
Bachelor thesis

Better Recursive Graph Bisection
Yani Kolev

Date: 2. November 2017

Supervisors: Prof. Dr. rer. nat. Peter Sanders,
Dr. rer. nat. Christian Schulz,
M.Sc. Sebastian Schlag

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Abstract
Graph partitioning finds practical application in multiple fields of engineering ranging

from load balancing to route planning to VLSI design. The graph partitioning problem
consists of dividing the vertices of a given graph into k different blocks of almost equal
size so that a certain objective function is optimised. One of the most common approaches
to solving this problem is recursive bisection (RB). It starts by dividing the graph into
two roughly equally sized blocks and subsequently recursively bisecting each of them.
However, it has been shown that RB suffers from a lack of global knowledge when each
recursive cut is made and from the necessarily very strict balance applied in the first few
recursion levels.

In this thesis we present a new algorithm that aims to improve on RB’s inherent weak-
nesses by computing a fixed number of cuts with larger imbalances in the first l levels of
recursion, continuing each new recursion branch to its end, and subsequently picking the
one with the best result. The idea is that this would allow the algorithm to initially cut
through sparser areas of the graph than RB, thanks to the relaxed balance constraint. After
we present and explain the inner workings of the algorithm, we show and analyse experi-
mental results comparing our algorithm to RB. We always at least match RB’s result and
achieve an improvement of 4% in around 40% of the test cases at the cost of a running time
slower by a few orders of magnitude.

Zusammenfassung
Graphpartitionierung wird in mehreren Feldern der Ingenieurwissenschaften, wie Lastver-

teilung, Routenplannung und VLSI Design, eingesetzt. Das Graphpartitionierungsproblem
besteht darin die Knoten eines gegebenen Graphen auf k disjunkte Blöcke fast gleicher
Größe zu verteilen, sodass eine Zielfunktion optimiert wird. Einer der populärsten Lö-
sungsansätzen ist die rekursive Bisection (RB). Hier wird der Graph in zwei etwa gleich-
größen Blöcken halbiert, wonach der Algorithmus auf beiden rekursiv angewendet wird.
Jedoch ist es bekannt, dass RB suboptimale Resultate produziert wegen der sehr strikten
Balanceeinschränkung in den ersten Rekursionsebenen und mangelhaften Wissens über die
globale Struktur des Graphen zum Zeitpunkt jedes individuellen Schnittes.

In dieser Arbeit präsentieren wir einen neuen Algorithmus, der versucht diese Schwächen
zu beseitigen, indem er eine feste Anzahl Schnitten mit größeren Imbalancen in den ersten
l Ebenen ausrechnet, jeden der resultierenden Rekursionsbäumen zum Ende führt und den
Besten auswählt. Das erlaubt unserem Algorithmus am Anfang durch relativ dünnbesetzte
Bereiche des Graphen zu schneiden, dank der relaxierten Balanceeinschränkung. Nachdem
wir die Struktur und Arbeitsweise des Algorithmus vorgestellt haben, werden Experimente
präsentiert, die ihn mit RB vergleichen. BRBs Resultate sind immer mindestens so gut
wie diese von RB und eine Verbesserung von 4% ist in rund 40% der Testfälle vorhanden.
Jedoch ist BRBs Laufzeit um einige Größenordnungen schlechter.

Acknowledgments
I would like to express my sincerest gratitude to all those involved in the writing of my

thesis. Foremost I would like to thank my supervisors M. Sc. Sebastian Schlag and Dr. rer.
nat. Christian Schulz for their excellent tutelage and invaluable advise. Furthermore I thank
Prof. Dr. Henning Meyerhenke and his entire workgroup for introducing me to the graph
partitioning problem. Special thanks go out to my colleagues Kolja Esders and Daniel
Seemaier for showing me how to work on complex software projects. Finally, without the
unwavering support of my family and friends none of this would have been possible.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich über-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
für Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fas-
sung beachtet habe.

Karlsruhe, November 2, 2017
Yani Kolev

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Structure of the Thesis . 2

2 Preliminaries 3
2.1 Notations and Definitions . 3
2.2 Related Work . 4

3 Better Recursive Bisection 7
3.1 Recursive Bisection . 7
3.2 Overview of BRB . 7
3.3 Improvement on RB . 8
3.4 Multiple Cuts on Each Level . 9
3.5 Rebalancing . 10
3.6 Deviation Search . 12

4 Experimental Evaluation 15
4.1 Methodology . 15
4.2 Tuning Parameters . 15
4.3 Environment . 16
4.4 Comparison to RB . 17

5 Discussion 25
5.1 Conclusion . 25
5.2 Future Work . 25

A Detailed Experimental Results 27
A.1 K = 8 . 27
A.2 K = 64 . 31

Bibliography 35

vii

1 Introduction

1.1 Motivation
Graph partitioning is a pivotal technique in a number of extremely diverse fields - load

distribution [17], VLSI design [3] or the study of political gerrymandering [5]. It consists
of dividing the vertices of a given graph into k disjoint sets, called blocks, so that some
objective function is optimised. The choice of function depends on the practical applica-
tion. In this thesis we focus on the version of the problem that minimises the number of
edges with end vertices in two different blocks, i.e. the total cut, while ensuring that each
block’s size does not exceed (1+ε) times the average block size, where ε is a predetermined
parameter called balance.

One of the problems graph partitioning helps solve is route planning [8, 11]. Here the
goal is to compute the optimal path between two vertices in a given network according to
a predetermined metric, such as travel time or traffic congestion. Some modern route plan-
ning algorithms start by executing a pre-processing stage where the given road network is
divided into several subgraphs, called cells, i.e. partitioning it. Each cell is then individ-
ually examined and the shortest path between each pair of boundary nodes is calculated.
Finally, when a user query comes in, it is not the possibly extremely large original graph
that has to be processed but a vastly smaller one - only the union of each node’s cell and
the newly calculated minimal distances between boundary nodes in all other cells play a
role in determining the optimal path [8]. A better cell choice, or better partition, leads to
an improved final result.

A very intuitive approach to solving the graph partitioning problem is divide-and-conquer.
The premise is that instead of directly partitioning the graph into k different blocks, it would
be easier to first bisect it into two blocks, minimising the cut between them. Subsequently
each block can, in turn, be further bisected recursively.

1.2 Contribution
Even though RB is one of the more popular ways of solving the graph partitioning prob-

lem, it has been shown that it can produce results very far from the optimum [14, 19]. One
of the reasons for this is the very small imbalance allowed in the first levels of recursion.
This is necessary, since even a small imbalance in one of the first levels can lead to far
greater imbalances further down the recursion tree. Take a graph that is to be partitioned
into 32 blocks. The average block weight is then 0.03125 ·w(V). An imbalance of just 1%

1

1 Introduction

on each level could potentially lead to a block of weight (1.01·0.5)5·w(V) ≥ 0.0328·w(V),
producing a final imbalance of nearly 5%. This greatly restricts the number of possible cuts
in the first recursion levels.

In this thesis we allow a larger imbalance in the first few recursion levels. The idea is
that this would allow the algorithm to, at first, cut through sparser areas of the graph than
it normally would, producing a better local solution. Subsequently the goal is no longer to
partition each side into strictly k/2 blocks, so the parameter is adjusted accordingly after
each bisection. Afterwards the two sides are rebalanced using a modified FM-Local-Search
[9] in order to ensure they are both roughly of size p times the average block size, where p
is a natural number greater than zero. Intuitively the change should be most noticeable in
graphs with highly irregular structures such as social networks. We evaluate our algorithm
experimentally on several well known and widely used graph instances. Finally, we provide
an overview of the obtained results.

Our algorithm consistently at least matches RB’s results and provides an improvement
of the final cut of at least 4% in around 40% of test cases, sometimes reaching as high as
20%. However, due to the exponentially growing number of recursion trees that arise on
each level, its running time is l orders of magnitude worse than that of RB.

