
Bachelor Thesis

Finding Small Node Separators

Michael Wegner

Submission date: October 2, 2014

Supervisors: Prof. Dr. Peter Sanders
Dr. Christian Schulz

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology



Errata

The experiments in this thesis are not described correctly. More precisely, the node separator
algorithm presented in this thesis has been repeated five times (instead of one single time) and
the best result has been taken.



Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher In-
stituts für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils
gültigen Fassung beachtet habe.

Karlsruhe, den 2. Oktober 2014



Abstract
We present a new algorithm to compute small node separators on large,

undirected graphs ensuring a user defined balance on the induced con-
nected components. Our algorithm uses edge separators computed by the
open source graph partitioning package KaHIP [42] and a new technique to
transform them into node separators. Given an undirected graph G, our al-
gorithm constructs a flow problem on a subgraph of G containing the edge
separator so that the induced minimum cut in this subgraph corresponds
to a node separator in G. Experiments show that our algorithm finds sig-
nificantly better node separators than other popular tools. The speed of
our algorithm is some orders of magnitude slower than other tools, how-
ever, parallelizing the algorithm and optimizing some crucial parts should
decrease the running time without too much effort. To further evaluate
the quality of our node separators we implemented a node ordering algo-
rithm based on nested dissection [12, 13, 25] which uses our separators to
compute high quality node orderings.

Zusammenfassung
Wir stellen einen neuen Algorithmus zum Finden von Knotenseparatoren

auf großen, ungerichteten Graphen vor, der eine vom Benutzer geforderte
Balance zwischen den induzierten Partitionen sicherstellt. Unser Algorith-
mus verwendet vom Open Source Graphpartitionierungspaket KaHIP [42]
berechnete Kantenseparatoren und ein neues Verfahren um diese in Kno-
tenseparatoren umzuwandeln. Für einen ungerichteten Graphen G konstru-
iert unser Algorithmus ein Flussproblem auf einem Subgraphen von G der
den Kantenseparator enthält, sodass der induzierte minimale Schnitt in
diesem Subgraphen einem Knotenseparator in G entspricht. Experimente
zeigen, dass unser Algorithmus im Vergleich zu anderen bekannten Algo-
rithmen für dieses Problem signifikant bessere Knotenseparatoren berech-
net. Die Laufzeit unseres Algorithmus ist im Vergleich zu den anderen
Algorithmen um einige Größenordnungen höher, jedoch sollte sich durch
das Parallelisieren und Optimieren einiger kritischer Stellen die Laufzeit
ohne großen Aufwand verringern lassen. Um die Qualität der gefundenen
Knotenseparatoren noch besser zu beurteilen, haben wir einen Algorithmus
zur Berechnung von Knotenordnungen implementiert, der auf dem nested
dissection Algorithmus basiert [12, 13, 25] und unsere Knotenseparatoren
verwendet, um Knotenordnungen hoher Qualität zu berechnen.
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1 Introduction

1. Introduction
The divide-and-conquer strategy is a well-known pattern in algorithm engineering
which is also useful for some popular graph problems [27, 24, 2]. The idea is to divide
the original problem into two or more smaller problems which are solved by applying
this method recursively. The solutions to the subproblems are combined to result in
a solution for the original problem [26]. The reasons to use divide-and-conquer are
manifold and include improved algorithm efficiency as well as easy parallelization.
Applying a divide-and-conquer strategy only works efficiently if the subproblems

have roughly the same size, are independent of each other and the costs of solving the
original problem given the solution of the subproblems are small.
Consider a graph G = (V,E) with |V | = n and we want to apply a divide-and-

conquer strategy on the nodes of G. According to the last paragraph, we have to
divide G into two or more subgraphs of roughly the same size. Additionally, the
subgraphs must be independent of each other, i.e. they must not be connected to each
other. To find such subgraphs we search for a set S ⊂ V such that G\S is a set of two
or more connected components which are all smaller than αn for a fixed α ∈ (1

2 , 1).
Such a set is called node separator or α-separator. A small α guarantees subgraphs
of nearly equal sizes. To meet the requirement of solving the original problem with
little costs given the solutions on the subgraphs, we want to minimize the size of S.
However, finding a node separator which meets the above conditions on general graphs
is NP-hard even if the maximum node degree is three [4, 10]. This is why heuristics and
approximation algorithms are used on general graphs to find small node separators.
One popular strategy of computing node separators is to first compute an edge sep-

arator which is then turned into a node separator [33, 42]. The edge separator can be
obtained by applying a graph partitioning heuristic. We use this concept in our new
algorithm and introduce a novel technique to transform the edge separator into a node
separator. To improve the balance of the obtained separator we apply an additional
balancing algorithm which maintains the cardinality of the node separator. Our algo-
rithm is integrated in the open source graph partitioning package KaHIP which is one
of the best graph partitioners in terms of solution quality at the moment [42].

1.1. Overview
We start by introducing some basic graph notations and properties as well as some
graph problems related to the node separator problem in Chapter 2. We finish the
second chapter with the definition of the node separator problem. Chapter 3 first
presents related work on node separators before introducing nested dissection – a
divide-and-conquer algorithm introduced by Alan George in 1973 [12]. Additionally
we describe a popular algorithm called minimum degree heuristic [43] which is used on
the finest level of recursion during nested dissection. In Chapter 4 we describe our own
algorithm for finding small node separators in detail. We start by giving an overview
and then describe the key components of the algorithm. Chapter 5 describes our nested
dissection implementation using our new node separator algorithm. Experimental
results on several test instances and a comparison with two other popular algorithms
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1 Introduction

for nested dissection can be found in Chapter 6. In Chapter 7 we give our conclusion
and an outlook on future work on the topic in general and our algorithm in particular.

6



2 Preliminaries

2. Preliminaries
In this chapter we first want to introduce some basic graph notations and properties
as well as the graph partitioning problem. We continue by introducing the notation
of flow networks and related problems. In the last part of this chapter we define the
node separator problem.

2.1. Graph Notation
A weighted graph G can be described as a 4-tuple G = (V,E, c, ω) where V is a set of
nodes and E is a set of edges. An edge is a tuple (u, v) of two nodes from V and models
a relationship between them. Each edge is weighted by a cost function ω : E → R>0
and another cost function c : V → R>0 assigns a weight to each node of the graph.
The nodes in the set Γ(u) = {v ∈ V | {u, v} ∈ E} are called neighbors of u and the
degree of u is the cardinality of this set.
An unweighted graph can be described by omitting c and ω, i.e. the definition

becomes G = (V,E). A graph is called undirected if for each edge (u, v) ∈ E there
exists an edge (v, u) ∈ E and both edges are weighted equally. The cost functions
c and ω can be extended to sets such that c(V ′) := ∑

v∈V ′ c(v) for all V ′ ⊆ V and
ω(E ′) := ∑

e∈E′ ω(e) for all E ′ ⊆ E.
A subgraph GS = (VS, ES) of a graph G is a graph where the nodes are a subset of V

and the edges a subset of E. We call the subgraph GS induced if the set ES contains
every edge of E on the node set VS ⊂ V . A set of nodes C ⊂ V is called clique if there
is an edge {u, v} ∈ E for every pair of nodes in C. A sequence of nodes (u, . . . , v) is
called u-v path if each consecutive node pair is connected by an edge. A path where
start and end node are equal is called cycle.
In this work we omit the cost functions for brevity and G = (V,E) denotes a

weighted graph as defined in the last paragraph where the node and edge weights are
all set to one if not stated otherwise.

2.2. Graph Properties
A graph is simple, if there are no self-loops (u, u) in E and furthermore no multiple
edges from a node u to node v exist. An acyclic graph contains no cycles. We call
a graph bipartite if we can split the node set V into two non-empty and disjoint sets
U and W such that the nodes within each set are not connected to each other, i.e. if
(u,w) ∈ E then u ∈ U and w ∈ W or vice versa.
In case of a directed graph we say the graph is strongly connected if there exists

a u-v path and a v-u path for every pair of nodes. Many graphs are not strongly
connected itself in which case we search for subgraphs which are strongly connected.
The maximal found subgraphs in terms of node cardinality are called strongly connected
components. The terms also apply to undirected graphs but we use the term connected
components instead of strongly connected components. A linear order (V,≺) on the
nodes of a directed, acyclic graph such that each edge (u, v) ∈ E implies u ≺ v is
called a topological order.
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2 Preliminaries

A set M ⊂ E is called matching if the edges in M do not share any common
nodes. The weight of a matching is defined as the weight of all its edges. A maxi-
mum weight matching (short: maximum matching) is a matching which has maximum
weight among all possible matchings in G. A set X ⊂ V is called vertex cover if for
each edge {u, v} ∈ E either u or v are part of X. The weight of a vertex cover is
defined as the weight of all its nodes. A minimum vertex cover is a vertex cover which
has minimum weight among all possible vertex covers in G.

2.3. Graph Partitioning
Since our algorithm is based on edge separators, we want to introduce the graph par-
titioning problem in this section. An edge separator is a set of edges which connect
the partitions obtained by partitioning the graph.

Let G = (V,E, c, ω) be a graph, n = |V | and m = |E|.

Definition 2.1. k-way Partition
A k-way partition of a graph G = (V,E, c, ω) is a set {V1, . . . , Vk} with the properties
V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j.

A 2-way partition is also called bisection.

Definition 2.2. Edge cut
We define the edge cut between the partitions of a k-way partition as cut := ∑

i<j |Eij|
where Eij := {{u, v} ∈ E : u ∈ Vi ∧ v ∈ Vj}.

In many applications it is necessary that the partitions are balanced, i.e. they have
equal sizes. The following definition formalizes this constraint.

Definition 2.3. Balancing Constraint
The property ∀i ∈ {1, . . . , k} : Vi ≤ Lmax := (1 + ε)d|V |/ke is called balancing con-
straint.

With the above definitions in mind we now state the graph partitioning problem as
follows:

Definition 2.4. Balanced Graph Partitioning Problem
Consider a graph G = (V,E, c, ω). Let k be the desired number of partitions and ε
the maximum allowed imbalance between them. Then the balanced graph partitioning
problem asks to find a k-way partition of G such that the edge cut is minimized and
the balancing constraint is fulfilled for the given ε.

The balanced graph partitioning problem is NP-hard which was shown by Hayfil
and Rivest [18] as well as Garey et al. [11] and during the last decades of research,
many different approaches evolved to solve partitioning problems heuristically.
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2.4 Flow Network

2.4. Flow Network
Consider a simple, directed graph G = (V,E) with a cost function ω : V × V → R
denoting capacities on the edges. The nodes s ∈ V and t ∈ V are two designated notes
in G and are also called source and sink. The tuple (G, s, t, ω) is called flow network.
A flow is a function f : E → R+

0 which satisfies the capacity constraint, the flow
conservation constraint and the skew symmetry constraint. The capacity constraint
demands that for each edge (u, v) ∈ E the inequation 0 ≤ f(u, v) ≤ ω(u, v) holds.
To fulfill the flow conservation constraint each node has to emit the same amount of
flow as it receives with the exception of nodes s and t. The skew symmetry constraint
requires that f(u, v) = −f(v, u) ∀(u, v) ∈ V × V . The value val(f) of a flow f is
defined as val(f) := ∑

(s,v)∈E f(s, v)−∑
(v,s)∈E f(v, s) which is equal to the amount of

flow routed from source to sink.

Residual Graph & Cuts

The residual capacity is defined as rf = ω(u, v) − f(u, v). The residual graph Gr =
(V,Er) of G is given by Er = {(u, v) ∈ V × V | rf (u, v) > 0 and (u, v) ∈ E or
(v, u) ∈ E}. Let S be a subset of V then the partitioning (S, V \ S) is called a cut in
G. If s ∈ S and t ∈ V \ S then S is called s-t cut. The capacity of a cut is defined as

ω(S, V \ S) =
∑

(u,v)∈V×V
u∈S,v∈V \S

ω(u, v).

A minimum s-t cut is a cut (S, V \S) such that ω(S, V \ S) is the minimum among
all s-t cuts.

Max-Flow Problem

Given a flow network (G, s, t, ω) the max-flow problem demands to transfer as much
flow as possible from source s to sink t. This means we want to maximize the value
val(f) of a flow f in the network.

