish invariants
that the algorithm must maintain after each update operation. These invariants guide our
decisions on how to adjust the edge orientation to preserve optimality based on elaborated
information. We discuss and analyze the explicit cases in detail later. First, we introduce
the following invariants that have to hold true for the global variables both before and after
each operation:

Invariant 1: maxOutDegree = maxv∈VO(odeg(v,O)) = ∆(O)

Invariant 2: maxNodeCount = |{v ∈ VO | odeg(v,O) = maxOutDegree}|

Invariant 3: ∀v ∈ VO with odeg(v,O) = maxOutDegree : For every path
p = ⟨v, . . . , w⟩ in AO : odeg(w,O) ∈ {maxOutDegree,maxOutDegree− 1}

To validate that maintaining these invariants ensures an exact solution, we require the
next theorem similar to a statement by Venkateswaran [39].

Theorem 3: Given a graph G(V,E), if an edge orientation O produces a maximum
outdegree k such that k = ⌈eS/nS⌉ for some node subset S ⊆ V , then k solves
the edge orientation problem.

The proof is based on Theorem 2 by Venkateswaran [39] and is done analogous to Corol-
lary 1 [39]. With the help of Theorem 3, we can now prove the preceding statement. The
proof follows the demonstration of Venkateswaran for the correctness of his extremal ori-
entation algorithm.

Theorem 4: Given a graph G = (V,E), if invariant 1 and 3 are satisfied for some edge
orientation O, then the resulting maximum outdegree ∆O is optimal.

33

4 Algorithms

Algorithm 15: DynOptEO: Insertion
1 global variables: maxOutDegree = 0, maxNodeCount = 0,

visited = [False]× |V |
2 procedure Insertion(O = (VO, AO), u, v):
3 W.l.o.g.: odeg(u,O) ≤ odeg(v,O)
4 AO = AO ∪ {(u, v)}
5 if odeg(u,O) = maxOutDegree then
6 if not FindPath(O, u, odeg(u,O)) then
7 maxNodeCount++

8 end if
9 reset visited

10 else if odeg(u,O) = maxOutDegree+ 1 then
11 if FindPath(O, u, odeg(u,O)) then
12 maxNodeCount ++

13 else
14 maxOutDegree++
15 maxNodeCount = 1

16 end if
17 reset visited
18 end if

Proof. Theorem 4
Let S = {v ∈ V | odeg(v,O) = ∆O} and T = {v ∈ V | odeg(v,O) ≤ ∆O − 2}. Let
U be the set of S and all nodes reachable from S by direct paths and Ū = V \ U .
Then T ⊆ Ū and there is no directed path from U to Ū because of invariant 1
and 3. Thus follows eU =

∑
u∈U odeg(u,O) > nU(∆O − 1) since at least one node

in U has outdegree ∆O. Therefore, ∆O = ⌈eU/nU⌉ and with Theorem 3 follows
that ∆O is optimal.

Insertion

At this point, we are prepared to examine the process for handling insertions. The pseu-
docode outlined in Algorithm 15 illustrates the specific cases. The algorithm consistently
inserts edges e = {u, v} with an orientation (u, v) such that odeg(u,O) ≤ odeg(v,O). If
this node subsequently has an outdegree less than maxOutDegree, the function can ter-
minate immediately, as it is impossible to further improve the objective function. It is note-
worthy that even when the outdegree is higher, the algorithm only requires one single DFS
for each insertion. The last step is to update the global variables based on the outdegree of
the respective node and the search result. We now provide proof for these assertions.

34

4.3 Dynamic Algorithms

Proof. Algorithm 15: Insertion(O = (VO, AO), u, v)
If AO is empty, it is easily seen that invariant 1, 2 and 3 hold. We now proceed
by induction. Let O denote the state of O before and O after the execution of
Algorithm 15. The procedure is to assume that invariant 1, 2 and 3 hold true forO and
show that this is also true for O.
W.l.o.g. let odeg(u,O) ≤ odeg(v,O).

Let Ô be the state of O after Line 4 so that EÔ = EO ∪ {(u, v)} and
odeg(u, Ô) = odeg(u,O) + 1
Since further actions depend on odeg(u, Ô), we are examining each
case independently. Using invariant 1, we can directly determine that
odeg(u, Ô) ≤ maxOutDegree+ 1.

Case 1: odeg(u, Ô) < maxOutDegree :
End of function: The function takes no further actions because the outdegree of every
other node was not altered and there is no path from a node with maximum outdegree
to u because of invariant 3. Therefore invariant 1, 2 and 3 hold.

Case 2: odeg(u, Ô) = maxOutDegree :
Line 6: Search for an improving path using FindPath.

Case 2.1: FindPath(Ô, u, odeg(u, Ô)) found a path p = ⟨u, . . . , w⟩ in Ô with
odeg(w, Ô) ≤ maxOutDegree − 2. Therefore the edges in p have flipped which
results in EO = (EÔ ∪ p−1) \ p
⇒ odeg(u,O) = maxOutDegree− 1 and odeg(w,O) ≤ maxOutDegree− 1

End of function: odeg(u,O) = odeg(u,O), while odeg(w,O) is still smaller than
maxOutDegree. Therefore invariant 1 and 2 hold.
Assume there is a path p̃ = ⟨x, . . . , y⟩ in O with odeg(x,O) = maxOutDegree and
odeg(y,O) ≤ maxOutDegree − 2. Since only the outdegree of w, the insertion of
(u, v) and flipping the edges in p−1 distinguishes O from O, invariant 3 implies that p̃
must either have an edge with node w, contain (u, v) or share edges with p−1. We are
going to show that, based on this, we can find a path in O that contradicts invariant 3.

Let z be the first node of an edge in p̃ that is also part of an edge in p−1, resulting in
p̃ = ⟨x, . . . , z, . . . , y⟩ and p = ⟨u . . . , z, . . . , w⟩. Such a node exists because u and w
are also part of edges in p−1.
⇒ The sub-paths p̃1 := ⟨x, . . . , z⟩ of p̃ and p1 := ⟨z, . . . , w⟩ of p both share no edges
with p−1 and (u, v) /∈ p̃1.

Case z ̸= u or (u, v) /∈ p : (u, v) /∈ p1
⇒ There is a path ⟨x, . . . , z, . . . , w⟩ in O which is a contradiction to invariant 3 E

35

4 Algorithms

Case z = u and (u, v) ∈ p: (u, v) /∈ p̃ because (u, v) /∈ EO got flipped. Therefore p̃
has to have an edge with node w or share an edge with p−1. Let z̃ ̸= u be the first
node of an edge in p̃ that is also part of an edge in p−1 (note that w ∈ p−1), resulting
in p̃ = ⟨x, . . . , u, . . . , z̃, . . . , y⟩ and p = ⟨u, v, . . . , z̃, . . . , w⟩.
⇒ The sub-paths p̃2 := ⟨x, . . . , z̃⟩ of p̃ and p2 := ⟨z̃, . . . , w⟩ of p both share no
edges with p−1 and (u, v) /∈ p̃2, (u, v) /∈ p2
⇒ There is a path ⟨x, . . . , z̃, . . . , w⟩ in O which is a contradiction to invariant 3 E

⇒ Invariant 3 holds

Case 2.2: FindPath(Ô, u, odeg(u, Ô)) did not find a path p = ⟨u, . . . , w⟩ in Ô with
odeg(w, Ô) ≤ maxOutDegree− 2.
End of function: The outdegree of u increased to maxOutDegree, therefore
maxNodeCount was increased by one. Since no other outdegree has been changed,
invariant 1 and 2 hold.
Assume there is a path p̃ = ⟨x, . . . , y⟩ in O with odeg(x,O) = maxOutDegree
and odeg(y,O) ≤ maxOutDegree − 2. Since only the outdegree of u changes and
(u, v) is inserted from O to O, invariant 3 implies that p̃ must contain u, which is a
contradiction to the fact that FindPath did not find a path ⟨u, . . . , y⟩ E
⇒ Invariant 3 holds

Case 3: odeg(u, Ô) = maxOutDegree+ 1 :
Line 11: Search for an improving path using FindPath.

Case 3.1: FindPath(Ô, u, odeg(u, Ô)) found a path p = ⟨u, . . . , w⟩ in Ô with
odeg(w, Ô) ≤ maxOutDegree − 1. Therefore the edges in p have flipped which
results in EO = (EÔ ∪ p−1) \ p
⇒ odeg(u,O) = odeg(v,O) = maxOutDegree
⇒ odeg(w,O) = maxOutDegree− 1 and odeg(w,O) = maxOutDegree

End of function: odeg(u,O) = odeg(u,O), while odeg(w,O) increased
to maxOutDegree. Therefore maxNodeCount increased by one,
so invariant 1 and 2 hold.
Assume there is a path p̃ = ⟨x, . . . , y⟩ in O with odeg(x,O) = maxOutDegree and
odeg(y,O) ≤ maxOutDegree − 2. Since only the outdegree of w, the insertion of
(u, v) and flipping the edges in p−1 distinguishes O from O, invariant 3 implies that p̃
must either have an edge with node w, contain (u, v) or share edges with p−1. We are
going to show that, based on this, we can find a path in O that contradicts invariant 3.

36

4.3 Dynamic Algorithms

Let z be the last node of an edge in p̃ that is also part of an edge in p−1, resulting in
p̃ = ⟨x, . . . , z, . . . , y⟩ and p = ⟨u, . . . , z, . . . , w⟩. Such a node exists because u and w
are also part of edges in p−1.
⇒ The sub-path p̃1 := ⟨z, . . . , y⟩ of p̃ does not share edges with p−1.
Furthermore, v is not part of an edge in p̃1, because otherwise there is a sub-path
p̃2 := ⟨v, . . . , y⟩ of p̃1, which also does not share any edges with p−1 and (u, v) /∈ p̃2,
therefore contradicting invariant 3.
⇒ (u, v) /∈ p̃1

Case (u, v) ∈ p: p = ⟨u, v, . . . , z, . . . , w⟩, the sub-path p1 := ⟨v, . . . , z⟩ of p does
not share edges with p−1 and (u, v) /∈ p1.
⇒ There is a path ⟨v, . . . , z, . . . , y⟩ in O which is a contradiction to invariant 3 E

Case (u, v) /∈ p: The sub-path p1 := ⟨u, . . . , z⟩ of p does not share edges with p−1

and (u, v) /∈ p1.
⇒ There is a path ⟨u, . . . , z, . . . , y⟩ in O which is a contradiction to invariant 3 E

⇒ Invariant 3 holds

Case 3.2: FindPath(Ô, u, odeg(u, Ô)) did not find a path p = ⟨u, . . . , w⟩ in Ô with
odeg(w, Ô) ≤ maxOutDegree− 1
⇒ u is the only node with odeg(u,O) = maxOutDegree+ 1 and invariant 3 holds.
End of function: maxOutDegree got increased by one and maxNodeCount = 1
⇒ invariant 1 and 2 hold

Deletion

We are now concluding the discussion of this algorithm by examining the deletion op-
eration, which is more precisely available in the form of pseudocode in Algorithm 17.
Deletion update operations are initiated by removing an edge e = {u, v}. If the outdegree
of u is subsequently less than maxOutDegree−2, the process can be promptly concluded
as all invariants remain intact. In the case of maxOutDegree − 1, a peak node got de-
creased, and an update to maxNodeCount is required. However, for the outdegree falling
to maxOutDegree− 2, it is necessary to search for an improving path within the inverted
edge orientation, essentially moving in a reverse direction. To do this, we introduce a func-
tion similar to FindPath, tasked with finding an inverse path to a node with an outdegree
that is at least greater by two. The pseudocode for FindPathReversed is detailed in Algo-
rithm 16. Successful identification and subsequent path flipping from a peak node also lead
to a decrement of maxNodeCount.

