
Institute for Applied and Numerical

Mathematics 4

Prof. Dr. Vincent Heuveline

Performance Optimization of

Parallel Lattice Boltzmann Fluid

Flow Simulations on Complex

Geometries

Diploma Thesis of

Jonas Fietz

AG Numerische Simulation, Optimierung und Hochleistungsrechnen

Reviewer: Prof. Dr. Vincent Heuveline

Second reviewer: Prof. Dr. Peter Sanders

Advisor: Dr. Mathias Krause

Advisor: Dipl. Inform. Dipl. Math. Christian Schulz

December 2011

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Preface

I would like to thank my two reviewers, Prof. Vincent Heuveline and Prof. Peter

Sanders, for allowing me to write this thesis at both their institutes, for their advice

and their support.

Also, I would like to thank my two advisors, Dr. Mathias Krause and Christian

Schulz, for taking the time to discuss ideas, to make suggestions, to proofread and

for their general support.

Finally, I would like to thank my proofreaders Isabel Krauss, Judith Ottich and

Marlene Sauer, as well as my parents for giving me the financial support for studying

in the first place.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegeben Quellen und Hilfsmittel verwendet habe.

Karlsruhe, 30.11.2011 Jonas Fietz

Contents

1. Introduction 1

1.1. Outline . 2

1.2. License . 3

2. Fundamentals 5

2.1. Mesoscopic Fluid Flow Model . 5

2.2. Lattice Boltzmann Methods . 8

2.2.1. Discretization of Time and Phase Space 9

2.2.2. Boundary and Initial Conditions 10

2.2.3. Implementation . 11

2.3. Graphs and Graph Partitioning Algorithms 13

2.3.1. Basic Concepts and Definitions 13

2.3.2. Multi-level Graph Partitioning 15

2.3.3. Concepts Used in KaFFPa 15

2.4. Octree-based Domain Decomposition 16

2.4.1. Definition of an Octree . 16

3. Analysis of Current State 19

3.1. Original Load Balancer in OpenLB 19

3.2. Heuristic Domain Decomposition . 20

4. Optimization Strategies 23

4.1. Load Balancing Utilizing Graph Partitioning 23

4.1.1. Calculating Node and Edge Weights 24

4.1.2. Example . 26

4.1.3. Possible Further Optimizations 26

4.2. Heuristic Load Balancing . 28

Contents

4.3. Octree-based Domain Decomposition 29

4.3.1. Implementation . 30

4.4. Shrinking Cuboids . 30

4.5. Other Considered Strategies and Variations 31

5. Evaluation 33

5.1. Benchmark Problems . 33

5.1.1. Lid-Driven Cavity . 33

5.1.2. Bifurcation . 34

5.2. Description of Test-Machines . 35

5.2.1. HP XC3000 . 36

5.2.2. Institutscluster . 37

5.2.3. Desktop Computer . 38

5.3. Results . 38

5.3.1. Measurements . 38

5.3.2. Graph Based Load Balancer 39

5.3.2.1. Validation of Model Assumptions for Communication 39

5.3.2.2. cavity3d . 40

5.3.2.3. bifurcation . 40

5.3.2.4. bifurcation-large . 42

5.3.3. Heuristic Load Balancer . 44

5.3.4. Octree Domain Decomposition 44

5.3.5. Shrinking Cuboids For Geometry Approximating Sparse Do-

main Decomposition . 50

6. Conclusion 57

6.1. Summary . 57

6.2. Outlook . 58

A. Appendix 59

A.1. Open Source Library OpenLB . 59

A.1.1. Project Overview . 59

A.1.2. Authors . 59

A.2. KaFFPa . 61

B. German Abstract 63

vi

Contents

Bibliography 67

List of Figures 71

List of Tables 73

vii

1. Introduction

Computational fluid dynamics (CFD) as a research field has become more and more

important in the last decades, as the rise in computing power enabled ever more

complicated simulations. CFD help accelerate research in many different areas, as

applications are manifold.

One example application is the computation of vehicular aerodynamics in the field

of automotive and aeronautical engineering. Another application, in which the im-

portance of CFD has risen tremendously in the past few years, lies in the medical

realm. The function of the human respiratory system has not yet been fully under-

stood, and its complete description is extremely complex. Due to highly complex

multiphysics phenomena involving multi-scale features and ramified, complex ge-

ometries, it is considered one of the Grand Challenges in scientific computing today.

One day, numerical simulation of fluid flows is hoped to enable surgeons to analyze

possible implications prior to or even during surgery. This requires efficient paral-

lelization strategies as well as taking advantage of the currently available hardware

architectures with large amounts of cores in both CPUs and Graphical Processing

Units (GPU) with hybrid parallelization techniques.

One of the projects that is working on simulating the respiratory tract is the

United Airways project. The United Airways project uses the open source software

OpenLB for its simulations of the human lungs and nose. OpenLB is a library for

simulating user defined fluid flows. It has facilities for enabling users to write their

own simulations with their own characteristics.

The library OpenLB implements an open source version of lattice Boltzmann (LB),

that have been developed in the second half of the last century. These methods are

1.1. Outline

inherently parallel and therefore well suited to solve large-scale problems.

The goal of this thesis is to research, implement and test possible performance

improvements for LBM on the example of OpenLB. Several possible bottle-necks are

identified in advance and then analyzed, leading to two dimensions of optimization

strategies.

The first area that needs improvement is the load balancer in OpenLB. The current

method for load balancing is very simplistic in its design. Therefore, two different

new load balancers are implemented. The first is a graph based load balancer that

leans heavily on work in the field of graph theory, utilizing the graph partitioner

KaFFPa as a library to improve load balancing. An alternative method using only

heuristics instead of external software is presented as well.

These new balancers are evaluated on different geometries, of which the bifurcation

tests are prime examples of fluid flow simulation in the human lungs or capillaries.

The tests showed that the new load balancers are competitive with the traditional

load balancer, improving performance perceptibly in most non-trivial cases.

But the most important effect of using these load balancers is losing restrictions

for the decomposition of the geometries, enabling improvements for sparse domain

decomposition. The goal here is to better fit the computational domains to the

underlying geometry, leading to less wasted processing power.

Two methods are presented and evaluated in this thesis: The first is improving the

original domain decomposition by shrinking the sub domains. The second strategy

is the usage of octrees for geometry aware domain decomposition. This tree data

structure and the spatial order it signifies allows to get a much closer fit to the

different geometries tested. Results show that these are very promising approaches.

1.1. Outline

A short summary of all chapters is shown here to give the reader an overview over

the different parts of this document.

In Chapter 2 the prerequisites used in this thesis will be presented. This section is

mostly meant as a place to get references for readers interested in further background

information or to ascertain themselves with specific terms and concepts. It will also

relate the work presented to other work in te different areas.

Chapter 3 contains an analysis of the original version of OpenLB, as well as the

implications of identified shortcomings.

In Chapter 4, we will describe in greater detail the designed and implemented

optimization strategies, as well as discuss possible alternatives and the implications.

2

1.2. License

An evaluation of the implemented strategies then follows in Chapter 5. Here,

three different benchmark problems are tested, and the improvements in performance

explained and quantified. Implications for later users are discussed here as well.

Chapter 6 will then contain a recapitulation of the presented concepts and re-

sults. Additionally, a short outlook into further opportunities for improvements and

research will be given.

The Appendix A describes the two used software packages – KaFFPa and OpenLB.

1.2. License

In the mindset of open access in the sciences and due to an included graphic

under the same license, this thesis is licensed under a Creative Commons Attribution-

ShareAlike 3.0 Unported License [3], for all content created originally for this thesis.

That includes all of the text body and some of the figures. It does explicitly not

grant usage rights for the pictures created by third parties as the copyright for these

works lies with them.

3

2. Fundamentals

In this chapter several of the concepts used in this thesis are introduced. They give

an overview over most basics needed to understand the theories developed in the

following sections. In case further clarification is needed or the reader is interested

in a more in-depth look at some of the topics covered, it is proposed to refer into

the cited works in the bibliography.

2.1. Mesoscopic Fluid Flow Model

On the following pages the models and methods used to examine the behavior

of fluid flows are described. As this thesis deals specifically with the fluid flow

simulation using Lattice Boltzmann Methods (LBM), those are described in more

detail. Basic understanding of fluid dynamics results from the underlying physics

and observed behaviors of fluids in controlled experiments. From those observations

one can derive assumptions on different levels, which can be classified by their de-

gree of refinement. According to [21], one can give a partial classification of those

refinements – and therefore the underlying models – as such:

• Macroscopic models: Typical models at this level include Navier-Stokes, Euler

or Stokes. Typical observations are macroscopic in nature such as fluid velocity,

pressure, density or temperature while ignoring properties at the molecular

level.

• Mesoscopic models: Typical models at this level include Liouville, Boltzmann

or the BGK-Boltzmann equation. In these statistical measures such as the

mean free path, mean molecular velocity or density is observed.

2.1. Mesoscopic Fluid Flow Model

• Microscopic models: Modelled by molecular dynamics as they are given by the

understanding of physical laws. Observations are at the molecular level such as

molecular mass, velocity or extent and form. As one can imagine, these easily

overwhelm even the biggest computers currently available for any interestingly

sized problems (details on why this is unfeasible are given by [31, pp. 3,4]).

The general equation governing the dynamics of dilute gases was developed by

Boltzmann in 1872, and is accordingly called the Boltzmann equation. It has been

applied to various other fields such as electron transport in semiconductors, neutron

transport or quantum liquids [10], [23].

The mathematical description of the mesoscopic model is derived from the mi-

croscopic view of a fluid via statistical measures. An overview of the underlying

assumptions is given in the following paragraphs as described in [21] and [31]. Exact

derivations for the model can be found in [21] or [10] as well as the derivations for

the macroscopic quantities.

The fluid is modelled as a collection of N molecules in a domain Ω ⊆ Rd at a

certain temperature. Each molecule is then represented as a particle with the same

particle diameter δ ∈ R>0 and the same mass m ∈ R>0.

The particles interact with each other at any given time. This is known as Brow-

nian motion. Particles are assumed to be free flowing, respecting Newton’s laws,

without being subject to any external volume forces except gravity. The path be-

tween two collisions is called free path, the length of the average free path in a volume

over a given time interval is the mean free path lf ∈ R>0. All collisions are supposed

to be elastic, meaning that momentum and kinetic energy are conserved. Particles

also are assumed to collide seldom – or interact weakly – as their assumed diameter

is very small. In addition, one makes the assumption that all collisions are binary,

i.e. only two particles can collide with each other at the same time.

In such a gas, each particle is perfectly described by the current position of its

center r ∈ Ω and its current velocity v ∈ Ξ = Rd. By convention, one uses the

following terms for these spaces:

• position space Ω ⊆ Rd

• velocity space Ξ = Rd

• phase space µ = Ω× Ξ ⊆ R2d

Both r and v are functions of a time interval I = [t0, t1] ⊆ R into Ω and Ξ. At

a certain point in time t ∈ I the system is defined as the state of all particles

µN ⊆ R2dN .

6

2.1. Mesoscopic Fluid Flow Model

Based on this microscopic model, to get to the level of a mesoscopic model one

discards the information for each individual particle, and instead examines probabil-

ities for the states of the fluid. The position (r(t),v(t))i of each particle in its phase

space µi is considered as the realisation of a random variable. The phase space µi

generates a σ-Algebra σ(µi). A σ-algebra is defined as follows: For a non-empty set

Ω and A ⊂ P(Ω), where P is the power set of Ω. This system of subsets of Ω is then

called a σ-algebra if it satisfies the three conditions [16]

1. Ω ∈ A

2. A ∈ A ⇒ Ac(:= Ω \A) ∈ A

3. An ∈ A(n ∈ N)⇒
⋃∞
n=1An ∈ A

So σ(µi) is then a σ-algebra with the probability P ti (Ai) to find (r(t), v(t))i in

Ai ∈ σ(µi) therefore giving us the probability space (µi, σ(µi), P
t
i). From these

probability spaces one constructs the finite discrete probability space (Θ, P tA) for a

given A ∈ σ(µ). The variable k ∈ Θ is the number of particles found in A with

the probability P tA(k). One can now calculate the expected number of particles at a

point in time t in a certain space A as EtA =
∑N

k=1 kP
t
A(k).

EtA/N =: P tN (A) as a function of A ⊆ µ defines the probability measure itself on

the probability space consisting of phase space µ and the σ-algebra σ(µ).