1.3 Structure of the Thesis
The remainder of this work is organised as follows: in Chapter 2 we describe the no-

tation, the exact definition of the version of the graph partitioning problem on which we
focus, and the objective function of interest. We continue by giving a short summary of the
KaHIP suite, where our algorithm is implemented, and by outlining the FM heuristic, on
which we base the rebalancing routine used in this work. Chapter 3 introduces RB and our
improvements on it. It also explains in greater detail how the most important components
of our algorithm function. Chapter 4 concentrates on giving a detailed explanation of the
test environment, the instances used, and the results they provided. Finally, in Chapter 5
we discuss possible areas of interest for future research.

2

2 Preliminaries

In this chapter we introduce some common notations and important definitions. We
formally define the graph partitioning problem and the balance constraint. We continue by
clarifying the objective function used in this work. Afterwards we present related work and
give an overview of the KaHIP suite, where our algorithm was implemented.

2.1 Notations and Definitions

An unweighted undirected graph G can be described as the tuple (V,E) where V is the
set of nodes and E is the set of edges. We use n := |V | and m := |E| as shorthands
for their respective cardinalities. A simple graph contains no self loops or parallel edges,
i.e. multiple edges between the same pair of vertices. Each edge is represented as the
set {v, w} where v and w are the end vertices. In this thesis we work exclusively with
unweighted, undirected simple graphs. The neighbourhood of a vertex v is defined as
{w ∈ V |{v, w} ∈ E} and is denoted as N(v). Note that while in the instances we use
all vertices are of unit weight, in some steps of the algorithms presented new graphs are
generated that do not possess this quality. Thus we denote the weight of a vertex v as w(v).
If V ′ ⊆ V , then w(V ′) denotes the sum of the weights of the vertices in V ′, or just the
number of vertices in V , provided they are all unweighted.

A k-way partition of a given graph G = (V,E) consists of k sets of vertices V1, . . . , Vk,
called blocks, such that V1 ∪ · · · ∪ Vk = V and V1 ∩ · · · ∩ Vk = ∅ for i, j ∈ {1, . . . , k}. A
two-way partition is also called a bisection. We define the average block weight of a k-way
partition, bk, as dw(V)/ke. It is used to define the balance constraint: ∀i ∈ {1, . . . , k} :
w(Vi) ≤ (1 + ε) · bk, where ε is a predefined parameter. The k-way graph partitioning
problem consists of creating a k-way partition of G which satisfies the balance constraint
for some given value of ε and optimises some objective function.

Calculating a partition creates so-called border vertices and border edges. A vertex v is
considered a border vertex if there exists an edge {v, w} such that v ∈ Vi and w ∈ Vj with
i 6= j and i, j ∈ {1, . . . , k}. An edge {v, w} is considered a border edge if v ∈ Vi and
w ∈ Vj with i 6= j and i, j ∈ {1, . . . , k}.

As stated above, graph partitioning optimises some objective function. In this thesis we
focus on the total cut due to its simplicity and considerable correlation with numerous other
metrics [7]. Given a partition P = {V1, . . . , Vk} of a simple unweighted undirected graph,
the number of border edges, or c := |{{v, w} ∈ E|v ∈ Vi ∧ w ∈ Vj ∧ i 6= j}| is defined as
the total cut.

3

2 Preliminaries

2.2 Related Work

The decision problem corresponding to graph partitioning is NP-hard [13] and the in-
stances it examines are often extremely large. Furthermore, even providing a solution
quality guarantee is NP-hard in some cases [4]. Due to this and the problem’s demon-
strated ubiquity, numerous heuristic graph partitioning methods have been developed over
the last several decades. These include spectral graph partitioning [10], branch-and-cut
algorithms [6] as well as some genetic approaches [15]. An excellent and comprehensive
overview of the recent developments in the field is given in [7]. In this section we intro-
duce the Fiduccia-Matteyses improvement heuristic, variants of which are pivotal to our
algorithm. We continue by giving a brief overview of the KaHIP suite.

Fiduccia-Mattheyses Heuristic

The Fiduccia-Mattheyses heuristic [9] (FM), first introduced in the eighties, takes a given
partition and improves it. Over the past several decades its numerous variations have be-
come an integral part of many graph partitioning schemes.

refinement

2 1

−2 0

0 1

Cut = 4

−2 −1

0 −2

0 −1

Cut = 2

Figure 2.1: A single FM step

It shares some of its core concepts with
the well known Kernighan-Lin algorithm
[14] (KL). First FM defines a gain func-
tion which denotes by how much the total
cut would improve if a vertex is moved to
the opposite block. Note that this value can
be negative. Then it improves the given bi-
section by performing a number of passes
over it. The vertices on each side are kept
in two data structures consisting of arrays
of linked lists, where the kth list contains
the unmoved vertices with a gain of k.
This allows us to easily maintain each array
by moving a vertex to the appropriate list
whenever its gain changes due to a neigh-
bour being moved. The vertex with the
highest gain, the movement of which would
not violate the balance constraint, is selected and moved to the opposite block. This is one
of the major differences to KL, as there instead of moving one vertex, the algorithm swaps
a pair of vertices. Each vertex can only be moved once during a pass, after which the
respective gains of its neighbours are recalculated. This is repeated until some stopping
criterion is met, at which point the best partition encountered is selected. Then a new pass
starts, until no further improvement is found. The worst case running time of a pass is
linear in the size of the graph and in practice only a few passes are usually performed [9].

Figure 2.1 illustrates how a single vertex transfer from one side to the other works. In

4

2.2 Related Work

this example we omit the balance constraint for simplicity. It prohibits the vertex with
the highest gain from being moved, if that would make the partition imbalanced. First we
see the graph where each vertex is labeled with its respective gain. As vertices can only
be moved once in a single pass, already moved vertices are painted red. We see that the
algorithm selects the vertex with the highest gain from the two sides not yet moved. It is
marked in green in Figure 2.1. This vertex is then moved to the opposite side, decreasing
the total cut by 2. The next vertex that would be selected by FM is one of the vertices
with gain 0. This is not a problem, as moving one of them could influence other vertices’
gain, possibly increasing it above 0. Indeed, even moving a vertex with a negative gain is
possible, since that allows the algorithm to climb out of local optima to some extent.

KaHIP
Developed at the KIT by Sanders, Schulz et.al. [18], KaHIP (Karlsruhe High Quality

Partitioning) is the graph partitioning framework where our algorithm is implemented. It
includesKaFFPa (Karlsruhe Fast Flow Partitioner), KaFFPaE (KaFFPaEvolutio−
nary) which is a parallel evolutionary algorithm that uses KaFFPa to provide combine
and mutation operations, as well as KaBaPE which extends the evolutionary algorithm
[2]. Some of these partitioning techniques are based on the multi-level graph partitioning
paradigm. Algorithms which employ it are among the most successful heuristics in their
field [12, 7].

The multi-level approach consist of three phases - coarsening, initial partitioning and
uncoarsening. In the coarsening phase more and more details of the graph are omitted
through iterated contractions. A contraction is the merging of some non-empty subset of a
graph’s vertices into a single new vertex with weight equal to the sum of the weights of the
merged vertices. For every vertex v ∈ V we denote the vertex to which it is contracted as
C(v). Let {v, w} ∈ E be an edge. If C(v) 6= C(w) a new edge is added between C(v) and
C(w), else the edge is simply omitted in the coarser level. The weights of parallel edges
are added together. The graph is iteratively contracted until some threshold is met. This
results in a new far smaller graph with the same basic structure and core properties as the
original one. Because of its smaller size, more expensive heuristics can be used in order
to produce a better solution in the initial partitioning phase. In the uncoarsening phase the
graph is gradually uncoarsened back to its original state.
KaHIP further improves on this by employing iterated multi-level algorithms. They it-

erate through coarsening and uncoarsening phases based on different random seeds in order
to furhter improve solution quality. We also took advantage of KaHIP ’s implementation
of the 2-way-FM heuristic. In KaHIP ’s case only the border vertices are considered
during each pass. A further improvement is the max-flow min-cut strategy. Here a flow
problem is created around border vertices so that each s− t cut represents a valid balanced
partition and the optimal cut is then calculated. For further information on KaHIP , its
graph partitioning capabilities and its preconfigurations, we refer to [18] and the KaHIP
user guide [2].