37

4 Algorithms

Algorithm 16: DynOptEO: FindPathReversed
1 global variables: maxOutDegree = 0, maxNodeCount = 0,

visited = [False]× |V |
2 procedure FindPathReversed(O = (VO, AO), u, d):
3 if visited[u] then return False
4 for e = (v, u) ∈ AO do
5 if odeg(v,O) > d+ 1 then
6 Flip(O, e)
7 return True
8 end if
9 end for

10 visited[u] = True
11 for e = (u, v) ∈ AO do
12 if odeg(v,O) = d+ 1 then
13 if FindPathReversed(O, v, d) then
14 Flip(O, e)
15 return True
16 end if
17 end if
18 end for
19 return False

If the count of peak nodes decreases to zero, we have reached the case where re-solving
the orientation is mandatory. We are now demonstrating how this preserves the invariants,
which is used for validating the optimality of Deletion later.

Lemma 5: If invariant 1 is true before the execution of FindOptimal(O), then invariant 1, 2
and 3 hold true afterwards.

Proof. Lemma 5
The proof falls naturally into three parts, one for every invariant. It is easily seen
that invariant 2 holds, which is clear from Line 19 of FindOptimal (Algorithm 14).
We are now demonstrating that invariant 1 is maintained during each loop iteration
as well as at the end. In the beginning, invariant 1 holds because of the lemmas
requirement. Consider an arbitrary step during the while loop. FindOptimal(O)
checks potential improving paths in Line 8 for each node with an outdegree equal
to maxOutDegree. By applying invariant 1, we can now conclude that these nodes
are the ones with maximum outdegree.

38

4.3 Dynamic Algorithms

Algorithm 17: DynOptEO: Deletion
1 global variables: maxOutDegree = 0, maxNodeCount = 0,

visited = [False]× |V |
2 procedure Deletion(O = (VO, AO), u, v):
3 W.l.o.g.: (u, v) ∈ AO // the edge is directed from u to v

4 AO = AO \ {(u, v)}
5 if odeg(u,O) = maxOutDegree− 1) then
6 maxNodeCount−−
7 else if odeg(u,O) = maxOutDegree− 2) then
8 if FindPathReversed(O, u, odeg(u,O)) then
9 maxNodeCount−−

10 end if
11 reset visited
12 end if
13 if maxNodeCount = 0 then
14 maxOutDegree−−
15 FindOptimal(O)
16 end if

Case 1: ∃u ∈ VO with odeg(u,O) = maxOutDegree :
FindPath(O, u, odeg(u,O)) was unsuccessful
⇒ At Line 11: all_paths_improved = False
⇒ End of while: maxOutDegree keeps the same value because
odeg(u,O) = maxOutDegree.

Case 2: ∀u ∈ VO with odeg(u,O) = maxOutDegree :
FindPath(O, u, odeg(u,O)) was successful
⇒ At Line 11: ∀u ∈ VO : odeg(u,O) < maxOutDegree and
all_paths_improved = True
⇒ At Line 15: maxOutDegree is decreased
⇒ End of while: maxOutDegree = maxv∈VO(odeg(v,O)) because any node can
only be decreased by one in a single iteration

Thus, invariant 1 holds. Furthermore, since the while loop only terminates
when no more improving paths can be found, invariant 3 follows directly,
which completes the proof.

We finally demonstrate that Deletion also maintains the invariants.

39

4 Algorithms

Proof. Algorithm 17: Deletion(O = (VO, AO), u, v)
Let O denote the state of O before and O after the execution of Algorithm 17. Our
proof starts with the assumption that invariant 1, 2 and 3 hold true forO and show that
this is also true for O.
W.l.o.g. let (u, v) ∈ EO, i.e., the edge is oriented from u to v.

Let Ô be the state of O after Line 4 so that EÔ = EO \ {(u, v)} and
odeg(u, Ô) = odeg(u,O)− 1
Since further actions depend on odeg(u, Ô), we are examining each
case independently. Using invariant 1, we can directly determine that
odeg(u, Ô) < maxOutDegree.

Case 1: odeg(u, Ô) < maxOutDegree− 2 :
End of function: The function takes no further actions because the outdegree of every
other node was not altered and there is no path from a node with maximum outdegree
to u because of invariant 3. Therefore invariant 1, 2 and 3 hold.

Case 2: odeg(u, Ô) = maxOutDegree− 2 :
Line 8: Search for an improving path using FindPathReversed.

Case 2.1: FindPathReversed(Ô, u, odeg(u, Ô)) found a path p = ⟨w, . . . , u⟩ in Ô with
odeg(w, Ô) = maxOutDegree. Therefore the edges in p have flipped which results
in EO = (EÔ ∪ p−1) \ p
⇒ odeg(u,O) = odeg(w,O) = maxOutDegree− 1
Line 9: odeg(w,O) decreased, so maxNodeCount is decreased by one.

Case 2.1.1: maxNodeCount = 0 :
Line 14: Because the outdegree of each node could only have been decreased
by one, invariant 2 implies that maxOutDegree has to be decreased to match
the equation of invariant 1.
Line 15: Execute FindOptimal(O). Lemma 5⇒ Invariant 1, 2 and 3 hold

Case 2.1.2: maxNodeCount ̸= 0 :
End of function: w is the only node with a decrease in outdegree from O to O which
is why maxNodeCount is decreased in Line 9, while remaining greater than zero.
Therefore invariant 1 and 2 hold.
Assume there is a path p̃ = ⟨x, . . . , y⟩ in O with odeg(x,O) = maxOutDegree and
odeg(y,O) ≤ maxOutDegree − 2. Since only the outdegree of w, the deletion of
(u, v) and flipping the edges in p−1 distinguishes O from O, invariant 3 implies that p̃
must either have an edge with node w or share edges with p−1. We are going to show
that, based on this, we can find a path in O that contradicts invariant 3.

40

4.3 Dynamic Algorithms

Let z be the last node of an edge in p̃ that is also part of an edge in p−1, result-
ing in p̃ = ⟨x, . . . , z, . . . , y⟩ and p = ⟨w, . . . , z, . . . , u⟩. Such a node exists because w
is also part of an edge in p−1.
⇒ The sub-paths p̃1 := ⟨z, . . . , y⟩ of p̃ and p1 := ⟨w, . . . , z⟩ of p both
share no edges with p−1.
⇒ There is a path ⟨w, . . . , z, . . . , y⟩ in O which is a contradiction to invariant 3 E
⇒ Invariant 3 holds

Case 2.2: FindPathReversed(Ô, u, odeg(u, Ô)) did not find a path p = ⟨w, . . . , u⟩ in
Ô with odeg(w, Ô) = maxOutDegree.
End of function: The only node which has changed between O and O is u with
odeg(u,O) = odeg(u,O) + 1 = maxOutDegree − 1 and there is no path from a
node with maximum outdegree to u. Therefore invariant 1, 2 and 3 hold.

Case 3: odeg(u, Ô) = maxOutDegree− 1 :
Line 6: odeg(u,O) decreased, so maxNodeCount is decreased by one.

Case 3.1: maxNodeCount = 0 :
We can now proceed analogously to case 2.1.1.

Case 3.2: maxNodeCount ̸= 0 :
End of function: The only node which has changed between O and O is u with
odeg(u,O) = odeg(u,O) + 1 = maxOutDegree and there is no path from u to a
node w with odeg(w,O) ≤ maxOutDegree − 2 because of invariant 3. Therefore
invariant 1, 2 and 3 hold.

Complexity Analysis

In the worst case, Insertion performs a search spanning the entire graph to find an im-
proving path. Since the time complexity is equivalent to a DFS, the running time is
bounded by O(m). For Deletion, there is a possibility of having to resolve the graph
using FindOptimal, resulting in the same worst-case running time O(m2) as the algorithm
of Venkateswaran [39]. Note that these bounds represent worst-case scenarios, and in prac-
tice, the algorithm tends to operate more efficiently on average (see Section 5.3).

41

4 Algorithms

42

CHAPTER 5
Experimental Evaluation

In this chapter, we present and discuss the results of the experimental evaluation concerning
the algorithms introduced in Chapter 4. We begin by outlining the structure and procedure
for presenting the results. Next, we describe the hardware conditions of the machine used
for the experiments. We then explain the setup and give a short introduction to performance
profiles. This is followed by an overview of the instances used in the experiments as well
as a brief description of the competitors used for comparison. Finally, we execute the
proposed algorithms with different configurations, compare them to existing algorithms,
and analyze the results.

5.1 Methodology

Structure

We deal with a large number of static and dynamic algorithms in our experiments. For this
reason, we divide the experiments into three categories. In the first section, we are exclu-
sively inspecting static algorithms for approximating the edge orientation. This is done by
first examining the algorithms in smaller subsets based on similar approaches or an isolated
parameter analysis. The evaluation starts with a group of greedy algorithms, which always
process nodes completely, followed by those, that process edges individually. We then pro-
ceed with a parameter analysis for 2ApproxMix, which is followed by the algorithms that
employ FOREST by Nagamochi and Ibaraki [31]. The most successful of these algorithms
are then compared to provide a comprehensive review of their performance. This stepwise
filtering method allows us to present less successful algorithms and delve deeper into those
of significant interest due to their superior performance. The second category features the
two dynamic algorithms. We start with DescBFS, exploring different combinations for its
two parameters. This is followed by an analysis of the dynamic optimal algorithm, focus-
ing particularly on the efficiency of insertion and deletion operations and the frequency

43

5 Experimental Evaluation

of function calls. To conclude this section, these dynamic algorithms are compared with
those from the study of Borowitz et al. [7]. The entire evaluation is then concluded with an
overall comparison between selected static and dynamic algorithms.

Hardware

All of the experiments were conducted on a machine equipped with an Intel(R) Xeon(R)
Silver 4216 CPU and a base clock speed of 2.10GHz. It obtains 96GB of main memory,
a 22MiB L3 Cache, and operates on Ubuntu 20.04.1 LTS as well as the Linux kernel
version 5.4.0-169-generic. Each algorithm was implemented in C++ and compiled using
g++ version 12.3.0 with full optimization enabled (-O3 flag).

Setup

In our experiments, each instance is run 10 times for static algorithms and 5 times for
dynamic algorithms. We always calculate the geometric mean of the corresponding repeti-
tions to determine the average running time on each instance. For running times exceeding
5 hours, we limit the execution to a single run per instance. The graphs are loaded from
their respective files into main memory before timing begins, to prevent random file access
times from affecting the results. This process is implemented to ensure a reliable measure-
ment for the initialization. For static algorithms, we differentiate between the time it takes
to load the graph sequence into the data structure required for the corresponding algorithm
and the actual execution time. This distinction allows us to accurately measure the raw ex-
ecution time as well as the total time, which also includes the loading (initialization) phase.
This approach highlights how some algorithms, while benefiting from a more complex data
structure, also incur time penalties during initialization.

