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Abstract

Partitioning a graph into balanced blocks is an important preprocessing step for distributed
graph processing. In edge partitioning, the edge set of an input graph is partitioned into k
roughly equal blocks while minimizing the replication of vertices across blocks. Streaming
partitioners can partition huge graphs with fewer computational resources than in-memory
partitioners. In this work, we propose a buffered streaming model for edge partitioning
that sequentially loads batches of edges and permanently assigns them to blocks. For each
batch, we construct a comprehensive graph representation that models adjacencies among
edges and partition it using a multilevel scheme. Our approach produces state-of-the-art
solution quality and is asymptotically independent of k in both runtime and memory con-
sumption. We show experimentally that our algorithm yields better solution quality than
all competing algorithms, and is substantially faster, and requires less memory, than com-
parable high-quality algorithms at large k values.
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CHAPTER 1
Introduction

1.1 Motivation

Complex, large graphs, often composed of billions of entities, are employed across multiple
fields to model social, biological, navigational and technical networks. However, process-
ing huge graphs requires extensive computational resources. Due to the recent stagnation
of Moore’s law, the primary approach to increasing computing power is to augment the
number of available cores, processors, or networked machines, collectively referred to as
processing elements (PEs), and leveraging parallel computation. When performing compu-
tations on massive graphs, therefore, graphs are distributed over multiple machines using
distributed graph processing frameworks, like Pregel [47], GPS [58] and PowerGraph [26].

A powerful method to take advantage of parallelism is graph partitioning. Graph par-
titioning is used to model the distribution of large graphs across PEs to minimize com-
munication volume [32] and to speedup jobs that have dependencies between computation
steps [64]. Large graphs are partitioned into sub-graphs distributed among k PEs; each
PE performs computations on a portion of the graph, and communicates with other PEs
through message-passing. Graphs must be distributed across PEs such that each PE re-
ceives approximately the same number of components, and communication between PEs
is minimized. The balanced graph partitioning problem thus optimizes for these objec-
tives: a graph is partitioned into k blocks such that each block has roughly the same size
to ensure balanced load distribution across PEs, and vertex or edge cuts are minimized to
minimize communication between PEs. Traditionally, vertex partitioning has been used
to distribute graphs across PEs, in which vertices are equi-partitioned to k blocks with the
number of edges spanning partitions minimized. An alternate approach is to use edge parti-
tioning to equi-partition edges to k blocks such that vertex replication is minimized, hence
minimizing the communication needed to synchronize vertex copies. Graph partitioning is
NP-complete [24] and there can be no approximation algorithm with a constant ratio factor
for general graphs [10]. Thus, heuristic algorithms are used in practice.
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1 Introduction

A substantial amount of research has been dedicated to graph partitioning, developing
three broad categories of partitioning algorithms: internal memory (shared-memory par-
allel) algorithms, which operate on graphs on a shared memory, streaming algorithms,
which process graphs component by component using little memory, and distributed mem-
ory parallel algorithms, which partition graphs in-memory across multiple machines. Both
internal memory and distributed memory algorithms, also called offline algorithms, can
produce high-quality partitions. However, they face certain limitations that motivate the
use of streaming algorithms, also referred to as online algorithms. While multi-level in-
ternal memory graph partitioners like KaHIP [59] and METIS [39] provide high-quality
partitions, they require a single PE with sufficient memory, which is often infeasible for
huge graphs. Further, they cannot be used for preprocessing in out-of-core algorithms, or
for the initial distributive step of distributed memory algorithms. Distributed memory al-
gorithms, on the other hand, can overcome memory constraints to partition huge graphs
with high-quality solutions, however they require significant computational resources and
potentially access to a supercomputer. Further, the initial step in distributed algorithms,
to split the input graph across different machines, requires a preliminary partition that can
be generated by a streaming algorithm to improve runtime and solution quality. Stream-
ing partitioners are also used in distributed graph processing systems that utilize a load-
compute-store logic such as MapReduce [19] and Giraph [18], and systems which support
native graph-as-a-stream computations such as Kineograph [16], and Apache Flink [12].

While streaming partitioners can partition huge graphs quickly and with little memory,
most produce a solution quality that is significantly lower than offline partitioners. The
most popular streaming approach, the one-pass model, permanently assigns vertices to
blocks during a single sequential pass over the graph’s data stream. Examples of these
include: 1) stateless partitioners, such as hashing and constrained partitioning algorithms,
which ignore past partition assignments when making an assignment decision, and 2) state-
ful partitioners, such as Linear Deterministic Greedy (LDG) [65] which use the entire his-
tory of past assignments to make the next assignment decision. Stateless streaming parti-
tioners typically produce the lowest quality solutions, but are very fast and light-weight.
On the other hand, stateful partitioners achieve better solution quality but are slower than
stateless partitioners. Nonetheless, even most stateful one-pass algorithms, like LDG, tend
to produce relatively low-quality solutions due to sub-optimal initial assignment decisions,
when little or no information is available regarding past assignments. While re-streaming
to update block assignment can improve solution quality, it still falls short of offline ap-
proaches [53]. An alternative to one-pass streaming is buffered streaming, which addresses
the issue of having little information for initial assignment decisions. Buffered streaming
algorithms receive and store a buffer of vertices before making assignment decisions, thus
providing some information about future vertices as well as past assignments. HeiStream
[22] uses a buffered streaming approach for vertex partitioning that produces partitions
of huge graphs with significantly higher quality than existing streaming vertex partition-
ers, while using a single machine without a lot of memory. The buffered approach in
HeiStream, which we adapt to an edge partitioning setting, improves solution quality by
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1.1 Motivation

receiving and storing a buffer of vertices before making assignment decisions using a mul-
tilevel partitioning scheme.

Despite improvements in algorithms for vertex partitioning, the development of high-
quality edge partitioners is motivated by research indicating that edge partitioning out-
performs vertex partitioning on most real-world graphs [50], which tend to have skewed
degree distributions across vertices. In particular, standard tools, e.g., [40] [41] for con-
structing a balanced vertex partition perform poorly on power-law graphs [1] [44] [46],
which have many more vertices with low degree than high degree. In power-law graphs,
the distributed processing runtime is negatively affected by high-degree vertices, which re-
sult in higher edge-cuts in vertex partitioning and thus more communication steps. Edge
partitioning was introduced by Gonzalez et al. [26] to counter the shortcomings of vertex
partitioning on power-law graphs. The rationale behind an edge partition is as follows: we
allow a single vertex to span multiple machines, thereby offering more flexibility in load
balancing, and we evenly distribute edges, resulting in reduced communication and storage
overhead. As each edge is stored in exactly one block, changes to edge data do not need to
be communicated.

The edge partitioning problem can be solved using hypergraph partitioners in shared
memory, such as hMETIS [38] [40] and (mt)-KaHyPar [27] [29] [28]. These compute
high quality solutions but require long runtime, as observed by Li et al. [45], who intro-
duced the split-and-connect (SPAC) method for edge partitioning. In the SPAC method,
the input graph G is transformed into a secondary graph G′, where the original vertices are
duplicated and connected with heavy dominant edges and unweighted auxiliary edges. A
vertex partitioner run on G′ can be used to compute an edge partitioning of the original
input graph, with a faster runtime than hypergraph partitioning. Schlag et al. [62] adapt
the SPAC method in a distributed memory parallel edge partitioning algorithm. We further
adapt the SPAC method to a streaming setting through the creation of a contracted SPAC
(CSPAC) graph for each batch of our buffered input, which we partition using a multilevel
scheme similar to HeiStream.

As with streaming vertex partitioners, one-pass streaming edge partitioners, such as De-
gree Based Hashing (DBH) [69], which is a hashing-based stateless partitioner, or High-
Degree (are) Replicated First (HDRF) [55], which uses a stateful greedy heuristic, yield
low-quality solutions compared to in-memory partitioners. Mayer et al. [48] propose
a buffered streaming approach for edge partitioning, Adaptive Window-based Streaming
Edge partitioning (ADWISE), which uses a window of edges rather than an edge-by-edge
stream for partitioning. Subsequently, Mayer et al. [50] introduced 2PS, a two-phase model
for edge partitioning. In the first phase, 2PS uses a streaming clustering algorithm to gather
information about the global graph structure. Then, in the second phase, it pre-partitions
edges whose endpoints were in the same cluster, and computes assignments for the remain-
ing edges using HDRF. The clustering phase enables 2PS to address the lack of informa-
tion problem that one-pass algorithms face in initial assignment decisions, and offers more
global information than the buffered approach used in ADWISE. With these phases, 2PS
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produces partitions of higher solution quality than one-pass streaming algorithms, includ-
ing DBH and HDRF, and also outperforms ADWISE for both solution quality and runtime.

While stateful streaming partitioners produce higher quality partitions than stateless par-
titioners, most existing stateful approaches result in a higher time complexity due to a
linear dependency on the number of partitions k. While hash-based partitioning uses a
constant-time hashing function for each edge assignment, resulting in a time complexity
of O(|E|), most stateful streaming partitioners use a scoring function that is computed for
every combination of edges and blocks, resulting in a time complexity of O(|E| ·k). Exist-
ing stateful partitioners thus require very long runtime when k is large. However, in recent
years, there has been a significant growth in the size of real-world graphs, the complexity
of computations, and the availability of machines with a large number of PEs, resulting
in the increasing use of high k values in graph partitioning. These advancements may re-
duce the practical significance of current stateful streaming graph partitioning algorithms,
due to their runtime becoming unfeasibly long for large k. Mayer et al. [51] address this
problem with 2PS-L, an adaptation of 2PS that achieves linear runtime that is independent
of k. Unlike other stateful partitioners, including 2PS with HDRF, 2PS-L uses a constant-
time scoring function that only computes a score for two partitions. While 2PS-L achieves
better solution quality than DBH and HDRF, its solution quality is significantly inferior
to 2PS with HDRF. Thus, there remains potential to explore streaming edge partitioning
algorithms that can produce high quality solutions for large k values without a runtime and
memory dependency on k.

