
Improving Processing Order in
Streaming Graph Partitioning

Linus Baumgärtner

October 10, 2025

3671380

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Referee:
Prof. Dr. Felix Joos

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor,
Adil Chhabra, for his continuous support, valuable guidance, and many insightful dis-
cussions throughout the course of this thesis. His advice has been invaluable and greatly
shaped the quality of this work.

I am also thankful to Prof. Christian Schulz, who first sparked my interest in algorithm
engineering through his course and the competitive challenges he created for our class.
Competing in those problems made problem solving genuinely addictive and left me with
a lasting fascination for algorithms. His enthusiasm for the subject has also been a great
source of inspiration, and I am grateful that he gave me the opportunity to pursue my
thesis in this field under his supervision.

Beyond the academic support, I would like to thankmy friends and my brother for their
support and for the manymoments of encouragement and good company throughout this
journey. Above all, I owe special thanks to my family for their unconditional support,
without which this work would not have been possible.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronis-
che Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, October 10, 2025

Linus Baumgärtner

iii

Zusammenfassung

Die Partitionierung von Graphen ist eine zentrale Technik für skalierbare Graphanalysen.
Sie sorgt dafür, dass die Rechenlast gleichmäßig verteilt wird und die Kommunikation
zwischen Maschinen möglichst gering bleibt. Klassische Offline-Methoden wie KaHIP
oder METIS liefern sehr hohe Qualität, erfordern jedoch den gesamten Graphen im Ar-
beitsspeicher. Streaming-Ansätze umgehen dieses Problem, indem sie Knoten nacheinan-
der einlesen und verarbeiten. Dadurch lassen sich auch sehr große Graphen auf kleineren
Systemen bearbeiten, allerdings häufig mit Einbußen bei der Partitionierungsqualität.

Ein Mittelweg zwischen Offline und purem Streaming ist Buffered Streaming. Ein ak-
tueller Vertreter davon ist HeiStReam, welches Knoten in Batches sammelt und diese
mithilfe eines Multilevel-Ansatzes partitioniert. Dies ist besonders effektiv, wenn die
Eingabereihenfolge Lokalität aufweist – also aufeinanderfolgende Knoten im Stream auch
im Graphen nahe beieinanderliegen. Fehlt diese Struktur, verschlechtert sich die Qualität
jedoch deutlich. Cuttana, ein anderer Vertreter, setzt hier auf priorisiertes Buffering und
erzielt robustere Ergebnisse, benötigt dafür aber erheblich mehr Speicher und Laufzeit.

In dieser Arbeit stellen wir BuffCut vor, ein Verfahren, das HeiStReam um prior-
isiertes Buffering nach dem Vorbild von Cuttana erweitert, dabei aber deutlich effizien-
ter bleibt. Kern ist eine Bucket-Queue mit einem neu entwickelten Buffer Score, ergänzt
durch Ghost Neighbors für zusätzliche Lokalitätsinformation sowie eine parallelisierte
Implementierung zur Laufzeitoptimierung.

Die Experimente zeigen: Bei zufällig permutierten Knotenreihenfolgen reduziert
BuffCut den Schnitt im Mittel um etwa 16% gegenüber HeiStReam, bei vergleichbarem
Speicherbedarf und moderatem Laufzeitaufwand. Gegenüber Cuttana erzielt es eine
Verbesserung um etwa 21% bei weniger als der Hälfte der an Laufzeit und Speicherbe-
darf. Mit nur einer zusätzlichen Restreaming-Runde lässt sich der Vorteil gegenüber
Cuttana weiter vergrößern (38%) ohne dabei dessen Ressourcenverbrauch zu überschre-
iten. Bei günstigen Eingabereihenfolgen bleibt HeiStReam zwar leicht überlegen, doch
unser Ansatz erreicht stabile Ergebnisse und übertrifft Cuttana deutlich.

Insgesamt verbindet BuffCut die Stärken von HeiStReam und Cuttana in einem
einzigen Verfahren. Es erhöht die Robustheit bei ungünstigen Eingaben, ohne die
Effizienz zu opfern, und setzt damit einen neuen Maßstab im Bereich des Buffered
Streaming Graph Partitioning.

v

Abstract

Graph partitioning is a key technique for scalable graph analytics, as it balances work-
load across machines while minimizing communication. While classical offline methods
such as KaHIP or METIS achieve very high quality, they require the full graph in mem-
ory. Streaming approaches, in contrast, process vertices sequentially with limited mem-
ory, enabling even very large graphs to be handled on modest machines, though often
at the cost of quality.

Among streaming partitioners, HeiStReam represents the state of the art in buffered
streaming: instead of assigning each vertex immediately, it collects batches of nodes,
builds a compact subgraph, and applies multilevel partitioning. This design is highly ef-
fective when the input exhibits locality—when consecutive vertices in the stream are also
close in the graph—since batches then capture coherent neighborhoods. However, un-
der stream inputs inheriting low locality, this advantage disappears and the quality of
HeiStReam drops considerably. An alternative approach, Cuttana, addresses this by
prioritized buffering, yielding more robust results but at high runtime and memory cost.

To overcome these limitations, we develop BuffCut, a buffered streaming partitioner
that extends HeiStReam with prioritized buffering inspired by Cuttana. Vertices are
ranked in a bucket-based priority queue using a novel buffer score, leading to more in-
formed batch construction. Additional extensions include ghost neighbors for richer lo-
cality information and a parallelized implementation for improved runtime scalability.

Experiments show that BuffCut achieves the intended robustness: on randomly
permutated orderings it reduces the geometric mean cut by about 16% compared to
HeiStReam while using comparable memory and only moderately more runtime. Com-
pared to Cuttana, it achieves 21% better quality with less than half the resource require-
ments. Even a single restreaming pass amplifies these gains, yielding improvements over
Cuttana by about 38%, while still remaining more memory and runtime efficient. On fa-
vorable orderings, HeiStReam remains slightly ahead, but our method stays competitive
and consistently outperforms Cuttana.

In summary, BuffCut combines the strengths of HeiStReam and Cuttana in a single
design. It improves robustness under poor orderings without sacrificing efficiency, thus
advancing the state of the art in buffered streaming partitioning. At the same time, a clear
gap remains between favorable and unfavorable orderings, reflecting the inherent limits
of streaming where only part of the graph can be held in memory.

vii

Contents

Contents

Abstract (German) v

Abstract vii

1 Introduction 1
1.1 Motivation . 2
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 Basic Concepts . 5
2.2 Streaming Models and Locality . 6

3 Related Work 9

4 Improving Processing Order in Streaming Graph Partitioning 13
4.1 Algorithm Overview . 14
4.2 Algorithmic Details . 16

4.2.1 Buffer Scores . 17
4.2.2 Bucket Priority Queue . 20
4.2.3 Integration of Multilevel Partitioning 21
4.2.4 Ghost Neighbors . 22
4.2.5 Parallelization . 24
4.2.6 Restreaming . 25

5 Experimental Evaluation 27
5.1 Experimental Setup . 27
5.2 Parameter Studies . 30

5.2.1 Buffer Scores . 31
5.2.2 Buffer Size . 34
5.2.3 Batch Size . 36
5.2.4 Buffer–Batch Trade-off . 37

ix

Contents

5.2.5 Evaluation of Parallelization . 38
5.2.6 Impact of Ghost Neighbors . 39

5.3 Comparison with State of the Art Algorithms 43
5.3.1 Baselines and Configurations . 44
5.3.2 Experiments on Naturally Ordered Graphs 45
5.3.3 Experiments on Randomly Ordered Graphs 48

6 Discussion 51
6.1 Conclusion . 52
6.2 Future Work . 52

A Reevaluating Cuttana 55
A.1 Experimental Setup . 55
A.2 Reproduced Results . 56
A.3 Scalability Limits of Cuttana . 59

Bibliography 61

x

CHAPTER 1
Introduction

Graphs are a fundamental abstraction for modeling complex relationships in a wide range
of domains, including social networks, citation networks, biological systems, and the web.
As real-world graphs continue to grow in size, often comprising billions of nodes and
edges, efficient storage and processing become critical. A key enabler for scalable graph
computation is graph partitioning, which aims to divide the graph into k balanced blocks
while minimizing the number of edges that span across blocks. This not only balances the
computational load across machines but also reduces inter-machine communication — a
dominant cost factor in distributed processing.

Since graph partitioning is NP-complete [20], heuristic approaches are used in practice.
Existing algorithms fall into three main categories: offline shared-memory algorithms,
distributed-memory parallel algorithms, and streaming algorithms. Offline tools such as
KaHIP [36] and METIS [24] achieve high-quality partitions by repeatedly coarsening and
refining the graph, but they require that the entire input fits into memory. Distributed ap-
proaches can scale to larger inputs but incur high resource costs and require sophisticated
infrastructure. Streaming algorithms, on the other hand, process the input graph sequen-
tially and assign nodes to partitions on the fly, using only limited memory. While appeal-
ing for scalability, one-pass streaming methods often suffer from poor partition quality.

To close this quality gap, the HeiStReam [18] algorithm was introduced. Instead of
assigning vertices one by one, HeiStReam buffers a fixed-size batch of nodes together
with their adjacency information before making assignment decisions. This allows the
algorithm to capture more structural context while keeping memory usage bounded by
the configurable batch size. For each batch, a compact model graph is constructed that in-
cludes both the buffered nodes and their already partitioned neighbors. A multilevel par-
titioning scheme is then applied to this model using a generalization of the Fennel [41]
objective, leading to significantly improved partition quality. Experiments show that
HeiStReam can outperform classic streaming algorithms such as Fennel and LDG [39].

1

1 Introduction

1.1 Motivation

Building on the strengths of HeiStReam, we now turn to its limitations and the moti-
vation for our work. A notable drawback of HeiStReam, and of streaming partitioners
more broadly, is their lack of global information. By design, one-pass (or buffered) stream-
ing methods must make placement decisions using only the information available in the
current window of the stream; they cannot exploit a holistic view of the graph as of-
fline multilevel methods do. Consequently, each decision relies on partial, local context
rather than global structure.

InHeiStReam, nodes are processed in consecutive batches togetherwith their currently
assigned neighbors. The structural context available at each step therefore depends heav-
ily on which nodes happen to be co-loaded. When the input ordering is favorable (e.g.,
nodes from the same community appear close together), HeiStReam can leverage local
neighborhoods to achieve excellent results. However, when the ordering is random or
lacks locality, the model graph for a batch is fragmented, many neighborhood relations
remain unseen within the batch, and the resulting decisions approximate random choices.
This sensitivity to input order, rooted in the absence of global information, is a key bot-
tleneck for robustness and broad applicability.

In response, recent work proposes streaming techniques that explicitly mitigate order
dependence. Cuttana, for example, introduces prioritized buffering: a priority queue
guided by a buffer score that quantifies howmuch is already known about a node’s neigh-
borhood within the stream. Rather than following the raw stream order, the algorithm
evicts the most informative buffered node and assigns it using Fennel, thereby delaying
premature placements and reducing the impact of poor locality. This strategy helps to
maintain high partition quality even when the stream lacks structure.

Motivated by these insights, this thesis aims to extend HeiStReam methodologically
to better handle poorly ordered streams: we seek to preserve its efficiency and multi-
level strengths while reducing order sensitivity by introducing principled buffering and
prioritization mechanisms.

1.2 Our Contribution

The central contribution of this thesis is the design of BuffCut, a novel hybrid buffered
streaming algorithm that unites the advantages of two state of the art methods. From
Cuttana, BuffCut adopts the idea of a priority-based buffer that reorders nodes accord-
ing to their neighborhood information, thereby reducing the sensitivity to poor input or-
derings. From HeiStReam, it incorporates the use of multilevel partitioning on buffered
batches, which leverages global structural information to produce high-quality partitions
with controlled memory usage.

By carefully combining these complementary techniques, BuffCut achieves the best
of both worlds: the robustness of priority-based streamingwith the partitioning quality of

2

1.3 Structure

multilevel refinement. Nodes are streamed into a bucket-based priority queue, extracted
in order of their buffer score, and accumulated into batches of configurable size. Once
a batch is full, it is partitioned using a multilevel coarsening–refinement scheme. This
pipeline allows BuffCut to adapt flexibly to the quality of the input ordering: when
locality is high, it exploits it effectively in the multilevel partitioning; when locality is
low, it compensates through informed buffering.

BuffCut can also be seen as an extension of HeiStReam: by setting the buffer size
to zero, it effectively reproduces the behavior of HeiStReam, including its strong perfor-
mance on favorable natural orderings. In its default configuration, however, the focus
is on robustness rather than specializing for favorable orderings. In the most challeng-
ing scenario with randomly ordered graphs, BuffCut improves the geometric mean cut
by about 16% compared to HeiStReam and by about 21% compared to Cuttana, while
keeping runtime and memory requirements moderate and far below those of Cuttana
in competitive settings. On orderings containing high locality, BuffCut remains com-
petitive, with HeiStReam still holding a slight advantage, while still outperforming
Cuttana by a clear margin.

Beyond this core pipeline, we introduce two methodological innovations. First, it
features a novel buffer score that systematically balances vertex degree and assigned-
neighbor ratio, leading to more consistent partition quality across diverse graphs and
orderings. Second, it integrates the concept of ghost neighbors, which provide provisional
locality information from unpartitioned vertices. While this comes at a cost in runtime
and memory, it yields additional improvements in cut quality by enriching both buffer
score and batch construction with structural hints that would otherwise be ignored.

Finally, to enhance practicality, BuffCut offers a parallelized implementation that de-
couples input, buffering, and partitioning into separate threads, thereby accelerating run-
time with only a small memory overhead. Altogether, BuffCut advances the state of
the art by outperforming HeiStReam and Cuttana in input orderings with poor locality,
while retaining competitive performance on inputs with high locality. 1

1.3 Structure
The remainder of this thesis is organized as follows. After the introduction and the fun-
damental definitions in chapter 2, we discuss related work in chapter 3. Then, we present
our main contribution in chapter 4, namely a new buffered streaming partitioning al-
gorithm, BuffCut, that integrates priority-based buffering with multilevel refinement in
order to reduce the sensitivity to the input ordering of the graph stream. Next, we provide
comprehensive parameter studies and experimental evaluations with the state of the art
algorithms in chapter 5. Finally, we discuss the results in chapter 6, conclude the thesis,
and outline directions for future research.

1A C++ implementation of BuffCut is publicly available at https://github.com/libaum/BuffCut.

3

https://github.com/libaum/BuffCut

CHAPTER 2
Fundamentals

This chapter provides the theoretical background required for the development and anal-
ysis of our algorithm. We first recall basic graph-theoretic notation and the formal defi-
nition of the graph partitioning problem, before introducing streaming-based models and
the notion of stream locality, which form the foundation of our contributions.

2.1 Basic Concepts

An undirected graph is defined as G = (V,E), where V = {0, . . . , n − 1} is the set
of vertices (or nodes), and E ⊆ {{u, v} | u, v ∈ V, u ̸= v} is the set of undirected
edges. We denote n = |V | as the number of nodes and m = |E| as the number of edges.
Each vertex v ∈ V can be assigned a non-negative node weight c(v) ∈ R≥0, and each
edge e = {u, v} ∈ E has an edge weight ω(e) ∈ R>0. For a subset of vertices V ′ ⊆ V ,
we define c(V ′) :=

∑
v∈V ′ c(v) as its total weight. For a subset of edges E ′ ⊆ E, we

define ω(E ′) :=
∑

e∈E′ ω(e) as its total edge weight. The neighborhoodN(v) of a node v
is the set of adjacent nodes: N(v) = {u ∈ V | {u, v} ∈ E}. A subgraph S = (V ′, E ′)
of G is defined by a subset of nodes V ′ ⊆ V and a subset of edges E ′ ⊆ E ∩ (V ′ × V ′).
If E ′ = E ∩ (V ′ × V ′), we call S an induced subgraph.

Graph Partitioning. The Graph Partitioning Problem seeks to divide the node set V
into k disjoint blocks V1, . . . , Vk such that V = V1 ∪ · · · ∪ Vk and Vi ∩ Vj = ∅ for i ̸= j.
The partition must satisfy a balance constraint: for a given imbalance parameter ϵ ≥ 0,
each block obeys

c(Vi) ≤ Lmax :=

⌈
(1 + ϵ) c(V)

k

⌉
.

Here Lmax denotes the maximum allowed block weight.

5

2 Fundamentals

Among all balanced partitions, the objective is to minimize the edge cut, defined as the
total weight of edges crossing between blocks,

cut(V1, . . . , Vk) :=
∑
i<j

ω(Eij), where Eij := {{u, v} ∈ E | u ∈ Vi, v ∈ Vj}.

A helpful abstraction of a partition is the quotient graph Q = (VQ, EQ), where each
block Vi is represented as a single vertex in Q, and an edge connects Vi and Vj in Q if
any edge exists between these blocks inG. The weight of a quotient node equals the total
node weight in its block, and the weight of a quotient edge equals the total weight of the
original edges crossing between the respective blocks.

2.2 Streaming Models and Locality

Classical offline partitioners assume full access to the graph. In contrast, streaming mod-
els restrict how vertices are processed. In the one-pass streaming model, vertices ar-
rive sequentially together with their incident edges and must be assigned to blocks im-
mediately upon arrival using only local information. This model keeps memory usage
at O(polylog(n)) but suffers from limited global context, which often leads to high edge
cuts, especially when the input order provides little locality.

Buffered StreamingGraph Partitioning. To overcome the shortcomings of one-pass
streaming algorithms, the buffered streaming model extends the basic idea by postpon-
ing assignments. Instead of placing each vertex immediately, a bounded set of vertices
together with their neighborhoods is first collected in memory. Once this set reaches
capacity, its vertices are assigned simultaneously—often using more advanced methods
such as multilevel partitioning. This trades moderate additional memory for substantially
improved partitioning quality, since the algorithm can exploit more structural context
before making decisions.