Max-Flow Min-Cut Theorem

Theorem 2.5. The maximum value of an (s, t)-flow in a flow network (G, s, t, ω) is
equal to the minimum capacity among all s-t cuts.

This theorem was shown by Ford and Fulkerson as well as Elias, Feinstein and
Shannon [8, 6]. This allows us to easily compute a minimum s-t cut given a maximum
flow in the network.
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2.5. Node Separator Problem
Let G = (V,E) be an undirected graph.

Definition 2.6. Node Separator
S ⊂ V is called a node separator if V \ S = A ∪ B and A ∩ B = ∅. The two sets A
and B do not need to be connected components.

This means removing the node separator S from G partitions the graph into at least
two disjoint sets A and B. The definition can be extended to a k-way node separator
which demands that V \ S = V1 ∪ · · · ∪ Vk and Vi ∩ Vj = ∅ for every i 6= j. Now we
can state the node separator problem as follows:

Definition 2.7. Node Separator Problem
Let ε ∈ [0, 1) be a constant. The problem asks to find a node separator S such that
(i) G \ S = V1 ∪ · · · ∪ Vk

(ii) |Vi| ≤ (1 + ε)d |V |
k
e for every i ∈ {1, . . . , k}

(iii) |S| is minimal

Property (ii) is denoted as balancing constraint of the node separator problem. This
is sometimes also written as |Vi| ≤ α|V | for a given alpha in (0, 1) which corresponds
to our notation for α = 1+ε

k
. It was shown that the problem is NP-hard on general

graphs even in case the maximum node degree is three [4, 10].
Node separators are useful in the context of divide-and-conquer algorithms but also

in other areas, e.g. on a communication network they tend to be the bottle neck [7].
This observation can be used to provide lower bounds on communication tasks in that
network [2, 24].

Quality of Node Separators

There are several measures to assess the quality of node separators. First of all there
is the size of the node separator which is what we want to minimize. Regarding the
balancing constraint we can differ between the balance of each partition compared to
the complete graph and the balance among partitions excluding the node separator.
Given a node separator, we can compute the actual ε in the notation of Definition 2.7
by

ε = max(|V1|, . . . , |Vk|) · (d
|V |
k
e)−1 − 1. (2.1)

Note that ε can be smaller than 0, because the separator partition S is part of V .
To assess the balance among the induced partitions after removing the separator we
define the balance β of the partitions as follows:

β = max(|V1|, . . . , |Vk|) · (d
|V | − |S|

k
e)−1 − 1 (2.2)

where S is the set of separator nodes.
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3. Related Work
While the problem of finding the minimal node separator is NP-hard on general graphs
there exist several graph classes on which the problem is solvable in polynomial time
at least if the balancing constraint is relaxed [23, 26]. The most famous graph class
concerning the node separator problem is certainly the class of planar graphs.

Planar Separator Theorem
A planar graph is a graph G = (V,E) which can be embedded in the plane, i.e. it can
be drawn on a plane such that no pair of edges are crossing each other. Lipton and
Tarjan proofed the Planar Separator Theorem which states that there always exists a
separator S with |S| ∈ O(

√
|V |) which partitions the planar graph into two sets A and

B, each of maximum size 2|V |/3 and this separator can be obtained in linear time [26].
However, for the perfectly balanced case it was shown that even on planar graphs the
node separator problem is NP-hard [9].

Heuristics
For general graphs there exist several heuristics for computing small node separators.
We want to emphasize two tools which we used as competitors in our own experiments.
The SCOTCH graph partitioning package [33] computes a node separator by first

calculating an edge separator by means of their graph partitioning algorithm and then
transforming the edge separator into a node separator [33, 34, 35]. To accomplish
that, they use a method first described by Pothen and Fan [37] which calculates a
maximum matching on the bipartite graph induced by the edge separator with the
Hopcroft-Karp algorithm [17]. Then a minimum vertex cover - the node separator -
can be computed from the maximum matching since the problem of finding a maximum
matching and finding a minimum vertex cover are equivalent on bipartite graphs (see
König’s Theorem [22]).
Before we started this work, KaHIP already contained an algorithm to compute

node separators on undirected graphs which uses the same approach as SCOTCH.
In Section 6.5 we do a comparison between this approach and our new algorithm.
KaHIP makes use of the duality between a maximum matching and a maximum flow
in a bipartite graph to compute a node separator. Given the maximum flow in the
constructed flow problem depicted in Figure 1, this induces an s-t cut (S, V \S) on the
bipartite graph which can be turned into a minimum vertex cover C = (B[V1] \ S) ∪
(B[V2] ∩ S) where B[V1] and B[V2] denote the two sets of nodes forming the bipartite
graph [42].
The METIS graph partitioner also uses the idea to obtain a node separator from

an edge separator, however, it uses a multilevel approach to compute the node sepa-
rator [20, 19]. This means, METIS coarsens the graph in several steps. This is done
by carefully merging nodes so that the overall structure of the graph is maintained
in the coarser levels. On the coarsest level a node separator is computed and during

11
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8.3. Node Separators 125

V1
V2

G
s t

Figure 8.7: The flow problem to find a minimum vertex cover in the bipartite graph
induced by the boundary nodes and the set of cut edges. This minimum vertex cover is
the smallest separator that can be obtained from the set of cut edges. Cut edges have
capacity •, all other capacities are set to one.

minimum s-t cut (C,C̄) defines a minimum vertex cover S = (B[V1]\C)[ (B[V2]\C) of
the bipartite graph [5]. Figure 8.7 illustrates the construction and relates it to the original
edge separator in the graph. It is worth mentioning that the method can also be used
to obtain a k-way node separator, i.e. k blocks V1, . . . ,Vk and a set S such that after the
removal of the nodes in S there no edge running between the blocks V1, . . . ,Vk. This
can be done computing a k-partition and then by applying the described flow problem
between all pairs of blocks that share a non-empty boundary. All pair-wise separators
together can then be used as a k-way separator. Indeed, also the simple algorithm, which
takes the smaller boundary node set as a node separator, can be used in this framework to
compute a k-way separator. However, the advanced method always computes a separator
which has less or an equal amount of nodes compared to the separator produced by the
simple method.

8.3.1 Experiments
We now compare the performance of the advanced flow-based algorithm to construct
a node separator against the performance of the simple algorithm. The algorithms de-
scribed above have been implemented using C++ within the KaFFPa framework. In this
section, we don’t compare ourselves against other software packages. This is due to the
fact that none of the software packages used in Chapter 7 directly provides a method
to output a node separator. Instead, the node separator methods are usually used inter-
nally to compute block orderings of sparse matrices which are represented as graphs.
We use the same set of instances that we utilized in Chapter 7 to compare the perfor-
mance of KaFFPa against other state-of-the-art graph partitioning software packages.
The instances are 144, 598a, PGPgiantcompo, af_shell10, as-22july06, asia, auto, de-
launay20, deu, email-EuAll, europe fe_ocean, fe_tooth, g3circuit, great-britain, htric00,
loc-brightkite, nlr, p2p-gnu04, rgg20, slashdot0902 and wave. Basic properties of these
graph can be found in Chapter 2.4. Experiments were performed using one core of one
node of machine B.

Figure 1: Flow problem constructed by KaHIP to find a minimum vertex cover in the
bipartite graph induced by the edge separator [42].

the uncoarsening phase (to get back to the original graph) the separator is projected
on the original graph and refined by dropping of nodes which are not needed. This
process is depicted in Figure 2 (Karypis et al. [19]).

(e) Projected Separator

(f) Dropping of Vertices (g) Refined Separator

(a) Original Graph

(d) Coarse Separator

(b) Random Matching (c) Coarse Graph

Figure 4: The sequence of one level coarsening, finding a separator for the coarse
graph, projecting the separator to the original graph, and refining the separator by
dropping vertices.

using RM, and a separator of this coarse graph is computed (Fig-
ure 4(d)). Figure 4(e) shows the projected separator S 0

0 that corre-
sponds to S1. Note that not all the vertices of S 0

0 are necessary to form
a separator for G0. As Figure 4(f) illustrates certain vertices can be
dropped. In the rest of this section we compute the average number
of vertices being dropped in successive uncoarsening levels.
Consider the graph G1, and let P1 be a simple path or cycle of G1.

Let F be the subgraph of G0 induced by the vertices of P1 projected
onto graph G0. The subgraph F contains 2|P1| vertices, and on the
average these vertices do not form a simple path or cycle.

Lemma 1 (Path Projection for Planar Graphs) LetG1 beaone level
coarse graphobtained fromG0 using randomperfect coarsening, and
let P1 be a simple path of G1, between vertices u1 and v1. Let F be
the subgraph of G0 that has P1 as its minor, and let u0 and v0 be the
vertices of F that are mapped onto u1 and v1 respectively. On the
average, the shortest path between u0 and v0 in F contains less than
1.5|P1| vertices [8].

The path projection lemma is very powerful and can be used to
compute the size of the projected separator as a function of the sep-
arator of the coarser graph. Furthermore, as the next lemma shows,
it can also be used to show that the sub-optimality of a separator at

12

Figure 2: Multilevel approach to obtain a node separator by METIS [19]
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3.1. Nested Dissection

One of the most well-known applications of node separators can be found in linear
algebra or more precisely the factorization of sparse, symmetric matrices where the
matrix is decomposed into a product of matrices. To reduce the number of arithmetic
operations of the factorization algorithm and the memory requirements of the actual
factorization itself we want to minimize the fill-in, i.e. the number of entries of the
matrix that are initially zero and change to a non-zero value during the execution of
the algorithm. To obtain a fill-in reduced version of the matrix we can exchange the
rows and columns and apply the factorization on this altered (permuted) version of
the original matrix.
Consider a sparse, symmetric matrix A ∈ Rn×n, a vector b ∈ Rn and a linear

equation system

Ax = b.

From numerical linear algebra it is known that this can be solved efficiently by fac-
torizing A and computing the solution of the above equation system with the factorized
version of A. Depending on the structure of A, there exist several factorization meth-
ods like LU decomposition or Cholesky factorization. Let P be an n×n matrix which
permutes the rows and columns of A. Instead of factorizing A we can factor the matrix
PAP T which significantly decreases the amount of fill-in during the factorization [14].
For example, A can be factored by LU decomposition by iteratively eliminating the

matrix elements below the main diagonal of the i-th column. During this elimination,
it is possible that some entries which were zero are turned to non-zero values. As
a consequence, this increases the overall number of entries as well as the number of
arithmetic operations needed to factorize A. An example of such an elimination is
given in Figure 3.

1 1 2
1 0 0
2 0 0

 eliminating 1st column−−−−−−−−−−−−−→

1 1 2
0 −1 −2
0 −2 −4


Figure 3: Elimination of first column where non-zeros are introduced

The problem of finding a permutation which minimizes the fill-in is NP-hard which
was shown by Yannakakis [45]. Alan George developed an algorithm called nested
dissection [12] which reduces fill-in on regular finite element meshes. Later Leiserson
and Lewis [25] as well as George et al. [13] generalized the algorithm for general graphs
by using node separators.
The nested dissection algorithm makes use of an algorithm called minimum degree

heuristic which itself is a heuristic to reduce the fill-in. The following paragraph
describes this algorithm.
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3 Related Work

Minimum Degree Heuristic
The minimum degree algorithm [43] is a heuristic to reduce the fill-in generated by
matrix factorization. Before we introduce the algorithm we first have to describe how
a symmetric matrix can be represented as an undirected graph.
Let A = (aij) be an n × n symmetric matrix. We can represent this matrix as an

undirected graph G by introducing a node i for every row in A. For every aij 6= 0 we
introduce an undirected edge {i, j}.
Now let G = (V,E) be a representation of a sparse, symmetric matrix A. The ith

elimination step described in the previous section corresponds to the elimination of
the edges from node i to its neighbors and the extension of the neighborhood of i to a
clique. The edges which were missing to form a clique represent the generated fill-in.
The algorithm is based on the idea that a node u ∈ V which has minimum degree

among all nodes produces only a small amount of fill-in as u has a small neighborhood.
After the elimination we obtain a graph Gu where u and all its edges are removed and
its neighbors form a clique. Figure 4 depicts this step. Algorithm 1 shows the minimum
degree heuristic in pseudocode.

v1 v2

v3

v1 v2

v3

Figure 4: Graph representation of matrix A in Figure 3. Nodes v1, v2 and v3 correspond
to rows 1, 2 and 3 of A. The right image shows the graph after eliminating
v1.