5

2 Preliminaries

6

3 Better Recursive Bisection

In this chapter we present our new better recursive bisection graph partitioning algo-
rithm (BRB). First we outline the original recursive bisection algorithm. Then we present
the general idea behind BRB and explain which of RB’s weaknesses it addresses. After-
wards we illustrate the workflow of each individual component with high level pseudocode,
while simultaneously giving a more detailed overview of the critical or novel sections, ac-
companied by more detailed pseudocode.

3.1 Recursive Bisection

The well known recursive bisection algorithm is a typical way of solving the graph parti-
tioning problem. It functions by recursively dividing the graph in two halves until k blocks
are present. A pseudocode description is provided in Algorithm 1.

Algorithm 1: RECURSIVE BISECTION

Input: A graph G, integer k, and balance ε
1 if k > 1 then
2 (V1, V2)← bipartition(G, ε)
3 recursiveBisection(V1, dk/2e, ε)
4 recursiveBisection(V2, bk/2c, ε)

3.2 Overview of BRB

Our algorithm works as follows: for the first l levels of recursion it creates several differ-
ent cuts, each one generated using a different imbalance. We call the set of these imbalances
S. Then it calculates into how many blocks each side is to be partitioned in order to fulfil
the balance constraint. Using a predetermined deviation of those, q, the block numbers that
produce the best cut are selected and a modified version of FM is used to rebalance accord-
ingly. The algorithm then calls itself recursively on each side with k equal to its respective
number of blocks. This is done for all |S| cuts. Each new recursion tree is then followed to
its end and finally the best result is selected. An overview is provided in Algorithm 2.

7

3 Better Recursive Bisection

Algorithm 2: BETTER RECURSIVE BISECTION

Input: A graph G, integer k, integer l, integer level, set of integers S, integer q, and
balance ε

1 if level ≤ l then
2 (V1, lhsb, V2, rhsb) = tryMultipleImbalances(G,S, k, ε)
3 level← level + 1
4 betterRecursiveBisection(V1, lhsb, l, level, S, ε)
5 betterRecursiveBisection(V2, rhsb, l, level, S, ε)

6 else
7 recursiveBisection(G, k, ε)

3.3 Improvement on RB
The lack of global information at the time of each bisection makes it possible for RB

to select a cut that, while perhaps better at the current level, greatly reduces the overall
solution quality [14, 19]. This, coupled with the very strict balance constraint in the first
recursion levels, makes it possible for RB to reach a solution arbitrarily far from the op-
timum [19]. A perfect demonstration of this is given in [19] - there a class of graphs is
presented, for which RB always produces results very far from the optimum. This is still
the case even when employing an optimal bipartitioning algorithm.

Figure 3.1: Example taken from [19]

Consider the class of graphs shown in Figure 3.1.
For clarity, in this example assume i and j are inte-
gers in {1, 2, 3, 4}. Let δi be real numbers so that:

(i) −1/8 < δi < 1/8

(ii)
∑4

i=1 δi = 0

(iii) δi 6= 0

(iv) @i, j ∈ {1, 2, 3, 4} : δi + δj = 0

Each graph in this class contains eight subgraphs
Ai and Bi. Each Ai is connected to Bi with exactly
one edge and to two of the otherAjs with three edges
each. EachAi is of weight (1/8+δi)·w(V) and each
Bi is of weight (1/8− δi) ·w(V). This ensures each
Ai ∪Bi has a total weight of exactly 1/4 · w(V).

If the graph is to be ideally partitioned, i.e with
ε = 0, the best solution for k = 4 has a total cut
of 12 where each block Vi = Ai ∪ Bi. However, an
optimal bipartitioning algorithm would find the cut of weight 4 where V1 =

⋃4
i=1Ai and

V2 =
⋃4

i=1Bi in its first level of recursion. This is a perfectly balanced partition because of

8

3.4 Multiple Cuts on Each Level

(ii). Let us examine the recursive call performed on V1. The goal is to divide this subgraph
into two equally sized blocks of weight exactly 1/4 · w(V). The algorithm can not simply
pack together two of theAs,Ai andAj , into one block, since the weight of that block would
be (δi + δj + 1/4) ·w(V) 6= 1/4 ·w(V) because of (iv). Thus the algorithm would need to
cut through at least one of the As, producing a final solution in Ω(n), in case the graph is
sparse, or in Ω(n2), in case it is dense, both of which are very far from the optimum of 12.
The same would apply for a larger imbalance ε if the δis are chosen aptly.

3.4 Multiple Cuts on Each Level

V1 V2

V1 V2

Figure 3.2: RB (above) vs. BRB (below)

Our solution to this problem is to allow a
greater imbalance ε∗ in the first few levels of
recursion. This allows BRB to find the optimal
cut between w.l.o.g. A1 ∪ B1 and the rest of
the graph. A simpler example is presented in
Figure 3.2.It depicts a graph consisting of two
relatively dense areas of vastly different sizes,
connected by only a few edges. In this case RB
would be forced to cut through the larger one, so
as not to violate the balance constraint. One of
our goals when developing BRB was to ensure
that the beneficial small cut between the two ar-
eas is found and used, as illustrated in Figure
3.2. We achieve this by calculating multiple dif-
ferent cuts with different imbalances on the first
l recursion levels, following each resulting re-
cursion tree to its end, and picking the best one.

Producing a number of cuts based on different imbalances prevents the following issue:
assume that in Figure 3.2 w(V1) = 0.95 · w(V), w(V2) = 0.05 · w(V) and k = 4. Then
b4 = 0.25 · w(V). If ε∗ = 0.9 the algorithm would find the optimal cut between V1 and
V2. However, in order for our final partition not to violate the original balance constraint
ε, V1 would need to be partitioned into three blocks, meaning its weight should be almost
0.75 ·w(V). In contrast V2 should not be partitioned any further, but its weight needs to be
0.25 · w(V). So the two sides would be rebalanced using our modified FM, which would
move vertices with a total weight 0.2 ·w(V) = 0.8 ·b4 from V1 to V2. This would effectively
cut through the dense area V1 and defeat the entire purpose of the relaxed balance constraint,
as there would be no reason to assume that this new cut would be any better than RB’s
alternative. Examining other imbalances between 0 and 0.9 allows us to produce better
cuts that are closer to a feasible state, i.e. a state where each side is of weight p · b, where
b is the global average block weight and p is some integer. A pseudocode description is
provided in Algorithm 3.

9

3 Better Recursive Bisection

Algorithm 3: TRYING MULTIPLE CUTS

Input: A graph G, integer set S, integer k, ε
Output: sides V1 and V2, number of blocks on each side lhsb and rhsb

1 for ε∗ ∈ S do
2 (V1, V2)← bipartition(G, ε∗)
3 (lhsb, rhsb)← calculateBlocksOnEachSide(V1, V2, k)
4 rebalanceSides(V1, lhsb, V2, rhsb)
5 betterRecursiveBisection(V1, lhsb, l, S, ε)
6 betterRecursiveBisection(V2, rhsb, l, S, ε)
7 calculateCut(G)

8 (V1, V2)← selectBestCut(G)
9 (lhsb, rhsb)← calculateBlocksOnEachSide(V1, V2, k)

10 return (V1, lhsb, V2, rhsb)

The reason we follow each recursion tree to its end is that, while severely increasing the
algorithm’s running time, this allows BRB greater flexibility when it comes to selecting the
optimal cut on each level. The alternative - which would be simply picking the optimal cut
at the current level - exhibits the same weakness as RB. In the example provided in Figure
3.1 the same cut would be selected at the first level as in the case of RB, regardless of
how many different imbalances we test. This is the case since it has the minimal weight of
any feasible cut. Without looking further down the recursion tree it is impossible to know
whether or not it actually produces a better solution than the others.

