
Bachelor thesis

Evolutionary Hypergraph Partitioning
Robin Andre

Date: 29. November 2017

Supervisors: Prof. Dr. Peter Sanders
M.Sc. Sebastian Schlag
Dr. Christian Schulz

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Abstract

The hypergraph partitioning problem has many applications like processor load balance
or VLSI design. For most applications solution quality is crucial. Since the problem is
NP-hard, heuristics and meta heuristics are used in practice to solve the problem. In this
thesis we combine the commonly used multilevel heuristic with an evolutionary algorithm.
Experimental results show that our new algorithm improves solution quality by 2.2% on
average. Moreover, it computes the best solutions on 597 out of 630 instances.

Abstrakt

Das Hypergraphpartitionierungsproblem besitzt viele Anwendungsgebiete wie Prozessor-
lastverteilung oder Schaltkreisdesign. Für die meisten Anwendungen ist eine gute Lösungs-
qualität entscheidend. Da das Problem NP-schwer ist, werden Heuristiken und Metaheuri-
stik eingesetzt, um Verbesserungen der Lösungen zu erreichen. In dieser Arbeit kombinie-
ren wir die häufig verwendete Multilevel-Heuristik mit einem evolutionären Algorithmus.
Experimente zeigen, dass unser Algorithmus eine Verbesserung von durchschnittlich 2.2%
erzielt. Darüber hinaus berechnet der Algorithmus die besten Lösungen für 597 von 630
Instanzen.

Acknowledgments

Big thanks my supervisors for showing enormous patience and assistance, without them
this thesis would still be an unfinished mess.
I’d like to thank the Institute of Theoretical Informatics for providing a nice workspace,
Maximilian Bischoff for proof reading this thesis, the pool room people for helping me set
up experiments and Timo Bingmann for the supply of Club-Mate.
Special thanks to my family and dog for their mental support and continuous efforts to
understand what this thesis is actually about.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Ort, den Datum

Contents

Abstract iii

1 Introduction 1
1.1 Contribution . 1
1.2 Structure of Thesis . 2

2 Preliminaries 3
2.1 General Definitions . 3
2.2 Related Work . 3
2.3 KaHyPar . 5

3 KaHyPar-E 7
3.1 Overview . 7
3.2 Population . 7
3.3 Diversity . 8
3.4 Selection Strategies . 9
3.5 Combine Operations . 9

3.5.1 Basic Combine (C1) . 10
3.5.2 Edge Frequency Multicombine (C2) 11

3.6 Mutation operations . 11
3.6.1 V-Cycle (M1) . 12
3.6.2 V-Cycle + New Initial Partitioning (M2) 12
3.6.3 Stable Nets (M3) . 12

3.7 Replacement Strategies . 13

4 Experimental Evaluation 15
4.1 Experimental Setup . 15
4.2 Instances & Methodology . 16
4.3 Evaluation of Algorithmic Components 20

4.3.1 Replacement Strategy . 20
4.3.2 Combine Operators . 21
4.3.3 Mutation Operators . 23
4.3.4 Mutation Replacement Strategy 24

4.4 Parameter Tuning . 25
4.4.1 Configuring Combine Operators 25

vii

4.4.2 Configuring Mutation Operators 26
4.5 Final Evaluation . 26

5 Discussion 33
5.1 Conclusion . 33
5.2 Future Work . 33

1 Introduction

Evolutionary algorithms are inspired by evolution. Similar to the biological counterpart
they attempt to simulate an enclosed space where several actors or individuals try to com-
pete for survival and reproduction in an isolated setting over multiple generations. Evolu-
tion theory states that individuals having more helpful traits, like special beaks to assist in
acquiring food, are more likely to survive longer and thus more likely to pass these helpful
traits onto the next generation. Additionally some traits occur randomly through chang-
ing the genetic information erratically. These are called mutations and are even present in
humans. Some can be harmful like the sickle-cell disease or beneficial like the ability to
consume lactose. In evolution theory mutations are usually a factor that introduces previ-
ously nonexistent traits. Repeating the cycle of survival and reproduction, mutations that
are helpful will more likely be passed on and established. Evolutionary algorithms are es-
sentially applying the process described above onto a mathematical optimization problem.
These algorithms are a faithful recreation of the basic evolutionary concept. They imple-
ment a system which mimics all of the actions found in a gene pool. Mutation, reproduction
and selection. In Darwin’s theory the individuals ability to survive and reproduce is strictly
based on the benefits and detriments of the genes. However, this is not considering the fact
that the survival chance of the individual may improve beyond the biological constraint. We
humans learn to interpret the world around us, what berries are poisonous, what animals
should be hunted, when can the road safely be crossed. All of these factors are improving
the survival chance, independent from biological information. A similar concept in com-
puter science are memetic algorithms [31], which improve the solutions of the evolutionary
algorithm by additionally incorporating local search algorithms.

1.1 Contribution

Evolutionary algorithms are primarily used as a meta heuristic to generate good solutions
for difficult problems. In this thesis we present a memetic algorithm to tackle the NP-hard
hypergraph partitioning problem [22].
Additionally, we integrate our memetic algorithm into an existing hypergraph partitioner [37],
which is already utilizing the multilevel heuristic [13] and capable of generating solutions
of very high quality. Using ideas presented in the evolutionary graph partitioner KaffPaE
[36], we add combination and mutation operations as well as selection and replacement

1

1 Introduction

strategies to create an evolutionary algorithm. Our algorithm produces the best partitions
on 597 of 630 instances with an average improvement of 2.2%.

1.2 Structure of Thesis

We establish definitions required to understand hypergraph partitioning, related work on
the hypergraph partitioning problem as well as the basic work flow of KaHyPar in Chapter
2. Afterwards we introduce and explain the algorithmic components that augment KaHyPar
to a memetic algorithm in Chapter 3. The different algorithmic components are evaluated
experimentally in Chapter 4. Finally we conclude the thesis and give a preview of further
improvements in Chapter 5.

2

2 Preliminaries

In this chapter we establish hypergraph-related definitions used in this thesis, and give an
overview of related work in the field of evolutionary hypergraph partitioning. We also
introduce the hypergraph partitioning framework KaHyPar, which will be used as a central
building block of our evolutionary algorithm.

2.1 General Definitions

A hypergraph H = (V,E, c, w) is defined as a set of vertices V and a set of hyperedges
E, where each hyperedge is a subset of the vertices, i.e. e ⊆ V . The weight of a vertex
is measured by c : V → R>0. Similarly the weight of a hyperedge is defined by w :
E → R>0. The set extensions of c and w are defined as c(V ′) =

∑
v∈V ′ c(v) and w(E ′) =∑

e∈E′ w(e). Two vertices u, v are adjacent if ∃ e ∈ E : {u, v} ∈ e. The vertices in
e are called pins. A vertex u is incident to a hyperedge e if u ∈ e. I(u) is the set of all
incident hyperedges of node u. The size |e| of a hyperedge e is the number of its pins.
A k-way partition of a hypergraph H is a partition of V into k disjoint blocks V1, ..., Vk.
A vertex u is assigned a block by the function part(u) : V → [1, k]. A k-way partition
is balanced if ∀ 1 ≤ i ≤ k : c(Vi) ≤ (1 + ε)d c(V)

k
e for an imbalance parameter ε. A

valid solution is a balanced k-way partition. An invalid solution is a partition where the
balance criterion is not met. The number of vertices in a hyperedge located in block Vi
is measured by Ψ(e, Vi) := |{v ∈ Vi | v ∈ e}|. Given a partition P the connectivity set
Φ of a hyperedge e is Φ(e,P) := {Vi | Ψ(e, Vi) > 0}. A hyperedge e is a cut edge in
a partition P if Φ(e,P) > 1. Let E be the set of cut edges of a partition P . The cut
metric of P is defined as cut(P) := w(E). The connectivity metric (λ − 1) is defined as
(λ − 1)(P) :=

∑
e∈E(Ψ(e) − 1)w(e). Both metrics can be used to measure the quality of

a solution. We use the connectivity as metric.

2.2 Related Work

There are several hypergraph partitioning algorithms, originating from various application
areas such as processor communication balancing [14], circuit partitioning [3] or database
storage sharding [25].