In this work, we distinguish between a buffer and a batch. The buffer is a priority queue
that temporarily stores streamed vertices to delay their assignment and thus avoid prema-
ture decisions. Once the buffer reaches capacity, a batch of up to δ vertices is extracted and
partitioned simultaneously using the multilevel scheme. We denote the buffer capacity
byΛ and, following HeiStReam, the batch size by δ. Together these parameters determine
the additional memory footprint of the algorithm: beyond the Ω(n) space needed to store
final vertex assignments, the buffer may hold up to Λ vertices with their incident edges,
while the batch contains up to δ vertices at a time. In practice, both values are chosen
according to the available memory, keeping overall space consumption linear in n with a
moderate and controllable overhead.

6

2.2 Streaming Models and Locality

StreamOrder and Locality. A stream order is a permutation S = (v0, . . . , vn−1) of V .
The quality of a stream order can be assessed in terms of its locality, i.e., whether neigh-
boring vertices in the graph also appear close to one another in the stream.

As a concrete locality measure, we adopt the Neighbor to Neighbor Average
ID Distance (AID) proposed by Esfahani et al. [16]. For a vertex v with sorted
neighbors Nv,1, . . . , Nv,|Nv |, the measure is defined as

AIDv =
1

|Nv|

|Nv |∑
i=2

∣∣Nv,i −Nv,i−1

∣∣.
It captures how tightly the neighbors of a vertex are clustered in the vertex ID space:
lower values indicate that neighbors are assigned consecutive IDs, which corresponds
to higher spatial locality. As a graph-level locality value, we take the arithmetic mean
of AIDv across all vertices with degree at least two:

AID(G) :=
1

|V ′|
∑
v∈V ′

AIDv, where V ′ = {v ∈ V | |Nv| ≥ 2}.

This aggregate measure AID(G) allows us to directly compare the locality of different
stream orders. Intuitively, a low AID(G) value indicates that neighbors tend to appear
close together in the stream, which benefits streaming partitioners.

In practice, the stream order is not chosen by the partitioner itself but results from the
way the graph is stored in the input file. The vertex order in the file directly determines the
sequence in which nodes are streamed and thus implicitly encodes the available locality.
In many datasets, graphs are stored in a manner that preserves relatively high locality—
for example, by writing out clustered regions together or by following traversal orders—
so that neighbors often appear close to one another in the stream. However, this is not
guaranteed: depending on how the data was generated, processed, or stored, the resulting
order may also scatter neighbors and lead to substantially lower locality.

Throughout this thesis we use the term natural ordering to denote the original order in
which a graph is stored and read from file. As argued above, this ordering typically ex-
hibits relatively high locality, although exceptionsmay occur. To study robustness against
poor locality, we additionally evaluate random orderings, obtained by applying indepen-
dent random permutations to the vertex set. To ensure reliable results, we generate three
random permutations per graph and report geometric means of cut size, peak memory
usage and runtime.

7

CHAPTER 3
Related Work

Thebalanced graph partitioning problem is NP-complete formost objective functions [20],
and no constant-factor approximation algorithm exists for general graphs [11]. Conse-
quently, practical approaches rely on heuristics that trade optimality for scalability. The
problem has been studied extensively over several decades, making it one of the most
explored topics in graph algorithms; see [6, 12, 38] for comprehensive surveys.

Early heuristic approaches include the local improvement methods of Kernighan and
Lin [26] and Fiduccia and Mattheyses [19], which iteratively exchange vertices to re-
duce the edge cut while maintaining balance. Later extensions introduced k-way local
search [35] and more sophisticated exchange strategies.

The most successful family of algorithms for graph partitioning are multilevel meth-
ods. Hendrickson and Leland [22] formulated the paradigm in the form that is still widely
used today: the graph is recursively coarsened to a smaller instance, an initial partition
is computed on the coarsest level, and the solution is then refined during uncoarsening.
The first widely used implementation was METIS [24], which established the approach
as a standard tool for large-scale partitioning. Together with KaHIP [36], these methods
represent the state of the art in offline graph partitioning. Both frameworks also provide
parallel implementations (PaRMetis [25] and PaRHIP [30]), which extend their applica-
bility to distributed-memory environments. They typically achieve very high partitioning
quality, but require random access to the full graph in memory. While billion-scale net-
works can in principle be handled on sufficiently large machines, such resources are not
always available. This has motivated the development of streaming partitioning, which
aim to produce competitive partitions with a much smaller memory footprint.

This idea was first explored by Stanton and Kliot [39], who proposed simple one-pass
heuristics. The most basic is hashing, which assigns each vertex uniformly at random to
one of the k blocks, yielding poor cut quality but minimal runtime. A more sophisticated
method is the Linear Deterministic Greedy (LDG) heuristic, which places a vertex v into
the block Vi maximizing |N(v) ∩ Vi| · λ(i) with λ(i) = 1 − |Vi|/Lmax, where Lmax is the
maximum block size. This combines attraction to blocks with many neighbors with a

9

3 Related Work

multiplicative penalty that discourages imbalance.
Later, Tsourakakis et al. proposed Fennel [41], a one-pass partitioning heuristic that

can be viewed as an adaptation of the widely-known clustering objective modularity [10].
Fennel reformulates the placement decision with an additive penalty: a vertex is assigned
to the block maximizing |N(v) ∩ Vi| − f(|Vi|), where f(|Vi|) = αγ |Vi|γ−1. Here γ
is a hyperparameter and α is coupled to it via α = m kγ−1

nγ to normalize the penalty; with
the recommended setting γ = 3

2
this simplifies to α = m

√
k

n3/2 .
Extensions of the one-pass model aim to compensate for the lack of global context.

Nishimura and Ugander [31] proposed restreaming algorithms (ReLDG, ReFennel) that
make multiple passes over the input, allowing iterative improvements. Awadelkarim and
Ugander [2] extended this line with prioritized restreaming algorithms, where vertex order
is dynamically adjusted based on priority scores rather than fixed in advance. Patwary et
al. developed WStReam [33], which employs a sliding window of a few hundred vertices
to gain lookahead, although it was evaluated only on relatively small graphs (up to 300 000
vertices). Jafari et al. [23] embed LDG as a fast heuristic in a shared-memory multilevel
partitioner, improving runtime but still requiring the full graph in memory. Hence it
remains an offline method that only borrows streaming ideas. Overall, the online variants
explored so far yield only modest improvements over the original one-pass heuristics and
remain well short of the quality achieved by classical offline multilevel partitioners.

A more powerful buffered approach is HeiStReam [18], which processes the graph
in fixed-size batches. For each batch, it constructs a model subgraph that contains all
vertices of the batch together with k quotient nodes representing the already assigned
blocks. Edges between batch vertices are included directly, while edges from a batch
vertex to previously assigned vertices are aggregated into weighted edges towards the
corresponding quotient node.

The resulting subgraph is partitioned using a multilevel scheme: vertices are itera-
tively contracted to produce a hierarchy of smaller graphs, an initial partition is computed
on the coarsest level, and the solution is then successively refined during uncoarsening.
To guide this process, HeiStReam generalizes the Fennel objective to weighted graphs.
Specifically, a vertex v of weight c(v) is assigned to block Vi that maximizes∑

u∈N(v)∩Vi

ω(v, u)− c(v) f(c(Vi)), where f(c(Vi)) = αγc(Vi)
γ−1.

This preserves the additivity of the objective across contraction levels and enforces
balance constraints during refinement. The block assignments obtained on the model
subgraph are then mapped back to the global partition of the original graph.

By batching, HeiStReam trades memory for quality: collecting each batch together
with aggregated adjacency information increases the memory footprint but reveals more
local structure, which typically reduces the edge cut compared to Fennel. Conse-
quently, the batch size serves as a direct memory–quality knob. In practice, HeiStReam
achieves near-linear running time, O(n + m), with only weak dependence on k.

10

A variant, HeiStReamE, extends the same buffered multilevel approach to the related
edge-partitioning problem [13].

Although HeiStReam generally achieves high-quality partitions, it remains highly
sensitive to the input order, since unfavorable orderings can obscure neighborhood
information and degrade quality. This issue directly connects to research on node
reordering [1, 16, 17, 28, 32], where the goal is to arrange nodes to improve memory lo-
cality and overall runtime efficiency. For example, Barik et al. [5] show that locality-
and community-based reorderings can yield runtime and cache-latency improvements of
up to 4× and 2.6×, respectively. Although such studies aim to accelerate graph algo-
rithms in general rather than streaming partitioners, their insights suggest that better-
ordered input streams could also enhance partition quality. However, sophisticated re-
ordering schemes come with significant overhead [4], which limits their practicality in
real-time streaming scenarios.

Hajidehi et al. introduced Cuttana [21], which improves robustness to input orderings
through a two-phase design. In Phase 1, a prioritized buffer is maintained: vertices are
temporarily stored in a bounded priority queue and ranked by a buffer score designed to
avoid premature assignments. The score for a vertex vt is

s(vt) =
|N(vt)|
Dmax

+ θ ·
∑

i |N(vt)∩Vi|
|N(vt)| .

The first term normalizes the degree to favor high-degree vertices, while the sec-
ond emphasizes the fraction of already assigned neighbors; larger θ prioritizes ver-
tices for which placement is better informed. Vertices with |N(vt)| ≥ Dmax are
not buffered and are assigned a partition immediately using the Fennel-score. Dmax
bounds per-vertex neighbor storage in the buffer and leverages the power-law struc-
ture of real graphs: most edges have at least one low-degree endpoint, so buffering low-
degree vertices reduces premature assignments while early placement of hubs provides
”anchors” that guide later decisions. When the buffer reaches capacity, the highest-
scored vertex is evicted and assigned using a Fennel-inspired score augmented for
edge-balance, i.e., it selects argmaxi

(
|N(vt) ∩ Vi| − δ

(
|Vi|+ µ

∑
x∈Vi
|N(x)|

))
, where δ

is the Fennel penalty and µ rescales edge counts; this reduces extreme edge-load skew
while maintaining balance. Afterwards, the scores of buffered neighbors are updated to
reflect the new assignment.

In Phase 2, Cuttana applies a scalable refinement: vertices are grouped into sub-
partitions, and coarse-grained trades between partitions are performed to reduce cut
edges while maintaining balance. A parallel implementation further reduces the over-
head of buffering and refinement. In their paper, the authors demonstrate that Cuttana
achieves better partition quality than HeiStReam under unfavorable input orderings,
where locality between consecutive vertices in the stream is low.

In summary, one-pass heuristics such as LDG and Fennel scale well but offer limited
quality. HeiStReam improves cuts by applying multilevel partitioning to batches, yet re-
mains sensitive to stream order. Cuttana reduces this sensitivity via prioritized buffer-

11

3 Related Work

ing and coarse refinement, but at notable runtime and memory cost. We combine the
strengths of both: multilevel batching with a lightweight prioritized buffer, a hub-aware
buffer score that balances degree and assigned neighbor signals, and a parallel implemen-
tation to deliver scalable, memory-efficient, and order-robust partitions.

12

CHAPTER 4
Improving Processing Order in Streaming
Graph Partitioning

Buffered streaming partitioners represent a middle ground between lightweight one-
pass heuristics and memory-intensive offline methods, as they use moderate amounts of
memory to achieve significantly better partition quality than pure streaming approaches
while remaining more scalable than offline algorithms. Among them, HeiStReam [18]
achieves high partition quality by applying multilevel partitioning to buffered batches,
yet its effectiveness is highly dependent on the order in which vertices appear in the
stream. Cuttana [21], by contrast, reduces this sensitivity through prioritized buffering,
albeit at additional overhead. Our goal is to integrate the complementary strengths of
both approaches into a single algorithm that is scalable, memory-efficient, and robust to
unfavorable input orderings.

At a high level, our method delays assignments for vertices with little structural con-
text and prioritizes those with stronger connections to already partitioned regions. Con-
cretely, incoming vertices are inserted into a bucket-based priority queue, inspired by
the buffering strategy of Cuttana, where vertices are temporarily stored and prioritized
to avoid premature assignments. Hereby, each vertex is ranked by a buffer score that
reflects how well its structural context is already known. When the queue reaches capac-
ity, the highest-scored vertices are accumulated into batches, which are then partitioned
using the multilevel coarsening–refinement scheme of HeiStReam. By prioritizing ver-
tices with many connections to already assigned regions, the buffering step yields batches
whose subgraphs exhibit higher internal locality. This provides the multilevel partitioner
with more coherent structural cues during contraction and refinement. Compared to
HeiStReam, which partitions consecutive stream segments and thus degrades under ran-
domized orders, our method achieves greater robustness by constructing batches that
preserve locality even when the stream offers little of it.

The remainder of this chapter is organized as follows. Section 4.1 introduces the algo-
rithm at a high level and presents pseudocode that outlines the overall processing flow.

13

4 Improving Processing Order in Streaming Graph Partitioning

Section 4.2 then details its core components: Section 4.2.1 discusses several buffer score
variants that were evaluated as potential scoring functions. Section 4.2.2 justifies our
choice of a bucket-based priority queue, which reduces the runtime overhead of frequent
score updates compared to the set-based structure used in Cuttana. Section 4.2.3 ex-
plains howmultilevel partitioning is integrated and how subgraph construction is adapted
to the reordered batches. Section 4.2.4 introduces an optional mechanism for incorporat-
ing ghost neighbors to enrich locality information. Section 4.2.5 describes the parallelized
variant and its runtime–memory trade-offs. Finally, Section 4.2.6 extends the design to
multiple passes, combining buffering in the first pass with refinement in later ones.

4.1 Algorithm Overview
The overall procedure is illustrated in two complementary ways: Algorithm 1 summarizes
the processing flow in pseudocode form, while Figure 1 provides a schematic visualization
of the same steps. The pseudocode captures the details of the implementation, whereas
the figure emphasizes the conceptual structure of the algorithm. The algorithm processes
the input stream one vertex at a time while maintaining a bounded buffer in the form of a
bucket-based priority queue denoted asQ. Each streamed vertex is either inserted intoQ
or directly partitioned, depending on its degree. The queue enforces an adaptive process-
ing order: vertices with higher buffer scores, which indicate stronger structural context,
are prioritized for early assignment, while less informative vertices remain buffered until
more of their neighbors are known.

Handling high-degree vertices. Vertices whose degree exceeds the threshold Dmax
are immediately assigned using the Fennel [41] heuristic, without entering the buffer.
This prevents the queue from being dominated by hubs and establishes early ”anchors”
that guide subsequent assignments for their neighbors. After assignment, the scores of
their buffered neighbors are updated to reflect the new structural information.

Buffering and eviction. For verticeswhose degree does not exceed the thresholdDmax,
a buffer score is computed. This score is discretized using the parameter discFactor, and
the resulting bucket index determines the position of v in the bucket queue. If Q exceeds
its maximum capacity Λ, the highest-ranked vertex is evicted and added to a temporary
batch container. From that moment, the vertex is treated as virtually partitioned: al-
though its actual assignment occurs only when the batch is processed, it is guaranteed
to be placed before or together with its buffered neighbors. Therefore, their scores can
already be updated immediately upon eviction. This ensures that the queue consistently
reflects the most informative vertices, so that each batch contains the best candidates
available at the time.

14

4.1 Algorithm Overview

Algorithm 1 Pseudocode of the overall processing flow of BuffCut.
Data: Stream S, buffer sizeΛ, batch size∆, discretization factor ϕ, maximum degreeDmax
Result: Partition assignments

1 Q← BucketQueue(discFactor)
2 batch_nodes← []
3 foreach v,N(v) in S do
4 if |N(v)| > Dmax then
5 partitionSingleNode(v,N(v))
6 Q.updateNeighborScores(v,N(v))
7 continue
8 score← calcBufferScore(v,N(v))
9 Q.insert(v,N(v), score)
10 if |Q| ≥ Λ then
11 (u,N(u))← Q.popTopNode()
12 Q.updateNeighborScores(u,N(u))
13 batch_nodes.append({u,N(u)})
14 if |batch_nodes| = δ then
15 partitionWithMLP(batch_nodes)
16 batch_nodes← []

17 while |Q| > 0 do
18 batch_nodes← extractTopNodes(min(δ, |Q|))
19 partitionWithMLP(batch_nodes)
20 batch_nodes← []
21 Function extractTopNodes(num_nodes)
22 batch_nodes← []
23 while |batch_nodes| < num_nodes do
24 (v,N(v))← Q.popTopNode()
25 batch_nodes.append(v,N(v))
26 updateNeighborScores(Q, v,N(v))

27 return batch_nodes

28 Function updateNeighborScores(Q, v,N(v)):
29 foreach neighbor u in N(v) do
30 if Q.contains(u) then
31 new_score← calcBufferScore(u,N(u))
32 Q.updateScore(u, new_score)

15

4 Improving Processing Order in Streaming Graph Partitioning

stream order

calculate buffer score and insert into bucket queue

if bucket queue size == Λ: extract top node

.

bucket queue

not yet streamed node

partitioned node (k=2)

batch

if batch size == θ: build model and partition
streamed node (not partitioned yet)

assign permanent partition

array of partition IDs

.

Figure 1: Schematic overview of the processing flow. Vertices arrive in stream order and
are inserted into a bucket-based priority queue, according to their computed
buffer score. High-degree vertices exceeding Dmax are an exception: they are
assigned immediately using the Fennel score and never enter the queue (omit-
ted here for clarity). Once the queue reaches capacity, the highest-ranked vertex
(purple outline) is evicted into a batch container. When the batch size reaches θ,
the corresponding subgraph is built and partitioned using multilevel partition-
ing, and the resulting assignments are made permanent. After the entire stream
is processed, any remaining buffered vertices are partitioned in final batches.