Algorithm 1: Minimum Degree Algorithm
Input: G = (V,E) : graph representation of symmetric matrix
Output: π : node ordering

1 while V 6= ∅ do
2 u←MinDegree(G) // Select node u of minimum degree in G
3 π ← (π, u) // append u to the already ordered sequence π
4 G← Gu // eliminate u and update the graph
5 return π

A priority queue can be used to obtain the node of minimum degree of all remaining
nodes efficiently.
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3.1 Nested Dissection

Nested Dissection Algorithm
Algorithm 2 shows the nested dissection approach which applies a divide-and-conquer
strategy to compute a fill-in reduced ordering of a sparse, symmetric matrix. The node
ordering can be transformed into a permutation matrix without any further steps. It
recursively calculates a 2-way node separator such that the graph is partitioned into
three sets A,B and the separator set S. S is always ordered after the partitions A and
B have been ordered. On the coarsest level the minimum degree heuristic is applied
to the subgraphs induced by the partitions.

Algorithm 2: Nested Dissection
Input: G = (V,E) : Graph, γ : minimum degree threshold
Output: π : node ordering

1 if |V | ≤ γ then
2 MinimumDegree(G, π)
3 else

// compute 2-partition of G
4 P = {G1 = (V1, E1), G2 = (V2, E2)} ← PartitionGraph(G)

// find node separator on G given the partitioning P
5 (V ′1 , V ′2 , S)← ComputeSeparator(G,P )

// continue recursively on G1 and G2
6 NestedDissection(G′1)
7 NestedDissection(G′2)
8 OrderSeparator(S, π) // order S after G1 and G2

The threshold γ is used to control when the recursion should end and the minimum
degree ordering should be applied. Typically, a value between 30 and 200 nodes is
chosen for γ. As experiments of Pellegrini et al. [34] have shown, the nested dissection
algorithm performs better than the minimum degree heuristic on the complete graph.
Also, the solution quality is often better if γ is set to a lower value (see Section 6.3).
Experiments suggest that small node separators usually tend to improve the quality
of the obtained node ordering [21, 32].

Quality of Node Orderings
The quality of a node ordering can be measured by several criteria. The first one is the
number of non-zeros (NNZ) of the factorized matrix which have to be stored. The
second one is the operation count (OPC) which is equal to the number of arithmetic
operations which are required to compute a factorization of the matrix. A third one is
the shape of the elimination tree. Parallel factorization should be all the better if the
elimination tree is balanced. Depending on the application, the importance of those
quality measures will be ranked differently.
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Other Implementations
The graph partitioning tools SCOTCH [33] and METIS [21] both implement versions of
nested dissection. METIS implements the basic nested dissection algorithm with some
improvements to the minimum degree heuristic. The node separators are computed
in a multilevel approach (see Section 3) [21, 20].
SCOTCH provides several ordering methods for the nested dissection algorithm

which can be combined with boolean algebra [31]. Node separators are calculated
with the approach described in Section 3.
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4. Finding Small Node Separators
This chapter presents our new algorithm for finding small separators on large, undi-
rected graphs with a guaranteed balancing constraint. We first give a general overview
of the algorithm including some high level pseudocode and then describe the key com-
ponents in more detail in the following sections.

4.1. Overview
The goal of our algorithm is to find small node separators which fulfill a user defined
balancing constraint. There exists a natural trade-off between the size of the node
separator and the resulting balance between the induced connected components which
we cannot overcome. But our algorithm guarantees to hold a maximum allowed im-
balance which can be set as a parameter. An overview of the available parameters is
given in Appendix A.2.
There are several ways to compute a node separator on a graph, some of the more

popular ones are described in Chapter 3. We make use of the strategy which first
computes an edge separator and then transforms that separator into a node separator.
By partitioning a graph G = (V,E) into a k-way partition V1, . . . , Vk, the cut edges

Ecut := {{u, v} ∈ E : u ∈ Vi ∧ v ∈ Vj, i 6= j, i, j ∈ {1, . . . , k}} induce an edge separator
on graph G. Reducing the amount of cut edges can also reduce the number of involved
cut nodes {u ∈ V : ∃v ∈ V : {u, v} ∈ Ecut} as the edge separator is an upper bound
for the cut nodes. Since the minimum vertex cover on the set of cut nodes is an upper
bound for the computed node separator of our algorithm we are interested in finding
a small set of cut nodes and therefore a small set of cut edges.
This implies that the quality of the k-way partition in terms of total edge cut is a

crucial component of our node separator algorithm. The graph partitionings computed
by the graph partitioning package KaHIP [16, 38] have one of the highest qualities
among current partitioning tools which is the reason why we use KaHIP for obtaining
small edge separators.
Given an edge separator, the standard approach is to calculate a node separator from

the set of involved cut nodes. The idea of our approach is to extend the search area
between each pair of partitions for finding a smaller node separator. The area must be
carefully selected so that the balancing guarantee still holds. A detailed description
on how this is done can be found in Section 4.2.
Once we have extended our search area, that is, we selected a proper subgraph

representing the search area, we still have to find a node separator. We construct a
special maximum flow problem on the subgraph which is solved by our implementation
of the push-relabel algorithm introduced by Goldberg and Tarjan [15]. A detailed
description of the flow problem can be found in Section 4.3. The result of this step
is a node separator which is part of the defined subgraph meaning that it still holds
the balancing constraint, assuming the subgraph is selected properly. As the set of
cut nodes are a subset of the subgraph nodes and we can guarantee that we find the
minimum node separator on this subgraph, the upper bound of the node separator
size is indeed equal to a minimum vertex cover on the set of cut nodes.
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4 Finding Small Node Separators

An important feature which sets our algorithm apart from other implementations
is the ability to compute a k-way node separator without the need for recursion.
That is mainly due to KaHIP which enables us to compute a k-way partitioning
without recursive bipartitioning. To obtain a k-way node separator we compute a
2-way separator between every pair of partitions. The union of these separators is a
k-way node separator. Since the direct computation of a k-way partitioning is usually
of higher quality than a recursive bisectioning approach this can further improve our
node separators (see Section 6.3).
Algorithm 3 shows the complete pseudocode of our new node separator approach

and also summarizes the steps we take to find small node separators.

Algorithm 3: Separator Algorithm
Input: G = (V,E) : Graph, P = {V1, . . . , Vk} : Partition
Output: S : Separator

1 foreach (Vi, Vj) ∈ P, i 6= j do
2 H ← CreateSubgraphForFlowProblem() // defines the search area
3 H ′ ← CreateFlowProblem(H)
4 MaxFlowMinCut(H ′) // solve flow problem

// try to increase the balance of the minimum cut in H ′
5 T ← IncreaseBalance(H ′)
6 S ← S ∪BoundaryNodes(T ) // Add boundary nodes of T to S
7 return S

We already discussed lines two to four and further information on each of these steps
can be found in the subsequent sections of this chapter. On line five we apply a balance
increasing method to the solved flow network. The reason for this is a rather technical
one concerning the flow problem. Consider a maximum flow on a flow network. The
source set is usually computed by doing a breadth-first search from the source node s
which stops at each edge which is saturated. This way, we obtain a minimum cut in
the network which is probably quite near the source node s. Since we are interested in
balanced node separators we would like to have a more balanced minimum cut which
is why we apply this balancing step to obtain a more balanced source set T . Further
details about this method can be found in Section 4.4.
Line 6 of Algorithm 3 finally adds the obtained node separator between the current

pair of partitions to the overall node separator. The BoundaryNodes function returns
the set {u ∈ T : ∃{u, v} ∈ EH′ : v ∈ H ′ \ T} which is exactly the set of separator
nodes. This step also includes the adaptation of partitions Vi and Vj according to
the found node separator. The separator nodes are assigned to a special separator
partition Vk+1.
After node separators between all pairs of partitions have been calculated we can

return the overall separator at line seven. Since the graph partitioning algorithm in
KaHIP contains randomized parts [30, 39] and our algorithm depends on the edge
separator induced by a partitioning of KaHIP we can do multiple runs of Algorithm 3
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4.2 Defining the Subgraph

with different partitionings and return the best separator found for another increase
in quality (see Section 6.3).
In the following sections we assume a 2-way node separator for simplicity but it is

obvious that the definitions and arguments also apply to a k-way node separator which
can be obtained by calculating pair-wise 2-way node separators on the k partitions and
combine them to an overall node separator of the complete graph.

4.2. Defining the Subgraph
Assume that we want to find a 2-way node separator S of a graph G = (V,E) and
the induced partitions should fulfill the balancing constraint |Vi| ≤ (1+ ε)d|V |/2e with
i = 1, 2 and 0 < ε < 1. Our algorithm extends the search area for finding a small node
separator in G.
We start with identifying the set of boundary nodes B1 and B2 for partition V1

and V2 which are defined as B1 := {u ∈ V1 | ∃{u, v} ∈ E : v ∈ V2} and B2 := {u ∈
V2 | ∃{u, v} ∈ E : v ∈ V1}. From these boundary sets we perform breadth-first searches
into the respective partitions to determine sets V ∗1 and V ∗2 which together define our
new search area. Since the found node separator S induces a new partitioning of G
into G = V ′1 ∪ V ′2 ∪ S the balance of V ′1 and V ′2 is also altered. Therefore we have
to choose the search area carefully because we still want to guarantee the balancing
constraint for V ′1 and V ′2 .
Figure 5 shows G partitioned into V1 and V2. The gray line represents the edge

cut between the two partitions. The blue lines mark the boundaries of the subsets
V ∗1 ⊂ V1 and V ∗2 ⊂ V2 which denote the search area used by our algorithm.

V1 V2

V ∗
1 V ∗

2

G

Figure 5: Extended search area V ∗1 ∪ V ∗2 in graph G

To meet the balancing constraint we define the size of V ∗1 as |V ∗1 | ≤ (1+ε)d |V |2 e−|V2|
and the size of V ∗2 as |V ∗2 | ≤ (1 + ε)d |V |2 e − |V1|.
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This way the maximum cardinality of V ′1 is

|V ′1 | ≤ |V1|+ |V ∗2 | ≤ |V1|+ (1 + ε)d|V |2 e − |V1| = (1 + ε)d|V |2 e (4.1)

which proofs that the balancing constraint is still guaranteed if we choose V ∗1 and
V ∗2 like that. Equation 4.1 also analogously applies for V ′2 .
To incorporate these size constraints in our algorithm the breadth-first searches from

the boundaries B1 and B2 stop if the resulting subgraph V ∗1 or V ∗2 exceed the defined
sizes. It is possible that V ∗1 or V ∗2 is empty. This happens if the initial imbalance
obtained from the partitioning algorithm is close to the maximum allowed imbalance
or even larger. In this case we still have the set of boundary nodes B1 ⊆ V ∗1 or B2 ⊆ V ∗2
which are always part of the search area.
Once we have determined the sets V ∗1 and V ∗2 we can define the subgraph H which

is induced by the set of nodes from V ∗1 ∪ V ∗2 .