One can derive a multitude of macroscopic quantities using these probability mea-

sures such as particle density, mass density, fluid velocity, stress tensor or pressure.

For this, the density function ptN of P tN is multiplied with the number of particles N

in Ω. This results in the particle density function f given by

f :

I × Ω× Rd → R≥0
(t, r,v) → f(t, r,v)

(2.1)

Using the restrictions defined above, one can then derive the numbers of molecules

entering and leaving a certain subset B × C ⊆ Ω. For an external volume force

F results in the Boltzmann equation for rigid spheres as follows(
δ

δt
+ v · ∇r +

F

m
· ∇v

)
f =

∫
S

∫
Rd

n+
∗

n∗ · g(f ′f ′∗ − ff∗)dv∗ds︸ ︷︷ ︸
=:J(f)

, (2.2)

where J is the collision operator.

7

2.2. Lattice Boltzmann Methods

This derivation and explanation of the Boltzmann equation closely follows the one

given in [21].

Due to the complex structure of the collision operator J , Bhatnagar, Gross and

Krook proposed in 1954 an elegant simplification [7]. Their BGK collision operator

is defined by

Q(f) := − 1

ω
(f −M eq

f) in I × Ω× Rd, (2.3)

where M eq
f := feq(nf ,uf , Tf), Tf is the absolute temperature and uf is the specific

velocity. M e
f q is a specific Maxwellian distributions with the moments of f serving

as suitable choices [21].

2.2. Lattice Boltzmann Methods

Originally, lattice Boltzmann methods were developed in the wake of lattice gas

cellular automata (LGCA) methods developed by Uriel Frisch, Brosl Hasslacher and

Yves Pomeau in 1986 [31]. The elegance of the LGCA methods was that they allowed

to reproduce the complexity of fluid flows using an intrinsically parallel paradigm.

Typically, they trace the movement of a given number of particles. One can then

deduce macroscopic quantities such as pressure or velocity from the state of the

whole system.

LGCAs usually choose a uniform grid, referred to as a lattice. An example of such

a grid, as used by the Frisch-Hasslacher-Pomeau automaton, is a regular lattice with

a hexagonal symmetry, in which each lattice site is surrounded by six neighbors.

[31] Each particle has a certain velocity which enables it to reach exactly one of its

neighbors during each propagation or streaming step. Exactly as defined before all

particles have the same mass, and as they all can only reach their nearest neighbors,

all of them have the same kinetic energy. This streaming step can be seen as a

constant time interval, during which there are no collisions. After each streaming

step a collision step is executed. Intuitively, this means that once the particles arrive

at their destination, they collide with whatever is there. This collision of course has

to fit into the same structure as before, so this is only a radical simplification of the

Newtonian equations for collisions. But due to the Boolean characteristics, LGCA

schemes resulted in a certain amount of statistical noise, motivating the transition

to Lattice Boltzmann (LB) schemes where the specific number of moving particles

was replaced with an average, as invented by McNamara and Zanetti [25]. Another

downside of LGCA schemes was the unsuitability for high-Reynolds flows due to

some characteristics of their collision operator, which prompted the development of

8

2.2. Lattice Boltzmann Methods

alternatives for these operators. The collision operator defined by BGK as given in

Section 2.1 is one of those alternatives.

2.2.1. Discretization of Time and Phase Space

To begin this section, we will introduce the characteristic length L ∈ R>0 which

characterizes the magnitude of the domain Ω. We also fix a characteristic speed

U ∈ R>0 which stands for a typical magnitude of macroscopic flow velocity. Two

typical microscopic magnitudes aret the mean free path lf and the mean absolute

thermal velocity c̄. One can derive c̄ =
√

8
πRT with R being the universal gas

constant and T being the absolute temperature. The speed of sound is the given by

cs =
√
γRT with the adiabatic exponent γ of the same magnitude as c̄. From this,

the two following dimensionless quantities are defined:

Knudsen number :

Kn := lf/L, (2.4)

and Mach number :

Ma := U/c. (2.5)

We also define kinematic viscosity ν := π
8 c̄lf , dynamic viscosity µ := νρ and

Reynolds number

Re :=
ρUL

µ
=
piγ

2
ρ
Ma

Kn
. (2.6)

Definitions follow the ones given in [21].

Now let h := lf/c̄ be the discretization parameter. It is the shortest distance

between two nodes of a uniform grid approximating the position space Ω. This grid

is commonly called the lattice.

The velocity space is discretized into q ∈ N specific velocities vi, with the space of

velocities Q := {vi : i = 0, 1, . . . , q − 1}. The velocities are chosen so that a particle

with a given velocity always either stays at the current position or at a neighboring

knot of the lattice at t = t + h2. This results in the discretization of time space as

Ih := {t ∈ I : t = t0 + h2k, k ∈ N}.
Discretizations are usually named after the number of space dimensions d and the

number of velocities q, normally using the convention of DdQq to describe a specific

LB model. Typical models used are D2Q9 or D3Q19 [31]. The D3Q19 example

stands for a 3-dimensional space with 19 directions. The 19 speeds are made up of

the six neighboring nodes, the twelve neighbors sharing an edge and no motion at all

9

2.2. Lattice Boltzmann Methods

(see Figure 2.1). The D3Q27 model would extend the D3Q19 model to also include

the speeds to the neighbors sharing a corner.

With this parameter h, one can derive the Lattice Boltzmann equation from the

BGK-Boltzmann equation we saw earlier (for an example for such a derivation see

[21]. For a vanishing force term F = 0 in I × Ω and viscosity ν we get the lattice

Boltzmann equation as follows:

fi(t+ h2)− fi(t) = − 1

3ν + 1/2

(
fi(t)−M eq

fi
(t)
)

for t ∈ Ih, i = 0, 1, · · · , q − 1. (2.7)

This equation gives us the q different equations for the DdQq model.

z

y

x

v1

v10

v2

v3

v11

v14

v4

v13

v5

v12

v6v7

v8

v
9

v16

v17

v18

v15

Figure 2.1.: Example for D3Q19 model showing the 19 different speeds

2.2.2. Boundary and Initial Conditions

This section is meant to be of an exemplary character to give readers an idea of

what kind of conditions are commonly used and being researched for the problems of

fluid flows. One difficulty with specifying boundary conditions is that at least for fluid

flows, the boundary conditions are often characterised by macroscopic properties

such as pressure and velocity, often leading to feedback loops. In addition, boundary

conditions do not necessarily have to be aligned to the grid coordinates, leading to

complex interpolations and abstractions.

At least for solid walls three boundary conditions are commonly differentiated:

10

2.2. Lattice Boltzmann Methods

• No-Slip approximates a wall, at which there is no motion of fluid at all, there-

fore defining a bounce-back boundary condition.

• Free-Slip being a wall that has no mentionable frictional influence on the fluid

• Frictional-Slip boundary condition which is a mixture of the two above. An

extension of this kind can then be sliding walls moving tangentially, a fairly

straightforward generalization [31].

Initial conditions and more general boundary conditions are far more complicated

and still an active research topic [21].

2.2.3. Implementation

This section gives an overview over some of the implementation details in the

software OpenLB, as far as it is needed to understand the motivation and the im-

plementation of the optimizations developed in this thesis.

As described above, an LBM is usually used on a regular, homogeneous lattice

Ωh. But, if needed, it may as well be executed on an inhomogeneous lattice by

using a multi-block approach. This commonly entails dividing the lattice in sev-

eral sub-blocks and implementing a suitable interface between the blocks of different

resolutions. This approach has the additional benefit that the execution speed on

homogeneous blocks has been shown to be higher than on unstructured grids. A

multi-block approach also lends itself very well to parallelization by splitting the

geometry into smaller blocks and distributing these to the specific compute nodes,

thereby also reducing memory requirements and allowing parallel execution of mul-

tiple blocks.

This approach is reflected in the data structure BlockLattice in OpenLB. A

BlockLattice is the representation of a rectangular set of Cells. Each Cell holds

the q variables for the velocity distribution functions fi. The BlockLattices are

encapsulated in another data structure, the SuperLattice, representing the whole

geometry.

The calculations of the LB algorithms are implemented in the BlockLattice in

OpenLB. For these calculations all cells are evaluated iteratively and a local collision

step is executed, which is then followed by the streaming step. The collision operator

can be given by the user to characterize specific physical conditions for the simu-

lation. This simple model does not encompass more complex boundary conditions,

but as those are viewed as local and are only relevant in very confined areas, they

are implemented as special procedures executed in a post-processing step. These

steps only access the Cells needed. Therefore their complexity can be ignored.

11

2.2. Lattice Boltzmann Methods

After each step, boundary Cells are communicated to the neighboring BlockLat-

tices. This so far describes a very typical implementation of the LB algorithm, as

it is probably present in most similar software.

Some more details are a bit more implementation dependent, so we will have a

look at how the SuperLattice handles the structural data of the geometry. The

BlockLattice structure itself is unaware of its position within the geometry. This

information is saved in a parallel data structure named Cuboid. The cuboids them-

selves are organized in a CuboidGeometry, which is part of the SuperLattice. The

communication method used in this thesis is only MPI for which the SuperLattice

initializes a Communicator. A communicator is the structure defining the data ex-

change between different Cuboids and BlockGeometrys. For each communication

between different BlockGeometrys, one data array is defined, so that the overhead

for MPI is kept to a minimum. In this array, all communication data is aggregated

during each step. For the communication, a layer of ghost cells is created around

the cuboid to buffer the data needed.

Algorithm 1 Basic steps of the parallel lattice Boltzmann algorithm for communi-
cation based parallelization with MPI [21]

Reading Input
Simulation Setup and Initialization
Time loop
for t = t0 → t = tmax do

Collision
{Blocking}
{Communicating}
{Writing to ghost cells}
Streaming
Post-Processing
Writing Output

end for

As a note to the reader, in the following chapters, Cuboid will usually be used to

describe the part of a geometry consisting of the associated Cells, BlockGeometry

and Cuboid.

This concept also allows for implementations of hybrid parallelization [17], for

example to compute certain BlockGeometries on certain kinds of compute nodes,

e.g. certain kinds of graphic card clusters, for which implementations exist in other

software.

12

2.3. Graphs and Graph Partitioning Algorithms

Figure 2.2.: The different levels of abstractions in OpenLB used for hybrid paral-
lelization [21]

2.3. Graphs and Graph Partitioning Algorithms

Graph partitioning is a technique used in many fields such as computer science

or engineering. One very good use-case of partitioning of unstructured graphs is

the field of high performance computing; in this case, graphs can be used to model

the underlying computation and communication, and the partition is then a load

balance with reduced communication and equal sizes blocks of computation.

2.3.1. Basic Concepts and Definitions

A directed graph G is defined as a pair (V,E). V is a finite set of vertices and

therefore called vertex set. The set E is called the edge set ; its elements are edges

and it is defined as a binary relation on V .

For an undirected graph G = (V,E), E is defined as a set of unordered pairs of

elements of V opposed to the ordered pairs in a directed graph. So an edge e ∈ E
is a set {u, v}, u, v ∈ V and u 6= v. We follow the usual convention for edges in

replacing the set notation {u, v} with (u, v) which is equal to (v, u).

If (u, v) is an edge in a directed graph G = (V,E), one says that (u, v) is incident

from or leaves vertex u and is incident to or enters vertex v.

Let (u, v) be an edge in a graph G = (V,E), then vertex v is said to be adjacent

to vertex u. If the graph is not directed, the adjacency relation is symmetric, which

is not necessarily the case for directed graphs.

A matching M in a graph G is a set of pairwise non-adjacent edges. This means

13

2.3. Graphs and Graph Partitioning Algorithms

that no two edges share a common vertex.

Extending the definition for the vertices and edges to include a weight leads to a

weighted graph. For this we will use the functions

c : V → N

v → c(v)

and

ω : E → N

e → ω(e)

to assign weights to vertices and edges. ω and c are then extended to sets so that

c(V ′) :=
∑

v∈V ′ c(v) and ω(E′) :=
∑

e∈E′ ω(e).

A contraction of an edge e = (v1, v2) is an operation on a graph G = (V,E) that

combines v1, v2 and adds the new vertice vn back to V to create V ′ = V ∪(vn)\(v1, v2).
Then, it removes the edge e from E and replaces all edges (v1, v) and (v2, v) with

(vn, v) for v ∈ V to create E′. The weight c(vn) = c(v1) + c(v2). If replacing edges

of the form (u, v1), (u, v2)leads to the situation of two parallel edges (u, vn), these

edges are replaced with a single edge with ω((u, vn)) = ω((u, v1)) + ω((u, v2)).