Batch partitioning. Once the batch container accumulates δ vertices, it is handed off to
the multilevel partitioning (MLP) procedure. This follows the HeiStReam framework: the
buffered vertices and their already partitioned neighbors form a compact subgraph, which
is coarsened, initially partitioned at the coarsest level, and refined during uncoarsening.
Results are mapped back to global IDs, the batch container is cleared, and the process
continues. When the input stream ends, any vertices still inQ are partitioned in remaining
batches using the same procedure.

4.2 Algorithmic Details

This section provides a closer look at the core components of our algorithm and their
concrete realization. While the previous overview focused on the high-level workflow,
we now turn to specific design choices and technical details that determine efficiency
and quality in practice. We begin with buffer scores, which govern the prioritization of

16

4.2 Algorithmic Details

vertices in the queue. Next, we discuss the bucket-based priority queue that replaces
the set-based structure of Cuttana, followed by the integration of multilevel partition-
ing as adopted from HeiStReam. We then introduce the concept of ghost neighbors as
an optional extension for increasing locality information. Next, we describe the par-
allelized version of the algorithm that improves runtime scalability and finally explain
how we integrate restreaming.

4.2.1 Buffer Scores
A central component of our algorithm is the priority queue that organizes the buffered
vertices. Its purpose is to mitigate the dependence on the arbitrary stream order by re-
ordering vertices before they are processed batch-wise in the multilevel partitioning. This
reordering is entirely determined by the buffer score: vertices are ranked by their score
in the queue, and whenever eviction is required the vertex with the highest score is ex-
tracted and added to the batch. Consequently, the definition of the buffer score has a
decisive impact on the composition of batches and the overall partitioning quality. In the
following, we describe several scoring strategies that we have implemented and evalu-
ated. Experimental evaluations of these scoring functions can be seen in Section 5.2.1,
where we evaluate their impact on partition quality, memory usage and runtime.

Assigned Neighbors Ratio (ANR). The most basic scoring function considers the
fraction of neighbors that are already assigned to some partition. For a vertex vt with
degree d(vt), this is defined as

ANR(vt) =
∑k

i=1 |N(vt) ∩ Vi|
d(vt)

.

This score increases as more of a vertex’s neighborhood becomes placed. It therefore fa-
vors low-degree vertices, which can quickly accumulate a high ratio once a few neighbors
are assigned. In contrast, high-degree vertices require a large portion of their neighbors
to be placed before their score rises substantially. This behavior may be beneficial (by
postponing hubs until more context is available), but can also prevent them from serving
as early anchors in the partitioning process.

Cuttana ’s Buffer Score (CBS). The buffer score used in Cuttana combines degree-
based information with the fraction of neighbors that are already assigned. Formally, for
a vertex vt with neighborhood N(vt) and degree d(vt) = |N(vt)|, the score is defined as

CBS(vt) =
d(vt)

Dmax
+ θ ·

∑k
i=1 |N(vt) ∩ Vi|

d(vt)
.

Here, Dmax denotes a degree cap applied to the buffer, and θ is a hyperparameter
that balances the influence of the assigned-neighbor term. Following the original
implementation, θ is set to 2.

17

4 Improving Processing Order in Streaming Graph Partitioning

The rationale behind this design is to avoid premature assignments, especially of low-
degree vertices, which would otherwise be placed early with little context. By integrat-
ing the normalized degree term d(vt)

Dmax
, high-degree ”hub” vertices are given higher prior-

ity, as they provide stronger guidance for the assignment of their many neighbors once
placed. At the same time, the assigned-neighbor ratio rewards vertices that already have
a substantial fraction of their neighborhood placed, ensuring that local connectivity is
exploited. The parameter θ controls the trade-off: larger values emphasize neighborhood
conformity, whereas smaller values increase the relative importance of degree. Overall,
this score has been shown to yield good performance in practice by balancing hub-driven
anchoring and neighborhood-based consistency.

Hub-Aware AssignedNeighbors Ratio (HAA). Motivated by the idea in CBS to com-
bine assigned-neighbor ratio (ANR) with a degree term, we introduce a new parametric
buffer score that refines this balance. The guiding principle is that the importance of
ANR should decrease with vertex degree: for hubs, the neighborhood is almost never
sufficiently placed to provide a reliable ANR signal during streaming, so they should be
prioritized mainly by degree. Conversely, low-degree vertices can be placed consistently
with their neighborhood once only a few neighbors are assigned, so their score should
be dominated by ANR. This design yields a more systematic trade-off between the two
factors and allows us to control the relative influence through a simple parameterization.

Formally, let

ρ(vt) =
d(vt)

Dmax

be the degree ratio of a vertex. The score is then defined as

HAA(vt) = ρ(vt)
β + θ ·

(
1− ρ(vt)

)
· ANR(vt),

where β ≥ 1 controls the shape of the degree contribution and θ balances the role of ANR.
Larger values of β reduce the relative influence of degree for low-degree vertices, so that
their score depends more strongly on ANR, while hubs with large degree are prioritized
almost independently of ANR.

Compared to CBS, HAA changes the balance between degree and ANR more systemat-
ically. In CBS, ANR remains influential even for high-degree vertices, with degree added
only linearly. HAA instead suppresses the ANR component as degree grows: hubs are
scored almost purely by degree and can act as anchors early without occupying buffer
space for long, while low-degree vertices are governed almost entirely by ANR. As illus-
trated in Figure 2a–2c, this yields markedly different score surfaces: ANR dominates only
at the low-degree end, whereas hubs are prioritized almost independently of it.

The effect of β and θ is studied in detail in Section 5.2.1, where we evaluate different
parameter choices and show that, after tuning, HAA achieves the best overall performance
among the tested buffer scores.

18

4.2 Algorithmic Details

(a) CBS (θ = 2) (b) HAA (θ = 0.75, β = 1) (c) HAA (θ = 0.75, β = 2)

Figure 2: Heatmap visualizations of CBS and HAA as a function of degree (x-axis) and
assigned-neighbor ratio (y-axis). Bright colors indicate high scores, which lead
to earlier eviction from the buffer. For CBS (a), the assigned-neighbor ratio
dominates the score, while degree contributes only as an additive linear term.
In contrast, HAA (b,c) assign higher values to high-degree vertices even when
their ANR is low. The variant shown in (b) has a linear dependence on the de-
gree, whereas the quadratic variant (c) reduces the relative influence of degree
for low-degree vertices, making their scores depend more strongly on ANR.

Neighborhood Seen Score (NSS). This score extends the idea of ANR by also con-
sidering neighbors that are currently buffered, in addition to those already assigned. For-
mally, for η ∈ [0, 1] we define

NSSη(vt) =
∑k

i=1 |N(vt) ∩ Vi| + η |N(vt) ∩Q|
|N(vt)|

,

where V1, . . . , Vk are the current partitions, Q is the buffer, and η controls the weight of
buffered neighbors. Setting η = 0 reduces to ANR, while η = 1 counts buffered and
assigned neighbors equally.

The intuition is that vertices with many ”visible” neighbors (already assigned or present
in the buffer) might be better candidates for early processing. In practice, however,
buffered neighbors provide only weak evidence: their presence in the buffer does not im-
ply that they will be assigned in the same batch. As a result, the information added by the
buffer term is often noisy and of limited value. Our experiments showed that neither the
unweighted variant (η = 1) nor weighted versions with reduced buffer influence (η < 1)
yielded improvements compared to plain ANR.

NSS extended with Degree. We also tested a degree-extended variant that augments
NSS with an additional degree term, analogous to CBS. However, this variant suffered
from the same limitation as NSS: buffered neighbors provide little reliable information,
and the degree contribution did not compensate for this. Accordingly, this variant did not
achieve improvements over ANR either.

19

4 Improving Processing Order in Streaming Graph Partitioning

Community-Majority Score (CMS). This score prioritizes vertices according to the
dominant partition among their already assigned neighbors:

CMS(vt) = max
p∈{1,...,k}

|{u ∈ N(vt) : block(u) = p}|
d(vt)

.

The intuition is that assigning a vertex to the same partition as most of its placed
neighbors may strengthen local community structure. In practice, however, this heuris-
tic performed poorly: it overemphasizes local majority effects, leading to premature
and unbalanced assignments, and consistently yielded lower partitioning quality than
simpler scores such as ANR.

.

4.2.2 Bucket PriorityQueue
In our setting, buffer scores are recalculated frequently: whenever a vertex is extracted
from the PQ, the scores of all its buffered neighbors are updated. Since these scores only
increase over time, increase-key operations dominate the workload.

Cuttana uses a std::set-based priority queue, which maintains a strict total order
of all elements. While extraction of the top element is O(1), insertions and deletions
are O(logn). An increase-key operation is implemented as a deletion followed by an
insertion, and thus also costs O(logn). With the high frequency of score updates in our
algorithm, these logn operations accumulate and become a runtime bottleneck.

Because of this, we opted for a more efficient structure: a bucket priority queue that
discretizes buffer scores into discFactor integer buckets. This coarser ordering allows all
relevant operations—insert, delete, and increase-key—to be performed in O(1) amortized
time. In practice, we found that partition quality remains essentially unchanged compared
to the set-based PQ used in Cuttana, while runtime decreases substantially.

Discretization. In our implementation, our default buffer score corresponds to the
HAA score (see Section 4.2.1). This score takes values in the range [0,max{1, θ}], where θ
is the weight parameter for the assigned-neighbor ratio component. To enable efficient
priority handling, we discretize s(v) into discFactor integer buckets via

idx(v) = ⌊s(v) · discFactor⌋.

Vertices are placed in bucket idx(v), and a top pointer keeps track of the highest non-
empty bucket, ensuring that re-bucketing and extraction remain efficient.

In practice, we observed consistent trends as discFactor increases. Partition quality
improves steadily, with most of the benefit already achieved at values around 1 000. Run-
time, on the other hand, remains low up to this point but grows substantially for larger
values (up to an order of magnitude at 100 000). Memory usage decreases with increas-
ing discFactor, which we attribute to more balanced bucket utilization that avoids large

20

4.2 Algorithmic Details

underutilized allocations when only few buckets are used. However, the reduction in
memory does not justify the dramatic runtime overhead of very large discFactor. We
therefore fix discFactor = 1000 as the default, since it offers near-optimal cut quality
with good runtime performance and acceptable memory consumption.

Degree Threshold Dmax. Following Cuttana, we treat very high-degree vertices as
hubs that are placed immediately without buffering: if d(v) ≥ Dmax, the vertex bypasses
the buffer and is assigned in one pass using the Fennel score. The main motivation is
efficiency: hubs contribute disproportionately to resource usage in several ways. They
occupy substantial buffer memory, they enlarge the induced subgraphs passed to multi-
level refinement, and they trigger numerous score updates because of their many neigh-
bors. Capping their eligibility therefore avoids excessive overhead while still preserving
the essential effect of buffering for the vast majority of vertices. Assigning hubs early is
thus primarily a memory– and update-efficiency trade-off, with the additional side effect
that they can act as stable anchors for their neighborhoods.

Our experiments indicate that Dmax = 10 000 strikes a good balance: it keeps essen-
tially all low- and medium-degree vertices in the buffer, achieves consistent quality im-
provements over smaller thresholds, and keeps overhead within budget. On very large
graphs, higher thresholds could be considered if resources allow, but in practice it of-
ten seems to be more beneficial to increase the overall buffer size Λ rather than further
raising Dmax. We therefore adopt Dmax = 10 000 as our default.

4.2.3 Integration of Multilevel Partitioning
HeiStReam combines streaming partitioning with a multilevel refinement step applied to
buffered batches, resulting in higher partition quality compared to purely local heuristics
such as Fennel. We retain this approach and apply MLP to batches of vertices extracted
from our bucket priority queue. To achieve this, we maintain a vector for the current
batch. Whenever eviction is required, the vertex with the highest buffer score is extracted
from the queue and appended to this vector along with its adjacency information. Once
the vector reaches the specified batch size δ, we assemble the subgraph induced by these
vertices and apply the unmodified MLP pipeline from HeiStReam (coarsening, initial par-
titioning, refinement). After the MLP completes, assignments are written back to global
IDs and current batch vector is cleared for the next iteration.

In HeiStReam, vertices are processed strictly in stream order, meaning the global ver-
tex IDs are contiguous and directly aligned with their stream positions. This makes it
trivial to (i) determine whether a vertex belongs to the current batch, and (ii) construct
the mapping between global and local node IDs in the subgraph: local IDs are simply off-
sets from the batch’s first global ID. In our case, the priority queue changes the processing
order, breaking this direct correspondence. This introduces two challenges: first, we can
no longer derive batch membership from stream position, and second, explicit mappings
are required to translate between global and local IDs.

21

4 Improving Processing Order in Streaming Graph Partitioning

To address the first challenge, we reuse the already existing array that stores the final
partition ID of each vertex. This array has size n and is initialized at the beginning of
the algorithm to store the final partition ID of each vertex. Since it is guaranteed to be
available throughout, it provides a natural choice for marking intermediate states as well.
Concretely, when a vertex is inserted into the current batch, we temporarily store the
batch ID in this array at its index. During subgraph construction, membership can then
be tested in O(1) time by checking whether the stored value matches the active batch ID.
This marking also serves a second purpose: vertices can already be treated as virtually
partitioned for the computation of buffer scores, even though their actual assignment is
only determined after the MLP step. Once the batch has been processed, the temporary
IDs are simply overwritten with the final partition IDs, so that consistency is maintained
without additional data structures.

The second challenge, global–local translation, is solved by constructing explicit map-
ping arrays during subgraph assembly. The global-to-local map has size n and is used only
temporarily to assign consecutive local IDs within the subgraph, while the local-to-global
map has size δ and is retained until the MLP results are written back.

4.2.4 Ghost Neighbors
In HeiStReam, unpartitioned neighbors are ignored when constructing the subgraph
for multilevel partitioning. This neglects potentially valuable locality information:
even though such neighbors are not yet placed, parts of their neighborhoods may al-
ready contain permanently assigned vertices, which indicates a structural tendency
that could be exploited.

To capture this signal, we introduce the concept of ghost neighbors. Whenever a vertex
is permanently assigned to a partition, each of its unpartitioned neighbors temporarily
inherits the same partition ID. If a vertex has multiple assigned neighbors, its temporary
assignment is always updated to the partition of the most recently assigned neighbor.
In this way, unpartitioned vertices carry additional context that can strengthen local-
ity information during both buffer scoring and multilevel partitioning. This information
is stored in the same data structure that holds final partition IDs: for k partitions, IDs
in [0, k−1] denote permanent assignments, while IDs in [k, 2k−1] represent temporary
ones. This encoding enables efficient distinction without additional structures.

22

4.2 Algorithmic Details

(a) Ghost partition assignment.

batch container

model graph

ω = 1

ω = 2

(b) Ghost neighbors in the model graph.

Figure 3: Illustration of ghost neighbors. Colors: blue/red = permanently assigned par-
titions, beige = unassigned, striped = ghost-assigned. (a) Whenever a vertex is
permanently assigned a partition, its unpartitioned neighbors inherit the same
temporary ghost partition. (b) In the model graph, batch vertices are connected
to artificial quotient nodes (large blue/red), which represent already assigned
partitions by contracting all edges to vertices in that partition. Edges to per-
manent neighbors contribute with full weight (ω = 1), while ghost neighbors
contribute with reduced weight (for simplicity ωghost = 0.5), here resulting in
total edge weights of ω = 1 (blue) and ω = 2 (red).

Ghost neighbors affect three parts of the algorithm: the direct partitioning using the
Fennel score for high degree nodes exceeding Dmax, the buffer score computation and
subgraph construction. Since their information is only provisional, their contribution
should be discounted compared to permanently assigned neighbors. We therefore in-
troduce a weighting parameter wghost ∈ [0, 1] that regulates the relative impact of ghost
neighbors. Low values treat them as weak evidence, while higher values increase their
influence, at the risk of overemphasizing predictions that may later be contradicted. This
same parameter is consistently applied in both buffer scoring and subgraph construction,
ensuring a unified control over the role of ghost information. Figure 3 illustrates the
mechanism, showing how ghost partitions are assigned to neighbors and how they later
contribute in the model graph construction.

Buffer Score Adaptation. The idea behind integrating ghost neighbors into the buffer
score is conceptually simple: not only permanently assigned neighbors contribute to
the assigned-neighbor ratio component, but also ghost neighbors, scaled by wghost. For-
mally, ghost neighbors extend the hub-aware assigned neighbors ratio (HAA) score (see
Section 4.2.1) by enlarging the set of considered neighbors:

HAA(vt) = ρ(vt)
β + θ ·

(
1− ρ(vt)

)
·
∑k

i=1 |N(vt) ∩ Vi|+ wghost ·
∑k

i=1 |N(vt) ∩Gi|
d(vt)

23

4 Improving Processing Order in Streaming Graph Partitioning

where V1, . . . , Vk denote the sets of permanently assigned vertices in each partition,
and G1, . . . , Gk the sets of ghost-assigned vertices. The parameter wghost ∈ [0, 1] regu-
lates the additional contribution of ghost neighbors. Setting wghost = 0 reduces the score
to plain HAA, while larger values incorporate more information from ghost neighbors.