4.3. Flow Problem
Given the subgraph H = (VH , EH) which is built according to the description in
Section 4.2 we want to find a minimum node separator S ⊂ VH on H. The size of
a node separator S is defined as ∑

u∈S c(u). In this work, we only use graphs with
c(u) = 1 for each node u and therefore the size is equal to the number of nodes in S,
however, the concept also works for graphs with other node weights.
The idea is to use flow techniques to find S. Consider a flow network with designated

source and sink node s and t. A flow on that network implies an s-t cut partitioning
the network into a source and sink partition. This way we have two sets of boundary
nodes which are the end nodes of the cut edges. It is obvious that both sets themselves
are node separators and we could simply use the smaller set to get a node separator. A
better approach used by KaHIP before we introduced our new algorithm is to compute
a minimum vertex cover on the bipartite graph induced by the two boundary node
sets [42]. According to the max-flow min-cut theorem (see Section 2.4), the maximum
flow on the network induces a minimum s-t cut, i.e. the capacity of the cut is the
minimum among all s-t cuts. However, this approach minimizes the summed capacities
of the cut edges and not the summed node weights and therefore neither of the above
approaches is able to always find a minimum node separator on the network. We
would like to have a flow network such that a maximum flow on that network induces
a minimum set of nodes which separates source and sink. Therefore the flow limiting
capacities have to be the node weights instead of edge weights such that each node
can only carry as much flow as its weight.
To model this flow network on nodes we construct a normal flow network H ′ =

(V ′H , E ′H) from H on which we compute a maximum flow with our implementation of
the push-relabel algorithm introduced by Goldberg and Tarjan [15]. The minimum cut
in H ′ induces a minimum node separator S in H as described above. The following
paragraph describes the construction of H ′.
For each node u ∈ VH we introduce two nodes u1 and u2 in V ′H which are connected

through a directed edge (u1, u2) ∈ E ′H with an edge capacity of one - the node weight.
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4.3 Flow Problem

We denote this edge as duplicate edge of node u. Each undirected edge {u, v} ∈ EH
can also be seen as two directed edges (u, v) and (v, u). In H ′ we separate the incoming
edges from the outgoing edges of u (see Figure 6) and introduce the directed edges
(u2, v1) and (v2, u1) in E ′H for each neighbor v of u. Each edge gets a capacity of ∞.
Figure 7 illustrates this construction.

u u1 u2
1

∞

∞

∞

∞

∞

∞

Figure 6: Node u with undirected edges interpreted as directed ones on the left and
representation of u as u1 and u2 in H ′ on the right.

=⇒u v u1 u2 v1 v2
1 ∞ 1

∞
Figure 7: Edge construction for each neighbor v of u

For a valid flow network we need to specify a source and sink node. Therefore we
add two additional nodes to V ′H which model source and sink. To connect those nodes
to the rest of the network we determine the set of boundary nodes between H and the
partitions V1 and V2 of the original graph G which we want to denote by A1 and A2
respectively. Figure 8 shows the boundary node sets A1 and A2.

V1 V2

G
H

A1 A2

Figure 8: Boundaries A1 and A2 of subgraph H
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According to the construction, a node u ∈ A1 corresponds to u1 and u2 in the flow
network H ′. We connect the source s to u1 for each node u ∈ A1 with a directed
edge of capacity ∞. Analogously a node v ∈ A2 corresponds to v1 and v2 in H ′.
Connecting v2 to t with a directed edge of capacity ∞ for each node v ∈ A2 finishes
the construction of the flow network.

Solving the Flow Problem
Lemma 4.1. The minimum s-t cut induced by a maximum flow in H ′ is equivalent
to a minimum node separator S in H.

Proof. Since every edge in H ′ has an integer capacity, the maximum s-t flow is also
integral. As there are at least two edges of capacity one on each s-t path in H ′

(the duplicate edges of the boundary nodes), the maximum flow on each path is one.
Therefore, the cut edges of a minimum s-t cut in H ′ are a subset of duplicate edges
which we denote by Ed and which induce a node separator S = {u ∈ VH | (u1, u2) ∈
Ed} in H with |S| = |Ed|. It remains to show that S is the smallest separator among
all node separators of H.
Assume that S∗ is a node separator in H for which |S∗| < |S| holds. The set of

duplicate edges E∗d of nodes in H ′ corresponding to the separator nodes of S∗ in H are
the cut edges of a minimum s-t cut. |S∗| < |S| implies |E∗d | < |Ed| which means that
the s-t cut induced by E∗d is smaller than the one induced by Ed. Therefore, the s-t
cut induced by Ed is no minimum s-t cut which is a contradiction.

Figure 9 shows an example of the flow network construction and the interpretation
of the minimum cut obtained by the max-flow min-cut theorem.

G
H

1/∞

1/∞

1/∞

1/∞

1/∞

1/∞

1/∞

1/∞

1/1

1/1

1/1 1/1

1/1

s tH ′

Figure 9: Construction of flow network H ′ from H (omitting edges with no flow for
clarity). Green edges mark the minimum cut.
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Boundary Cases

It is possible that A1 or A2 is empty. This can happen if the allowed imbalance is high
enough so that V ∗1 or V ∗2 are equal to V1 or V2 in the subgraph construction process
described in section 4.2. Another possibility is that V ∗1 or V ∗2 are not connected to
V1 \ V ∗1 or V2 \ V ∗2 respectively. The following paragraph describes how we handle this
phenomenon. We only describe the case A1 = ∅, the other case is handled analogously.
If A1 is empty we have to differentiate two cases:

Case 1. V ∗1 = V1
We set A1 to the boundary nodes B1 and if A2 is also empty we set A2 to B2. This
way, the imbalance is decreased and we can compute a separator.

Case 2. V ∗1 is not connected to V1 \ V ∗1
We check if we can put V ∗1 to the right partition V2 without violating the balancing
constraint. If this is possible we found a partitioning with an empty node separator.
Otherwise we construct the flow problem according to case 1.

Another possibility to avoid the boundary cases is to detect them in the course of
breadth-first search and stop the search before one of the cases occurs. This approach
should result in larger subgraphs than the above one and is therefore an alternative
we want to implement in the future.

4.4. Balancing
In the previous section we defined how we construct the flow problem. After we
calculated the maximum flow we still have to compute the minimum cut which finally
implies our node separator.
Our first approach made use of the property that the minimum cut divides H ′ into

two sets - the source set and the sink set. We calculate the source set by doing a
breadth-first search from s including all nodes which are reachable via an unsaturated
edge. In a last step we get the corresponding separator nodes by scanning the source
set and adding each node to the separator which is connected to the sink set. However,
this approach often leads to unbalanced minimum cuts and therefore unbalanced node
separators. Figure 9 shows the minimum cut in H ′ which was computed with this
approach. It is obvious that there exists a more balanced minimum cut.

Most Balanced Minimum Cuts

Our second approach uses an algorithm called most balanced minimum cut which is
based on the knowledge that we have information about all minimum s-t cuts as soon
as we have calculated one maximum s-t flow [42]. A set C ⊂ V of a graph G = (V,E)
is called closed node set if there are no connections from C to V \ C, i.e. for every
node u ∈ C an edge (u, v) ∈ E implies that v ∈ C as well. Picard and Queyrenne
showed that each closed node set containing the source s in the residual graph of a
maximum (s, t)-flow induces a minimum s-t cut [36].
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4 Finding Small Node Separators

The idea of the algorithm is to enumerate all possible minimum cuts of a graph by
contracting the strongly connected components of the residual graph and find a better
balanced minimum cut concerning the partitions of the original graph. However, it is
still NP-hard to find the most balanced minimum cut [3].
The algorithm of Sanders and Schulz [38] applies a random topological order to the

strongly connected components and scans them in reverse order. Subsequently adding
further strongly connected components yields several closed node sets, each inducing
a minimum s-t cut [42]. The closed node set with the best occurred balance among
multiple runs of the algorithm with different random topological orders is returned.
Figure 10 shows the flow network from Figure 9 after running the most balanced
minimum cuts algorithm to improve the balance between the induced partitions.

1/∞

1/∞

1/∞

1/∞

1/∞
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1/∞

1/1
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1/1

s tH ′

Figure 10: Flow network H ′ from Figure 9 after applying the balancing algorithm.
Green edges mark the minimum cut which is now perfectly balanced in this
example.
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5. KaHIP Nested Dissection
In this chapter we describe our implementation of the nested dissection algorithm.
General information about nested dissection can be found in Section 3.1.
We basically implemented two nested dissection algorithms – a k-way version and a

version which searches for connected components in the graph and recursively orders
those components instead of calculating a node separator. In Section 5.3 we present
the k-way version and in Section 5.4 we describe the differences of the connected
components version. But before, we want to describe some changes we have made to
the original version of the minimum degree heuristic as it is described in Section 3.1.

5.1. Minimum Degree Heuristic
Since the first version of the minimum degree algorithm was introduced many proposals
to improve it were made [1, 14, 28]. We implemented some of the improvements and
describe them in this section. However, we did not examine all approaches which
would be definitely worth doing so in the future. Algorithm 4 shows our extended
minimum degree heuristic.

Algorithm 4: KaHIP Minimum Degree Heuristic
Input: G = (V,E) : Graph, S ⊂ V : Separator, π : ordered node set
Output: π : node ordering

1 G′ ← IncludeSeparator(G,S) // add separator nodes to prevent halo nodes
2 M ← {u ∈ V | Γ(u) = 0 or Γ(u) = 1} // isolated and degree-1 nodes
3 π ← (π,M)
4 while V 6= ∅ do
5 Q←MinDegree(V ) // Select all nodes of of minimum degree in G
6 u← TieBreaking(Q) // Select a node u with a tie-breaking strategy
7 I ← IndistinguishableNodes(u)
8 π ← (π, I) // append I to the already ordered sequence π
9 G← G− I // eliminate I and update the graph

10 return π

Halo Nodes

As the input graph G′ = (V ′, E ′) of the minimum degree algorithm is a subgraph
representing a partition of the original graph G in the nested dissection algorithm,
there exist nodes in V ′ which lie at the boundary to the node separator and originally
were connected to the separator nodes. However, our subgraph G′ does not include
those edges as it is induced by the set V ′ which does not contain the node separator.
Therefore the degrees of these nodes at the boundary are not the same as in the original
graph and as a consequence the minimum degree algorithm will tend to order them first
which can lead to more fill-in between separator nodes and the boundary nodes [35].
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5 KaHIP Nested Dissection

In literature, those nodes are also called halo nodes [35]. Figure 11 illustrates the
halo nodes in G′ which represents the right partition of the original graph G in this
example.

G′

Figure 11: Partition G′ on the left with halo nodes marked orange. The black nodes
represent the node separator.

Since the original minimum degree heuristic was not designed for nested dissection
and therefore G is always the original graph, this problem does only occur in nested
dissection. We circumvent this problem by adding the separator nodes to the subgraph
G′ to form the extended subgraph G∗. Since we do not want to order the separator
nodes in this step we exclude them from being ordered by the algorithm. This way,
running our minimum degree algorithm works as before but we prevent the wrong
ordering of halo nodes.

Isolated Nodes and Degree-1 Nodes

Isolated nodes, i.e. nodes with degree zero, and nodes with degree one can be elim-
inated without the need to exercise a degree update on the neighbors. Therefore we
order all those nodes first and exclude them from the minimum degree process.

Mass Elimination

The idea behind mass elimination is the following. Assume that during the execution
of the minimum degree heuristic we choose a node u of minimum degree. Now it occurs
that one or multiple neighbors of u have the same incident nodes as u itself. Assume
that there exists such a neighbor v of u. It was shown by George and Liu [14] that we
can always order u and v simultaneously because they insert the same edges between
their neighbors if there are missing any. Node u and the neighbors which fulfill this
property are called indistinguishable nodes [14]. By ordering all indistinguishable nodes
at once in each iteration the running time of the algorithm is reduced. In fact, the
number of indistinguishable nodes at each iteration should increase over time because
we extend the neighborhood of the eliminated nodes to a clique at each elimination.
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Figure 12 shows node u and a neighbor v which share the same neighbors and Figure 13
shows the subgraph after eliminating u and v at once.

u

v

Figure 12: u and v are
indistinguishable

Figure 13: The graph after removing u
and v in figure 12 simulta-
neously. The green edge has
been added.

Tie-breaking Strategy

At each iteration of the algorithm we choose a node of minimum degree. However,
there may be several nodes with minimum degree and experiments have shown that
an appropriate tie-breaking strategy for selecting a node of minimum degree can lead
to gains in both storage and arithmetic operations [14].
Therefore we implemented two different tie-breaking strategies. The first strategy

draws a random node from the set of nodes of minimum degree. The second approach
is based on the idea of preordering by George and Liu [14]. Before the graph is
passed to the nested dissection algorithm we first run a preordering algorithm which
computes an initial ordering used by the actual minimum degree algorithm to break
ties. We followed the suggestion of George and Liu and used the reverse Cuthill-McKee
algorithm for pre-ordering [5]. The complete ordering process can be viewed as

A
RCM−−−→ Ã = PrAP

T
r

MD−−→ PÃP T

where Pr is the reverse CutHill-McKee (RCM) order on the adjacency matrix A of G
and P is the minimum degree (MD) ordering on the permuted matrix Ã = PrAP

T
r [14].

However, in our experiments a random selection of nodes was always at least as good
as a selection using a preorder.