Because dynamic algorithms continually update their data structure while processing
a sequence, we include the initialization time for static algorithms when comparing both
types. If only static algorithms are compared with each other, we primarily operate with
the overall time as well. Results excluding initialization are specifically mentioned in the
analysis if the comparison involves different data structures or if significant differences
are observed. When only the running time including initialization is mentioned, it can
be assumed that the raw execution time does not provide any significant additional in-
sights. Additionally, all average values are calculated using the geometric mean by default,
unless specified otherwise.

Performance Profiles

In order to present the measured results appropriately, we most often utilize performance
profiles for plotting. Please refer to Dolan and Moré [13] for a more comprehensive discus-
sion. This kind of presentation is widely used for displaying comparisons of optimization
software in relation to certain objectives. In this section, the performance is assessed on

44

5.1 Methodology

two key metrics: the running time of algorithms and the quality of solutions they generate.
This results in a 2D graph where the x-axis represents a variable τ ≥ 1, starting at 1 and
increasing continuously. On the other hand, the y-axis shows a fraction of instances. The
performance of an algorithm is represented as a line, where a point (τ, p(τ)) on this line
indicates the percentage p(τ) of instances on which the algorithm performs better than τ
times the overall best performance on that instance. This allows us, for example, to find out
the percentage of instances where the algorithm achieves the best solution among its com-
petitors by looking at τ = 1. Additionally, the first point with p(τ) = 1 indicates the maxi-
mum factor τ by which this algorithm deviates from the best solution in any instance. It is
important to note that these best results are not necessarily achieved by the same algorithm
across different instances. Performance profiles offer a wide range of insights, particularly
due to their relative nature, which makes them a valuable asset for comparisons.

Instances

The experiments were conducted using a dataset provided by Borowitz et al. [7]. The
corresponding set of 87 large graphs consists of both static and truly dynamic instances and
were collected from various backgrounds including numerical simulations and complex
networks [4, 12, 17, 24, 29, 30, 35, 37]. Given that the algorithms discussed in this work are
designed for undirected and unweighted graphs, we disregard the direction and weight of
edges and remove any self-loops and parallel edges. Notably, only a subset of these graphs,
specifically amazon-ratings, dewiki, movielens10m, and wiki_simple_en, originally include
deletions. Henceforth, we use the terms dynamic sequence to refer to graph sequences
including deletions as well as static sequence for excluded deletions. Static algorithms
obtain the graph input sequence sorted by nodes, whereas dynamic algorithms consistently
receive edges in random order.

Since the majority of instances did not feature any deletions which are essential for the
the empirical evaluation of the DynOptEO algorithm, we extend the otherwise static se-
quences with further update operations. This is divided into two stages, the first of which
includes both deletions and insertions. Therefore, a number of additional update operations
are calculated by taking the maximum of either 1 000 or 10% of the number of edges. When
adding a new update to the sequence, we store all previously deleted edges and then select
randomly between insertion or deletion. There are only two exceptions to this procedure.
The first is a complete graph (where every pair of nodes is connected) with an empty list
of deleted edges, where a deletion is selected by default. Conversely, the second is a graph
with an empty set of edges, where an insertion is necessary. A deletion is selected by ran-
domly choosing and removing an existing edge of the graph, whereas an insertion is always
selected from the set of formerly deleted nodes. It is important to note that this strategy
only involves update operations concerning edges that have already been part of the orig-
inal static sequence. As a result, important properties of that graph, such as planarity, are
preserved during this process. In the second phase, all edges are removed until an empty
graph occurs. The deleted edges are selected following the same procedure as in phase one.

45

5 Experimental Evaluation

In summary, we generate a truly dynamic graph sequence that includes an equal number of
insertions and deletions, allowing a comparison between the overall running times gener-
ated by both operations. Additionally, the graph offers alternations between insertion and
deletion updates, illustrating the interactions between the two operations. Statistics of both
the original as well as the extended graphs can be found in Appendix Table A.1.

Competitors

This section briefly explains the algorithms that are used for comparison to the newly
proposed ones. We already introduced an algorithm from the literature with the 2-
approximation [2, 9, 21] in Section 4.2.1. The algorithms described below are thoroughly
discussed in the paper by Borowitz et al. [7], where readers can find a comprehensive
review of each algorithm. Pseudocode of every algorithm is nevertheless available in Ap-
pendix A.3.1 if needed. Also, most of the algorithms mentioned below perform a deletion
by simply removing the edge without further actions. Accordingly, we primarily describe
the actions performed during an insertion of e = (u, v) in the following.

The Improving u-y-Path Search Algorithm(BFS) is based on a breadth-first search in
the d-neighborhood of u to find an improving path. On discovery, the path is flipped, and
the search concludes. Similarly, the Random Path Algorithm (RPath) also seeks an im-
proving path in the d-neighborhood of u, but in this case, the paths are randomly chosen.
If unsuccessful, the search is repeated up to r times. The main idea for the Descending
Degrees Algorithm (DescDegrees) is always flipping the edge to the immediate neighbor
with the lowest outdegree. We continue this process for the neighbor as long as the flipping
operation remains successful. Note that pruning methods, as described in Section 1, are
implemented in these three algorithms as well. K-Flips by Berglin and Brodal [5] oper-
ates globally, flipping k edges (x, y) where x has maximum outdegree. This is performed
after each insertion and deletion. Furthermore, the algorithm by Brodal and Fagerberg [8]
(BroFag) checks whether the outdegree of u exceeds a variable α̃ after inserting the edge.
If so, the algorithm continuously selects a node w with a higher outdegree than α̃ and flips
all of its out-going edges until no such node can be found. The variable α̃ can be an upper
bound for the arboricity α, but in the adaptive variant of the implementation, α̃ is initial-
ized with 1 and increased by α̃ = βα̃ with factor β ∈ [1, 2] if the number of re-orientations
becomes too large. In such cases, a rebuild is performed and the bound for re-orientations
is increased by α̃+ 1. Finally, the naive strategy simply orients each inserted edge starting
from the node with the lower outdegree.

We also use parameters that were selected by Borowitz et al. [7] and give the best
solution quality for the respective algorithms. This results in the following set: BFS20,
RPathd=50,r=10, DescDegrees, K-Flips50, BroFag1.01 and Naive.

46

5.2 Static Results

5.2 Static Results

All average results for static algorithms, regarding running time and solution quality,
are provided in Table 5.1. This includes the average running times with and with-
out consideration of the initialization. If these specifics are not explicitly mentioned
in the text, they can be referenced there for further clarification. Performance pro-
files for static algorithms are given in Figure 5.1 and Figure 5.2, whereas alterna-
tive diagrams comparing the running time with and without initialization are available
in Appendix A.1 (Figure A.1 and Figure A.2).

Algorithms for Completely Processing Nodes

This section compares various algorithms whose strategies revolve around selecting a
node and then orienting all of its edges. All algorithms included in this category
are MinDegNode and MaxDegNode from Section 4.2.1 as well as EdgeProgDeg and
EdgeInitDeg from Section 4.2.2. At this stage, we also integrate a comparison between
adjacency arrays and lists, hence the inclusion of MinDegNodeList in this group. The in-
sights derived from this provide us with information about which representation is the more
suitable choice for these static algorithms. Performance profiles for the solution quality are
illustrated in Figure 5.1 (a), while Figure 5.1 (b) depicts the running time.

Beginning with the two different data structures, it is obvious that the solution quality
of the MinDegNode algorithm remains consistent between the version utilizing adjacency
arrays and the one using lists. Although one might think that the ability to remove edges
completely and not having to revisit them would benefit the version with adjacency lists, it
does not seem to outweigh the higher cost of the data structure itself compared to adjacency
arrays. This is prominently confirmed in Figure 5.1 (b) where MinDegNode is on average
4.1 times faster than MinDegNodeList.

We proceed by evaluating the performance in terms of solution quality for the re-
maining algorithms. MinDegNode evidently stands out as the more effective option
among these algorithms, securing 84.3% of the best instances in this comparison. No-
tably, MinDegNode does not exceed the limit of τ = 2 as must be the case for a 2-
approximation, but this property also holds for EdgeProgDeg. The remaining two algo-
rithms generally perform worse, whereby there are instances for both with particularly
bad results. For example, MaxDegNode reaches a peak τ factor of 4.5, and EdgeInit-
Deg has a result that is 9 times worse than the best solution. Summarizing the quality
aspect, MinDegNode outperforms EdgeProgDeg, EdgeInitDeg and MaxDegNode clearly
by 33.6%, 49.7% and 51.9%, respectively.

The situation is quite the opposite when it comes to the running time. In this context,
the MaxDegNode algorithm is a factor 1.1, 1.1, 1.6, faster on average than EdgeInitDeg,
EdgeProgDeg and MinDegNode, respectively. However, while there might be quicker al-
gorithms in this lineup, there is no real competitor for the solution quality of MinDegNode.

47

5 Experimental Evaluation

1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.2

0.4

0.6

0.8

1.0
%

 in
st

an
ce

s

 b
es

t

(a) Quality

100 101

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

EdgeInitDeg

EdgeProgDeg

MaxDegNode

MinDegNodeList

MinDegNode

(b) Time

1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(c) Quality

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t
MaxDegEdge

MaxDegEdgeo=max

MaxDegEdgeo=min

MinDegEdge

MinDegEdgeo=max

MinDegEdgeo=min

(d) Time

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(e) Quality

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

2ApproxMix1.4

2ApproxMix1.6

2ApproxMix1.8

2ApproxMix2.0

(f) Time

Figure 5.1: Performance profiles illustrating solution quality on the left and running time on the
right side. The rows refer to the categories of algorithms for completely processing
nodes, algorithms for processing individual edges, and 2ApproxMix (factor σ) (top to
bottom). The dataset consists of static sequences (see Table A.1).

Running Time Excluding Initialization. When considering the raw execution time,
the disparity between the two versions of MinDegNode utilizing different data structures is
reduced significantly. This indicates a more expensive initialization process for individual

48

5.2 Static Results

1.0 1.1 1.2 1.3 1.4 1.5

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(a) Quality

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

NIPseudoFirst

NIPseudoSecond

NIStartMaxDeg

NIStartMinDeg

NI

(b) Time

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(c) Quality

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

MinDegEdgeo=max

MinDegNode

NIPseudoFirst

(d) Time

Figure 5.2: Performance profiles illustrating solution quality on the left and running time on the
right side for algorithms based on FOREST [31] and the comparison of best static
algorithms (top to bottom). The dataset consists of static sequences (see Table A.1).

adjacency arrays, caused by a high array count. Nonetheless, MinDegNode is still twice as
fast even in this comparison. Moreover, both EdgeProgDeg and EdgeInitDeg, which rely
on an inverse edge array, outperform MaxDegNode once initialization costs are excluded.
Notably, EdgeProgDeg now leads as the fastest by factors of 1.3, 2, and 4 compared to
EdgeInitDeg, MaxDegNode, and MinDegNode, respectively.