Fennel adaptation. For high-degree vertices whose degree exceeds Dmax and which
therefore skip the buffer, partitioning is performed directly using the Fennel score. To
incorporate ghost neighbors consistently, we extend the original objective by adding
their discounted contribution. Formally, a vertex v is assigned to the block i that
maximizes |N(v) ∩ Vi| + wghost · |N(v) ∩Gi| − f(|Vi|), where Vi denotes the set of
permanently assigned vertices in partition i, Gi the set of ghost-assigned vertices,
and f(|Vi|) = αγ|Vi|γ−1 the penalty term with α = m

√
k

n3/2 for γ = 3
2
.

Subgraph Construction and Implementation. Ghost neighbors also influence the
multilevel partitioning step. When assembling the batch subgraph, edges to already as-
signed neighbors are aggregated into the quotient nodes that represent connections to
the external graph. To incorporate ghost information consistently, we use an integer-
based weighting scheme that links buffer scoring and subgraph construction. Specifi-
cally, edges to permanently assigned neighbors contribute with a configurable weight
parameter wnon-ghost ∈ N, while edges to ghost neighbors contributewithweight 1. Hence,
the relative impact of ghost edges is implicitly determined by the ratio 1/wnon-ghost, ensur-
ing a unified and efficient scaling without floating-point arithmetic. This ratio is applied
consistently in both buffer scoring and subgraph construction, so that ghost contribu-
tions are always derived directly from the chosen non-ghost weight. We evaluate this
mechanism in Section 5.2.6, where we systematically vary wnon-ghost to study its effect on
partition quality and identify a suitable default value.

4.2.5 Parallelization
To improve runtime performance and scalability, we implemented a parallelized ver-
sion of our buffered streaming graph partitioning algorithm. This design follows a
multi-threaded streaming architecture, where input processing, buffer management,
and partitioning are decoupled into three dedicated threads that operate concurrently.
Thread 1 (IO Reader) is responsible for reading the input graph line-by-line, parsing each
node together with its adjacency list, and inserting the resulting ParsedLine objects
into a bounded input_queue. Thread 2 (Priority Queue Handler) consumes entries from
the input_queue, computes the buffer score for each node, and maintains the priority
buffer. Depending on node degree and buffer state, it generates either single-node or
batch partitioning tasks, which are encapsulated as PartitionTask objects and pushed
into the partition_task_queue. Finally, Thread 3 (Partitioning Worker) processes these
tasks, applying either direct single-node assignments or multilevel batch partitioning.

24

4.2 Algorithmic Details

Initially, communication between threads used mutex-protected queues with condition
variables. To reduce contention and improve throughput, these were replaced by a lock-
free queue implementation (moodycamel::ReaderWriterQueue), which supports single-
producer/single-consumer access without locking overhead. This change removed most
synchronization bottlenecks and increased concurrency, leading to a measurable speedup
in the partitioning pipeline.

Compared to the sequential version, the parallelized design requires slightly more
memory, as multiple stages of the pipeline operate in parallel and hold intermedi-
ate data simultaneously. This overhead is modest and outweighed by the substantial
runtime improvements, representing an acceptable trade-off between memory usage
and processing speed.

4.2.6 Restreaming
In addition to the standard one-pass setting, our implementation also supports restream-
ing. The number of passes can be specified by a parameter. In the first pass, the algo-
rithm behaves exactly as described in the previous sections: vertices are inserted into the
bucket priority queue, scores are updated, and batches are constructed and partitioned
using the multilevel scheme.

In subsequent passes, the priority queue and buffer score lose their purpose. With
all vertices already assigned to partitions from the previous pass, prioritization based
on neighbor information is no longer meaningful. Consequently, in later passes we
omit the buffering step entirely and revert to plain HeiStReam-style batching. Vertices
are simply collected sequentially into batches of the specified size and directly parti-
tioned using the multilevel procedure, with the partition from the previous pass serving
as the initial solution.

As in HeiStReam, restreaming tends to increase memory usage. The reason is that
in later passes every vertex already has a partition assignment, so all of its neighbors
contribute to the partition context. This results in larger model graphs during subgraph
construction and therefore higher memory consumption. High-degree vertices whose
degree exceeds the threshold Dmax are by default excluded from the refinement batches,
consistent with the handling in the first streaming pass. For these vertices, the partition
assignment obtained in the previous pass is kept unchanged. This avoids batches being
dominated by extremely large neighborhoods that would otherwise inflate the subgraph
size significantly. An optional parameter lets you include those vertices in the refinement,
trading off the gains from revisiting low-degree nodes—which benefit most from extra
passes—against the overhead of processing hubs.

Overall, restreaming integrates naturally with our algorithm: the first pass lever-
ages buffering and prioritization to reduce premature assignments, while subsequent
passes focus purely on refinement in the sense of HeiStReam. This combination allows
us to capture both the robustness benefits of buffering and the quality improvements
of iterative refinement.

25

CHAPTER 5
Experimental Evaluation

The purpose of this chapter is to validate the design choices of our algorithm BuffCut
and to assess its performance in practice. We first conduct controlled experiments
to study the influence of central hyperparameters such as buffer score, buffer size Λ,
and batch size δ, as well as the trade-offs introduced by parallelization. These stud-
ies provide insights into how different components of the algorithm affect partition
quality, runtime, and memory usage.

Subsequently, we benchmark BuffCut against state of the art streaming partition-
ers, namely HeiStReam and Cuttana, under both natural and randomly permuted
graph orderings. Natural orderings, as they occur in the original graph files, often ex-
hibit a relatively high degree of locality: vertices that are close in the graph are fre-
quently stored consecutively due to dataset construction or storage conventions. To
disentangle algorithmic performance from such favorable input bias, we additionally
evaluate under random orderings, which deliberately disrupt this structure. Our pri-
mary focus is on the random case, since HeiStReam already performs very strongly on
natural orderings, whereas its effectiveness degrades under weaker locality conditions.
The experiments demonstrate that our method can alleviate this weakness and improve
stability across different orderings.

The chapter is structured as follows. Section 5.1 introduces the experimental setup,
including hardware environments, datasets, and evaluation metrics. Section 5.2 presents
parameter studies that isolate the effect of individual hyperparameters. Finally, Section 5.3
reports results of the comparative evaluation against existing algorithms.

5.1 Experimental Setup

Hardware and Software Environment. All experiments were conducted on a ded-
icated machine equipped with an AMD EPYC 9754 CPU (128 cores, 256 threads,
base frequency 2.25GHz), 755GiB of DDR5 main memory, and an L2/L3 cache

27

5 Experimental Evaluation

of 128MiB / 256MiB. The system also features an 894GBNVMe solid-state drive and runs
Ubuntu 22.04.4 LTS with Linux kernel version 5.15.0-140. To ensure that measured mem-
ory consumption reflects only the algorithmic behavior, all input graphs are streamed
directly from disk rather than being preloaded into main memory.

Our implementation builds upon the KaHIP graph partitioning framework, integrating
and extending the HeiStReam algorithm. The code base is written in C++ and compiled
with g++ 9.4.0 using the -O3 optimization flag.

All experiments are executed using GNU Parallel [40]. Unless stated otherwise, we
run 16 concurrent instances to reduce overall test time. For the state of the art com-
parisons on the Test Set, we restrict this to 5 concurrent instances since the extremely
large graphs would otherwise exceed the available main memory when too many runs
are executed in parallel.

We implemented two variants of our algorithm: a sequential version and a parallelized
version with three dedicated threads for I/O reading, priority queue management, and
partitioning (see Section 4.2.5). By default, all experiments use the parallelized version,
since it is more efficient. The sequential variant is only included in the dedicated evalua-
tion of parallelization effects (see Section 5.2.5).

Datasets. We evaluate our algorithm on a diverse set of real-world and synthetic bench-
mark graphs drawn fromwell-established benchmark collections [3, 7, 8, 9, 14, 29, 34, 37].
To structure the evaluation, we group these graphs into two datasets. The
Exploration & Tuning Set contains medium-to-large instances that are small enough to al-
low systematic parameter studies and sensitivity analyses. The Test Set consists of much
larger graphs, which serve to evaluate scalability and to benchmark against state of the art
partitioners in practically relevant scenarios. Together, these graphs cover a wide range
of sizes, densities, and structural characteristics. Table 1 lists all graphs used in our ex-
periments, including their number of vertices n, edges m, and type. Detailed sources per
category are given below.

All social networks (orkut, twitter-2010, com-Friendster, com-LJ, Ljournal-2008,
soc-flixster, soc-lastfm) were obtained from SNAP [29]; in-2004, uk-2007-05
and coPapersDBLP stem from the 10th DIMACS Implementation Challenge benchmark
set [3]. Meshes, circuits, and matrices (Flan_1565, Bump_2911, FullChip, G3_Circuit,
nlpkkt240) are taken from the SuiteSparse Matrix Collection [14]. While it-2004,
arabic-2005, sk-2005, webbase-2001, and uk-2002 originate from the Laboratory for
Web Algorithmics (LAW) [7, 9, 8]. rgg26, rhg1B, rhg2B are synthetic graphs of type
Random Geometric Graph and were generated with the KaGen framework [37]. The re-
maining graphs (cit-Patents, italy-osm, great-britain-osm) are obtained from the
Network Repository [34]. All instances are preprocessed into the METIS [24] graph
file format: we remove self-loops and parallel edges, ignore directions, and assign unit
weights to all vertices and edges.

For each graph we consider two vertex orderings. Every instance is available both in

28

5.1 Experimental Setup

GRaph n m Type GRaph n m Type

Exploration & Tuning Set Test Set

coPapersDBLP 540 486 15 245 729 Citation orkut 3 072 411 117 185 082 Social
soc-lastfm 1 191 805 4 519 330 Social arabic-2005 22 744 080 553 903 073 Web
in-2004 1 382 908 13 591 473 Web nlpkkt240 27 933 600 373 239 376 Matrix
Flan_1565 1 564 794 57 920 625 Mesh it-2004 41 291 594 1 027 474 947 Web
G3_Circuit 1 585 478 3 037 674 Circuit twitter-2010 41 652 230 1 202 513 046 Social
soc-flixster 2 523 386 7 918 801 Social sk-2005 50 636 154 1 810 063 330 Web
Bump_2911 2 852 430 62 409 240 Mesh com-Friendster 65 608 366 1 806 067 135 Social
FullChip 2 986 999 11 817 567 Circuit rgg26 67 108 864 574 553 645 Gen
cit-Patents 3 774 768 16 518 947 Citation rhg1B 100 000 000 1 000 913 106 Gen
com-LJ 3 997 962 34 681 189 Social rhg2B 100 000 000 1 999 544 833 Gen
Ljournal-2008 5 363 186 49 514 271 Social uk-2007-05 105 896 555 3 301 876 564 Web
italy-osm 6 686 493 7 013 978 Road webbase-2001 118 142 155 854 809 761 Web
great-britain-osm 7 733 822 8 156 517 Road
uk-2002 18 520 486 261 787 258 Web

Table 1: Benchmark graphs used in our experiments. The Exploration & Tuning Set con-
sists of medium-to-large graphs that are still small enough to allow systematic
parameter studies. The Test Set contains much larger graphs, designed to evalu-
ate scalability and to compare against state of the art partitioners.

its natural ordering—the order in which vertices appear in the original input file—and in a
random ordering, obtained by applying a uniform random permutation to the vertex IDs.
To avoid biases from individual permutations, we generate three such permutations per
graph and report results as the geometric mean across them.

In most graphs, the natural ordering exhibits relatively high locality, since graphs are
often stored such that structurally related vertices appear consecutively. To quantify
this effect, we use the Neighbor to Neighbor Average ID Distance (AID) [16] introduced
in Section 2.2. For each set of graphs, we aggregate per-graph AID(G) values by re-
porting their geometric mean. Note that lower AID values indicate higher locality, as
neighbors tend to appear closer together in the vertex ordering.

For the Exploration & Tuning Set the geometric mean AID is 37 794 under the natural
ordering and 219 685 under random permutations. The effect is even stronger on the
Test Set: the geometric mean AID is 51 104 for natural orderings but rises to 2 581 859 for
random orderings. In other words, natural orderings exhibit substantially higher locality
than the random permutations used in our experiments. This gap tends to grow with
graph size and helps explain why HeiStReam performs well on naturally ordered inputs,
while its quality degrades significantly under graphs that exhibit low stream locality.

We focus on the random case, as it robustly tests performance independent of input or-
der, while the natural ordering serves as a reference to show howmuch structural context
can be exploited when it is present.

29

5 Experimental Evaluation

Experimental Metrics. We enforce a maximum imbalance of ϵ = 3%, i.e.,
each block is limited to Lmax =

⌈
1.03n

k

⌉
vertices. All experiments are performed

for k ∈ {4, 8, 16, 32, 64, 128, 256} (i.e., k = 22, . . . , 28), covering the range of partition
counts commonly used in practice.

Partitioning quality is defined in terms of the edge cut, i.e. the number of edges cross-
ing between partitions. Throughout this work, however, we report the normalized
cut edges ratio (in %), obtained by dividing the edge cut by the total number of edgesm in
the graph. This relative measure provides more interpretable results and allows for easier
comparison across graphs of different sizes. In addition, we record the runtime, measured
as the total time from start to completion of the partitioning process, and the peak mem-
ory usage, reported as resident set size inMB or GB. While cut quality remains the central
quality criterion, it is always interpreted in conjunction with runtime and memory con-
sumption, since the overarching objective is to achieve high-quality partitions with as
little resource usage as possible. Since memory consumption can be explicitly controlled
through algorithmic parameters such as buffer size, we ensure that comparisons with
other algorithms are conducted under comparable memory budgets.

Performance Profiles. For aggregated comparisons across datasets and k values, we
employ performance profiles [15]. Given a set of algorithms A and problem instances P ,
a performance profile plots, for each factor τ ≥ 1, the fraction of problems on which an
algorithm performswithin a factor τ of the best known result. This approach allows a con-
cise visual summary of trade-offs between different algorithms across multiple metrics.

Notation. Throughout this chapter we use the suffix “k” to denote a binary kilo—
meaning Xk := X · 1024, so that, for example, 64k = 65,536—and the suffix “M” to
denote a decimal million, 1M := 1,000,000.

5.2 Parameter Studies
In the following, we examine how our algorithm behaves under variations of its key hy-
perparameters and highlight the trade-offs they induce. We focus on five key factors: the
buffer score, the buffer size Λ, the batch size δ used by the multilevel partitioner, the ef-
fect of parallelization, and the use of ghost neighbors. These choices govern the trade-off
between partition quality, runtime, and memory consumption.

All parameter studies in Section 5.2 are carried out on the Exploration & Tuning Set
listed in Table 1, a representative collection of 14 graphs with diverse sizes and struc-
tures. Unless stated otherwise, each experiment is evaluated on both the natural vertex
ordering and on randomized orderings (three independent permutations); results for ran-
domized runs are reported as geometric means to reduce variance. The only exception is
one experiment studying ghost neighbors (see Section 5.2.6), which was executed on the
larger Test Set to validate behavior at scale.

30

5.2 Parameter Studies

To ensure comparability, we follow a controlled approach: at any point, exactly one
parameter is varied while all others remain fixed to default values. Unless noted oth-
erwise, the default configuration is set to buffer score = HAA (β = 2, θ = 0.75),
buffer size Λ = 128k = 131 072, batch size δ = 16k = 16 384, discFactor = 1000,
and Dmax = 10 000. These defaults were selected based on exploratory experiments and
yield robust baseline performance across a wide range of graph instances. Some earlier
experiments used slightly different HAA parameters (e.g., β = 1.5), which causes small
numeric variations between tables but does not affect the conclusions.

5.2.1 Buffer Scores
Since the buffer score governs the eviction policy of the priority queue, it effectively de-
termines the entire behavior of the buffering mechanism. The choice of score decides
which vertices leave the buffer early and thus directly shapes the batches passed to the
multilevel partitioner. Hence, the definition of the buffer score has a decisive influence
on both partitioning quality and robustness to input orderings.

In the following, we build upon the scoring functions introduced in Section 4.2.1 and
evaluate their performance experimentally. Since our algorithm is designed primarily for
scenarioswithweak locality (as in our randomorderings), we focus our analysismainly on
this case. For completeness, we also report results on natural orderings, which confirm
that the relative behavior of the scores is consistent there as well. We first provide a
comparative overview of all tested scores, including weaker variants, to obtain a complete
picture. Based on this comparison, we then focus on the most promising score—our Hub-
Aware Assigned Neighbors Ratio (HAA)—and study its parameter sensitivity in detail.

Ordering Score Runtime (s) Memory (MB) Cut Edges (%)

Random

ANR 7.30 121.0 24.13
CBS 7.61 117.1 24.67
HAA 7.32 120.9 24.02
CMS 8.43 112.1 30.92
NSS 12.28 114.5 29.30

Natural

ANR 6.20 215.6 9.05
CBS 6.36 208.8 8.98
HAA 6.20 211.7 8.97
CMS 6.86 239.7 11.38
NSS 20.30 152.2 12.66

Table 2: Geometric mean results for different buffer scores under random and natural or-
derings. For HAA we use (β = 2, θ = 0.75) and for CBS the standard θ = 2.
Best result per metric and ordering in bold.

31

5 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Ratio to Best

c) Edge cut

HAA ANR CBS

Figure 4: Performance profiles comparing the strongest buffer score competitors: HAA,
ANR, and CBS. For HAA we use (β = 2, θ = 0.75) and for CBS θ = 2.

Comparison of candidate scores. Table 2 reports geometric mean results across the
Exploration & Tuning Set for all tested buffer scores. Overall, on random orderings the
differences in cut ratios are not dramatic, yet several tendencies stand out clearly.

First, two variants can be dismissed right away: CMS and NSS perform significantly
worse in terms of cut quality and are therefore not considered further. In addition, NSS
exhibits substantially higher runtime due to the lack of optimizations for score updates in
our prototype implementation. Since neither variant improved partition quality, further
engineering effort did not appear justified.