A k-way graph partitioning problem of a graph G = (V,E) is defined as follows:

With |V | = n, partition V in k subsets V1, V2, . . . , Vk, such that Vi∩Vj = ∅ for i 6= j,

|Vi| = n/k and
⋃
i Vi = V , while minimizing the edge-cut. For Vi, Vj , let Ei,j be all

edges (u, v) with u ∈ Vi, v ∈ Vj . Then the edge-cut is defined as∑
i,j,i6=j

ω(Ei,j), with Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj} .

The balancing constraint places the demand that ∀i ∈ {1, .., k} : c(Vi) ≤ Lmax :=

(1+ε)c(V)/k+maxv∈V c(v) for some parameter ε. The last term is needed as vertexes

can only be applied atomically to the partitions.

A projection back from G′ = (V ′, E′) to G = (V,E) is a reversal operation for a

contraction. It maps a partition V ′i back to a partition Vi so that for all v1, v2 ∈ V
that were combined to a node vn ∈ V ′i ⊆ V ′ are assigned to the subset Vi ⊆ V , while

all untouched nodes from V ′i are assigned one-to-one to Vi.

The definitions for the graphs, adjacency, incidence and contractions follow those

given in [12, pp.1080-1084]. The description and definition of the k-way graph par-

14

2.3. Graphs and Graph Partitioning Algorithms

titioning problem this way have been adapted from [20].

2.3.2. Multi-level Graph Partitioning

Currently, the two major methods for partitioning graphs are multi-level algo-

rithms and spectral bisection and partitioning. The software KaFFPa (further de-

tails see Section A.2) used in this thesis utilizes multi-level algorithms, so we will

focus on those.

Multi-level algorithms are generally divided in three main phases described below,

each of which may be accomplished by different strategies [20]

Starting with a graph G0 = (V0, E0) one proceeds with:

• Coarsening Phase: The graph is transformed into a sequence of smaller and

smaller graphs G1, G2, . . . , Gm such that |V1| > |V2| > · · · > |Vm| by identifying

matchings M ⊆ E and contracting the edges in M .

• Initial Partitioning Phase: Partition Pm of the graph Gm = (Vm, Em) is com-

puted, observing the balancing constraint for an ε > 0. This may be done

either with another algorithm or by contracting the graph to exactly k nodes

and using the trivial initial partitioning.

• Uncoarsening Phase: The partition Pm of Gm is projected back to G0 going

through the intermediate partitions Pi. At each projection step refinements

are made. The refinement algorithms move nodes between different partitions

to improve balance and cut size [28].

2.3.3. Concepts Used in KaFFPa

This section will be a brief overview of the algorithms used in KaFFPa as described

by Sanders and Schulz in [28]. KaFFPa makes use of some of the methods and

strategies proposed in KaPPa [19] and KaSPar [26].

Contraction: A rating function scores edges for contraction on local information.

The score signifies how useful the contraction of the respective edge would be. Then,

a matching algorithm tries to maximize the sum of ratings of contracted edges by

evaluating the global structure of the graph. For matchings, a Global Path Algorithm

(GPA) [24] which was chosen to compute matchings, as it has empirically shown good

results [29]. The GPA scans edges in order of decreasing weight, and constructs

collections of paths and lengths cycles during this analysis. Afterwards, optimal

solutions are computed through dynamic programming.

15

2.4. Octree-based Domain Decomposition

Initial Partitioning : Contraction stops at max(60k, n
60k). Then KaFFPa may use

kMetis or Scotch [27] for initial partitioning. For the purpose of this thesis, only

Scotch was used as an initial partitioner.

Refinement : Refinement is the last step of this multi-level algorithm. After uncon-

tracting edges to uncoarsen the current graph, different local improvement methods

are applied. Two kinds of these are implemented in KaFFPa. The first kind is Quo-

tient graph style refinement [19], which utilizes the quotient graph for analysis. In it,

each edge yields a pair of blocks which share a non-empty boundary. On these pairs,

one can apply a two-way local improvement method moving only nodes between the

current two blocks.

The second kind is a k-way local search. This method is not restricted to only

two blocks and enables the algorithm to take a more global view. It is based on the

FM-algorithm from [14]. This method uses a single priority queue. This queue is

initialized with the possible gains in edge-cut that can be achieved when moving a

specific node to another block. Nodes can be all nodes in the partition boundary.

The algorithm then repeatedly looks for the node with the highest gain, which is

then moved if this move does not unbalance the graph. This is done until either the

queue is empty or certain stopping criteria are reached. Then, the situation with

the lowest edge-cut is used.

2.4. Octree-based Domain Decomposition

One of the new methods for domain decompositions evaluated in this thesis uses

structures of octrees as their basis. This structure will be defined and explained

below. Octrees allow a close fit of the cuboid structure to the underlying geometry

of the problem. Octree based methods have been used with great success before in

the application of finite element methods, for example in [30] or [9].

2.4.1. Definition of an Octree

An octree is a tree data structure in which each node is either a leaf node or an

internal node with exactly eight children. It is a special case of tree structures for

every n-dimensional space, although, due to computer graphics, the most commonly

used structures are quadtrees (the 2D variant) and octrees. Octrees lend themselves

very well to the partitioning of three dimensional spaces, as each node can be seen

and understood as a cube in this space. If a node has children, these nodes are

the natural sub cubes dividing the original cube in eight equally sized portions. An

example can be found in Figure 2.3.

16

2.4. Octree-based Domain Decomposition

Figure 2.3.: Example Octree with Corresponding Geometry - Author: White Timer-
wolf, downloaded from ”http://en.wikipedia.org/wiki/File:Octree2.svg”
on 22.11.2011 - License Creative Commons Attribution-Share Alike 3.0
Unported

17

3. Analysis of Current State

This chapter will present an analysis of some of the weaker points in the OpenLB

library. Then, the effects of these inefficiencies and their consequences are explained

briefly.

One of the points identified is the load balancer in OpenLB. A description of

its function is given below in Section 3.1. Due to its simplistic nature, the imple-

mentation of improvements in the domain decomposition were not possible. These

short-comings are discussed in Section 3.2.

3.1. Original Load Balancer in OpenLB
The original load balancer in OpenLB uses a very simple approach. The underlying

assumption is that the computational effort for all the cuboids it tries to balance is

approximately the same. Also, it completely disregards the effects of communication

between nodes and does neither calculate nor use the information. In general, we

will refer to an assignment of specifig cuboids to certain processor (cores) as a load

balance in some circumstances.

The algorithm works as follows: For nC cuboids created for a specific problem,

each of n processors would be assigned either
⌊
nC
n

⌋
or
⌊
nC
n

⌋
+ 1 cuboids. The first

nC mod n processors would get one more cuboid than the others. Assignment of

cuboids is linear, according to a mostly random numbering and therefore a random

order of the cuboids.

Each cuboid in OpenLB consists of a certain amount of cells. Each of these cells

might be empty, full or a boundary cell. The amount of work any of these kinds of

cells is different; exact numbers are shown in Table 4.1. This of course leads to the

situation that even same-sized cuboids might vary greatly in the amount of work

3.2. Heuristic Domain Decomposition

required. Therefore, the current load balancer probably creates certain amounts of

imbalance in the assignment of the cuboids to CPUs, possibly leaving large chunks

of computing power unused because of it. Two solutions to these problems are

presented in the optimization section, a graph based load balancer and a simpler

heuristic load balancer.

3.2. Heuristic Domain Decomposition

The way the traditional load balancer in OpenLB works has other downsides as

well. To achieve the prerequisite for the load balancer that all cuboids have about the

same amount of computational complexity – even when only fluid cells are present

– OpenLB currently uses heuristics for domain decomposition. These heuristics

try to keep the cuboids at about the same size, while also trying to minimize the

surface. Minimizing the surface means creating cuboids that are close to cube-

shaped, as those have less surface in relation to their volume and therefore need less

communication between cuboids per cell. The heuristics also completely ignore the

underlying geometry.

Figure 3.1.: Example for Domain Decomposition with the current methodology [21].

Cuboids in the finer parts of the lung are several times larger than the

geometry, leading to inefficiency.

This strategy has downsides. As can be seen in the example in Figure 3.1, the

cuboids created include a lot of empty cells. Especially for the finer parts of the

20

3.2. Heuristic Domain Decomposition

geometry, only small amounts of the total volume of the cuboids are really fluid

cells. Therefore, following from the prior section, the volume is not an adequate

measure of work required for this cuboid. Also, as the empty cells are not needed for

the fluid flow simulation, computational power is wasted on these cells. This leads

to the proposal of two out of a multitude of possible techniques that allow a better

fit to the geometry. The first is using octrees to refine the decomposition in parts of

the geometry with high complexity, that is in boundary regions. The second method

is the shrinking of the original cuboids to reduce the amount of empty cells around

the geometry. Both of these measures were implemented in the course of this thesis

and are presented in the following chapter.

21

4. Optimization Strategies

In Chapter 3, we outlined some of the deficiencies in the current load balancer

of OpenLB and the resulting inefficiencies in the domain decomposition, as well

as its unused optimization potential. As a solution, this chapter will present two

dimensions of strategies for improving the situation. First, the ideas for an improved

load balancer are discussed with a graph based load balancer and a simpler load

balancer version using heuristics. The second dimension of strategies are about the

improvements for sparse domain decomposition.

These different strategies are described as well as the reasoning behind different

design decisions and trade-offs.

4.1. Load Balancing Utilizing Graph Partitioning
When executing programs on large parallel computers, one has to assign certain

work loads to each of the processors. Classically, one differentiates between static and

dynamic load balancers for this task. Static load balancers use a priori information

or estimations to give a static - hence the name - assignment of work units to, in

our case, processor cores. Dynamic load balancers are used for algorithms with work

load that variates during the run. Here, certain work units are reassigned to other

processors on the fly. Examples are adaptive finite element methods or typical server

applications on the internet. To extend the terminology here, normally one calls the

result of a load balancing algorithm – the assignment of work units to workers – a

load balance as well.

OpenLB and LBM in general are constant during the runtime in the amount of

work required for each cuboid, so only static load balancers shall be considered. As

described in the prior sections, the algorithm in OpenLB is divided in two parts.

4.1. Load Balancing Utilizing Graph Partitioning

The first part is the local collision and streaming for each cuboid or blockgeometry.

Afterwards, the information is exchanged between different cuboids, that is the in-

formation of the border cells for neighboring cuboids which were assigned to different

processors is transmitted.

Logically, the perfect load balancer would always achieve minimal communication

while achieving perfect load balancing, i.e. each processor would need exactly the

same time for the compute step of all its cuboids combined. It is obvious that

this can only be the case for the most trivial situations and geometries, because as

soon as there are empty cells, computing times will differ. To achieve near perfect

load balancing while maintaining a minimal amount of communication, typically one

uses results and algorithms from the subject of graph theory, or more exactly graph

partitioning.

To utilize graph partitioning, one has to find a way to map the problem at hand

onto a graph. Typically, the algorithms for graph partitioning will divide a graph

in such a way that each partition has approximately the same node weight while

minimizing the cut between the different partitions. It makes sense to associate

the work amount or needed CPU time for each cuboid to the weight of a node for

this cuboid, and to associate the needed communication between two cuboids to the

edge weight of the edge between their respective nodes in the graph. Applying the

graph partitioner to this graph will yield subsets of nodes, such that the subsets have

approximately the same sum of node weights and therefore computing time. Because

of this, the edge-cut – the inter-processor communication – will be minimized. That

this relation between edge-cut and communication holds as suggested is shown in

Subsection 5.3.2.1. As the problem of graph partitioning is NP-complete, this will

not necessarily be the minimal communication for this specific problem and domain

decomposition, but it will be good enough in general.

4.1.1. Calculating Node and Edge Weights

The mapping of the problem at hand to the graph is now clear. But one still needs

to find the exact numbers for the amount of work to be done for each node and the

amount of communication between two cuboids.

We shall begin with the latter. As has been described in Section 2.2, OpenLB

aggregates all the communication between nodes in a single array for each commu-

nication pair. In order to do so, OpenLB finds all neighboring cells of a cuboid.

These are then put in an array and are communicated in this specific order at each

communication. This practice reduces the necessary communication to the informa-

tion in these cells. The size of these data structures stays constant. So to get the

24

4.1. Load Balancing Utilizing Graph Partitioning

exact amount of communication between two cuboids, one only needs to count the

amount of communicated cells. Consequently, this number is then assigned to each

edge in the graph.