1.2 Our Contribution

In this work, we provide a buffered streaming model for edge partitioning that computes
state-of-the-art solution quality and is independent of k in both memory and runtime. Our
contributions are threefold:

1. We propose HeiStreamEdge, a buffered streaming model for edge partitioning that
computes a balanced edge partition of the input graph with significantly better solu-
tion quality than existing state-of-the-art streaming edge partitioning algorithms. In
this model, we load a buffer of vertices of size δ, which is passed as an input pa-
rameter. The parameter δ controls the amount of memory required by the partitioner.
Next, we build a meaningful model from this buffer which incorporates past assign-
ment decisions. This model is subsequently partitioned using a multilevel partition-
ing scheme. HeiStreamEdge is the highest quality streaming edge partitioner that
additionally benefits from a runtime that is independent of the number of blocks k.
Overall, we yield very low replication factor with a runtime of O(n + m). To the
best of our knowledge, we are the only stateful streaming edge partitioner whose
asymptotic memory consumption is also independent of k.

4



1.3 Structure

2. We introduce a novel transformation of a graph into its corresponding contracted
split-and-connect (CSPAC) graph. This graph is obtained by contracting dominant
edges of the split-and-connect (SPAC) graph proposed by Li et al. [45]. The CSPAC
graph retains the approximation guarantees of the SPAC graph: a vertex partition of
the CSPAC graph offers an edge partitioning of the input graph that is within a factor
of O(∆

√
log n log k) of the optimal edge partition of G, where ∆ is the maximum

degree of the graph. We prove this bound for the CSPAC graph and offer an algorithm
to implement the transformation in O(n +m) time. The CSPAC graph has a much
smaller size than the SPAC graph, and is therefore more efficient for computation.

3. We present extensive experimental evaluation on real-world graphs, including some
huge graphs (up to 3.5 billion edges). Our results demonstrate that we have the
best solution quality compared to existing streaming edge partitioners. We yield a
replication factor that is approximately 8.3% better than the next best on average.
Further, we are faster than other higher-quality solvers for larger k values (k > 256):
among state-of-the-art partitioners that are faster for larger k values, we produce, on
average, 57.6% better solution quality than the next best.

1.3 Structure

The remainder of the thesis is organized as follows: in Chapter 2, we describe the fun-
damental concepts related to our work, including the definition of the graph partitioning
problem, and concepts related to vertex and edge partitioning, multilevel partitioning and
the streaming approach. Chapter 3 discusses related research, beginning with an overview
of fundamental work on streaming vertex partitioning, and later offering a deep-dive into
relevant work on in-memory and streaming edge partitioning. In Chapter 4, we present
our main contribution, HeiStreamEdge, a buffered streaming edge partitioner. After intro-
ducing the overall structure of our proposed approach, we discuss the construction of the
novel CSPAC graph. Subsequently, we provide details of the graph model we build for par-
titioning, including multiple configurations for model construction. Next, we describe the
vertex partitioning of our graph model using a multilevel partitioning scheme and present
an adaptation for k-independent partitioning. In Chapter 5, we showcase the empirical
evaluation of our proposed streaming edge partitioner. After describing our experimental
methodology and the graph instances used, we present experiments to tune parameters and
analyze the empirical effects of various configurations of our algorithm. Then, we com-
pare our partitioner against the state-of-the-art, namely 2PS-HDRF and 2PS-L. Chapter 6
summarizes our work and contributions, and offers avenues for future work.
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CHAPTER 2
Fundamentals

2.1 Graphs

A graph G is characterized by a set of vertices V , a set of edges E ⊂ V ×V which represent
relations between vertices, and two cost functions modeling vertex and edge weights. Let
c : V → R≥0 be a vertex-weight function, and let ω : E → R≥0 be an edge-weight
function. As per standard convention, the number of vertices of a graph G is represented
by n, and the number of edges is represented by m. An edge between two vertices u
and v is shown as (u, v) ∈ E and is defined as a forward edge if u < v or a backward
edge otherwise. In an undirected graph, an edge (u, v) ∈ E implies the existence of a
corresponding edge (v, u) ∈ E. An edge e = (u, v) is said to be incident on vertices u
and v. We generalize the cost functions c and w to sets, such that c(V ′) =

∑
v∈V ′ c(v) and

w(E ′) =
∑

e∈E′ ω(e). The set N(u) = {u : u, v ∈ E} denotes the neighbors of vertex
u. The degree d(u) of a vertex u is the number of its neighbors. The maximum degree
among all vertices of a graph G is denoted by ∆. Likewise, the weighted degree of a vertex
is the sum of the weights of its incident edges. A graph S = (V ′, E ′) is a subgraph of
G = (V,E) if V ′ ⊆ V and E ′ ⊆ E(V ′ × V ′).

2.2 Graph Partitioning

Given a number of blocks k ∈ N≥1, and an undirected graph with positive edge weights,
the graph partitioning problem pertains to the partitioning of a graph into k smaller graphs
by assigning the vertices (vertex partitioning) or edges (edge partitioning) of the graph
to k mutually exclusive blocks, such that the blocks have roughly the same size and the
particular objective function is minimized or maximized.

7



2 Fundamentals

2.2.1 Graph Vertex Partitioning

The graph vertex partitioning problem asks for k blocks of vertices V1, ..., Vk that partition
the vertex set V , that is,

1. V1 ∪ · · · ∪ Vk = V

2. Vi ∩ Vj = ∅ ∀i ̸= j

Further, a balance constraint demands that all blocks have roughly equal size. More pre-
cisely, the sum of vertex weights in each block must not exceed a threshold associated
with some imbalance ϵ, that is, for ϵ ∈ R≥0, we must have ∀i ∈ 1...k : c(Vi) ≤ Lmax =

(1 + ϵ)⌈ c(V )
k

⌉ where c(V ) is the sum of vertex weights for all vertices in V . A perfectly
balanced partition is the case when ϵ = 0. When c(Vi) < Lmax, we say the block Vi is
under loaded, and overloaded if c(Vi) > Lmax.

As stated earlier, the goal of graph partitioning is to minimize or maximize a certain
objective function. In the case of vertex partitioning, arguably the most prominent objective
is to minimize the edge-cut. The edge-cut of a k-partition consists of the total weight of
the cut edges, i.e., total weight of the edges crossing blocks. More formally, the edge-cut
is defined as

∑
i<j ω(Eij)

in which Eij :=
{
{u, v} ∈ E : u ∈ Vi, v ∈ Vj, i ̸= j

}
is the cut-set (i.e., the set of all cut

edges). We consider the weight of edges Eij where i < j to avoid double counting. While
there are other more realistic (and often more complex) objective functions, we minimize
the edge-cut as it is highly correlated with other formulations.

The problem of partitioning a graph into k blocks of roughly equal size, such that the
edge-cut is minimized, is NP-hard as shown by Hyafil and Rivest [35] and Garey et al. [25].

A clustering is also a partition of the vertices of a graph into disjoint sets
C1 ∪ · · · ∪ Cl = V . However, unlike vertex partitioning, in clustering, k is not usually
known or given in advance, and the balance constraint is removed. A size-constrained
clustering restricts the size of the blocks of a clustering by a given upper bound U such
that c(Ci) ≤ U .

We define an abstract view of the partitioned graph as a quotient graph Q, in which
vertices represent the k blocks of partitions, and edges are induced by the connectivity
between blocks, i.e., the cut-edges between blocks. More precisely, in a quotient graph,
each vertex i of Q has weight c(Vi) and there exists an edge between i and j if there is
at least one edge in the original partitioned graph that runs between the blocks Vi and Vj .
A pair of blocks that is connected by an edge in the quotient graph is called neighboring
blocks. A vertex v ∈ Vi that has a neighbor w ∈ Vj , i ̸= j, is a boundary vertex.

8



2.2 Graph Partitioning

2.2.2 Graph Edge Partitioning

Similar to the vertex partitioning problem, the edge partitioning problem asks for k blocks
of edges E1, ..., Ek that partition the edge set E, that is,

1. E1 ∪ · · · ∪ Ek = E

2. Ei ∩ Ej = ∅ ∀i ̸= j

The balance constraint is observed here as well, demanding that ∀i ∈ 1...k : ω(Ei) ≤
Lmax = (1+ ϵ)⌈ω(E)

k
⌉ where ω(E) is the sum of edge weights of all edges in E. It ensures

that the weights of the partitioned blocks do not exceed the expected sum of edge-weights
multiplied by an imbalance factor ϵ in each block.

We define the set V (Ei) =
{
v ∈ V |∃u ∈ V : (u, v) ∈ Ei ∨ (v, u) ∈ Ei

}
for each

partition Ei as the number of vertices in V that have at least one edge incident on them
that was assigned to block Ei. Taking the sum of |V (Ei)| over all k gives us the total
number of vertex replicas generated by the partition. The primary objective function for
edge partitioning, replication factor is then obtained by dividing the total number of vertex
replicas by the number of vertices in the graph, i.e.,

RF (E1, E2, ...Ek) =
1

k

∑
i=1,...k

|V (Ei)|

The goal of edge partitioning is to minimize the replication factor. Intuitively, a min-
imized replication factor suggests that vertices are replicated in minimum blocks. Mini-
mum vertex replication, in turn, results in lower synchronization overhead in distributed
graph processing due to reduced exchange of vertex state across blocks. The runtime of
distributed graph processing has been shown to have a direct correlation with replication
factor in edge partitioning, as demonstrated in several studies [31] [70]. Like the vertex
partitioning problem, edge partitioning of graphs into k blocks of roughly equal size such
that replication factor is minimized is NP-hard [8] [70].

2.2.3 Multilevel Partitioning Scheme

As stated above, the graph partitioning problem is NP-hard. Approximation algorithms
have been developed for graph partitioning, and are of high theoretical importance. How-
ever, they are often not implemented, or are too slow for large graphs compared to state-
of-the-art graph partitioners [63]. Thus, mostly heuristics are used in practice.

A successful heuristic for partitioning large graphs is the multilevel graph partitioning
(MGP) approach. In the MGP scheme, the input graph is recursively contracted to achieve
smaller (coarser) graphs that reflect the same structure as the initial graph. This process is
called coarsening. At the end of the coarsening phase, we arrive at the coarsest graph, on
which we apply an initial partitioning algorithm. Thereafter, the coarsening is undone, and,
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2 Fundamentals

at each level, a local search method is used to improve the initial partitioning computed at
the coarsest level. This stage of the MGP scheme is called uncoarsening, and it results in
making the graph finer in every iteration till we arrive back at the input graph.