Among the competitive designs, HAA achieves the lowest cut ratio overall. ANR al-
ready performs strongly, but HAA still improves by about 0.5% compared to ANR and by
roughly 2.5% relative to CBS. On natural orderings, the three competitive scores (ANR,
CBS, HAA) perform almost identically, with HAA again yielding the lowest cut. The dif-
ference to CBS is marginal, confirming that all competitive scores perform nearly identi-
cally when locality is strong.

To further assess robustness, Figure 4 shows performance profiles of the three com-
petitive scores. Here, the advantage of HAA becomes even clearer: while absolute dif-
ferences are small, HAA consistently avoids unfavorable cases. It never exceeds a factor
of about 1.05 over the best solution on any instance, whereas ANR can deviate by up
to 1.1 and CBS by as much as 1.25. In terms of runtime and memory, both HAA and ANR
behave almost identically, while CBS uses slightly less memory but suffers from higher
runtime. Overall, although the absolute differences between the competitive scores are
not large, HAA achieves the lowest average cut and delivers the most consistent perfor-
mance across instances. We therefore adopt HAA with β = 2 and θ = 0.75 as the default
buffer score in the following experiments.

Parameter sensitivity of HAA. Having identified HAA as the most promising buffer
score, we now analyze its sensitivity to the parameters β (degree exponent) and θ (ANR

32

5.2 Parameter Studies

Figure 5: Geometric mean cut edges ratio (in %) for HAA as a function of its parameters β
(degree exponent) and θ (weight of assigned neighbors ratio). Lighter colors
indicate lower cut ratios.

weight). Figure 5 shows a heatmap of the geometric mean cut ratio across parameter
pairs, where lighter colors indicate lower cuts and thus better partitioning quality.

The best performance is obtained for β = 2 and θ = 0.75, which we therefore se-
lect as the default configuration. More generally, values of β around 2–2.5 perform best
across a range of θ. By contrast, β = 1, corresponding to a purely linear degree con-
tribution, is clearly inferior for all θ, confirming that a stronger-than-linear weighting
of degree is essential.

For the θ parameter, the effect is more subtle. Across the tested range, the differences
remain very small: the worst configuration reaches 24.19%, compared to 24.02% at the op-
timum. This indicates that HAA is robust with respect to θ: while values between 0.5–1.0
and also θ = 2 (in combination with β = 2.5) yield slightly stronger results, no setting
performs significantly worse once β > 1. In other words, θ fine-tunes the balance but
does not fundamentally alter the effectiveness of the score.

It is worth noting that the tuning set consists of medium-sized graphs, which con-
tain comparatively few extreme high-degree vertices (with Dmax = 10 000 as normaliza-
tion). This may partly explain why θ shows only marginal influence here: the degree
term is already dominated by the stronger-than-linear exponent β. On larger graphs
with more extreme degree distributions, the role of θ could become more pronounced,
but testing this would require substantially more expensive experiments beyond the
scope of the tuning set.

Overall, the heatmap confirms that HAA does not require fine-tuned parameters to

33

5 Experimental Evaluation

perform well. The sweet spot lies around β = 2 and θ = 0.75, but many alternatives
remain competitive as long as β > 1.

5.2.2 Buffer Size

The buffer plays a central role in our algorithm since it temporarily stores vertices before
they are assigned to a batch. Increasing the buffer sizeΛ allows the algorithm to postpone
more decisions and to exploit a larger amount of neighborhood information, which in
principle should reduce premature assignments and thus improve partition quality. At
the same time, a larger buffer inevitably increases memory usage, as more vertices and
their adjacency information must be maintained, and also affects runtime, since more
updates of buffer scores are triggered.

Table 3 summarizes the effect of increasing Λ for natural and random orderings. Fig-
ure 6 shows performance profiles for random orderings; the natural ordering profiles are
similar and omitted for brevity. As expected, runtime and memory usage grow almost
linearly with Λ, since larger queues store more vertices and trigger more score updates
of their neighbors. However, Table 3 also shows that memory consumption remains rel-
atively stable across the three smallest configurations and is even slightly higher for the
smallest buffer (Λ = 64k). This effect can be explained by the fact that memory usage
is initially dominated by the subgraph construction and multilevel partitioning phase,
which require additional auxiliary data structures, whereas the buffer itself only stores
vertex IDs and their adjacency lists. The actual contribution of the buffer to total memory

Ordering Λ Runtime (s) Memory (MB) Cut Edges (%)

Natural

32k 5.40 236.2 9.56
64k 5.74 219.2 8.91
128k 6.14 229.5 8.08
256k 6.54 271.5 7.76
512k 6.83 354.2 6.90
1024k 7.29 486.3 6.92

Random

32k 6.87 159.0 30.21
64k 7.71 143.8 28.33
128k 8.43 150.9 24.30
256k 9.07 185.8 20.03
512k 9.55 275.7 16.94
1024k 10.18 418.2 14.29

Table 3: Geometric mean results for varying buffer sizes Λ under natural and random
orderings. The batch size is fixed to δ = 32k in all configurations. Best result per
metric and ordering in bold.

34

5.2 Parameter Studies

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.22.4
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 1012
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 2025
Ratio to Best

c) Edge cut

BuffCut(Λ =32k) BuffCut(Λ =64k) BuffCut(Λ =128k)

BuffCut(Λ =256k) BuffCut(Λ =512k) BuffCut(Λ =1024k)

Figure 6: Performance profiles for varying buffer sizes Λ under random orderings. The
batch size is fixed to δ = 32k in all configurations.

usage becomes visible only once Λ exceeds roughly 256k, after which memory grows
more clearly with buffer size.

Regarding partition quality, the results differ significantly between the two ordering
scenarios. For random orderings, the geometric mean edge cut decreases from 28.3%
at Λ = 64k to 14.3% at Λ = 1024k (Table 3), corresponding to a reduction of nearly 50%.
Performance profiles (Figure 6) confirm this trend: the largest configuration (Λ = 1M)
achieves the best cut on more than 60% of the instances, consistently outperforming
smaller buffers. In extreme cases, the smallest buffers even yield edge cuts up to 25×
worse than the best instance.

This comes at the cost ofmemory usage, which ismore than 4× higher than the smallest
configuration for roughly 45% of the instances. Runtime differences are less pronounced,
with only moderate slowdowns for larger buffers. Overall, these results demonstrate that
additional buffering is highly beneficial in random orderings, where little or no locality is
present in the input stream.

For natural orderings, edge cuts are already much lower at small buffer sizes (8.9%
at Λ = 64k compared to 28.3% in the random case), highlighting the strong inherent lo-
cality of these orderings. Improvements with increasing Λ are therefore modest: the cut
ratio decreases slightly to 6.9% at Λ = 512k, but no further gain is observed at Λ = 1024k.
This plateau suggests that even small buffers capture sufficient structural information
when locality is present, while very large buffers may even dilute this structure by mix-
ing vertices from different graph regions. This behavior also suggests that there are
notions of locality that are not fully captured by the buffer score, indicating potential
areas for future improvements.

In summary, buffer size Λ presents a clear trade-off: larger values improve partition
quality at the cost of increasedmemory consumption and, to a lesser extent, runtime over-
head. For practical deployments, Λ should therefore be chosen according to the available
memory budget and the expected degree of locality in the input stream. At the same time,

35

5 Experimental Evaluation

the effect of buffering cannot be seen in isolation, as it also interacts with the batch size δ,
which we analyze in the following section.

5.2.3 Batch Size
The batch size δ parameter originates from HeiStReam and controls how many vertices
are collected from the queue before forming a batch. Once the specified number of ver-
tices has been extracted, they are combined into a subgraph that includes the batch ver-
tices, the edges among them, and their connections to already partitioned neighbors. This
subgraph is then partitioned using a multilevel pipeline consisting of coarsening, ini-
tial partitioning, and refinement during uncoarsening. Intuitively, larger batches provide
more structural information about the graph and may therefore lead to improved parti-
tion quality. At the same time, increasing δ is expected to raise memory consumption
and computational overhead, since more vertices and adjacency data have to be stored
and processed simultaneously.

Table 4 and Figure 7 summarize the effect of varying δ with a fixed buffer size
of Λ = 1M. As expected, memory consumption growsmonotonically with larger batches:
from 379MB at δ = 4k to over 1.1GB at δ = 512k for natural orderings, and from 348MB
to 1056MB in the random case. This trend reflects the increasing size of the induced sub-
graphs that must be stored and processed in the multilevel step.

Runtime exhibits a U-shaped behavior. Very small batches (e.g., δ = 4k) are inefficient
because the construction of many small subgraphs introduces overhead, resulting in run-
times up to 3.5× slower than the best configuration. For medium batch sizes (around 64k),
runtimes are lowest (7.42s for natural, 10.32s for random), while very large batches again
increase runtime due to the higher cost of processing large subgraphs (9.26s and 13.31s
at δ = 512k).

Partition quality steadily improves with larger δ. For natural orderings, the cut

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Ratio to Best

F
ra
ct
io
n
of

In
st
an

ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5
Ratio to Best

c) Edge cut

BuffCut(δ =4k) BuffCut(δ =16k) BuffCut(δ =64k)

BuffCut(δ =256k) BuffCut(δ =512k)

Figure 7: Performance profiles for varying batch sizes δ under random orderings. The
buffer size is fixed to Λ = 1M in all configurations.

36

5.2 Parameter Studies

Ordering δ Runtime (s) Memory (MB) Cut Edges (%)

Natural

4k 8.26 379.4 7.26
8k 7.71 392.6 7.21
16k 7.45 431.5 6.93
32k 7.29 486.3 6.92
64k 7.42 559.2 6.73
128k 7.74 643.1 6.66
256k 8.38 798.2 6.38
512k 9.26 1115.2 5.99

Random

4k 11.02 348.5 14.55
8k 10.42 355.4 14.66
16k 10.22 389.9 14.50
32k 10.18 418.2 14.29
64k 10.32 478.8 14.03
128k 10.78 570.1 13.40
256k 11.76 739.0 12.79
512k 13.31 1056.0 11.97

Table 4: Geometric mean results for varying batch sizes δ under natural and random or-
derings. The buffer size is fixed to Λ = 1M in all configurations. Best result per
metric and ordering in bold.

decreases from 7.26% at δ = 4k to 5.99% at δ = 512k. For random orderings, the cut im-
proves from 14.55% to 11.97% over the same range, corresponding to a relative reduction
of about 18%. This confirms that larger batches provide more structural information to the
multilevel pipeline and thus enable better decisions. At the same time, the relative gain
diminishes at very large batch sizes compared to the steep rise in memory consumption.

Overall, larger batches consistently improve partition quality but come at a clear cost in
memory and runtime. In practice, δ should therefore be chosen not in isolation, but in re-
lation to the buffer size Λ, since the ratio Λ/δ ultimately determines how much structural
context is available to each batch. We analyze this interaction in the following subsection.

5.2.4 Buffer–Batch Trade-off

Our experiments show that buffer size Λ and batch size δ should not be tuned in isolation,
but jointly. While our results do not indicate a single universally optimal setting, they
suggest that maintaining a ratio ofΛ/δ between 8 and 16 provides a good balance between
partition quality, runtime, and memory usage across both natural and random orderings.

The rationale behind this ratio is that the buffer should always contain more vertices
than the batch, providing a pool from which vertices with higher locality can be se-

37

5 Experimental Evaluation

lected. At the same time, the batch should not be too large, since subgraph construc-
tion and multilevel partitioning require considerably more memory than buffering alone.
In this sense, especially for randomly ordered graphs, memory is often used more effec-
tively in buffering, because even moderate buffers already provide structural context that
would otherwise be missing.

Batch sizes below 8k are not advisable, since the repeated construction of many small
subgraphs incurs high runtime overhead without notable quality gains. Conversely, for
very large graphs, δ should be increased beyond the minimum to ensure that the cost of
subgraph construction remains manageable.

In summary, we recommend maintaining a ratio of Λ/δ between 8 and 16, while ad-
justing both parameters within the limits of the available memory budget. This ensures a
balanced trade-off between partition quality and resource usage.

5.2.5 Evaluation of Parallelization
Parallel execution is a central feature of BuffCut, as it aims to accelerate the streaming
pipeline by overlapping buffer handling, score updates, and multilevel partitioning. To
assess its impact, we compare the sequential baseline with the parallel version on the
Exploration & Tuning Set. Table 5 reports geometric mean results, while Figure 8 provides
performance profiles for the random-ordering scenario.

The results show a substantial runtime improvement: the parallel version reduces
runtime by roughly 37–39% (e.g., from 10.0s to 6.2s under natural ordering and
from 12.0s to 7.3s under random ordering). The performance profiles (Figure 8) con-
firm that in more than 90% of instances the parallel algorithm is at least 1.5× faster
than the sequential version.

This speed-up comes at the cost of higher peak memory usage. For natural orderings,
memory increases by about 51% (141 → 214 MB), while for random orderings the over-
head is smaller at around 25% (96→ 120MB). We attribute this difference to the structure
of the batch-induced subgraphs: under natural orderings, batches often contain many
tightly connected vertices, which increases the number of intra-batch edges and thus the

Ordering Mode Runtime (s) Memory (MB) Cut Edges (%)

Natural Sequential 10.01 141.2 8.98
Parallel 6.22 213.5 8.97

Random Sequential 12.04 96.4 24.16
Parallel 7.29 120.0 24.23

Table 5: Geometric mean results comparing the sequential and parallel implementa-
tions of BuffCut under natural and random orderings. Best per metric and
ordering in bold.

38

5.2 Parameter Studies

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.05 1.10 1.15 1.20
Ratio to Best

c) Edge cut

BuffCut(Sequential) BuffCut(Parallel)

Figure 8: Performance profiles comparing the sequential and parallel implementations of
BuffCut under random ordeings.

size of temporary data structures in the parallel pipeline. In contrast, random orderings
yield smaller and sparser subgraphs, so the additional memory overhead of paralleliza-
tion remains more moderate. The performance profiles further show that only about 10%
of the random instances exceed a 2× increase in memory, while the majority of cases
remain below this threshold.

Partition quality remains essentially unchanged: sequential and parallel versions yield
virtually identical edge cuts, with only marginal differences observable in either direction.
For natural orderings, the parallel version is in fact slightly better on average, whereas
for random orderings it is minimally worse. These deviations are negligible and can be
attributed to the small amount of non-determinism introduced by parallel execution. Al-
though the algorithm is deterministic in its main design, concurrent scheduling can subtly
affect the processing order of certain vertices, in particular those that exceedDmax, which
may lead to minor variation in the final assignment.

Overall, the parallel version of BuffCut provides consistent runtime improvements
at the cost of moderately higher memory usage, while partition quality remains effec-
tively unchanged. The trade-off is especially favorable under random orderings, which
are the main focus of our evaluation: here, runtime decreases by nearly 40% while mem-
ory grows by only about 25%. Given this clear benefit in this setting, we adopt the par-
allel implementation as the default configuration in all subsequent experiments, unless
explicitly stated otherwise.

5.2.6 Impact of Ghost Neighbors

Ghost neighbors enrich the algorithmwith additional structural context. They affect three
parts of the pipeline: (i) buffer scoring, where the assigned-neighbor ratio is extended by
ghost neighbors, (ii) subgraph construction, where edges to ghosts are added as quotient
edges with reduced weight, and (iii) the partitioning of high-degree vertices, where ghost

39

5 Experimental Evaluation

neighbors contribute to the Fennel score alongside permanently assigned neighbors (see
Section 4.2.4). Their influence is controlled by the ghost weight wghost, which specifies how
strongly ghost edges contribute relative to ordinary edges. A setting of wghost = 1 makes
ghost edges equivalent to regular edges, while wghost = 0 disables them entirely. In our
experiments we test intermediate fractions (e.g., 1/2, 1/5, 1/10), which arise naturally
from scaling ghost edges against the weight of ordinary ones.

We proceed in two steps. First, we analyze the effect of varying wghost on the
Exploration & Tuning Set, which consists of medium-sized graphs and allows us to study
a broad range of values. Based on these results we select a reasonable default configura-
tion. Second, we validate this choice on the Test Set of large graphs, where buffer-based
streaming is particularly relevant in practice. This two-stage evaluation clarifies both the
sensitivity of the mechanism and its practical impact on large-scale graphs.

Exploration & Tuning set. In the experiments on the Exploration & Tuning Set we
varied wghost ∈ {0, 0.1, 0.2, 0.25, 0.33, 0.5, 1.0} to assess its effect on cut quality, runtime,
and memory. Figure 9 (relative edge cut) and Table 6 (geometric means) reveal three
consistent effects. First, enabling ghost neighbors (wghost > 0) almost always improves
quality compared to the baseline wghost = 0. Second, the optimal setting differs by or-
dering: random streams benefit from stronger ghost influence (best cut at wghost = 0.5
with 21.78%), while natural streams perform best with weaker contributions (minimum
at wghost = 0.1 with 7.33%). Third, the overall gain from ghost information is much larger
on natural orderings: compared to the best configuration, disabling ghosts increases cut
by about 11% on random orderings, but by more than 23% on natural orderings.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ωghost

1.00

1.05

1.10

1.15

1.20

1.25

Re
la

tiv
e

ed
ge

cu
t(
×

be
st

)

Natural (rel. to best)
Random (rel. to best)

Figure 9: Relative edge cut of BuffCut under natural and random orderings on the
Exploration & Tuning Set for different ghost weights wghost, normalized per or-
dering to the best configuration (lower is better). A ghost weight of 0 disables
the mechanism entirely (baseline).