3

2 Preliminaries

Two approaches are used for hypergraph partitioning. The first approach is the hypergraph
bipartitioning, where the partition is fixed to k = 2. This approach is implemented in ML-
Part [3]. By recursively bisecting the resulting partitions, k can assume values other than 2.
This is implemented in tools like PaToH [14], Mondrian [40], Zoltan [20], and hMetis [26].
The other approach is to skip the recursion and directly partition the hypergraph into k
blocks. This is called a direct k-way partition and is used in hMetis-Kway [27], kPatoH [7]
and SHP [25] (also implementing a recursive bisection). Note that except SHP [25] all
tools are utilizing the multilevel paradigm [13].
The multilevel heuristic [13] begins by reducing the original problem to a smaller problem
with a similar structure. Due to the reduced complexity, the smaller problem can be solved
efficiently. To convert the solution of the small problem on the original problem, the re-
duction is undone. To further improve the solution, local search can be applied during this
process. Because the reduction retains some structure and the local search improves the
solution, the resulting solution for the original problem is of high quality.
Of course this is only a collection of the most common hypergraph partitioners, which is
why we would like to refer to the surveys [4, 9, 32, 39] for an extensive overview.
Saab and Rao [34] present one of the first evolutionary approaches to hypergraph partition-
ing by comparing the gain of a vertex move to a random threshold. Hulin [24] presents a
genetic algorithm maintaining multiple solutions using a two dimensional representation
of circuits and introduces a problem specific crossover operator as well as a mutation op-
erator. A more sophisticated memetic algorithm for the hypergraph partitioning problem
was created by Bui and Moon [12], in which solutions are preprocessed and optimized us-
ing the Fiduccia-Mattheyses [21] local search algorithm. They also use a new replacement
strategy considering the bit-wise difference of the child and the parent partitions in addition
to solution quality.
Chan and Mazumder [15] provide a genetic algorithm for bipartitioning that assigns better
solutions a higher chance to be selected for the crossover operation. The crossover op-
eration splits both input partitions at the same point, combining the first split of the first
partition and the second split of the second partition. Areibi [5] gives another memetic al-
gorithm for the k-way hypergraph partitioning problem. Using a variation of FM (Fiduccia-
Mattheyses) designed for k-way optimization [35] as well as a 4-point crossover operation,
which splits the input partitions at 4 points and alternates between the blocks. Kim et
al. [28] translate the lock gain local search [29] for graphs to hypergraphs and use solution
quality and hamming distance as a more potent replacement strategy as well as roulette
selection to determine the solutions used in the crossover. All referenced works that use
a crossover operator do so by splitting the input partitions and selecting alternating block
fragments.
Armstrong et al. [6] analyze the quality and running time performance of parallel memetic
algorithms comparing a bounded amount of local search against an unbounded local search,
stopping only when no improvement can be made. Sait et al. [33] compare the meta heuris-
tics tabu search, simulated annealing and genetic algorithms for k-way hypergraph parti-

4

2.3 KaHyPar

u v
u

Figure 2.1: An example of a contraction. Note that the hyperedges incident to the contracted node
v are modified to contain u.

tioning. Their result is that tabu search is outperforming a genetic algorithm in quality and
running time. Cohoon et al. [16] compare evolutionary hypergraph partitioners to other hy-
pergraph partitioning tools. Their result is that none of the existing evolutionary algorithms
are to be considered competitive compared to existing multilevel tools.
Sanders and Schulz present an evolutionary framework [36] for the existing graph parti-
tioner KaFFPa [30], introducing different combination and mutation operations for graph
partitioning, which are integrated with the multilevel approach.

2.3 KaHyPar

The hypergraph partitioner KaHyPar optimizes the connectivity metric using direct k-way
partitioning [1] as well as the cut metric using recursive bisection [37]. KaHyPar also uses
a multilevel approach for partitioning (see Figure 2.2). The original hypergraphH is coars-
ened by repeatedly contracting nodes u, v until either no more contractions are possible or
the minimum number of nodes required has been reached. The coarsened hypergraph is
referenced as Hc. KaHyPar is an n-level algorithm meaning that during each step of the
coarsening only one pair of nodes u, v is contracted. All of hyperedges containing v are
mapped to u in the process (see Figure 2.1 for an example). On Hc a partitioning algorithm
generates an initial partitioning for the coarsened hypergraph. Afterwards contractions
are reversed and during each step of the uncoarsening phase local search algorithms are
used to improve the solution quality. The local search is using a variant of the Fiduccia-
Mattheysis algorithm [21]. Heuer and Schlag [23] improved KaHyPar by analyzing and
exploiting community structures in hypergraphs, showing that KaHyPar-CA (community
aware KaHyPar) generates solutions of superior quality compared to other established hy-
pergraph partitioners.

5

2 Preliminaries

Initial Partitioning

Coarsening

Hypergraph H

Coarsened Hypergraph Hc

H (partitioned)

Uncoarsening/

Refinement

Figure 2.2: An example of the multilevel paradigm utilized by KaHyPar

6

3 KaHyPar-E

In this chapter we first outline the general procedure of an evolutionary algorithm. Then
we explain the methodology used to transfer hypergraph partitioning into an evolutionary
framework. We also describe the concept of diversity to compare two different partitions
on similar properties. Finally operators for combination and mutation are introduced as
well as strategies for selection and replacement.

3.1 Overview

In order to apply an evolutionary algorithm we first have to generate an initial population.
Following the principle of evolutionary algorithms after the initial solutions are generated
the same steps are repeated until a stopping criterion has been met. Evolutionary algorithms
are usually repeating four steps that attempt to simulate evolution. First some individuals
have to be chosen for recombination. Then the chosen individuals have to be combined
with each other generating offspring. As third step mutations are performed on some indi-
viduals and as fourth step the individuals surviving the iteration (generation) are selected
by a corresponding metric, also called fitness. For hypergraph partitioning we consider a
partition as an individual and the fitness of said individual is the connectivity metric. We
alternate the evolutionary scheme a bit in a sense that we perform combination or mutation
exclusively during an iteration and additionally only generate one new solution during said
iteration and then replace an existing individual with the new offspring. In Sections 3.2 -
3.4 we explain the tools required for maintaining and selecting individuals from the popu-
lation. In Section 3.5 we introduce two combine operators used to generate offspring. In
Section 3.6 we describe the mutation operations implemented in KaHyPar-E to complete
the evolutionary framework. Finally in Section 3.7 we explain the process to insert the
solutions generated by combination and mutation back into the population.

3.2 Population

KaHyPar-E will produce multiple individuals, which are inserted and removed from the
population. Only a fixed number of individuals are in the population. This number is the
maximum population size. Further individuals have to compete for a place in the popula-
tion. The population size is an important parameter, as a small value limits the exploration

7

3 KaHyPar-E

capability and a high value limits convergence [38]. We use KaHyPar to create the ini-
tial population. This means that unlike most evolutionary algorithms we use high quality
solutions instead of random solutions as initial population. However generating an initial
population is time consuming and needs a time bound to ensure that the evolutionary com-
ponents are used within the running time limit for the algorithm. In order to select a proper
population size for the running time we attempt to allocate a fair amount of time towards
the creation of the initial population.
By measuring the duration of one iteration t1 and comparing it to the total running time ttotal
we can estimate the number of iterations ttotal

t1
. Since hypergraph instances vary greatly in

time required to partition, using a fixed population size will most likely be inadequate for
most instances. As a solution we use a fixed percentage of the total time for generat-
ing individuals for the initial population. Evaluating the value calculated above we spend
approximately 15% of the allotted time towards creating the initial population and conse-
quently the population size is determined by δ = 0.15 · ttotal

t1
. However, we introduce lower

and upper bounds for the population size to ensure a proper size for evolutionary operators
as well as convergence. That being said the population size has to be at least 3 and 50 at
most.