The crux of the MGP scheme is to retain the structure of the input graph during coars-
ening. For vertex partitioning, this can be achieved by coarsening through contracting
clusters of vertices C = C1, ..., Cl. Contracting a cluster of vertices consists of replacing
each cluster Ci with a new vertex v. The weight of this vertex is set to the sum of the weight
of all vertices in the cluster, i.e., c(v) =

∑
u∈Ci

(c(u)). This new vertex is connected to all

elements w ∈
l⋃

i=1

N(Ci), w({v, w}) =
∑l

i=1w({Ci, w}). In other words, the new vertex

v is connected to all contracted vertices w induced by clusters Cj which contain a vertex
that has an edge to some vertex in cluster Ci. This ensures that a partition at a coarser
level that is transferred to a finer level maintains edge-cut and the balance of the partition.
The uncoarsening phase, also known as refinement, undoes the contraction of a vertex back
into its constituent cluster. During uncoarsening, local search is performed to reduce the
objective function by moving vertices between blocks.

2.3 Streaming Computational Models

Streaming algorithms typically follow an iterative load-compute-store logic. The classic
streaming model is the one-pass model. In this model, vertices of a graph are loaded one
at a time, along with their adjacency lists. Then, some logic is applied to permanently
assign each vertex to a block as it is visited. Here, assignment decisions for the current
vertex depend on assignment decisions for previously visited vertices. Thus, the model has
to store the assignments of all previously loaded vertices and hence needs Ω(n) space. A
similar sequence of operations is used to partition a stream of edges of a graph on the fly.
In the case of edge partitioning, edges of a graph are loaded one at a time along with their
end-points. Then, some logic is applied to permanently assign them to blocks. The logic
for one-pass partitioning can be a simple Hashing function [69] or a complex scoring of
all blocks based on some objective function [55] [66]. In the latter case, each vertex is
assigned to the block with the optimal score.

An extended version of the one-pass model is called the buffered streaming model, for
example, the model used in HeiStream [22]. In this model, instead of loading vertices
one at a time, we load a δ-sized buffer or batch of input vertices along with their edges.
Here, we make block assignment decisions only after the entire batch has been loaded.
In practice, the parameter δ can be chosen in accordance with memory available on the
machine. In our contribution, like HeiStream, we use a fixed δ throughout the algorithm.
For a predefined batch size of δ, we load and repeatedly partition ⌈n/δ⌉ batches.
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CHAPTER 3
Related Work

There has been extensive research on graph partitioning, so we refer the reader to rele-
vant literature [11] [14]. Most high-quality vertex partitioners for real-world graphs use a
multilevel scheme, including KaHIP [60], Jostle [68], METIS [39], Scotch [17], hMETIS
[38] [40] and (mt)-KaHyPar [27] [29] [28]. In this chapter, we review relevant literature
on streaming vertex partitioning as well as in-memory and streaming algorithms for edge
partitioning.

3.1 Streaming Vertex Partitioning

Stanton and Kliot [65] propose graph vertex partitioning in the streaming model, offering
several heuristics to solve it, including both one-pass methods, such as Hashing and Chunk-
ing, and buffered methods such as Greedy EvoCut. The proposed buffered heuristics all
performed significantly worse than random partitioning. Stanton and Kliot’s experiments
found that the Linear Deterministic Greedy (LDG) heuristic performed the best in terms of
minimizing edge-cut among all proposed heuristics. LDG minimizes edge-cut by prioritiz-
ing vertex assignments to blocks assigned to its neighbors, while using a penalty multiplier
to control imbalance. To do so, it assigns each vertex to the block containing the most
neighboring vertices: a vertex v is assigned to block Vi that maximizes |Vi ∩N(v)| ∗ λ(i),
where λ(i) is a penalty multiplier (1− |Vi|

Lmax
). Weighing the score with a penalty multiplier

avoids imbalance between blocks by penalizing larger blocks.
Tsourakakis et al. [66] introduce Fennel, a one-pass partitioning heuristic adapted from

the clustering objective modularity [9]. Like LDG, Fennel minimizes edge-cuts by trying to
place vertices in partitions with more neighboring vertices. It maintains a balancing thresh-
old through an additive penalty, unlike the multiplicative penalty used in LDG. Fennel as-
signs a vertex v to a block Vi that maximizes the Fennel gain function |Vi∩N(v)|−f(|Vi|),
where f(|Vi|) is a penalty function to respect a balancing threshold. In particular, the
penalty function is defined as f(|Vi|) = αγ|Vi|γ−1, where γ and α are tunable parameters
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that control the amount of imbalance, as well as weights associated with maximizing the
number of neighbors (when γ = 1), and minimizing the number of non-neighbors (when
γ = 2) for the input vertex during partitioning. In other words, when f(|Vi|) is constant, the
objective function corresponds to the maximization of co-location with neighbors; when
f(|Vi|) = |Vi|, the objective function corresponds to minimization of co-location with non-
neighbors. After tuning experiments, Tsourakakis et al. propose setting γ = 3/2, and
theoretically select α = mkγ−1

nγ . While Tsourakakis et al. assume k is constant, and thus
derive a complexity of O(n +m), since their algorithm iterates over all blocks k for each
vertex, the complexity of the algorithm depends on k and is given by O(nk + m). Faraj
and Schulz [22] propose a generalized weighted version of the Fennel gain function which
we use in the initial partitioning step of our multilevel partitioning scheme. With a modi-
fication using priority queues, we compute the generalized weighted Fennel gain function
for each vertex without visiting all k blocks. As such, our overall runtime is asymptotically
independent of k, namely, O(n+m). Further information on our partitioning process, and
the modification, is provided in Section 4.4.

Nishimura and Ugander [53] introduce a restreaming graph partitioning model, in which
multiple passes through the input graph are performed, retaining vertex assignments across
passes and thus allowing iterative improvements in partition quality. For all streaming runs
except the initial one, future vertices in the stream have past block assignments that inform
the partitioning heuristics. The authors propose ReLDG and ReFennel, restreaming ver-
sions of LDG and Fennel respectively. Besides recalling past vertex assignments, ReFen-
nel also increases the weight of the balance penalty over the stream runs. In a study of
the effects of vertex ordering on streaming graph partitioning, Awadelkarim and Ugander
[4] introduce prioritized restreaming algorithms to optimize the ordering of the streaming
process. They used ReLDG to test the effects of using either static or dynamic stream
ordering; the latter allows for variation in the order of streamed vertices in between stream-
ing runs, according to specific priorities to improve partition quality. The authors propose a
dynamic vertex ordering prioritization called ambivalence, which outperformed their other
reordering algorithms; ambivalence places vertices with "more ambivalent" block assign-
ment decisions (often low-degree vertices) at the end of stream. These "more ambivalent"
vertices are vertices for which the difference between the number of co-assigned neighbor-
ing vertices in their current block assignment and the best possible external assignment is
small.

WStream, proposed by Patwary et al. [54], is a greedy streaming graph partitioning
algorithm that uses a sliding stream window containing a few hundred vertices, which,
similar to buffered partitioning, increases the information available for block assignments.
However, the authors only evaluate WStream on graphs with a few thousand vertices. Faraj
and Schulz [22] introduce HeiStream, a buffered streaming model that uses a sophisticated
multilevel partitioning scheme. In HeiStream, vertices are streamed in batches of a user-
definable number. A complex graph model is constructed for every batch which contains
the streamed batch of vertices, their connections to past block assignment decisions, and
optionally, their connections to future batch vertices. A multilevel partitioning scheme is
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performed on the graph model, and subsequently, vertices of the batch are permanently
assigned to blocks. HeiStream was demonstrated to outperform previous state-of-the-art
streaming vertex partitioners in solution quality. In our work, we extend the approach used
by HeiStream for edge partitioning.

3.2 In-memory Edge Partitioning

Edge partitioning has been solved directly with multilevel hypergraph partitioners by trans-
forming the graph into its dual hypergraph representation. In this representation, edges of
the graph become vertices of the hypergraph, and hyperedges are induced by incident edges
of each vertex of the input graph. A vertex hypergraph partitioning of this dual hypergraph
representation directly outputs an edge partition of the input graph. Popular hypergraph
partitioners include PaToH [13] (originating from scientific computing), hMETIS [38] [40]
(originating from VLSI design), KaHyPar [33] [2] [61] (general purpose, n-level), Mon-
driaan [67] (sparse matrix partitioning), MLPart [3] (circuit partitioning), Zoltan [41], and
SHP [37] (distributed), UMPa [15] (directed hyper- graph model, multi-objective), and
kPaToH (multiple constraints, fixed vertices) [5]. In hypergraph partitioning, the vertices
of a hypergraph are equi-partitioned into k blocks, optimizing for the following two com-
mon objective functions: to minimize the number of cut-nets and the connectivity metric.
Cut-net is a generalization of the edge-cut objective in graph partitioning applied to hyper-
graph partitioning. The connectivity metric is defined as γ − 1, where γ is the number of
blocks connected by a net. Summed over all nets, connectivity models the total communi-
cation volume. In the case of edge partitioning with hypergraphs, optimizing the connec-
tivity metric directly optimizes vertex cut of the underlying edge partitioning problem [14].
The multilevel scheme of these hypergraph partitioners, similar to those described above
for graph partitioning, entail a recursive coarsening step, followed by direct partitioning
on the coarsest hypergraph. This partition is then successively refined during the uncoars-
ening phase to return to the original hypergraph. Using this approach, hMETIS [38] [40]
obtained edge partitioning with a 15% to 23% improvement in solution quality over the
state-of-the-art at the time.

While multilevel hypergraph partitioning produces high-quality edge partitions, such
partitioners tend to have long running time [45]. Li et al. [45] propose an alternative method
of solving the edge partitioning problem, which produces comparable solution quality to
hypergraph partitioning, but has a faster runtime. To compute an edge partitioning of G, Li
et al. create a new graph G′ from G with their proposed Split-and-Connect (SPAC) trans-
formation. Subsequently, they use a vertex partitioner on G′ which corresponds to an edge
partitioning of the original input graph. Refer to Section 4.2 for a detailed explanation of
the SPAC method of edge partitioning. Schlag et al. [62] adapt the SPAC method to a dis-
tributed memory parallel algorithm for edge partitioning, comparing multiple sequential
and distributed graph, and hypergraph, partitioners for runtime, scalability, and solution
quality. Their results showed that edge partitioning with parallel graph partitioners us-
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ing the SPAC transformation outperforms distributed hypergraph partitioners. A notable
exception is KaHyPar, a hypergraph partitioner that produces significantly better solution
quality than alternatives. In particular, KaHyPar produces 20% better solutions than the
best SPAC-based approach. However, it is an order of magnitude slower than the evalu-
ated distributed algorithms. Our proposed approach uses a contracted version of the SPAC
graph for streaming edge partitioning.