Algorithms for Processing Individual Edges

This section primarily concentrates on the algorithms MinDegEdge and MaxDegEdge from
Section 4.2.3, with a specific focus on analyzing the effects of different strategies for ini-
tializing the graph data structure. The initialization method of inserting nodes into the data
structure in ascending order of degree is characterized by o = min. A descending order,
on the other hand, is indicated by o = max. Otherwise, nodes are inserted in the order they
were stored, i.e., after the index. The performance profiles for solution quality are shown
in Figure 5.1 (c), while the execution time is presented in Figure 5.1 (d).

49

5 Experimental Evaluation

The initialization order for nodes appears to have a minimal impact on the performance
of the MinDegEdge algorithm, as the average solution quality barely differs at all. Never-
theless, both MinDegEdgeo=max and MinDegEdgeo=min demonstrate slight improvements
in this regard. In terms of speed, MinDegEdge predictably leads, benefiting from its
simpler initialization process.

A similar pattern in terms of running time can also be observed for the MaxDegEdge
algorithm, as Figure 5.1 (d) illustrates. This is not unexpected, as we are observing the
same initialization strategies, but for two different algorithms. The situation differs re-
garding quality, with MaxDegEdgeo=min demonstrating significantly better performance
than the other two. In particular, both of these reach a τ value of 9.2, correspond-
ing to a similarly poor result. Besides, MaxDegEdgeo=max is on average slightly better
than the standard variant and additionally yields the highest percentage of best instances
with 19% out of these three.

In the overall comparison regarding quality, MinDegEdge consistently outperforms the
MaxDegEdge strategy in all configurations. Specifically, MinDegEdgeo=max achieves on
average 0.3%, 0.4%, 26.3%, 55.9% and 57.4% better solutions than MinDegEdgeo=min,
MinDegEdge, MaxDegEdgeo=min, MaxDegEdgeo=max and MaxDegEdge, respectively.
Additionally, the common variant of MinDegEdge is also a factor 1.03, 1.2, 1.2, 1.3, 1.3
faster than MaxDegEdge, MinDegEdgeo=min, MinDegEdgeo=max, MaxDegEdgeo=min,
MaxDegEdgeo=max. As solution quality is our primary concern, we are prioritizing
MinDegEdgeo=max for further comparisons. Note that MinDegEdge, being a Pareto
configuration, can also be a viable option, especially if time is a critical factor.

Running Time Excluding Initialization. Given that the different configurations are
based exclusively on the initialization, the actual execution time aligns with those of the
common variants. This can be observed in Table 5.1, where the running times for Min-
DegEdgeo=min, MinDegEdgeo=max and MinDegEdge are essentially identical without the
initialization costs. The same also applies to MaxDegEdge.

Parameter Analysis for 2ApproxMix

Figure 5.1 (e) illustrates the performance profiles for quality, whereas Figure 5.1 (f)
displays the running time of 2ApproxMix (see Section 4.2.4) for various param-
eters. We selected σ ∈ {1.2, 1.4, 1.6, 1.8, 2}, representing factors for the 2-
approximation obtained by the MinDegNode algorithm and designated the corresponding
configuration 2ApproxMixσ.

In terms of best results relative to the other configurations, the algorithm appears to
thrive with factors near the extremes. For instance, according to Figure 5.1 (e), it achieves
percentages of 63.9% for σ = 1.2 and 47% for σ = 2. On the other hand, the fewer subopti-
mal results are all the worse for it. This is prominently reflected by a flattened performance
curve, especially in the case of 2ApproxMix2.0. As the values approach the center of the

50

5.2 Static Results

set, the corresponding curve increasingly tends to adopt a more vertical orientation. This is
particularly evident for the factor σ = 1.6 with 30.1% of best cases and no outcome worse
than 1.5 times the optimal solution for the given set of graphs.

As far as the average running time is concerned, it appears to decrease steadily as the
factors become smaller, which is illustrated in Figure 5.1 (f). This is understandable, as a
smaller factor allows more edges to be oriented directly. However, since 2ApproxMix1.2

is only 1.05 times faster than the slowest configuration, these differences are relatively
minor and therefore can be considered negligible. It is not immediately evident from Fig-
ure 5.1 (e) which parameter yields the best performance. Nonetheless, the average quality
performance offers a clear distinction with parameter σ = 1.2 surpassing σ = 1.4 by 0.3%,
σ = 2.0 by 1.2%, σ = 1.8 by 1.4% and σ = 1.6 by 1.7%. It is important to note that the
average is calculated using the geometric mean, which assigns less weight to single weak
performances. For instance, the arithmetic mean actually favors σ = 2.0 over σ = 1.2 by
11.3%. With this method, however, 2ApproxMix1.2 is actually the only Pareto configura-
tion of this set, delivering the best performance for both objectives. Due to this conclusion,
only this algorithm is used for further comparison in the following.

Algorithms Based on FOREST by Nagamochi and Ibaraki [31]

Figure 5.2 (a) presents the performance profiles for the algorithms NI, NIStartMaxDeg,
NIStartMinDeg, NIPseudoFirst and NIPseudoSecond in terms of quality, while Fig-
ure 5.2 (b) displays their running time profiles. All of these algorithms are detailed in
Section 4.2.5. The first thing to point out is the similarity of the solution quality of NI,
NIStartMaxDeg and NIStartMinDeg. These are all variants of the same algorithm but rep-
resent different strategies for choosing a starting node. These approaches include selecting
the node by index, which depends on the order in which nodes are stored within the graph
structure, as well as selecting nodes with the highest or lowest degree, respectively. How-
ever, as Figure 5.2 (a) shows, there are no significant disparities in the quality profile when
choosing a different initial node. Even when this was tested for each specific node, not a
single case revealed a noteworthy deviation. Therefore it can be concluded that the starting
node selection does not significantly affect the resulting quality and is hence not a suitable
option for enhancing the algorithm.

In any case, the approach of approximating the pseudoarboricity does result in a notable
improvement. As illustrated in Figure 5.2 (a), orienting the first edge of a new spanning
tree away from the root node evidently yields the best solution quality in this compari-
son, achieving 88% of the best instances compared to 40% for NI. Even doing this with
the second edge already demonstrates a decrease with 69%, although it is nonetheless an
improvement to the forest approach.

When examining the running time in Figure 5.2 (b), it is apparent that a better
performance quality mostly comes with the expense of additional running time. For
instance, NIPseudoFirst yields the best average quality, outperforming NIPseudoSecond,
NIStartMaxDeg, NIStartMinDeg and NI by 0.8%, 4.1%, 4.1% and 4.4%, respectively.

51

5 Experimental Evaluation

Simultaneously, NI is faster by a factor of 1.1, 1.1, 1.3 and 1.3 than NIStartMinDeg,
NIStartMaxDeg, NIPseudoSecond and NIPseudoFirst. It is to be expected, that NI stands
out as slightly faster compared to the variants that require more complex strategies. In
summary, it can be concluded that the NIPseudoFirst algorithm produces the best results
among this group when disregarding the minor running time differences.

Running Time Excluding Initialization. The only variation between both time mea-
surements is the repositioning of NIPseudoSecond and NIPseudoFirst, now ranked as the
second and third fastest algorithms after NI, which still maintains its lead by 9% to both.
This adjustment seems logical, considering that edges must be able to orient in both direc-
tions which requires the initialization of an inverse edge array.

Comparison of Static Algorithms

This study now turns to a comparative analysis of the most effective algorithms from Sec-
tion 4.2 in terms of quality, selected from each preceding group. The proposed candidates
include: MinDegNode, NIPseudoFirst, MinDegEdgeo=max and 2ApproxMix1.2. The qual-
ity performance profiles are depicted in Figure 5.2 (c), while Figure 5.2 (d) showcases the
corresponding time profiles.

Starting with the most inferior quality performance, the NIPseudoFirst algorithm sig-
nificantly falls behind, with a maximum outdegree exceeding that of the best algorithm,
2ApproxMix1.2, by 12.6%. Additionally, while the results of MinDegEdgeo=max and Min-
DegNode appear similar, the former consistently outperforms the latter. This is evidenced
by an average quality being higher than 3.9% and 6.1% compared to 2ApproxMix1.2, re-
spectively. It is also important to highlight that 2ApproxMix1.2 also achieves 79.5% of
the best performances. An interesting observation is that none of the competitors exceeds
τ = 1.7 for any instance. This is particularly evident for the MinDegEdgeo=max algorithm,
which never deviates more than 1.23 times from the best value of this set.

Upon examination of the running time depicted in Figure 5.2 (d), it becomes evident
that there are notable discrepancies between the four algorithms. Notably, MinDegNode
exhibits a remarkably faster performance than NIPseudoFirst, MinDegEdgeo=max and
2ApproxMix1.2 by factors of 1.3, 2.4, and 2.6. However, these results can be expected, as
they exactly mirror the increasing complexity of the algorithms.

Running Time Excluding Initialization. Apart from the use of an inverse edge array,
NIPseudoFirst proceeds in similar steps as MinDegNode, so the running time is alike when
ignoring the initialization. In addition, the difference between the two slower algorithms
increases too, as the sorting of nodes during the initialization of MinEdge is now omitted.

52

5.3 Fully Dynamic Results

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(a) Quality

100 101 102 103 104

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

DescBFSd=1,s=1

DescBFSd=1,s=2

DescBFSd=3,s=1

DescBFSd=3,s=3

DescBFSd=5,s=1

DescBFSd=5,s=5

(b) Time

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

(c) Quality

100 101 102 103 104

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t
BFS20

BroFag1.01

DescBFSd=5,s=5

DescDegrees

DynOptEO

K− Flips50

RPathd=50,r=10

(d) Time

Figure 5.3: Performance profiles illustrating solution quality on the left and running time on the
right side for the parameter analysis of DescBFS and the comparison of best dynamic
algorithms (top to bottom). The dataset consists of all instances (see Table A.1).

In summary, if the primary objective (among linear-time algorithms) is achieving the
highest average performance quality, the empirical evaluation tends to favor the 2Approx-
Mix1.2 algorithm. But MinDegEdgeo=max might also be considered a viable choice given
its low rate of poor results. However, both options come with the disadvantage of increased
running times, a domain where MinDegNode prevails.

5.3 Fully Dynamic Results

The average results for dynamic algorithms on all instances are presented in Table 5.2. Ad-
ditionally, Table 5.1 provides results exclusively for sequences without deletions. Through-
out this section, we analyze all instances, as our focus is solely on dynamic algorithms.
Please refer to Table A.1 for a comprehensive list.

