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Abstract

The Graph Coloring Problem (GCP) asks for assigning as few distinct colors to all vertices
of a graph such that no two vertices connected by and edge share the same color. The
dynamic GCP concerns graphs whose structure changes over time by insertion or deletion
of edges and vertices. Due to the GCP not being solvable in polynomial time, heuristics
and approximations are used. We will explore a method to effectively update the coloring
of a graph after edge insertions, by optimally solving the GCP on a subgraph created by
a breadth-first search. We convert existing Integer Linear Programs (ILPs) used for the
static GCP by Jabrayilov and Mutzel [19] to be compatible with the dynamic environment.
Furthermore, we address preprocessing techniques. We carry out experiments to evaluate
the performance of our dynamic ILPs with regard to runtime and solution quality as well
as other metrics, such as the number of occurring color conflicts.
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CHAPTER 1
Introduction

The Graph Coloring Problem (GCP) asks for assigning as few distinct colors to all vertices
of a graph such that no two vertices connected by and edge share the same color. It is a
well known and thoroughly studied problem that has significant implications in both the-
oretical and practical domains. In computer science and combinatorics, this problem is a
fundamental issue in the context of scheduling [12, 26], register allocation in compilers [9],
assigning frequencies in wireless networks [37] and general resource allocation. In the ap-
plied context, an optimized graph coloring can enhance the performance of computational
systems, improve timetables [21] and assist air traffic control [3].
The dynamic setting of the GCP is of particular interest for almost all mentioned areas, as
in real applications circumstances can change quickly. Users accessing a cellular network,
a diverted flight, a broken down train in the public transport system or changing connec-
tions in a social network; in all these cases the topology of the setting at hand changes and
can require reevaluation. Adapting to these changes without the need to recolor the entire
graph is important, if not indispensable, for performance. Optimally solving the GCP on
large graphs is not feasible due to the NP-hard nature [13] of the problem. The problem’s
complexity grows exponentially with the graph’s size, most of which are huge in real world
applications. Therefore, approximations and heuristics are a common tool to have a trade-
off between solution quality and runtime.
In this context, Integer Linear Programming (ILP) is a powerful tool that can model the
GCP by using variables, constraints and objectives. While solving ILPs exactly is com-
putational expensive, modern solvers like IBM’s CPLEX [18] or Gurobi Optimizer [15]
utilize a multitude of techniques to lower the efforts needed. The black box design of an
ILP makes it a useful tool, as it is easily integrateable and interchangeable.
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1 Introduction

1.1 Our Contribution

The Graph Coloring Problem (GCP) has been subject to a multitude of studies, also in the
dynamic context [4, 38, 33, 34, 16]. To our knowledge, no one has used ILPs to solve the
dynamic GCP yet. In this thesis we propose four ILPs adapted from their static versions
in Jabrayilov and Mutzel [19]. Edge conflicts are resolved by inducing a subgraph via a
breadth-first search. This subgraph will be isolated and colored via an ILP, ensuring that
the result does not conflict when reinserting it into the original graph. For this, we fixate
the neighborhood of the subgraph and map its colors, as well as applying a number of
preprocessing techniques to the subgraph to achieve better performing ILPs.
We conduct experiments, evaluating the impact of search depth on the results regarding
runtime, as well as solution quality and other metrics. The ILPs are compared in different
scenarios as well as regarding a number of graph instances. These results are matched with
the findings of Jabrayilov and Mutzel [19].

1.2 Structure

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the fun-
damentals and notations used in the rest of the thesis. Chapter 3 explores existing work
related to the GCP and dynamic approaches. We cover the current state of ILPs for the
GCP as well as related preprocessing in their own chapter (Chapter 4). In Chapter 5, we
present our contribution. It opens with the preparation of data, especially the creation of
the subgraph and its fixated neighborhood. We continue by showing the mapping of colors
of said neighborhood into a different color space. After adapting preprocessing techniques
to our setting, we perform a similar color mapping on the remaining vertices. Next, the
dynamic ILPs are introduced. This includes their definition, adaptations to turn them dy-
namic as well as their resulting dimensions. In Chapter 6 we analyze the performances of
the ILPs for a number of graph instances as well as comparing them with existing results
for static ILPs. We start by exclusively assessing the runtime performance by controlling
the number of subgraphs created by each ILP. Secondly, instances of the DIMACS bench-
mark are used to compare multiple metrics in an applied context. The thesis finishes with
Chapter 7 by presenting a conclusion based on the experiments and giving an outlook on
potential future work.
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CHAPTER 2
Fundamentals

2.1 General Definitions

Graphs. A graph is a set of objects V , called vertices and identified by a unique natural
number V ⊂ N>0. Vertices can be pairwise connected. These connections are called edges.
Let G = (V,E) be a graph where V is the set of vertices and E ⊆

(
V
2

)
is the set of edges.

These edges e = {u, v} ∈ E are undirected, meaning the order of vertices is indifferent.
The number of vertices is represented by n = |V | and the number of edges by m = |E|. A
graph is dense if the number of edges is close to the maximum number of edges possible.
Two vertices connected by an edge are called adjacent or neighboring. If a vertex is not
part of any edge, it is isolated. A graph G = (V,E) is called a simple graph if all its
edges connect two distinct vertices ∀{u, v} ∈ E | u ̸= v; there are no self-loops. We
consider undirected simple graphs in this thesis. The neighborhood of a vertex v is the set
of adjacent vertices N(v) = {u ∈ V | {u, v} ∈ E}. The degree of v is the size of its
neighborhood deg(v) = |N(v)|.

Subgraphs. A subgraph Gs = (Vs, Es) of a graph Go = (Vo, Eo) is induced by a subset
of its vertices Vs ⊆ V and its edges Es ⊆ E such that for all edges both vertices are in Vs.
If ∀{u, v} ∈ Es ⇐⇒ {u, v} ∈ Eo | u, v ∈ Vs, the subgraph is called induced. In this
context we call Go an original or global graph and note Gs ⊆ Go.
For a graph G = (V,E) and Vs ⊆ V , G[Vs] denotes an induced subgraph Gs = (Vs, Es).
The neighborhood of a subgraph N(Gs) = {v ∈ V | {u, v} ∈ E ∧ u ∈ Vs ∧
v /∈ Vs} is the set of vertices adjacent to the subgraphs vertices that are not part of
the subgraph themselves.

Cliques. A clique C is a subset of vertices of a graph G with all pairs of distinct vertices
being adjacent. Such a subgraph G[C] is also called a complete graph, as all possible edges
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2 Fundamentals

are present. A clique is called maximal if no vertex v ∈ G(V ) exists, such that G[C ∪ {v}]
is a complete graph.

Breadth-First Search. A breadth-first search (BFS) explores a graph by exploring all
vertices v ∈ V at the present depth d(v) in relation to a root vertex vr before traversing
to one depth level deeper. The depth level of a vertex v is the length of the shortest path
(vr, . . . , v) from vr to v.

Dynamic Graphs. A dynamic graph Gdyn = G(t) | t ∈ T with G(t) = (V,E(t)) is
an evolving graph for which the set of edges can change over time. The graph can be
represented by a sequence of states G(t0)→ G(t1)→ . . .→ G(tn), each at a specific time
t ∈ T = {t0, . . . , tn}. E(t) is the set of edges at time t. A non-dynamic graph is called
static. If not noted otherwise a graph is considered static.

2.2 Graph Colorings

For a graph G = (V,E) a graph coloring or simply coloring is the mapping of its vertices
to a set of colors. A color is an identifier that can be assigned to a vertex or edge of
a graph. Similar to vertices, for a set of colors C, each color is identified by a unique
natural number C ⊂ N>0.
A coloring using k = |C| colors is called a k-coloring. A k-coloring is represented by a
function col : V → 1, . . . , k. It is valid or legal if no adjacent vertices are assigned the
same color. An edge {u, v} causes a conflict if col(u) = col(v). If a color c can be assigned
to a vertex v ∈ V , it is considered free or available to v. The saturation degree of v is the
number of distinct colors in its neighborhood sat(v) = |{col(u) | u ∈ N(v)}|.
If a graph G is k-colorable, a valid k-coloring for G exists. The Graph Coloring Problem
(GCP) demands to find the smallest possible value for k - also known as the chromatic
number χG - such that G is k-colorable. We denote such a coloring as χ(G). The dynamic
GCP applies the GCP to a dynamic graph by ensuring a proper coloring for each G(t). The
GCP is NP-complete [13].
We solve the dynamic GCP by creating a subgraph Gs = (Vs, Es) for every edge added and
solving the static GCP for Gs via an ILP. For this we need to consider the neighborhood
N(Gs), meaning we need to solve the GCP on the non-induced subgraph

G′
s = Go[Vs ∪N(Gs)] \ {{u, v} ∈ Eo | u, v ∈ N(Gs)

′}

that omits edges whose endpoints are both in the neighborhood of Gs. See Figure 5.2 for a
visualization. We will refer to F ′

s = N(Gs) as the fixated neighborhood or fixated vertices
of G′

s while M ′
s = Vs are the mutable vertices of G′

s. Similarly, we will refer to CF as
fixated and CM as mutable colors. In Section 5.1.2 the colors c ∈ C are mapped into a
different color space γ ∈ C . The mapped color of a vertex v is colγ(v)
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2.3 Integer Linear Programming

2.3 Integer Linear Programming

An Integer Programming (IP) is way to formulate a mathematical optimization problem.
It uses integer variables, whose values are restricted by constraints, to achieve the goal of
maximizing or minimizing an objective function. An example can be found in IP 2.1a. IP
is NP-complete [23].
The variables in an IP are a vector x ∈ Zn. They are decision points needed to be optimized
to fulfill the objective function. A constraint is an equation that uses variables of the IP. It
creates restrictions, dependencies and relations between these variables. An IP is feasible
if there exists a combination of variables such that all constraints are satisfied (see IP 2.1b).
The search space is the space of all feasible solutions. The objective function is the function
to be optimized. It represents the goal of the IP and yields the optimal solution SIP of
the search space.

minimize 4a− 3b

subject to a+ b ≤ 3

a, b ≥ 0

(a) Basic IP

maximize 2x+ y

subject to x+ y ≥ 3

2x+ y ≤ 2

x, y ≥ 0

(b) Infeasible IP

IP 2.1: Example IPs

Integer Linear Programming. In Integer Linear Programming (ILP) the constraints as
well as the objective function are linear. The only exception are integer constraints. The
variables of ILPs used in this thesis are all binary. The dimension or problem size of an ILP
refers to its number of independent variables nILP and constraints mILP. A larger dimension
ILP (in general) requires more computational resources to solve. Each ILP has an upper
bound (UILP) and a lower bound (LILP). The optimal solution χILP lies between the two. If
LILP = UILP ⇒ LILP = UILP = SILP.

ILP Solver. ILP solvers are specialized software that are designed to find an optimal
solution for a given ILP. They are highly optimized and use sophisticated mathematical
techniques to face the complexity of large ILP.
Branch and bound is a method that looks at branches of a decision tree created by the (de-
cision) variables. It explores those which potentially bear a feasible solution better than
a current result and prunes all that do not lie within the upper and lower bounds of the
ILP. By using heuristics an ILP solver uses techniques that trade optimality and accuracy
for speed. With this, new bounds can be set and used by other methods. Besides the two
mentioned, there are many more but - for this thesis - less relevant procedures.

5



2 Fundamentals

There is a great choice of ILP solvers like IBM’s CPLEX [18], GLPK (GNU Linear Pro-
gramming Kit) [14] or Gurobi Optimizer [15]. We choose the latter for this thesis, as it has
excellent documentation and is commonly used in academic papers.