3.3 Streaming Edge Partitioning

Existing streaming edge partitioning heuristics can be divided into two categories: stateless
approaches, like hashing and constrained partitioning algorithms, which ignore past parti-
tion assignments when making an assignment, and stateful approaches, like score-based
heuristic models, which leverage past assignments to make the next assignment decision.

3.3.1 Stateless Streaming Edge Partitioning

Hash partitioning is a stateless, data-model agnostic partitioning method which can be used
in vertex and edge partitioning. Hashing algorithms can be applied in a streaming setting,
and can achieve good load balance across partitions if the predefined hash function guar-
antees uniformity. Hash partitioning uses a hashing function to map elements with distinct
keys to different partitions: in edge partitioning, hashing maps a set of edges to partitions.
The simple hashing technique for edge partitioning randomly assigns each edge to a par-
tition: for each input edge e ∈ E, Ei(e) = h(e) mod |k| is the identifier of the target
partition Ei. Though hash partitioning is fast, this heuristic results in a large number of
vertex replicas in general, and it performs poorly on graphs with skewed degree distribu-
tions, particularly power-law graphs [26]. Degree Based Hashing (DBH) [69] improves
upon randomized hash partitioning, especially for power-law graphs, by taking vertex de-
gree into account; DBH prioritizes cutting vertices with the highest degree, to minimize
overall vertex cuts. For an input edge e, DBH computes the partial degree of its endpoint
vertices u and v. After that, e is assigned to the partition ID computed as the hash of the
vertex with the lowest degree.

Grid and PDS are constrained partitioning algorithms [36]. They limit vertex replica-
tion for each vertex v ∈ V to only a small subset of partitions S(v) among k partitions,
called the constrained set of v. In Grid, all partition IDs are organized in a square ma-
trix. The constrained set must guarantee the following properties; for each u, v ∈ V ,
(i) S(u) ∩ S(v) = ∅; (ii) S(u) ⊈ S(v) and S(v) ⊈ S(u); (iii) |S(u)| = |S(v)|. It is easy to
observe that this approach naturally imposes an upper bound on the replication factor. To
position a new edge e connecting vertices u and v, it picks a partition from the intersection
between S(u) and S(v) either randomly or by choosing the least loaded one. Different so-
lutions differ in the composition of the vertex constrained sets. The grid solution arranges
partitions in a X × Y matrix such that k = XY . It maps each vertex v to a matrix cell
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using a hash function h. Then, S(v) is the set of all the partitions in the corresponding row
and column. In this way each constrained set pair has at least two partitions in their in-
tersection. PDS generates constrained sets using Perfect Difference Sets [30]. This ensure
that each pair of constrained sets has exactly one partition in the intersection. PDS can be
applied only if k = x2 + x+ 1, where x is a prime number.

3.3.2 Stateful Streaming Edge Partitioning
Greedy [26] is a rule-based partitioning model that aims to minimize vertex replicas while
maintaining a certain balance constraint across partitions. For every edge in the input
stream, Greedy uses the following rules to evaluate the presence of the endpoint vertices in
existing partitions:

1. If both endpoint vertices have been previously assigned to any common block, pick
the least loaded common block.

2. If both endpoint vertices have been previously assigned to different blocks, and not
assigned to any common blocks, pick the least loaded block from the union of all
assigned blocks of the two vertices.

3. If only one of the endpoint vertices has been previously assigned, pick the least
loaded block from the previously assigned partitions of that vertex.

4. If none of the vertices have been assigned, pick the least loaded block overall.

Gonzalez et al. [26] find that Greedy improves upon random placement with an order of
magnitude reduction in the replication factor. Testing on five real-world graphs, the authors
found that in all cases Greedy out-performs random placement.

Noting the primary motivation of edge partitioning to improve partition quality of
power law graphs, Petroni et al. [55] propose High-Degree (are) Replicated First
(HDRF), a streaming edge partitioning algorithm that exploits the skewed degree dis-
tribution of power law graphs by prioritizing vertex replicas of high-degree vertices.
HDRF assigns an edge e = (u, v) to the partition Ei that maximizes a scoring func-
tion CHDRF (u, v, Ei) = CREP (u, v, Ei) + CBAL(Ei), where CREP (u, v, Ei) is a degree-
weighted replication score and CBAL(Ei) is a balancing score. CREP (u, v, Ei) is high if
both vertices u and v incident to an edge e are in the vertex cover set of the same parti-
tion Ei. On the other hand, CBAL(Ei) is highest when Ei is the smallest partition (i.e.,
contains least number of edges). Here, CBAL is controlled by a multiplicative parameter λ.
When λ = 0, HDRF is agnostic of load balance. At λ = 1, HDRF represents the Greedy
heuristic and for λ > 1, HDRF prioritizes balance proportional to λ. When λ approach
∞, HDRF produces random edge assignment. Furthermore, as stated previously, stream-
ing partitioning is sensitive to the ordering of the graph stream. In particular, Petroni et
al. note that a high locality of vertices in the graph data stream negatively impacts balanc-
ing. As such, they propose shuffling the graph before ingestion to combat the potentially
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adverse effects of stream ordering. While shuffling mitigates the stream ordering problem,
it causes poor memory access on the vertex-based partitioning state which results in slower
execution. Zhang et al. [70] introduced Streaming Neighbor Expansion (SNE) which is a
streaming version of the in-memory edge partitioner Neighbor Expansion (NE) [70] that
utilizes sampling methods. SNE produces better solution quality than HDRF at the cost of
increased memory consumption and runtime [50].

In contrast to one-pass streaming models like those mentioned above, Mayer et al. [48]
introduce the Adaptive Window-based Streaming Edge partitioning algorithm (ADWISE),
a window-based streaming edge partitioner. Window-based or buffered streaming produces
better solution quality than one-pass streaming, as assignment decisions can be made from
a set of edges within the buffer, rather than without any information about future edges,
as in one-pass models. ADWISE uses a dynamic window size that adapts according to
runtime constraints, and reports between 23 − 47% improvement in solution quality over
one-pass streaming edge partitioners. However, solution quality is dependent on window
size, and so achieving a low replication factor necessitates a larger window and leads to a
longer runtime. Like ADWISE, we use a buffered streaming model, however our model
uses a fixed buffer size that can be specified by the user.

Mayer et al. [50] propose 2PS, a two-phase streaming algorithm for edge partitioning.
The first phase uses a streaming clustering algorithm to gather information about the global
graph structure; in the second phase, the graph is partitioned, using information obtained
from clustering to make edge partitioning decisions. 2PS achieves better solution quality
on real world graphs than DBH, and better runtime and solution quality than ADWISE and
HDRF. The streaming clustering algorithm used in 2PS is an extension of an algorithm
proposed by Hollocou et al. [34]. It follows the formal objective for clustering, which is
to maximize modularity. Unlike streaming edge partition where edges are permanently
assigned to blocks when visited, streaming clustering allows for cluster assignments of
vertices to be updated when the vertex is revisited in a future edge. The clustering problem
is typically less constrained than the partitioning problem: obtained clusters may be unbal-
anced and the number of clusters is not pre-set but rather determined by properties of the
graph. Mayer et al. [50], however, limit cluster sizes such that the number of intra-cluster
edges does not exceed the maximum size of any partition block controlled by the balanc-
ing constraint. With this, they are able to use clustering information to pre-partition edges
whose endpoints were assigned to the same cluster, into the same block of the partition. The
global information available through clustering thus enables the creation of pre-partitions
with minimized replication factor, as the sub-set of edges partitioned at this stage do not
have vertices that are replicated across blocks. In particular, the pre-partitioning algorithm
performs a single pass over the edge stream: for each edge e = (u, v), it checks if both
incident vertices u and v are either in the same cluster or their clusters are assigned to the
same partition Ei. If so, e is pre-partitioned and assigned to Ei. If Ei is at maximum ca-
pacity given the balancing constraint, e is not pre-partitioned, and instead partitioned in the
final step. In the final partitioning step, all remaining edges are partitioned using the HDRF
scoring function in yet another pass over the edges of the graph.
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Subsequently, noting the increased importance of partitioning into a large number of
blocks, Mayer et al. [51] proposed 2PS-L, an adaptation of 2PS that runs in time inde-
pendent of k. 2PS-L retains the clustering phase and pre-partitioning step in 2PS, but
introduces a new scoring function for the final partitioning step to remove its dependency
on k and thus achieve a time complexity of O(|E|). The novel scoring function is con-
strained to only take into account two blocks, regardless of the value of k. Specifically,
these are the two blocks associated with the clusters of the adjacent vertices u and v of
an edge e = (u, v). 2PS-L is shown to perform faster than all other stateful partitioners,
particularly at larger k values. However, this comes at the cost of solution quality. For in-
stance, the previously proposed 2PS with HDRF achieves 50% better solution quality over
2PS-L [51].
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CHAPTER 4
Buffered Streaming Edge Partitioning

In this chapter, we describe our buffered model for computing edge partitions in a streaming
setting. We begin by shortly outlining the overall structure of our algorithm in Section
4.1. Then, we provide details of the per-batch graph conversion into a novel contracted
SPAC graph in Section 4.2 and prove theoretical approximation guarantees for it. Next,
we present our ultimate graph model in Section 4.3 along with a description of its various
configurations. Finally, we describe the partitioning scheme we apply on our graph model
in Section 4.4. Overall we propose a high-quality stateful streaming edge partitioning
approach that has a runtime complexity of O(n + m). Our approach is asymptotically
independent of k in both memory (first of its kind) and runtime.