3.5 Rebalancing

The rebalancing we use is based on FM. This method calculates the optimal size of each
side and moves vertices accordingly, ensuring BRB is able to obtain a balanced partition
in the end. First the ideal number of blocks, into which each side is to be partitioned, is
calculated using the calculateBlocksOnEachSide method. It functions as follows: first
it divides w(V1) by b (the global average block weight) and rounds this to an integer. If this
number is 0, it is set to 1, and if it is k, it is set to k − 1, as partitioning one of the sides
into 0 blocks would simply return the graph to its original state. Then the number of blocks
on the right side is calculated as the difference between the total number of blocks and the
number of blocks on the left. An overview is provided in Algorithm 4. Then the ideal
weight of each side is calculated. These will be denoted as wlhs and wrhs. The formula
used is wlhs = w(V1 ∪ V2) · lhsb/(lhsb + rhsb). This works equivalently for the right side.
Afterwards a modified version of FM is used. It works as follows: the vertex queue of each
side is initialised only with its border vertices. Then the side that is above its target weight
(and unless we are already at the optimal weights, there will always be a side that is too

10

3.5 Rebalancing

Algorithm 4: CALCULATE BLOCKS ON EACH SIDE

Input: Graphs V1 and V2, integer k
Output: tuple of integers (lhsb, rhsb)

1 lhsb ← round(w(V1)/b)
2 if lhsb = 0 then
3 lhsb ← lhsb + 1

4 if lhsb = k then
5 lhsb ← lhsb − 1

6 rhsb ← k − lhsb
7 return (lhsb, rhsb)

heavy) is selected and the node with the highest gain is moved to the opposite one. Note
that this gain is often negative, which results in an overall worsening of the obtained cut,
but gives the algorithm the ability to climb out of local minima to an extent. However, as
this method presupposes the existence of border vertices, it runs into the problem of cuts
of weight 0 in which case no border vertices exist.

Cuts of Weight 0

In connected graphs, such as the ones examined in this work, a single bisection cannot
produce a cut of weight 0. Nevertheless, it is possible for such cuts to arise further down
the recursion tree if somewhere higher up on the recursion tree one of the sides resulting
from a bisection was itself disconnected. Since a 0-cut means there are no border edges
and no border vertices, it would render two-way-FM useless - no gains would be calculated
on either side because only border vertices are usually considered, and no vertices would
be moved. We work around this issue by simply moving a single random vertex from the
side that is too heavy to the side that is too light, thus creating a non-empty boundary, and
continuing with the usual rebalancing routine. An example of the entire process is provided
in Figure 3.3. The vertices on each side of the cut are labeled with their respective gain.
Non-border vertices are left blank. When a vertex is moved it is painted red, as it can not
be moved again during the same pass.

In the first figure we see the left side of weight 9 and a right side of weight 3. The target
weight of each side is 6. This means that three nodes are to be moved from the left side to
the right side. There are only two border vertices present. The one from the side above its
target weight, in this case the left side, is selected and moved to the right side. It is painted
green for clarity. In the second figure the left side has a weight of 8 and the right side -
4. Two more vertices need to be moved to the right side. However, there are no border
vertices on the left side anymore. This is why a vertex is selected at random, painted here
in blue, and moved to the side that is too light - the right side. Note that its gain has not yet
been calculated, as it is not a border vertex.

11

3 Better Recursive Bisection

rebalancing

− −

− −

− 1

− 0

− −

− −

Cut = 1

− −

− −

− −

− −

− −

− −

Cut = 0

− −

− −

− −

0 −

2 −

1 −

Cut = 2

− −

− −

− −

0 −

0 −

− −

Cut = 1

Figure 3.3: Rebalancing

The third figure shows the two sides of weights 7 and 5. One more vertex needs to be
moved to the right side. We now see two border vertices that have not been moved on the
left side with respective gains 0 and 1. The latter is selected and moved to the right side,
ensuring the target weights of 6 are met. If we observe the final figure’s right side, we can
see how a cut of weight 0 can arise. A bipartition of it with ε ≥ 0.25 would split the nodes
into two groups - the two on the left and the four on the right, producing a cut of weight 0.

3.6 Deviation Search

The calculateBlocksOnEachSide method gives us the number of blocks into which it
would be most intuitive to partition the two sides, but that does not guarantee that this is
indeed the optimal solution. Figure 3.4 provides an example where deviating from those
values produces a better local cut. Each vertex is labelled with its weight. Assume that b =
4. A high enough imbalance ε would find the cut of weight 1, drawn in black. Rebalancing,
however, would calculate that the left side needs to be of weight 1 · b. So it would need to
have weight 4, which is why a further vertex of weight 1 must be added to it, hence the red
cut of weight 3 would be found. But if we deviate from the calculated number of blocks on
each side by 1 the algorithm would try to rebalance the block to a weight of 1 · b and 2 · b,
i. e. 8, resulting in the smaller green cut of weight 2. In order to ensure such better cuts are

12

3.6 Deviation Search

Algorithm 5: DEVIATION SEARCH

Input: Graph V1, graph V2, number of blocks on each side lhsb and rhsb
1 for q∗ ∈ {0, . . . , q} do
2 reset(V1, V2)
3 lhsest ← lhsb − q∗
4 rhsest ← rhsb + q∗

5 if lhsest < 1 || rhsest < 1 then
6 continue

7 w∗1 ← w(V1 ∪ V2) · (lhsest/k)
8 w∗2 ← w(V1 ∪ V2)− w∗1
9 rebalance(V1, w

∗
1, V2, w

∗
2)

10 recordCut(V1, V2)

11 applyBestCut(V1, V2)

always found we incorporate another tuning parameter into our program, q, which denotes
by how much we allow the number of blocks on each side to deviate. During rebalancing
the optimal weights of the two sides, wlhs and wrhs, are based on the number of blocks in
each - lhsb and rhsb. Instead of only calculating a single version of wlhs and wrhs, several
are calculated, ranging from ones based on lhsb− q and rhsb + q to lhsb + q and rhsb− q.
Algorithm 5 provides an overview.

3 1

2 1

1 Rest

Figure 3.4: Deviation benefits

In some cases using the deviation would lead to one
side having less than 1 or more than k blocks, which is
why we safeguard against that with the if condition on
line 4. RB uses a the same basic routine, just without
looking for the best deviation. The reset method brings
the two sides back to their original state. The rebalance
method refers to the FM version described in the previ-
ous section. RecordCut records the size of the cut so
that applyBestCut can later select the optimal one. It
is also important to note that BRB no longer necessarily
matches RB’s result in each case if deviation search is
used, as, due to the greedy selection of the ideal number
of blocks on each side, it is possible that a different lo-
cally better cut is picked and the exact recursion tree that
lead to RB’s final partition is never replicated.

13

3 Better Recursive Bisection

14

4 Experimental Evaluation

In this chapter we present the findings of the experimental evaluation of our new bet-
ter recursive bisection algorithm. We start by describing the methodology behind these
experiments. Then we outline the machines used for the experiments and continue by list-
ing the available tuning parameters. Afterwards we present the examined instances and
provide sources for them. In closing we compare BRB’s performance to that of KaHIP’s
implementation of RB.

4.1 Methodology

We concentrate on two kinds of data - average values (for comparison tables) and plots
that provide insight into the progress of solution quality (performance plots) [18, 16]. We
test different algorithm configurations on multiple instances and for k ∈ {8, 16, 32, 64}.
We use the ecosocial preconfiguration of theKAHIP suite, as it provides the best tradeoff
between running time and solution quality [18]. Every algorithm is run on each instance-k
pair three separate times, after which the arithmetic mean of the three results is calculated.

First we present comparison tables, which are constructed as follows: for each value of k
the geometric mean of the arithmetic mean values for each instance is taken, as this allows
smaller graphs to still have the same impact on the final result. Afterwards we present the
performance plots. They are generated as follows: the best performing algorithm configu-
ration is selected on an instance by instance basis. Then for every algorithm configuration
the ratio between its solution and the best one is calculated and subtracted from 1. After-
wards the results for each configuration are sorted in a non-increasing order by this new
ratio and are plotted. Hence the lower the point, the better the result. Each point on the plot
represents the solution a certain algorithm provided for a single instance-k pair. For further
information on the performance plots refer to [16].