53

5 Experimental Evaluation

Paramter Analysis for DescBFS

The performance profiles for the parameter study of DescBFS (see Section 12) are de-
picted in Figure 5.3, with panel (a) illustrating quality and panel (b) showing the running
time. The algorithm (see Section 4.3.1) is evaluated based on two parameters, the maxi-
mum depth of each breath-first search as well as the maximum number of descending steps.
Both of these parameters are exhaustive, with higher values leading to longer running times
while at the same time improving the solution quality. We performed tests for different val-
ues of depth d ∈ {1, 2, 3, 5} and number of steps s ∈ {1, 2, 3, 5}. This results in a total
number of 16 different combinations, which is why we calculated the Pareto configura-
tions based on average quality and running time. This left a quantity of 6 combinations:
(d, s) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (5, 1)}. Apart from depth 1, every remaining
combination has s > d, indicating that depth yields more influence on the quality than
the amount of descending steps. Especially considering that any combination with d = 5
yields a better average solution than all the others. On this set of graphs, (5, 1) being as a
simple BFS5 achieves the same average quality as the other configurations with depth five.
To appropriately study the increase in time, we also examine (5, 5) and (3, 3) in addition
to the Pareto configurations. In order to present the algorithms properly, we select repre-
sentatives from both the most expensive and fastest algorithms as well as from the center.
Accordingly, the choice of the more recourse-intensive algorithms falls on DescBFSd=5,s=5

and DescBFSd=5,s=1, with DescBFSd=3,s=3 and DescBFSd=3,s=1 representing the middle,
and DescBFSd=1,s=2 as well as DescBFSd=1,s=1 as the fastest variations.

As anticipated, the fastest algorithm is DescBFSd=1,s=1 with an average running time of
0.067, but it also yields the worst quality results in return. It outperforms DescBFSd=1,s=2,
DescBFSd=3,s=1, DescBFSd=5,s=1, DescBFSd=3,s=3, DescBFSd=5,s=5 by a factor of 1.4,
2.8, 4.6, 11.7, and 44.5, respectively. On the other side of the spectrum, algorithm
DescBFSd=5,s=5 is the most expensive, yet it achieves the highest average quality re-
sult, matching DescBFSd=5,s=1 with a score of with 19.186. They therefore surpass De-
scBFSd=3,s=3, DescBFSd=3,s=1, DescBFSd=1,s=2, and DescBFSd=1,s=1 in terms of solution
quality by 0.3%, 0.7%, 6.7%, and 11.2%, respectively.

Dynamic Optimal Edge Orientation Algorithm

We are now examining the behavior of the dynamic optimal algorithm from Section 4.3.2.
As a dynamic algorithm, DynOptEO consists of two functions: Insertion and Deletion.
Since, in contrast to DescBFS, deletions do not necessarily only remove edges, we analyze
the two functions in relation to each other in more detail. For insertions, either FindPath
is used to search for a single improving path or the node is removed directly. In the case
of deletions, either the node is simply removed or a reverse search is conducted for an im-
proving path, and in some cases, the graph is additionally solved to optimality. As a result,
the execution time of a single operation naturally varies greatly, which is why the over-
all running time heavily depends on the cost of expensive functions as well as how often

54

5.3 Fully Dynamic Results

they are called. To investigate this, we turn to Figure 5.4, which shows the proportions of
FindPath, FindPathReversed and FindOptimal per executed update operation. Note that we
are only considering extended graphs so that the number of deletions corresponds to the
number of insertions. A first observation reveals that FindPath is called three times more
often than FindPathReversed and even 3 871 times the amount of FindOptimal on average.
It is also interesting to note that the proportions of the functions evidently distribute fairly
well across the total number of update operations. This indicates that the absolute number
of edges does not have a major influence on the percentage of expensive function calls. If
anything, for all three functions, a slight decrease can be observed for increasing update
counts, which is particularly prominent for FindOptimal. However, this is not a surprise, as
the number of edge cases relevant to optimality declines as the overall size of the graph in-
creases. If we now consider Figure 5.5, it can also be noticed that the average duration of an
insertion or deletion is also slightly increasing in general. This indicates that although there
are fewer expensive calls, these are much more time-consuming, enough to at least com-
pensate for their lower numbers. Surprisingly, the running times of insertions and deletions
are quite similar with Deletion being on average only 19% slower than Insertion over all
graphs. This evidently shows that the infrequent calls to solve the graph completely com-
bined with FindPathReversed have a similar impact on the running time as the numerous
individual searches for improving paths for insertions. However, deleting tends to be more
expensive on average than inserting, especially for a large number of edges. Therefore, it
is possible that this observation applies specifically to the graph sizes used in this work.

Comparison of Dynamic Algorithms

This section compares the two dynamic algorithms DescBFS and DynOptEO from
Section 4.3 with selected approaches BFS20, RPathd=50,r=10, DescDegrees, K-Flips50, and
BroFag1.01 (see Section 5.1 for a brief explanation). We exclude Naive to improve clar-
ity and focus, as it is more suitable for the overall comparison including static algorithms
in Section 5.4. Performance profiles for this comparison are available in Figure 5.3 (c)
for quality as well as in Figure 5.3 (d) for running time. We choose DescBFSd=5,s=5 for
the performance profiles, as DescBFSd=5,s=1 closely resembles BFS5 and thus does not
adequately represent the algorithm.

Our initial focus is on solution quality, where DynOptEO consistently delivers the best
result on every instance, as expected from an optimal algorithm. However, DescBFSd=5,s=5

also performs quite well, being only further surpassed by BFS20 and RPathd=50,r=10,
achieving on average 3.7% and 0.2% better solutions, respectively. Furthermore, with 77%
of the best results, it even achieves the optimal solution more frequently than RPathd=50,r=10

with 47.1%. However, it is mainly the configurations of DescBFS with higher depth
that demonstrate particularly strong results, suggesting that the number of steps does not
significantly impact the performance.

55

5 Experimental Evaluation

This is particularly evident when analyzing the running time in Figure 5.3 (d).
For this objective, DescBFSd=5,s=5 performs particularly poorly, being even worse
than DynOptEO, which is on average 13.3% faster. However, note that DynOptEO
is significantly slower for certain instances and consistently outperformed by every
other competitor. Consequently, DescDegrees emerges as the fastest option, surpass-
ing DescBFSd=5,s=1, RPathd=50,r=10, BroFag1.01, K-Flips50, BFS20, DynOptEO and De-
scBFSd=5,s=5 by factors of 4.2, 7.1, 9.8, 14.3, 20.5, 35.6, and 40.3, respectively. While
DescBFSd=5,s=1 is faster than most algorithms, it also largely corresponds to BFS5. There-
fore, we conclude that in most cases, a BFS with higher depth is preferable to DescBFS to
avoid incurring high costs for additional steps.

5.4 Overall Comparison

This chapter concludes with a comparison between static and dynamic edge orientation
algorithms. As these are intensively discussed individually in Section 5.2 and Section 5.3,
this chapter only highlights important discoveries between the two types as well as rep-
resentatives from the current literature (see Section 5.1 for a brief explanation). Further-
more, performance profiles for a selected set of algorithms are presented in Figure 5.6 with
panel (a) displaying quality and panel (b) illustrating the running time.

The dynamic algorithm most suitable for comparison with static algorithms is Naive,
as it employs a similarly simple strategy. This is evident when comparing their solution
quality, as Naive falls between the static algorithms in terms of ranking. Accordingly,
2ApproxMix1.2 achieves, on average, 3.9%, 4.4%, 6.1%, 11.6%, and 12.6% better
solutions than MinDegEdgeo=max, Naive, MinDegNode, BroFag1.01, and NIPseudoFirst,
respectively. In particular, the Naive strategy is relatively similar to MinDegEdge,
except that it operates with incomplete information during graph construction, whereas
MinDegEdge already has knowledge of all final edges. Additionally, we observe that
BroFag1.01 ranks below the three static algorithms and only outperforms NIPseudoFirst
in terms of solution quality. Despite the static algorithms lagging behind the dynamic
ones in terms of quality, they exhibit significantly faster performance. Correspondingly,
MinDegNode is faster than Naive, NIPseudoFirst, MinDegEdgeo=max, and 2ApproxMix1.2

by factors of 1.25, 1.3, 2.4, 2.6. Even 2ApproxMix1.2 is still a factor 4.3 quicker than the
next fastest dynamic algorithm DescDegrees.

Running Time Excluding Initialization. When excluding the initialization for static
algorithms, NIPseudoFirst also outperforms Naive by a factor of 1.7, as can be observed
in Figure A.3. While MinDegEdgeo=max and 2ApproxMix1.2 reduce the gap considerably,
Naive remains 1.2 and 1.7 times faster, respectively.

56

5.4 Overall Comparison

Optimal Solutions. Since comparing the solution quality of an algorithm with
DynOptEO is equivalent to examining the frequency of optimal solutions, we are also
presenting some interesting results in this context. For a detailed overview, please re-
fer to Table 5.3. While Naive fails to achieve any optimal solutions, the static algo-
rithms still perform well. Specifically, NIPseudoFirst achieves 4.8%, MinDegNode 7.2%,
2ApproxMix1.2 8.4% and MinDegEdgeo=max 12%, all surpassing BroFag1.01 with 3.6%.
Moreover, DescBFSd=5,s=5 is directly behind BFS20 with 75.9% of optimal solutions com-
pared to 91.6% on static sequences.

Table 5.1: Average performance of all algorithm configurations over all static sequences
(see Table A.1), sorted by quality (∆O) in ascending order. Column 3 (Avg t [s]) dis-
plays average running times including the initialization of the graph data structure. For
static algorithms, the time without initialization (no init.) is presented in column 4.
Pareto optimal configurations, determined by average quality and running time includ-
ing initialization, are highlighted in grey. The average is calculated using the geometric
mean.

Algorithm Avg ∆O Avg t [s] Avg t [s] (no init.)

DynOptEO 17.490 2.484 -
BFS20 17.876 1.473 -
RPathd=50,r=10 18.518 0.519 -
DescBFSd=5,s=1 18.573 0.293 -

DescBFSd=5,s=5 18.573 2.640 -
DescBFSd=3,s=3 18.606 0.716 -
DescBFSd=3,s=1 18.697 0.175 -
K-Flips50 19.341 0.982 -
DescDegrees 19.485 0.068 -

DescBFSd=1,s=2 19.767 0.088 -
DescBFSd=1,s=1 20.456 0.062 -
2ApproxMix1.2 21.829 0.041 0.033

2ApproxMix1.4 21.893 0.042 0.034
2ApproxMix2.0 22.084 0.043 0.035
2ApproxMix1.8 22.141 0.043 0.035
2ApproxMix1.6 22.191 0.043 0.035
MinDegEdgeo=max 22.691 0.039 0.024
MinDegEdgeo=min 22.764 0.038 0.024
MinDegEdge 22.775 0.032 0.024
Naive 22.789 0.020 -
MinDegNode 23.165 0.016 0.012

Continuation on the next page

57

5 Experimental Evaluation

Table 5.1: (Continuation)

MinDegNodeList 23.165 0.066 0.024
BroFag1.01 24.354 0.664 -
NIPseudoFirst 24.587 0.021 0.012
NIPseudoSecond 24.773 0.020 0.012
NIStartMaxDeg 25.586 0.018 0.014
NIStartMinDeg 25.593 0.017 0.014
NI 25.661 0.016 0.011
MaxDegEdgeo=min 28.652 0.040 0.025
EdgeProgDeg 30.940 0.011 0.003

EdgeInitDeg 34.684 0.011 0.004
MaxDegNode 35.178 0.010 0.006

MaxDegEdgeo=max 35.372 0.041 0.026
MaxDegEdge 35.709 0.033 0.026

Table 5.2: Average performance of all dynamic algorithm configurations, sorted by quality (∆O)
in ascending order. Column 3 (Avg t [s]) displays the running time. The instances
include static as well as dynamic sequences, see Table A.1 for more information. Pareto
optimal configurations, determined by average values over all instances, are highlighted
in grey. The average is calculated using the geometric mean.