Symmetries. An ILP is symmetric when there are multiple feasible variable permuta-
tions for which the result of the objective function is the same. E.g. for the GCP, colors
are indifferent and thus interchangeable. This causes redundancy for the ILP solver as it
explores multiple equivalent solutions, making it more inefficient.
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CHAPTER 3
Related Work

The Graph Coloring Problem (GCP) is amongst the most studied NP-hard problems in
graph theory and computer science in general. Its research spans several decades with
possibly the most well known result being the Four Color Theorem. Originally conjectured
in 1852, it states that any planar graph is 4-colorable. Such a graph can be drawn on a
plane without intersecting edges. This was proven in 1976 by Appel and Haken [1]. It
was one of the first theorems proving via computer assistance. Many algorithms have been
proposed to solve the generalized GCP, mostly optimized for a specific subset of graphs.
Nevertheless, only a few exact algorithms have been developed because of the significant
complexity of the problem. Lund and Yannakakis [27] have shown that it is NP-hard to
compute an efficient approximation within a fixed ratio. In this chapter, we will explore
some of the work done regarding the GCP.

3.1 Exact Algorithms

Exact algorithms for the GCP aim to find an optimal solution, meaning a coloring with the
lowest number of colors necessary, by exploring all possible configurations. These methods
guarantee finding the chromatic number of the considered instance, but their calculations
are computational expensive due to the GCP being NP-hard.
A well known approach to the problem is DSATUR (degree of saturation) by Brélaz [5].
DSATUR utilizes the color degrees to create a color ordering, choosing a vertex dynam-
ically at each step. The initially colored vertex is determined by maximum degree. Sub-
sequent vertices are chosen by highest saturation degree until all vertices in the graph are
colored. The algorithm is exact by a process called backtracking, where all possible col-
orings are systematically explored. The rule mentioned above is applied recursively until
a coloring is found, the size of which is saved. It then tracks back to the last decision
made and chooses a different vertex than before. If it is clear that a coloring won’t un-
dercut the current minimum, the latest process stops and backtracks, as it won’t result in a
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3 Related Work

lower solution size. Further work was done by Lawler [24] who proposed a dynamic pro-
gramming algorithm. Mehrotra and Trick [29] combine integer linear programming and
column generation techniques. For more in depth examples we are referring the reader
to de Lima and Carmo [10].
ILPs are also used exclusively to solve the GCP. Different methods are applied to formulate
and solve the problem. There are simple assignment based ILPs, where the basic formula-
tion of the GCP is translated into an ILP, as well as ILPs that utilize the structures of a valid
coloring, creating disjoint classes which represent colors. In the latest developments partial
ordering based ILPs were proposed that can also be formulated as a hybrid of the assign-
ment based ILPs. We will go into great detail of the state of all these ILPs in Chapter 4.

3.2 Dynamic GCP Algorithms

Dynamic graph coloring algorithms try to keep the coloring size of a graph low while edges
are deleted or inserted. Like the static GCP, there has been extensive research regarding the
dynamic GCP [34] [33] [38] [16] [4].

Preuveneers and Berbers [34] provide an upgrade to the basic approach of assigning the
lowest available color to one of the conflicting vertices after an edge insertion. This method
produces a quickly increasing number of colors used. Preuveneers and Berbers’ ACODY-
GRA updates the lower degree vertex based on the lowest available color. Furthermore, if
only colors larger than already present in the vertices are assignable, the degrees of satura-
tion in the neighborhood is calculated. The maximum degree of saturation for each color
present in the neighborhood is stored. Finally, the color whose vertices show the lowest
maximum saturation degree is chosen to be the new color assigned to the initial vertex.
This will cause conflicts with neighboring vertices, which are resolved by recursively ap-
plying the same coloring algorithm to the conflicting vertices. Beyond this, said coloring
algorithm is applied to the involved vertices after an edge removal. This potentially lowers
the number of colors.
Henzinger and Peng [16] propose an algorithm that has a constant expected amortized up-
date time for maintaining a (degmax+1) coloring for edge insertion and deletion on a graph
whose maximum degree is degmax. They use a sophisticated rank based system paired with
efficient data structures. When a conflict causing edge is added the algorithm recursively
recolors vertices based on their rank and the colors present in their neighborhood.
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CHAPTER 4
State of the Art ILPs for the GCP

In this chapter we talk about the most well known and performant static ILPs. These are
the same that we will adapt to the dynamic GCP version in Chapter 5. Furthermore, we
will take a look at the most commonly used preprocessing techniques for the GCP.
Jabrayilov and Mutzel [19] introduce a purely partial-ordering based ILP (POP), as well
as a hybrid version (POP2). As a comparison they use two previously established ILPs.
Firstly, an assignment-based ILP that was refined by Méndez-Díaz and Zabala [31] to be
asymmetrical (ASS). Secondly, a representatives ILP by Campêlo et al. [6].

4.1 Assignment-Based ILP (ASS)

Given a graph G = (V,E), each vertex v ∈ V is assigned a color c. To avoid symmetries,
Méndez-Díaz and Zabala [31] propose the rule that assigning a color c to a vertex is only
possible if another vertex has already been assigned the color ci−1.
With the number of colors being upper bound by U , binary variables xvc for each vertex
v ∈ V and color c = 1, . . . , U are implemented to denote the use of a color for a vertex.
xvc = 1 if vertex v was assigned the color c and xvc = 0 otherwise. Furthermore, binary
variables zc are used to indicate if a color c was assigned to any vertex in the solution. The
objective is to reduce this number used colors in the result.
The constraints are defined in such a way as to prevent a vertex being assigned multi-
ple colors (4.2), as well as adjacent vertices not being attributed the same color (4.3).
Equation (4.3) also ensures that the binary variable zc is set to 1 iff any vertex is assigned
the color c. Colors are used in order due to constraint (4.4).
The number of variables is |V |U + U = U(|V | + 1). The number of constraints is
|V |+ U |E|+ (U − 1) = |V |+ U(|E|+ 1)− 1.

9



4 State of the Art ILPs for the GCP

minimize
U∑
c=1

zc (4.1)

subject to
U∑
c=1

xvc = 1 ∀v ∈ V (4.2)

xuc + xvc ≤ zc ∀{u, v} ∈ E, c = 1, . . . , U (4.3)
zc−1 ≥ zc ∀c = 2, . . . , U (4.4)
xvc, zc ∈ {0, 1} ∀v ∈ V, c = 1, . . . , U (4.5)

ILP 4.1: Assignment-Based (ASS), [19, pp. 3-4]

4.2 Representatives ILP (REP)

REP [6] solves the GCP by creating classes which are disjoint. Since any arrangement
of disjoint classes creates a valid solution for the GCP by assigning a color to each
class, the objective of the ILP is to find the smallest set of disjoint color classes for a
graph G = (V,E).
To achieve this, class representatives are used. Let N̄(u) = {v | {u, v} /∈ E}. For all
u ∈ V, v ∈ N̄(u) the binary variable xuv denotes if v is represented by u. This includes
xuu which is 1 iff u is the representative of its color class.

minimize
∑
u∈V

xuu (4.6)

subject to
∑

u∈N̄(v)

xuv ≥ 1 ∀v ∈ V (4.7)

xuv + xuw ≤ xuu ∀u ∈ V, ∀{v, w} ∈ G[N̄(u)] (4.8)
xuv ∈ {0, 1} ∀{u, v} /∈ E (4.9)

ILP 4.2: Representatives (REP), [19, p. 4]

Inequality (4.7) ensures that each vertex is represented and therefore part of a color
class. (4.8) enforces that a representative of another vertex must represent itself, as it can-
not be part of more than one color class and each class can only have one representative.
As noted by Jabrayilov and Mutzel [19], REP is very compact, requiring only |Ē| + |V |
variables and at most |V | + |V ||E| = |V |(|E| + 1) constraints. Ē = (V × V ) \ E being
the set of non-adjacent pairs of vertices. A drawback of the ILP is its symmetry. Every
member of a color class can be the representative. Jabrayilov and Mutzel [19] acknowl-
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4.3 Pure Partial-Ordering-Based ILP (POP)

edge this but highlight that a possible solution provided by Campêlo et al. [7] results in up
to exponentially many constraints. They stick to the symmetric version as described above.

4.3 Pure Partial-Ordering-Based ILP (POP)

For a graph G = (V,E) Jabrayilov and Mutzel [19] create a partial order on P = V ∪ C
with C = 1, . . . , U being colors in a linear ordering. Each vertex vinV is set into relation
to every color. v can be smaller (v ≺ c) or larger (v ≻ c) than a color c ∈ C. The binary
variables precv,c and succc,v result from these comparisons. For each pair (v, c), precv,c is 1
iff v ≺ c and succc,v is 1 iff v ≻ c. To translate the partial ordering into a coloring, a vertex
is assigned a color iff precv,c = 0 ∧ succc,v = 0.
A random vertex r ∈ V is selected. POP is designed to assign r the largest color in the
solution (4.16), representing the size of the coloring.

minimize
∑
c∈C

succc,r (4.10)

subject to precv,1 = 0 ∀v ∈ V (4.11)

succU,v = 0 ∀v ∈ V (4.12)
succc,v − succc+1,v ≥ 0 ∀v ∈ V, c ∈ C \ {U} (4.13)
succc,v + precv,c+1 = 1 ∀v ∈ V, c ∈ C \ {U} (4.14)

precu,c + succc,u + precv,c + succc,v ≥ 1 ∀{u, v} ∈ E, c ∈ C (4.15)

succc,r − succc,v ≥ 0 ∀v ∈ V, c ∈ C \ {U} (4.16)
precv,c, succc,v ∈ {0, 1} ∀v ∈ V, c ∈ C (4.17)

ILP 4.3: Partial-Ordering-Based (POP), [19, p. 6]

In addition to a lower and upper color limit for the vertices (4.11, 4.12), the constraints
ensure color transitivity for each vertex (4.13, 4.14). (4.15) prevents adjacent vertices from
being assigned the same color. The number of variables is 2 · U |V |. As mentioned by
Jabrayilov and Mutzel [19], |V | + |V | + |V |(U − 1) = |V |(U + 1) variables can be
eliminated via (4.11), (4.12) and (4.14). This results in |V |(U − 1) variables. The number
of constraints is 2|V |+ 3 · |V |(U − 1) + |E|U = |E|U + 3 · U |V | − |V |.

4.4 Hybrid Partial-Ordering-Based ILP (POP2)

Though POP has a lower number of variables than ASS, Jabrayilov and Mutzel [19] point
out a drawback that occurs when handling dense graphs. The number of non-zero coef-
ficients outgrows that of ASS. To solve this, they substitute constraint (4.15) with (4.3).
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4 State of the Art ILPs for the GCP

Both inequalities handle the coloring of adjacent vertices, but (4.3) uses only half as many
non-zero coefficients. This requires a conversion of the POP variables precv,c and succc,v to
the assignment variables xvc which is done by equation (4.23) and the subsequent addition
of these variables into the ILP. Preventing neighboring vertices being assigned the same
color is handled similarly to ASS (4.24).

minimize
∑
c∈C

succc,r (4.18)

subject to precv,1 = 0 ∀v ∈ V (4.19)

succU,v = 0 ∀v ∈ V (4.20)
succc,v − succc+1,v ≥ 0 ∀v ∈ V, c ∈ C \ {U} (4.21)
succc,v + precv,c+1 = 1 ∀v ∈ V, c ∈ C \ {U} (4.22)

xvc + (prevv,c + succc,v) = 1 ∀v ∈ V, c ∈ C (4.23)
xuc + xvc ≤ 1 ∀{u, v} ∈ E, c ∈ C (4.24)
succc,r − succc,v ≥ 0 ∀v ∈ V, c ∈ C \ {U} (4.25)
precv,c, succc,v, xvc ∈ {0, 1} ∀v ∈ V, c ∈ C (4.26)

ILP 4.4: Hybrid Partial-Ordering-Based (POP2)

|V | · |C| variables and constraints are added respectively, resulting in a total of |V |(U−1+
|C|) variables and |E|U +4 ·U |V | − |V |. As mentioned by Jabrayilov and Mutzel [19] the
additional variables do not impact the dimensions of the problem as their value is directly
tied to the POP variables.