5.2. Node Separator Balancing
In addition to the improvements of the basic minimum degree heuristic we also ex-
tended our node separator algorithm. During our experiments on nested dissection,
we noticed that the balance of the node separators is not as important as their size
(see Section 6.3). Therefore we allowed more imbalance for our node separators by
enlarging the search area described in Section 4.2. We introduced a new parameter ξ
which is multiplied with the original balance parameter ε to get a higher imbalance.
We then define the size of V ∗1 to be smaller than (1 + ε · ξ)d |V |2 e with the definitions
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from Section 4.2. |V ∗2 | is defined symmetrically. Choosing ξ > 1, we relax the bal-
ancing constraint defined by ε and get a larger search area on which our algorithm
finds a minimum node separator. Despite the larger search area it turned out that the
obtained imbalance was often far less than the possible maximum which shows the
importance of the balancing step in our nested dissection algorithm. However, this
also leads to an increased imbalance in the recursion tree which increases the overall
running time and choosing a too large ξ reduces the node ordering quality. This re-
laxation of the balancing constraint is only used in nested dissection. For our node
separator algorithm we still guarantee the balance defined by the user by setting ξ to
one.

5.3. K-way Version
Algorithm 5 shows our k-way version of the nested dissection algorithm which first
computes a k-way node separator and then in each further recursion we compute a
2-way node separator as it is known from the basic algorithm. The parameter k can
be specified by the user. If k is set to 2 the basic nested dissection algorithm is run.
As we already mentioned in Section 4.1, KaHIP contains randomized algorithms [39,

41] and running our separator algorithm multiple times can improve the overall qual-
ity (see Section 6.3). Therefore we provide the possibility to compute several node
separators in each recursion step and take the best one found.
If the partition size reaches the minimum degree threshold we stop the recursion and

apply our altered version of the minimum degree heuristic as described in Section 5.1.
Separator nodes are sorted by their degree in increasing order before we add them to
the node ordering.

5.4. Connected Components Version
In this section we want to describe our connected components version of the nested dis-
section algorithm. The difference to our k-way version is that we search for connected
components in the graph in every recursion step. If there are multiple connected com-
ponents we continue the recursion on those connected components. As they are not
connected, we do not need a node separator to separate them. Algorithm 6 shows the
connected components version. If G is connected, i.e. there is only one connected com-
ponent, we calculate a node separator and take the induced partitions as connected
components.
During our experiments the connected components version did not show any im-

provements over the normal version which is why we focused on the latter. A reason
might be that the natural connected components found in our test graphs are not very
balanced.
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Algorithm 5: K-Way Nested Dissection
Input: G = (V,E) : Graph, γ : minimum degree threshold
Output: π : node ordering

1 if recursionRoot then
// compute k-partition of G

2 P = {G1 = (V1, E1), . . . , Gk = (Vk, Ek)} ← PartitionGraph(G)
3 (V ′1 , . . . , V ′k , S)← ComputeSeparator(G,P )
4 else

// compute 2-partition of G
5 P = {G1 = (V1, E1), G2 = (V2, E2)} ← PartitionGraph(G)

(V ′1 , V ′2 , S)← ComputeSeparator(G,P )

6 for G′i = (V ′i , E ′i) in P do
7 if |V ′i | > γ then
8 NestedDissection(G′i) // continue recursively if G′i is too big
9 else

10 MinimumDegree(G′i, S, π)

11 OrderSeparator(S, π)

Algorithm 6: Connected Components Nested Dissection
Input: G = (V,E) : Graph, γ : minimum degree threshold
Output: π : node ordering
// Compute connected components of G

1 C ← ConnectedComponents(G)
2 if |C| == 1 then

// compute 2-partition of G
3 P = {G1 = (V1, E1), G2 = (V2, E2)} ← PartitionGraph(G)

// find node separator on G given the partitioning P
4 (V ′1 , V ′2 , S)← ComputeSeparator(G,P )
5 C ← {V ′1 , V ′2}
6 else
7 S ← ∅

8 for C in C do
9 if |C| > γ then

10 NestedDissection(C) // continue recursively if C is too big
11 else
12 MinimumDegree(C, S, π)

13 OrderSeparator(S, π)
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6. Experiments
To test our separator algorithm we have done several experiments. In this chapter we
present and discuss the results. The chapter is structured into two main parts. In the
first part we assess the quality of our computed separators and in the second part we
test our nested dissection algorithm. In general, small separators lead to less fill-in
and therefore to good node orderings [21]. As a consequence, we can obtain further
insight into the quality of node separators by evaluating the performance in nested
dissection.

6.1. Test Environment
All our experiments were done on a system equipped with two Quad-core Intel Xeon
processors (X5355) which run at a clock speed of 2.667 GHz, have 2x4 MB of level
2 cache and are equipped with 16 GB of main memory. Our algorithm is completely
written in C++ and compiled with gcc 4.6.4.

6.2. Test Instances
We tested our algorithms on two test sets. The first set contains the graphs from the
Walshaw Graph Partitioning Archive [44] and consists of several sparse matrices and
graphs from numerical simulations in different sizes. The second set is a collection of
social network graphs. All test instances and their properties can be found in Table 1.
In all our experiments we did five runs on each graph and took arithmetic means of

the results to reduce the deviation due to the random parts of KaHIP. If not stated
otherwise, the experiments were done with a set of five test graphs {add20, crack,
bcsstk30, finan512, auto}) which comprise a good mixture of small and large graphs.
To get a global result over all five test graphs we computed a geometric mean over the
arithmetic means.

6.3. Parameters of our Algorithms
Our node separator and nested dissection algorithm can be configured by several pa-
rameters (see Appendix A.2 for a detailed list). The default parameters for our algo-
rithms were determined by tuning the parameters on a small subset of graphs. Since
KaHIP offers several different configurations for general graphs and social network
graphs, we did one parameter tuning for the general graphs and one for social network
graphs to maintain this distinction. The parameter tunings for both the Walshaw and
the social network graphs were done on a small subset of our test graphs in Table 1.
The values found during the parameter tuning are used as default values in our ex-
periments if not stated otherwise. The exact values are noted in Appendix A.2. The
following paragraphs of this section describe the available parameters of our algorithms
and motivate our choice of default values found during our parameter tuning.
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Graph Nodes Edges Graph Nodes Edges
Walshaw Graphs Social Network Graphs

add20 2 395 7 462 p2p-Gnutella04 6 405 29 215
data 2 851 15 093 wordassociation-2011 10 617 63 788
3elt 4 720 13 722 PGPgiantcompo 10 680 24 316
uk 4 824 6 837 email-EuAll 16 805 60 260
add32 4 960 9 462 as-22july06 22 963 48 436
bcsstk33 8 738 291 583 loc-brightkite_edges 56 739 212 945
whitaker3 9 800 28 989 loc-gowalla_edges 196 591 950 327
crack 10 240 30 380 coAuthorsCiteseer 227 320 814 134
wing_nodal 10 937 75 488 citationCiteseer 268 495 1 156 647
fe_4elt2 11 143 32 818
vibrobox 12 328 165 250
bcsstk29 13 992 302 748
4elt 15 606 45 878
fe_sphere 16 386 49 152
cti 16 840 48 232
memplus 17 758 54 196
cs4 22 499 43 858
bcsstk30 28 924 1 007 284
bcsstk31 35 588 572 914
fe_pwt 36 519 144 794
bcsstk32 44 609 985 046
fe_body 45 087 163 734
t60k 60 005 89 440
wing 62 032 121 544
brack2 62 631 366 559
finan512 74 752 261 120
fe_tooth 78 136 452 591
fe_rotor 99 617 662 431
598a 110 971 741 934
fe_ocean 143 437 409 593
144 144 649 1 074 393
wave 156 317 1 059 331
m14b 214 765 1 679 018
auto 448 695 3 314 611

Table 1: Test instances used in our experiments
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Node Separator Algorithm

Our node separator algorithm has four parameters: k, imbalance, nSeps and preconfig-
uration. The k parameter tells our algorithm to find a k-way node separator and the
imbalance parameter controls the balance of the induced partitions. The imbalance
parameter is specified in percent, i.e. ε = imbalance/100 in the notation of Section 4.2.
The number of computed k-way separators can be specified by nSeps. If more than one
separator is calculated, the algorithm returns the best one found in terms of size and
balance. The preconfiguration parameter can be one of {fast, fastsocial, eco, ecosocial,
strong, strongsocial} and sets the values of many parameters of the graph partitioner
KaHIP. Configurations with the suffix social are used on social network graphs and the
others are dedicated to all other graph classes. While the strong configurations tend
to produce the best results in terms of solution quality, they consume a lot of time.
The fast configurations offer faster execution with reduced quality and eco configu-
rations provide a trade-off between solution quality and runtime. For more detailed
information about this parameter we refer to the manual of KaHIP [40].

K-Way Node Separators

KaHIP is able to compute k-way partitions without recursive partitioning which en-
ables us to directly compute k-way node separators by combining the node separators
of each pair of partitions. Since the direct computation of k-way partitions is often
better than the recursive approach [42], we wanted to examine if this also applies to
k-way node separators. Therefore we computed node separators which induce 2, 4
and 8 partitions with both approaches for our five test graphs. Our nested dissection
experiments revealed that an imbalance of 20% leads to good node orderings which
is why we also chose a maximum imbalance of 20% for this experiment, i.e. for each
node separator computation we allowed this imbalance.
As expected, the obtained 4- and 8-way node separators outperform the recursive

2-way node separators. While the sizes of the separators computed by the k-way
approach are only marginally smaller than the recursive approach (1.3% and 1.5%),
the actual ε and β values as defined in Equations 2.1 and 2.2 of the k-way node
separators are far better. This is because we allowed a maximum ε imbalance of 20%
for each computation and the recursive approach has more separator computations.
In practice, the maximum ε imbalance for the recursive approach is often chosen to
be less on the first level to overcome the high imbalances in subsequent recursion
levels. However, this would further increase the size of the separators compared to
the k-way approach. Table 2 shows the complete results of this experiment. In our
implementation of the nested dissection algorithm we are able to compute a k-way
node separator on the first level of recursion. During our experiments, it turned out
that a 3-way node separator on the first level leads to better node orderings on the
Walshaw graphs. On social networks, a normal 2-way node separator seems to be the
better choice.
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Nested Dissection Algorithm

The nested dissection algorithm for reducing fill-in during sparse matrix factorization
makes use of node separators. As experiments have shown [21, 32], small node separa-
tors seem to produce better orderings. Therefore we implemented a nested dissection
algorithm (see Section 5) to further evaluate the quality of our new node separator
algorithm. We first present some results concerning the choice of parameters before
we do a comparison between our nested dissection version and two competitors in
Section 6.6.
In addition to the parameters of the node separator algorithm, our nested dissec-

tion algorithm offers four more parameters: final_partition_size, balance_multiplier,
initial_order and cc_order. In the following paragraphs we describe some of the pa-
rameters in more detail and show some ordering results which motivated our choice
of default values. To asses the quality of node orderings, we used the SCOTCH node
ordering benchmark tool which computes a Cholesky factorization of the given matrix
based on a specified node ordering. It outputs several quality measures like the number
of non-zeros (NNZ) of the factorized matrix and the operation count (OPC) which is
the total amount of all arithmetic operations (additions, subtractions, multiplications,
divisions) [34]. Additionally, it outputs information about the elimination tree like
the minimum and maximum height, the average height and the variance in height.
Those numbers can be used to examine the balance of the elimination tree which is
important if parallel factorization algorithms should be used [34].