3.3 Diversity

In biological evolution a population with a highly miscellaneous gene pool is considered
healthy, because the variation between the individuals ensures that multiple different char-
acteristics are carried by different individuals and a high diversity of the gene pool is as-
sured. In that case bad characteristics can be removed through means of reproduction. As
reverse conclusion bad characteristics will not be removed if each individual shares said
characteristics. The same principle is applicable to evolutionary algorithms in a sense that
bad characteristics are unable to be removed if they are shared by all solutions. For the
hypergraph partitioning problem such a characteristic would be a suboptimal hyperedge
that is a cut edge in every solution.
Maintaining diversity is highly recommended [8], as it ensures a strong perturbation of
the solutions and therefore allows for a greater exploration of the solution space. Addi-
tionally it prevents characteristics from manifesting in the entire population. We introduce
diversity as a tool for measuring the different characteristics of two individuals. As de-
scribed above the characteristic influencing the quality of a partition are the cut edges.
In evolutionary graph partitioning, KaffPaE [36] determines the difference of two parti-
tions P1, P2 by counting the edges that are cut edges in exclusively one of the partitions
cutdiff(P1,P2) :=

∑
e∈E |cut(e,P1)− cut(e,P2)|. This approach can be used for hyper-

graphs, but is not entirely accurate for hypergraphs because cut hyperedges might extend
into multiple blocks(see Figure 3.1). Instead we count the number of blocks that are differ-
ent between the hyperedges conndiff(P1,P2) :=

∑
e∈E ||Φ(e,P1)| − |Φ(e,P2)||. This is

8

3.4 Selection Strategies

a more natural representation for the connectivity metric than cut edges.

Figure 3.1: Two different partitions of the same hypergraph

Figure 3.1 shows two different partitions of the same example hypergraph. Since all edges
are cut edges in both partitions the cut difference is 0. However the partitions are not to
be considered equal since the highlighted edge has a different connectivity. By using the
connectivity difference this issue can be avoided.

3.4 Selection Strategies

For an evolutionary algorithm we attempt to generate new, improved solutions by using
existing solutions. A logical conclusion is that good individuals have good characteristics
that may be passed on to child individuals. We select our individuals using tournament se-
lection [11], meaning that the individuals are competing for their chance of recombination
based on their fitness. In a long term perspective this ensures that good individuals have a
higher chance of reproduction. By selecting two random individuals and choosing the one
with the better solution quality we extract one individual I1, where better individuals have
a higher chance of being selected. For operators requiring two individuals, we can simply
repeat this step to select a new individual I2. In the unlikely case that the two selected
individuals are the same we instead use the worse individual from the second tournament
selection round.

3.5 Combine Operations

Combine operations generate a new individual by using two or more individuals as input.
We present two different combine operators. While the first operator C1 combines two

9

3 KaHyPar-E

partitions, the second operator C2 is capable of combining a variable number of X individ-
uals. These individuals are selected by choosing the best X individuals from the population.
Both operators use the replacement strategy introduced in Section 3.7 to insert the newly
generated individuals.

3.5.1 Basic Combine (C1)

The basic combine operator C1 combines two parent partitions P1, P2 to one child individ-
ual C. This is achieved by only allowing contractions of nodes u, v when these nodes are
in the same block for both parent partitions as seen in Figure 3.2. Contractions performed
in the same block do not modify the quality of a partition, because the block assignments
cannot change, and as a result the connectivity sets remain stable. This ensures that the so-
lution quality for the coarsened hypergraphHc does not fluctuate for either parent partition.
After coarsening we do not perform initial partitioning. Instead we consider the coarsened
hypergraph Hc and apply the parent partition with better solution quality to Hc.
This operation is different than a V-cycle in Section 3.6.1, since the coarsening condition is
more strict due to the consideration of both parents partitions. The local search algorithms
during the refinement phase do not worsen the solution quality. This local search assurance
in combination with using the better partition of the two parents ensures that the child
solution is at least as good as the best parent solution. The basic combine is benefiting from
highly diverse parent partitions since it passes on more characteristic cut edges, resulting
in more exploration of the solution space.

1

2

3

4

5

P1 P2

Figure 3.2: An example of allowed contractions with two partitions

In Figure 3.2 we explain the limitation used during the coarsening of operator C1. The only

10

3.6 Mutation operations

possible contractions are vertices 1 & 2, as well as 4 & 5. Other contractions will violate
the restriction. The vertices 2 & 3 for example cannot be contracted because it violates P2,
even though they share the same block in partition P1.

3.5.2 Edge Frequency Multicombine (C2)

Our multi-combine operator is capable of combining multiple individuals I1, ..., IN ,N ≤
|P | into a new child individual. By analyzing whether an edge e is a cut edge in I1, ..., IN
we can calculate the edge frequency f(e) :=

∑N
i=1 cut(e, Ii) [42] of an edge e. We use

the best N =
√
|P | individuals from P for determining edge frequency as a standard

parameter [19].
Assuming that the frequent cut edges of the best solutions are most likely a good character-
istic, these edges should remain cut edges. The contraction of the nodes in a frequent cut
edge is most likely not beneficial, because the edge appears to be beneficial for the solution
quality. Therefore such a contraction is probably harmful for the solution quality and addi-
tionally causes limitation or unenforceability of other possible contractions. By prolonging
the contraction of nodes in these frequent cut edges, more favorable contractions may be
performed. Therefore we penalize contractions of nodes incident to a high frequency edge
during the multilevel partition approach by using the rating function

r(u, v) =
∑

e∈I(u)∩I(v)
e−γ∗f(e)

(w(u)w(v))ρ

to disincentivize early contractions of nodes in edges of high frequency. The value ρ = 1.2
on the rating function is a tuning parameter taken from [19] as well as γ = 0.5. This rating
function is replacing the normal rating function used during the coarsening of KaHyPar.
The edge frequency operator is not using the input partitions for Hc. Instead a new initial
partitioning is performed and refined in the uncoarsening phase using local search algo-
rithms. Since this operation is generating a new initial partitioning there is no quality
assurance opposed to C1.

3.6 Mutation operations

The main objective of mutations is to create more diverse solutions and to avoid premature
convergence towards a local optimum. We propose three different mutation operations. The
first operator M1 is intended to improve the solution quality of a partition by reapplying
local search algorithms. The second operator M2 is a variation of M1, capable of generating
new features. The third operator M3 is intentionally enforcing new characteristics, trying
to increase diversity.

11

3 KaHyPar-E

3.6.1 V-Cycle (M1)

A V-cycle is a KaHyPar iteration with the difference that the hypergraph is already parti-
tioned. Similar to the combine operator C1 in Section 3.5.1 during coarsening nodes u, v
may only be contracted if part(u) = part(v). Since the hypergraph is already partitioned
there is no need for initial partitioning. The main benefit comes from refinement during un-
coarsening. Due to randomization in coarsening, the structure of the coarsened hypergraph
can vary and allow improvements previously not found during local search.
Using an individual I as partition for the hypergraph this operation results in a similar
individual Inew which has been improved on during the refinement. Due to the fact that
neither refinement nor coarsening worsen solution quality Inew will have a quality at least
equal to I . This is a weak mutation, since the difference of I and Inew is small. This
operation will cause convergence, as multiple applications of a V-cycle will eventually no
longer improve the solution.

3.6.2 V-Cycle + New Initial Partitioning (M2)

Similar to a V-cycle, we coarsen an already partitioned hypergraphH , but instead of imme-
diately starting the refinement we drop the partition and perform a new initial partitioning
on the coarsened hypergraph. This operation perturbs the original more strongly because
the vertices are no longer forced to keep their assigned block. Since the partition is dropped
the algorithm used to generate a new partition might produce a worse solution as before.
Therefore this operator can create worse solutions and as a result the operator is capable of
increasing diversity.

3.6.3 Stable Nets (M3)

Lim et al. [17] introduce the concept of stable net removal, stating that hyperedges remain-
ing in the cut of the partition throughout successive multilevel iterations are trapping the
FM-algorithm in a local minimum. Their solution is to force these hyperedges from the cut
by forcing them into one block. We use this approach to similarly force recurring cut edges
into one block. Opposed to edge frequency operator where the recurring cut edges should
remain cut edges, we attempt to force the stable edges from the cut. Again the

√
|P | best

individuals are analyzed regarding edges most frequent in these solutions.
We consider an edge stable if it is in the cut in at least 75% of individuals inspected. These
edges are then attempted to be forced into the block with the smallest weight in order to
maintain the balance constraint. This is done by moving all nodes v ∈ e to the smallest
block. Each node may only be moved once. These solutions have most likely significantly
worse quality. In order to keep these solutions competitive we therefore perform a V-
cycle after removing the stable nets. This operator is intended to create individuals with
significantly different characteristics.