4.5 Heuristic Preprocessing Techniques

A number of preprocessing techniques are used when facing the GCP. These are used to
either pre-color vertices, eliminate vertices to decrease the problem size or calculate better
lower or upper bounds. Each of these criteria has a different impact to the time required to
calculate a solution, depending on the type of graph. A special focus is set on the lower and
upper bound though. The size of the assignment and partial-ordering based ILPs directly
depends on the upper bound of colors required in the solution. Furthermore, any narrowing
of the solution size by a good lower bound can be used by the ILP solver to improve
pruning. We will explain three methods used in static approaches, which are later modified
by us in Section 5.1.3 to be used with the dynamic ILPs. Some are also part of the set of
preprocessing implemented by Jabrayilov and Mutzel [19].

12
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4.5.1 Calculating a Lower Bound via a Clique

Calculating a clique before solving the GCP is a straight forward way to calculate a lower
bound for color usage. Both cliques and graph colorings involve a vertex adjacency rele-
vance by definition. Because a clique is a complete subgraph Gs = (Vs, Es) of a graph G,
solving the GCP on S requires colors C = 1, . . . , |Vs|, each vertex being assigned a differ-
ent color. The chromatic number of S is χS = |Vs|. This subsequently means that for the
chromatic number of G it holds that χG ≥ χS . The larger the considered clique, the better
the lower bound for the GCP. Finding the optimal clique is a challenge as the maximum
clique problem is NP-hard [13]. While there is extensive research on this topic [40], none
of the results are feasible for preprocessing due to their complexity. Heuristic approaches
on the other hand provide a good middle ground of runtime and result quality. They will not
necessarily find an optimal solution, but provide a more feasible one compared to randomly
guessing while keeping the algorithms’ complexity, and thus runtime, low. We will use a
variation of the procedure described by Segundo [35]. It acts like a heuristic DSATUR (see
Algorithm 2) to form an initial coloring. This takes advantage of the observation that in a
relatively regular graph, vertices with a higher degree have a higher chance of being part of
a large clique. Starting with the highest degree vertex a set is created. The highest degree
vertex connected to all vertices in this set is chosen and added to the clique. This process re-
peats until no vertex with this property exists. Ties in degree are broken lexicographically.
The outcome is a clique formed by the chosen vertices. See Algorithm 1 for pseudocode.

The resulting set of clique-vertices can be pre-colored and used to eliminate variables
by pre-assigning the corresponding values to the associated coefficients. The size of the
set is passed on to the ILP solver as a lower bound for the objective function. Heuristic
clique approaches are poor approximation still. This is due to the fact, that cliques can
be located anywhere in the graph. A large clique can exist isolated from any parame-
terizable attributes, like the highest degree nodes, making it impossible to find it without
an extensive analysis.

4.5.2 Calculating an Upper Bound via Greedy Coloring

Algorithms performing a greedy coloring assign the smallest available color to a vertex
by considering a predetermined strict ordering. This order is of particular importance as
it affects the solution size in terms of number of colors used. An optimal ordering would
result in an optimal solution for the GCP [17]. This means such an ordering would solve
the GCP, thus finding one is NP-hard as well. Every strict ordering results in a valid upper
bound for the GCP.

As mentioned in Section 3.1, Brélaz [5] introduced DSATUR which relies on de-
grees of saturation to pick the next vertex to be colored, after initially doing so with the
highest degree vertex.

vchosen = max
v∈V̄c

sat(v)

13
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Algorithm 1: Heuristic clique creation, modified from description of Segundo [35]
Input: graph G
Output: clique-set C
begin

C ← {}
v ← highestDegreeV ertex(G)
C ← C ∪ {v}
while true do

// Get highest degree vertex connected to all clique vertices

v ← nextCliqueV ertex(G,C)
if v has no value then

break
C ← C ∪ {v}

with V̄c ⊂ V being the set of uncolored vertices. Ties in saturation degree are broken
by degree. If the tie persists the lexicographically higher vertex is colored. The heuristic
version does not perform backtracking but colors the graph once.
Sewell [36] improved by this with his tie-breaking strategy SEWELL. It uses a similar
strategy to DSATUR but tries to minimize the colors available to the uncolored subgraph.
It picks the next vertex by highest saturation degree. The difference is in the tie-breaking
strategy, that chooses the highest saturation degree vertex which has the most colors com-
monly available to the uncolored vertices of its neighborhood.

vchosen = max
v∈V̄sat

∑
n∈N(v), n∈V̄c

|Ca(v) ∩ Ca(n)|

where V̄sat is the set of uncolored vertices with the highest saturation degrees and Ca(v)
is the set of colors available to v. A further improvement was done by Segundo [35].
His tie-breaking rule called PASS only considers the uncolored neighborhood with
maximum saturation degree.

vchosen = max
v∈V̄sat

∑
n∈N(v),n∈V̄sat

|Ca(v) ∩ Ca(n)|

The mentioned improvements are considered when using DSATUR, SEWELL and PASS
as a base for an exact algorithm. In Section 5.1.3 we will use a variation of the original
DSATUR rule to heuristically pre-solve the dynamically created GCP for an upper bound.
We choose it due to its simplicity in implementing and adapting to a dynamic environment.
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Algorithm 2: Heuristic DSATUR, Brélaz [5]
Input: graph G = (V,E)
Output: coloring C
begin

while true do
if G empty then

break
satmax, degmax ← −1
forall v ∈ V do

if satG(v) > satmax then
vchosen ← v
satmax ← satG(v)
degmax ← degG(v)

else if degG(v) > degmax ∧ satG(v) = satmax then
vchosen ← v
degmax ← degG(v)

C(vchosen)← smallestColorAvailable(vchosen)
G← G− vchosen

4.5.3 Removing Dominated Vertices
A dominated vertex is a vertex whose neighborhood is a subset of another vertex’s neigh-
borhood. The dominators’ constraints for a GCP ILP are part of a more strict set compared
to set of constraints involving the dominated vertex. The latterly mentioned vertex can be
omitted from the problem, as its constraints will be satisfied when the dominators’ are.
This means a color assigned to the dominator can also be applied to the dominated ver-
tex after solving. Omitting vertices reduces the problem size for the ILP as well as other
preprocessing such as the heuristic calculation for an upper bound via DSATUR. This is a
wide-spread technique and is commonly used [7, 19, 20, 35].
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CHAPTER 5
Creating Dynamic Graph Coloring ILPs

This chapter shows our method of using ILPs on subgraphs to solve the GCP for a dynamic
Graph. We start by exploring the concepts and data structures needed to apply a local
solution to the global graph. Afterwards we will show how we adjust the static ILPs from
Chapter 4 to being capable of using this additional data.
The basic concept of our approach (see Figure 5.1) is to use the place of an edge insertion
in the global graph as the center for a subgraph. This subgraph is induced by a breadth-first
search (BFS) with both edge endpoints as its root. We fixate the subgraphs’ neighborhood
to consider its colors to be able to reinsert the subgraph into the original graph after solving
the GCP on it via our ILPs.

5.1 Preparing Data

In this section we will illustrate what data, other than the subgraph itself, is needed in our
approach. We will explain the structures and algorithms used to obtain and process this
data. Furthermore, we will explain the benefits of color mapping as well as preprocessing
and its impact on the original graphs coloring.

5.1.1 Neighborhood Creation

Contrary to an ILP for the static GCP, our ILPs need to consider the neighborhood N(Gs)
of the subgraph Gs = (Vs, Es) that is to be colored. This is necessary, as the coloring
needs to be re-inserted into the original graph Go = (Vo, Eo). For this reason the BFS will
perform a search of depth dBFS + 1 with the endpoints of the inserted edge as its roots. We
mark all vertices F ′

s = {v ∈ Vo | d(v) = dBFS + 1} as fixated. This is the neighborhood
N(Gs). All other vertices M ′

s = {v ∈ Vo | d(v) ≤ dBFS} = Vs are considered mutable.
G′

s = Go[M
′
s ∪ F ′

s] \ {{u, v} ∈ Eo | u, v ∈ F ′
s} is the subgraph that is provided to the

ILP to be solved. Note that Gs is an induced subgraph of Go, while G′
s is not. It is missing
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Figure 5.1: Overview of our algorithm for a dynamic graph coloring.

edges between fixated vertices, as they do not impact the feasibility of a coloring. G′
s can

be described as divided into different layers, see Figure 5.2. A fixated vertex f ∈ F ′
s will

be assigned a color before solving, namely the color cf = colGo(f) it was allocated to in
the original graph.

Endpoints of inserted edge

Mutable vertices

Fixated vertices

Vertices not in G′
s

Inserted edge

Edge in in G′
s

Edge not in G′
s

Figure 5.2: Different layers of subgraph G′
s for dBFS = 1

The inclusion of the fixated neighborhood introduces new variables and constraints to an
ILP. Though, as their color is pre-assigned, the dimension of the ILP remains unchanged
compared to providing purely mutable vertex based subgraph Gs. More constraints usually
raise the computational complexity due to the ILP solver being tasked to determine the
values in constraints consisting solely of decision variables. With pre-assigned variables
however, the solver can use the knowledge to perform better bound calculation, reduce the
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Algorithm 3: Subgraph via BFS
Input: original graph Go, new edge e = (v1, v2), BFS-depth dBFS

Output: subgraph G′
s

begin
// Queue with (vertex, depth) pairs

Q← push
(
Q, (v1, 0)

)
Q← push

(
Q, (v2, 0)

)
G′

s.vertices← {v1, v2}
G′

s.edges← {{v1, v2}}
while not Q.empty() do

(v, d)← Q.front()
Q← pop(Q)
if d > dBFS then

v.isFixated← true
continue

v.isFixated← false
forall a ∈ Go.adjacent(v) do

if a.isVisited then
continue

a.isVisited← true
Q← push

(
Q, (a, d+ 1)

)
G′

s.vertices← G′
s.vertices ∪ {a}

G′
s.edges← G′

s.edges ∪ {{v, a}}

search space, check the feasibility more easily and enhance numerical stability. We will
explore the ILP specific effects in Section 5.2.