4.2 Tuning Parameters

In this subsection we describe the tuning parameters of BRB. They have an effect on the
running time as well as on the solution quality. The parameter imbalancedBisectionEpsilon
denotes the upper bound for the imbalances used in S. All other imbalances are generated
by iteratively subtracting 0.1 from it until zero is reached. For example, an imbalancedBi−
sectionEpsilon of 0.2 would generate S as {0.2, 0.1, 0}. The value we always utilise is

15

4 Experimental Evaluation

0.9, hence it is not explicitly specified in each individual chart or plot. The next parameter
- l - describes the greatest depth at which we call tryMultipleImbalances. We set it to
1, 2 or 3. Finally, q is the maximum deviation from the desired number of blocks on each
side to be checked in the rebalancing method - we set this to 0 or 1.

4.2.1 Instances

Our algorithm was tested on 27 graphs divided into three sets. The first consisted of
the instances from Chris Walshaw’s Graph Partitioning Archive [1]. The second was a
collection of various social network graphs. All of them are listed in Table 4.1. The graphs
rgg17 and rgg18 are random geometric graphs with 217 and 218 vertices. Other geometric
instances are delaunay17 and delaunay18 - these are delaunay triangulations with 217 and
218 vertices respectively.

Graph Nodes Edges Graph Nodes Edges
Walshaw Graphs Social Network Graphs

bcsstk29 13 992 302 748 p2p-Gnutella04 6 405 29 215
4elt 15 606 45 878 wordassociation-2011 10 617 63 788
fe_sphere 16 386 49 152 PGPgiantcompo 10 680 24 316
cti 16 840 48 232 as-22july06 22 963 48 436
memplus 17 758 54 196 soc-Slashdot0902 28 550 379 445
cs4 22 499 43 858 loc-brightkite 56 739 212 945
fe_pwt 36 519 144 794 enron 69 244 254 449
bcsstk32 44 609 985 046 finan512 74 752 261 120
fe_body 45 087 163 734 loc-gowalla 196 591 950 327
t60k 60 005 89 440 coAuthorsCiteseer 227 320 814 134
wing 62 032 121 544 wiki-Talk 232 314 1 458 806
fe_rotor 99 617 662 431

Geometric Graphs
rgg17 131 072 728 753 delaunay17 131 072 393 176
rgg18 262 144 1 547 283 delaunay18 262 144 786 396

Figure 4.1: Instances used in experiments

4.3 Environment
We use two machines for our experiments. Machine A uses gcc version 4.8.5 and ma-

chine B uses 4.8.4. Machine A runs Ubuntu 14.04 LTS, has two Intel Xeon E5-2670 v3

16

4.4 Comparison to RB

- 2.3 GHz 12-core CPUs and 128 GIB DDR4-RAM. Machine B runs Ubuntu 12.04, pos-
sesses four AMD Opteron 6168 1.9 Ghz 12-core CPUs and 256 GB RAM.

4.4 Comparison to RB
We compare BRB’s results to those of RB. Tables 4.1 through 4.8 provide a comparison

of the geometric means of important metrics used to describe an algorithm’s efficiency
between RB and BRB. The best results in the cut and time columns are bolded.

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 7 707 7 411 8 054 1,01 1,01 1,51
l = 1 7 420 7 248 7 623 1,01 1,01 22,27
l = 2 7 268 7 113 7 433 1,01 1,01 172,48
l = 3 7220 7072 7381 1,01 1,01 887,14

Table 4.1: k = 8, q = 0, Machine B

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 7 707 7 411 8 054 1,01 1,01 3,50
l = 1 7 467 7 309 7 631 1,01 1,01 52,88
l = 2 7 430 7 239 7 626 1,01 1,01 428,14
l = 3 7300 7140 7478 1,01 1,01 2 488,76

Table 4.2: k = 8, q = 1, Machine A

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 11 242 10 983 11 500 1,01 1,02 2,06
l = 1 11 012 10 856 11 153 1,01 1,01 27,86
l = 2 10 871 10 726 10 998 1,01 1,01 231,23
l = 3 10674 10571 10784 1,01 1,02 1 690,57

Table 4.3: k = 16, q = 0, Machine B

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 11 242 10 983 11 500 1,01 1,02 4,40
l = 1 11 065 10 878 11 234 1,01 1,01 61,49
l = 2 10 929 10 801 11 063 1,01 1,01 522,14
l = 3 10821 10661 10985 1,01 1,01 3 986,73

Table 4.4: k = 16, q = 1, Machine A

17

4 Experimental Evaluation

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 15 840 15 572 16 181 1,02 1,02 2,41
l = 1 15 596 15 433 15 759 1,02 1,02 30,92
l = 2 15 386 15 240 15 523 1,02 1,02 268,44
l = 3 15161 15046 15279 1,02 1,02 2 145,98

Table 4.5: k = 32, q = 0, Machine B

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 15 840 15 572 16 181 1,02 1,02 5,25
l = 1 15 616 15 447 15 797 1,02 1,02 69,34
l = 2 15 440 15 286 15 581 1,02 1,02 603,60
l = 3 15266 15158 15368 1,01 1,02 4 910,29

Table 4.6: k = 32, q = 1, Machine A

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 22 305 22 037 22 591 1,02 1,02 6,40
l = 1 22 005 21 847 22 177 1,02 1,02 94,61
l = 2 21 781 21 651 21 926 1,02 1,03 690,23
l = 3 21488 21390 21600 1,02 1,03 5 499,01

Table 4.7: k = 64, q = 0, Machine B

Param. Avg. Cut Best Cut Worst Cut Avg.Bal. Worst Bal. Time (s)
RB 22 305 22 037 22 591 1,02 1,02 6,40
l = 1 22 029 21 850 22 218 1,02 1,02 95,56
l = 2 21 819 21 697 21 955 1,02 1,03 702,11
l = 3 21568 21460 21685 1,02 1,02 5 667,18

Table 4.8: k = 64, q = 1, Machine B

These results underline that BRB does not violate the balance constraint substantially
more often than RB. However, in order to better visualise the large amount of test data,
some which can be found in Appendix A, the following performance plots are provided.
First we present plots for the average cut calculated by the algorithms.

18

4.4 Comparison to RB

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 8, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances
1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 8, q = 1

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 16, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)
k = 16, q = 1

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 32, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 32, q = 1

RB
l = 1
l = 2
l = 3

19

4 Experimental Evaluation

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)
k = 64, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 64, q = 1

RB
l = 1
l = 2
l = 3

The results presented here clearly demonstrate that with q = 0 BRB always matches
RB’s result. The difference was most noticeable for large social networks with k = 8
and q = 0. For example, wiki − Talk saw an improvement of 20% and loc − gowalla
- 10%. BRB achieves a better average cut by at least in 4% in around half the cases for
k ≤ 32. The same can be said for around a third of cases for k = 64. It is important to
note that for random geometric graphs, of which two are present in the test suite, and for
Delaunay triangulations, of which we test two, no improvement was achieved. This is the
case because their highly regular structure means that, like with grid graphs, the choice
of individual cut does not affect the final result as all cuts that do not violate the balance
constraint are very close in weight. Furthermore, the results suggest that in general the
larger the value of k, the smaller the improvement BRB yields. We believe this is the case
because the values of l we tested were not sufficiently big. For example, if k = 8 RB has
a recursion depth of 3. With l = 3 BRB examines multiple cuts on all of those levels.
However, for k = 64, RB reaches a depth of 6. Here even with l = 3 we examine multiple
cuts on only half of RB’s recursion levels.

The next plots provide an overview of the best cut calculated by the algorithms. The
improvement, although still present, is less noticeable, as a change of 4% is only seen in
around a third of cases. Moreover, the improvement is below 3% in more than half of cases.
Again BRB yielded no improvement on the geometric graphs and large social networks saw
their results change the most, as for example wiki − Talk’s best cut improved by around
17% and loc− gowalla’s - by 9% for k = 8 and q = 0.

20

4.4 Comparison to RB

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 8, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances
1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 8, q = 1

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 16, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)
k = 16, q = 1

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 32, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 32, q = 1

RB
l = 1
l = 2
l = 3

21

4 Experimental Evaluation

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)
k = 64, q = 0

RB
l = 1
l = 2
l = 3

3 6 9 12 15 18 21 24 27
0%

2%

4%

6%

8%

10%

12%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k = 64, q = 1

RB
l = 1
l = 2
l = 3

It is also important to note that the running time of BRB is much worse than RB’s. As
seen in Tables 4.1 through 4.8, each new recursion level increases the running time by a
factor of around |S| · (2 · q + 1). This is the case because on each level BRB examines |S|
individual cuts and follows their recursion trees to their end. Furthermore, every individual
cut is rebalanced a maximum of 2 · q + 1 times, in order to test the deviation in each
direction.