40

5.2 Parameter Studies

Ordering ωghost Runtime (s) Memory (MB) Cut Edges (%)

Natural

1 8.49 270.3 9.12
0.5 6.80 275.4 7.91
0.33 6.81 268.6 7.66
0.25 6.87 268.8 7.58
0.2 6.85 264.2 7.38
0.1 6.87 254.9 7.33
0 6.18 213.0 8.97

Random

1 10.70 178.3 22.33
0.5 9.10 200.1 21.78
0.33 9.04 202.9 22.05
0.25 9.03 203.5 22.75
0.2 9.03 202.9 22.82
0.1 9.11 210.4 24.37
0 7.36 119.8 24.16

Table 6: Geometric mean results for varying ghost weights wghost under natural and ran-
dom orderings on the Exploration & Tuning Set. A ghost weight of 0 disables the
mechanism entirely (baseline). Best result per metric and ordering in bold.

These patterns are consistent with structural differences. For random orderings,
batches contain fewer intra-batch ties, so stronger ghost weighting provides valuable ex-
ternal hints and improves partitioning quality. For natural orderings, locality is already
strong; large ghost weights blur this signal by pulling towards external assignments, while
small weights preserve in-batch cohesion and still offer a light bias. The larger relative
gain on natural streams indicates that ghost assignments there tend to align more coher-
ently with the true partition structure, making their contribution particularly valuable.

Runtime varies only modestly once wghost > 0. The largest overhead appears
at wghost = 1, which is not a competitive setting in terms of quality and can be regarded as
an outlier. Excluding this case, runtimes on natural orderings rise from 7.36 s atwghost = 0
to about 9.0–9.1 s for wghost ∈ [0.1, 0.5], i.e. an increase of roughly 20–25%. For random
orderings, the overhead is smaller: from 6.18 s at 0 to around 6.8–6.9 s across the same
range, which corresponds to about 10% more runtime. Overall, the variation is moderate,
and the relative cost is more pronounced on natural graphs.

Memory shows a more pronounced overhead than runtime. For natural orderings, en-
abling ghosts increases usage from 120MB at wghost = 0 to about 200–210MB across
the tested range, which corresponds to roughly 70–75% more memory. For random or-
derings, the effect is milder: memory grows from 213MB at baseline to 255–275MB
with ghost weighting, an overhead of about 20–30%. The stronger increase on natural
streams likely stems from the fact that more vertices are exploited as ghost neighbors,

41

5 Experimental Evaluation

so that additional quotient edges are inserted during subgraph construction. This higher
overhead is consistent with the larger impact that ghost information has on partition
quality in the natural case.

To avoid per-ordering tuning and keep experiments consistent, we adopt wghost = 0.2
as a global default. This value provides a reasonable compromise: close to optimal for
natural streams, competitive for random ones, and consistently superior to disabling
ghost neighbors altogether.

Test set. To validate these findings on larger graphs, we repeat the comparison on the
Test Set, restricting attention to the baseline without ghost neighbors (wghost = 0) and the
chosen default (wghost = 0.2). Here we also increase buffer size to Λ = 1M and batch size
to δ = 64k to account for the larger input.

Table 7 shows a clear contrast between orderings. On natural orderings, ghost neigh-
bors provide a substantial improvement: the edge cut drops from 5.63% to 4.46%, a rel-
ative reduction of about 21%, while runtime rises moderately by ≈ 15% (315 s → 363 s)
and memory by ≈ 10% (3479MB→ 3831MB). Performance profiles (Figure 10) confirm
this result: in roughly 70% of the instances the ghost-enabled variant achieves the low-
est cut. Overheads remain moderate, with memory below 1.2× the baseline for more
than 85% of cases, and runtime below 1.5× for about 90%. Only a handful of very
dense graphs show higher slowdowns (up to 3.5×), likely due to larger subgraphs that
inflate local partitioning costs.

On random orderings, by contrast, ghost neighbors no longer provide a benefit. The ge-
ometric mean edge cut remains essentially unchanged (17.72% vs. 17.69%), while runtime
grows by around 20% (338 s→ 407 s) andmemory by around 30% (1.66GB→ 2.17GB). Per-
formance profiles (not shown) confirm the absence of quality gains, so we omit them for
brevity. This reinforces the tendency already observed on the Exploration & Tuning Set:
ghost neighbors are most helpful when locality is strong (natural orderings), whereas in
random streams their additional context does not translate into quality improvements. A
plausible explanation is that on large, randomly permuted graphs the pool of potential

Ordering Ghost Neighbors Runtime (s) Memory (GB) Cut Edges (%)

Natural Disabled 315.11 3.48 5.63
Enabled 362.76 3.83 4.46

Random Disabled 337.72 1.66 17.72
Enabled 407.34 2.17 17.69

Table 7: Geometric mean results under natural and random orderings on the Test Set with
ghost neighbors either disabled or enabled with the default weight wghost = 0.2.
All configurations use buffer size Λ = 1M and batch size δ = 64k. Best result
per metric and ordering in bold.

42

5.3 Comparison with State of the Art Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0
Ratio to Best

c) Edge cut

BuffCut(ωghost =0) BuffCut(ωghost =0.2)

Figure 10: Performance profiles on the Test Set under natural orderings comparing
BuffCut with ghost neighbors disabled (wghost = 0) and enabled at the de-
fault weight (wghost = 0.2). All configurations use buffer size Λ = 1M and
batch size δ = 64k.

ghost neighbors grows rapidly, while many of these edges connect to weakly structured
or noisy regions. As a result, the provisional signals carried by ghost assignments become
diluted and add little reliable locality information for placement decisions, yet they still
incur significant memory and runtime overhead.

Conclusion. Overall, ghost neighbors are a promising mechanism, but their benefit
depends strongly on the input ordering. On natural orderings, where locality is already
pronounced, they yield clear quality improvements at moderate overhead. On random or-
derings, however, the expected gains do not materialize on large graphs, as the additional
ghost context appears too noisy to provide value. Thus, while we adopt wghost = 0.2
as a consistent global default, our results indicate that ghost neighbors are most useful
in settings with strong structural locality. Developing adaptive strategies that can selec-
tively exploit ghost information in less structured streams remains an interesting direction
for future work.

5.3 Comparison with State of the Art Algorithms

In this section, we compare our algorithm BuffCut against the two most competitive
buffered streaming partitioners, HeiStReam and Cuttana. Earlier one-pass heuristics
such as LDG or Fennel are not considered here, since they are consistently outperformed
byHeiStReam and thus not representative state of the art baselines. Our focus is therefore
on buffered approaches.

In addition to the experiments presented here, we also reproduce the evaluation setup
from the original Cuttana paper (Appendix A), which allows a direct comparison under

43

5 Experimental Evaluation

the authors’ settings. Moreover, since our evaluation revealed a strong dependence of
Cuttana ’s resource consumption on the number of partitions, we provide a dedicated
analysis of its memory and runtime behavior in the appendix as well.

5.3.1 Baselines and Configurations

Before turning to the results, we summarize the configurations used for all algorithms.
For BuffCut, we employ the parameter setting in Table 8. This configuration reflects
the outcome of our parameter studies, but in the state of the art comparison the decisive
parameters—buffer size Λ and batch size δ–are chosen such that memory usage remains
both comparable across algorithms and reasonable for the large graphs that are contained
in the benchmark. The remaining values follow our standard defaults.

Parameter Value

Buffer score HAA (θ = 0.75, β = 2)
Buffer size Λ 1M
Batch size δ 64k
discFactor 1 000
Dmax 10 000
Parallelization 3 threads
Ghost neighbors Disabled

Table 8: Configuration of BuffCut used in the state of the art comparisons.

Cuttana. We obtained the code from Cuttana’s official repository and evaluate it in
its parallel implementation. This matches the setup in the original publication and en-
sures a fair comparison with our algorithm, which is also evaluated in parallel. More-
over, we replaced memory-mapped I/O with standard streaming access, consistent with
HeiStReam and BuffCut, so thatmemory usage reflects algorithmic behavior rather than
differences in file handling.
Implementation Issues. During our evaluationwe identified two problems in the public

code. First, the implementation crashes on graphs containing isolated vertices, which we
fixed by simply excluding zero-degree vertices from the buffer. Second, the maximum
buffer score used for early eviction decisions is stored as an int rather than a double,
causing precision loss. This can lead to many vertices being prematurely assigned instead
of buffered, especially when the graph containsmore vertices than the buffer can hold. We
tested Cuttana both with and without this fix, but, in line with the developers’ decision
not to integrate it (to preserve their published results), we treat the official unmodified
version as the baseline in our main comparisons.

44

5.3 Comparison with State of the Art Algorithms

Parameterization. According to its original publication [21], Cuttana is evaluated
with Dmax = 1000, a maximum queue size of 1M, and a subpartition parameter defined
by the ratio k′

k
= 4096, where k is the number of partitions and k′ the total number of

subpartitions. The only exception reported in the paper is for the twitter instance, where
the authors setDmax = 100 and k′

k
= 256. The subpartition parameter plays a central role

in Cuttana, since refinement is performed between subpartitions; it therefore directly
affects both partition quality and resource consumption. In our experiments, we adopt the
recommended settings from the publication, but apply them uniformly across all graphs
rather than making dataset-specific adjustments. Concretely, we use Dmax = 1000, a
maximum queue size of 1M, and k′

k
= 4096 for all instances.

This default choice makes Cuttana highly resource-intensive, since the total number
of subpartitions grows linearly with k and directly drives both memory consumption and
runtime. For large k (e.g., 128 or 256), these requirements escalate sharply and render the
algorithm impractical in real-world settings. A detailed breakdown of this effect, includ-
ing the underlying data structures, is given in the Appendix in Section A.3.

To provide a fair comparison with HeiStReam and BuffCut, we also evaluate
Cuttana with a reduced setting of k′

k
= 16. This significantly reduces memory and run-

time while still capturing the algorithm’s intended behavior. We therefore report both
configurations in our evaluation: the default k′

k
= 4096 for completeness, and the re-

duced k′

k
= 16 as the practical baseline.

HeiStream Wealso identified a bug in the publicly available HeiStReam code: quotient
edges to already partitioned neighbors were not aggregated correctly, leading to redun-
dant entries and increased runtime and memory usage. We fixed this issue locally, and
the patch has since been integrated into the official repository. All results for HeiStReam
are based on the corrected version.

Naming Conventions. Throughout this section, we use a consistent notation for al-
gorithm configurations. For HeiStReam, the value in parentheses refers to the batch
size δ (e.g., HeiStReam(512k) = 512k vertices). For BuffCut, the parentheses list first
the batch size δ, then the buffer size Λ (e.g., BuffCut(64k, 1M) = batch size 64k, buffer
size 1M). For Cuttana, the number in parentheses denotes the subpartition ratio k′

k

(e.g., Cuttana(16) = k′

k
= 16). When relevant, we append the suffix -Bugfix to indicate

the corrected implementation with the buffer-score fix applied. We follow the unit con-
ventions introduced in Section 5.1 (suffix “k” binary, “M” decimal).

5.3.2 Experiments on Naturally Ordered Graphs
Figure 11 and Table 9 summarize the results on naturally ordered graphs. As expected,
HeiStReam achieves the best performance in this setting, benefiting from the strong lo-
cality of the input. Our algorithm, BuffCut, achieves results close to HeiStReam and in

45

5 Experimental Evaluation

many cases nearly matches its quality, while Cuttana remains behind and, depending
on its configuration, incurs substantial runtime and memory overheads.

Edge Cut. Compared to Cuttana, BuffCut achieves a clear improvement on natural
orderings. Both configurations (16 and 4k) of the official version of Cuttana produce
cuts substantially higher (15.42% and 12.50% vs. 5.48%, Table 9), and even after applying
the bugfix Cuttana(16)-Bugfix still trails behind at 6.71%. Cuttana(4k)-Bugfix im-
proves upon BuffCut, however this comes at the cost of drastically increased resource
consumption (see memory and runtime consumption discussions below). By contrast,
BuffCut consistently remains close to HeiStReam, which achieves the best cuts overall
as expected (4.24% geometric mean). Thus, while HeiStReam retains a small advantage
thanks to its strong exploitation of input locality, BuffCut clearly outperforms Cuttana
and establishes itself as the better alternative for streams containing higher locality.

These aggregate findings are confirmed by the performance profiles in Figure 11a.
HeiStReam achieves the best cuts on roughly 60% of the instances, while our BuffCut
and Cuttana(4k) each reach about 20%. The overall picture, however, is very differ-
ent: our method remains relatively close to HeiStReam across most graphs, whereas
Cuttana quickly drops off and producesmuchweaker partitions, with both Cuttana(16)
and Cuttana(4k) being up to 35× worse than the best results. The difference between
Cuttana(16) and Cuttana(4k) is negligible, indicating that the buffer-score bug domi-
nates the quality degradation. Figure 11b illustrates that the bugfix substantially improves
Cuttana ’s performance, yet it continues to fall short of BuffCut across most graphs.

Runtime. HeiStReam is by far the fastest method, requiring less than half the runtime
of both our algorithm and Cuttana(16), which perform on a similar level (Table 9). By
contrast, Cuttana(4k) is entirely impractical: as visible in Subfigure 11a, its runtime
exceeds that of the best algorithm by factors of up to 1 000 on some datasets, making
it unsuitable for any realistic setting. After applying the bugfix, Cuttana becomes even
slower, which is consistent with the fact that premature assignments are avoided andmore
processing steps are carried out. As a result, Cuttana(4k)-Bugfix falls further behind
our method in runtime efficiency.

Algorithm Runtime (s) Memory (GB) Cut Edges (%)

HeiStReam(512k) 169.27 2.92 4.24
BuffCut(64k, 1M) 326.06 3.30 5.48
Cuttana(16) 378.37 3.19 15.42
Cuttana(4k) 715.89 15.29 12.50
Cuttana(16)-Bugfix 577.10 3.15 6.71
Cuttana(4k)-Bugfix 964.10 14.38 5.07

Table 9: Geometric mean metrics of BuffCut, HeiStReam and Cuttana on the Test Set
under natural orderings. Best result per metric and ordering in bold.

46

5.3 Comparison with State of the Art Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

5 10 50 200 1k
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

5 10 20 40 80
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

5 10 20 40
Ratio to Best

c) Edge cut

BuffCut(64k, 1M) HeiStream(512k) Cuttana(16) Cuttana(4k)

(a) Comparison of BuffCut, HeiStReam and the official version of Cuttana, including
Cuttana(16) and Cuttana(4k).

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
Ratio to Best

F
ra
ct
io
n
of

In
st
an

ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10
Ratio to Best

c) Edge cut

BuffCut(64k, 1M) HeiStream(512k) Cuttana(16)-Bugfix

(b) Comparison of BuffCut, HeiStReam and the bugfixed version of Cuttana.

Figure 11: Performance profile comparison on the Test Set under natural orderings. Both
subfigures compare BuffCut, HeiStReam, and Cuttana; subfigure (a) com-
pares against the official version of Cuttana, while subfigure (b) against the
bugfixed version.

Memory Consumption. All three methods — HeiStReam, BuffCut, and
Cuttana(16) — use comparable amounts of memory (around 3GB on average, see
Table 9). By contrast, Cuttana(4k) consumes drastically more memory: around five
times the average and, as visible in Subfigure 11a, up to 100× higher on individual
instances. The bugfix has little effect on memory usage, leaving Cuttana ’s overall
footprint essentially unchanged. Taken together, these results underline that while
HeiStReam dominates and our method provides competitive quality at moderate cost,
Cuttana remains not scalable under either configuration.

47

5 Experimental Evaluation

5.3.3 Experiments on Randomly Ordered Graphs

Random orderings represent the most challenging scenario, since input locality is de-
stroyed and the quality of HeiStReam degrades noticeably. This is precisely the setting
our method is designed for: to maintain strong partition quality while keeping runtime
and memory overhead moderate. In the following, we discuss results for partition quality,
runtime, and memory consumption, referring to both the original and bugfixed versions
of Cuttana. Aggregate statistics are reported in Table 10, while performance profiles are
shown in Figure 12.

Edge Cut. In the performance profile comparison with HeiStReam and the official ver-
sion of Cuttana (Subfigure 12a), our algorithm dominates with nearly 85% of the in-
stances yielding the best cuts. HeiStReam and Cuttana(16) each achieve the best re-
sult in only about less than 10% of the cases, with HeiStReam slightly ahead: its worst
cuts are at most 1.6× worse than the optimum, whereas Cuttana(16) deteriorates up
to 2×. Table 10 confirms this picture: our algorithm achieves the lowest geometric mean
cut (17.76%), an 15.79% improvement over HeiStReam (21.09%) and a 20.86% improvement
over Cuttana(16) (22.44%). After applying the buffer-score fix (Subfigure 12b), Cuttana
improves slightly to 19.90%, occasionally surpassing HeiStReam, but still remains well
behind our algorithm, which continues to dominate with about 80% of the best results.
In comparison to the natural-ordering case, the impact of this bugfix is less pronounced
here, since the absence of input locality limits the effect of buffering decisions in general.

Algorithm Runtime (s) Memory (GB) Cut Edges (%)

HeiStReam(1024k) 195.70 1.51 21.09
BuffCut(64k, 1M) 348.83 1.65 17.76
Cuttana(16) 647.81 3.19 22.44
Cuttana(4k) 1001.50 18.65 21.46
Cuttana(16)-Bugfix 600.27 3.14 19.90
Cuttana(4K)-Bugfix 918.94 17.69 18.96

HeiStReam(512k)(2×) 480.91 3.14 16.21
HeiStReam(512k)(3×) 773.20 3.17 15.35
BuffCut(64k, 1M)(2×) 594.32 2.04 13.88
BuffCut(64k, 1M)(3×) 863.11 2.14 13.23

Table 10: Geometric mean metrics of BuffCut, HeiStReam, and Cuttana on the Test
Set under random orderings. The upper block reports the main comparison.
The lower block lists additional experiments with restreaming, where (2×) and
(3×) denote two and three total passes, respectively. Best result per metric and
block in bold.