Size Threshold

The parameter final_partition_size specifies the minimum degree threshold γ as de-
fined in Section 5.3. The recursion of the nested dissection algorithm stops when the
number of nodes in a partition is lower than the threshold value in which case the
minimum degree algorithm is run on that partition. Typical values for the threshold
are between 30 and 200 nodes. In our experiments we tested several threshold values
on our five test graphs. The results are shown in Table 3. It turned out that the
number of non-zeros (NNZ) present in the factorized matrix decreases as the thresh-
old is lowered which confirms that nested dissection outperforms the minimum degree
heuristic in terms of quality. The lowest NNZ and OPC has been observed at a size
threshold of 50. A reason for the increase in NNZ below 50 nodes might be that the
overall number of separator nodes increases and we order those nodes by increasing
node degree and not with the minimum degree algorithm. We further found out that
a small minimum degree threshold leads to an increase in runtime because our nested
dissection algorithm has to compute more node separators which is a time consuming
task. As a consequence, we use a default size threshold of 80 in our nested dissection
algorithm since this value results in a good balance between minimizing NNZ and
OPC and is a reasonable trade-off between quality and runtime.
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Imbalance and Balance Multiplier

The balance_multiplier parameter corresponds to the ξ described in Section 5.2. It
allows us to relax the demanded balance between the partitions defined by the imbal-
ance parameter. While the edge separator is still computed with the normal balancing
constraint defined by imbalance we allow a higher imbalance value for our node sep-
arator algorithm. This way, we get a larger search area on which our algorithm finds
a minimum node separator. We tested the impacts of different imbalance and bal-
ance_multiplier combinations on our five test graphs. The results of Table 4 suggest
that an increased search area for computing the node separators reflects in better node
orderings but the higher allowed imbalance also leads to a more imbalanced recursion
tree which means that the algorithm takes longer. However, we found out that despite
the larger search area and the resulting possibility of a higher imbalance between the
partitions the actual imbalance is often significantly less than the maximum allowed
imbalance which is due to the balancing step of our nested dissection algorithm. The
experiments also reveal that the use of the balance_multiplier parameter results in
better node orderings compared to the same imbalance with a balance_multiplier of
one. For example, the node ordering with balance_multiplier=2 and an imbalance of
20% produces on average 2.3% less non-zeros and needs 5.5% less operations than an
imbalance of 40% and a balance_multiplier of one in Table 4. While both parameter
choices allow a maximum imbalance of 40% for the node separator, the maximum im-
balance for the edge separator is 20% in the case of a balance_multiplier of 2 and 40%
in the other case which seems to be the reason for the difference. As default values,
we chose an imbalance of 20% and a balanace_multiplier of 3 which produced good
node orderings during our parameter tuning.

Number of Separators

As the graph partitioner KaHIP uses randomized algorithms we tested if we could im-
prove our found node separators and therefore the computed node orderings by using
multiple edge separators with different random seeds for computing our node separa-
tors. We tested several numbers of node separators and the results in Table 5 show
that our assumption was right. Increasing the number of computed node separators
often leads to smaller node separators and improved node orderings as a consequence.
However, the time needed to compute the node ordering also increases and from a
certain number of separators there is only few or no improvement at all. Therefore
we use 5 node separator computations as default value for the nSeps parameter in our
algorithms.
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k
k-way recursive 2-way

sep. size ε β sep. size ε β

2 128 1.8% 0.8% 128 1.8% 0.8%
4 294 5.9% 1.5% 298 10.4% 2.6%
8 556 7.0% 1.7% 564 17.1% 3.8%

Table 2: Comparison of direct k-way and recursive 2-way node separator computation
on our five test graphs. Results show geometric means. Maximum allowed
imbalance for each separator computation was 20%.

Size Threshold
25 50 75 100 200

NNZ +0.6% best +0.3% +0.7% +1.6%
OPC +2.1% best +0.6% +2.1% +3.0%

Table 3: Nested dissection results for our five test graphs. NNZ and OPC results are
normalized and show the increase in percent over the best result. For this
test we used the fast configuration.

ξ with imb. = 20% imb. with ξ = 1
1 2 3 4 40% 60% 80%

NNZ +2.9% best +0.8% +9.6% +2.3% +4.8% +25.4%
OPC +7% best +1.9% +22.6% +5.5% +10.2% +70.4%

Table 4: Ordering results for our five test graphs. On the left we used a constant
imbalance of 20% with varying balance_multiplier values and on the right a
constant balance_multiplier of 1 and varying imbalance. Results are normal-
ized and show the increase in percent over the best result.

Number of Separators
1 2 4 8 10

NNZ +1.7% +1.0% +0.5% best +0.1%
OPC +7.4% +5.2% +2.9% best +0.4%
Avg. Time [s] 3.97 6.84 12.79 25.00 31.02

Table 5: Nested dissection results for our five test graphs with varying number of
separators calculated at each level of recursion. NNZ and OPC results are
normalized and show the increase in percent over the best result. For this
test we used the fast configuration.
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6.4. Competitors
We compared our algorithms with three other tools. First, we did a comparison of our
new algorithm and the node separator algorithm which was already implemented in
KaHIP [42]. Both our new and the previous algorithm rely on the graph partitionings
computed by KaHIP and therefore have the same setting. We were interested in the
size of the obtained node separators as well as the balance of the induced partitions
after removing the separator. Additionally, we compared the quality of our node
separators on the test instances of Table 1 to the ones obtained by METIS [21]. The
results are shown in Section 6.5.
Our nested dissection algorithm was also tested on both the Walshaw graphs and the

social network graphs. In the previous section we already presented some experiments
regarding the parameter choice of our nested dissection algorithm and in Section 6.6
we compare it to the nested dissection algorithms of METIS [21] and SCOTCH [33].
Table 6 shows the competitors and the versions we used during our tests.

Tool Version
KaHIP 0.6
SCOTCH 6.0.0
METIS 5.1.0

Table 6: Versions of the competing tools

6.5. Separator Quality
To asses the quality of a node separator, we use three quality measures. The first one
is the size of the node separator and the other two rate the balance of the partitions
as described in Section 2.5. Given a user specified maximum imbalance (ε in percent),
the computed separator should be small and the actual ε (see Equation 2.1) should
not exceed the defined maximum imbalance. We also evaluated the balance among
the partitions after removing the separator from the graph (β in Equation 2.2). To
break ties if two separators are equal in size, the actual ε imbalance is used to rank
the separators.

Comparison of KaHIP and METIS Node Separators

We compared the node separators of our new algorithm with the separators of the
old algorithm implemented in KaHIP and the METIS node separator algorithm. Both
METIS and SCOTCH do not offer a separate program for calculating node separators.
However, we were able to get the size of the partitions and the separators obtained by
the METIS nested dissection algorithm. On the first level of recursion the obtained
node separator and partitions are equal to a solution of the node separator problem
on the complete graph.
The KaHIP algorithm computes a minimum vertex cover on the nodes induced by

the cut edges of the edge separator [42] (see Section 2.5). Since both the KaHIP node
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separator and our new algorithm use the same edge separator computed by the graph
partitioner of KaHIP the differences in quality only result from the different node
separator algorithms which makes it very easy to compare the results. In contrast, the
METIS node separator algorithm computes the separators with a multilevel approach
(see Section 2.5).

Walshaw Graphs

We computed 2-way node separators of our test instances in Table 1 with an allowed
maximum imbalance of 20%. Both our own and the METIS nested dissection algorithm
use a default imbalance of 20% on the Walshaw graphs which is why we also chose that
value for this test. The KaHIP algorithms were run with the strong configuration.
Compared to the old node separator algorithm in KaHIP, we had an improvement

in node separator size in more than 50% of all runs, on average the size was more than
3% less. The largest improvement was 25%. Although our new algorithm computed
smaller node separators, the actual imbalance was equal or lower than the one induced
by the KaHIP algorithm in more than 60% of all runs.
Our new algorithm outperforms METIS in more than 70% of the runs and in another

20% it has similar quality in terms of size. On average, our node separators are smaller
by 6% while maintaining the balancing constraint. The largest improvement was a
factor of two. As the sizes of our node separators are smaller on most instances it
is reasonable that the imbalance is higher compared to the larger node separators
obtained by METIS. However, on some graphs we got smaller node separators even
though the imbalance was lower than the METIS separator imbalance.
It turned out that the multilevel computation is the crucial part of the METIS

node separator algorithm. We also did some tests with the METIS algorithm with
multilevel computation turned off and the computed separators were all larger than
the ones computed by our algorithm and the normal METIS node separator algorithm.
The node separators computed by the former KaHIP node separator algorithm also

outperformed the METIS separators in more than 40% of the runs which shows that
small edge separators lead to better node separators, as the KaHIP partitioning rou-
tines outperform the METIS routines in terms of solution quality [42]. Table 8 shows
the complete results of this comparison. Bold values mark the best result in terms of
separator size for each test graph.

Social Network Graphs

Next, we tested our node separator algorithm on the set of social network graphs
listed in Table 1. Again, we computed 2-way separators with an allowed maximum
imbalance of 20% with our new algorithm, the former KaHIP node separator algorithm
and the one provided by METIS. The KaHIP algorithms were run with the strongsocial
configuration.
It turned our that the KaHIP algorithms were significantly worse on social networks

compared to the METIS algorithm. In 80% of the runs the METIS separators out-
performed the ones computed by our new algorithm. However, in 90% of all runs our
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algorithm computed separators with significantly better balance values (on average by
a factor of 15). This is expected, because the METIS nested dissection algorithm uses
a multilevel approach to compute node separators which is better than our approach
on social networks. The reason for this can be found in the structure of social network
graphs. They consist of dense clusters which have a lot of intra-cluster edges and rel-
atively few connections to other clusters. Therefore the breadth-first searches of our
algorithm are not very effective because the search area is often dense which leads to
larger node separators. In this setting, the multilevel approach of METIS to compute
node separators is highly beneficial because it is able to coarsen the dense parts of
clusters and can therefore find smaller node separators in regions of the cluster which
are less dense.
Comparing the old algorithm to our new approach, the results show that we are

able to reduce the size of the computed node separators significantly in 80% of the
runs. On average, our new algorithm computes 93% smaller separators. Despite the
separators are smaller, the balance values are often better in comparison with the old
algorithm. Table 7 shows the complete results of this comparison. Bold values mark
the best result in terms of separator size for each test graph.

Graph New Algorithm KaHIP METIS
size ε β size ε β size ε β

as-22july06 155 -0.2 0.5 294 -0.6 0.7 178 19.7 20.6
citationCiteseer 9 121 -3.2 0.2 9 872 -2.0 1.7 7 574 18.4 21.8
coAuthorsCiteseer 5 047 17.7 20.4 5 190 16.8 19.5 3 875 19.5 21.6
email-EuAll 5 16.7 16.7 46 14.2 14.5 5 16.1 16.2
enron 1 078 18.3 20.1 1 136 17.3 19.2 563 20.0 20.9
loc-brightk. 3 395 14.1 21.3 3 474 17.2 24.9 2 336 19.9 25.1
loc-gow. 7 542 16.2 20.8 7 785 18.3 20.9 5 852 20.0 23.7
p2p-Gnutella04 2 143 -3.6 44.9 2 143 16.6 75.3 1 639 19.9 61.1
PGPgiantcompo 121 6.4 7.6 128 6.6 7.9 97 19.1 20.2
wordassoc. 1 805 2.9 24.0 1 805 -0.9 24.0 1 515 19.9 39.9
geom. mean 926 5.8 8.8 1266 6.5 11.8 739 19.2 25.0

Table 7: Separator Quality of a 2-way node separator with an allowed imbalance of
20% of the social network graphs. Bold values are best in the size column.
For this experiment we used the strongsocial configuration of our algorithm.
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Graph New Algorithm KaHIP METIS
size ε β size ε β size ε β