We use a queue Q = ⟨(v1, d(v1)), . . . , (vn, d(vn))⟩ with vi ∈ Vo and d(vi) be-
ing v’s depth, to perform the BFS with depth dBFS on the original graph Go.
New entries are pushed into the queue via push

(
Q, (vn+1, d(vn+1))

)
→ Q′ =

⟨(v1, d(v1)), . . . , (vn, d(vn), (vn+1, d(vn+1)))⟩ and popped from the front of the queue with
pop(Q)→ Q′ = ⟨(v2, d(v2)), . . . , (vn, d(vn))⟩.
Initially our queue Q contains the endpoints of the inserted edge e = {v1, v2}. We then en-
ter a loop that will continue until the queue is empty (see Algorithm 3 for details). We look
at and remove the front pair (v, d(v)) of the queue and examine all its neighbors n ∈ No(v)
individually. If n was not yet part of the queue, we push (n, d(n) | d(n)) with d(v) + 1
into Q. If we already considered the neighbor, we do nothing. We also skip v if d(v) is
larger than dBFS. In this case v is part of the fixated neighborhood and we mark it as such.
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5.1.2 Neighborhood Mapping
As shown with the static ILPs, the dimension and number of constraints is in many cases
dependent on the upper bound U of colors used in the solution χ(G). Because the colors of
fixated neighborhood vertices F ′

s in the subgraph G′
s = (V ′

s , E
′
s) with V ′

s = F ′
s ∪M ′

s must
be predetermined, this upper bound would be

U ′ = max
(
U,max

f∈F ′
s

(col(f))
)

with U being an upper bound for the optimal coloring χ(Gs) of the mutable subgraph Gs =
(Vs, Es), considering adjacent fixated colors but not including the fixated colors in the
bound themselves. This can lead to a larger than necessary upper bound and consequently
to a lower performing ILP due to larger dimensions.
We counter this behavior by creating a bijective mapping of the colors assigned to the
fixated vertices f ∈ F ′

s. We will differentiate these colors by color spaces. There is an
original (C) and a mapped (C ) color space. Let CF = {1, . . . , |F ′

s|} be the set of mapped
fixated colors with CF = {c1, c2, . . . , cn} | c1 < c2 < ... < cn being the ordered set
of colors used in the fixated neighborhood. We define the map function for fixated colors
mapCF

: CF → CF such that

mapCF
(ci) = γi if ci is the γi-th element in CF

This will lower the upper bound to

U ′ = max(U, |CF |) = max(U, |CF |)

The mapping mapCF
(CF ) must occur before any preprocessing involving colors, otherwise

their calculations would rely on C while the subgraph to be solved is using C as its color
space. This would mean upper and lower bounds are not determined correctly. The colors
γ ∈ CF could produce conflicts for low color values, not present in the original color space.
This potentially increases the highest color value assigned to a mutable vertex v ∈ M ′

s,
invalidating the previous bounds.
A mapped color γi can be translated back to the original color space C by accessing the
γi-th element in CF . We define the translation function for fixated colors transCF

such that

transCF
(γi) = CF [γi]

To implement the color spaces, we use a vector vC = [c1, . . . , c|CF |] whose indices are the
mapped colors γi ∈ CF corresponding to the original colors ci = vC [γi]. Initially vC is an
empty vector. We can append colors to it via append(vC , ci) → v′C = [c1, . . . , c|CF |, ci].
Let

M = ({ci : {f ∈ F ′
s | col(f) = ci}} ∀ci ∈ CF )

be a key-value map that sorts all fixated vertices f by their color ci in the original graph
Go. M [ci] returns a set of all fixated vertices assigned the color ci. We can easily fill this
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Algorithm 4: Map fixated neighborhood
Input: subgraph G′

s = (V ′
s , E

′
s), color mapped vertices M

Output: color translation vC

begin
vC ← [ ]
γnext ← 1
forall ci ∈M .keys() do

vC ← append(vC , ci)
forall f ∈M [ci] do

colγ(f)← γnext

γnext ← γnext + 1

map while creating the subgraph, by adjusting Algorithm 3 to put every fixated vertex f
into the set in M corresponding to its color.
We iterate over the ordered set of keys ci ∈M .keys(). The iteration index γi corresponds
to the mapped color. We place ci at vC [γi] and assign all vertices f ∈M [ci] the color γi in
the subgraph G′

s. See Algorithm 4 for pseudocode.

5.1.3 Preprocessing

Just as with the static GCP, preprocessing can be applied to our method of solving the dy-
namic version as well. We calculate a clique for a lower bound, identify dominated vertices
to be omitted and use Algorithm 2 to get an upper bound. The order of preprocessing is as
mentioned above. This is to have a more performant heuristic upper bound calculation as
it can omit the dominated vertices.

Some described preprocessing techniques need to take fixated vertices and their mapped
colors into account. The process of searching for a clique depends on adjacency only. As
the neighborhood vertices can be a part of the clique they should be considered as well to
create a more accurate lower bound for the subgraph. No changes to this preprocessing
compared to our earlier explanation in Section 4.5.1 needs to be done.

Adapting Dominated Vertices. Dominated vertices must consider fixated vertices as
their assigned color is crucial for the calculation of the subgraphs coloring and later rein-
sertion. For this reason, vertices that are part of the subgraphs’ neighborhood are not to be
marked as dominated. However, they can become the dominator as well as being consid-
ered when examining a neighborhood being subset of another.
Because a dominating vertex can be dominated itself, it is important to keep track of trees
of domination shown in Figure 5.3a. Each tree will have a root dominator. This vertex will
be references by all dominated vertices when being colored after solving the GCP. The root
dominator only changes if is dominated itself. This new dominator will then be the root

21



5 Creating Dynamic Graph Coloring ILPs

v1

v2 v3

vn−1

vn

N
(v
2
) ⊆

N
(v
1
)

N
(v

3 )⊇
N
(v

n
)

Root

(a) Domination tree

vn v1

v2vn−1

N
(v

1 )
=

N
(v

2 )

N
(v

n
−
1
)
=

N
(v

n
)

N(vn) = N(v1)
(omitted) Root

(b) Preventing domination cycles

Figure 5.3: Vertex domination pitfalls

for all dominated vertices in the tree. Considering that a vertex u is dominated by a vertex
v if N(u) ⊆ N(v), cycles occur for v1, . . . , vn if N(v1) = . . . = N(vn). In this case, the
last tracked domination will be omitted to break the cycle (Figure 5.3b). This ensures a
root dominator will always be present. The order of domination is determined based on
individual implementation, in our case it is lexicographically.

The dominated vertices D will be removed from the graph G′
s = (V ′

s , E
′
s), creating a

new subgraph G′
s[V

′
s \D ]. For simplicity, we will continue calling the subgraph for the ILP

G′
s. From here on out, this will have its dominated vertices and related edges removed.

Adapting heuristic DSATUR. To ensure the proper heuristic calculation of an upper
bound, fixated vertices must be considered. They reduce the set of colors available to a
vertex. As mentioned fixated colors are mapped (Algorithm 4) to ensure the largest used
color is as small as possible. This also has the effect of guaranteeing the colors used in the
heuristic solution - which is in the mapped color space - are as small as possible, while not
conflicting with fixated neighbors.
The upper bound usually equals U = |Ch| with Ch being the set of colors used in the
heuristically produced solution for G′

s. With fixated vertices, this can be lowered to
U = min(|Ch|, |CM |) where CM is the set of colors used by the mutable verticies of the
subgraph. This is the case, as |CM | indicates the maximum number of colors needed for
coloring the mutable vertices while considering the fixated neighborhood. A fixated ver-
tex with a color γf > |CM | cannot produce a conflict, as any optimal solution produced
by an ILP will assign at most color |CM | to a mutable vertex. The fixated vertices with
γf > |CM | can be removed from the subgraph problem entirely. Any vertex previously
marked as dominated by such a vertex will still be colored by the color of the fixated ver-
tex. This will not increase the number of colors used in the original graph while keeping
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the dimension of the ILPs reduced.
By their definition, dominated vertices can be omitted at this stage already without impact-
ing upper bound accuracy but improving runtime of the heuristic algorithm.

5.1.4 Mapping Mutable Vertices
Since we map the fixated colors of the subgraphs’ neighborhood, the final coloring will
take place in the mapped color space C . After solving the subgraph instance, its colors will
be translated from the mapped to the original color space C and assigned to the vertices
in the original graph. It is in our interest for the mapped colors γ ∈ C to be as small
as possible even though they might get translated back into a larger (fixated) color. This
ensures a small upper bound and thus better performance in the ILP.
With UM being the upper bound for the mutable vertices of the subgraph in the mapped
color space, if UM > |CF |, there are UM − |CF | colors left that are potentially used in
the solution and need to be translated into the original color space. Let CM be the set of
these colors. We choose colors as small as possible as translation values. This will keep
the average coloring value in the original graph as low as possible. It also means that the
subgraph coloring will, after translation into the original color space, introduce at most one
new color. This is because every edge conflict in a k-coloring can be solved by assigning
one of the endpoints the color k + 1. As G′

s is a subgraph of k-colorable Go, G′
s (which

includes the inserted edge) must be k + 1-colorable. As we choose the translated colors
in the original color space CM as small as possible, this means at most colors 1, . . . , k + 1
will be assigned to the original graph. It will at most have a k + 1-coloring.
Non-possible colors for the translation of CM are those used by the fixated vertices in the
original color space CF . Let C̄F = N>0 \CF be the increasingly ordered set of all possible
colors. We define the translation function for mutable colors transCM

: CM → CM as

transCM
(γi) = C̄F [γi]

This completes all mappings (see Figure 5.4 for a visualization) necessary to change color
spaces for the subgraph to be solved with the lowest upper bound possible, while keeping
the coloring in the original graph at most k + 1.
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5.2 Turning ILPs Dynamic

In this section we will convert the four ILPs from Chapter 4 into being able to use the
prepared data. We have calculated lower and upper bounds. The fixated colors of G′

s

are converted into the mapped color space C . transCM
and transCF

give us the ability to
translate both fixated and mutable colors back to the original color space. This means
our ILPs do not need to consider the different color spaces. The solution will be in the
mapped color space. Still, it is necessary to create extra constraints and variables in the
ILPs that factor in the existence of a fixated neighborhood. We will reduce the number of
both of these as much as possible.

5.2.1 Include Fixated Neighborhood

Taking into account the colors of the fixated neighborhood is straight forward. We will add
binary variables for each vertex v, just as the static ILPs require. If v ∈ CF , we will assign
a value to the variable, making it a constant. As mentioned, this keeps the dimensions of
the ILP the same as if the problem would consist of the mutable subgraph Gs only, as well
as creating constraints that can be beneficial for the solution computation.

Dynamic Assignment-Based ILP (DynASS) For the assignment-based ILP, two types
of variables are used.

1. xvγ to indicate if vertex v is assigned a color γ

2. zγ to indicate if a color γ is assigned to any vertex in the solution

To assign fixated colors CF of the subgraph G′
s = (V ′

s , E
′
s), V ′

s = F ′
s ∪M ′

s we adjust xvγ

to be 1 if v is fixated and γ is the color assigned to v. If v has a color that is not γ, xvγ is
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set to 0. In all other cases it will be a binary variable, as with the static ILP.
We reflect the color usage for all fixated colors as well changing zγ to be 1 if γ ∈ CF .
Due to CF = {1, . . . , |CF |}, we can omit the first |CF | constraints compared to (4.5).
The constraints ensuring only one color is assigned to a vertex can be cut out for all
fixated vertices f ∈ F ′

s.

minimize
U∑

γ=1

zγ (5.1)

subject to
U∑

γ=1

xvγ = 1 ∀v ∈M ′
s (5.2)

xuγ + xvγ ≤ zγ ∀{u, v} ∈ E ′
s, γ = 1, . . . , U (5.3)

zγ−1 ≥ zγ ∀γ = |CF |+ 2, . . . , U (5.4)

xvγ ∈



{1} if hasCol(v)∧
γ = colγ(v)

{0} if hasCol(v)∧
γ ̸= colγ(v)

{0, 1} otherwise

∀v ∈ V ′
s , γ = 1, . . . , U (5.5)

zγ ∈
{
{1} if γ ∈ CF

{0, 1} otherwise
γ = 1, . . . , U (5.6)

ILP 5.1: Dynamic Assignment-Based (DynASS)

The number of variables is |V ′
s |U + U = U(|V ′

s | + 1), the same as in the static ASS.
|M ′

s| · |CF |+ |CF | of these are turned into constants, reducing the dimension of the ILP to
the same as if Gs, the graph without a neighborhood, was to be considered. The number
of constraints is |M ′

s| + U |E ′
s| + (U − |CF | − 1) = |M ′

s| + U(|E ′
s| + 1) − |CF | − 1.