4.1 Overall Structure

In this section, we explain the overall structure of our proposed buffered streaming edge
partitioner, HeiStreamEdge. The approach closely follows that of HeiStream for vertex
partitioning by Faraj and Schulz [22]. We slide through the input graph G by repeating the
following successive operations until all vertices of G are visited, at which point all edges
of G are assigned to blocks. First, we load a batch Gb containing δ vertices along with
their adjacency lists. This provides us with edges between vertices in the current batch,
as well as edges to vertices in past and future batches (except for the first and last batch
respectively). In our algorithm, we only consider edges between vertices in the current
batch, and edges to vertices in previous batches (more information in sections to follow).
Second, we transform our per-batch graph Gb into its corresponding contracted split-and-
connect graph S∗. Third, we construct our graph model β from S∗. This model represents
block assignments for edges that have already been partitioned, as well as edges of the
current batch. Then, we partition β with a multilevel vertex partitioning algorithm to opti-
mize for the generalized weighted Fennel objective function, adopting the approach used in
HeiStream. As demonstrated by Schlag et al. [62], a good vertex partition of the split graph
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intuitively leads to a good edge partition of the input graph. Finally, we permanently assign
the vertices of the graph model β constructed from the current batch to their corresponding
global edge IDs. Algorithm 1 summarizes the general structure of HeiStreamEdge which
is showcased in Figure 4.1.

load batch Gb

convert to CSPAC S∗

current batchpast vertices future vertices

assign batch to blocks

build model β

partition model β

intra-batch edges

past batch edges

future batch edges

block assignments

artificial vertices

artificial edges

past vertices next batch future vertices

CSPAC vertices

Figure 4.1: Detailed Structure of HeiStreamEdge. The algorithm starts by loading a batch graph of
vertices and their corresponding edges to the current batch and previous batches. Next,
it converts the batch graph into its corresponding contracted split-and-connect graph.
It then builds a meaningful model from this, which is partitioned using a multilevel
algorithm. Finally, edges of the loaded batch, which correspond to vertices of the
partitioned batch model, are permanently assigned to blocks. The process is repeated
for the next batch until the entire graph has been partitioned.
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Algorithm 1: Overall Structure of HeiStream Edge
1 while G has not been completely streamed do
2 Load batch of vertices Gb ignoring future edges
3 Construct CSPAC S∗ from batch graph Gb

4 Build model β from S∗

5 Run multilevel partitioning on model β
6 Permanently assign edges of batch to blocks

4.2 CSPAC: Contracted Split-and-Connect Graph

In this section, we discuss the contraction of the Split-and-Connect (SPAC) graph intro-
duced by Li et al. [45]. The contraction results in faster runtime due to the smaller size
of the resulting graph model, relative to the uncontracted version. It also provides for bet-
ter solution quality given our chosen partitioning scheme, due to all edges having equal
weight.

In the original version of the SPAC method to compute an edge partition of an undirected,
unweighted graph G = (V,E), Li et al. [45] construct a SPAC graph G′ = (V ′, E ′) as
follows:

Split Phase: For each vertex v ∈ V , create a set of d(v) split vertices
Sv := {v′1, ..., v′d(v)} in G′, Sv ⊂ V ′ where d(v) is the degree of v in G.

Connect Phase: For an edge e = (u, v) in G, create a corresponding dominant edge
e′ = (µ′

i, v′j) in G′, such that µ′
i ∈ Su and v′j ∈ Sv and ω(e′) = ∞. Both µ′

i and v′j are
connected by one and only one dominant edge e′. Further, connect split vertices in every
set Su to form a path of d(u) vertices and d(u) − 1 edges (or d(u) edges if a cycle is built
instead of a path), called auxiliary edges e′′ with ω(e′′) = 1.

Figure 4.2 illustrates the conversion of a toy graph G into its corresponding SPAC
graph G′. Li et al. [45] propose that to partition the edges of G, perform a vertex parti-
tioning of the SPAC graph G′ obtained from G, and then construct the edge partitioning
from this vertex partition. Since dominant edges have edge weight set to infinity, it is in-
feasible for the vertex partitioner to cut these edges. As a consequence, both endpoints of
dominant edges are assigned to the same block. Ultimately, we obtain the edge partitioning
of the input graph G by transferring the block incident on the endpoints of the dominant
edge to the edge in G that induced the dominant edge.

This SPAC graph transformation model for edge partitioning is demonstrated to be
highly effective empirically, and shown to have the best provable approximation factor
under the same balancing constraints among alternate models [45]. Li et al. [45] proved
that with this approach, they can achieve a partition that approximates the optimal solution
for the balanced edge partitioning problem within a factor of O(∆

√
log n log k), where ∆

is the maximum degree of graph G.
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Contract Dominant EdgesSplit-and-Connect

Input Graph G SPAC Graph G′ CSPAC Graph G∗

Figure 4.2: Contracted SPAC Graph Construction. Input graph G is converted to its SPAC graph
G′ by creating d(v) split vertices for each v ∈ G. Each split vertex is identified by
the color of the vertex that induces it. All edges of G form unique dominant edges
of G′ (colored green) between corresponding split vertices. Auxiliary edges form a
path between split vertices in G′ (colored purple). CSPAC graph G∗ is obtained by
contracting dominant edges of G′. Each vertex of G∗ is formed by a pair of split
vertices of different v ∈ G (colored half-and-half to showcase origin). Edges of G∗

are auxiliary edges of G′.

In our work, we develop a contracted version of the SPAC graph by contracting the
dominant edges of the SPAC graph as shown in Figure 4.2. In this section, we define the
Contracted SPlit And Connect graph, CSPAC, and prove that the theoretical approxima-
tion bounds for the SPAC graph transformation method also apply to the CSPAC graphs.

Definition 4.2.1 (CSPAC Graph G*)
A CSPAC graph G∗ = (V ∗, E∗) is obtained from contracting the dominant edges of the
SPAC graph G′ = (V ′, E ′) defined above, as shown in Figure 4.2.

A vertex u∗ ∈ V ∗ corresponds to some dominant edge e′ = (µ′
i, v′j) ∈ E ′, such that

µ′
i ∈ Su and v′j ∈ Sv, and u < v to avoid duplication. We denote such a vertex as

u∗ = [µ′
i, v′j]. Therefore V ∗ = {u∗ |u∗ = [µ′

i, v′j], e
′ = (µ′

i, v′j) ∈ E ′}.
Further, there is an edge e∗ = (u∗, v∗) ∈ E∗ if for u∗ = [µ′

i, v′j] with µ′
i ∈ Su and v′j ∈ Sv,

there exists a vertex v∗ = [a, b] ∈ V ∗ with either {a ∈ Su ∨ b ∈ Su} or {a ∈ Sv ∨ b ∈ Sv}.

The CSPAC construction has the following important properties:

1. Number of vertices |V ∗| in G∗ is equal to the number of undirected edges |E|/2 in G.
This is because every edge e = (u, v) ∈ E induces a dominant edge e′ ∈ E ′ of the
SPAC graph which is contracted to form a vertex u∗ ∈ V ∗ if u < v.

2. As every edge e ∈ E forms one, and only one, dominant edge e′ ∈ E ′ of the
SPAC graph G′, every vertex u∗ of G∗ corresponds to one, and only one, edge of G.
We denote the vertex u∗ of G∗ as the unique vertex induced by edge e ∈ E with
G∗(e) = u∗. Thus, V ∗ = {u∗|u∗ = G∗(e) ∀e ∈ E}.

3. Edges e∗ = (u∗, v∗) ∈ E∗ between vertices u∗ and v∗ in the CSPAC graph only exist
if the two endpoints of e∗ share split vertices derived from the same vertex u ∈ V ,
i.e., if both vertices u∗ and v∗ were contracted from dominant edges e′1 and e′2 of G′

with µ′
i ∈ Su and µ′

j ∈ Su, incident on e′1 and e′2 respectively.
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Note that the CSPAC graph G∗ is similar to the line graph L constructed from an input
graph G. Given a graph G, a line graph L is constructed such that (i) every vertex of L
is induced by a unique edge of G and (ii) two vertices of L are adjacent if the edges of G
that induced them share an endpoint. Both G∗ and L model adjacencies between edges
of G, and have the same set of vertices (one for every edge of the G). However, they differ
significantly in how their vertices are connected: for a set of vertices that are induced by
edges of G that share an endpoint, we have a path in G∗ and a clique in L. Because of this,
a vertex partitioning of L does not offer the approximation guarantees for edge partitioning
that the SPAC graph G′, and the CSPAC G∗ (proven in this section) can provide.

The CSPAC graph G∗ can be constructed from the input graph G in two ways: (i) con-
struct the SPAC graph and contract the dominant edges or (ii) construct the CSPAC graph
directly from G. We provide algorithms for these constructions later in this section.

Next, similar to the SPAC method, in order to compute a valid edge partition of G, we
compute a valid vertex partition of G∗ using a vertex partitioner. From property 1 of the
CSPAC graph, we know that every vertex of the CSPAC graph G∗ corresponds to an edge of
G, and from property 2, that this edge is unique. Thus, a vertex partitioning of G∗ directly
gives us an edge partition of G with the following definition:

Definition 4.2.2 (Edge Partition of G from Vertex Partition of G*)
Given an input graph G = (V,E), and a CSPAC graph G∗ = (V ∗, E∗) induced by G,
assume you have a vertex partition vp(G∗) of G∗, wherein every vertex u∗ ∈ V ∗ is assigned
to block i ∈ {0, ..., k − 1} and k is the number of blocks of the edge partition. The edge
partition ep(G) of G is obtained as follows:

ep(G[e]) = vp(G∗)[u∗] = i ∀e ∈ E ∧ u∗ = G∗(e).

As every vertex u∗ in G∗ represents a unique edge in G, V ∗ = {u∗|u∗ = G∗(e) ∀e ∈ E},
and vp(G∗) is a valid vertex partition with balance constraints, ep(G) is a valid edge parti-
tion of G.

Given this construction and vertex partitioning of the CSPAC graph, we now prove that
the theoretical approximation bounds for the SPAC graph method apply to the CSPAC
method as well. We prove modifications or extensions of theorems originally presented in
Li et al. [45] to show that the vertex partitioning of the CSPAC graph approximates the
optimal edge partitioning solution of the input graph within a factor of O(∆

√
log n log k).

Before proving the theorems, we need the following important lemma:

Lemma 4.2.1 (Edges of G* are auxiliary edges of G’)
Given an input graph G = (V,E), assume G′ = (V ′, E ′) is a SPAC graph constructed
from G, and G∗ = (V ∗, E∗) is the CSPAC graph obtained from contracting dominant
edges of G′. Every edge e∗ ∈ E∗ corresponds to a unique auxiliary edge in G′, and
|E∗| = |{e′′ ∈ E ′ : e′′ is an auxiliary edge}|.