144 1 464 16.3 17.5 1 496 18.7 19.9 1 520 14.8 16.0
3elt 42 13.5 14.5 42 13.3 14.3 42 11.4 12.4
4elt 68 2.1 2.6 68 1.8 2.3 68 1.2 1.6
598a 596 6.7 7.2 603 6.5 7.1 597 3.3 3.9
add20 24 12.2 13.3 30 14.6 16.1 23 6.9 7.9
add32 1 12.5 12.5 1 12.5 12.5 2 6.2 6.3
auto 2 241 4.9 5.4 2 289 4.4 4.9 2 087 18.1 18.6
bcsstk29 180 10.3 11.7 180 11.6 13.0 180 -0.9 0.4
bcsstk30 206 0.1 0.8 206 0.0 0.8 218 16.1 17.0
bcsstk31 270 9.6 10.4 291 9.5 10.4 294 7.39 8.3
bcsstk32 243 18.4 19.1 258 19.2 19.9 263 19.4 20.1
bcsstk33 421 13.9 19.6 421 13.9 19.6 421 -4.2 0.6
brack2 181 8.0 8.3 202 9.3 9.6 183 2.9 3.2
crack 70 15.2 16.0 82 19.8 20.7 75 -0.7 0.0
cs4 281 14.2 15.6 311 17.0 18.7 296 9.9 11.3
cti 266 8.6 10.4 266 10.2 12.0 275 7.4 9.2
data 43 16.8 18.6 47 16.8 18.8 56 14.3 16.6
fe_4elt2 66 2.0 2.6 66 1.4 2.0 66 -0.6 0.0
fe_body 91 -0.2 0.0 95 -0.1 0.1 99 15.3 15.6
fe_ocean 263 2.1 2.2 311 1.8 2.0 267 1.8 2.0
fe_pwt 116 19.1 19.5 116 19.4 19.8 120 3.2 3.5
fe_rotor 439 5.6 6.0 443 4.9 5.3 447 4.7 5.1
fe_sphere 192 10.6 11.9 192 10.6 11.9 192 -1.2 0.0
fe_tooth 877 17.8 19.2 900 18.1 19.5 888 16.7 18.0
finan512 50 -0.1 0.0 50 -0.1 0.0 50 12.4 12.5
m14b 835 4.5 4.9 854 5.9 6.3 887 3.6 4.0
memplus 134 19.1 20.0 135 18.8 19.7 92 19.9 20.5
t60k 56 9.7 9.8 56 9.8 9.9 65 4.6 4.7
uk 14 19.4 19.7 14 19.1 19.4 15 17.3 17.6
vibrobox 666 -5.4 0.0 666 -5.4 0.0 598 10.1 15.7
wave 2 111 16.2 17.8 2 120 17.2 18.8 2 363 -1.5 0.0
whitaker3 62 19.3 20.0 62 18.6 19.4 64 -4.3 0.2
wing 613 15.5 16.7 681 17.7 19.0 658 7.2 8.3
wing_nodal 387 16.3 20.6 387 18.8 23.1 385 17.2 21.4
geom. mean 170 6.6 4.3 176 6.6 4.7 177 5.6 1.9

Table 8: Separator Quality of a 2-way node separator with an allowed imbalance of
20% of the Walshaw graphs. Bold values are best in the size column. For
this experiment we used the strong configuration of our algorithm.
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6.6. Nested Dissection
Here, we compare our nested dissection algorithm which makes use of the node sepa-
rators computed with our new algorithm to SCOTCH [33] and METIS [20] which are
popular fill-in optimization tools and implement the nested dissection algorithm. As
we integrated our algorithms in the open source graph partitioning package KaHIP,
we denote our nested dissection algorithm by KaHIP in the following paragraphs.

Walshaw Graphs

We start with the Walshaw graphs of Table 1. We did three test runs of our own
algorithm with the different configurations offered by the graph partitioner KaHIP.
The complete results can be found in appendix A.1. Here we compare the best results
of our algorithm computed with the strong configuration of KaHIP. Figures 14 and 16
show the ratio of the NNZ and OPC of the SCOTCH orderings to our node orderings
and Figures 15 and 17 the same ratios with the METIS orderings.
Our new algorithm outperforms SCOTCH in all runs we have made on the Walshaw

graphs. On average, the node orderings computed with KaHIP had 31% less non-zeros
than the SCOTCH orderings. In terms of operation count, the KaHIP node orderings
produce less operations in more than 90% of the runs, on average our orderings reduce
the operation count by 50% compared to the SCOTCH orderings. For example, our
node ordering for matrix auto produces more than 10 million less non-zero entries in
the factorized matrix than the SCOTCH ordering and we save more than 9 billion
operations during the factorization of matrix 144. Reasons for this huge difference
are the better edge separators computed by KaHIP [42] and our new node separator
algorithm.
Comparing our node orderings with METIS, we are able to produce better orderings

in more than 70% of the runs. However, the difference in NNZ and OPC is a lot smaller.
On average, the NNZ of our node orderings is smaller by 3% and the OPC is smaller by
4%. Despite the difference is rather small, the gains are still in the region of millions.
For example, our node ordering produces more than 1 million non-zeros less on matrix
m14b and we save over 8 billion operations on matrix wave compared to the METIS
orderings.
Concerning the elimination trees, our node orderings tend to produce slightly less

balanced trees in most runs compared to SCOTCH and METIS. This is a consequence
of the higher allowed maximum imbalance during nested dissection. However, on
average the balance difference is less than 10% and as the experiments show, our
node orderings are better in most runs concerning the number of non-zeros and the
operation count which is why we decided to allow a high imbalance. If parallel matrix
factorization algorithms are used, the imbalance of our nested dissection algorithm
can be lowered to increase the balance of the elimination trees.
The quality of our node orderings comes at a price: our algorithm in its best con-

figuration consumes a lot of time compared to METIS and SCOTCH, on average our
algorithm is slower by a factor of about 1000 with the strong configuration. The reason
for that difference is the time consuming graph partitioning of KaHIP and our min-
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imum degree algorithm which is not the fastest compared to other implementations.
Since nested dissection is a divide-and-conquer algorithm, it should be easy to paral-
lelize which should lower the time difference effectively. Also, a better implementation
of the minimum degree algorithm can further reduce the running time. However, we
think that, depending on the application, the gains of our node orderings outweigh
the needed amount of time, as factorized matrices are often used multiple times.
If running time is more important, our algorithm offers the two configurations eco

and fast which reduce the time consumption but also the solution quality (see Ap-
pendix A.1 for detailed results).
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OPC ratio of the Walshaw graphs.
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6.6 Nested Dissection

Social Network Graphs

In this section we want to present the results of our nested dissection tests on the set
of social network graphs found in Table 1. Again, we compared the node orderings of
our new Algorithm in KaHIP with the orderings produced by METIS and SCOTCH.
As KaHIP offers three parameter configurations for partitioning social network graphs
(fastsocial, ecosocial and strongsocial), we also offer those three configurations for
our nested dissection algorithm. The complete results can be found in Appendix A.1.
Here we compare the results of our algorithm with the strongsocial configuration as
it produced the best results among all three configurations. Figures 18 and 20 show
the ratio of the NNZ and OPC of the SCOTCH orderings to our node orderings and
Figures 19 and 21 the same ratios with the METIS orderings.
It turned out that on social network graphs, our algorithm performs worse in 80%

of the runs compared to METIS. The NNZ is higher by 8% and the OPC by 11%
on average. The reason for this is again the multilevel approach as it was during
the evaluation of the separator quality on social network graphs in Section 6.5. The
breadth-first searches of our node separator algorithm often find dense search areas
and therefore larger node separators compared to the ones obtained by the multilevel
node separator algorithm of METIS. The SCOTCH nested dissection algorithm does
not use a multilevel approach and in comparison, we obtain better node orderings in
80% of the runs. The difference in NNZ and OPC is even higher than on the Walshaw
graph collection. On average, we get 28% less NNZ and 69% less operations. This
shows that our algorithm outperforms the SCOTCH algorithm which both do not use
multilevel techniques to compute node separators.
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OPC ratio of the social network graphs.
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7 Conclusions

7. Conclusions
The goal of this work was to design and implement a new algorithm to find small node
separators on large, undirected graphs which fulfill a user defined balancing constraint.
The basic idea of our new algorithm is to transform a given edge separator into a node
separator. As shown in our experiments, the quality of node separators computed by
this approach relies on high quality edge separators which is why we used the open
source graph partitioning package KaHIP to compute the edge separators as it is one
of the best graph partitioners in terms of solution quality at the moment [42]. We
use an extended search area around the edge separator on which our algorithm finds
a minimum node separator by means of flow techniques.
Assessing the quality of node separators can be done by two categories of quality

measures: the size of the obtained separator and the balance of the induced partitions.
The results of our experiments show that our algorithm is able to find significantly
smaller node separators than popular competitors. On some test instances, the balance
of the induced partitions is even lower than the ones of our competitors although the
separator size is substantially smaller.
One of the most popular applications of node separators is nested dissection [12, 25,

13], a divide-and-conquer algorithm used to reduce the fill-in generated during sparse
matrix factorization by computing a permutation matrix which is factored instead
of the original one. The original matrix is modeled as a graph and an ordering on
the nodes of the graph induces a permutation matrix. It turns out that small node
separators tend to produce good node orderings [21, 32]. Therefore we implemented a
nested dissection algorithm to further evaluate our node separators.
Our experiments show that we are able to compute better node orderings than

our two competitors SCOTCH [33] and METIS [20] on most of the Walshaw graphs.
However, on social network graphs our algorithm performs worse than the METIS
algorithm. METIS makes use of multilevel techniques to compute node separators
which turned out to be the reason for the better node orderings.
The runtime of our algorithms is substantially longer than that of our competitors,

however, we think that the gains in nested dissection often outweigh the increased
running time since most factorized matrices are used in more than one computation
and thus can profit from less fill-in.

7.1. Future work
We have several ideas for improving both the node separator algorithm as well as our
nested dissection algorithm in terms of quality and runtime. Parallelizing the compu-
tation of multiple node separators should reduce the runtime of our node separator
algorithm. Also, nested dissection is a divide-and-conquer algorithm and relies on re-
cursion which should make it easy to parallelize our node ordering algorithm as well.
Reimplementing the minimum degree algorithm with suitable data structures and the
improvements which have been proposed since its first version should also increase the
speed of nested dissection.
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7 Conclusions

According to the results of our experiments, a multilevel approach to compute node
separators is a promising improvement concerning the quality. Moreover, a minimum
fill-in algorithm developed by Ng and Peyton [29] seems to outperform the minimum
degree algorithm in terms of quality which could be a good replacement for the mini-
mum degree heuristic in our nested dissection algorithm.
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A. Appendix
A.1. Detailed Results of our Nested Dissection Experiments

Graph NNZ OPC Time [s]
144 4.60972e+07 5.15101e+10 654.68
3elt 8.73180e+04 2.57038e+06 4.34
4elt 3.35472e+05 1.26842e+07 16.56
598a 2.65131e+07 1.96528e+10 425.96
add20 1.12520e+04 1.54654e+05 1.94
add32 1.45880e+04 4.46690e+04 2.75
auto 2.26263e+08 4.81905e+11 2 182.71
bcsstk29 1.55896e+06 3.16512e+08 40.35
bcsstk30 3.97327e+06 1.01215e+09 163.17
bcsstk31 3.99568e+06 1.01070e+09 109.44
bcsstk32 4.93026e+06 9.60662e+08 196.73
bcsstk33 2.19729e+06 9.31301e+08 33.54
brack2 5.79289e+06 1.71422e+09 144.60
crack 1.64491e+05 6.65377e+06 12.47
cs4 1.35567e+06 3.71936e+08 23.99
cti 1.65387e+06 4.99533e+08 16.40
data 8.19520e+04 4.02415e+06 2.63
fe_4elt2 2.48037e+05 1.08184e+07 10.77
fe_body 8.66595e+05 4.30356e+07 53.11
fe_ocean 1.96785e+07 1.12193e+10 260.37
fe_pwt 1.31222e+06 1.01344e+08 51.05
fe_rotor 1.58556e+07 9.73760e+09 304.34
fe_sphere 6.06621e+05 6.10906e+07 18.97
fe_tooth 1.05646e+07 6.52269e+09 293.03
finan512 1.74690e+06 1.38799e+08 86.86
m14b 6.16940e+07 5.76066e+10 779.96
memplus 7.99440e+04 2.09841e+06 5.82
t60k 9.60169e+05 5.23068e+07 52.77
uk 3.30130e+04 4.07655e+05 3.46
vibrobox 2.41332e+06 1.27633e+09 34.56
wave 6.22756e+07 9.77027e+10 575.28
whitaker3 2.61568e+05 1.50020e+07 9.87
wing 5.16558e+06 2.42268e+10 96.17
wing_nodal 1.78994e+06 6.29961e+08 20.42