There are only as many additional constraints compared to the Gs, as edges {u, v} ∈ E ′
s

with u ∈M ′
s ∧ v ∈ F ′

s

Dynamic Representatives ILP (DynREP) With a representative based ILP includ-
ing fixated vertices requires a little more work. Because multiple neighborhood vertices
can have the same color γ, but only one representative can exist for γ. To obey this
rule, we can use the key-value map M from Section 5.1.2. For each original color
ci ∈ M .keys(), we get the mapped color γi = mapCF

(ci). We choose the first ver-
tex in the lexicographical order of vertices to represent the others in their color class.
R = {(γi,M [ci].front()) ∀ci ∈ M .keys()} is the set of these fixated representatives
paired with their mapped color. There will be |CF | such pre-determined color classes. This
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reduces the problem symmetry associated with this ILP, as there are fewer representatives
to be chosen.
Due to every fixated vertex already being in one color class, we can omit the
constraints (4.7) for these vertices. The constraints ensuring no vertex can be the represen-
tative of both endpoints of an edge keeps unchanged, as we do not include edges between
fixated vertices in the subgraph.

minimize
∑
u∈V ′

s

xuu (5.7)

subject to
∑

u∈N̄(v)

xuv ≥ 1 ∀v ∈M ′
s (5.8)

xuv + xuw ≤ xuu ∀u ∈ V ′
s , ∀{v, w} ∈ G′

s[N̄(u)] (5.9)

xuv ∈



{1} hasCol(v)∧
R[colγ(v)] = u

{0} if hasCol(v)∧
R[colγ(v)] ̸= u

{0, 1} otherwise

∀{u, v} /∈ E (5.10)

ILP 5.2: Dynamic Representatives (DynREP)

DynREP has the same number of variables as REP but |CF | of these are turned into con-
stants. Just as with DynASS, the dimension of DynREP is the same as REP considering
only the mutable subgraph Gs compared to G′

s. The number of constraints compared to
this is increased by

∑
u∈F ′

s
| {e = {v, w} ∈ G′

s[N̄(u)]}|. The higher the density of the
graph, the lower the increase in constraints.

Dynamic Partial Ordering Based ILP (DynPOP) Including fixated vertices requires
determining their relations in the partial ordering introduced by POP. With CT = CF ∪
CM , |CT | = U , we define precf,γ = 1 iff the color γf = colγ(f) is smaller than γ ∈ CT

for a fixated vertex f ∈ F ′
s. Likewise, succγ,f = 1 iff γf is larger than γ. In case γ = γf ,

both precf,γ and succγ,f are 0, in other words f is assigned the color γ by DynPOP. The
static version requires a random vertex r to be chosen from the set of vertices. This is a
problem for the dynamic ILP. r cannot be chosen from F ′

s as it needs to be variable to adapt
to the largest color used. But even when using a mutable vertex, there is the possibility that
this will make the ILP infeasible if there are only valid colorings for which r ∈ M ′

s is not
assigned the largest coloring. For valid colorings, this restriction also bears the potential of
a better solution being omitted by the ILP solver. The solution is to add an isolated vertex
i to G′

s. i will only be relevant during the solving of the ILP and removed afterwards.
Looking at the constraints, we can omit |F ′

s| from every one except when preventing the
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5.2 Turning ILPs Dynamic

assignment of the same color to adjacent vertices. All pairs (f, γ) with f ∈ F ′
s , γ ∈ CT

are ordered properly. There is no need to ensure transitivity (5.14) or exact relations (5.15)
between the pairs (f, γ) for a vertex f . Their upper and lower bound cannot extend out of
the allowed range, as the lowest color assigned is 1 and i initially orientates itself at the
largest fixated color used. The color assigned to i can only grow.

minimize
∑
γ∈CT

succγ,i (5.11)

subject to precv,1 = 0 ∀v ∈M ′
s (5.12)

succU,v = 0 ∀v ∈M ′
s (5.13)

succγ,v − succγ+1,v ≥ 0 ∀v ∈M ′
s, γ ∈ CT \ {U}

(5.14)

succγ,v + precv,γ+1 = 1 ∀v ∈M ′
s, γ ∈ CT \ {U}

(5.15)

precu,γ + succγ,u + precv,γ + succγ,v ≥ 1 ∀{u, v} ∈ E ′
s, γ ∈ CT (5.16)

succγ,i − succγ,v ≥ 0 ∀v ∈M ′
s, γ ∈ CT \ {U}

(5.17)

precv,γ ∈



{1} if hasCol(v)∧
colγ(v) < γ

{0} if hasCol(v)∧
c < colγ(v)

{0, 1} otherwise

∀v ∈ V ′
s , γ ∈ CT (5.18)

succγ,v ∈



{1} if hasCol(v)∧
c < colγ(v)

{0} if hasCol(v)∧
colγ(v) < γ

{0, 1} otherwise

∀v ∈ V ′
s , γ ∈ CT (5.19)

ILP 5.3: Partial-Ordering-Based (DynPOP)

The number of variables, again, is the same as with the static version POP. 2 · U |F ′
s| are

turned into constant, equaling the amount to the one used by Gs. The number of constraints
compared to Gs is increased by the number of edges connecting a fixated and a mutable
vertex {u, v} ∈ E ′

s | u ∈M ′
s ∧ v ∈ F ′

s .

Dynamic Hybrid Partial Ordering Based ILP (DynPOP2) Just as POP2 is a hybrid
of ASS and POP, so are the changes to adapt it a combination of their dynamic counter-
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5 Creating Dynamic Graph Coloring ILPs

parts. The assignment variables xvγ are defined as in DynASS, the POP variables precv,γ
and succγ,v as in DynPOP. Consequently, this also means the number of variables and con-
stants changes as a combination of the two with the same amounts as mentioned with the
respective ILP.

minimize
∑
γ∈CT

succγ,i (5.20)

subject to precv,1 = 0 ∀v ∈M ′
s (5.21)

succU,v = 0 ∀v ∈M ′
s (5.22)

succγ,v − succγ+1,v ≥ 0 ∀v ∈M ′
s, γ ∈ CT \ {U} (5.23)

succγ,v + precv,γ+1 = 1 ∀v ∈M ′
s, γ ∈ CT \ {U} (5.24)

xvγ + (precv,γ + succγ,v) = 1 ∀v ∈M ′
s, γ ∈ CT (5.25)

xuγ + xvγ ≤ 1 ∀{u, v} ∈ E ′
s, γ ∈ CT (5.26)

succγ,i − succγ,v ≥ 0 ∀v ∈M ′
s, γ ∈ CT \ {U} (5.27)

precv,γ ∈



{1} if hasCol(v)∧
colγ(v) < γ

{0} if hasCol(v)∧
γ < colγ(v)

{0, 1} otherwise

∀v ∈ V ′
s , γ ∈ CT (5.28)

succγ,v ∈



{1} if hasCol(v)∧
γ < colγ(v)

{0} if hasCol(v)∧
colγ(v) < γ

{0, 1} otherwise

∀v ∈ V ′
s , γ ∈ CT (5.29)

xvγ ∈



{1} if hasCol(v)∧
γ = colγ(v)

{0} if hasCol(v)∧
γ ̸= colγ(v)

{0, 1} otherwise

∀v ∈ V ′
s , γ ∈ CT (5.30)

(5.31)

ILP 5.4: Hybrid Partial-Ordering-Based (DynPOP2)
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5.3 Post Solve Tasks

Algorithm 5: Translate coloring to original graph
Input: subgraph G′

s = (V ′
s , E

′
s), graph Go

Output: color translation vC

begin
forall v ∈ V ′

s do
γ ← colγ(v)
if v.isFixated then

c← transCF
(γ)

else
c← transCM

(γ)

col(f)← c

Summary Although, each ILP has to be individually adapted, the changes occurring are
similar in each ILP. We see an increase in variables declared, due to the neighborhood F ′

s.
Because these vertices are pre-colored though, they are turned into constants every time.
This keeps the dimension of the ILP the same as when considering Gs. Additional con-
straints can not be avoided. The increase is in most cases, except DynREP, primarily due
to the additional edges between the fixated and mutable variables. This can be beneficial
for the ILP solver. Their complexity is lowered, because these constraints include at least
one variable of a fixated vertex, which are turned constant. This can also help for different
methods applied by the ILP like branch and bound.

5.3 Post Solve Tasks

After solving the ILP on the subgraph, it is necessary to revert the mapping of the colors
used in the coloring. As shown in Algorithm 5, this done by our previously defined trans-
lation functions transCM

and transCF
. We will iterate over each vertex v ∈ V ′

s and translate
the assigned color γv into the original color space cv. This color is then assigned to the
same vertex in Go. This will finish the procedure of solving the GCP on the subgraph and
including the results in the original graph.
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CHAPTER 6
Experimental Evaluation

This chapter shows our results for the experiments. At first, we showcase the hardware
used, as well as the graph instances, the experiments were performed on. Afterwards, we
will explain the setup and execution of our algorithm. Finally, we will analyze the results
and compare the dynamic ILP amongst themselves as well as compared to the results of
Jabrayilov and Mutzel [19].

6.1 Methodology

Hardware. All algorithms are implemented in C++ and compiled using g++ version
12.3.0 with optimization level O3. The machine used is equipped with an Intel(R) Xeon(R)
Silver 4216 @ 2.10GHz with 16 cores and 96 GB of main memory as well as 22 MiB of
L3 cache under Ubuntu 20.04.1 LTS and Linux kernel version 5.4.0-152-generic. We use
Gurobi Optimizer [15] 11.0.1 running single-threadedly and with an 80 GB memory limit
per instance as our ILP solver.

Experiment Setup. For all our experiments we use the same algorithm setup, except for
changing the value of the BFS-depth (Figure 5.1), although we split the graph instances into
two types of categories. Graphs derived from finite element methods (FEM) are modified
before the experiment, by excluding a set of 100 and 1000 randomly chosen edges. These
edges will be used to turn the graphs dynamic, by reinserting them one by one. The reduced
graphs are pre-colored using a heuristic DSATUR algorithm (Algorithm 2) and the coloring
is saved. All ILPs will use the same coloring as their basis to make them comparable. We
want to measure the performance of the ILPs for a fixed number of executions. For this,
we will execute our algorithm on every edge insertion. Even if there is no conflict. FEM
graphs are chosen, because of their irregular structure and large size which leads to a more
robust benchmark for a randomly chosen set of edges. The BFS-depths chosen are in a
wide range of 0 to 15 to better explore the ILPs’ performance when facing different sized
subgraphs. All other graph instances will be build from the ground up. We start with a
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6 Experimental Evaluation

graph that consists of vertices only and add each edge back into it. The edges are ordered
by their smallest endpoint, with ties being broken via the second endpoint, and inserted
in ascending order. This ensures a connected graph. We use graphs with a variety of
attributes to explore differences in performance for the individual ILP. As we build small
graphs from an empty state, the values chosen as depths will be lower, ranging from 0 to 5.
Due to the high number of instances, each has a maximal compute time of 30 minutes in
both types of experiments.

Instances. The graphs derived from finite element methods (FEM) used in our exper-
iments originate from the 10th DIMACS implementation challenge [2]. They were in-
troduced by Chan et al. [8] and represent 2-dimensional meshes of real world objects.
Furthermore, we use a subset of the DIMACS benchmark [39] that is oriented on the set
used by Jabrayilov and Mutzel [19]. They are widely used and consist of FullIns, derived
from graphs based on the Mycielski transformation, ash, obtained from matrix partitioning
problems, DSJC and DSJR, which are random and geometric graphs [22], le450, Leighton
graphs [25], mugg100, as almost 3-colorable graphs, qg, latin sqaures, school, a class
scheduling and wap, an optical network design problems. A detailed list can be found
in Table 6.1 and Table 6.3.