Calculating the work to be done for each cuboid is not as easy, as the amount of

work for empty cells, boundary cells and normal fluid cells differ. As the amount of

boundary cells is usually quite small, and as they are treated as an extra step at the

end anyway, this special case will be ignored. They will be treated as normal fluid

cells. Empty cell in this case means that the geometry at this specific point is solid

or that this cell is outside of the fluid filled body being simulated. Intuitively, one

would expect the empty cells to take no computation time at all, but - due to the

way OpenLB is organized - streaming is still executed for these cells. As it is very

possible for a cuboid to consist largely of empty cells, it is important to know how

much work the empty cells take when compared to the normal fluid cells. Sadly, this

is not a specific constant valid for all types of architectures. Instead, it varied in

the tests performed between 1.8 and 4.5 for the differing types of computers. These

differences are most likely due to the different memory and cache hierarchies and

differing memory access speeds, as the streaming part of the LB algorithm is memory

bound.

To get a feel for the amount of variation in the relative execution speed of full

and empty cells, tests were done on the two clusters used at the university (for a

description see Section 5.2) as well as on a typical desktop machine. For this, we

used the cavity3d benchmark (see Subsection 5.1.1) with only fluid cells in one case,

and only empty cells in the other case. For verification purposes, this was cross

checked with a version of the cavity3d benchmark where the length of one side was

doubled; one half was then filled and one half was left empty. The results are shown

in Table 4.1. Due to the memory constraint of only 8GB, the test on the desktop

computer used a smaller geometry, but the results should still be accurate enough.

Dimension Empty Full relative (rounded)

HC3 4003 728 3260 ca. 4.5

IC1 4003 1230 3619 ca. 2.9

Desktop 3003 2790 5071 ca. 1.8

Table 4.1.: Execution speed of full and empty cells for cavity3d benchmark

As one can see, the differences in execution times between full and empty cuboids

might vary greatly. Therefore, to calculate the work to be done for each cuboid, we

25

4.1. Load Balancing Utilizing Graph Partitioning

get the formula

work = #fullNodes× correctionFactor + #emptyNodes.

The correctionFactor could as well be applied inversely to the #emptyNodes.

The implementation allows the user to choose the calculation of node weights,

either by volume of the cuboid or by accounting for the type of node in each cuboid.

For the second case, one can also pass a correction factor that relates the amount of

work for full and empty cells.

Of course this only applies for certain collision operators. As these values differ

with different collision operators and different computers, the user has to calculate

this through tests, if they want to take full advantage of the load balancer. These

tests are just basic runs of the cavity3d benchmark, one time only filled with fluid

cells and one time filled with only empty cells. These benchmark programs will be

supplied with the next published version of OpenLB. These are exactly the same

benchmarks as were used for calculating these numbers for this thesis.

4.1.2. Example

To illustrate the difference between the old and new balancer, compare Figure 4.2

of the graph based load balancing to the traditional load balancing in Figure 4.1.

Both figures were a test load balancing done on a cube, which was divided in 256

sub-cuboids. The load balancer had to split the workload of 256 cuboids on to 32

processors. As the workload can be evenly distributed (eight work units per proces-

sor), the deciding factor for the graph load balancer is minimizing communication.

There is one color per processor and each of the sub-cubes is colored according to

its assignment.

One can clearly see that the graph based load balancer tries to build segments as

similar to a circle (or cube) as possible as this minimizes the surface and therefore

the inter-processor communication. Clearly, the classic load balancer just hands out

slices according to the arbitrary numbering, resulting in very simple layering.

4.1.3. Possible Further Optimizations

There are multiple possible optimizations and tweaks that could be done to im-

prove the current version of the graph load balancer.

As mentioned in Section 2.3, one can influence the amount of imbalance in the

node weight between different partitions with a parameter ε. Due to the fact that

OpenLB is mostly compute speed bound, ε should be set as low as possible, but

there might still be some room for improvement.

26

4.1. Load Balancing Utilizing Graph Partitioning

Figure 4.1.: Load balancing of cuboid consisting of 256 smaller cuboids using the old
load balancer for 32 tasks

Another idea might be to execute multiple runs of the graph load balancer utilizing

the topography and different access speed of clusters, as each compute node usually

has multiple cores. In this case, one would first partition the complete geometry,

one subset per node. Afterwards, one partitions each subset for each node into as

many partitions as there are cores. The rationale behind this is that the communica-

tion between local nodes is usually faster than the communication between different

cluster nodes. The downside is that in most cases, as there is overhead for communi-

cation, one tries to minimize the numbers of cuboids for a reasonable load balance.

Because of this, the local load balance step might not be very efficient, as e.g. one

might end up with just one big cuboid for eight processors, further complicating the

situation.

One problem of this load balancing algorithm is that it only works for clusters with

homogeneous nodes because the partitioner tries to create partitions of equal size.

But as most clusters in use today have homogeneous computing nodes, or can be

used so that only those are taken, this should not be a problem for the application.

In the worst case faster nodes would be underutilized and if this should really present

a problem, then solutions for creating different blocks also exist (Section 6.2).

27

4.2. Heuristic Load Balancing

Figure 4.2.: Load Balancing of cuboid consisting of 256 smaller Cuboids with graph
based load balancer for 32 tasks

4.2. Heuristic Load Balancing

The solution of the load balancing using the graph load balancer is, as simple as

it may seem, quite complicated in the back end, as the algorithms used for graph

partitioning can be quite complex. The used graph partitioner KaFFPa is, in gen-

eral, non-deterministic, although this behavior is not exhibited as strong on smaller

graphs, which the resulting graphs usually are. Remembering that communication

was not accounted for in the original, simpler load balancer. Therefore, one might

get the idea to implement a load balancer which tries to balance the load as best as

possible while only taking the amount of computation each node has to handle into

account.

The goal of this simple algorithm then should be to equalize the amount of CPU

time for all nodes as much as possible. To achieve this, one can use the same methods

as for the graph based load balancer to determine the CPU time each cuboid will need

per iteration. These times are saved in an array cuboidT ime for the nC cuboids.

Then, one creates an array currentLoad with size |currentLoad| = n for the n

processors used in the cluster. At each step, one assigns the largest remaining work

unit to the processor with the least load at that moment. Additionally, we use an

array taken of booleans to track which cuboids are already assigned. Pseudo code

for the algorithm can be seen in Algorithm 2.

28

4.3. Octree-based Domain Decomposition

Algorithm 2 Assign each processor an approximately equal amount of work

for i = 0→ nC − 1 do
maxTime← −1
maxCuboidNo← −1
for iC = 0→ nC − 1 do

if taken[iC] = False and cuboidT ime[iC] > maxTime then
maxTime← cuboidT ime[iC]
maxCuboidNo← iC

end if
end for
minLoad← currentLoad[0]
minLoadJ ← 0
for j = 1→ n− 1 do

if currentLoad[j] < minLoad then
minLoadJ ← j
minLoad← currentLoad[j]

end if
end for
taken[maxCuboidNo]← True
currentLoad[minLoadJ]← minLoad+maxTime

end for

This algorithm is one usually known as Largest Processing Time (LPT) first. It has

an upper bound of (43−
1
3n)×opt[15]. The implementation shown here is intentionally

kept simple and has a complexity of O(nC× (nC+n)) as the run time is very small

compared to the calculcation for the fluid flow problem. This algorithm could be

sped up for example through the use of binary heaps.

4.3. Octree-based Domain Decomposition

A very important part of load balancing is the decomposition of the complete

domain in sub-domains, as one has to optimize for multiple, sometimes opposing

properties of the sub-domains. As has been written before, cuboids should be as large

as possible, as more cuboids mean more communication even when local. The surface

of each cuboid should be minimal, as this determines the amount of communication

for this cuboid. This usually implies a shape as close to a ball or circle as possible. As

this is not space filling and only rectangular shapes are supported, the best shape is

therefore a cube. Another point to consider is that – as described in Subsection 4.1.1

– empty cells still use some processing power. So the cuboids should be fitting to

the geometry tightly.

29

4.4. Shrinking Cuboids

The original partitioner used heuristics to optimize for equal size, while trying to

keep the cuboids as close to cubes as possible. This was needed by the old load

balancer which just handed out certain amounts of cuboids without regard for the

amount of computing they needed.

This constraint was not given anymore with the new load balancer. As a conse-

quence, other methods of partitioning the problem domain could be evaluated, and

one of the algorithms used is octree partitioning.

4.3.1. Implementation

The advantage of octrees for domain decomposition lies in their ability to refine

parts of the problem domain, where the underlying geometry is more complex. At

these places, there are more opportunities for better fitting the cubes to the geometry

than with a naive decomposition in equal parts.

The general concept starts with embedding the problem domain in a cube. As

we want the boundaries to be exactly on the boundaries between the different cells

being generated by the voxelizer, we use a size of 2k ∗ voxelSize for some k ∈ N as

the side length of that cube.

As described above, domain decomposition should always result in cuboids that

are neither too small nor too large. E.g. using the surrounding cube by itself would

not be very useful for load balancing, while using single cells would create a massive

overhead. So the implementation allows for limiting the smallest and the biggest

size of cubes.

Having defined the mother cube now, one recursively divides the cube into smaller

cubes as long as the geometry in this part is interesting. In our case that means that

it contains empty cells at the same time as boundary or fluid cells. If this is not the

case, for example if we are completely on the inside or outside of the geometry, then

we keep the cube at this size, as long as it is smaller or equal to the maximum size.

Additionally, we limit the size to the low end, not splitting further when the cubes

would become smaller than the minimum size.

To conserve memory, as the mother cuboid can by quite a bit larger than the

non-cube shaped underlying geometries, the cuboids are resized so that they fit into

the bounding cuboid of the geometry. An exemplary decomposition can be seen in

Figure 4.3.

4.4. Shrinking Cuboids

The reasoning behind this step has been explained in Subsection 4.1.1. As empty

cells still need some processing time, it is best not to compute them at all. To exempt

30

4.5. Other Considered Strategies and Variations

Figure 4.3.: An example octree decomposition of bifurcation-large benchmark with
dimension Nx=599, Ny=92, Nz=703 and a minimum cuboid size of 64

most of these empty cells from computation, one only has to shrink the cuboids, as

these determine which areas are being calculated. To find out if a cuboid can be

shrunk, we just start running through each layer in all 6 directions, starting at the

respective faces of the cube. For each layer, we check if it is completely empty,

stopping the iteration in this direction when a full cell is found. In the next step, all

empty layers are removed. This shrinking is executed for all the cuboids.

Depending on the structure of the geometry, this can be more efficient than the

octree decomposition, as the cuboids stay larger but their borders still can get very

close to the boundaries of the geometry.

4.5. Other Considered Strategies and Variations
Several other optimizations were considered in the course of this thesis. As de-

scribed above, one problem of small cuboids is that the communication overhead

is quite large. A possible fix for this might be recombining cuboids once they are

assigned to a certain processor core. As in the current implementation this would

only work when this results in another cuboid, this was not attempted, as this prob-

lem largely exists for the octree implementation. There, depending on the geometry,

large amounts of cuboids with the minimum size are created. After applying a shrink

step, the likelihood for being able to recombine two cuboids would be very small. In

addition to this, the recombination would only result in a cuboid by chance as well

for the old style decomposition, and is also very limited due to the shrinking step.

31

4.5. Other Considered Strategies and Variations

The possibility of using multiple levels of graph partitioning have been discussed

above. But this presents some other problems, as topology information would have

to be supplied to the library, complicating interaction even further for the user.

For heterogeneous computers, many different heuristics exist as this problem is in

its most general form NP-complete. A comparison of different heuristics is presented

by Braun et.al. in [8].

32

5. Evaluation

5.1. Benchmark Problems
Several benchmarks were run to evaluate the improvement due to each of the

implemented optimizations. The benchmarks with which all the tests were run will

be described in the following sections.

5.1.1. Lid-Driven Cavity

The lid-driven cavity (LDC) benchmark problem has been used considerably in

research for years [11]. The reason for this lies in its simple geometry on the one

hand, which makes the setup as such very simple. On the other hand, the observed

physical behavior of the flow is non-trivial, especially in the 3D case. There, one can

observe eddies, boundary layers and different instabilities (see Figure 5.2).