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k ∈ {8, 16, 32, 64}, q ∈ {0, 1}

RB
q = 0, l = 1
q = 0, l = 2
q = 0, l = 3
q = 1, l = 1
q = 1, l = 2
q = 1, l = 3

Figure 4.2: Average cut comparison with different tuning parameters

As is evident from Figure 4.2, BRB’s best preconfiguration regarding the average cut is
l = 3, q = 0. It achieves an improvement of at least 4% in around 40% of cases, a ratio
which rises to almost 50% if we exclude the geometric instances where no improvement

22

4.4 Comparison to RB

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

#Instances

1
−

(B
es
t/
A
lg
or
it
h
m

)

k ∈ {8, 16, 32, 64}, q ∈ {0, 1}

RB
q = 0, l = 1
q = 0, l = 2
q = 0, l = 3
q = 1, l = 1
q = 1, l = 2
q = 1, l = 3

Figure 4.3: Best cut comparison with different tuning parameters

is to be expected. These results also indicate that setting the deviation parameter q to a
value greater than 0 worsens the result in almost all cases due to its greedy nature, while
simultaneously increasing the running time by a factor close to 3. Furthermore, it only
provides an improvement of at least 1% in an extremely small number of cases - less than
1%.

Figure 4.3 illustrates that again the l = 3, q = 0 configuration provides the best results
regarding the minimal cut obtained on a certain instance-k pair. However, an improvement
of 4% is only seen in around a third of cases here. Indeed, for about a quarter of all cases
the improvement is less than 1%. It is also important to note that setting the deviation
parameter q to 1 once again worsens the overall result, thus reinforcing the suspicion that a
greedy cut selection at any stage of the algorithm leads to poorer performance.

23

4 Experimental Evaluation

24

5 Discussion

5.1 Conclusion
This thesis presents a new variant of the recursive bisection algorithm. We propose a

novel approach, namely examining multiple cuts on each recursion level, following each
new recursion tree to its end, and choosing the best one and implemented it in the KaHIP
framework.

We investigate the performance of our new algorithm in comparison to the already exist-
ing basic recursive bisection. We continue by fine tuning the algorithm’s parameters. Our
results show BRB performs best for smaller values of k on large social networks. BRB
produces an improvement of around 4% in ca. 40% of test cases when it comes to the aver-
age cut and improves only about a third of test cases by 4% when it comes to the minimal
cut. However, this comes at the cost of a running time several orders of magnitude worse
than RB’s. Furthermore, the tuning parameter q, responsible for greedily rebalancing each
individual bisection cut, not only increases the running time by a factor of 2 · q+1, but also
worsens the result in the vast majority of test cases.

5.2 Future Work
These findings suggest that there is progress to be made in a recursive bisection model

with a larger initial imbalance. An interesting direction of investigation would be the imbal-
ance selected at each recursion level. Developing a heuristic so that only the likely optimal
value for it is tested, instead of the many more our algorithm examines, would reduce the
running time by likely as many as l orders of magnitude, possibly coming very close to the
running time of RB.

Furthermore, the ability to accurately foretell what value of q would be optimal for each
individual cut, further reducing the running time by a factor ≥ 2, would be a great benefit.
This, however, would require global knowledge at the time of each bisection, making it
far less feasible than other research directions. It would also be beneficial to find concrete
parameter configurations well suited to specific graph families.

25

5 Discussion

26

A Detailed Experimental Results

A.1 K = 8

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Walshaw Graphs

bcsstk29

RB 16 787 15 868 18 112 1,01 1,01 0,82
l = 1 14 971 14 854 15 170 1,01 1,01 9,04
l = 2 14 833 14 691 15 092 1,01 1,01 103,79
l = 3 14 661 14 618 14 716 1,01 1,01 430,29

4elt

RB 647 618 690 1,01 1,01 0,26
l = 1 618 604 633 1,01 1,01 4,35
l = 2 591 584 595 1,00 1,00 31,11
l = 3 578 567 584 1,00 1,01 165,47

fe_sphere

RB 1 461 1 371 1 518 1,01 1,01 0,27
l = 1 1 311 1 302 1 317 1,00 1,00 3,79
l = 2 1 293 1 286 1 296 1,00 1,00 32,58
l = 3 1 271 1 267 1 274 1,00 1,00 200,42

cti

RB 2 345 2 203 2 454 1,01 1,01 0,32
l = 1 2 183 2 165 2 203 1,01 1,01 4,41
l = 2 1 949 1 886 1 997 1,01 1,01 36,45
l = 3 1 902 1 840 1 972 1,01 1,01 173,59

memplus

RB 13 389 13 196 13 708 1,01 1,01 0,34
l = 1 13 195 13 124 13 264 1,02 1,03 5,08
l = 2 13 076 13 014 13 183 1,01 1,03 33,88
l = 3 13 056 13 014 13 132 1,01 1,03 210,41

cs4

RB 1 773 1 730 1 815 1,00 1,01 0,43
l = 1 1 773 1 730 1 815 1,00 1,01 7,12
l = 2 1 750 1 730 1 790 1,00 1,00 53,32
l = 3 1 748 1 724 1 790 1,01 1,01 290,94

Table A.1: k = 8, q = 0, Machine B

27

A Detailed Experimental Results

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Walshaw Graphs

pwt

RB 1 605 1 522 1 671 1,01 1,01 0,62
l = 1 1 486 1 461 1 514 1,01 1,01 7,87
l = 2 1 471 1 461 1 477 1,00 1,01 57,73
l = 3 1 470 1 461 1 475 1,00 1,01 173,03

bcsstk32

RB 23 337 22 804 23 703 1,01 1,01 2,41
l = 1 23 337 22 804 23 703 1,01 1,01 56,00
l = 2 22 700 22 204 23 093 1,01 1,01 448,10
l = 3 22 499 22 204 22 736 1,03 1,08 2 265,65

fe_body

RB 1 261 1 125 1 404 1,01 1,01 0,78
l = 1 1 136 1 099 1 171 1,03 1,05 8,88
l = 2 1 102 1 061 1 133 1,01 1,01 76,54
l = 3 1 102 1 061 1 133 1,01 1,01 413,04

t60k

RB 556 498 625 1,01 1,01 0,91
l = 1 556 498 625 1,01 1,01 13,93
l = 2 556 498 625 1,01 1,01 102,09
l = 3 556 498 625 1,01 1,01 466,97

wing

RB 3 130 3 122 3 137 1,00 1,00 1,41
l = 1 3 064 2 932 3 137 1,00 1,01 21,89
l = 2 3 015 2 851 3 137 1,00 1,01 178,27
l = 3 3 015 2 851 3 137 1,00 1,01 973,86

rotor

RB 14 560 13 898 15 726 1,01 1,01 4,56
l = 1 13 931 13 837 14 057 1,01 1,01 82,19
l = 2 13 870 13 758 14 037 1,00 1,01 623,67
l = 3 13 669 13 615 13 711 1,01 1,01 3 448,35

Social Network Graphs

p2p-
Gnutella04

RB 15 637 15 345 15 936 1,01 1,01 0,45
l = 1 15 484 15 345 15 558 1,01 1,01 5,18
l = 2 15 430 15 345 15 506 1,00 1,00 37,31
l = 3 15 430 15 345 15 506 1,00 1,00 221,50

word-
association-
2011

RB 28 062 27 674 28 528 1,01 1,01 0,55
l = 1 27 557 27 080 27 916 1,01 1,01 6,70
l = 2 27 269 26 998 27 406 1,01 1,01 49,45
l = 3 27 269 26 998 27 406 1,01 1,01 307,06