48

5.3 Comparison with State of the Art Algorithms

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7
Ratio to Best

F
ra
ct
io
n
of

In
st
a
n
ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.2 1.4 1.6 1.8 2.0
Ratio to Best

c) Edge cut

BuffCut(64k, 1M) HeiStream(1024k) Cuttana(16)

(a) Comparison of BuffCut, HeiStReam and the official version of Cuttana.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6
Ratio to Best

F
ra
ct
io
n
of

In
st
an

ce
s

a) Running Time

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7
Ratio to Best

b) Memory Consumption

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Ratio to Best

c) Edge cut

BuffCut(64k, 1M) HeiStream(1024k) Cuttana(16)-Bugfix

(b) Comparison of BuffCut, HeiStReam and the bugfixed version of Cuttana.

Figure 12: Performance profile comparison on the Test Set under random orderings. Both
subfigures compare BuffCut, HeiStReam, and Cuttana; subfigure (a) com-
pares against the official version of Cuttana, while subfigure (b) against the
bugfixed version.

Runtime. As can be seen in Table 10, HeiStReam exhibits the lowest average run-
time (195 s). This observation is reinforced by Figure 12, which shows HeiStReam to
be the fastest solver on approximately 90% of the instances. Our algorithm requires
about 78% more runtime (348 seconds) but achieves a better cut quality, which makes
the trade-off acceptable in practice. Cuttana(16) is slower still, averaging 647 seconds,
while Cuttana(4k) exceeds 1 000 seconds on average, which confirms its impractical-
ity for bigger graphs. The performance profiles confirm this trend, with Cuttana(16)
requiring more than double the runtime of the fastest method on almost all instances. Af-
ter applying the buffer-score fix, Cuttana’s runtime decreases slightly, though without
changing the relative ranking.

49

5 Experimental Evaluation

Memory Consumption. HeiStReam and our algorithm use comparable amounts of
memory with average values around 1.5–1.6 GB (Table 10). By contrast, Cuttana(16)
consumes roughly twice the memory on average. This overhead is reflected in the
performance profiles (Figure 12): on more than 70% of the instances Cuttana(16)
requires over twice the memory of the competing methods. The figure further shows
that HeiStReam exhibits higher peaks on a small fraction of instances, whereas our
method varies less and remains closer to its typical memory usage. As expected, the
buffer-score fix has virtually no effect on memory consumption, with Cuttana(16) and
Cuttana(16)-Bugfix showing nearly identical behavior. Finally, Cuttana(4k) requires
about an order of magnitude more memory on average, making any comparison with
HeiStReam or our method meaningless in terms of resource efficiency. For this reason,
the configuration is not included in the performance profiles.

Overall, the results on random orderings confirm the robustness of our approach:
BuffCut achieves the best partition quality, improving the geometric mean cut by 15.79%
compared to HeiStReam, while requiring about 78% more runtime. Memory consump-
tion of both methods is comparable, while Cuttana trails behind in all three metrics and
does not reach the effectiveness of either HeiStReam or our algorithm.

Additional experiment: Restreaming. Since both HeiStReam and our algorithm re-
quire substantially fewer resources than Cuttana in its Subp16 configuration—less than
half thememory and runtime inmost cases—it is natural to ask howmuch additional qual-
ity can be gained if we allow them to use comparable resources. To this end, we evaluated
a single round of restreaming under random orderings. As shown in Table 10, the im-
provements are significant: for HeiStReam the geometric mean cut decreases from 21.09%
to 16.21%, corresponding to a relative improvement of about 23%. Our algorithm shows a
similar gain, reducing its cut from 17.76% to 13.88%, which amounts to a relative improve-
ment of 22%. Importantly, these results are achieved while still consuming less memory
and runtime than Cuttana(16), and far below the demands of Cuttana(4k). Even com-
pared to the bugfixed version of Cuttana (21.50%), HeiStReam with one restreaming
pass already produces clearly better cuts, and our algorithm further improves upon this
by a substantial margin. This experiment highlights that even modest restreaming can
significantly boost partition quality, while both HeiStReam and our algorithm remain
considerably more resource-efficient than Cuttana despite the additional pass.

50

CHAPTER 6
Discussion

The central goal of this thesis was to develop a new buffered streaming partitioner
that reduces the sensitivity to unfavorable input orderings while preserving the effi-
ciency that makes HeiStReam attractive. To this end, we introduced BuffCut, which
extends HeiStReam by integrating prioritized buffering into the multilevel batching
pipeline. In its default configuration, BuffCut mitigates the negative impact of poor
locality in the input stream, while disabling the buffering step essentially reproduces
the original HeiStReam behavior.

Beyond this integration, we contributed two further extensions that strengthen the
algorithm. First, we designed a new buffer score, that more effectively balance degree ef-
fects with neighborhood conformity. These scores deliver noticeable improvements over
the score originally used in Cuttana, particularly on random inputs. Second, we intro-
duced the concept of ghost neighbors, which temporarily propagate partial partition in-
formation from already assigned vertices to their unassigned neighbors. This mechanism
enriches both buffer scoring and multilevel partitioning with predictive locality signals.
On graphs with natural orderings and strong inherent locality, we observed a clear bene-
fit in cut quality, including for large instances. The effect on randomly permuted inputs,
however, is less consistent: while small benchmark graphs show improvements, larger
ones did not exhibit measurable gains so far. In terms of resources, ghost neighbors in-
troduce only a moderate increase in memory and runtime, which we consider acceptable
given the potential quality improvements.

The experimental results show that BuffCut achieves the intended improvements.
Compared to HeiStReam, it consistently yields better partition quality under random
orderings, which represent the more challenging scenario. On average, it reduces edge
cuts by about 15.79% while keeping runtime and memory overheads within a comparable
range. At the same time, it preserves competitive performance on favorable orderings,
where HeiStReam remains very strong. In this sense, BuffCut, in its default setting,
acts as a robust ”all-rounder”: it does not specialize for one specific ordering, but instead
provides stable performance across both structured and unstructured inputs.

51

6 Discussion

When compared to Cuttana, BuffCut shows clear advantages in both quality and
efficiency. On input streams with weak locality (random orderings), it improves partition
quality by about 21% while requiring only a fraction of the runtime and memory cost.
With one additional restreaming round, partition quality improves to about 38% better
than Cuttana, while runtime and memory consumption remain slightly lower, making
this a fairer like-for-like comparison.

The picture is equally favorable on stream inputs containing high locality. Here, the
official Cuttana implementation produces cuts above 15%, whereas BuffCut achieves
about 5%, i.e., more than a threefold improvement. Even when applying the bugfix we
identified for Cuttana, its cut ratio decreases to 6.7%, but our method still delivers con-
sistently better results at significantly lower runtime. In other words, BuffCut outper-
forms Cuttana not only on adversarial streams but also when input orderings are already
favorable, combining robustness with efficiency.

Naturally, limitations remain. While BuffCut narrows the gap between natural and
randomorderings, it does not close it entirely: partition quality under randomized streams
remains lower, as expected, since no buffering scheme can fully compensate for the lack
of locality. This reflects a fundamental constraint of streaming partitioning, where only
limited structural information is available at each step. Nevertheless, by improving ro-
bustness without introducing prohibitive resource overheads, BuffCutmakes a clear step
forward over existing buffered approaches.

6.1 Conclusion

This thesis presented BuffCut, a new buffered streaming partitioner that integrates prior-
itized buffering with multilevel batch partitioning. The algorithm reduces the sensitivity
of HeiStReam to unfavorable orderings and consistently outperforms Cuttana in terms
of efficiency, while maintaining competitive partition quality. Key contributions include
the design of improved buffer scores, the introduction of ghost neighbors, the use of a
bucket-based priority queue, and a parallelized implementation. Across a diverse bench-
mark set, BuffCut achieves robust performance on both natural and random orderings,
clearly improving upon the state of the art in buffered streaming partitioning.

6.2 Future Work

While this thesis improves the robustness and efficiency of buffered streaming partition-
ing, several avenues remain open for further research.

A first direction concerns the design of buffer scores. Although our hub-aware variant
provided the best overall results, the margins over simpler scores such as the assigned-
neighbor ratio were modest. This suggests that the current scoring schemes are still sub-
optimal. For example, on inputs with strong locality we observed that increasing the

52

6.2 Future Work

buffer size did not always lead to monotonic improvements in cut quality, indicating that
the score definition leaves room for refinement. Future work could therefore explore al-
ternative designs or entirely new ideas for scoring, with the goal of unlocking further
gains in cut quality and robustness.

Another natural direction is to further develop the idea of ghost neighbors. While they
provided consistent improvements on inputs with locality, their benefit largely disap-
peared on large random graphs. This indicates that the mechanism itself is promising,
but its current definition may be too simplistic to remain effective on graphs with very
low locality. One direction would be to refine how ghost affiliations are assigned, for ex-
ample by replacing the ”last assigned neighbor” rule with more robust metrics, potentially
incorporating confidence measures or majority signals across multiple neighbors. A sec-
ond direction would be to exploit ghost information more broadly within the pipeline, in
particular during the initial partitioning of contracted subgraphs. Here, contracted nodes
consist of multiple original vertices, some of which may carry ghost affiliations; aggregat-
ing these signals could provide more informative guidance for Fennel’s initial placements
and thereby improve the quality of early partitioning decisions.

Finally, the ideas developed here may generalize beyond vertex partitioning. In par-
ticular, buffering with priority mechanisms, combined with existing partitioning or re-
finement strategies, could also be explored in the context of edge partitioning or graph
clustering. Applying such concepts in these domains might similarly help to reduce sen-
sitivity to input orderings and improve robustness, much as we observed in the vertex
partitioning setting.

53

APPENDIX A
Reevaluating Cuttana

The authors of Cuttana [21] report that the algorithm not only achieves lower edge cuts
than HeiStReam, but also requires less memory and runtime. This positions Cuttana as
a superior alternative to HeiStReam.

In our experiments, however, we observed a different picture: while Cuttana indeed
yields slightly better edge cut results than HeiStReam under streams with low locality,
this improvement comes at the cost of substantially higher memory consumption and
runtime under the configuration recommended in the original publication.

To clarify this discrepancy, we reproduced the experiments from the Cuttana paper on
the same benchmark graphs (orkut, uk-2002, uk-2007-05 and twitter). This allows us, first,
to evaluate our algorithm BuffCut in the same setting and against the same baselines,
and second, to complement the analysis with memory and runtime measurements that
were not included in the original publication but proved decisive in practice.

In addition, we extend the evaluation beyond the scope of the original publication.
The Cuttana paper reports results only up to k = 64, without analyzing scalability at
higher partition counts. In practice, however, larger values such as k = 128 or k = 256
are common in distributed systems. In this regime we observe a dramatic growth in both
memory usage and runtime, in some cases exceeding 100GB ofmemory and rendering the
algorithm infeasible. Since this effect is not covered in the original paper, we explicitly
reproduce and analyze it in Section A.3, including a breakdown of the underlying data
structures that drive this resource growth.

A.1 Experimental Setup

We reproduced the experiments on the benchmark graphs orkut, uk-2002, uk-2007-05,
and twitter, obtained from the Konect network repository [27]. The repository is cur-
rently offline. The graph properties are summarized in Table 1.

55

A Reevaluating Cuttana

GRaph n m Type

orkut 3 072 411 117 185 082 Social
uk-2002 18 520 486 261 787 258 Web
twitter-2010 41 652 230 1 202 513 046 Social
uk-2007-05 105 896 555 3 301 876 564 Web

Table 1: Benchmark graphs used for reproducing the evaluation of Cuttana. The set
corresponds to the instances used in the original Cuttana publication, allowing
a direct comparison of results.

For twitter, our dataset differs from the instance reported in the Cuttana paper:
the number of vertices matches, but our version contains fewer edges. The difference
corresponds closely to the amount of duplicate and self-loop edges removed during our
preprocessing, suggesting that these edges were still included in the dataset used in [21].
When we normalize our edge-cut results by the larger edge count reported there, we
obtain ratios that match the published values. Nevertheless, throughout this work we
report edge-cut ratios with respect to our preprocessed graph (undirected, loop-free, de-
duplicated), while noting that the relative behavior remains the same.

As specified in the original publication, we executed HeiStReam using its default con-
figuration. For consistency, we did not incorporate the bug fix described in Section 5.3.1,
which improves runtime and memory usage, since it was not part of the implementa-
tion at the time. For Cuttana we used the authors’ reported default settings (queue
size 1M, Dmax = 1000 and k′

k
= 4096; for twitter: Dmax = 100, k′

k
=256). By default,

Cuttana employs memory mapping, but we adapted it to use streaming instead, con-
sistent with HeiStReam and BuffCut, to avoid inflated memory usage and ensure fair
comparison of runtime and memory consumption. BuffCut was run with the configura-
tion described in Section 5.3.1, with batch size δ =256k and buffer size Λ =2M. Partition
counts were chosen identically to the original evaluation, i.e., k ∈ {4, 8, 16, 32, 64}.

A.2 Reproduced Results

Figure 13 shows the reproduced results for k ∈ {4, 8, 16, 32, 64} on all four benchmark
graphs. With the exception of twitter (see discussion in Section A.1), our edge-cut ratios
for both Cuttana andHeiStReam closely match the values reported in the original paper,
confirming the correctness of our setup. In addition to edge-cut, we also report peak
memory usage and runtime, metrics not included in [21] but highly relevant in practice.

Edge Cut. BuffCut matches or surpasses Cuttana on most graphs, while only in few
cases performing slightly worse. As in the original publication, Cuttana consistently
outperforms HeiStReam in terms of cut quality.

56

A.2 Reproduced Results

0

20

40

60

80

Ed
ge

sC
ut

(%
)

twi�er uk-2007-05 orkut uk-2002

0

5

10

15

20

M
em

or
y

(G
B)

4 8 16 32 64
0

250

500

750

1000

1250

Ru
nt

im
e

(s)

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

BuffCut(256k, 2M) Cuttana HeiStream(32k)

Figure 13: Reproduced results for Cuttana, HeiStReam, and BuffCut. Each column
corresponds to one graph (twitter, uk-2007-05, orkut, uk-2002), and rows
show (top to bottom) edge cut ratio, peak memory usage, and runtime. Curves
report values for partition counts k = 4 to 64.

Memory Usage. Across all graphs, we observe that HeiStReam consistently requires
the least memory, with the exception of twitter at small partition counts (k = 4, 8),
where Cuttana ’s footprint is marginally lower. BuffCut generally consumes less mem-
ory than Cuttana as well, apart from these small-k cases on twitter (and to a lesser ex-
tent k = 16 on uk-2002). Beyond these instances, Cuttana incurs substantially higher
memory usage than both baselines. In particular, as k increases, Cuttana ’s memory
requirements rise steeply, while HeiStReam and BuffCut remain stable. This growth
becomes even more critical at larger k values (128 and beyond), and we analyze it in
detail in Section A.3.

When comparing with the original publication, our findings deviate from the memory
results reported in [21]. The paper presents values only for uk-2007-05 and twitter
(see Figure 14), where HeiStReam is shown as more memory-intensive than Cuttana.
We were not able to reproduce this behavior for either graph: in all our experiments,
HeiStReam consistently required less memory than Cuttana. Since the paper does not
specify the partition count k used for these measurements, the reported values cannot
be directly traced back to a comparable configuration. Note: The absolute values for

57

A Reevaluating Cuttana

Figure 14: Memory and runtime results as reported in the original Cuttana paper [21].
Our reproduction (see Figure 13) does not confirm these trends: in partic-
ular, we observe consistently lower memory and runtime for HeiStReam
compared to Cuttana.

Cuttana also differ from those in [21], as their implementation relies on memory map-
ping by default, whereas we switched to standard streaming for consistency across algo-
rithms.

Runtime. In our experiments the picture is clear: HeiStReam is consistently the fastest,
BuffCut comes second, and Cuttana is always the slowest across all graphs and parti-
tion counts. On average, Cuttana requires more than twice the runtime of HeiStReam,
while BuffCut remains closer to HeiStReam in efficiency.

The results reported in [21] (Figure 14) show the opposite relation, with HeiStReam
appearing slower than Cuttana. We could not reproduce this behavior on any dataset.
Note, that the absolute runtime of Cuttana can differ from the values reported in [21]
because we use streaming input instead of memory mapping, which leads to slower
execution. However, this does not account for the reversed ordering of algorithms
observed in their results.

Summary. Overall, BuffCut achieves cut quality comparable to or better than
Cuttana, while requiring significantly less memory and runtime. This makes it clearly
superior in terms of efficiency–quality balance. By contrast, HeiStReam consistently de-
livers the weakest cuts but is by far the most resource-efficient.

Finally, it should be noted that the comparison between Cuttana and HeiStReam
in [21] is not entirely fair: while Cuttana is allowed to consume vastly more memory,
HeiStReam was only tested in its default configuration. Granting HeiStReam a larger
buffer budget would likely have improved its cut quality, making the reported advantage
of Cuttana over HeiStReam less pronounced than suggested in the original paper.

58

A.3 Scalability Limits of Cuttana

A.3 Scalability Limits of Cuttana

In Section A.2 we already observed that memory usage of Cuttana increase with the
number of partitions k. The original publication reports results only up to k = 64 and
does not discuss this effect, yet in our experiments we found it to be a decisive factor:
memory requirements grow substantially with k on all graphs, and runtime also begins
to rise noticeably at higher partition counts. Because values such as k = 128 or k = 256
are standard in distributed environments, this trend has strong practical implications. We
therefore provide here a dedicated analysis, including an explanation of the underlying
implementation choices that cause this steep growth.