The variant chosen for benchmarking can be further described as follows: An

incompressible Newtonian fluid in a cube is set into motion by a moving lid with

a constant speed. The typical variants differ in the assumed direction and speed

of the lid. In our cases, the speed is assumed to be one, and moving in direction

of u = (1, 0, 0) (see Figure 5.1). For these units, the Reynolds number is set to

Re = 1000. At the beginning, the fluid is at rest, while the velocity is set to u = 0

everywhere. The fluid is then accelerated by the lid, that is moving with constant

unit speed. For our tests, only 100 time steps are calculated. Although 100 steps

are not enough to display any kind of interesting fluid behavior, it suffices for the

purpose of speed measurement. Resulting runtimes are in the order of minutes,

depending on the amount of CPUs and the chosen geometry size.

Several benchmarks were run for N ∈ 100, 200, 400, therefore with h := 1/N ,

leading to lattice sizes of 1003, 2003 and 4003.

5.1. Benchmark Problems

Figure 5.1.: The geometry of the Lid-Driven-Cavity benchmark - a cube with a lid
moving in direction (1, 0, 0) where all other cells are initialized to u = 0
at the beginning. These cells are then accelerated by the moving lid
[21].

5.1.2. Bifurcation

During the past few years, one of the main applications of OpenLB at the KIT

has been the simulation of flows in the human lungs and nose. The structure of the

lungs is such that coming from the trachea, the lung is then divided into the two

main bronchi, leading to the two halves of the lung. This first part is idealized in

the geometry of the bifurcation benchmark, see Figure 5.3. The bronchi then divide

several more times, until after some time leading to the bronchioles and after further

branching leading to the alveolar sacs.

The further branching is implemented in an idealized way in the bifurcation-large

benchmark (Figure 5.4), which has the two main bronchi, one of which is divided

again into two parts. One of these parts is then divided again, finally resulting in

two third level bronchi, two second level bronchi and the main bronchi.

Both problems are supplied as a STL-file, which is a typical file format in stere-

lithography CAD software. These files only describe the surface geometry and are

read by a voxelizer that creates the BlockGeometry from the file.

34

5.2. Description of Test-Machines

Figure 5.2.: Typical fluid behavior for Lid-Driven-Cavity benchmark with the devel-
opment of a vortice [21].

The boundary of the idealized lung is not aligned to the directions, so it is initial-

ized as an interpolation boundary. The trachea is initialized as a pressure boundary

and the entries at the bronchi are velocity boundaries. As our benchmarks only

intended to measure the performance for this type of problem, no speeds were ini-

tialized, which has no influence on running time. But to simulate the real fluid flow,

one would iteratively raise the speed at the entries of the bronchi.

The bifurcation example was run for 100 iterations, the same as the cavity bench-

mark. As for the bifurcation-large benchmark, it was run for 300 iterations since this

benchmark needed more memory. As the IC1 also has less memory, the examined

geometries had to be smaller (See section 5.2). Still, with even more iterations, one

achieves run-times of just over a minute for one core.

5.2. Description of Test-Machines

The benchmarks were run on two parallel computers, often referred to as clusters,

which are described below. Both these clusters are located at the Steinbuch Centre

for Computing (SCC) located at the KIT.

Jobs on these clusters are governed by a central batching system. Each node is

35

5.2. Description of Test-Machines

Figure 5.3.: An image of the bifurcation geometry

used exclusively during all tests for the benchmarks run. Utilizing the batching sys-

tem support for a strict enforcement of maximum memory, one can assign certain

numbers of processes to each node. In all the tests, memory requirements were set

in such a way, that each process ran on one core and that no core was left unused,

if possible. While being more conservative with the used resources, this could pos-

sibly induce certain variations in the results. One possible case might be that since

lower levels of cache are often shared between cores of each processor, there might

be competition between the cores leading to an increased amount of cache misses.

Nevertheless, this way was chosen because adverse effects were not immediately vis-

ible and because it resembles real world usage much more closely. Generally, in the

further parts of this thesis, core and processor will be used interchangeably due to

this choice.

To get some more numbers, the tests for the comparison between full and empty

cells were also run on the author’s desktop computer.

5.2.1. HP XC3000

The HP XC3000 (HC3) is a “high performance and throughput computer” [4].

It is comprised of different kinds of nodes, of which only the compute nodes are

relevant for the tests executed. There are different kinds of compute nodes, of which

we only used the HP Proliant DL170h compute nodes to prevent variations because

of differing architectures between runs.

Each of the 312 8-way DL170h nodes consists of two quad-core Intel Xeon proces-

sors E5540 (Nehalem architecture) which run at a clock speed of 2.53 GHz and have

36

5.2. Description of Test-Machines

Figure 5.4.: An image of the bifurcation-large geometry

4x256 KB of level 2 cache and 8 MB level 3 cache. Every node has 24 GB of main

memory as well as a local disk with 250 GB and is connected to the other nodes via

an InfiniBand 4X QDR interconnect.

The InfiniBand interconnect is characterized by a very low latency of just 2 mi-

croseconds and a bandwidth node to node of more than 3100 MB/s. This architecture

makes the cluster well suited for communication intensive applications utilizing lots

of MPI communications [4]. The operating system running on the HC3 is Red Hat

5.8. The compiler used to compile the test programs was the GCC 4.5.3 with an

optimization level of O3; the MPI version used was HP-MPI 2.3.1.

5.2.2. Institutscluster

The “Institutscluster” (IC1) is a parallel computer hosted at the SCC for different

departments at the KIT. The cluster consists of the same four node types as the HC3,

login nodes, compute nodes, file server nodes and administrative server nodes. As

we only used the compute nodes during program execution, only those are described

here.

The IC1 consists of 200 8-way Intel Xeon X5355 nodes. Each of these nodes

37

5.3. Results

contains two quad-core Intel Xeon processors with a clock speed of 2.667 GHz and

2x4 MB of level-2 cache each. Every node has 16 GB of main memory as well as

four local disks with 250 GB each. The nodes are connected to each other via an

Infiniband 4X DDR interconnect.

The Infiniband interconnect has a latency from node to node below 2 microseconds

and a point to point bandwidth of 1300 MB/s [1].

Programs on the IC1 were compiled with the GCC 4.5.3 with an optimization

level of O3 and using the MPI library OpenMPI 1.5.4.

5.2.3. Desktop Computer

This personal computer consists of an Intel Core 2 Duo E6600 with two cores at

a clock speed of 2.40 GHz, an Intel 82975X Memory Controller and 8 GB of DDR2

RAM.

5.3. Results

To compare different implementations of LB, in most cases one uses the measure-

ment unit of million fluid-lattice-site updates per second MLUP/s, e.g. [32]. This

idea can be extended to the unit MLUP/ps for million fluid-lattice-site updates per

process and second [21]. The latter unit shall be used in all examples. For this, the

amount of fluid cells Nc for each of the examples is calculated and with the run-time

tp for p processor cores, i the number of iterations, the result is given as

PLB := 10−6
iNc

tpp

5.3.1. Measurements

As was explained in the sections about the different benchmarks, each benchmark

was run for several iterations. This was 100 for the bifurcation and lid-driven cavity

examples and 300 iterations for the bifurcation-large benchmark. The benchmarks

cavity and bifurcation were run on the HC3 and the ones for bifurcation-large were

run on the IC1 if not explicitly declared otherwise.

Due to the internal structure of the clusters HC3 and IC1, fluctuations in run-time

can sometimes be observed that make up to 15% of the total run-time. To mitigate

this effect, most tests were run five times and the best result was selected as being

representative. While this does not meet the requirements for statistical significance,

slowed down test cases stand out and were, if needed, verified on a case by case basis.

This trade-off had to be made due to constraints in the amount of CPU time usable.

(Begründung so in Ordnung?)ToDo

38

5.3. Results

Source Target
∑

Edge Weight Bytes Communicated Ratio

0 6 4 558 207 844 800 45 600

0 2 5 353 244 096 800 45 600

0 7 53 2 416 800 45 600

15 11 5 300 241 680 000 45 600

9 11 4 505 205 428 000 45 600

Table 5.1.: Communication between nodes compared to the sum of edge weights
between their assigned cuboids. This shows that the communication
between nodes is perfectly proportional to the assigned weights. The
amount of communication for 300 iterations of the bifurcation-large
benchmark is shown. When dividing per weight unit and iteration, one
gets 152 bytes for each communicated cell. This is the amount expected
for 19 doubles, which is exactly the amount of data of a cell in a D3Q19
model.

Also, all graphs in this section connect the different data points to clarify their

connection. This is by no means meant to imply the possibility of interpolation but

only for visual clarification.

5.3.2. Graph Based Load Balancer

The Graph Based Load Balancer (GBLB) was tested extensively on all the bench-

marks, as it is also the load balancer of choice for the decomposition strategies. This

section will only use the standard decomposition algorithm and validate the assump-

tions made in the design of the GBLB. It will also show that even with the standard

decomposition, improvements in run-time can be measured.

5.3.2.1. Validation of Model Assumptions for Communication

In the Subsection 4.1.1, weights for cuboids as graph nodes and for the communi-

cation as edges in the graph had to be derived. Validation for the work of each cuboid

was inherent in the calculation of the weight as we conducted measurements for the

amount of calculations for empty and full cells. The validation for communication

is presented in this section.

The HP-MPI built-in measurement facilities were used to measure communication

between different cluster nodes. The files produced by this measurement include the

exact numbers of bytes transferred between each of the cluster nodes. From this, the

transfers for the setup were subtracted, as only the communication during the actual

calculation is relevant. The results were then compared to the calculated weight for

the edges that connected the cuboids running between the nodes. An excerpt of this

39

5.3. Results

data for a test run of the bifurcation-large example with one cuboid per processor

for 16 processors is shown in Table 5.1.

These results show that the calculation of edge weights is proportional to the

communication. The calculated number of 45 600 is exactly the amount expected,

as these tests were done on 300 iterations of the bifurcation-large example. This

means that 152 bytes were communicated for each iteration and edge weight unit.

152 bytes are exactly 19 doubles on the test machines, and exactly 19 doubles are

used per cell in the D3Q19 model. Therefore, the used method for calculating edge

weights is correct.

5.3.2.2. cavity3d

The first test for the GBLB was the cavity3d benchmark. This benchmark was

used to show some general characteristics of the LB implementation which are also

exhibited for load balancing with the GBLB. This test was always run with the k×p
cuboids, that is with k cuboids for each of the p processors. These tests were run

for different sizes of h, resulting in cubes of the dimensions 1003, 2003 and 4003 cells

for the cavity3d benchmark.

As one can see from Figure 5.5, the GBLB performs at the same speed as the

simplistic traditional load balancer (TLB) for k = 1. One can also see that the

best performance per processor for this example is achieved with this same setting,

that is with one cuboid per processor. This is due to the minimal communication

within the cores and also between cores, as more cuboids always result in greater

communication, even when the cuboids are later assigned to the same core.

Although higher values of k are not beneficial in this specific benchmark, one can

also see that the GBLB often performs better for more cuboids per core. This is

despite the fact that the assumption of the TLB that volume is equal to computation

time still holds for this specific example.

Figure 5.6 shows the comparison between different sizes of the benchmark. One

can see that for larger cuboids (resulting from the larger geometry), the efficiency in

form of MLUP/ps is higher. This is because there are less boundary cells in relation

to internal cells, resulting in relatively fewer communication, which is the slower.

From this we know that bigger cuboids are the better choice, so one optimization

criterion for domain decomposition should be maximizing the cuboids.

5.3.2.3. bifurcation

On the first view, this benchmark does not seem as clear as the cavity3d example.

In Figure 5.7, one can see two rises of the MLUP/ps for the k = 4 plots and one for

40

5.3. Results

Figure 5.5.: Graph comparing traditional with graph based load balancer. k is a factor
for the number of cuboids, i.e. nC = k × numProc. The graph shows
that the graph based load balancer is at least as good as the traditional
one in nearly all cases.

k = 1. As we recall, in section 4, we deduced that empty cells required computing

time as well. Due to this, a step implemented in the examples removes completely

empty cuboids from the scheduling, which explaines the rises in computing speed

when distributing on more cores and nodes. As soon as a critical amount of cuboids

is generated, also completely empty cuboids are generated, which are then removed

and not “wasting” cpu time any more. One can therefore already get an idea of the

possible speed-ups due to shrinking.