12

3.7 Replacement Strategies

3.7 Replacement Strategies

Regardless of the operator, new individuals have to be inserted into the population in order
to be used in upcoming iterations. The replacement strategy is the only method of removing
an individual from the population. Therefore the replacement strategy is the driving factor
of selection pressure and must maintain a strict constraint on the fitness of the individuals
to ensure convergence towards good solutions. The naive approach is to remove the worst
element from the population and insert the new individual in its place. The consequence
is that the population is rapidly converging towards a local optimum and only covering a
small part of the solution space. Another approach is to replace one of the elements used in
the operator. But this approach neglects fitness and is suboptimal for operators using more
than one parent element.
We use a different strategy maintaining the competitive pressure of the selection whilst also
avoiding premature convergence. Similar to the naive approach we consider the fitness of
the newly generated individual to replace an individual with worse quality. However we
do not replace the worst existing individual, instead we replace the most similar individ-
ual with a worse quality using conndiff(P1,P2) as measurement for similarity. By only
replacing elements of worse quality the population is slowly improving in quality and con-
verging towards optima. However this approach ensures a more diverse population which
boosts the combine operator effectiveness and avoids premature convergence.

13

4 Experimental Evaluation

In this chapter the previously described algorithmic components are tested in an experi-
mental setting. First the conditions of the experiments are established and the methodol-
ogy for evaluating the results is described. Then the experimental results are presented and
discussed.

4.1 Experimental Setup

We use two benchmark sets for evaluation. Both sets use instances from the benchmark set
of Heuer and Schlag [23], which consists of various hypergraphs from the ISPD98 bench-
mark [2], the university of Florida Sparse Matrix Collection [18], the DAC benchmark [41]
and SAT competition instances [10].

The first set is called the tuning subset. It consists of 25 hypergraphs. The instances are
chosen to accurately represent the complete benchmark set. However no instance requiring
a high partition time is chosen. This is done to ensure that the instances of the tuning subset
can display the effects of the evolutionary algorithm within a smaller time window. The
running time for partitions on the tuning subset is 2 hours. The instances are partitioned
into k = 32 blocks with ε = 0.03. Each partitioning run of the tuning subset is repeated
3 times with a different seed. This results in 150 CPU-hours required for each experiment
performed on the tuning subset.

The second set is called the benchmark subset. It consists of 90 hypergraphs from the
benchmark set. All instances in the benchmark subset are partitioned with ε = 0.03 and
k = {2, 4, 8, 16, 32, 64, 128}. The running time for each partitioning on the benchmark
subset is 8 hours, and each run is repeated 5 times. This results in 25200 CPU-hours nec-
essary for each experiment performed on the benchmark subset.

The reason for repeating the runs is to balance out possible outliers due to randomization.
This process is described more detailed in Section 4.2. Due to the high time requirements
of the experiments, we use simple parallelization to generate results within reasonable
time. As such all physical cores of the machines are performing a separate partition in-
stance. Due to shared memory access the time stamps are not completely synchronized.
This causes slight fluctuation in the plots.

15

4 Experimental Evaluation

The tuning subset is used to evaluate the algorithmic components and tune the respective
parameters within a reasonable amount of time while avoiding overtuning. The benchmark
subset is used to replicate the results of the tuning subsets, ensuring statistical significance
by using a higher amount hypergraphs. We use the Wilcoxon Signed Rank Test [43] to
evaluate statistical significance between separate experiments. The Z-value and p-value
will be listed in the corresponding experiments. We consider p ≤ 0.01 significant. The
purpose of this experimental evaluation is to show an improvement of solution quality
when comparing the evolutionary algorithm with KaHyPar (and due to the results of [1]
indirectly with other hypergraph partitioning tools). We compare our algorithms with the
nonevolutionary algorithm KaHyPar-CA [23], which will be referenced as KN -CA for
readability purposes. Additionally KN -CA can be improved using V-cycles as described in
Section 3.6.1. Similar to [6] applying local search until no improvement has been found,
KN -CA can perform V-cycles until no further improvement can be found. Such a stopping
criterion is implemented in KaHyPar. We set the number of V-cycles to be performed in
KN -CA #V − cycles to 100. This algorithm configuration is called KN -CA-V. Neither
KN -CA nor KN -CA-V are designed to produce multiple solutions within a fixed time.
In order to allow a fair comparison with the evolutionary algorithm on the benchmark
sets, both KN -CA and KN -CA-V are restarted repeatedly to ensure a proper usage of the
running time.

4.2 Instances & Methodology

Table 4.1: Properties of the hypergraphs used in the tuning subset.
Hypergraph n m p Hypergraph n m p

ISPD98 SAT14Primal
ibm06 32498 34826 128182 6s153 85646 245440 572692
ibm07 45926 48117 175639 aaai10-planning-ipc5 53919 308235 690466
ibm08 51309 50513 204890 atco_enc2_opt1_05_21 56533 526872 2097393
ibm09 53395 60902 222088 dated-10-11-u 141860 629461 1429872
ibm10 69429 75196 297567 hwmcc10-timeframe 163622 488120 1138944

SAT14Dual SPM
6s133 140968 48215 328924 laminar_duct3D 67173 67173 3833077
6s153 245440 85646 572692 mixtank_new 29957 29957 1995041
6s9 100384 34317 234228 mult_dcop_01 25187 25187 193276
dated-10-11-u 629461 141860 1429872 RFdevice 74104 74104 365580
dated-10-17-u 1070757 229544 2471122 vibrobox 12328 12328 342828

SAT14Literal
6s133 96430 140968 328924
6s153 171292 245440 572692
aaai10-planning-ipc5 107838 308235 690466
atco_enc2_opt1_05_21 112732 526872 2097393
dated-10-11-u 283720 629461 1429872

16

4.2 Instances & Methodology

Table 4.2: Properties of the hypergraphs used in the benchmark subset.
Hypergraph n m p Hypergraph n m p

DAC2012 SAT14Primal
superblue19 522 482 511 685 1 713 796 AProVE07-27 7 729 29 194 77 124
superblue13 630 802 619 815 2 048 903 countbitssrl032 18 607 55 724 130 020
superblue14 698 339 697 458 2 280 417 6s184 33 365 97 516 227 536
superblue3 917 944 898 001 3 109 446 6s9 34 317 100 384 234 228

ISPD98 6s133 48 215 140 968 328 924
ibm09 53 395 60 902 222 088 6s153 85 646 245 440 572 692
ibm11 70 558 81 454 280 786 atco_enc1_opt2_10_16 9 643 152 744 641 139
ibm10 69 429 75 196 297 567 aaai10-planning-ipc5 53 919 308 235 690 466
ibm12 71 076 77 240 317 760 hwmcc10-timeframe 163 622 488 120 1 138 944
ibm13 84 199 99 666 357 075 itox_vc1130 152 256 441 729 1 143 974
ibm14 147 605 152 772 546 816 dated-10-11-u 141 860 629 461 1 429 872
ibm15 161 570 186 608 715 823 atco_enc1_opt2_05_4 14 636 386 163 1 652 800
ibm16 183 484 190 048 778 823 manol-pipe-c8nidw 269 048 799 867 1 866 355
ibm18 210 613 201 920 819 697 atco_enc2_opt1_05_21 56 533 526 872 2 097 393
ibm17 185 495 189 581 860 036 dated-10-17-u 229 544 1 070 757 2 471 122

SAT14Dual ACG-20-5p0 324 716 1 390 931 3 269 132
AProVE07-27 29 194 7 729 77 124 ACG-20-5p1 331 196 1 416 850 3 333 531
countbitssrl032 55 724 18 607 130 020 SPM
6s184 97 516 33 365 227 536 powersim 15 838 15 838 67 562
6s9 100 384 34 317 234 228 as-caida 31 379 26 475 106 762
6s133 140 968 48 215 328 924 hvdc1 24 842 24 842 159 981
6s153 245 440 85 646 572 692 Ill_Stokes 20 896 20 896 191 368
atco_enc1_opt2_10_16 152 744 9 643 641 139 mult_dcop_01 25 187 25 187 193 276
aaai10-planning-ipc5 308 235 53 919 690 466 lp_pds_20 108 175 33 798 232 647
hwmcc10-timeframe 488 120 163 622 1 138 944 lhr14 14 270 14 270 307 858
itox_vc1130 441 729 152 256 1 143 974 c-61 43 618 43 618 310 016
dated-10-11-u 629 461 141 860 1 429 872 ckt11752_dc_1 49 702 49 702 333 029
manol-pipe-g10bid_i 792 175 266 405 1 848 407 RFdevice 74 104 74 104 365 580
manol-pipe-c8nidw 799 867 269 048 1 866 355 light_in_tissue 29 282 29 282 406 084
atco_enc2_opt1_05_21 526 872 56 533 2 097 393 Andrews 60 000 60 000 760 154
dated-10-17-u 1 070 757 229 544 2 471 122 2D_54019_highK 54 019 54 019 996 414
ACG-20-5p0 1 390 931 324 716 3 269 132 case39 40 216 40 216 1 042 160
ACG-20-5p1 1 416 850 331 196 3 333 531 denormal 89 400 89 400 1 156 224