Algorithm Avg ∆O Avg t [s]

DynOptEO 18.117 2.633
BFS20 18.499 1.518
RPathd=50,r=10 19.146 0.525
DescBFSd=5,s=1 19.186 0.309

DescBFSd=5,s=5 19.186 2.983
DescBFSd=3,s=3 19.218 0.787
DescBFSd=3,s=1 19.310 0.186
K-Flips50 19.960 1.055
DescDegrees 20.124 0.074

DescBFSd=1,s=2 20.449 0.094
DescBFSd=1,s=1 21.306 0.067
Naive 23.792 0.022

BroFag1.01 25.087 0.727

58

5.4 Overall Comparison

Table 5.3: Percentage of results on which the algorithms achieve optimal performances. Column 2
represents results on static sequences, whereas column 3 displays results on all se-
quences (see Table A.1).

Algorithm opt solutions opt solutions
(including deletions)

DynOptEO 100% 100%
BFS20 91.6% 92%
DescBFSd=5,s=5 75.9% 77%
RPathd=50,r=10 48.2% 47.1%
DescDegrees 24.1% 24.1%
K-Flips50 13.3% 13.8%
MinDegEdgeo=max 12% -
2ApproxMix1.2 8.4% -
MinDegNode 7.2% -
NIPseudoFirst 4.8% -
BroFag1.01 3.6% 3.4%
Naive 0% 0%

59

5 Experimental Evaluation

104 105 106 107 108

update operations

0.0

0.1

0.2

0.3

0.4

fu
nc

tio
n

ca
ll

/ u
pd

at
e

op
er

at
io

n
FindPath FindPathReversed FindOptimal

(a) Linear scaling

104 105 106 107 108

update operations

10 5

10 4

10 3

10 2

10 1

fu
nc

tio
n

ca
ll

/ u
pd

at
e

op
er

at
io

n

(b) Logarithmic scaling

Figure 5.4: Plot displaying the fraction of function calls for DynOptEO, including FindPath, Find-
PathReversed and FindOptimal. The y-axis is given in linear scaling above (a) and log-
arithmic scaling below (b). The dataset consists of static sequences extended by dele-
tion operations (#insertions = #deletions). For better visualization, trend lines with
floating arithmetic average and window size 10 are shown.

60

5.4 Overall Comparison

104 105 106 107 108

update operations

10 6

10 4

10 2

100

102

104

tim
e

[s
]

Overall Average Insertion Average Deletion

Figure 5.5: Plot illustrating the running time for DynOptEO, representing the overall graph
computation time, alongside the arithmetic averages for Insertion and Dele-
tion. The dataset consists of static sequences extended by deletion operations
(#insertions = #deletions). For better visualization, trend lines with floating arithmetic
average and window size 10 are shown.

61

5 Experimental Evaluation

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

2ApproxMix1.2

BFS20

BroFag1.01

DescBFSd=5,s=5

DescDegrees

DynOptEO

MinDegEdgeo=max

MinDegNode

Naive

NIPseudoFirst

(a) Quality

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

BFS20

BroFag1.01

DescBFSd=5,s=5

DescDegrees

DynOptEO

MinDegEdgeo=max

MinDegNode

Naive

NIPseudoFirst

(b) Time

Figure 5.6: Performance profiles illustrating solution quality on the top and running time on the
bottom for the overall comparison. The dataset consists of static sequences (see Ta-
ble A.1).

62

CHAPTER 6
Discussion

6.1 Conclusion

In this work, we engineer and analyze numerous static linear-time algorithms for approxi-
mating the edge orientation problem, which is to minimize the maximum outdegree. These
algorithms range from simple greedy strategies to utilizing FOREST for computing a forest
partition. In terms of solution quality, 2ApproxMix and MinDegEdge stand out in partic-
ular, which outperform the 2-approximation MinDegNode [2, 9, 21] as well as Naive [7],
even though the latter are faster. More specifically, we are able to further enhance the
performance of 2ApproxMix by fine-tuning factors (σ = 1.2) for guessing the lower
bound. Similarly, MinDegEdge can slightly be improved by manipulating the order in
which edges are loaded into the graph data structure. However, the remaining algorithms
yield less promising results. Most notably, even the strongest version of NI is inferior
to MinDegNode in both objectives.

The second aspect of this work consists of two dynamic algorithms for maintaining edge
orientations over a sequence of update operations. The experiments for DescBFS reveal
that the search depth is a more important parameter than the number of descending steps,
with the latter failing to sufficiently enhance the solution quality relative to their compu-
tational costs. Therefore, DescBFS is dominated by the underlying algorithm BFS [7].
Conversely, our novel dynamic optimal algorithm demonstrated promising results, with
BFS being only 75.4% faster on average while achieving 92% of the best solutions.

6.2 Future Work

In order to achieve a more accurate approximation of the edge orientation, it could be
beneficial to investigate the potential of combining algorithms. Using a 2-approximation
to compute or guess a lower bound also falls into this category. We have already ex-
amined such an approach with 2ApproxMix, but instead of using MinDegEdge, one

63

6 Discussion

could try various other algorithms for aligning the remaining edges. Another attempt
could be to repeatedly run the same or different algorithms multiple times in succes-
sion. That is of course not possible for all discussed algorithms, but it maintains the same
time complexity. It would also be interesting to determine whether the better-performing
algorithms offer theoretical bounds.

Furthermore, there are many variants of the Descending BFS algorithm that have not
yet been experimentally evaluated. One such example is the algorithm also mentioned in
Section 4.3.1, which always searches for the smallest node in the d-neighborhood and does
not terminate the BFS early. This principle can also be applied to the BFS algorithm from
the paper of Borowitz et al. [7].

For the optimal dynamic edge orientation algorithm, it may be beneficial to explore
other speedup techniques to further improve the running time. This could be done by im-
plementing more of the acceleration strategies used by Reinstädtler et al. [38] on their static
approach for re-solving the orientation in FindOptimal. In addition, it may be beneficial to
identify additional invariants that guarantee an optimal solution, whilst requiring the use of
alternative algorithms. This approach could facilitate the discovery of algorithms that excel
in specific domains, such as reducing the execution time for either insertions or deletions.

64

APPENDIX A
Appendix

A.1 Further Results

65

A Appendix

100 101

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

(a) Quality

100 101

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

EdgeInitDeg

EdgeProgDeg

MaxDegNode

MinDegNodeList

MinDegNode

(b) Time

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

(c) Quality

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

MaxDegEdge

MaxDegEdgeo=max

MaxDegEdgeo=min

MinDegEdge

MinDegEdgeo=max

MinDegEdgeo=min

(d) Time

1.0 1.1 1.2 1.3 1.4 1.5

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

(e) Quality

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

2ApproxMix1.4

2ApproxMix1.6

2ApproxMix1.8

2ApproxMix2.0

(f) Time

Figure A.1: Performance profiles illustrating solution quality on the left and running time (exclud-
ing initialization) on the right side. The rows refer to the categories of algorithms for
completely processing nodes, algorithms for processing individual edges, and 2Ap-
proxMix (factor σ) (top to bottom). The dataset consists of static sequences (see
Table A.1).

66

A.1 Further Results

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

(a) Quality

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t
NIPseudoFirst

NIPseudoSecond

NIStartMaxDeg

NIStartMinDeg

NI

(b) Time

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

(c) Quality

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

MinDegEdgeo=max

MinDegNode

NIPseudoFirst

(d) Time

Figure A.2: Performance profiles illustrating solution quality on the left and running time (ex-
cluding initialization) on the right side for algorithms based on FOREST [31] and the
comparison of best static algorithms (top to bottom). The dataset consists of static
sequences (see Table A.1).

67

A Appendix

1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 b

es
t

2ApproxMix1.2

BFS20

BroFag1.01

DescBFSd=5,s=5

DescDegrees

DynOptEO

K− Flips50

MinDegEdgeo=max

MinDegNode

Naive

NIPseudoFirst

RPathd=50,r=10

(a) Quality

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

%
 in

st
an

ce
s

 fa

st
es

t

2ApproxMix1.2

BFS20

BroFag1.01

DescBFSd=5,s=5

DescDegrees

DynOptEO

K− Flips50

MinDegEdgeo=max

MinDegNode

Naive

NIPseudoFirst

RPathd=50,r=10

(b) Time

Figure A.3: Performance profiles illustrating solution quality on the top and running time (exclud-
ing initialization for static algorithms) on the bottom for the overall comparison. The
dataset consists of static sequences (see Table A.1).

68

A.2 Instances

A.2 Instances

Table A.1: Benchmark set of static, extended, and dynamic graphs (marked by *) provided by
Borowitz et al. [7]. The number of nodes is represented by |V | and in the case of
static sequences, |E| displays the number of edges. For real-world dynamic graphs, U
shows the number of updates of the initial state before removing unnecessary updates
like parallel edges, self-loops, etc. The total number of insertions and deletions (after
adding update operations to sequences that only featured insertions) is indicated by
I|D. If these are equal, only one value is entered, representing both.

Mesh Type Networks

Graph |V | |E| I | D
144 144 649 1 074 393 1 127 984
3elt 4 720 13 722 14 380
4elt 15 606 45 878 48 170
598a 110 971 741 934 778 940
add20 2 395 7 462 7 958
add32 4 960 9 462 9 952
auto 448 695 3 314 611 3 480 243
bcsstk29 13 992 302 748 317 885
bcsstk30 28 924 1 007 284 1 057 510
bcsstk31 35 588 572 914 601 552
bcsstk32 44 609 985 046 1 034 183
bcsstk33 8 738 291 583 306 144
brack2 62 631 366 559 384 764
crack 10 240 30 380 31 876
cs4 22 499 43 858 46 047
cti 16 840 48 232 50 624
data 2 851 15 093 15 820
delaunay16 65 536 196 575 206 346
delaunay17 131 072 393 176 412 794
delaunay20 1 048 576 3 145 686 3 302 529
fe_4elt2 11 143 32 818 34 422
fe_body 45 087 163 734 171 885
fe_ocean 143 437 409 593 430 019
fe_pwt 36 519 144 794 152 033
fe_rotor 99 617 662 431 695 444
fe_sphere 16 386 49 152 51 597
fe_tooth 78 136 452 591 475 172

Continuation on the next page

69

A Appendix

Table A.1: (Continuation)

finan512 74 752 261 120 274 156
m14b 214 765 1 679 018 1 762 927
memplus 17 758 54 196 56 902
rgg15 32 768 160 240 168 214
rgg16 65 536 342 127 359 161
rgg17 131 072 728 753 765 128
t60k 60 005 89 440 93 879
uk 4 824 6 837 7 310
vibrobox 12 328 165 250 173 468
wave 156 317 1 059 331 1 112 189
whitaker3 9 800 28 989 30 430
wing 62 032 121 544 127 594
wing_nodal 10 937 75 488 79 216