Also, the k = 1 case, which was always faster for the cavity benchmark, is now

not optimal, for nearly all cases beyond a certain amount of CPUs. The reason for

this is that some cuboids are removed, and when there is only one cuboid per CPU,

some CPUs will be left idle. On the other hand, for the example for 64 processes,

there are only 44 cuboids left for the case k = 1, but there are 154 cuboids for the

41

5.3. Results

Figure 5.6.: Graph comparing traditional with graph based load balancer for differ-
ent sizes of geometry, 1003. 2003 and 4003 cells and one cuboid per
core. Bigger cuboids result in higher MLUP/ps due to more computing
compared to communicating.

case k = 4. In this case, it seems that the overhead of the many cuboids per CPU is

as bad as leaving some CPUs completely idle. This is probably due to the fact that

most cuboids are about the same size, so that each of the 64 CPUs gets at least two

work units with some receiving three. As all processors have to synchronize for each

iteration, this reduces the performance of all CPUs to about 2/3. Intuitively, this

should have approximately the same effect as letting about 1/3 of the CPUs idle.

5.3.2.4. bifurcation-large

As we noticed for the bifurcation benchmark, small values of k are not very efficient

because they allow some processors to run empty. Therefore, only higher values of

k are graphed in Figure 5.8.

This example shows the initial decline of computation speed from one CPU to

eight CPUs. This decline of speed has been observed before by [21] and is due to

42

5.3. Results

Figure 5.7.: Graph comparing traditional with graph based load balancer. This graph
exhibits some typical behavior due to the removal of completely empty
cuboids from the scheduling resulting in rising MLUP/ps with more
processors.

the memory bound characteristics of the LB algorithm. This behavior is especially

pronounced for the bifurcation-large benchmark as this example runs on the IC1.

The IC1 has eight-way nodes which all share the same memory bus and so the effect

is even greater as before because the HC3 has larger amounts of L2 cache for the

processors as well as an L3-cache.

While one can see that the results are all not that far apart, starting in the range

of approximately 128 processors the GBLB becomes more efficient by a margin. To

show how much more efficient the load balancer performs for higher numbers of

CPUs, see Table 5.2. The GBLB solution is about 34% faster than the solution with

the TLB in the largest test with 512 CPUs.

The table 5.2 also contains the number for k = 1, 2. For these two values, the

decomposition results in less cuboids than cpus. This combined with the maximum

part of the balancing constraint results in more than one cuboid being assigned to

some cpus, leading to a worse solution than the TLB. This was not optimized further,

43

5.3. Results

k MLUP/ps GBLB MLUP/ps TLB

1 0.067 0.117

2 0.044 0.223

4 0.303 0.198

8 0.297 0.226

16 0.26 0.199

32 0.137 0.134

64 0.068 0.022

Table 5.2.: This table shows the speed of the Graph Based Load Balancer and
the Traditional Load Balancer in MLUP/ps with 512 processors for the
bifurcation-large benchmark. The GBLB is about 34% faster than the
solution with the TLB.

because this case is not desirable anyway, as resources would be wasted with CPUs

being left empty even with a perfect load balance.

5.3.3. Heuristic Load Balancer

The general results for the graph based load balancer have been very good. So

the question was if the heuristic performs at a similar level. As computation time

was limited, only certain test cases were run with the heuristic load balancer, which

are presented in Table 5.3. From this table, one can see that the heuristic does

not fair much better than the traditional load balancer when using the old domain

decomposition. Also, the true speed up of the GBLB lies with more cores. While

the optimum lies at different values of k, the absolute values are not much better of

the heuristics than of the TLB.

The picture quickly becomes more clear when combining the new domain decom-

position techniques with the heuristic load balancer. The results can be seen in

Table 5.4. Clearly, the heuristic load balancer performs at a level in between the

TLB and the GBLB. Its most important feature clearly is that it also supports the

different cuboid sizes produced by the new decomposition strategies.

5.3.4. Octree Domain Decomposition

Tests for the Octree Domain Decomposition were done on the most complicated

of the benchmarks, the bifurcation-large example. Example decompositions that

utilized the octree algorithm for the bifurcation-large example can be seen in the

following figures:

• For an 8× 8× 8 minimum cuboid, see Figure 5.9

44

5.3. Results

Figure 5.8.: Comparing traditional with graph based load balancer for the bifurcation-
large test case. k is a factor for the number of cuboids. nC = k ×
numProc. This shows that the graph based load balancer in general
performs better than the traditional one, especially for larger cases.

• For an 16× 16× 16 minimum cuboid, see Figure 5.10

• For an 32× 32× 32 minimum cuboid, see Figure 5.11

• For an 64× 64× 64 minimum cuboid, see Figure 5.12

From these examples, one can see that the smaller the minimum cuboid, the

better the domain decomposition approximates the underlying geometry. All these

examples are conducted on a geometry of the bifurcation-large benchmark with a

resolution of Nx: 428, Ny: 66 and Nz: 503.

As one can easily deduct from the pictures, the amount of cuboids generated

increases the smaller the minimum cuboid. To give an overview over how many

cuboids are left after removing the completely empty ones, please refer to Table 5.5.

Due to the huge amount of cuboids generated for smaller minimum sizes, these

minimum sizes only work with large amounts of processors. But there, they enable

a very good load balancing between the different processors as work units are very

small. Problematic might be that the communication increases as well with the

number of cuboids, so performance probably depends on the specific underlying

geometry.

45

5.3. Results

Figure 5.9.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 8× 8× 8.

Figure 5.10.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 16× 16× 16.

46

5.3. Results

Figure 5.11.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 32× 32× 32.

Figure 5.12.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 64× 64× 64.

47

5.3. Results

processors k Old Dec. TLB Old Dec. GBLB Old Dec. HLB

32 4 0.322 0.310 0.349

32 8 0.299 0.319 0.324

32 16 0.312 0.307 0.331

256 4 0.226 0.267 0.239

256 8 0.247 0.261 0.248

256 16 0.23 0.241 0.178

512 4 0.198 0.303 0.236

512 8 0.226 0.297 0.183

512 16 0.199 0.260 0.139

Table 5.3.: Comparing the speed in MLUP/ps of Heuristic, Graph Based and Tradi-
tional Load Balancer for the bifurcation-large benchmark with a certain
subset of possible variations. All these examples use the old domain de-
composition algorithm. k is the multiplicator for the number of cuboids
per processor.

A bigger example shall be shown as well, discussing some more of the effects of the

octree decomposition: For a larger version of the bifurcation-large benchmark – Nx:

684 Ny: 105 Nz: 802 – with a minimum cuboid size of 8 we get the amount of 11043

cuboids. These cuboids have sizes between 192 and 33792 cells. For a minimum size

for cuboids of 8, that is a minimum cube of 8× 8× 8, one would expect a minimum

size of 512 cells. Due to the alignment of the mother cuboid, the volume can be

significantly less. The mother cuboid is aligned, so that it shares three edges with

the surrounding box of the geometry. Therefore, some cubes may be at the opposing

border of the surrounding box. These will be cut off for efficiency, as they would

unnecessarily waste memory. With a minimum size of 16, we get 2430 cuboids with

a minimum of 2048 cells and a maximum of 33792. One can imagine that this would

be a good amount of cuboids for about 512 to 1024 CPUs.

Comparing the speeds in Figure 5.13, one can observe that, most likely due to

the overhead of the shear amount of cuboids, the octree decomposition is only able

to compete with the traditional load balancer and domain decomposition in a few

cases. But the graph also suggests that for larger numbers of CPUs, the octree might

actually surpass the performance of the original decomposition and load balancer.

Two values for the octree with minimum cuboid size of c = 16 could not be calculated

due to errors

on the cluster at that time.

48

5.3. Results

processors k Old Dec. & TLB Shrink & GBLB Shrink & HLB

32 4 0.322 0.708 0.692

32 8 0.299 0.694 0.629

32 16 0.312 0.578 0.584

256 4 0.226 0.587 0.391

256 8 0.247 0.504 0.380

256 16 0.23 0.419 0.252

512 4 0.198 0.303 0.301

512 8 0.226 0.297 0.263

Table 5.4.: Comparing the speed in MLUP/ps of Heuristic, Graph Based and Tradi-
tional Load Balancer for the bifurcation-large benchmark with a certain
subset of possible variations. All these examples use the old domain de-
composition algorithm, but the GBLB and the HLB benchmarks both
utilize the shrinking step in addition.

Minimum Cuboid Number of Cuboids

8 4056

16 842

32 157

64 26

128 9

256 4

Table 5.5.: This table shows the number of cuboids generated for the bifurcation-
large example with the dimensions Nx:428, Ny: 66 and Nz: 503 for each
minimum cuboid size.

These observations show that more tests need to be done, especially for larger

numbers of cores and maybe even bigger geometries, as those will have larger inter-

nal cuboids, leading to better performance on those. So evidence suggest that octree

decomposition is best suited to very large and complex geometries. Also, one prob-

ably needs a certain amount of CPU to offset the huge numbers of small cuboids.

Improvements might be possible by shrinking the cuboids even further or maybe by

recombining them and then applying a shrinking step, using heuristics.

Last, some work has still be taken on by the implementor to find the right param-

eters for each specific fluid flow simulation.

49

5.3. Results

Figure 5.13.: Graph comparing Traditional Load Balancer with classic domain de-
composition with the Octree Decomposition and the Graph Based Load
Balancer. For the octree, c is the minimum side length of the cubes, for
the traditional load balancer it is the factor for the number of cuboids
in relation to the number of processors.

5.3.5. Shrinking Cuboids For Geometry Approximating Sparse Do-

main Decomposition

The shrinking step as a step to optimize the size of the cuboids showed itself to be

the most promising and performance raising strategies of all, despite its seemingly

simple nature. Performance for the bifurcation-large benchmark increased by over

100% in certain cases.

All these tests were run with the graph based load balancer. These tests included

processor counts between 1 and 256 and a factor k ∈ {1, 2, 4, 8, 16, 32, 48, 64} for the

amount of cuboids relative to the processor count. An excerpt of the performance for

the best performing traditional load balancer and the best graph based load balancer

test runs with an additional shrinking step are shown in Figure 5.14. One can see

that the solution with the shrinking step outperforms the traditional load balancer

for all values of k. Runs for c = 32 were not performed for p > 64 as memory

requirements were too tight for this test case and the trend suggests that results are

not competitive. The same holds true for the test case p = 256, k = 16. Also, once

more, we can see the effect of the removal of completely empty cuboids at work for

50

5.3. Results

p = 1, 2, as the variants with k >= 16 are faster there, because they already have

enough cuboids to contain completely empty ones.

Figure 5.14.: Graph showing the improvement in run-time of the bifurcation-large
benchmark for shrinking with the graph based load balancer compared
to the traditional load balancer with the traditional decomposition. k
is the factor for the number of cuboids in relation to the number of
processors. Speed is given in MLUP/ps.

A numeric comparison for this test case is shown in Table 5.6. There one sees that

the shrinking step always results in faster execution than just utilizing the traditional

load balancer.

This effect can be attributed to multiple effects. Because empty cells are excluded

from the streaming step, less streaming is required. An overview of what kind of

reduction in the amount of empty cells could be achieved can be seen in Table 5.7.

As one can deduce from these numbers, the speed-up can not solely be explained

by the smaller amount of empty cells. The graph load balancer certainly has its

part as was showed in the prior tests. But most likely several secondary effects are

at work as well. The ratio of memory accesses to CPU work shifts towards the

calculation side when the empty cells are removed, as the empty cells require no

51

5.3. Results

Processors Traditional Shrinking Performance Improvement

1 1.023 1.562 52.7%

2 0.895 1.466 63.8%

4 0.696 1.247 79.2%

8 0.385 0.786 104.2%

16 0.349 0.708 102.9%

32 0.322 0.659 104,7%

64 0.326 0.569 74.5%

128 0.303 0.587 93.7%

256 0.247 0.473 91.5%

Table 5.6.: Speeds in MLUP/ps for the best variant for each processor with the tradi-
tional load balancer and domain decomposition compared to the shrinking
step and the graph based load balancer. In the last column, the speed-up
with the new methods is shown.

Processors k # cuboids # cells before shrinking # cells after shrinking

128 4 185 14115849 11665913

16 4 33 14164128 9878364

32 4 58 14205510 10717376

Table 5.7.: Comparison of the amount of cells that are computed before and after
executing the shrinking step on a traditional decomposition. k is the mul-
tiplier for the amount of cuboids in relation to the number of processors.

52

5.3. Results

computation and are only memory intensive. Because of this, the memory hierarchy

is put under less strain, so the caches might work more effectively. Another effect is

that the communication between cuboids assigned to different nodes is reduced as

when the cuboids are shrunk, their surface area shrinks, too. Therefore, the amount

of communication needed for these cuboid is reduced as well.