SAT14Literal 2cubes_sphere 101492 101492 1647264
AProVE07-27 15 458 29 194 77 124 av41092 41 092 41 092 1 683 902
countbitssrl032 37 213 55 724 130 020 Lin 256 000 256 000 1 766 400
6s184 66 730 97 516 227 536 cfd1 70 656 70 656 1 828 364
6s9 68 634 100 384 234 228 mc2depi 525 825 525 825 2 100 225
6s133 96 430 140 968 328 924 poisson3Db 85 623 85 623 2 374 949
6s153 171 292 245 440 572 692 rgg_n_2_18_s0 262 144 262 141 3 094 566
atco_enc1_opt2_10_16 18 930 152 744 641 139 cnr-2000 325 557 247 501 3 216 152
aaai10-planning-ipc5 107 838 308 235 690 466
hwmcc10-timeframe 327 243 488 120 1 138 944
itox_vc1130 294 326 441 729 1 143 974
dated-10-11-u 283 720 629 461 1 429 872
atco_enc1_opt2_05_4 28 738 386 163 1 652 800
manol-pipe-g10bid_i 532 810 792 175 1 848 407
manol-pipe-c8nidw 538 096 799 867 1 866 355
atco_enc2_opt1_05_21 112 732 526 872 2 097 393
dated-10-17-u 459 088 1 070 757 2 471 122
ACG-20-5p0 649 432 1 390 931 3 269 132
ACG-20-5p1 662 392 1 416 850 3 333 531

17

4 Experimental Evaluation

Table 4.1 displays the instances in the tuning subset, as well as their basic properties. n is
the number of vertices, m is the number of hyperedges and p is the number of pins. The
instances are sorted by their respective classes. Similarly Table 4.2 displays the instances
of the benchmark subset.
Similar to Sanders and Schulz [36], we use convergence plots to compare the improvement
of solution quality over time. We choose one of the partitioning algorithms as baseline and
determine the average duration tI to partition a given instance I . We then can calculate for
each absolute time stamp t of an instance I the normalized time by tn = t

tI
. By doing so

we can compare instances requiring different partition times, as well as time differences in
algorithmic components for the same instance.
We determine the average solution for an instance I at the time point tn as follows. For
each seed we create a variable as storing the best solution so far. These variables as are
filled with the first solution created by the corresponding seed. Then the average over all
as is calculated, determining the first average solution. Each time a seed s is improving its
best solution at a time point tn the corresponding value as is updated, and a new average
is calculated with the time point tn. This process is illustrated in Figure 4.1. The result is
a list of averaged improvements for instance I , containing tuples of the following structure
(avg(as), tn). By ordering the list of averaged improvements by tn we can calculate the
average solution at a time point tn.

λ− 1 tn λ− 1 tn λ− 1 tn

42 0.1

38 1.69

43 41

40 35

0.11 0.098

1.98 2.0

27 2.8

(a) (a) (a)

(b) (c) (d)

(f) (e) 33 2.1

(a)

seed 1

seed 2

seed 3

tn 0.11

42

43

41

avg(s1, s2, s3) 42

1.69

(b)

38

43

41

40.66

(42, 0.11)

(40.66, 1.69)

1.98

(c)

38

40

41

39.66

(39.66, 1.98)

2.0

(d)

38

40

35

37.66

(37.66, 2.0)

2.1

(e)

38

40

33

37

(37, 2.1)

2.8

(f)

27

40

33

33.33

(41, 2.8)

λ− 1 improvement seed 1 λ− 1 improvement seed 2 λ− 1 improvement seed 3

Figure 4.1: An example for averaging the seeds of an instance I

18

4.2 Instances & Methodology

The solution improvements of the different seeds are sorted by normalized time tn and
afterwards scanned (see Figure 4.1 (a)-(f)). A pair of solution quality and current time is
appended to the result every time an improvement is found (b)-(f). The only exception is
(a) since there are no existing values to replace. In this case the first values of all seeds are
used and the maximum normalized time is used for the first pair.
Next we need to average over different instances. Different instances have highly varying
connectivity. To give each instance a comparable influence on the final result we use the
geometric mean. Other than that the process is similar to averaging the seeds. For each
instance I we create a variable aI containing the best solution so far. We use the previously
generated lists of averaged improvement lI as input data. Following the same procedure,
each time an improvement is found in one of the lI the corresponding value aI is updated
and a tuple (geoMean(aI), tn) is appended to the final result. An example for this proce-
dure can be found in Figure 4.2.

λ− 1 tn λ− 1 tn λ− 1 tn

42 0.11

40.66 1.69

28000 9

27500 8

0.12 0.1

1.5 2.0

39.66 1.98 4 3

Instance 1 Instance 2 Instance 3
List of averaged
improvements

(a)

Instance 1

Instance 2

Instance 3

tn 0.12

42

28000

9

geoMean(s1, s2, s3) 219.5

1.5

(b)

218.2

(219.5, 0.12)

(218.2, 1.5)

1.69

(c)

215.9

(215.9, 1.69)

1.98

(d)

214.1

(214.1, 1.98)

2.0

(e)

205.9

(205.9, 2.0)

3

(f)

163.4

(163.4, 3)

27500

40.66 39.66

8 4

39.66 39.66

27500 27500 27500 27500

42

9 9 9

Result list:

(a) (a) (a)

(b)(c)

(d)

(e)

(f)

Figure 4.2: An example for averaging multiple instances I

Similar to seed averaging the lists of averaged improvement are processed in order of in-
creasing normalized time tn (a)-(f). Then a pair of solution quality and current time is
appended to the result every time an improvement is found (b)-(f). The only exception is
(a) since there are no existing values to replace. In this case the first values of all seeds are
used and the maximum normalized time is used for the first pair.

19

4 Experimental Evaluation

4.3 Evaluation of Algorithmic Components

All experiments in this section are based on the tuning subset. The experiments were run
on an Ubuntu 14.04 machine with four Intel Xeon E5-4640 Octa-Core processors with
2.4 GHz, 512 GB main memory, 20 MB L3- and 8x256 KB L2-Cache. The following
parameters are used as default: Dynamic population size using δ = 0.15 and [3, 50] as
lower/upper bound of the population size, γ = 0.5 as dampening factor for C2, C2 and M3
are using

√
|P | as default number of individuals. The threshold of M3 is set to 0.75. The

parameters of KaHyPar are set to the default configuration for direct k-way partitioning 1.

4.3.1 Replacement Strategy

We begin by evaluating the different replacement strategies presented in Section 3.3. KaHyPar-
E uses operator C1 as the only evolutionary action.

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
connectivity
cut

worst

Figure 4.3: Using different replacement strategies

In Figure 4.3 we compare the effectiveness of the three different replacement strategies. As
expected in Section 3.7 replacing the worst individual in the population leads to premature

1https://github.com/SebastianSchlag/kahypar/blob/master/config/km1_direct_kway_sea17.ini

20

4.3 Evaluation of Algorithmic Components

convergence and should be avoided. Using the diversity replacement for graph partition-
ing [36] from Section 3.3 shows that trying to maintain diversity prevents early plateauing
and is thus capable of generating better solutions. However the connectivity approach
for diversity results in a slightly better solution quality. This confirms the assumption
formulated in Section 3.3 that connectivity difference is a more appropriate approach in
expressing different characteristics of two partitions. The difference between connectivity
replacement and worst replacement is statistically significant Z = 3.14, p = 0.0017. Based
on these results we will use connectivity difference as default replacement strategy in all
upcoming evaluations.