Table A.2: k = 8, q = 0, Machine B

28

A.1 K = 8

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Social Network Graphs

PGPgiant-
compo

RB 1 067 1 045 1 094 1,01 1,01 0,17
l = 1 1 067 1 045 1 094 1,01 1,01 2,49
l = 2 1 056 1 036 1 087 1,01 1,01 18,29
l = 3 1 056 1 036 1 087 1,01 1,01 108,72

as-22july06

RB 11 810 11 422 12 381 1,01 1,01 0,82
l = 1 11 329 11 291 11 353 1,01 1,01 12,81
l = 2 11 212 11 129 11 317 1,01 1,01 108,98
l = 3 11 212 11 129 11 317 1,01 1,01 650,86

soc-
Slashdot-
0902

RB 224 536 216 607 237 725 1,01 1,01 3,27
l = 1 201 421 200 478 202 931 1,01 1,01 43,36
l = 2 199 272 198 991 199 679 1,01 1,01 344,29
l = 3 199 053 198 991 199 154 1,01 1,01 2 279,64

loc-
brightkite

RB 51 370 50 186 52 482 1,01 1,01 1,87
l = 1 50 146 49 541 50 711 1,01 1,01 25,80
l = 2 49 636 49 517 49 849 1,01 1,01 186,65
l = 3 48 825 48 609 49 067 1,01 1,01 1 146,96

enron

RB 53 998 51 476 56 459 1,01 1,01 1,53
l = 1 52 817 51 426 54 508 1,01 1,01 22,82
l = 2 49 471 46 913 51 013 1,01 1,01 176,73
l = 3 48 783 46 881 50 487 1,01 1,01 1 163,85

finan512

RB 675 648 729 1,00 1,00 1,30
l = 1 648 648 648 1,00 1,00 20,32
l = 2 648 648 648 1,00 1,00 156,11
l = 3 648 648 648 1,00 1,00 557,85

loc-gowalla

RB 200 376 196 968 202 893 1,02 1,02 9,56
l = 1 191 028 188 144 193 672 1,01 1,01 172,17
l = 2 184 207 183 004 185 028 1,01 1,01 1 070,63
l = 3 181 109 180 793 181 341 1,01 1,01 5 917,97

coAuthors-
Citeseer

RB 49 085 48 451 49 459 1,01 1,01 7,51
l = 1 49 085 48 451 49 459 1,01 1,01 131,79
l = 2 48 869 47 943 49 346 1,01 1,01 888,06
l = 3 48 869 47 943 49 346 1,01 1,01 4 772,32

wiki-Talk

RB 503 217 477 251 527 752 1,02 1,02 238,45
l = 1 451 287 416 213 516 260 1,01 1,01 2 069,32
l = 2 408 799 399 358 416 213 1,01 1,01 10 486,50
l = 3 401 112 396 980 406 997 1,01 1,01 35 528,70

Table A.3: k = 8, q = 0, Machine B

29

A Detailed Experimental Results

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Geometric Graphs

rgg17

RB 2 288 2 189 2 460 1,01 1,01 3,53
l = 1 2 288 2 189 2 460 1,01 1,01 46,51
l = 2 2 288 2 189 2 460 1,01 1,01 468,29
l = 3 2 288 2 189 2 460 1,01 1,01 2 289,94

delaunay17

RB 2 520 2 498 2 559 1,01 1,01 2,43
l = 1 2 520 2 498 2 559 1,01 1,01 50,31
l = 2 2 516 2 491 2 559 1,01 1,01 430,40
l = 3 2 489 2 417 2 559 1,01 1,01 1 796,36

rgg18

RB 3 573 3 412 3 843 1,01 1,01 9,74
l = 1 3 573 3 412 3 843 1,01 1,01 115,05
l = 2 3 573 3 412 3 843 1,01 1,01 1 006,69
l = 3 3 573 3 412 3 843 1,01 1,01 4 674,62

delaunay18

RB 3 523 3 444 3 606 1,01 1,01 6,36
l = 1 3 523 3 444 3 606 1,01 1,01 145,03
l = 2 3 515 3 444 3 606 1,01 1,01 1 200,93
l = 3 3 515 3 444 3 606 1,01 1,01 6 495,50

Table A.4: k = 8, q = 0, Machine B

30

A.2 K = 64

A.2 K = 64

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Walshaw Graphs

bcsstk29

RB 65 847 64 907 66 619 1,02 1,02 4,27
l = 1 62 827 62 189 63 554 1,01 1,01 46,90
l = 2 62 057 61 498 62 633 1,01 1,01 455,41
l = 3 60 739 60 357 61 124 1,01 1,01 4 127,38

4elt

RB 3 137 3 114 3 165 1,01 1,01 1,22
l = 1 3 017 3 011 3 030 1,02 1,05 16,67
l = 2 2 971 2 963 2 985 1,01 1,02 138,98
l = 3 2 883 2 873 2 889 1,02 1,04 1 200,33

fe_sphere

RB 4 330 4 287 4 363 1,01 1,01 1,22
l = 1 4 277 4 243 4 300 1,01 1,01 15,34
l = 2 4 218 4 216 4 220 1,01 1,01 139,18
l = 3 4 160 4 157 4 166 1,01 1,01 1 240,99

cti

RB 7 182 7 059 7 250 1,04 1,05 1,54
l = 1 6 963 6 936 7 008 1,02 1,02 18,92
l = 2 6 751 6 713 6 793 1,01 1,02 169,78
l = 3 6 481 6 466 6 508 1,01 1,02 1 483,80

memplus

RB 18 012 17 577 18 529 1,03 1,03 1,25
l = 1 17 774 17 577 17 888 1,03 1,04 19,17
l = 2 17 658 17 457 17 828 1,03 1,04 126,73
l = 3 17 560 17 457 17 694 1,03 1,04 1 026,80

cs4

RB 4 827 4 797 4 877 1,01 1,01 1,91
l = 1 4 827 4 797 4 877 1,01 1,01 26,26
l = 2 4 804 4 794 4 821 1,01 1,01 223,52
l = 3 4 773 4 754 4 795 1,01 1,01 1 864,36

pwt

RB 9 578 9 555 9 600 1,01 1,02 2,73
l = 1 9 414 9 395 9 449 1,01 1,01 29,33
l = 2 9 293 9 248 9 349 1,01 1,01 265,33
l = 3 9 164 9 100 9 210 1,01 1,02 2 347,24

bcsstk32

RB 114 389 112 285 115 832 1,02 1,02 12,24
l = 1 111 535 110 988 112 197 1,02 1,02 184,95
l = 2 108 287 108 080 108 477 1,02 1,02 1 670,81
l = 3 105 641 105 224 106 062 1,01 1,02 14 217,60

Table A.5: k = 64, q = 0, Machine B

31

A Detailed Experimental Results

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Walshaw Graphs

fe_body

RB 5 599 5 403 5 784 1,03 1,04 3,76
l = 1 5 450 5 394 5 504 1,03 1,05 37,15
l = 2 5 359 5 315 5 394 1,06 1,09 310,52
l = 3 5 231 5 181 5 268 1,07 1,10 2 736,76

t60k

RB 2 501 2 463 2 568 1,03 1,06 3,67
l = 1 2 501 2 463 2 568 1,03 1,06 47,73
l = 2 2 501 2 463 2 568 1,03 1,06 411,90
l = 3 2 497 2 463 2 558 1,03 1,06 3 652,48

wing

RB 9 354 9 262 9 467 1,01 1,01 5,47
l = 1 9 354 9 262 9 467 1,01 1,01 83,00
l = 2 9 340 9 220 9 467 1,01 1,01 679,33
l = 3 9 213 9 156 9 314 1,01 1,01 5 525,04

rotor

RB 52 907 52 589 53 396 1,02 1,03 15,57
l = 1 52 907 52 589 53 396 1,02 1,03 231,77
l = 2 52 535 52 497 52 590 1,02 1,03 1 975,28
l = 3 51 289 51 216 51 414 1,03 1,06 15 483,80

Social Network Graphs

p2p-
Gnutella04

RB 20 123 20 101 20 168 1,01 1,02 1,68
l = 1 20 078 20 057 20 091 1,01 1,01 19,16
l = 2 20 054 20 024 20 072 1,01 1,01 140,95
l = 3 20 015 20 007 20 024 1,01 1,01 1 157,67

word-
association-
2011

RB 38 936 38 803 39 161 1,01 1,02 2,13
l = 1 38 804 38 779 38 830 1,01 1,02 40,93
l = 2 38 795 38 777 38 830 1,02 1,02 215,84
l = 3 38 672 38 618 38 716 1,02 1,02 1 694,20