Figure 5.15.: Graph showing the improvement in run-time on the bifurcation-large
benchmark for shrinking with the graph based load balancer compared
to the graph load balancer combined with the traditional decomposition.
k is the factor for the number of cuboids in relation to the number of
processors. Speed is given in MLUP/ps.

In Figure 5.15, the results are shown that compare the graph based load balancer

with the traditional decomposition to the additional shrinking step and the graph

based load balancer applied. Obviously, the shrinking and GBLB combination is

still even faster.

In the following figures, three example shrinking steps are shown, each with the dif-

ferent decomposition strategies employed. Figure 5.16 shows what the cuboid struc-

ture is reduced to for the bifurcation-large benchmark when applying the shrinking

step after the octree decomposition with a minimum cuboid size of 32. Figure 5.17

53

5.3. Results

shows the same situation for the minimum cuboid size of 64, and Figure 5.18 shows

the result for the traditional decomposition with a starting number of 270 cuboids.

These 270 cuboids are reduced to 112 due to the removal step.

Figure 5.16.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 32× 32× 32 and an additional shrinking step.

54

5.3. Results

Figure 5.17.: Octree Decomposition of the bifurcation-large example with a minimum
cuboid size of 64× 64× 64 and an additional shrinking step.

Figure 5.18.: Traditional decomposition of the bifurcation-largeinto 270 cuboids (of
which 112 are non-empty) and an afterwards applied shrinking step.

55

6. Conclusion

6.1. Summary

In this thesis we researched potential optimizations for Lattice Boltzmann Meth-

ods on the example of the OpenLB implementation. The analysis of the current

situation identifies two major areas with potential for major improvement. The

first is the current load balancer in OpenLB, and the second is the simple heuristic

sparse domain decomposition. The implementation of the old load balancer does not

take into account the communication between cuboids. It also severely limits the

potential optimizations for sparse domain decomposition. Because of this, we de-

signed and implemented two alternative load balancers. They solve these problems,

allowing us to improve the second major area: the aforementioned sparse domain

decomposition. Of the multitude of different improvement strategies, we propose

and evaluate these: shrinking of cuboids and Octree Domain Decomposition.

Testing these measures shows their great potential. The graph load balancer per-

forms at least as well as the original load balancer for nearly all cases, while out-

performing it on most non-trivial geometries. The heuristic load balancer does not

achieve the efficiency of the graph based load balancer, but still permits to utilize

some of the gains due to the domain decomposition improvements.

As for the domain decomposition strategies, the octree allows the scaling of the

cuboids to the complexity of the geometry at each point. Octree decomposition

creates better fitting domain decompositions, but measurements show that it results

in higher overhead. This is either due to the large number of cuboids per processor or

due to the non-optimal fit to the geometry – depending on the minimum size of the

cuboids. Nevertheless, the results hint at a better performance with more processors.

6.2. Outlook

The shrinking strategy is the single most performant optimization developed in this

thesis. It improved performance for the real world examples by 75% to 110%.

The achieved speed-up translates directly into time, money and energy savings for

research and industrial applications. It moves boundaries for the problem size and

geometry size even further, providing opportunities for ever more complex simula-

tions.

6.2. Outlook

While this thesis improves the performance by a huge amount, many possible

further optimizations remain. It might be of interest to further benchmark the com-

bination of octree domain decomposition with shrinking, as this might lead to even

more efficient sparse domain decomposition strategies. Also, the tests for octrees

should be run on larger problems with more CPUs as those cases seem to be promis-

ing for this approach. Additional tests with the heuristic load balancer might be

interesting as well, to see how it performs for larger problems in which the commu-

nication becomes more important as cuboids grow smaller.

Also, octrees could form the basis for an implementation of different degrees of

discretization in parts of the geometry, depending on the amount of detail actually

needed there.

The algorithm of octrees might even be further improved by an additional recom-

bination step if the later steps were not successful in removing parts of the cuboids.

This would reduce the overhead induced by the huge amounts of small cuboids.

Further work may be done in the area of partitioning memory on the different

cluster nodes. This would be beneficial for the RAM usage of all processes and

would allow for even bigger simulations.

With the future inclusion of the simulation of particles in OpenLB, the load bal-

ancer could be extended to adjust to shifting load, as the number of particles in each

cuboid vary its load. If this is necessary and if the amount of difference in CPU time

warrant it, such an approach should be evaluated.

All these measures could help to come close to the final goal, to investigate ever

new aspects of the grand challenge, the simulation of the human respiratory system.

58

A. Appendix

A.1. Open Source Library OpenLB

A.1.1. Project Overview

OpenLB is an open source library that implements LBM in a modular and object

oriented fashion. The library implements a multitude of lattice Boltzmann models

with C++. The project is intended to be used by application programmers and

developers alike, as it is easily extendable with self-developed dynamics.

The framework is optimized for high performance computing to simulate even

large problems in computational fluid dynamics. It sports support for advanced

data structures to handle complex geometries and highly parallel programs. A large

range of problems can be simulated with OpenLB. Examples include, but are not

limited to, the air flow in the lungs, blood flow in capillaries or the analysis of particle

spreading from nose sprays in the nose.

Detailed information about the project may be gotten from the project homepage

[5] and the overview article [18]. Additional details about the implementation can be

found in the tech reports on the homepage. Details about the hybrid-parallelisation

may be found in [17]. Latt, Chopard et.al. compared several boundary conditions

for LBM in [22].

A.1.2. Authors

Several people were involved in the development of OpenLB. All the names shall

be listed in alphabetical order below:

Project Coordinator:

• Dr. Mathias J. Krause (Karlsruhe Institute of Technology)

A.1. Open Source Library OpenLB

Project Initiators:

• Prof. Dr. Vincent Heuveline (Karlsruhe Institute of Technology)

• Dr. Mathias J. Krause (Karlsruhe Institute of Technology)

• Dr. Jonas Latt (Ecole Polytechnique Federale de Lausanne)

Current Code Developers:

• cand. techn. math. Lukas Baron (Karlsruhe Institute of Technology)

∗ Parameterization, I/O, Optimization

• cand. inform. cand. math. Jonas Fietz (Karlsruhe Institute of Technol-

ogy)

∗ Config file parsing based on XML

• cand. techn. math. Thomas Henn (Karlsruhe Institute of Technology)

∗ Pre-processing, Voxelizer based on STL

• cand. techn. math. Jonas Kratzke (Karlsruhe Institute of Technology)

∗ Alternative boundary conditions (Bouzidi), Unit converter

• Dr. Mathias J. Krause (Karlsruhe Institute of Technology)

∗ OpenMP parallelization

∗ Cuboid data structure for MPI parallelization

∗ Makefiles

Former Code Developers:

• Dr. Jonas Latt (Ecole Polytechnique Federale de Lausanne)

∗ Development of the OpenLB core

∗ Integration and maintenance of added components

• M. Sc. Orestis Malaspinas (Ecole Polytechnique Federale de Lausanne)

∗ Alternative boundary conditions (Inamuro, Zou/He, Nonlinear FD)

∗ Alternative LB models (Entropic LB, MRT)

• Bernd Stahl (University of Geneva)

∗ MultiBlock structure for MPI parallelization

∗ Parallel version of (scalar or tensor-valued) data fields

∗ VTK output of data

• Math. techn. Simon Zimny (German Reseach School for Simulation

Sciences)

∗ Pre-processing, automized setting of boundary conditions

60

A.2. KaFFPa

A.2. KaFFPa

KaFFPa is an extremely fast graph partitioner developed by the Institute of The-

oretical Computer Science, Algorithmics II at the Karlsruhe Institute of Technology

by Dipl. Math. Dipl. Inform. Christian Schulz and Prof. Dr. Peter Sanders.

At the time the papers detailing the implementation were submitted, it achieved

over 300 new records in the Walshaw Benchmark [6], improving on the best known

partitions for those problems.

The focus of KaFFPa lies on partition quality rather than speed. It is written in

C++ and will be released in the beginning of 2012.

The main techniques used in KaFFPa are flow based algorithms, localized local

searches and F-cycles, which are techniques transfered from the multigrid commu-

nity.

61

B. German Abstract

In den letzten Jahrzehnten hat der Bereich der computergestützten numerischen Strö-

mungsmechanik immer mehr an Bedeutung gewonnen. Die rapide Entwicklung von

immer schnelleren Rechnern leistete der Simulation komplexer werdender Geome-

trien weiteren Vorschub. Die Anwendungsbereiche dieser Simulationstechniken sind

vielfältig.

Ein beliebtes Anwendungsbeispiel ist die Simulation der aerodynamischen Eigen-

schaften von Automobilen oder Flugzeugen als Ersatz für oft teure und aufwendige

Windkanalversuche. Ein anderes, sehr wichtiges Beispiel, auf das sich die

Forschungsarbeit am Institut für numerisches Hochleistungsrechnen in letzter Zeit

unter anderem fokussiert wurde, ist die Simulation des menschlichen Atemtrakts.

Seine Funktion ist bisher noch nicht in allen Einzelnheiten verstanden, da hier

hochkomplexe physikalische Phänomene auf multiple Strukturskalen treffen, gepaart

mit hochgradig komplexen Geometrien. Deswegen ist die Simulation der Lunge und

der restlichen Atemwege immer noch eine der großen Herausforderungen der Strö-

mungsmechanik. Die Bedeutung von Fortschritten in diesem Sektor wird klar, wenn

man mögliche Anwendungen betrachtet: z.B. die auf Patienten zugeschnittene, in-

dividuelle Simulation, Analyse und Behandlung von Atemwegsrestriktionen und an-

deren Lungenerkrankungen; die Vorberechnung und Simulation möglicher Neben-

effekte von Operationen durch Chirurgen oder sogar vollautomatische Operationen

durch Roboterchirurgen, die mit höchster Präzision arbeiten können.

Die Simulation der Lunge erfordert effiziente Parallelisierungsstrategien und die

Ausnutzung der heute vorhandenen Hardware-Architekturen, wie massiv-parallele

CPUs und GPUs durch die Nutzung von hybriden High-Performance-Technologien.

Eines der Projekte, die an der Simulation des Atemtrakts arbeiten, ist das Pro-

jekt United Airways. Das United Airways-Project nutzt die Open-Source-Software

OpenLB für die Simulation der menschlichen Lunge und des Nasenrachenraums.

OpenLB-Bibliothek erlaubt die Simulation von durch den Anwender definierten strö-

mungsmechanischen Problemen, und gibt dem Nutzer hierfür die Möglichkeit, selbst

definierte Characteristiken und physikalische Grundparameter zu wählen.

Die Bibliothek OpenLB implementiert eine Open-Source-Variante der Lattice-

Boltzmann-Methoden (LBM), die in der zweiten Hälfte des letzten Jahrhunderst

entwickelt wurden. Diese Methoden haben den Vorteil, dass sie inhärent parallel

sind und sich dadurch besonders gut für große Probleme eignen.

Das Ziel dieser Arbeit ist es, mögliche Verbesserungen der Skalierung und Per-

formanz für LBM am Beispiel von OpenLB zu untersuchen, zu implementieren

und zu testen. Mehrere mögliche Schwachpunkte werden hierzu identifiziert und

auf mögliche Verbesserungen analysiert, so dass hier zwei Dimensionen von Opti-

mierungsstrategien aufgezeigt werden.

Der erste Teil von OpenLB, der Verbesserungspotential zeigt, ist der Load-

Balancer, der Algorithmus zur Lastverteilung. Der aktuelle Load-Balancer in

OpenLB beruht auf sehr vereinfachenden Annahmen und besitzt daraus resultierend

eine eher einfache Struktur. Als Alternative zu dieser Implementierung wurden zwei

weitere Load-Balancer implementiert. Der erste dieser beiden nutzt Ergebnisse aus

der Graphentheorie, indem er die Prinzipien der Graph-Partitionierung auf das Prob-

lem der Lastverteilung anwendet. Als Graphpartitionierer für diesen Algorithmus

wird die Software KaFFPa verwendet. Die zweite Alternative ist die Implemen-

tierung einer simplen Heuristik, die im Gegensatz zu dem originalen Load-Balancer

zumindest die unterschiedlichen Umfänge der Arbeitspakete, die es zu verteilen gilt,

berücksichtigt.