Plots. The results for both experiments include multiple forms of presentation. While
some are straight forward to understand, we want to explain how to read performance
profiles. Introduced by Dolan and Moré [11], this type of graph is a widely used tool
to compare the performance of different algorithms across a set of problem instances. It
uses a defining metric to create a two-dimensional graph whose x-axis denotes a variable
τ ∈ R≥1. This represents the performance ratio of an algorithm and instance. A value of
τ = 1 means that the algorithm performed best on that instance. Higher values relate to
this base value, e.g. τ = 1.3 is the value of the best performance× 1.3.
The y-axis shows the percentage of instances p(τ) for each algorithm where the
performance is within a factor of τ . It accumulates the number of instances,
meaning that for y = 0.5, 50% of instances for this graph performed better than
value of the best performance × τ . The points (τ, p(τ)) for an algorithm shape a perfor-
mance staircase line. Vertical lines are formed at each value of τ where the performance
on the next instance is within a factor of τ . This results in an intuitive graphical represen-
tation for algorithm comparison, as well as more specific insights. Particular interesting
knowledge can be gained at τ = 1 and the point (τ, p(τ) = 1). In the first case we can see
the percentage of instances solved best by each algorithm. For the latter, we can see the
largest factor by which an algorithm is worse compared to the best performance on any of
the instances considered. In some of our illustrations, the line never reaches p(τ) = 1. This
is the case when instances could not be solved by the ILP in the time limit. If an instance
could not be solved by any ILP, the instance is removed from the graph entirely.
We also show graphs where the average value of τ∆ is presented. For each ILP we calculate
the list of differences in τ . The list is generated by finding τ∆ = τ − τbest for each τi in the
performance profile ILP increases its fraction of instances performing within factor τi. This
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6.2 Results

essentially means, each τi where the line forms a vertical line. τbest is the factor at which
the best ILP reaches the same performance as the referenced ILP at τi. We then multiply
each τ∆ by the fraction of the y-axis for which it is valid and sum up the values to get the
average τ∆. This metric gives us a condensed numerical value to assign to performance
profiles. Please note, that as with the performance profiles, we do not consider instance
where an ILP was not able to solve in time. If an ILP has not completed any instance it is
marked with a hyphen. All values are rounded to the second decimal place.

6.2 Results

6.2.1 Fixed Number of Conflicts
This section compares our algorithm when using each of the dynamic ILPs introduced in
Section 5.2 on a fixed number of edge insertions, disregarding conflicts. The algorithms
were run using a BFS-depth of 0, 1, 5, 10 and 15. The detailed results can be found in
Table 6.2. We grouped the depth them into three sections, small (0, 1), medium (1, 5, 10)
and large (10, 15). Their performance profiles can be found in Figure 6.1a, Figure 6.1b
and Figure 6.1c respectively. We do this to have a smoother transition between groups and
to counteract the fact, that we use non-continuous depth values. With gaps in between,
evaluating only single depths could create the illusion of edges in the data, where the per-
formance of an algorithm changes more drastically at a certain point. Our goal with this
experiment is not to find such an edge, but rather to display the trends of performance for
the different ILPs.
As we evaluate the runtime performance of the ILPs on very large graphs derived from
finite element methods (see Table 6.1) and insert only a few edges, the size of the re-
sulting global coloring is of no interest for us. We will leave this metric unmentioned
for this experiment.

Looking at the performance profiles in Figure 6.1 for the runtimes of the different groups,
the most noticeable aspect is DynREP. In the small BFS-depth group of 0 and 1, it is on par
with the other algorithms. It is best performing for around 30% of instances and only needs
a factor of τ = 1.02 to include 50% of instances. This rate stagnates as τ grows. In the end,
it needs the highest factor of all ILPs for the instances considered. For the other groups,
this pattern worsens, with its performance line dropping significantly below its competitors.
Only on a third of instances DynREP’s performance is within a factor of τ = 1.8. This is
where our graphic ends for scale reasons. The largest factor needed over all instances in
this group is τ = 32.6. DynREP fails to solve five instances for a BFS-depth of 5 and all
instances for depths 10 and 15. This is the reason for its line overlapping with the x-axis
in the large group’s performance profile. The reason for the poor performance on medium
and larger problem instances derives from its inherit symmetry mentioned in Section 4.2.

DynASS is performing the best ILP in the small group. While all ILPs perform quite
similarly, it consistently keeps its (sometimes shared) top rank regarding percentage of
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solved instances for a given τ . It is most efficient regarding runtime for 65% of instances
and solves 95% within a factor of τ = 1.23. The steep performance line of DynASS is
present in the medium group as well. Here its superiority is even stronger with a visible
gap to the next best performing ILPs. It finally falls behind both DynPOP version within
the large group where its performance drops significantly. With only a factor of τ = 1.04,
the first instances can be solved via DynASS. Even though its curve rises steeply after
this point it flattens out again quickly, before completing the last third of instances with
1.44 ≤ τ ≤ 1.69. The languishing after 66% is due to the instances with 100 edges and
BFS-depth 15. Inserting 1000 edges with this depth was not completed by any ILP.

DynPOP and DynPOP2 perform very similar in all groups. They start on the lower
end for small BFS-depths, having a steep initial line. This indicating good performance
for the depth range, although both ILPs have a poorer performance for the first 50% of
instances compared to the other two ILPs. Especially DynPOP2 struggles to outperform
even the symmetry-burdened DynREP, only doing so at τ = 1.37. DynPOP on the other
hand competes closely with DynASS for the last 20% of instances. In the middle group
both DynPOP and DynPOP2 succumb to DynASS. They are start rivaling each other with
DynPOP2 coming out on top in the last 10% of instances. Here the factor gap between the
two grows to τ∆ = 0.15, similar to the difference of DynPOP2 and DynASS throughout
all graphs. Instances created by large BFS-depths are the most efficient for DynPOP and
DynPOP2 compared to the other ILPs. While they cannot complete 1000 edge insertions
with BFS-depth 15 either, they greatly outperform DynASS for 100 such conflicts, as well
as all instances with a depth of 10. DynPOP2 has an advantage over DynPOP, being best
performant in 80% of instances. This is almost neglectable as the difference in factor is at
most 0.026 for all except one instance.

To summarize, DynASS generally performs best in the small and medium BFS-depth
groups, showing a strong capability to solve instances efficiently. While not being the best
at a depth of 0, it starts to surpass its competition at a depth of 1, which is enhanced going
to a depth of 5 as seen in Figure 6.2. With larger depths though, DynPOP and DynPOP2
start to gain the upper hand by a great margin. DynPOP is of no competition except for
some instances at very low BFS-depth values.

34



6.2 Results

(a) Small BFS-depths (0, 1)

(b) Medium BFS-depths (1, 5, 10)
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(c) Large BFS-depths (10, 15)

Figure 6.1: Performance profiles displaying runtimes of the dynamic ILPs for graphs derived from
finite element methods.
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Figure 6.2: Average τ∆ for runtime performance compared to best performing ILP over all per-
centages of instances.
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6.2.2 Evaluation of DIMACS Benchmark

For the set of DIMACS graphs (see Table 6.3) we evaluate the performance metrics by
considering only edge insertions that cause a conflict to be solved by our algorithm. With
these graphs, smaller VFS-depths of 0, 1, 3 and 5 were chosen, as there is the possibility
of numerous conflicts needing to be resolved. For larger depths this would increase the
runtime too much to be viable on the execution of the experiment. Due to the more realis-
tic setting, we measure runtime, solution size, number of edge conflicts, average subgraph
density encountered as well as the ratio of fixated versus mutable vertices in the subgraphs
created by our algorithm. We want to compare the ILPs in its runtime performance overall
as well as its behavior regarding the mentioned metrics with the instances. The results as a
whole are displayed in Table 6.4.
Looking at the performance profiles for all instances and BFS-depth in Figure 6.3, one can
see the superiority of DynASS when it comes to pure runtime. It is the most performant
ILP in 72.55% of instances and only needs a factor of τ = 1.04 to include 80%. Around
90% of instances are solved within τ = 1.56. The closest competitors, DynPOP2 and Dyn-
POP, have a steep line as well, completing 80% of instances within a factor of 1.52 and 2.17
respectively. DynPOP declines around the 65% mark, where it struggles to complete the
last 35% compared to the best algorithms. DynPOP2 on the other hand keeps its pace and
almost reaches DynASS before τ = 2. DynREP is the least efficient ILP. Not only does it
solve fewer instances as shown in Figure 6.4 but performs poorly on those it manages to
complete in the time limit. It needs 4 times as long to solve 50% of instances compared to
the other ILPs. Making things worse, it also falls behind when it comes to the solution size
(see Figure 6.3b). The colorings produced by DynREP are around 1.1 to 1.4 times larger
than those of DynASS. It falls behind the DynPOP ILPs in this metric as well. It manages
to color the instances best or equivalently best in 53% of cases. After this, the growth dis-
parity is at a similar rate to DynPOP and DynPOP2. The latter managing to perform the
best out of all ILPs when it comes to the solution size, solving 80% at τ = 1.

To have a better understanding of why DynASS outperforms DynPOP and DynPOP2,
even though its solution size is bigger, one can look at Figure 6.3c where the number of
edge conflicts encountered is compared. Here we can see that DynASS produced fewer
conflicts than the other ILPs for the same ordering of edge insertions. Although DynASS
increases the problem size during the solving of subgraphs, meaning the calculated up-
per bound is higher in more cases, which in turn results in larger ILPs and an extended
calculation time, it has to solve fewer of these problems. Because of this the overall run-
time performance is better than the other ILPs. DynPOP and DynPOP2 are, performing
similarly on this metric again, with DynPOP causing more conflicts, which is in turn repre-
sented in the runtime performance profile in Figure 6.3a. DynREP is once more the worst
performing ILP by a large margin.

It is noteworthy that the apparent superiority of DynASS is supported by the fact that a
lot of instances with large BFS-depth weren’t solved by any ILP (Figure 6.4). This means
a higher proportion of smaller graphs build the basis for the performance profiles, where -
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as we already showed in Section 6.2.1 - DynASS is better performing. For this reason, we
want to take a more detailed look at the different depth levels displayed in Figure 6.5. Here
we can confirm what we have just stated. For small depth of 0 and 1, DynASS is the most
performant when it comes to runtime. But we can also see it struggling with the solution
size for depths greater than 0. This only worsens for dBFS of 3 where both DynPOP ILPs
solve 100% of instance best. It is also evident, that DynASS struggles to solve the last
17−22% of instances for all BFS-depths except 0. DynPOP2 performs better in these final
percents, solving some instances twice as fast as the others.
Table 6.4 shows that for a growing value of dBFS, the solution size gets smaller in almost
every instance. Those were this is not the case, only see the addition one color, making
it plausible, that this happened by chance due to the edge insertion order. In many cases
the best solution for all depths, was already found at a depth of 1, especially in smaller to
medium size graphs. This makes sense, as with a large depth for a BFS-search in a small
graph, not too much more can be discovered. In many cases, the whole graph is recolored
multiple times. We would consider a BFS-depth of 1-3 a sweet spot for both runtime and
solution quality. The other graph attributes we tracked, namely the ratio of fixated and mu-
table vertices and the average subgraph density, seem to have no impact on performance.