4.3.2 Combine Operators

Next we evaluate the different combine operators and compare the solution quality with the
solution quality of KN -CA and KN -CA-V. We evaluate two configurations of the evolu-
tionary algorithm. The specificationKE+Cx means that the configuration uses the combine
operator Cx. The configuration KE+C1+C2 chooses one of the two combine strategies uni-
formly at random for each iteration.

10200

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

50
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
KE + C1
KE + C1 + C2

KN -CA
KN -CA-V

Figure 4.4: Comparing KaHyPar-E to KaHyPar

In Figure 4.4 we evaluate the results of KaHyPar-E using only basic combines as evolu-
tionary operation against repeated repetitions of the nonevolutionary algorithms KN -CA

21

4 Experimental Evaluation

and KN -CA-V. The plot lines of KN -CA, KE+C1 and KE+C1+C2 are nearly identical up
to the time point of 10 tn normalized time. This is due to the fact that KaHyPar-E is using
KN -CA to generate the initial population. The minor fluctuations are caused by the shared
memory parallelization explained in Section 4.1. However the values generated are the
same since KN -CA is configured with the same seed during each of those experiments.
KN -CA-V is not sharing the same starting curve. Since V-cycles are time consuming the
algorithm steps of KN -CA-V are slower than the steps of KN -CA, resulting in an offset
of the starting point for the plot line. As expected KN -CA-V produces better solutions
than KN -CA, which also extends to repeated repetitions. Both variations of KaHyPar-E
gain a significant amount of improvement after generating the initial population. This is
due to the combine schemes being able to exploit structural benefits of different partitions
as described in 3.5.1, while also allowing for a more efficient exploration of the solution
space. However KE + C1 is eventually converging into a local optima since the combine
operation is causing convergence and reduces diversity. The multicombine operation C2
however is not causing premature convergence. This operator is profiting from a stable
population generated by the operator C1 in a sense that the best solutions in the population
can most likely be considered good solutions. This is visible in the plot since KE+C1+C2

is not drastically different from KE+C1 in the beginning but allows for an improvement of
solution quality when KE+C1 is already plateauing. Comparing KE+C1 with KN -CA-V
generates a Z-Value of 4.37 (p = 0.000012) indicating that KE+C1 is computing better
solutions. Comparing KE+C1 with KE+C1+C2 results in Z = 2.58 and p = 0.0098.

22

4.3 Evaluation of Algorithmic Components

4.3.3 Mutation Operators

10200

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
KE + C1
KE + C1 + M1
KE + C1 + M1 +M2

KE + C1 + M2
KE + C1 + M3

Figure 4.5: Different Mutation Operations

In Figure 4.5 the effectiveness of the different mutation operators is evaluated. KaHyPar-
E uses a 50% chance of C1 and a 50% chance of the respective mutation operations. In
the specific case of M1 + M2, the mutation operation performed is selected uniformly at
random. Adding mutation operator M1 to the already existing combine operator is in fact
performing worse. This is due to the fact that V-cycles share the same quality assurance as
C1 and are thus incapable of preventing premature convergence and introducing diversity.
Individuals that have been optimized during the execution of the algorithm also often have
been improved by V-cycles or already have a good enough quality so that V-cycles cannot
find improvements. In conclusion this means that V-cycles alone are unable to prevent
premature convergence. In contrast using V-cycles with new initial partitioning M2 or a
combination of both mutation operators will generate better solutions. Since M2 is not
limited by the quality assurance of C1 and M1, worse solutions can be created and the
solution space can be explored more effectively. Stable net detection M3 is generating
worse solutions or using up more time to generate individuals and therefore not further
inspected in upcoming experiments. Interestingly when considering how often the different
mutation operations have been able to generate a new best solution M3 has only been able
to do so for 2 instances out of 25 whereas any combination of M1 and M2 have created

23

4 Experimental Evaluation

a new best solution in all 25 instances. Due to the replacement strategy newly generated
solutions are only considered for insertion if the solution quality is better than the worst
individual in the population and will lead to convergence regardless of which mutation
operators are applied.

4.3.4 Mutation Replacement Strategy

Mutated individuals can be inserted into the population in two different ways. Replacing
the element used for the mutation in the classical sense of evolutionary algorithms, or
using the diversity replacement approach. We evaluate whether the different replacement
strategies are influencing the solution quality.

10200

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
KE + C1 + M1 + M2
KE + C1 + M1 + M2 diverse

KE + C1 + M2
KE + C1 + M2 diverse

Figure 4.6: Different replacement strategies for mutations

As seen in Figure 4.6 the different replacement strategies are displayed for M2 and a com-
bination of M1 and M2. While the difference in KE + C1 + M2 and KE + C1 + M2 diverse
is only a minuscule improvement in convergence time and solution quality, the difference
of KE + C1 + M1 + M2 and KE + C1 + M1 + M2 + diverse is more prominent in terms
of solution quality. Comparing the diverse approach with the basic approach results in
Z = 2.18, p = 0.029 for KE + C1 + M1 + M2 and Z = 2.47, p = 0.013 for KE + C1 + M2.

24

4.4 Parameter Tuning

4.4 Parameter Tuning

We introduced different combination and mutation operations which are selected by the
algorithm using probability distributions. In this section we analyze how the selection ratio
between the two combine operators is influencing the solution, as well as the ratio between
combination and mutation.

4.4.1 Configuring Combine Operators

10200

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

50
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
KE+C1
KE+C2

Figure 4.7: Chances of edge frequency combines

As seen in Section 4.3.2 combining operators C1 + C2 produces better results than using
each operator alone. We therefore analyze how the fraction of operator distribution affects
solution quality. In Figure 4.7 the chances of performing an edge frequency combine C2 in-
stead of a basic combine C1 are displayed. Clearly recognizable is that a proper application
of both operators will lead to improvements. The optimal values are in a range from 20%
to 50%, however no significant difference can be observed between the tuned values. We
choose 50% as distribution parameter when using both combine operators in an algorithm
configuration.

25

4 Experimental Evaluation

4.4.2 Configuring Mutation Operators

Next we determine an appropriate ratio for choosing combine and mutation operations. We
use KE + C1 + M2 for tuning this parameter.

10200

10400

10600

10800

11000

1 2 5 10 20 50 10
0

20
0

50
0

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
KE+C1
KE+M2

Figure 4.8: New initial partitioning mutation chance

Figure 4.8 shows the different mutation ratios. The percentages represent the chance of
performing a new initial partitioning V-cycle. If not performing a new initial partitioning
a basic combine is performed. It is visible that choosing either 0% mutation chance or
100% mutation chance are both not viable for generating good solutions. A combination
of both operators is increasing solution quality. As seen in this experiment a mutation
chance of 30% to 50% for new initial partitioning is generating the best solutions. This
is drastically diverging from the chance used in evolutionary graph partitioning which is
around 10% [36]. We choose a ratio of 50% between combine operators and mutation
operators.

4.5 Final Evaluation

Now we use the results form the tuning subset and transfer them on the benchmark subset.
The following algorithms are evaluated on the benchmark subset: KN -CA, KN -CA-V, KE

26

4.5 Final Evaluation

+ C1, KE + C1 + C2 and KE + C1 + M1 + M2. The experiments were performed on a
cluster consisting of 512 16-way Intel Xeon compute nodes. All nodes contain two Octa-
core Intel Xeon processors E5-2670 (Sandy Bridge) @ 2.6 GHz and have 8x256 KB of
level 2 cache and 20 MB level 3 cache. Each node has 64 GB of main memory. The nodes
were allocated exclusively to avoid CPU time interference. KE + C1 + C2 is using C1 or C2
with a probability of 50%. KE + C1 + M1 + M2 is choosing between a combine operation
or a mutation operation with 50% chance. The mutation strategy is selected uniformly at
random.

5800

5900

6000

6100

6200

6300

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm
KE+C1
KE+C1+C2
KE + C1 +M1 +M2

KN -CA
KN -CA-V

Figure 4.9: Benchmark subset results

Similarly to the results on the tuning subset, it is noticeable that the evolutionary algorithms
KE are performing better than the nonevolutionary counterparts KN . KN -CA-V is again
requiring more time for an iteration, resulting in a difference of the starting points of the
plot. Comparing the evolutionary algorithms with the nonevolutionary algorithms results
in a Z-Value of 14.97 when comparing KE + C1 + C2 against KN -CA-V and a Z-Value
of 20.11 when comparing KE + C1 + M1 + M2 against KN -CA-V. The error margin is
p ≈ 0, being too small to be expressed by 32 bit floating point representation. The con-
cluding statement is that both algorithm configurations are generating better solutions than
the nonevolutionary algorithms.