23



4 Buffered Streaming Edge Partitioning

Proof. Every vertex u∗ ∈ V ∗ is obtained from contracting a dominant edge in G′. From
the construction of G′, we know that each dominant edge e′ = (µ′

i, v′j), with µ′
i ∈ Su and

v′j ∈ Sv is uniquely induced by a corresponding edge e = (u, v) ∈ E of the input graph G.
From property 3 of the CSPAC graphs mentioned earlier, we know from construction

that an edge e∗ = (u∗, v∗) ∈ E∗ exists only if u∗ and v∗ were contracted from dominant
edges e′1 and e′2 of G′ with µ′

i ∈ Su incident on e′1 and µ′
j ∈ Su incident on e′2. In other

words, both u∗ and v∗ must be obtained from a dominant edge that had two split vertices µ
of the same vertex u in common. In G′, such edges between two split vertices are precisely
the auxiliary edges.

Next, we show that every edge e∗ ∈ E∗ corresponds to a unique auxiliary edge
in G′. Assume towards a contradiction that there are two edges e∗1 = (u∗, v∗) ∈ E∗ and
e∗2 = (a∗, b∗) ∈ E∗ that correspond to the same auxiliary edge in G′. Let this auxiliary
edge be e′′ = (µ′

i, µ
′
l) ∈ E ′ that exists between two split vertices µ′

i, µ
′
l ∈ Su of vertex

u ∈ V . In G′, by construction, µ′
i can have an auxiliary edge to another split vertex of u,

say µs ∈ Su, or a dominant edge to a split vertex v′j ∈ Sv of a different vertex v ∈ V .
Similarly, µ′

j can have an auxiliary edge to either another split vertex of u, say µp ∈ Su, or
a dominant edge to a split vertex w′

j ∈ Sw of another vertex w ∈ V . For e′′ to be the edge
e∗1 = (u∗, v∗) in G∗, we must have that u∗ = [µ′

i, v′j] and v∗ = [µ′
l, w

′
j] as these vertices can

only be obtained from contracting the dominant edges incident on µ′
i and µ′

l respectively.
Likewise, for e′′ to be the edge e∗2 = (a∗, b∗) in G∗, we must have that a∗ = [µ′

i, v′j] and
b∗ = [µ′

l, w
′
j] as they are the only dominant edges incident on µ′

i and µ′
l respectively. How-

ever, then u∗ = a∗ and v∗ = b∗. Therefore, e∗1 = e∗2 and we have arrived at a contradiction.
So, every edge e∗ ∈ E∗ must correspond to a unique auxiliary edge in G′.

Since in G∗, all dominant edges of G′ are contracted to unique vertices, and all edges
in G∗ are unique auxiliary edges of G′, it directly follows that |E∗| = |{e′′ ∈ E ′ :
e′′ is an auxiliary edge}|.

To see why, consider the following: if |E∗| > |{e′′ ∈ E ′}| then there are two edges
e∗1, e

∗
2 ∈ E∗ which correspond to the same auxiliary edge in E ′ which violates uniqueness.

If |E∗| < |{e′′ ∈ E ′}| then we have not connected two vertices in V ∗ that share two split
vertices µ′

i, µ
′
j ∈ Su of the same vertex u ∈ V that had an auxiliary edge e′′ = (µ′

i, µ
′
j)

in G′, which violates the construction of G∗. ■
With Lemma 4.2.1, we are ready to prove Theorem 4.2.1.

Theorem 4.2.1
Given an input graph G, assume G′ is a SPAC graph constructed from G, and G∗ is the
CSPAC graph obtained from contracting dominant edges of G′. Let vp(G∗) be a valid
vertex partition of the CSPAC graph G∗, and let ep(G) be a valid edge partition of G that
is obtained from vp(G∗) using the procedure in Definition 4.2.2.

Then, the edge partition cost of ep(G), i.e., number of vertex replicas of G, is less than
or equal to the vertex partition cost of vp(G∗), i.e., total edge cut of G∗, denoted as

cost(ep(G)) ≤ cost(vp(G∗)).
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Proof. First, note that from Lemma 4.2.1, every edge e∗ = (u∗, v∗) ∈ E∗ in G∗

is an auxiliary edge e′′ ∈ E ′ of the SPAC graph G′. When we obtain a valid vertex
partitioning vp(G∗) of G∗, each cut edge e∗ therefore corresponds to an auxiliary edge.
Let G∗(e1) = u∗, with vp(G∗[u∗]) = i1 and G∗(e2) = v∗, with vp(G∗[v∗]) = i2, for
e1, e2 ∈ E and i1, i2 ∈ {0, 1, ..., k − 1}. When translating vp(G∗) to ep(G), we set
ep(G[e]) = vp(G∗[G∗(e)]) = vp(G∗[u∗]) as described in Definition 4.2.2. Therefore,
every cut edge e∗ = (u∗, v∗) in vp(G∗) results in the two edges e1 and e2 inducing u∗

and v∗ respectively to get assigned to different blocks i1 and i2 in ep(G). Since e∗ is an
auxiliary edge and auxiliary edges exist between two split vertices µ′

i, µ
′
j ∈ Su of the same

vertex u ∈ V , both edges e1 and e2 must have u as one of their end points by construction
of G′. As e1 and e2 are assigned to different blocks in ep(G), vertex u is replicated in those
two blocks. In conclusion, every edge cut in vp(G∗) results in one additional replica in the
vertex cut of ep(G).

However, this is not true if the path between split vertices in G′ is a cycle of more
than two vertices. Say, for instance, vertex u ∈ V has degree d(u) = n and the n split
vertices of u induce a cycle of auxiliary edges in G′. This also results in a cycle between n
vertices in G∗ due to the contraction of n dominant edges induced by edges from u to its n
neighbors in G, and the unique correspondence of edges in E∗ to auxiliary edges e′′ ∈ E ′.
If and when the first of these auxiliary edges is cut in vp(G∗), say e∗1 = (u∗, v∗), we must
have one additional edge of the cycle that gets cut, say, e∗2 = (v∗, w∗). This is because if not,
then u∗ and w∗ are in the same block i1 of vp(G∗) and v∗ and w∗ are in the same block i2
of vp(G∗). Since w∗ can only be assigned to a unique partition in vp(G∗), i1 = i2 and by
transpose, vp(G∗[u∗]) = vp(G∗[w∗]) = vp(G∗[v∗]) which contradicts that e∗1 = (u∗, v∗) is
a cut edge. However, only the first edge cut e∗1 contributes to an additional replica in ep(G).
The additional cut edge e∗2 does not result in the number of replicas of u getting increased
in ep(G), as it is cut in addition to only the first edge cut in the cycle, thereby putting one
split vertex of u in block i2, and the rest in i1. Concurrently, one edge of G is assigned to i2
in ep(G) and the rest in i1. It is important to note that this additional edge cut occurs at
most once per cycle, for the first edge cut. Any other cut edges in the cycle result in one
additional replica of u in ep(G), as is the case for paths.

Thus, in summary, the edge partition cost of ep(G), i.e., number of vertex replicas of G,
is less than or equal to the vertex partition cost of vp(G∗), i.e., total edge cut of G∗, denoted
as cost(ep(G)) ≤ cost(vp(G∗)). ■

Before beginning the next proof, we explain how to obtain the CSPAC graph G∗ directly
from the input graph G, without first constructing the intermediate SPAC graph G′ and then
contracting the dominant edges.

Definition 4.2.3 (Direct construction of G* from G)
Given an input graph G = (V,E), construct a CSPAC graph G∗ = (V ∗, E∗) as follows:

1. For every edge e = (u, v) ∈ E (u < v), create a vertex u∗ ∈ V ∗. We ignore
backward edges (from v to u) to avoid duplication of vertices in G∗ for reverse edges
of undirected graphs. This provides us with all vertices of G∗, with |V ∗| = |E|/2.
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2. Let Tu denote the set of all edges e ∈ E which have vertex u ∈ V as a
common endpoint, i.e., Tu := {e = (u, v) ∈ E |v ∈ N(u)}. Further,
let T ∗

u be the set of all vertices in G∗ that are induced by edges e ∈ Tu, i.e.,
T ∗
u = {u∗ ∈ V ∗|u∗ = G∗(e), e ∈ Tu}. We build a path between each vertex u∗ ∈ T ∗

u .
These form the edges e∗ ∈ E∗ of G∗.

Note here that step 1 is effectively identical to contracting dominant edges e′ ∈ E ′ of the
SPAC graph which are induced by some e = (u, v) ∈ E, with u < v. Additionally, step 2
results in the same edge set as if we contracted G′. Recall that Su ∈ G′ contained one split
vertex of u for every neighboring edge of u. Likewise, T ∗

u contains one vertex u∗ for every
neighboring edge of u. Thinking in terms of contraction, every vertex u∗ ∈ T ∗

u is obtained
by contracting a dominant edge incident on a corresponding split vertex µ′

i ∈ Su. A path
between vertices in T ∗

u is precisely a path of auxiliary edges between Su in G′. With this,
we are ready to tackle the next proof.

Theorem 4.2.2
For any input graph G, there exists an optimal CSPAC graph W derived from G, such
that the cost of an optimal vertex partition vpopt(W ) of W is equivalent to the cost of
the optimal edge partition epopt(G) of G, i.e., cost(epopt(G)) = cost(vpopt(W )). This
particular CSPAC graph W is referred to as the contracted dual graph for G.

Proof. We provide a proof by constructing a CSPAC graph W from G, where it holds
that cost(epopt(G)) = cost(vpopt(W )). Assume that we have an optimal edge partition
epopt(G) of G. To generate the contracted dual graph W from G, first create a ver-
tex u∗ = W (e) ∈ V ∗ for every edge e ∈ E. Next, partition the set Tu := {e =
(u, v) ∈ E |v ∈ N(u)} for every u ∈ V into at most k subsets, Tu(i), i = 1...k, where
Tu(i) = {e ∈ T (u) |epopt(G[e]) = i}. In other words, each Tu(i) represents the set of edges
incident on vertex u that are assigned to block i in the optimal edge partition of G. Addi-
tionally, define T ∗

u (i) = {u∗ ∈ V ∗|u∗ = W (e), e ∈ Tu(i)} which is the set of vertices in
W that are induced by edges in each Tu(i).