Diese beiden Load-Balancer werden in dieser Arbeit anhand ihrer Performance bei

verschiedenen Geometrien evaluiert. Einer dieser Tests ist die Geometrie Bifurcation-

Large. Diese ist ein typisches Beispiel für eine Teilsimulation der Lunge oder für das

Bifurkations-Verhalten von Kapillaren z.B. in der Leber. Nachdem mit Hilfe von

Tests die Modellannahmen der beiden neuen Load-Balancer-Varianten validiert wur-

den, werden die Berechnungsgeschwindigkeiten u.a. fÃ1
4r das genannte Bifurcation-

Large-Beispiel evaluiert. Diese Tests zeigen, dass insbesondere der graph-basierte

Load-Balancer bei den komplexen Testfällen bereits Effizienzsteigerungen von ca.

30%, d.h. Reduktionen der Laufzeit auf ca. 2/3, erreichen kann.

Ein Resultat und mitunter auch ein Grund für die Verbesserung der Lastverteilung

64

ist, dass die beiden neuen Load-Balancer beide wesentliche Fortschritte fÃ1
4r die Ge-

bietszerlegung erlauben. Dies ist der zweite große Bereich der Verbesserungsstrate-

gien. Hier werden zwei weitere Ansätze untersuchst. Der erste ist die an die zu-

grundeliegende Geometrie angepasste Zerlegung des Gebiets durch Octrees. Diese

Strategie erlaubt die Zerlegung mit unterschiedlichen Feinheiten, je nachdem wie

komplex die Geometrie in dem jeweiligen Bereich ist. Neben dem Effekt durch

weniger Verschnitt ermÃ¶glicht dies auch weitergehende Verfahren wie die ortsab-

hängige, konkrete Anpassung der Auflösung an die vorhandene Komplexität der

Geometrie. Tests dieser Strategie zeigen zwar keine konkreten Verbesserungen in

der Laufzeit für die getesteten Problemgrößen, aber die Trends scheinen auf eine

Verbesserung bei größeren Fällen hinzudeuten.

Die zweite Methode zur Verbesserung der Gebietszerlegung ist das Schrumpfen

der bisherigen Quaderzerlegung. Dabei werden einzelne Quader auf eine Größe

geschrumpft, mit der sie nur noch Fluid- und Randzellen enthalten. Diese Methode

ergab in den Tests insbesondere bei den realistischen Testfällen der Bifurcation-

Benchmarks Geschwindigkeitszuwächse von 75% bis zu über 100% mit den dazuge-

hörigen Lauftzeitverbesserungen der Berechnungen auf weniger als Hälfte.

Diese Resultate bedeuten natürlich für Wissenschaft, Forschung und Industrie

eine immense Reduktion der investierten Zeit, des Geldes und natürlich der En-

ergie. Alternativ erlauben sie auch eine Vergrößerung und erhöhte Komplexität der

zu berechnenden Probleme bei gleichem Aufwand, mit all den damit verbundenen

Chancen.

65

Bibliography

[1] InstitutsCluster User Guide - Version 0.93. http://www.scc.kit.edu/

downloads/sca/ugic.pdf, 2009. [Online; accessed 11-November-2011].

[2] 24th IEEE International Symposium on Parallel and Distributed Processing,

IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference Proceed-

ings. IEEE, 2010.

[3] Creative Commons Attribution-ShareAlike 3.0 Unported License. http://

creativecommons.org/licenses/by-sa/3.0/, 2011. [Online; accessed 25-

November-2011].

[4] HP XC3000 User Guide - Version 1.07. http://www.scc.kit.edu/scc/docs/

HP-XC/ug/ug3k.pdf, 2011. [Online; accessed 11-November-2011].

[5] OpenLB Homepage. http://www.openlb.org, 2011. [Online; accessed 11-

November-2011].

[6] Walshaw Graph Partitioning Archive. http://staffweb.cms.gre.ac.uk/

~wc06/partition/, 2011. [Online; accessed 29-November-2011].

[7] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in

gases. Phys. Rev., 94:511–525, May 1954.

[8] T Braun. A comparison of eleven static heuristics for mapping a class of inde-

pendent tasks onto heterogeneous distributed computing systems. Journal of

Parallel and Distributed Computing, 61(6):810–837, 2001.

[9] Campbell, P.M., Devinve, K.D., Flaherty, J.E., Gervasio, L.G. and Teresco,

J.D. Dynamic Octree Load Balancing Using Space-Filling Curves. 2003.

[10] C. Cercignani. Theory and application of the Boltzmann equation. Elsevier,

1975.

http://www.scc.kit.edu/downloads/sca/ugic.pdf
http://www.scc.kit.edu/downloads/sca/ugic.pdf
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.scc.kit.edu/scc/docs/HP-XC/ug/ug3k.pdf
http://www.scc.kit.edu/scc/docs/HP-XC/ug/ug3k.pdf
http://www.openlb.org
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://staffweb.cms.gre.ac.uk/~wc06/partition/

Bibliography

[11] T P Chiang, W H Sheu, and Robert R Hwang. Effect of reynolds number on

the eddy structure in a lid-driven cavity. International Journal for Numerical

Methods in Fluids, 26(5):557–579, 1998.

[12] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[13] Camil Demetrescu, editor. Experimental Algorithms, 6th International Work-

shop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings, volume 4525 of

Lecture Notes in Computer Science. Springer, 2007.

[14] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Conference,

DAC ’82, pages 175–181, New York, NY, USA, 1982. ACM.

[15] R. L. Graham and R. L. Grahamt. Bounds on multiprocessing timing anomalies.

SIAM Journal on Applied Mathematics, 17:416–429, 1969.

[16] Norbert Henze. Stochastik II - Maß und Wahrscheinlichkeitstheorie. 2004.

[17] V. Heuveline, M.J. Krause, and J. Latt. Towards a hybrid parallelization of

lattice Boltzmann methods. Computers & Mathematics with Applications, 2009.

[18] V. Heuveline and J. Latt. The OpenLB project: an open source and object

oriented implementation of lattice Boltzmann methods. Int. J. Mod. Phys. C,

18:627–634, 2007.

[19] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable

high quality graph partitioner. In IPDPS [2], pages 1–12.

[20] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes.

[21] Mathias J. Krause. Fluid Flow Simulation and Optimisation with Lattice Boltz-

mann Methods on High Performance Computers: Application to the Human

Respiratory System. Karlsruhe Institute of Technology (KIT), 2010.

[22] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Deville, and Andreas

Michler. Straight velocity boundaries in the lattice Boltzmann method. Phys.

Rev. E, 77:056703, 2008.

68

Bibliography

[23] R.L. Liboff. Kinetic theory: classical, quantum, and relativistic descriptions.

Prentice Hall advanced reference series: Physical and life sciences. Prentice

Hall, 1990.

[24] Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted

matching. In Demetrescu [13], pages 242–255.

[25] Guy R. Mcnamara and Gianluigi Zanetti. Use of the boltzmann equation to

simulate Lattice-Gas automata. Phys. Rev. Lett., 61, 1988.

[26] Vitaly Osipov and Peter Sanders. n-Level Graph Partitioning. In 18th European

Symposium on Algorithms (ESA), LNCS, 2010.

[27] F. Pellegrini. Scotch home page. http://www.labri.fr/pelegrin/scotch.

[Online; accessed 11-November-2011].

[28] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning

algorithms.

[29] Kirk Schloegel, George Karypis, Vipin Kumar, J. Dongarra, I. Foster, G. Fox,

K. Kennedy, A. White, and Morgan Kaufmann. Graph partitioning for high

performance scientific simulations, 2000.

[30] Shephard, M.S. and Georges, M.K. Automatic three-dimensional mesh gen-

eration by Finite Octree technique. Int. J. Numer. Meth. Engng, 32:709–749,

1991.

[31] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

Oxford University Press, 1st edition, 2001.

[32] G. Wellein, T. Zeiser, G. Hager, and S. Donath. On the single processor perfor-

mance of simple lattice Boltzmann kernels. Comput. Fluids, 35(8-9):910–919,

September 2006.

69

http://www.labri.fr/pelegrin/scotch

List of Figures

2.1. Example for D3Q19 model showing the 19 different speeds 10

2.2. The different levels of abstractions in OpenLB used for hybrid paral-

lelization [21] . 13

2.3. Example octree with Geometry . 17

3.1. Example for Domain Decomposition with the current methodology

[21]. Cuboids in the finer parts of the lung are several times larger

than the geometry, leading to inefficiency. 20

4.1. Load balancing of cuboid consisting of 256 smaller cuboids using the

old load balancer for 32 tasks . 27

4.2. Load Balancing of cuboid consisting of 256 smaller Cuboids with

graph based load balancer for 32 tasks 28

4.3. An example octree decomposition of bifurcation-large benchmark with

dimension Nx=599, Ny=92, Nz=703 and a minimum cuboid size of 64 31

5.1. The geometry of the Lid-Driven-Cavity benchmark - a cube with a

lid moving in direction (1, 0, 0) where all other cells are initialized

to u = 0 at the beginning. These cells are then accelerated by the

moving lid [21]. 34

5.2. Typical fluid behavior for Lid-Driven-Cavity benchmark with the de-

velopment of a vortice [21]. 35

5.3. An image of the bifurcation geometry 36

5.4. An image of the bifurcation-large geometry 37

5.5. Cavity3D - Comparing load balancers 41

5.6. Cavity3D - comparing load balancers - N=100,200,400 42

5.7. Bifurcation - comparing load balancers 43

5.8. Bifurcation-Large - Comparing load balancers 45

List of Figures

5.9. Octree Decomposition Bifurcation Large 83 46

5.10. Octree Decomposition Bifurcation Large 163 46

5.11. Octree Decomposition Bifurcation Large 323 47

5.12. Octree Decomposition Bifurcation Large 643 47

5.13. Bifurcation Large - Comparing Octree and Traditional Decomposition 50

5.14. Bifurcation Large - Improvements through Shrinking 51

5.15. Bifurcation Large - Improvements through Shrinking 53

5.16. Octree Decomposition Bifurcation Large with Shrinking 323 54

5.17. Octree Decomposition Bifurcation Large with Shrinking 643 55

5.18. Traditional decomposition and shrinking 55

72

List of Tables

4.1. Execution speed of full and empty cells for cavity3d benchmark . . . 25

5.1. Verification of Communication Modeling 39

5.2. Comparison bifurcation-large speed p=512 44

5.3. Heuristic Load Balancer . 48

5.4. Heuristic Load Balancer and Shrinking 49

5.5. Number of Cuboids in Relation to Minimum Cuboid Size 49

5.6. Speed-comparison Traditional to Shrinking 52

5.7. Speed-comparison Traditional to Shrinking 52

	Contents
	1 Introduction
	1.1 Outline
	1.2 License

	2 Fundamentals
	2.1 Mesoscopic Fluid Flow Model
	2.2 Lattice Boltzmann Methods
	2.2.1 Discretization of Time and Phase Space
	2.2.2 Boundary and Initial Conditions
	2.2.3 Implementation

	2.3 Graphs and Graph Partitioning Algorithms
	2.3.1 Basic Concepts and Definitions
	2.3.2 Multi-level Graph Partitioning
	2.3.3 Concepts Used in KaFFPa

	2.4 Octree-based Domain Decomposition
	2.4.1 Definition of an Octree

	3 Analysis of Current State
	3.1 Original Load Balancer in OpenLB
	3.2 Heuristic Domain Decomposition

	4 Optimization Strategies
	4.1 Load Balancing Utilizing Graph Partitioning
	4.1.1 Calculating Node and Edge Weights
	4.1.2 Example
	4.1.3 Possible Further Optimizations

	4.2 Heuristic Load Balancing
	4.3 Octree-based Domain Decomposition
	4.3.1 Implementation

	4.4 Shrinking Cuboids
	4.5 Other Considered Strategies and Variations

	5 Evaluation
	5.1 Benchmark Problems
	5.1.1 Lid-Driven Cavity
	5.1.2 Bifurcation

	5.2 Description of Test-Machines
	5.2.1 HP XC3000
	5.2.2 Institutscluster
	5.2.3 Desktop Computer

	5.3 Results
	5.3.1 Measurements
	5.3.2 Graph Based Load Balancer
	5.3.2.1 Validation of Model Assumptions for Communication
	5.3.2.2 cavity3d
	5.3.2.3 bifurcation
	5.3.2.4 bifurcation-large

	5.3.3 Heuristic Load Balancer
	5.3.4 Octree Domain Decomposition
	5.3.5 Shrinking Cuboids For Geometry Approximating Sparse Domain Decomposition

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	A Appendix
	A.1 Open Source Library OpenLB
	A.1.1 Project Overview
	A.1.2 Authors

	A.2 KaFFPa

	B German Abstract
	Bibliography
	List of Figures
	List of Tables