27

4 Experimental Evaluation

Table 4.3: Connectivity improvement of the strongest configurations for KaHyPar-E
KE + C1 + C2 KE + C1 + M1 + M2

k KN -CA-V KN -CA KN -CA-V KN -CA
all k 1.7% 2.7% 2.2% 3.2%

2 -0.2% 0.4% 0.2% 0.8%
4 -0.2% 0.3% 0.9% 1.3%
8 0.7% 1.6% 1.9% 2.7%

16 1.9% 2.8% 2.6% 3.5%
32 2.9% 3.9% 3.2% 4.2%
64 3.2% 4.7% 3.4% 4.8%

128 3.3% 5.0% 3.3% 5.0%

In Table 4.3 the average improvements of the two strongest configurations of KaHyPar-E
are compared to KaHyPar-CA-V and KaHyPar-CA. The average best improvement is 2.2%
when using KE + C1 + M1 + M2. As seen in Figure 4.10 the quality gains increase with
growing k. The strongest configuration KE + C1 + M1 + M2 produces better solutions than
KN -CA-V in 597 out of the 630 instances.
As seen in Figure 4.10 the solution quality of the evolutionary algorithms KE is quite
similar to the nonevolutionary algorithmsKN for small values of k. In fact the evolutionary
algorithms are sometimes performing worse. With increasing k the solution quality gains
of the evolutionary algorithms are growing. Additionally KE + C1 + C2 is approaching KE

+ C1 + M1 + M2 and KN -CA-V is diverging from KN -CA. This suggests that KaHyPar is
generating good solutions for small values of k, but allows for improvement if k is large.
The increasing number of blocks decrease the benefit of local search during refinement.
However the evolutionary framework is still capable of improving the solution quality, so
do V-cycles. The edge frequency operator additionally seems to thrive with increasing
problem complexity.
In Figure 4.11 we analyze the performance of the algorithms using the method presented
in [37]. For each separate instance we consider the best solution of all data sets Best and
display the resulting quotient of 1 − Best

Algorithm
sorted by descending order. As expected

KE + C1 + M1 + M2 is outperforming the other configurations and both evolutionary algo-
rithms are closer to the best solution than KN -CA-V. However when analyzing by graph
class in Figure 4.12 KE + C1 +C2 is outperforming KE + C1 + M1 + M2 on the ISPD98
instances whereas KE + C1 + M1 + M2 is performing better on the DAC2012 instances
and SAT14dual instances. The analysis suggests that edge frequency is more useful on
instances with few big hyperedges mixed with small hyperedges, but is underperforming
in hypergraphs with a great amount of large hyperedges and hypergraphs with many hy-
peredges in correspondence to the amount of nodes.

28

4.5 Final Evaluation

900

920

940

960

980

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KE+C1+C2

KN -CA-V
KE+C1+M1+M2

k = 2

2200

2250

2300

2350

2400

1 2 5 10 20 5010
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KE+C1+C2

KN -CA-V
KE+C1+M1+M2

k = 4

4100

4200

4300

4400

4500

1 2 5 10 20 5010
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KN -CA-V
KE+C1+C2

KE+C1+M1+M2

k = 8

6800

7000

7200

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KN -CA-V
KE+C1+C2

KE+C1+M1+M2

k = 16

10800

11000

11200

11400

11600

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KE+C1+C2

KN -CA-V
KE+C1+M1+M2

k = 32

16200

16400

16600

16800

17000

17200

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KN -CA-V
KE+C1+C2

KE+C1+M1+M2

k = 64

23500

24000

24500

25000

1 2 5 10 20 50 10
0

20
0

50
0

10
00

20
00

50
00

normalized time tn

m
ea

n
m

in
(λ

−
1)

Algorithm

KN -CA
KE+C1+C2

KN -CA-V
KE+C1+M1+M2

k = 128

Figure 4.10: Benchmark subset split by k

29

4 Experimental Evaluation

infeasible solutions

0.00

0.01

0.05

0.10

0.20

0.40

0.60

0.80

1.00

10
0

20
0

30
0

40
0

50
0

60
0

70
0

1-
(B

es
t/A

lg
or

ith
m

)

Algorithm

KN -CA-V
KE+M1+M2

KE+C1+C2

All Instances

Figure 4.11: Performance Plot over all instances

30

4.5 Final Evaluation

infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 15 20 25 30

Instances

1-
(B

es
t/A

lg
or

ith
m

)

DAC2012
infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 20 30 40 50 60 70

Instances

1-
(B

es
t/A

lg
or

ith
m

)

ISPD98

infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 25 50 75 10
0

12
0

Instances

1-
(B

es
t/A

lg
or

ith
m

)

SAT14 Primal
infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 25 50 75 10
0

12
0

14
0

Instances

1-
(B

es
t/A

lg
or

ith
m

)

SAT14 Literal

infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 25 50 75 10
0

12
0

Instances

1-
(B

es
t/A

lg
or

ith
m

)

SAT14 Dual
infeasible solutions

0.00

0.01

0.05
0.10

0.20

0.40

0.60
0.80
1.00

1 5 10 25 50 75 10
0

12
5

15
0

17
5

Instances

1-
(B

es
t/A

lg
or

ith
m

)

Sparse Matrices

Figure 4.12: Performance Plot split by instance class

31

5 Discussion

5.1 Conclusion

This thesis presents an evolutionary framework for KaHyPar resulting in a quality improve-
ment of up to 5%. We used combine operators different from usual crossover approaches to
generate better solutions from existing partitions, as well as mutation operations to increase
the solution space compared to KaHyPar. Additionally we created a diversity strategy suit-
able for hypergraph. Our operators are heavily integrated into the standard procedure of
KaHyPar, to the point where all operators make use of the multilevel partition steps pro-
vided by KaHyPar. To the best of our knowledge this work is the first combination of
multilevel and evolutionary algorithms in the field of hypergraph partitioning. As expected
of an evolutionary algorithm, the quality improvement needs multiple iterations to show
significance. KaHyPar-E was designed with that mentality to improve the best possible so-
lution for the partition of a hypergraph where the time constraint is of secondary relevance.

5.2 Future Work

KaHyPar-E can be augmented using a distributed implementation similar to KaffPaE [36].
Adding a layer of parallelization would allow a significant speedup by creating multiple
individuals during an iteration. Another interesting approach is a time cost analysis for
the different operators. There is a strong indication that the basic combine operator is
significantly faster than a regular iteration in KaHyPar. If this indication is true, a faster
population generation would be a valid approach to increase performance. Also the V-cycle
mutation operator might turn out to be more beneficial if the number of cycles is increased.
Other than that more sophisticated selection strategies for parent selection as well as edge
frequency might also be helpful.

33

Bibliography

[1] AKHREMTSEV, Y., T. HEUER, P. SANDERS S. SCHLAG: Engineering a direct k-
way Hypergraph Partitioning Algorithm. 19th Workshop on Algorithm Engineering
and Experiments, (ALENEX), 28–42, 2017.

[2] ALPERT, C. J.: The ISPD98 Circuit Benchmark Suite. Proceedings of the 1998
International Symposium on Physical Design, 80–85. ACM, 1998.

[3] ALPERT, C. J., J.-H. HUANG A. B. KAHNG: Multilevel Circuit Partitioning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(8):655–667, 1998.

[4] ALPERT, C. J. A. B. KAHNG: Recent Directions in Netlist Partitioning: a Survey.
Integration, the VLSI Journal, 19(1–2):1 – 81, 1995.

[5] AREIBI, S.: An Integrated Genetic Algorithm With Dynamic Hill Climbing for VLSI
Circuit Partitioning. Genetic and Evolutionary Computation Conference (GECCO),
97–102, 2000.

[6] ARMSTRONG, E., G. W. GREWAL, S. AREIBI G. DARLINGTON: An investigation
of parallel memetic algorithms for VLSI circuit partitioning on multi-core computers.
Proceedings of the 23rd Canadian Conference on Electrical and Computer Engineer-
ing, CCECE, 1–6, 2010.