Now, to build the edge set of W , first insert edges between vertices u∗ in every non-
empty set T ∗

u (i) to form a path Pi. Thus, we build up to k paths between vertices generated
in W by edges in each Tu(i). Next, connect path P1 to P2 to ... Pk to form a longer path.
Note that this is still compatible with Definition 4.2.3, as the intra-T ∗

u (i) paths and the path
between each Pi together form a longer path between each u∗ = W (e) ∈ V ∗ for every
e ∈ Tu.

Assume we have an optimal vertex partition solution topt(W ) of W . From this, we
construct a corresponding edge partition eptopt(G) using Definition 4.2.2. From Theorem
4.2.1, we know that the cost of the edge partition eptopt(G) is less than or equal to the cost
of the vertex partition topt(W ): cost(eptopt(G)) ≤ cost(topt(W )).

From epopt(G), we can construct a valid vertex partition vpt(W ) of W by simply cutting
only those edges that run between paths Pi, i.e., the edges connecting the different T ∗

u (i)

26



4.2 CSPAC: Contracted Split-and-Connect Graph

sets. We do not cut any intra-T ∗
u (i) paths. Using this construction, it is easy to see that

cost(epopt(G)) = cost(vpt(W )).
Finally, by contradiction we show that vpt(W ) has minimal cost among all other valid

vertex partitions of W . Assume there is another vertex partition vpt′(W ) such that
cost(vpt′(W )) < cost(vpt(W )). Using Definition 4.2.2, we construct an edge parti-
tion of ept′(G) of G from vpt′(W ). From Theorem 4.2.1, we have that cost(ept′(G)) ≤
cost(vpt′(W )). So, cost(ept′(G)) ≤ cost(vpt′(W )) < cost(vpt(W )) = cost(epopt(G)).
This contradicts the optimality of epopt(G). Therefore, cost(vpt(W )) = cost(vptopt(W ))
and it follows that cost(epopt(G)) = cost(vptopt(W )). ■

Theorem 4.2.3
Assume W is the contracted dual graph of input graph G. Let G∗ represent any of the other
CSPAC graphs generated from G with edges obtained from some path ordering between
vertices in each T ∗

u , u ∈ V . Further, let vpopt(G∗) be the optimal vertex partition of G∗,
vpopt(W ) be the optimal vertex partition of W , ∆ be the maximum vertex degree of graph
G. Then it holds that:

cost(vpopt(G
∗)) ≤ (∆− 1)cost(vpopt(W ))

If we allow paths constructed between vertices in each T ∗
u to be cycles, then

cost(vpopt(G
∗)) ≤ (∆)cost(vpopt(W ))

.

Proof. For any G∗ constructed from G, when connecting vertices in G∗ with paths
between vertices in T ∗

u for each u ∈ V , the order in which vertices appear on the path is
arbitrary. However, the set of vertices of G∗ is identical to the set of vertices of W , where
in both cases, vertices are induced by edges of the input graph G.

Assume we have an optimal vertex partition vpopt(W ) of W . This can be converted
into a valid vertex partition vpt(G

∗) of G∗ by cutting an edge e∗ ∈ E∗ of G∗ if its two
incident end points are in different vertex partitions of vpopt(W ). If we generate a path
in G∗ between vertices of some T ∗

u , the path has a length of d(u) − 1, since |T ∗
u | = d(u),

and each u∗ ∈ T ∗
u maps to a unique e = (u, v) ∈ E, v ∈ N(u). Alternatively, if we

generate a cycle between vertices of some T ∗
u , we have exactly d(u) edges in the cycle.

Therefore, for an arbitrary G∗, if a path of edges corresponding to some T ∗
u is cut, at most

∆− 1 edges are cut and if we have a cycle, then at most ∆ edges are cut.
When converting vpopt(W ) to vpt(G

∗), a path between vertices in G∗ of some T ∗
u is

cut only when the corresponding path is also cut for the same set of vertices in W .
Therefore, the vertex partition cost of vpt(G

∗) is at most (∆ − 1) times the vertex
partition cost of vpopt(W ) (or at most (∆) times if the path is a cycle). Therefore,
cost(vpt(G

∗)) ≤ (∆− 1)cost(vpopt(W )) or cost(vpt(G∗)) ≤ ∆cost(vpopt(W )) if the path
is a cycle. Since cost(vpopt(G

∗)) < cost(vpt(G
∗)), the theorem is proved. ■.
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Corollary 4.2.1
For any CSPAC graph G∗ constructed from input graph G, there exists a polynomial
time vertex partition solution vp(G∗) such that, cost(vp(G∗)) ≤ O(

√
log n log k) ∗ ∆ ∗

cost(vpopt(W )), where W is the contracted dual graph of G, and vpopt(W ) is the optimal
vertex partition of W .

Proof. This directly follows from the Theorem 1.1 in [42] which states that there exists a
polynomial time algorithm for the balanced vertex partition problem with an approximation
factor of

√
log n log k. So, assuming the algorithm gives us the vertex partition vp(G∗), we

have that
cost(vp(G∗)) ≤ O(

√
log n log k) · cost(vpopt(G∗)).

Then from Theorem 4.2.3, we get

cost(vp(G∗)) ≤ O(
√
log n log k) · cost(vpopt(G∗))

≤ O(
√
log n log k) · (∆) · cost(vpopt(W )).

■

Theorem 4.2.4
Let G be the input graph, let W be the contracted dual graph of G, and G∗ be any CSPAC
graph constructed from G. Further, let ep(G) be a balanced edge partition of G obtained
from a valid balanced vertex partition vp(G∗) of G∗ that satisfies Corollary 4.2.1. It holds
that cost(ep(G)) ≤ O(

√
log n log k) ·∆ · cost(epopt(G)), and consequently there exists a

polynomial algorithm for the balanced edge partition problem with an approximation factor
of O(∆

√
log n log k).

Proof. We have an input graph G, a corresponding CSPAC graph G∗, a valid balanced
vertex partition vp(G∗) of G∗ that satisfies Corollary 4.2.1, and an optimal balanced vertex
partition vpopt(G

∗) of G∗. Construct a valid balanced edge partition ep(G) from vp(G∗).
Further, let W be the contracted dual graph of G, and vpopt(W ) be the optimal balanced
vertex partition of W . Then it follows that,

cost(ep(G)) ≤ cost(vp(G∗)) Theorem 4.2.1

≤ O(
√
log n log k) · cost(vpopt(G∗)) Corollary 4.2.1

≤ O(
√
log n log k) · (∆) · cost(vpopt(W )) Theorem 4.2.3

≤ O(
√
log n log k) · (∆) · cost(epopt(G)) Theorem 4.2.2

■
We have therefore shown, by proving the above theorems that were originally proven

for the SPAC graph G′ by Li et al. [45], that there exists a polynomial time algorithm
involving the vertex partitioning of a CSPAC transformation graph that approximates the
balanced edge partitioning problem up to a factor of O(∆

√
log n log k).
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Before closing this section, we provide a proof regarding the number of auxiliary edges
of a SPAC graph G′ of G where the auxiliary edge paths are cycles induced by split vertices,
which ultimately refers to the number of edges of the CSPAC graph G∗.

Theorem 4.2.5
Let G = (V,E) be the input graph, let G′ = (V ′, E ′) be the SPAC graph of G where
the paths between split vertices are cycles, and let G∗ = (V ∗, E∗) be the CSPAC graph
constructed by contracting dominant edges of G′. The number of edges of a SPAC graph
G′ is |E ′| = (3 ∗m)− 2 ∗ (nd1 + nd2) where nd1 is the number of degree 1 vertices in V ,
and nd2 is the number of degree 2 vertices in V . Then, the number of auxiliary edges of
G′ = |E ′| −m = |E∗|.

Proof. Let G = (V,E) be the input graph with n vertices and m edges. When construct-
ing G′, we first add d(u) split vertices in a set Su for every u ∈ V , Su ⊂ V ′. In the connect
phase, we add dominant edges for every edge e ∈ E to S ′, resulting in m edges in S ′.
Next, since the auxiliary edge paths are chosen to be cycles, we add up to d(u) auxiliary
edges for every set Su ∈ V ′, u ∈ V . If every vertex u ∈ V has d(u) ≥ 3, we would get
exactly d(u) auxiliary edges for every Su ∈ V ′, u ∈ V . Summing up over all u ∈ V , we
would have

∑
u∈V d(u) = 2 ∗m auxiliary edges. However, vertices v ∈ V with d(v) = 1

or d(v) = 2 do not add d(v) auxiliary edges among their split vertices Sv. Vertices with
d(v) = 1 contribute no auxiliary edges, as they are only split into one split vertex which has
a dominant edge incident on it. Vertices with d(v) = 2 contribute exactly 1 auxiliary edge
between the two split vertices they induce. Let nd1 be the number of degree 1 vertices in V ,
and let nd2 be the number of degree 2 vertices in V . We can now take away the miscounted
auxiliary edges for d(v) = 1 and d(v) = 2 vertices by subtracting 2 ∗ (nd1 + nd2) from
2 ∗m. This gives us 2 ∗m− 2 ∗ (nd1 + nd2) auxiliary edges in E ′. In total, we have |E ′| =
number of dominant edges + number of auxiliary edges = m + 2 ∗m − 2 ∗ (nd1 + nd2) =
3 ∗m− 2 ∗ (nd1 + nd2). Then, from Lemma 4.2.1, it follows that E∗ = |E ′| −m. ■

Over the course of the various proofs, we also demonstrated fundamental ideas and
definitions that guide the algorithms we implemented to construct a SPAC and CSPAC
graph of a given input graph G. We now describe our algorithms to achieve this.