Table 9: Node orderings of Walshaw Graphs computed by KaHIP with eco
configuration.
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Graph NNZ OPC Time [s]
144 4.57928e+07 5.08702e+10 152.22
3elt 8.69390e+04 2.54948e+06 1.37
4elt 3.36708e+05 1.29354e+07 6.45
598a 2.66481e+07 2.00712e+10 108.50
add20 1.13800e+04 1.61628e+05 0.55
add32 1.45780e+04 4.45990e+04 0.80
auto 2.30622e+08 5.11669e+11 523.12
bcsstk29 1.54006e+06 3.03537e+08 17.38
bcsstk30 3.95055e+06 1.00096e+09 50.65
bcsstk31 4.00583e+06 1.02562e+09 45.92
bcsstk32 5.04040e+06 1.03933e+09 68.56
bcsstk33 2.12169e+06 8.14897e+08 14.35
brack2 5.76260e+06 1.70536e+09 42.34
crack 1.61898e+05 6.27768e+06 4.64
cs4 1.36080e+06 3.71636e+08 7.11
cti 1.62706e+06 4.92407e+08 5.97
data 8.06970e+04 3.88169e+06 0.84
fe_4elt2 2.49993e+05 1.11725e+07 3.26
fe_body 8.68867e+05 4.33624e+07 18.35
fe_ocean 1.94782e+07 1.12660e+10 64.99
fe_pwt 1.31206e+06 1.00937e+08 17.01
fe_rotor 1.60244e+07 9.87893e+09 88.17
fe_sphere 6.03205e+05 5.99980e+07 6.12
fe_tooth 1.05157e+07 6.61378e+09 63.53
finan512 1.73707e+06 1.36267e+08 29.84
m14b 6.16879e+07 5.71156e+10 211.19
memplus 7.96940e+04 1.99505e+06 2.38
t60k 9.64384e+05 5.38882e+07 18.05
uk 3.28190e+04 3.93750e+05 0.90
vibrobox 2.30358e+06 1.10993e+09 9.77
wave 6.05240e+07 9.17521e+10 132.24
whitaker3 2.61255e+05 1.49919e+07 3.10
wing 5.18022e+06 2.45405e+09 25.81
wing_nodal 1.79220e+06 6.33325e+08 7.06

Table 10: Node orderings of Walshaw Graphs computed by KaHIP with fast
configuration.
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Graph KaHIP METIS SCOTCH
NNZ OPC Time [s] NNZ OPC Time [s] NNZ OPC Time [s]

144 4.62389e+07 5.28265e+10 2805.81 4.70048e+07 5.46315e+10 2.76 5.09426e+07 6.27831e+10 4.58
3elt 8.73630e+04 2.58212e+06 59.84 9.02880e+04 2.70243e+06 0.02 1.06118e+05 3.39470e+06 0.03
4elt 3.34440e+05 1.26122e+07 194.00 3.46903e+05 1.34470e+07 0.10 4.07393e+05 1.63542e+07 0.12
598a 2.62539e+07 1.90887e+10 1955.12 2.57324e+07 1.79867e+10 1.88 2.75243e+07 1.92858e+10 3.37
add20 1.12200e+04 1.50428e+05 24.04 1.12420e+04 1.24621e+05 0.01 2.66860e+04 4.58954e+05 0.02
add32 1.45710e+04 4.44980e+04 39.81 1.51520e+04 4.91680e+04 0.02 3.68720e+04 3.51002e+05 0.03
auto 2.27705e+08 4.99245e+11 9527.93 2.21083e+08 4.51632e+11 9.43 2.38122e+08 5.03724e+11 16.90
bcsstk29 1.56715e+06 3.16974e+08 420.61 1.64491e+06 3.26282e+08 0.20 1.72685e+06 3.39743e+08 0.46
bcsstk30 3.93775e+06 9.86995e+08 1320.00 4.34326e+06 1.10213e+09 0.36 5.42439e+06 1.44991e+09 0.52
bcsstk31 3.94860e+06 9.96661e+08 957.80 4.28251e+06 1.11319e+09 0.47 5.16593e+06 1.30433e+09 0.57
bcsstk32 4.95826e+06 9.90494e+08 1398.22 5.35016e+06 1.068550e+08 0.45 6.90921e+06 1.68973e+09 0.53
bcsstk33 1.89920e+06 6.05767e+08 322.48 2.14865e+06 7.58336e+08 0.14 2.51055e+06 1.00792e+09 0.25
brack2 5.77089e+06 1.70874e+09 1022.07 5.83648e+06 1.73326e+09 0.86 7.05663e+06 1.92917e+09 1.53
crack 1.62508e+05 6.32520e+06 120.95 1.71228e+05 6.81889e+06 0.07 2.69911e+05 1.076303e+06 0.10
cs4 1.34059e+06 3.54646e+08 251.07 1.38185e+06 3.75781e+08 0.21 1.55917e+06 3.98093e+08 0.31
cti 1.62046e+06 4.96026e+08 197.14 1.56973e+06 4.76789e+08 0.15 2.08448e+06 6.58545e+08 0.27
data 7.93110e+04 3.62930e+06 35.99 8.07540e+04 3.66389e+06 0.02 9.80770e+04 4.90268e+06 0.02
fe_4elt2 2.48919e+05 1.08271e+07 131.00 2.56907e+05 1.15996e+07 0.07 3.06653e+05 1.36879e+07 0.09
fe_body 8.64606e+05 4.25276e+07 567.87 9.47133e+05 5.17752e+07 0.39 1.18653e+06 6.20731e+07 0.74
fe_ocean 1.92321e+07 1.05269e+10 1928.35 1.84019e+07 1.01500e+10 1.79 2.13803e+07 1.07598e+10 2.61
fe_pwt 1.31073e+06 1.00699e+08 437.29 1.34526e+06 1.03926e+08 0.30 1.54060e+06 1.15456e+08 0.42
fe_rotor 1.55138e+07 8.91062e+09 1908.06 1.56614e+07 8.67648e+09 1.66 1.66146e+07 8.86402e+09 2.87
fe_sphere 6.00558e+05 5.91518e+07 195.78 6.23539e+05 6.52619e+07 0.11 7.09075e+05 7.33413e+07 0.14
fe_tooth 1.05187e+07 6.36099e+09 1352.14 1.04085e+07 6.18692e+09 1.15 1.20802e+07 6.68905e+09 1.98
finan512 1.79253e+06 1.46955e+08 803.04 1.73893e+06 1.38213e+08 0.80 2.10400e+06 1.25863e+08 1.68
m14b 6.15161e+07 5.74206e+10 4238.82 6.29036e+07 5.93735e+10 4.14 6.69060e+07 6.44360e+10 7.28
memplus 7.99740e+04 2.18767e+06 53.05 7.75590e+04 1.45931e+06 0.10 1.75681e+05 3.54197e+06 0.18
t60k 9.43860e+05 4.95295e+07 603.36 9.82389e+05 5.43881e+07 0.38 1.23491e+06 7.26268e+07 0.48
uk 3.24850e+04 3.77700e+05 44.03 3.49900e+04 4.50987e+05 0.02 4.31230e+04 6.13313e+06 0.02
vibrobox 1.90292e+06 6.92730e+08 257.81 2.14998e+06 9.61143e+08 0.23 2.14664e+06 8.28242e+08 0.65
wave 6.10884e+07 9.32576e+10 2778.68 6.19391e+07 1.01337e+11 2.62 6.60146e+07 1.07125e+11 4.59
whitaker3 2.61772e+05 1.50479e+07 113.31 2.58575e+05 1.36711e+07 0.06 3.02161e+05 1.60937e+07 0.08
wing 5.15960e+06 2.44252e+09 713.10 5.24867e+06 2.45411e+09 0.65 5.69084e+06 2.48707e+09 1.01
wing_nodal 1.79341e+06 6.36212e+08 168.10 1.73209e+06 5.84666e+08 0.14 1.91018e+06 6.47859e+08 0.27

Table 11: Walshaw graph node orderings computed by KaHIP (strong), METIS and SCOTCH.53
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Graph NNZ OPC Time [s]
as-22july06 1.33493e+05 7.94151e+06 5.91
citationCiteseer 2.94849e+08 2.40317e+12 166.71
coAuthorsCiteseer 5.40321e+07 2.58449e+11 98.79
email-euAll 9.97715e+05 7.99041e+08 7.37
enron 3.38040e+06 4.13800e+09 21.33
loc-brightkite_edges 1.72366e+07 5.29463e+10 22.03
loc-gowalla_edges 1.52429e+08 1.03092e+12 109.70
p2p-Gnutella04 4.64651e+06 8.83766e+09 5.10
PGPgiantcompo 8.62960e+04 6.02773e+06 2.55
wordassociation-2011 3.92888e+06 5.85472e+09 5.42

Table 12: Node orderings of social network graphs computed by KaHIP with ecosocial
configuration.

Graph NNZ OPC Time [s]
as-22july06 1.34856e+05 8.10778e+06 3.48
citationCiteseer 3.02807e+08 2.51377e+12 90.27
coAuthorsCiteseer 5.58985e+07 2.75480e+11 49.83
email-euAll 9.54509e+05 7.45058e+08 5.48
enron 3.40638e+06 4.15943e+09 13.62
loc-brightkite_edges 1.75623e+07 5.44263e+10 12.74
loc-gowalla_edges 1.60170e+08 1.12828e+12 57.43
p2p-Gnutella04 4.71070e+06 9.00252e+09 4.26
PGPgiantcompo 8.66800e+04 6.19643e+06 1.54
wordassociation-2011 3.93881e+06 5.93158e+09 3.25

Table 13: Node orderings of social network graphs computed by KaHIP with fastsocial
configuration.
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Graph KaHIP METIS SCOTCH
NNZ OPC Time [s] NNZ OPC Time [s] NNZ OPC Time [s]

as-22july06 1.33158e+05 7.77049e+06 133.25 1.31037e+05 7.74214e+06 0.22 2.70429e+05 3.65583e+07 0.31
citationCiteseer 2.91065e+08 2.36219e+12 3071.30 2.71990e+08 2.19115e+12 7.50 3.09662e+08 2.66782e+12 9.89
coAuthorsCiteseer 5.08472e+07 2.29987e+11 1435.00 5.16872e+07 2.43575e+11 2.50 7.86049e+07 5.20687e+11 6.09
email-euAll 1.05103e+06 8.60948e+08 175.20 7.24254e+05 4.73813e+08 0.24 8.40551e+05 5.47432e+08 0.25
enron 3.33978e+06 3.98273e+09 400.33 2.78381e+06 2.92861e+09 0.98 4.09511e+06 5.20986e+09 1.30
loc-brightkite_edges 1.66284e+07 4.93627e+10 420.50 1.56861e+07 4.67420e+10 0.91 2.23329e+07 8.27869e+10 1.15
loc-gowalla_edges 1.58194e+08 1.11998e+12 2310.00 1.39353e+08 9.01695e+11 5.11 1.84228e+08 1.53688e+12 6.74
p2p-Gnutella04 4.73049e+06 9.06288e+09 91.20 3.92199e+06 6.94123e+09 0.15 3.63750e+06 5.59615e+09 0.17
PGPgiantcompo 8.22000e+04 5.23026e+06 43.72 7.74260e+04 3.98344e+06 0.07 1.39043e+05 1.02087e+07 0.14
wordassociation-2011 3.82053e+06 5.60690e+09 66.15 4.37669e+06 7.59091e+09 0.19 4.44859e+06 7.14352e+09 0.32

Table 14: Node orderings of social network graphs computed by KaHIP (strongsocial), METIS and SCOTCH.
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A.2. Parameters of our Algorithms
Detailed list of the parameters of our node separator and nested dissection algorithms
with default values used in our experiments if not stated otherwise.

Node Separator Algorithm

file The path to a graph file in CHACO/METIS format.
--preconfiguration Determines the quality of the computed partitions by KaHIP [42]. We

refer to the manual of KaHIP for detailed information. Default is eco.

--k Number of partitions after removing the k-way node separator. Default
is 2.

--imbalance Desired balance of the partitions induced by the node separator. Default
is 3%.

--nSeps Number of computed separators with different seeds. Default is 5.

Nested Dissection Algorithm

file The path to a graph file in CHACO/METIS format.
--preconfiguration Determines the quality of the computed partitions by KaHIP [42]. We

refer to the manual of KaHIP for detailed information. Default is eco.

--k Number of partitions after removing the k-way node separator. Default
is 3 on normal and 2 on social configurations.

--nSeps Number of computed separators with different seeds. Default is 5.

--imbalance Desired balance of the partitions induced by the node separator. Default
is 20% on normal and 1% on social configurations.

--balance_multiplier Corresponds to ξ in Section 5.2. Default is 3 on normal and 1.5 on social
configurations.

--final_partition_size Threshold for minimum degree ordering. Default is 80 on normal and
120 on social configurations.

--initial_order If set to 1, a preordering is calculated and used for tie-breaking (see
Section 10). Default is 0.

--cc_order If set to 1, the connected components version is used. Default is 0.
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