Social Networks

graph |V | |E| I | D
amazon-2008 735 323 3 523 472 3 699 277
as-22july06 22 963 48 436 50 841
as-skitter 554 930 5 797 663 6 086 987
citationCiteseer 268 495 1 156 647 1 214 396
citationCiteseer.ddsg 268 495 1 156 647 1 214 474
cnr-2000 325 557 2 738 969 2 875 510
cnr-2000.ddsg 325 557 2 738 969 2 875 486
coAuthorsCiteseer 227 320 814 134 854 522
coAuthorsCiteseer.ddsg 227 320 814 134 854 634
coAuthorsDBLP 299 067 977 676 1 026 378
coAuthorsDBLP.ddsg 299 067 977 676 1 026 546
coPapersCiteseer 434 102 16 036 720 16 837 972
coPapersCiteseer.ddsg 434 102 16 036 720 16 838 551
coPapersDBLP 540 486 15 245 729 16 007 462
coPapersDBLP.ddsg 540 486 15 245 729 16 007 442
email-EuAll 16 805 60 260 63 248
enron 69 244 254 449 267 156
in-2004 1 382 908 13 591 473 14 271 046
loc-
brightkite_edges

56 739 212 945 223 519

loc-gowalla_edges 196 591 950 327 997 585
p2p-Gnutella04 6 405 29 215 30 670

Continuation on the next page

70

A.2 Instances

Table A.1: (Continuation)

PGPgiantcompo 10 680 24 316 25 517
rhg1G 1 000 000 10 047 330 10 549 402
rhg2G 1 000 000 19 923 820 20 919 538
soc-Slashdot0902 28 550 379 445 398 410
wordassociation-
2011

10 617 63 788 66 924

web-Google 356 648 2 093 324 2 197 929
wiki-Talk 232 314 1 458 806 1 531 555

Real-World Dynamic Networks

graph |V | U I | D
amazon-ratings* 2 146 058 5 838 041 476 756 | 920
citeulike_ui 731 770 2 411 819 962 964
dewiki* 2 166 670 86 337 879 55 026 399 |

26 996 658
dewiki-2013 1 532 354 33 093 029 34 747 300
dnc-temporalGraph 2 030 39 264 6 323
facebook-wosn-
wall

46 953 876 993 227 197

flickr-growth 2 302 926 33 140 017 24 495 064
haggle 275 28 244 3 490
lastfm_band 174 078 19 150 868 1 851 245
lkml-reply 63 400 1 096 440 214 740
movielens10m* 69 879 10 000 054 384 169 | 416
munmun_digg 30 399 87 627 89 521
proper_loans 89 270 3 394 979 3 499 515
sociopatterns-
infections

411 17 298 3 589

stackexchange-
stackoverflow

545 197 1 301 942 1 366 705

topology 34 762 171 403 116 233
wiki_simple_en* 100 313 1 627 472 1 124 451 | 433 772
wikipedia-growth 1 870 710 39 953 145 38 529 875
youtube-u-growth 3 223 590 9 375 374 9 844 127

71

A Appendix

A.3 Implementation Details

A.3.1 Fully Dynamic ∆-Orientation Algorithms
The the pseudocode for the algorithms BFS, RPath, DescDegrees, K-Flips, BroFag from
Borowitz et al. [7] is included in the following. To be precise, the pseudocode was adapted
to the style used in this work and to match the pseudocode of DescDegrees in Algorithm 12.
We also added the parameters used in the experimental evaluation for clarification.

Algorithm 18: Improving u-y-Path Search Algorithm
1 global variable: ∆O

input: depth d
2 procedure Insertion(O = (VO, Adj), u, v):
3 Adj[u] = Adj[u] ∪ {v}
4 if odeg(u,O) < ∆O or ∆O = 1 then return
5 // find a path p = (u, . . . , y), odeg(y,O) < odeg(u,O)− 1

6 p = BFS-Search(u, d) // bounded by depth d

7 if p ̸= ∅ then
8 flip all edges of p
9 end if

10 procedure Deletion(O = (VO, Adj), u, v):
11 Adj[u] = Adj[u] \ {v}
12 Adj[v] = Adj[v] \ {u}
13 procedure Adjacent(O = (VO, Adj), u, v):
14 return u ∈ Adj[v] or v ∈ Adj[u]

72

A.3 Implementation Details

Algorithm 19: Random Path Algorithm
1 global variable: ∆O

input: depth d, # repetitions r
2 procedure Insertion(O = (VO, Adj), u, v):
3 Adj[u] = Adj[u] ∪ {v}
4 if odeg(u,O) < ∆O or ∆O = 1 then return
5 for i = 1 to r do
6 // find a path p = (u, . . . , y), odeg(y,O) < odeg(u,O)− 1

7 p = Random-Path(u)
8 if p ̸= ∅ then
9 flip all edges of p

10 break
11 end if
12 end for

13 procedure Deletion(O = (VO, Adj), u, v):
14 Adj[u] = Adj[u] \ {v}
15 Adj[v] = Adj[v] \ {u}

Algorithm 20: Descending Degrees Algorithm
1 global variable: ∆O
2 procedure Insertion(O = (VO, Adj), u, v):
3 Adj[u] = Adj[u] ∪ {v}
4 if odeg(u,O) < ∆O or ∆O = 1 then return
5 while DescendingDegrees(O, u) ;

6 procedure DescendingDegrees(O = (VO, Adj), u):
7 v = argminv∈Adj[u](odeg(v,O))
8 if odeg(v,O) < odeg(u,O)− 1 then
9 Adj[u] = Adj[u] \ {v}

10 Adj[v] = Adj[v] ∪ {u}
11 DescendingDegrees(O = (VO, Adj), u)
12 return True
13 end if
14 return False

15 procedure Deletion(O = (VO, Adj), u, v):
16 Adj[u] = Adj[u] \ {v}
17 Adj[v] = Adj[v] \ {u}

73

A Appendix

Algorithm 21: K-Flips [5]
input: maximum flips k

1 procedure Insertion(O = (VO, Q), u, v):
2 Qu = Qu ∪ {(u, v)}
3 K-Flips(O)
4 procedure Deletion(O = (VO, Q), u, v):
5 Qu = Qu \ {(u, v)}
6 K-Flips(O)
7 procedure K-Flips(O = (VO, Q)):
8 for i = 1 to k do
9 u = argmaxu∈VO

(odeg(u,Qu))
10 Qu = Qu \ {(u, v)}
11 Qv = Qv ∪ {(v, u)}
12 end for

74

A.3 Implementation Details

Algorithm 22: Brodal and Fagerberg [8]
input: α̃ a bound on the arboricity α, factor β

1 procedure Insertion(O = (V,Adj), u, v):
2 Adj[u] = Adj[u] ∪ {v}
3 if odeg(u,O) = α̃ + 1 then
4 S := {u}
5 while |S| ≠ ∅ do
6 w := pop(S)
7 for x ∈ Adj[w] do
8 Adj[x] = Adj[x] ∪ {w}
9 if odeg(x,O) = α̃ + 1 then

10 push(S, x)
11 end if
12 end for
13 Adj[w] = ∅
14 end while
15 end if

16 procedure Deletion(O = (V,Adj), u, v):
17 Adj[u] = Adj[u] \ {v}
18 Adj[v] = Adj[v] \ {u}
19 procedure Rebuild(O = (V,Adj)):
20 α̃ = β · α̃
21 A := {(u, v) ∈ VO × VO | v ∈ Adj[u]}
22 Adj = [∅]× |VO|
23 for (u, v) ∈ A do Insertion(O, u, v)

75

A Appendix

76

A.3 Implementation Details

Zusammenfassung

Das edge orientation Problem besteht darin, den Kanten eines Graphen G Richtungen
zuzuweisen, was einen gerichteten Graphen O erzeugt, wobei der maximale Ausgangs-
grad innerhalb von O minimiert werden soll. Dieses Problem besitzt Anwendungen in
verschiedenen Bereichen und kann in polynomialer Zeit optimal gelöst werden. Auf-
grund der geringen Anzahl von linearen Ansätzen in der aktuellen Literatur erkunden wir
mehrere Strategien zur Approximation der Lösung. Darüber hinaus involviert die dynamis-
che Variante dieses Problems die Erhaltung der Kantenorientierungen über eine Folge von
Aktualisierungsoperationen. Hierfür präsentieren wir einen Ansatz, der auf Konzepten
von zwei bestehenden Algorithmen basiert und mehrere Iterationen einer Breitensuche für
absteigende Knoten durchführt. Darüber hinaus schlagen wir einen neuen Algorithmus
zur optimalen Lösung des dynamischen edge orientation Problems durch Invarianten vor,
welchen wir durch einen Beweis stützen. Aufbauend auf einem bestehenden optimalen
statischen Algorithmus manipuliert dieser Ansatz Pfade, um Verbesserungen zu erwirken.
Wir werten unserer Implementierungen gegen Algorithmen auf dem aktuellen Stand der
Technik aus. Dies zeigt, dass selbst der beste nicht optimale Konkurrent, welcher eine ein-
fache Breitensuche verwendet, im Durchschnitt nur 75.4% schneller als unser dynamischer
optimaler Algorithmus ist und dabei 92% der besten Lösungen erreicht.

77

Bibliography

[1] Oswin Aichholzer, Franz Aurenhammer and Günter Rote. Optimal graph orienta-
tion with storage applications. Universität Graz/Technische Universität Graz. SFB
F003-Optimierung und Kontrolle, 1995.

[2] Srinivasa R. Arikati, Anil Maheshwari, Christos D. Zaroliagis. Efficient compu-
tation of implicit representations of sparse graphs. Discrete Applied Mathematics,
78(1-3):1-16, 1997. doi: 10.1016/S0166-218X(97)00007-3. URL https://doi.
org/10.1016/S0166-218X(97)00007-3.

[3] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. Graph
orientation algorithms to minimize the maximum outdegree. International
Journal of Foundations of Computer Science, 18(02):197-215, 2007. doi:
10.1142/S0129054107004644. URL https://doi.org/10.1142/
S0129054107004644.

[4] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian
Schulz, and Dorothea Wagner. Benchmarking for graph clustering and partitioning.
In Reda Alhajj and Jon G. Rokne, editors, Encyclopedia of Social Network Analy-
sis and Mining, 2nd Edition. Springer, 2018. doi: 10.1007/978-1-4939-7131-2_23.
URL https://doi.org/10.1007/978-1-4939-7131-2_23.

[5] Edvin Berglin and Gerth S. Brodal. A simple greedy algorithm for dynamic graph
orientation. Algorithmica, 82(2):245-259, 2020. doi: 10.1007/s00453-018-0528-0.
URL https://doi.org/10.1007/s00453-018-0528-0.

[6] Markus Blumenstock. Fast Algorithms for Pseudoarboricity. In M. T. Goodrich and
M. Mitzenmacher, editors, Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2016, Arlington, Virginia, USA, January
10, 2016, pages 113-126. SIAM, 2016. doi: 10.1137/1.9781611974317.10. URL
https://doi.org/10.1137/1.9781611974317.10.

[7] Jannick Borowitz, Ernestine Großmann, and Christian Schulz. Engineering fully
dynamic ∆-orientation algorithms. In ACDA. SIAM, 2023.