[7] AYKANAT, C., B. B. CAMBAZOGLU B. UÇAR: Multi-level Direct K-way Hyper-
graph Partitioning with Multiple Constraints and Fixed Vertices. Journal of Parallel
and Distributed Computing, 68(5):609–625, 2008.

[8] BÄCK, T.: Evolutionary algorithms in theory and practice : evolution strategies,
evolutionary programming, genetic algorithms. , 1996.

[9] BADER, D. A., H. MEYERHENKE, P. SANDERS D. WAGNER: Graph partitioning
and graph clustering, 588. American Mathematical Soc., 2013.

[10] BELOV, A., D. DIEPOLD, M. HEULE M. JÄRVISALO: The SAT Competition 2014.
http://www.satcompetition.org/2014/, 2014.

[11] BLICKLE, T. L. THIELE: A Comparison of Selection Schemes used in Evolutionary
Algorithms. Evolutionary Computation, 4(4):361–394, 1996.

[12] BUI, T. N. B. R. MOON: A Fast and Stable Hybrid Genetic Algorithm for the Ratio-
Cut Partitioning Problem on Hypergraphs. Proceedings of the 31st Conference on
Design Automation, 664–669, 1994.

35

http://www.satcompetition.org/2014/

Bibliography

[13] BULUÇ, A., H. MEYERHENKE, I. SAFRO, P. SANDERS C. SCHULZ: Recent Ad-
vances in Graph Partitioning. Algorithm Engineering - Selected Results and Surveys,
117–158. Springer, 2016.

[14] CATALYÜREK, Ü. V. C. AYKANAT: Hypergraph-Partitioning-Based Decomposition
for Parallel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and
Distributed Systems, 10(7):673–693, Jul 1999.

[15] CHAN, H. P. MAZUMDER: A systolic architecture for high speed hypergraph parti-
tioning using a genetic algorithm. Progress in evolutionary computation, 109–126,
1995.

[16] COHOON, J., J. KAIRO J. LIENIG: Evolutionary Algorithms for the Physical Design
of VLSI Circuits, 683–711. Springer, 2003.

[17] CONG, J., H. J. LI, LIM. S. K., T. SHIBUYA D. XU: Large Scale Circuit Partition-
ing With Loose/Stable Net Removal and Signal Flow Based Clustering. Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
441–446, 1997.

[18] DAVIS, T. A. Y. HU: The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

[19] DELLING, D., A. V. GOLDBERG, I. RAZENSHTEYN R. F. WERNECK: Graph Par-
titioning with Natural Cuts. Proceedings of the 25th International Parallel and Dis-
tributed Processing Symposium, 1135–1146, 2011.

[20] DEVINE, K. D., E. G. BOMAN, R. T. HEAPHY, R. H. BISSELING Ü. V.
CATALYÜREK: Parallel Hypergraph Partitioning for Scientific Computing. 20th
International Conference on Parallel and Distributed Processing, IPDPS, 124–124.
IEEE, 2006.

[21] FIDUCCIA, C.M. R.M. MATTHEYSES: A Linear-Time Heuristic for Improving Net-
work Partitions. 19th Conference on Design Automation, 175–181, June 1982.

[22] GAREY, M. R. D. S. JOHNSON: Computers and intractability, 29. W.H. Freeman,
New York, 2002.

[23] HEUER, T. S. SCHLAG: Improving Coarsening Schemes for Hypergraph Partition-
ing by Exploiting Community Structure. 16th International Symposium on Experi-
mental Algorithms, (SEA), 21:1–21:19, 2017.

[24] HULIN, M.: Circuit partitioning with genetic algorithms using a coding scheme to
preserve the structure of a circuit, 75–79. Springer, 1991.

[25] KABILJO, I., B. KARRER, M. PUNDIR, S. PUPYREV, A. SHALITA, A. PRESTA

Y. AKHREMTSEV: Social Hash Partitioner: A Scalable Distributed Hypergraph Par-
titioner. 1–23, 2017.

[26] KARYPIS, G., R. AGGARWAL, V. KUMAR S. SHEKHAR: Multilevel Hypergraph
Partitioning: Applications in VLSI Domain. IEEE Transactions on Very Large Scale
Integration VLSI Systems, 7(1):69–79, 1999.

36

Bibliography

[27] KARYPIS, G. V. KUMAR: Multilevel K-way Hypergraph Partitioning. Proceedings
of the 36th ACM/IEEE Design Automation Conference, 343–348. ACM, 1999.

[28] KIM, J.-P., Y.-H. KIM B.-R. MOON: A Hybrid Genetic Approach for Circuit Bi-
partitioning, 1054–1064. Springer, 2004.

[29] KIM, Y.-H. B. R. MOON: Lock-Gain Based Graph Partitioning. Journal of Heuris-
tics, 10(1):37–57, 2004.

[30] M. HOLTGREWE, P. SANDERS C. SCHULZ: Engineering a scalable high quality
graph partitioner. IEEE International Symposium on Parallel Distributed Process-
ing (IPDPS), 1–12, 2010.

[31] MOSCATO, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. C3P Report 826, California Institute of Tech-
nology, 1989.

[32] PAPA, D. A. I. L. MARKOV: Hypergraph Partitioning and Clustering. Handbook
of Approximation Algorithms and Metaheuristics. 2007.

[33] S. M. SAIT, A. H. EL-MALEH R. H. AL-ABAJI: Evolutionary algorithms for VLSI
multi-objective netlist partitioning. Engineering applications of artificial intelligence,
19(3):257–268, 2006.

[34] SAAB, Y. V. B. RAO: An Evolution-Based Approach to Partitioning ASIC Systems.
Proceedings of the 26th ACM/IEEE Design Automation Conference, 767–770, 1989.

[35] SANCHIS, L. A.: Multiple-way Network Partitioning. IEEE Transactions on Com-
puters, 38(1):62–81, 1989.

[36] SANDERS, P. C. SCHULZ: Distributed Evolutionary Graph Partitioning. 12th Work-
shop on Algorithm Engineering and Experimentation (ALENEX), 16–29, 2012.

[37] SCHLAG, S., V. HENNE, T. HEUER, H. MEYERHENKE, P. SANDERS C. SCHULZ:
k-way Hypergraph Partitioning via n-Level Recursive Bisection. arXiv:1511.03137,
KIT, November 2015.

[38] T. CHEN, K. TANG, G. CHEN X. YAO: A large population size can be unhelpful in
evolutionary algorithms. Theoretical Computer Science, 436:54–70, 2012.

[39] TRIFUNOVIC, A.: Parallel algorithms for hypergraph partitioning. , University of
London, 2006.

[40] VASTENHOUW, B. R. H. BISSELING: A Two-Dimensional Data Distribution
Method for Parallel Sparse Matrix-Vector Multiplication. SIAM Review, 47(1):67–
95, 2005.

[41] VISWANATHAN, N., C. ALPERT, C. SZE, Z. LI Y. WEI: The DAC 2012 Routability-
driven Placement Contest and Benchmark Suite. 49th Annual Design Automation
Conference, DAC, 774–782. ACM, 2012.

[42] WICHLUND, S. E. AAS: On Multilevel Circuit Partitioning. Proceedings of
theIEEE/ACM International Conference on Computer-Aided Design (ICCAD), 505–
511, 1998.

37

Bibliography

[43] WILCOXON, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6):80–83, 1945.

38

	Abstract
	Introduction
	Contribution
	Structure of Thesis

	Preliminaries
	General Definitions
	Related Work
	KaHyPar

	KaHyPar-E
	Overview
	Population
	Diversity
	Selection Strategies
	Combine Operations
	Basic Combine (C1)
	Edge Frequency Multicombine (C2)

	Mutation operations
	V-Cycle (M1)
	V-Cycle + New Initial Partitioning (M2)
	Stable Nets (M3)

	Replacement Strategies

	Experimental Evaluation
	Experimental Setup
	Instances & Methodology
	Evaluation of Algorithmic Components
	Replacement Strategy
	Combine Operators
	Mutation Operators
	Mutation Replacement Strategy

	Parameter Tuning
	Configuring Combine Operators
	Configuring Mutation Operators

	Final Evaluation

	Discussion
	Conclusion
	Future Work