Finally, we want to compare our results with those of Jabrayilov and Mutzel [19]. We
include the table of their findings as reference in Table 6.5. Here we can see that POP and
POP2, the static versions of DynPOP and DynPOP2, outperform the other algorithms in
every instance except one, where ASS is in the lead. This doesn’t oppose our findings as
much as one may think. As we have already discussed, the real strength of DynASS in our
experiments, was its ability to prevent edge conflicts. In general, the results of Jabrayilov
and Mutzel resemble what we observe with the dynamic versions, with some graph fam-
ilies like le450 or qg. On the other hand some instances of the FullIns family were not
solved by the dynamic ILPs for larger BFS-depths.
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Figure 6.3: Performance profiles illustrating different metrics over all BFS-depth used.
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Figure 6.5: Performance profiles illustrating the runtime in the left column and the size of the
solution (coloring) in the right column. The BFS-depth dBFS is different in each row.
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6.2 Results

Table 6.1: Instances originating from finite element methods used for the experiments with a fixed
number of edge conflict in Section 6.2.1.

Instance n m
333SP 3712815 11108633
AS365 3799275 11368076
M6 3501776 10501936
NACA0015 1039183 3114818
NLR 4163763 12487976

Table 6.2: Extensive runtime data display for finite element graphs for all dynamic ILPs at various
BFS-depths. The lowest value for a given depth and instance is printed in bold. Hyphens
mark data points, where the algorithm was not able to complete within the maximum
compute time with a given ILP.

Inst. dBFS
DynASS DynREP DynPOP DynPOP2

t100 t1000 t100 t1000 t100 t1000 t100 t1000

33
3S

P

0 4.84 11.77 4.94 11.80 4.88 12.12 4.99 12.02

1 4.84 14.65 5.49 17.36 5.20 15.66 5.29 15.44

5 81.34 784.23 - - 75.88 708.17 75.34 689.72
10 81.34 784.23 - - 75.88 708.17 75.34 689.72
15 413.35 - - - 292.44 - 271.44 -

A
S3

65

0 7.77 16.89 7.90 17.97 7.83 17.61 8.90 18.85

1 8.12 20.91 8.89 27.05 8.31 22.94 9.10 23.34
5 86.74 837.11 - - 77.94 712.24 76.96 694.08
10 86.74 837.11 - - 77.94 712.24 76.96 694.08
15 386.42 - - - 234.60 - 228.84 -

M
6

0 8.22 15.92 7.86 12.99 8.16 16.97 8.99 17.50
1 7.58 21.70 9.35 19.69 8.25 22.66 9.25 20.70

5 88.14 841.74 - - 80.13 715.34 78.63 695.87
10 88.14 841.74 - - 80.13 715.34 78.63 695.87
15 368.59 - - - 245.30 - 244.44 -

N
A

C
A

00
15

0 2.40 7.82 2.71 7.02 2.73 7.60 2.77 7.75

1 2.98 11.01 3.53 16.02 3.10 13.20 3.04 13.76

5 78.50 733.02 - - 71.97 662.74 70.51 659.76
10 78.50 733.02 - - 71.97 662.74 70.51 659.76

15 347.81 - - - 230.05 - 225.39 -

N
L

R

0 8.81 16.52 6.47 14.40 6.45 14.96 9.30 17.12

1 8.70 16.85 7.11 27.60 8.89 25.56 9.68 20.66
5 85.24 812.44 - - 82.34 734.98 84.23 753.24

10 85.24 812.44 - - 82.34 734.98 84.23 753.24
15 453.47 - - - 312.92 - 316.02 -
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6 Experimental Evaluation

Table 6.3: Instances used for the experiments on the DIMACS benchmark set in Section 6.2.2.
Instance n m
2-FullIns_4 212 1621
2-FullIns_5 852 12201
3-FullIns_3 80 346
3-FullIns_4 405 3524
4-FullIns_3 114 541
4-FullIns_4 690 6650
5-FullIns_3 154 792
ash608GPIA 1216 7844
ash958GPIA 1916 12506
DSJR500.5 500 58862
le450_5a 450 5714
le450_15a 450 8168
le450_15c 450 16680
le450_25c 450 17343
mug100_1 100 166
mug100_25 100 166
qg.order40 1600 62400
school1_nsh 352 14612
wap05a 905 43081
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6.2 Results

Table 6.4: Extensive data display for DIMACS benchmarks for all dynamic ILPs at various BFS-
depths. The columns are as follows: t is the runtime of the algorithm, |C| is the size
of the solved coloring, #c is the number of edge conflicts encountered, ρ is the average
density of subgraphs in percent α is the ratio of number of fixated and mutable vertices
in the subgraphs. If there is significance in the lowest value for a given depth and
instance, it is printed in bold. Hyphens mark data points, where the algorithm was not
able to complete within the maximum compute time with a given ILP.

Inst.dBFS
DynASS DynREP DynPOP DynPOP2

t |C| #c ρ α t |C| #c ρ α t |C| #c ρ α t |C| #c ρ α

2-
Fu

llI
ns

_4 0 0.68 7 291 6.05 21.59 1.02 11 348 5.49 21.52 0.76 9 289 5.57 21.60 0.75 10 289 5.75 21.58

1 2.25 7 265 2.65 10.40 10.34 6 307 2.64 10.03 3.96 6 347 2.83 9.79 4.05 6 357 2.77 9.56

3 355.08 7 289 0.14 14.45 - - - - - 178.97 6 274 0.14 14.54 163.47 6 261 0.15 14.51

5 631.09 7 273 0.00 14.99 - - - - - 692.32 6 266 0.00 15.02 671.30 6 265 0.00 15.04

2-
Fu

llI
ns

_5 0 3.13 10 1193 13.20 11.87 10.92 13 1358 10.54 12.29 6.21 12 1169 11.50 11.94 6.74 12 1206 12.06 11.70

1 55.07 13 1271 4.95 4.30 492.24 7 1300 5.09 4.33 50.01 7 1288 5.38 4.34 38.70 7 1230 5.20 4.39

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

3-
Fu

llI
ns

_3 0 0.37 7 109 2.83 34.85 0.42 8 120 2.37 35.80 0.42 8 112 3.18 33.98 0.40 8 108 2.90 34.84

1 0.56 6 108 1.57 19.29 1.10 6 123 1.55 18.53 0.88 6 128 1.59 18.39 0.79 6 125 1.57 18.77

3 6.40 6 110 0.21 20.79 - - - - - 16.18 6 107 0.22 20.65 6.24 6 105 0.22 20.63

5 16.56 6 107 0.00 21.77 - - - - - 36.78 6 107 0.00 21.76 20.74 6 104 0.00 21.66

3-
Fu

llI
ns

_4 0 2.08 10 554 6.44 19.73 3.37 13 633 5.90 20.08 2.38 10 545 6.08 20.06 2.39 9 546 6.08 20.07

1 5.13 10 514 3.43 8.32 30.71 7 566 3.64 7.94 14.20 7 759 3.44 7.51 7.78 7 581 3.35 8.17

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

4-
Fu

llI
ns

_3 0 0.50 7 146 2.76 34.72 0.76 14 190 3.53 32.02 0.61 9 159 3.37 33.07 0.58 8 154 3.02 33.86

1 0.97 7 153 1.82 16.80 1.84 8 153 1.85 16.91 1.33 7 163 1.82 17.13 1.24 7 168 1.76 16.94

3 20.11 7 145 0.32 17.87 - - - - - 25.84 7 140 0.36 17.75 12.97 7 145 0.34 17.43

5 59.00 7 151 0.00 19.03 - - - - - 39.55 7 154 0.00 18.94 36.3 7 141 0.00 18.92

4-
Fu

llI
ns

_4 0 3.40 10 921 6.74 18.75 6.19 17 1078 6.46 18.79 4.39 12 949 6.47 18.79 4.34 10 964 6.50 18.64

1 12.63 10 808 3.98 6.87 113.53 8 1005 4.20 6.48 17.10 8 906 4.03 6.87 20.78 8 933 3.80 6.69

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

5-
Fu

llI
ns

_3 0 0.76 8 212 3.74 31.70 0.87 10 233 2.71 33.56 0.54 10 214 3.33 32.50 0.81 9 209 3.22 33.00

1 1.72 8 239 2.18 14.23 3.08 9 225 2.19 14.84 2.03 8 208 2.10 15.54 2.19 8 238 2.14 14.71

3 35.90 8 193 0.38 15.84 - - - - - 36.05 8 206 0.38 15.46 36.68 8 197 0.38 15.63

5 246.28 8 208 0.01 16.51 - - - - - 112.04 8 212 0.01 16.62 115.42 8 196 0.01 16.83

as
h6

08
G

PI
A 0 6.45 7 1856 5.24 18.29 6.99 8 1831 5.26 18.29 7.39 8 1876 5.26 18.31 7.28 7 1915 5.24 18.31

1 16.00 8 1701 3.12 9.15 57.52 6 1921 3.19 9.03 20.46 5 1997 3.20 8.93 20.06 5 2000 3.20 8.98

3 234.85 4 1914 0.57 8.69 - - - - - 305.88 4 1994 0.57 8.63 283.45 4 2043 0.57 8.45

5 940.69 4 1916 0.25 7.19 - - - - - 1099.06 4 2012 0.26 7.13 1110.71 4 2042 0.25 7.09

as
h9

58
G

PI
A 0 10.36 8 2984 5.42 17.42 11.18 9 2920 5.42 17.43 11.61 8 2954 5.38 17.57 11.68 7 2989 5.41 17.48

1 26.85 7 2727 3.23 8.32 103.53 5 3129 3.31 8.17 32.80 5 3088 3.31 8.23 31.93 5 3129 3.34 8.16

3 432.56 4 3139 0.58 7.49 - - - - - 538.80 4 3513 0.59 7.48 505.58 4 3567 0.58 7.43

5 1736.7 4 3108 0.26 6.04 - - - - - - - - - - - - - - -

D
SJ

R
50

0.
5 0 84.23 145 1781 71.21 3.99 118.95 147 1614 69.82 4.01 235.39 144 1742 70.05 4.03 336.77 141 2884 77.34 3.37

1 - - - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

le
45

0_
5a

0 4.37 13 1092 9.19 15.71 4.29 14 1191 9.71 14.82 6.01 12 1115 9.18 15.67 5.88 12 1139 9.37 15.48

1 42.76 10 1187 7.05 6.50 597.45 10 1154 6.61 6.69 58.31 10 1225 6.81 6.44 58.05 10 1202 7.08 6.48

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

le
45

0_
15

a 0 6.96 23 1277 14.61 12.05 18.92 22 1568 16.87 10.58 12.17 21 1257 15.41 11.89 10.49 21 1211 14.63 12.29

1 138.2 17 1218 6.26 4.44 - - - - - 260.96 18 1420 6.14 4.13 177.03 17 1285 6.53 4.27

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

Continued on next page
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6 Experimental Evaluation

Table 6.4 – continued from previous page

Inst.dBFS
DynASS DynREP DynPOP DynPOP2

t |C| #c ρ α t |C| #c ρ α t |C| #c ρ α t |C| #c ρ α

le
45

0_
15

c 0 11.42 31 1293 29.08 7.19 68.38 31 2330 32.10 5.51 24.78 31 1265 28.71 7.33 19.97 31 1171 28.13 7.62

1 1200.07 25 1998 4.25 5.55 - - - - - 1034.09 25 1964 4.31 5.34 893.32 24 1568 4.35 5.84

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

le
45

0_
25

c 0 10.99 36 1238 30.24 7.31 56.96 38 2168 33.94 5.65 29.05 35 1343 30.10 7.03 27.24 38 1217 29.92 7.38

1 - - - - - - - - - - - - - - - 1494.80 29 1485 4.05 6.52

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

m
ug

10
0_

1 0 0.30 4 132 1.03 56.44 0.27 5 131 1.03 55.52 0.28 4 130 1.03 55.85 0.28 4 130 1.03 55.85