79

https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1016/S0166-218X(97)00007-3
https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1142/S0129054107004644
https://doi.org/10.1007/978-1-4939-7131-2_23
https://doi.org/10.1007/s00453-018-0528-0
https://doi.org/10.1137/1.9781611974317.10

Bibliography

[8] Gerth S. Brodal and Rolf Fagerberg. Dynamic representation of sparse graphs. In
Frank K. H. A. Dehne, Arvind Gupta, Jörg-Rüdiger Sack, and Roberto Tamas-
sia, editors, Algorithms and Data Structures, 6th International Workshop, WADS
’99, Vancouver, British Columbia, Canada, August 11-14, 1999, Proceedings,
volume 1663 of Lecture Notes in Computer Science, pages 342-351. Springer,
1999. doi: 10.1007/3-540-48447-7_34. URL https://doi.org/10.1007/
3-540-48447-7_34.

[9] Moses Charikar. Greedy approximation algorithms for finding dense components in
a graph. In K. Jansen and S. Khuller, editors, Approximation Algorithms for Combi-
natorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken,
Germany, September 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Com-
puter Science, pages 84-95. Springer, 2000. doi: 10.1007/3-540-44436-X_10. URL
https://doi.org/10.1007/3-540-44436-X_10.

[10] Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg,
and Chris Schwiegelshohn. Adaptive out-orientations with applications. CoRR,
abs/2209.14087, 2022. doi: 10.48550/arXiv.2209.14087. URL https://doi.
org/10.48550/arXiv.2209.14087.

[11] Boliong Chen, Makoto Matsumoto, Jianfang Wang, Zhongfu Zhang, and Jianxun
Zhang. A short proof of nash-williams’ theorem for the arboricity of a graph.
Graphs Comb., 10(1):27-28, 1994. ISSN 0024-6107. doi: 10.1007/BF01202467.
URL https://doi.org/10.1007/BF01202467.

[12] Timothy Davis. The University of Florida Sparse Matrix Collection, http://
www.cise.ufl.edu/research/sparse/matrices, 2008. URL http:
//www.cise.ufl.edu/research/sparse/matrices/.

[13] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization soft-
ware with performance profiles. Mathematical Programming, 91(2):303-324,
2002. doi: 10.1007/s101070100263. URL https://doi.org/10.1007/
s101070100263.

[14] Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting subgraphs
in sparse graphs. In Algorithms and Data Structures - 13th International Symposium,
WADS, pages 304-315, 2013. doi: 10.1007/978-3-642-40104-6_27. URL https:
//doi.org/10.1007/978-3-642-40104-6_27.

[15] David Eppstein. All maximal independent sets and dynamic domi-
nance for sparse graphs. ACM Transactions on Algorithms, 5(4), 2009.
doi:10.1145/1597036.1597042. URL https://doi.org/10.1145/
1597036.1597042.

80

https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1007/3-540-48447-7_34
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.48550/arXiv.2209.14087
https://doi.org/10.48550/arXiv.2209.14087
https://doi.org/10.1007/BF01202467
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/978-3-642-40104-6_27
https://doi.org/10.1007/978-3-642-40104-6_27
https://doi.org/10.1145/1597036.1597042
https://doi.org/10.1145/1597036.1597042

Bibliography

[16] András Frank and András Gyárfás. How to orient the edges of a graph? In András
Hajnal and Vera T. Sós, editors, COMBINATORICS: 5th Hungarian Colloquium,
Keszthely, June/July 1976, Proceedings, number 2 in Colloquia Mathematica Soci-
etatis János Bolyai, pages 353-364. North Holland Publishing Company, 1978.

[17] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders,
Christian Schulz, Darren Strash, and Moritz von Looz. Communication-free mas-
sively distributed graph generation. J. Parallel Distributed Comput., 131:200-217,
2019. doi: 10.1016/j.jpdc.2019.03.011. URL https://doi.org/10.1016/
j.jpdc.2019.03.011.

[18] Harold N. Gabow. Algorithms for Graphic Polymatroids and Parametrics-Sets.
Journal of Algorithms, 26(1):48-86, 1998. ISSN 0196-6774. Springer, 2006.
doi: 10.1006/jagm.1997.0904. URL https://www.sciencedirect.com/
science/article/pii/S0196677497909044.

[19] Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algo-
rithms for matroid sums and applications. Algorithmica 7, pages 465-497, 1992. doi:
10.1007/BF01758774. URL https://doi.org/10.1007/BF01758774.

[20] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. A fast parametric max-
imum flow algorithm and applications. SIAM Journal on Computing, 18(1):30-55,
1989. doi: 10.1137/0218003. URL https://doi.org/10.1137/0218003.

[21] George F. Georgakopoulos and Kostas Politopoulos. MAX-DENSITY revisited: a
generalization and a more efficient algorithm. The Computer Journal, 50(3):348-
356, 2007. doi: 10.1093/COMJNL/BXL082. URL https://doi.org/10.
1093/comjnl/bxl082.

[22] Andrew V. Goldberg. Finding a maximum density subgraph. 1984. URL
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/
CSD-84-171.pdf.

[23] Meng He, Ganggui Tang, and Norbert Zeh. Orienting dynamic graphs, with ap-
plications to maximal matchings and adjacency queries. In Hee-Kap Ahn and
Chan-Su Shin, editors, Algorithms and Computation - 25th International Sym-
posium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, vol-
ume 8889 of Lecture Notes in Computer Science, pages 128-140. Springer, 2014.
doi: 10.1007/978-3-319-13075-0_11. URL https://doi.org/10.1007/
978-3-319-13075-0_110.

[24] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a Scalable
High Quality Graph Partitioner. Proc. of the 24th IEEE International Parallel and
Distributed Processing Symposium, pages 1-12, 2010.

81

https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
https://www.sciencedirect.com/science/article/pii/S0196677497909044
https://www.sciencedirect.com/science/article/pii/S0196677497909044
https://doi.org/10.1007/BF01758774
https://doi.org/10.1137/0218003
https://doi.org/10.1093/comjnl/bxl082
https://doi.org/10.1093/comjnl/bxl082
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf
https://doi.org/10.1007/978-3-319-13075-0_11
https://doi.org/10.1007/978-3-319-13075-0_11

Bibliography

[25] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs.
SIAM Journal on Discrete Mathematics, 5(4):596-603, 1992. doi: 10.1137/0405049.
URL https://doi.org/10.1137/0405049.

[26] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. Orienting
fully dynamic graphs with worst-case time bounds. In Javier Esparza, Pierre Fraigni-
aud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 532-543. Springer, 2014. doi: 10.1007/978-3-662-43951-7_45. URL
https://doi.org/10.1007/978-3-662-43951-7_45.

[27] Łukasz Kowalik. Adjacency queries in dynamic sparse graphs. Inf. Process. Lett.,
102(5):191-195, 2007. doi: 10.1016/j.ipl.2006.12.006. URL https://doi.
org/10.1016/j.ipl.2006.12.006.

[28] Łukasz Kowalik. Approximation scheme for lowest outdegree orientation and graph
density measures. International Symposium on Algorithms and Computation, pages
557-566. Springer, 2006. doi: 10.1007/11940128_56. URL https://doi.org/
10.1007/11940128_56.

[29] Jérôme Kunegis. KONECT: the koblenz network collection. In 22nd
World Wide Web Conference, WWW '13, pages 1343-1350, 2013. doi:
10.1145/2487788.2488173. URL https://doi.org/10.1145/2487788.
2488173.

[30] Jure Leskovec. Stanford Network Analysis Package (SNAP). URL http://
snap.stanford.edu/index.html.

[31] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a
sparse k-connected spanning subgraph of a k-connected graph. Algorithmica, 7:583-
596, 1992. doi: 10.1007/BF01758778. URL https://doi.org/10.1007/
BF01758778.

[32] Crispin St.J. A. Nash-Williams. Edge-Disjoint Spanning Trees of Finite Graphs.
Journal of the London Mathematical Society, s1-36(1):445-450, 1961. ISSN 0024-
6107. doi: 10.1112/jlms/s1-36.1.445. URL https://doi.org/10.1112/
jlms/s1-36.1.445.

[33] Crispin St.J. A. Nash-Williams. Decomposition of Finite Graphs Into Forests. Jour-
nal of the London Mathematical Society, s1-39(1):12-12, 1964. ISSN 0024-6107.
doi: 10.1112/jlms/s1-39.1.12. URL https://doi.org/10.1112/jlms/
s1-39.1.12.

82

https://doi.org/10.1137/0405049
https://doi.org/10.1007/978-3-662-43951-7_45
https://doi.org/10.1016/j.ipl.2006.12.006
https://doi.org/10.1016/j.ipl.2006.12.006
https://doi.org/10.1007/11940128_56
https://doi.org/10.1007/11940128_56
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://doi.org/10.1007/BF01758778
https://doi.org/10.1007/BF01758778
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1112/jlms/s1-39.1.12

Bibliography

[34] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dy-
namic maximal matching. In Proceedings of the 45th ACM Symposium on Theory
of Computing, STOC, pages 745-754, 2013. doi:10.1145/2488608.2488703. URL
https://doi.org/10.1145/2488608.2488703.

[35] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances in scal-
able network generation. CoRR, abs/2003.00736, 2020. URL https://arxiv.
org/abs/2003.00736.

[36] Jean-Claude Picard and Maurice Queyranne. A network flow solution to some non-
linear 0-1 programming problems, with applications to graph theory. Networks,
12(2):141-159, 1982. doi: 10.1002/net.3230120206. URL https://doi.org/
10.1002/net.3230120206.

[37] Julia Preusse, Jérôme Kunegis, Matthias Thimm, Thomas Gottron, and Steffen
Staab. Structural dynamics of knowledge networks. In Proc. Int. Conf. on Weblogs
and Social Media, 2013.

[38] Henrik Reinstädtler, Christian Schulz, and Bora Uçar. Engineering Edge Orienta-
tion Algorithms. CoRR, arXiv:2404.13997, 2024. doi: 10.48550/arXiv.2404.13997.
URL https://doi.org/10.48550/arXiv.2404.13997.

[39] Venkat Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathe-
matics, 143(1-3):374-378, 2004. doi: 10.1016/j.dam.2003.07.007. URL https:
//doi.org/10.1016/j.dam.2003.07.007.

83

https://doi.org/10.1145/2488608.2488703
https://arxiv.org/abs/2003.00736
https://arxiv.org/abs/2003.00736
https://doi.org/10.1002/net.3230120206
https://doi.org/10.1002/net.3230120206
https://doi.org/10.48550/arXiv.2404.13997
https://doi.org/10.1016/j.dam.2003.07.007
https://doi.org/10.1016/j.dam.2003.07.007

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	General Definitions

	Related Work
	Static Edge Orientation Algorithms
	Fully Dynamic Edge Orientation Algorithms

	Algorithms
	Underlying Data Structures: An Overview
	Static Algorithms
	Dynamic Algorithms

	Experimental Evaluation
	Methodology
	Static Results
	Fully Dynamic Results
	Overall Comparison

	Discussion
	Conclusion
	Future Work

	Appendix
	Further Results
	Instances
	Implementation Details

	Abstract (German)
	Bibliography