PGPgiant-
compo

RB 3 115 3 081 3 174 1,02 1,03 0,80
l = 1 3 090 3 060 3 119 1,03 1,05 11,47
l = 2 3 059 3 040 3 090 1,03 1,05 88,04
l = 3 3 009 2 988 3 023 1,04 1,05 759,85

as-22july06

RB 20 769 20 637 20 885 1,02 1,02 4,54
l = 1 20 485 20 399 20 556 1,02 1,02 60,62
l = 2 20 485 20 399 20 556 1,02 1,02 497,47
l = 3 20 349 20 263 20 393 1,02 1,03 4 512,81

Table A.6: k = 64, q = 0, Machine B

32

A.2 K = 64

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Walshaw Graphs

soc-
Slashdot-
0902

RB 303 174 301 872 304 895 1,03 1,03 9,93
l = 1 301 470 300 754 302 128 1,02 1,04 115,48
l = 2 300 288 299 888 300 490 1,01 1,02 874,88
l = 3 299 783 299 057 300 421 1,01 1,02 6 946,35

loc-
brightkite

RB 77 250 76 259 77 970 1,02 1,02 7,66
l = 1 77 250 76 259 77 970 1,02 1,02 474,44
l = 2 76 503 76 259 76 953 1,02 1,02 1 131,36
l = 3 75 764 75 620 75 979 1,02 1,02 6 544,44

enron

RB 102 875 101 976 103 449 1,03 1,03 7,05
l = 1 101 343 101 164 101 463 1,02 1,02 104,54
l = 2 100 626 99 741 101 281 1,05 1,10 765,93
l = 3 98 747 98 485 99 083 1,03 1,04 6 638,68

finan512

RB 12 669 12 324 13 017 1,01 1,01 6,29
l = 1 12 382 12 186 12 556 1,01 1,01 79,15
l = 2 11 751 11 699 11 844 1,01 1,02 690,11
l = 3 11 319 11 243 11 395 1,01 1,01 5 846,15

loc-gowalla

RB 339 685 333 368 345 802 1,03 1,03 38,25
l = 1 336 378 333 368 338 048 1,02 1,03 1 564,13
l = 2 335 038 333 368 336 405 1,02 1,03 4 937,20
l = 3 330 150 329 390 331 536 1,02 1,03 30 033,10

coAuthors-
Citeseer

RB 73 319 73 054 73 556 1,02 1,02 27,78
l = 1 73 319 73 054 73 556 1,02 1,02 958,72
l = 2 73 319 73 054 73 556 1,02 1,02 3 748,08
l = 3 73 261 72 888 73 549 1,02 1,02 23 700,20

wiki-Talk

RB 1 · 10+06 1 · 10+06 1 · 10+06 1,03 1,03 743,30
l = 1 984 919 980 325 989 849 1,03 1,03 4 894,33
l = 2 969 691 961 020 976 980 1,02 1,03 26 682,40
l = 3 962 414 960 107 964 992 1,02 1,03 120 520,00

Table A.7: k = 64, q = 0, Machine B

33

A Detailed Experimental Results

Graph Param. Avg. Cut Best Cut Worst
Cut

Avg.Bal. Worst
Bal.

Time (s)

Geometric Graphs

rgg17

RB 8 850 8 582 9 165 1,01 1,02 15,49
l = 1 8 627 8 497 8 803 1,01 1,02 170,06
l = 2 8 517 8 455 8 582 1,01 1,01 1 755,00
l = 3 8 517 8 455 8 582 1,01 1,01 15 486,30

delaunay17

RB 9 484 9 437 9 512 1,01 1,01 12,23
l = 1 9 484 9 437 9 512 1,01 1,01 177,63
l = 2 9 424 9 330 9 504 1,01 1,01 1 547,29
l = 3 9 286 9 249 9 351 1,02 1,02 12 411,30

rgg18

RB 13 582 13 561 13 600 1,02 1,02 37,17
l = 1 13 547 13 454 13 600 1,02 1,02 421,35
l = 2 13 531 13 408 13 600 1,02 1,02 4 010,83
l = 3 13 496 13 408 13 586 1,02 1,02 33 933,80

delaunay18

RB 13 301 13 151 13 541 1,01 1,02 26,36
l = 1 13 301 13 151 13 541 1,01 1,02 459,12
l = 2 13 301 13 150 13 541 1,01 1,02 3 720,86
l = 3 13 182 13 129 13 247 1,02 1,02 29 376,80

Table A.8: k = 64, q = 0, Machine B

34

Bibliography

[1] Chris walshaw’s graph partitioning archive. http://chriswalshaw.co.uk/
partition/. Accessed: 24/08/2017.

[2] Kahip v2.00 – karlsruhe high quality partitioning user guide. http://algo2.
iti.kit.edu/schulz/software_releases/kahipv2.00.pdf/. Ac-
cessed: 07/09/2017.

[3] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integration, the VLSI Journal, 19(1-2):1–81, 1995.

[4] K. Andreev and H. Räcke. Balanced graph partitioning. Theory of Computing Sys-
tems, 39(6):929–939, 2006.

[5] N. Apollonio, R.I. Becker, I. Lari, F. Ricca, and B. Simeonec. Bicolored graph par-
titioning, or: gerrymandering at its worst. Discrete Applied Mathematics, 157:3601–
3614, 2009.

[6] M. Armbruster, M. Fuügenschuh, C. Helmberg, and A. Martin. A comparative study
of linear and semidefinite branch-and-cut methods for solving the minimum graph bi-
section problem. In 13th International Conference on Integer Programming and Com-
binatorial Optimization (IPCO), volume 5035 of LNCS, pages 112 – 124. Springer,
2008.

[7] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent advances in graph partitioning. abs/1311.3144, 2013.

[8] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route planning.
In Proceedings of the 10th International Symposium on Experimental Algorithms,
volume 6630 of LCNS, pages 376 – 387. Springer, 2011.

[9] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Conference on Design Automation, pages 175
– 181, 1982.

[10] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Mathematical Journal, 25(4):619–633,
1975.

35

http://chriswalshaw.co.uk/partition/
http://chriswalshaw.co.uk/partition/
http://algo2.iti.kit.edu/schulz/software_releases/kahipv2.00.pdf/
http://algo2.iti.kit.edu/schulz/software_releases/kahipv2.00.pdf/

Bibliography

[11] I. C. M. Flinsenberg. Route planning algorithms for car navigation. PhD thesis,
Eindhoven University of Technology, January 2004.

[12] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to
Parallel Computing: Design and Analysis of Algorithms. Benjamin-Cummings Pub-
lishing Co. Inc., Redwood City, CA, USA, 1994.

[13] L. Hyafil and R. Rivest. Graph partitioning and constructing optimal decision trees
are polynomial complete problems. IRIA-Laboria, Rocquencourt, France, 1973.

[14] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49(1):291–307, 1970.

[15] Jin Kim, Inwook Hwang, Yong-Hyuk Kim, and Byung Ro Moon. Distributed evolu-
tionary graph partitioning. In 12th Workshop on Algorithm Engineering and Experi-
mentation (ALENEX), pages 16 – 29, 2012.

[16] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,
and Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection.
-, 2016.

[17] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance
scientific simulations. The Sourcebook of Parallel Computing, pages 491–541, 2003.

[18] Christian Schulz. High Quality Graph Partitioning. PhD thesis, Karlsruhe Institute
of Thechnology, 2013.

[19] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM
Journal on Scientific Computing, 18(5):1436–1445, 1997.

36

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Preliminaries
	Notations and Definitions
	Related Work

	Better Recursive Bisection
	Recursive Bisection
	Overview of BRB
	Improvement on RB
	Multiple Cuts on Each Level
	Rebalancing
	Deviation Search

	Experimental Evaluation
	Methodology
	Tuning Parameters
	Environment
	Comparison to RB

	Discussion
	Conclusion
	Future Work

	Detailed Experimental Results
	K = 8
	K = 64

	Bibliography