1 0.31 5 117 0.66 36.72 0.31 4 130 0.70 37.19 0.33 4 135 0.72 36.79 0.30 4 129 0.71 37.11

3 0.44 5 121 0.48 20.08 0.50 4 130 0.47 20.07 0.43 4 134 0.48 19.82 0.43 4 131 0.48 20.01

5 0.57 5 122 0.30 14.86 2.08 4 132 0.31 14.46 0.73 4 135 0.31 14.31 0.64 4 129 0.31 14.56

m
ug

10
0_

25 0 0.28 4 135 1.03 56.42 0.28 5 135 1.03 55.78 0.28 4 131 1.02 56.26 0.29 4 131 1.02 56.26

1 0.28 4 118 0.67 37.25 0.32 4 132 0.70 37.77 0.33 4 132 0.70 38.00 0.32 4 128 0.68 38.48

3 0.36 5 117 0.45 21.88 0.54 4 129 0.46 21.56 0.44 4 132 0.46 21.29 0.41 4 129 0.46 21.50

5 0.48 5 120 0.29 16.29 1.92 4 131 0.30 15.81 0.65 4 130 0.30 15.91 0.63 4 134 0.29 15.69

qg
.o

rd
er

40 0 27.38 78 3931 18.09 17.53 111.52 77 12571 15.70 13.10 128.56 78 5970 19.33 15.44 86.16 78 5404 15.82 16.83

1 - - - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

sc
ho

ol
1_

ns
h 0 12.67 39 1166 32.74 6.56 59.83 42 1566 36.23 5.82 22.27 40 1149 31.62 6.98 23.77 40 998 31.77 7.40

1 - - - - - - - - - - - - - - - 843.45 19 1249 3.28 8.83

3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -

w
ap

05
a 0 33.64 62 3276 30.02 14.73 84.22 64 3635 27.76 14.30 114.45 61 3430 28.16 15.43 97.49 63 3566 28.89 15.30

1 - - - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - -
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6.2 Results

Table 6.5: Results by Jabrayilov and Mutzel for the hard instances from DIMACS benchmark
set, [19, p. 9]

REP POP POP2 ASS+(c) ASS+(e) [30] [32] [28]
instance |V | |E| class lb ub time lb ub time lb ub time lb ub time lb ub time time time time
1-FullIns_4 93 593 NP-m 5 5 1.85 5 5 0.01 5 5 0.01 5 5 0.01 5 5 0.01 0.1 tl
1-FullIns_5 282 3247 NP-? 5 6 tl 6 6 6.01 6 6 1.54 6 6 1.82 6 6 2.12 tl tl
2-FullIns_4 212 1621 NP-m 6 6 2.14 6 6 0.02 6 6 0.01 6 6 0.01 6 6 0.01 tl 4 tl
2-FullIns_5 852 12201 NP-? 5 7 tl 7 7 5.02 7 7 72.45 7 7 326.61 7 7 14.74 tl tl
3-FullIns_3 80 346 NP-m 6 6 0.01 6 6 0.00 6 6 0.00 6 6 0.00 6 6 0.00 0.1 2.9
3-FullIns_4 405 3524 NP-? 7 7 3.92 7 7 0.03 7 7 0.02 7 7 0.02 7 7 0.03 tl tl
3-FullIns_5 2030 33751 - 7 8 tl 8 8 12.43 8 8 32.90 8 8 3489.97 8 8 27.23 tl tl
4-FullIns_3 114 541 NP-m 7 7 0.01 7 7 0.00 7 7 0.00 7 7 0.00 7 7 0.00 3 3.4
4-FullIns_4 690 6650 NP-? 8 8 4.61 8 8 0.05 8 8 0.02 8 8 0.03 8 8 0.02 tl tl
4-FullIns_5 4146 77305 - 7 9 tl 9 9 9.67 9 9 16.03 8 9 tl 9 9 78.17 tl tl
4-Insertions_3 79 156 NP-m 3 4 tl 4 4 9.62 4 4 15.75 4 4 141.48 4 4 54.04 4204 tl
5-FullIns_3 154 792 NP-m 8 8 0.01 8 8 0.00 8 8 0.00 8 8 0.00 8 8 0.00 20 4.6
5-FullIns_4 1085 11395 NP-? 9 9 12.36 9 9 0.05 9 9 0.05 9 9 0.04 9 9 0.04 tl tl
ash608GPIA 1216 7844 NP-m -∞ 1215 tl 4 4 34.84 4 4 51.63 4 4 575.23 4 4 821.74 692 2814.8
ash958GPIA 1916 12506 NP-m -∞ +∞ tl 4 4 90.11 4 4 105.77 4 6 tl 4 8 tl tl 4236 tl
DSJC125.5 125 3891 NP-h 14 21 tl 11 20 tl 13 22 tl 13 21 tl 13 21 tl tl 18050.8
DSJC125.9 125 6961 NP-h 44 44 1.72 36 50 tl 42 44 tl 42 45 tl 42 45 tl tl 3896.9
DSJR500.1c 500 121275 NP-h 85 85 0.33 77 +∞ tl 83 86 tl 78 +∞ tl 78 +∞ tl tl 288.5
DSJR500.5 500 58862 NP-h 122 497 tl 115 +∞ tl 122 122 572.01 122 122 1748.11 115 +∞ tl tl 342.2
le450_15a 450 8168 NP-m 15 449 tl 15 16 tl 15 15 598.55 15 15 2439.49 15 15 801.94 tl 0.4
le450_15b 450 8169 NP-? 15 446 tl 15 15 2939.49 15 15 700.50 15 15 1393.29 15 15 1103.29 tl 0.2
le450_15c 450 16680 NP-? -∞ 450 tl 15 +∞ tl 15 +∞ tl 15 +∞ tl 15 25 tl tl 3.1
le450_15d 450 16750 NP-? -∞ 450 tl 15 26 tl 15 26 tl 15 +∞ tl 15 +∞ tl tl 3.8
le450_25c 450 17343 NP-? 25 450 tl 25 30 tl 25 31 tl 25 +∞ tl 25 +∞ tl tl 1356.6
le450_25d 450 17425 NP-? 25 450 tl 25 30 tl 25 31 tl 25 +∞ tl 25 +∞ tl tl 66.6
le450_5a 450 5714 NP-? -∞ 450 tl 5 9 tl 5 5 21.17 5 5 83.65 5 5 52.03 tl 0.3
le450_5b 450 5734 NP-? -∞ 450 tl 5 7 tl 5 5 140.16 5 5 503.29 5 5 168.67 tl 0.2
mug100_1 100 166 NP-m 4 4 1.14 4 4 0.24 4 4 0.09 4 4 0.39 4 4 0.13 60 14.4
mug100_25 100 166 NP-m 4 4 1.10 4 4 0.45 4 4 0.31 4 4 0.31 4 4 0.31 60 12
qg.order40 1600 62400 NP-m -∞ +∞ tl 40 45 tl 40 40 534.83 40 46 tl 40 46 tl tl 2.9
qg.order60 3600 212400 NP-? -∞ +∞ tl 60 68 tl 60 62 tl -∞ 68 tl -∞ 68 tl tl 3.8
queen10_10 100 1470 NP-h 10 12 tl 10 12 tl 10 12 tl 10 12 tl 10 12 tl tl 686.9
queen11_11 121 1980 NP-h 11 13 tl 11 13 tl 11 13 tl 11 13 tl 11 13 tl tl 1865.7
school1_nsh 352 14612 NP-m 14 14 981.45 14 14 22.39 14 14 12.76 14 14 31.23 14 14 28.22 0 17
wap05a 905 43081 NP-m -∞ +∞ tl 40 +∞ tl 50 50 1308.37 50 50 125.45 41 +∞ tl tl 293.2
wap06a 947 43571 NP-? -∞ +∞ tl 40 +∞ tl 40 +∞ tl 40 +∞ tl 40 +∞ tl tl 175
solved: 13 19 25 22 21 9 +2 25
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CHAPTER 7
Discussion

7.1 Conclusion

This thesis investigates dynamic approaches, solving the Graph Coloring Problem (GCP)
using Integer Linear Programming (ILP) on subgraphs. We propose dynamic versions of
four ILPs considered by Jabrayilov and Mutzel [19] that handle the insertion of edges into
a graph over time. We explore ILP specific pitfalls and optimization possibilities as well as
preprocessing techniques. Furthermore, we introduce a color mapping that counteracts the
burdens emerging from the problem of fixated neighborhoods. We examine the breadth-
first search depth and the effect it has on runtime as well as solution quality.
The dynamic ILPs are evaluated using two experiments, to measure pure runtime perfor-
mance in a more controlled environment, as well as on a large set of instances to measure
their performance regarding size and behavior. Our key findings include that DynASS
performs best on small to medium-sized graphs, while DynPOP and DynPOP two are ad-
vantageous on larger instances. DynREP demonstrates how symmetries in ILPs can vastly
reduce effectiveness. This correlates to the data provided by Jabrayilov and Mutzel [19]
under the premise that in the dynamic GCP the number of edge conflicts is of essential
role, discovering that different ILPs are less likely to encounter these conflicts in their own
colorings.

7.2 Future Work

Using ILPs to solve the GCP is not a new feat. Using it in a dynamic environment is not
yet researched though. This thesis touches many areas where one can investigate further
techniques. With the fixated neighborhood being of essence for the ILP, the impact of
different mappings would be interesting. Lowering the assigned colors even further with-
out increasing the upper bound could lead to an even better quality for small BFS-depths.
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7 Discussion

More sophisticated adaptions of preprocessing and ILPs or even completely new ones spe-
cialized for this purpose could increase performance. This is also true for possible hybrid
approaches as a combination of ILPs and heuristics or metaheuristics. An adaptive model
that chooses an ILP with a search depth when its most suitable could be an addition in a
range of tools already in use.
We are deeply interested in the relation between the dynamic ILPs performance and cer-
tain graph attributes like density, diameter, vertex degrees as well as graph structures like
cliques. Further research could try to develop adaptive ILPs that reacts to its environment
and can dynamically adjust their strategy while the graph is evolving. More benchmarking
with real world instances is of importance as well to illustrate the practical implications in
e.g. social networks, roadmaps or communication networks.
Parallel and distributed computing could be investigated. Due to the nature of the problem
the decomposition of the ILP into even smaller sub-problems that can be solved simultane-
ously might increase compute performance and solution quality.
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7.2 Future Work

Zusammenfassung

Das Graph Coloring Problem (GCP) besteht darin, alle Knoten eines Graphen mit so weni-
gen unterschiedlichen Farben wie möglich zu färben, ohne dass dabei zwei Knoten, die
durch eine Kante verbunden sind, die gleiche Farbe erhalten. Das dynamische GCP bet-
rifft Graphen, deren Struktur sich im Laufe der Zeit durch das Einfügen oder Löschen von
Kanten und Knoten ändert. Da das GCP nicht in polynomialer Zeit lösbar ist, werden oft
Heuristiken und Approximationen verwendet. Wir entwickeln eine Methode, um die Fär-
bung eines Graphen nach dem Einfügen von Kanten effektiv zu aktualisieren, indem das
GCP optimal auf einem durch eine Breitensuche erstellten Teilgraphen gelöst wird. Wir
konvertieren bestehende Integer Linear Programs (ILPs), die für das statische GCP von
Jabrayilov and Mutzel [19] verwendet werden, um sie mit der dynamischen Umgebung
kompatibel zu machen. Darüber hinaus behandeln wir Techniken zur Vorverarbeitung.
Wir führen Experimente durch, um die Leistung unserer dynamischen ILPs hinsichtlich
Laufzeit und Qualität der Lösung, sowie anderer Metriken, wie der Anzahl der auftretenden
Farbkonflikte, zu bewerten.
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