To illustrate this effect more concretely, Table 2 reports runtime and memory usage for
varying partition counts k of Cuttana on the twitter graph. The same trend is visible
across all benchmark graphs, with the growth becoming particularly pronounced once k
exceeds 64. Here, we use twitter as a representative example.

The numbers highlight the severity of the effect: memory usage rises steadily
from 2.6 GB at k = 4 to 17GB at k = 64, and then almost triples again to 49GB at k = 256.
Runtime shows a similar pattern: it remains relatively flat up to k = 64, but then increases
sharply, by roughly 50% at k = 128 and by more than a factor of two at k = 256 compared
to k = 4. This pattern repeats with varying intensity on the other graphs, underlining
that resource consumption grows disproportionately with larger partition counts.

Analysis. A central factor behind the steep growth in memory and runtime is the sub-
partition ratio k′

k
, which is set to 4096 by default in [21]. This parameter directly deter-

mines the total number of subpartitions as k′ = k · (k′/k). For instance, at k = 256 the
default setting yields k′ = 256 · 4096 ≈ 106 subpartitions. Each of these subpartitions
allocates its own data structures, so the algorithm already incurs gigabytes of memory
overhead before any edges are processed.

During the streaming phase, every subpartition instantiates a hash map with hundreds
of preallocated buckets, so memory usage grows linearly with k′. Adjacency information

k Runtime (s) Memory (GB)

4 608.55 2.65
8 609.30 2.90

16 514.70 3.90
32 529.80 7.89
64 564.96 17.06

128 933.10 32.28
256 1648.35 48.98

Table 2: Runtime and memory usage of Cuttana for various k on the twitter dataset.

59

A Reevaluating Cuttana

is also stored redundantly in both streaming queues and subpartition maps, leading to
additional temporary spikes. In the subsequent refinement phase, the implementation
allocates dense k′ × k matrices and a full k × k grid of segment trees. Together with
permanent per-subpartition bookkeeping arrays, this produces a memory footprint that
scales as Θ(k · k′).

Runtime increases for similar structural reasons. More subpartitions lead to more
updates per vertex, each costing O(log k) or O(log(k′/k)). Refinement is explic-
itly quadratic: it constructs k × k segment trees and scans partition pairs in every
round. Each subpartition move triggers updates across all partitions, causing per-
move costs of Θ(k log(k′/k)). As k and k′

k
grow, both initialization and refinement

become increasingly expensive.
Our experiments confirm this effect: reducing the subpartition ratio to amoderate value

(e.g., k′

k
= 16 as used in Section 5.3.2 and 5.3.3) drastically lowers memory and runtime

costs, but at the expense of weaker refinement and hence higher edge cuts. This illustrates
the fundamental trade-off: the aggressive subpartitioning recommended in the original
paper drives cut quality, but also renders the algorithm impractical for larger k.

In summary, the resource growth of Cuttana stems from aggressive preallocation and
dense structures in both phases of the algorithm. This explains the infeasible behavior ob-
served in our experiments for k ≥ 128 and highlights a fundamental scalability limitation
that was not addressed in the original publication.

60

Bibliography

[1] Junya Arai et al. “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph
Analysis”. In: 2016 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2016, Chicago, IL, USA, May 23-27, 2016. IEEE Computer Society, 2016, pp. 22–
31. doi: 10.1109/IPDPS.2016.110.

[2] Amel Awadelkarim and Johan Ugander. “Prioritized Restreaming Algorithms for
Balanced Graph Partitioning”. In: KDD ’20: The 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020.
Ed. by Rajesh Gupta et al. ACM, 2020, pp. 1877–1887. doi: 10.1145/3394486.
3403239.

[3] David A. Bader et al. “Benchmarking for Graph Clustering and Partitioning”. In:
Encyclopedia of Social Network Analysis and Mining. Ed. by Reda Alhajj and Jon
Rokne. New York, NY: Springer New York, 2014, pp. 73–82. doi: 10.1007/978-1-
4614-6170-8_23.

[4] Vignesh Balaji and Brandon Lucia. “When Is Graph Reordering an Optimization?
Studying the Effect of Lightweight Graph Reordering across Applications and In-
put Graphs”. In: 2018 IEEE International Symposium on Workload Characterization,
IISWC 2018, Raleigh, NC, USA, September 30 - October 2, 2018. IEEE Computer Soci-
ety, 2018, pp. 203–214. doi: 10.1109/IISWC.2018.8573478.

[5] Reet Barik et al. “Vertex Reordering for Real-World Graphs and Applications: An
Empirical Evaluation”. In: IEEE International Symposium onWorkload Characteriza-
tion, IISWC 2020, Beijing, China, October 27-30, 2020. IEEE, 2020, pp. 240–251. doi:
10.1109/IISWC50251.2020.00031.

[6] Charles-Edmond Bichot and Patrick Siarry. Graph Partitioning. John Wiley & Sons,
Ltd, 2013. doi: 10.1002/9781118601181.ch1.

[7] Paolo Boldi and Sebastiano Vigna. “The Webgraph Framework I: Compression
Techniques”. In: Proceedings of the 13th International Conference on World Wide
Web, WWW 2004, New York, NY, USA, May 17-20, 2004. Ed. by Stuart I. Feldman
et al. ACM, 2004, pp. 595–602. doi: 10.1145/988672.988752.

[8] Paolo Boldi et al. “BUbiNG: Massive Crawling for the Masses”. In: ACM Trans. Web
12.2 (2018), 12:1–12:26. doi: 10.1145/3160017.

61

https://doi.org/10.1109/IPDPS.2016.110
https://doi.org/10.1145/3394486.3403239
https://doi.org/10.1145/3394486.3403239
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1007/978-1-4614-6170-8_23
https://doi.org/10.1109/IISWC.2018.8573478
https://doi.org/10.1109/IISWC50251.2020.00031
https://doi.org/10.1002/9781118601181.ch1
https://doi.org/10.1145/988672.988752
https://doi.org/10.1145/3160017

Bibliography

[9] Paolo Boldi et al. “Layered Label Propagation: A Multiresolution Coordinate-Free
Ordering for Compressing Social Networks”. In: Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1,
2011. Ed. by Sadagopan Srinivasan et al. ACM, 2011, pp. 587–596. doi: 10.1145/
1963405.1963488.

[10] Ulrik Brandes et al. “OnModularity Clustering”. In: IEEE Transactions on Knowledge
and Data Engineering 20.2 (2008), pp. 172–188. doi: 10.1109/TKDE.2007.190689.

[11] Thang Nguyen Bui and Curt Jones. “Finding Good Approximate Vertex and Edge
Partitions Is NP-hard”. In: Inf. Process. Lett. 42.3 (1992), pp. 153–159. doi: 10.1016/
0020-0190(92)90140-Q.

[12] Ümit V. Çatalyürek et al. “More Recent Advances in (Hyper)Graph Partitioning”.
In: Acm Computing Surveys 55.12 (2023), 253:1–253:38. doi: 10.1145/3571808.

[13] Adil Chhabra et al. “Buffered Streaming Edge Partitioning”. In: 22nd International
Symposium on Experimental Algorithms, SEA 2024, July 23-26, 2024, Vienna, Aus-
tria. Ed. by Leo Liberti. Vol. 301. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024, 5:1–5:21. doi: 10.4230/LIPICS.SEA.2024.5.

[14] Timothy A. Davis and Yifan Hu. “The University of Florida Sparse Matrix Collec-
tion”. In: ACM Trans. Math. Softw. 38.1 (2011), 1:1–1:25. doi: 10.1145/2049662.
2049663.

[15] Elizabeth D. Dolan and Jorge J. Moré. “Benchmarking Optimization Software with
Performance Profiles”. In:Mathematical Programming 91.2 (2002), pp. 201–213. doi:
10.1007/S101070100263.

[16] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck. “Locality
Analysis of Graph Reordering Algorithms”. In: IEEE International Symposium on
Workload Characterization, IISWC 2021, Storrs, CT, USA, November 7-9, 2021. IEEE,
2021, pp. 101–112. doi: 10.1109/IISWC53511.2021.00020.

[17] Priyank Faldu, Jeff Diamond, and Boris Grot. “A Closer Look at Lightweight Graph
Reordering”. In: IEEE International Symposium onWorkload Characterization, IISWC
2019, Orlando, FL, USA, November 3-5, 2019. IEEE, 2019, pp. 1–13. doi: 10.1109/
IISWC47752.2019.9041948.

[18] Marcelo Fonseca Faraj and Christian Schulz. “Buffered Streaming Graph Partition-
ing”. In: ACM Journal of Experimental Algorithmics 27 (2022), 1.10:1–1.10:26. doi:
10.1145/3546911.

[19] Charles M. Fiduccia and Robert M. Mattheyses. “A Linear-Time Heuristic for Im-
proving Network Partitions”. In: Proceedings of the 19th Design Automation Confer-
ence, DAC ’82, Las Vegas, Nevada, USA, June 14-16, 1982. Ed. by James S. Crabbe,
Charles E. Radke, and Hillel Ofek. ACM/IEEE, 1982, pp. 175–181. doi: 10.1145/
800263.809204.

62

https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1145/1963405.1963488
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1145/3571808
https://doi.org/10.4230/LIPICS.SEA.2024.5
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/S101070100263
https://doi.org/10.1109/IISWC53511.2021.00020
https://doi.org/10.1109/IISWC47752.2019.9041948
https://doi.org/10.1109/IISWC47752.2019.9041948
https://doi.org/10.1145/3546911
https://doi.org/10.1145/800263.809204
https://doi.org/10.1145/800263.809204

Bibliography

[20] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. “Some Simplified NP-
complete Problems”. In: Proceedings of the 6th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1974, Seattle, Washington, USA. Ed. by Robert L.
Constable et al. ACM, 1974, pp. 47–63. doi: 10.1145/800119.803884.

[21] Milad Rezaei Hajidehi, Sraavan Sridhar, and Margo Seltzer. “CUTTANA: Scalable
Graph Partitioning for Faster Distributed Graph Databases and Analytics”. In: Proc.
VLDB Endow. 18.1 (Sept. 2024), pp. 14–27. doi: 10.14778/3696435.3696437.

[22] Bruce Hendrickson and Robert Leland. “A Multilevel Algorithm for Partitioning
Graphs”. In: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing. Su-
percomputing ’95. San Diego, California, USA: Association for Computing Machin-
ery, 1995, 28–es. doi: 10.1145/224170.224228.

[23] Nazanin Jafari, Oguz Selvitopi, and Cevdet Aykanat. “Fast Shared-Memory Stream-
ing Multilevel Graph Partitioning”. In: J. Parallel Distributed Comput. 147 (2021),
pp. 140–151. doi: 10.1016/J.JPDC.2020.09.004.

[24] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”. In: Siam Journal On Scientific Computing 20.1 (1998),
pp. 359–392. doi: 10.1137/S1064827595287997.

[25] George Karypis and Vipin Kumar. “Parallel Multilevel K-Way Partitioning Scheme
for Irregular Graphs”. In: Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting, November 17-22, 1996, Pittsburgh, PA, USA. IEEE Computer Society, 1996,
p. 35. doi: 10.1109/SC.1996.32.

[26] Brian W. Kernighan and Shen Lin. “An Efficient Heuristic Procedure for Parti-
tioning Graphs”. In: Bell System Technical Journal 49.2 (1970), pp. 291–307. doi:
10.1002/J.1538-7305.1970.TB01770.X.

[27] Jérôme Kunegis. “KONECT: The Koblenz Network Collection”. In: 22nd Interna-
tionalWorldWideWeb Conference,WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013,
Companion Volume. Ed. by Leslie Carr et al. International World Wide Web Con-
ferences Steering Committee / ACM, 2013, pp. 1343–1350. doi: 10.1145/2487788.
2488173.

[28] Fabrice Lécuyer et al. “Tailored Vertex Ordering for Faster Triangle Listing in Large
Graphs”. In: Proceedings of the Symposium on Algorithm Engineering and Experi-
ments, ALENEX 2023, Florence, Italy, January 22-23, 2023. Ed. by Gonzalo Navarro
and Julian Shun. SIAM, 2023, pp. 77–85. doi: 10.1137/1.9781611977561.CH7.

[29] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection. June 2014. uRl: http://snap.stanford.edu/data.

[30] Henning Meyerhenke, Peter Sanders, and Christian Schulz. “Parallel Graph Parti-
tioning for Complex Networks”. In: IEEE Trans. Parallel Distributed Syst. 28.9 (2017),
pp. 2625–2638. doi: 10.1109/TPDS.2017.2671868.

63

https://doi.org/10.1145/800119.803884
https://doi.org/10.14778/3696435.3696437
https://doi.org/10.1145/224170.224228
https://doi.org/10.1016/J.JPDC.2020.09.004
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1002/J.1538-7305.1970.TB01770.X
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1137/1.9781611977561.CH7
http://snap.stanford.edu/data
https://doi.org/10.1109/TPDS.2017.2671868

Bibliography

[31] Joel Nishimura and Johan Ugander. “Restreaming Graph Partitioning: Simple Ver-
satile Algorithms for Advanced Balancing”. In:The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013. Ed. by Inderjit S. Dhillon et al. ACM, 2013, pp. 1106–1114. doi:
10.1145/2487575.2487696.

[32] Lara Ost, Christian Schulz, and Darren Strash. “Engineering Data Reduction for
Nested Dissection”. In: Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021. Ed. by Martin
Farach-Colton and Sabine Storandt. SIAM, 2021, pp. 113–127. doi: 10.1137/1.
9781611976472.9.

[33] Md Anwarul Kaium Patwary, Saurabh Kumar Garg, and Byeong Kang. “Window-
Based Streaming Graph Partitioning Algorithm”. In: Proceedings of the Australasian
Computer Science Week Multiconference, ACSW 2019, Sydney, NSW, Australia, Jan-
uary 29-31, 2019. ACM, 2019, 51:1–51:10. doi: 10.1145/3290688.3290711.

[34] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with Interac-
tive Graph Analytics and Visualization”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by
Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 4292–4293. doi: 10.1609/AAAI.
V29I1.9277.

[35] Laura A. Sanchis. “Multiple-Way Network Partitioning”. In: IEEE Trans. Computers
38.1 (1989), pp. 62–81. doi: 10.1109/12.8730.

[36] Peter Sanders and Christian Schulz. “Engineering Multilevel Graph Partitioning
Algorithms”. In: Algorithms - ESA 2011 - 19th Annual European Symposium, Saar-
brücken, Germany, September 5-9, 2011. Proceedings. Ed. by Camil Demetrescu and
Magnús M. Halldórsson. Vol. 6942. Lecture Notes in Computer Science. Springer,
2011, pp. 469–480. doi: 10.1007/978-3-642-23719-5_40.

[37] Peter Sanders and Christian Schulz. “Scalable Generation of Scale-Free Graphs”. In:
Inf. Process. Lett. 116.7 (2016), pp. 489–491. doi: 10.1016/J.IPL.2016.02.004.

[38] Christian Schulz and Darren Strash. “Graph Partitioning: Formulations and Appli-
cations to Big Data”. In: Encyclopedia of Big Data Technologies. Ed. by Sherif Sakr
and Albert Zomaya. Cham: Springer International Publishing, 2018, pp. 1–7. doi:
10.1007/978-3-319-63962-8_312-2.

[39] Isabelle Stanton and Gabriel Kliot. “Streaming Graph Partitioning for Large Dis-
tributed Graphs”. In: The 18th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012. Ed.
by Qiang Yang, Deepak Agarwal, and Jian Pei. ACM, 2012, pp. 1222–1230. doi:
10.1145/2339530.2339722.

[40] Ole Tange. GNU Parallel 20231022 (’al-Aqsa Deluge’) [Stable]. Zenodo, Oct. 2023.
doi: 10.5281/zenodo.10035562.

64

https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1137/1.9781611976472.9
https://doi.org/10.1137/1.9781611976472.9
https://doi.org/10.1145/3290688.3290711
https://doi.org/10.1609/AAAI.V29I1.9277
https://doi.org/10.1609/AAAI.V29I1.9277
https://doi.org/10.1109/12.8730
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1016/J.IPL.2016.02.004
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1145/2339530.2339722
https://doi.org/10.5281/zenodo.10035562

Bibliography

[41] Charalampos E. Tsourakakis et al. “FENNEL: Streaming Graph Partitioning for
Massive Scale Graphs”. In: Seventh ACM International Conference on Web Search
and Data Mining, WSDM 2014, New York, NY, USA, February 24-28, 2014. Ed. by Ben
Carterette et al. ACM, 2014, pp. 333–342. doi: 10.1145/2556195.2556213.

65

https://doi.org/10.1145/2556195.2556213

	Abstract (German)
	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	Basic Concepts
	Streaming Models and Locality

	Related Work
	Improving Processing Order in Streaming Graph Partitioning
	Algorithm Overview
	Algorithmic Details
	Buffer Scores
	Bucket Priority Queue
	Integration of Multilevel Partitioning
	Ghost Neighbors
	Parallelization
	Restreaming

	Experimental Evaluation
	Experimental Setup
	Parameter Studies
	Buffer Scores
	Buffer Size
	Batch Size
	Buffer–Batch Trade-off
	Evaluation of Parallelization
	Impact of Ghost Neighbors

	Comparison with State of the Art Algorithms
	Baselines and Configurations
	Experiments on Naturally Ordered Graphs
	Experiments on Randomly Ordered Graphs

	Discussion
	Conclusion
	Future Work

	Reevaluating Cuttana
	Experimental Setup
	Reproduced Results
	Scalability Limits of Cuttana

	Bibliography