4.2.1 SPAC Graph Construction and Contraction
Our first approach to build a CSPAC graph was to construct a SPAC graph from the in-
put graph, and then to contract the dominant edges. Let the graph to be edge parti-
tioned be G = (V,E). Then, as Figure 4.1 illustrates, our input graph refers to the
graph of the current batch of our buffered approach Gb = (Vb, Eb). This batch graph
Gb is built as follows: during IO, we read δ vertices (our chosen buffer size) and their
adjacency lists from the graph’s data stream. Then, Vb consists of the δ vertices of
the current batch, remapped from 0 to δ − 1, as well as p vertices of past batches that
have edges to the current batch, remapped from δ to δ + p − 1. Likewise, Eb con-
sists of edges to vertices in the current batch and to vertices of previous batches, i.e.,
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Algorithm 2: SPAC Construction
input : Graph Gb, rev_edges
output: SPAC Graph S

1 foreach vertex u ∈ Vb do
2 foreach edge e ∈ Eb(u) = {eu...eu + d(u)− 1} do
3 S.insertvertex(u′) // u’ = split vertex
4 S.insertDominantEdge(u′, rev_edges[e], ∞)
5 if d(u) > 1 then

// compute target vertices for aux. edge
6 u′

next := e− eu + 1 mod d(u)
7 u′

prev := e− eu − 1mod d(u)

8 S.insertAuxiliaryEdge(u′, u′
next, 1)

9 if u′
prev ̸= u′

next then
10 S.insertAuxiliaryEdge(u′, u′

prev, 1)

Eb = {(u, v) ∈ E |u ∈ Current Batch ∧ v ∈ Current or Previous Batch}. We ignore edges
to future batches for consistency as explained in more detail in Section 4.3.

We store our batch graph Gb in a standard adjacency array representation. While building
the current batch as a graph Gb, we fill an array rev_edges of size |Eb| = mb that stores
for every edge e = (u, v) ∈ Eb, the corresponding index of erev = (v, u) ∈ Eb in the
adjacency array of edges. We find rev_edges in linear time, by maintaining consistency in
edge insertion during IO. In particular, when visiting edge e = (u, v) during IO, we insert
both e = (u, v) and erev = (v, u) into Eb. Here, for the reverse edge, we already update
rev_edges[erev] = e. Later, when visiting edges of our batch for a second time, we update
rev_edge[e] = erev upon visiting erev. This allows us to eventually access the reverse edge
in O(1) time in our algorithm.

We use the algorithm shown in Algorithm 2 to construct our SPAC graph S for a given
input graph Gb. The algorithm builds S as follows: for the split phase, recall that a SPAC
graph contains a set Su of d(u) split vertices for each vertex u ∈ Vb. We thus simply pass
over all vertices u of Gb, and for each outgoing edge e = (u, v) ∈ Eu we insert a split
vertex u′ into S (line 3).

For the connect phase, which occurs concurrently here, as we visit all edges from u, we
look through edges eu, ..., ed(u)−1, where eu is the index of the first outgoing edge of u in the
adjacency array of edges. For every edge e = (u, v), we insert a dominant edge with edge-
weight ∞, from u′ to rev_edges[e] into S (line 4). Recall that dominant edges are induced
by undirected edges {u, v} in G, and they connect split vertices in Su and Sv such that each
split vertex is incident to precisely one (undirected) dominant edge. To this end, coordina-
tion is required between split vertices Su of u and Sv of v. When constructing a dominant
edge for e = (u, v), we achieve this coordination with the help of rev_edges[e], which
provides us with the edge ID erev = (v, u) of the corresponding reverse edge. Ultimately,
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this gives us a dominant edge in S for each edge of the input graph, while maintaining the
unique mapping of dominant edges to split vertex pairs, through pairing edge IDs in the
adjacency array of edges.

Finally, to insert the auxiliary edges, we define a path to construct between each split
vertex as required in a SPAC graph construction. In our case, for easier implementa-
tion, auxiliary edges with edge-weight 1 are inserted between split vertices v ∈ Sv to
connect them to an induced cycle. We compute the ID of the next (u′

next) and previous
(u′

prev) split vertex in the cycle for vertices of degree greater than 1 (line 6 and 7). Here,
u′
next = e− eu + 1 mod d(u), where eu is the edge ID of the first outgoing edge from u

in the adjacency array of edges. Using modulo, we obtain a unique identifier for every
auxiliary edge in the cycle of Su vertices from 0...d(u) − 1. For vertices of degree 2,
u′
next = u′

prev, and thus we only insert one auxiliary edge (u, u′
next) without loss of gener-

ality. Otherwise, for vertices with degree 3 or above, we always have two auxiliary edges
(u′, u′

next) and (u′, u′
prev).

After visiting all vertices, we have constructed a complete and correct SPAC
graph S from Gb. The functions insertVertex, insertDominantEdge and
insertAuxiliaryEdge all occur in O(1) time as they all insert the passed values into
some array. Thus, the overall runtime of Algorithm 2 is O(nb +mb) where nb = |Vb| and
mb = |Eb|. This procedure was parallelized by Schlag et al. [62], and proven to produce a
valid SPAC graph from a graph G with a runtime of O(m/p+ log p) for p processors.

The next step is to contract the dominant edges to build the CSPAC graph from the SPAC
graph we have now constructed. To achieve this efficiently, we assign all pairs of split
vertices that share a dominant edge into a unique block i ∈ {0...mb/2 − 1}, one for each
undirected edge of Gb. Then, we contract vertices in every block to form a quotient graph,
where vertices are the contracted dominant edges, and edges are the cut edges between
blocks, which are the auxiliary edges between split vertices. We compute the contraction
in an additional O(nb +mb) time. This gives us the desired CSPAC graph S∗.

4.2.2 Direct CSPAC Construction

A naturally faster alternative to constructing a SPAC graph and then contracting the dom-
inant edges is to directly obtain the CSPAC graph S∗ from Gb, thereby skipping the con-
struction of the SPAC graph S. Algorithm 3 shows how we perform this construction.
Here, c refers to an array that stores the corresponding vertex ID in S∗ for every edge in
Eb. These are determined in the order in which the edges appear in the adjacency array.

The algorithm to directly obtain S∗ from Gb works as follows: for every vertex u ∈ Vb,
we visit all its outgoing edges e = (u, v) ∈ Eb. We only consider edges where u < v to
avoid symmetry. First, we insert a vertex u∗ = S∗(e) into S∗, which is the unique vertex
induced by e in S∗. Recall that u∗ would otherwise be obtained by contracting a dominant
edge (u′, v′) between some u′ ∈ Su and v′ = rev_edges[e] ∈ Sv of the SPAC graph S.
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Algorithm 3: CSPAC Construction
input : Graph Gb, rev_edges, c
output: CSPAC Graph S∗

1 foreach vertex u ∈ Vb do
2 foreach edge e = (u, v) ∈ Eb(u) = {eu...eu + d(u)− 1} do
3 if u < v then
4 ev := Gb.getFirstEdge(v)
5 u∗ := c[e] // u∗ = contracted split vertex
6 S∗.insertVertex(u∗) // induced by current edge e

// u∗ := [u′, v′] for some u′ ∈ Su, v
′ ∈ Sv

7 if d(u) > 1 then
// compute target vertices for aux. edge
// from u′ among Su

8 u∗
next := c[(e− eu + 1) mod d(u) + eu]

9 u∗
prev := c[(e− eu − 1)mod d(u) + eu]

10 S∗.insertAuxiliaryEdge(u∗, u∗
next, 1)

11 if u∗prev ̸= u∗
next then

12 S∗.insertAuxiliaryEdge(u∗, u∗
prev, 1)

13 if d(v) > 1 then
// compute target vertices for aux. edge
// from v′ among Sv

14 v∗next := c[(rev_edges[e]− ev + 1) mod d(v) + ev]
15 v∗prev := c[(rev_edges[e]− ev − 1)mod d(v) + ev]
16 S∗.insertAuxiliaryEdge(u∗, v∗next, 1)
17 if v∗prev ̸= v∗next then
18 S∗.insertAuxiliaryEdge(u∗, v∗prev, 1)

Next, we must insert edges from u∗ to its neighbors in S∗. Earlier in this section, we
demonstrated that the edges of the CSPAC graph are the auxiliary edges of the SPAC graph
S. To add these edges here, we need to consider the auxiliary edges which would be
connected to both the split vertices u′ and v′ of the SPAC graph S that would otherwise be
contracted to obtain u∗. In order to do so, we consider both endpoints of the current edge
e = (u, v). To obtain the auxiliary edges from u′, we do the following: first, we determine
if u has any other edges (line 7), if not, then there is no auxiliary edge, as we are currently
at the only edge incident on u. Otherwise, we compute the next and previous split vertices
in the cycle of Su as we did for the SPAC graph conversion (lines 8 and 9). However,
unlike the SPAC graph, here we require the ID of the contracted dominant edge connected
to u∗, and not of the split vertices themselves. In other words, we need u∗

next = [u′
next, a

′]
which is obtained from contracting the dominant edge between u′

next and some a′ ∈ Sa,
and u∗

prev = [u′
prev, b

′] which is obtained from contracting the dominant edge between u′
prev

and some b′ ∈ Sb.
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We solve this problem by computing u′
next = (e − eu + 1) mod d(u) where eu is the

edge ID of the first edge from u in the adjacency array of edges. Next, we add back eu to
this to fetch the exact location of the edge in the adjacency array of edges that induces the
unique dominant edge incident on u′

next. Finally, we get the vertex ID of u∗
next by passing

this edge ID into the array c (line 8). Similarly, we obtain u∗
prev.

This entire procedure to get the auxiliary edges from u is repeated for the other end-
point v. However, we do not have access to the edge ID of the edge (v, u), which was
simply the current e for (u, v). This is therefore obtained from the array rev_edges which
stores the edge ID of the reverse edge for every e ∈ Eb. Also, we get ev, i.e., the edge ID
of the first edge from v in the adjacency array of edges, from the pointer to this position for
vertex v. From here, we compute, for example, v′next = (rev_edges[e]− ev + 1)mod d(v)
in the same manner as u′

next, and the rest follows analogously (line 16 and 17).
The overall runtime of direct CSPAC construction with Algorithm 3 is the same as SPAC

construction with Algorithm 2, that is, O(nb + mb). Using direct conversion we save the
additional cost factor O(nb +mb) of contraction.

4.3 Model Construction

In this section, we provide an overview of the graph model β that we construct by extending
the CSPAC graph S∗. It is this graph β that we subsequently partition using an adaptation of
the HeiStream vertex partitioning scheme described in Section 4.4. We begin by motivating
the need for this extension and then offer various configurations for achieving it.

To see why we need to extend S∗ to β, it is important to note, as Figure 4.1 illustrates,
that we ignore edges to future batches in our model altogether. This is done for two pri-
mary reasons: first, considering edges in the input graph G = (V,E) in a fixed order of
intra-batch edges and past batch edges only ensures consistency with respect to mapping
vertex IDs u∗ in the per-batch CSPAC graph S∗ to their corresponding global edge IDs
in E. This is because, with this ordering, no edge e = (u, v) ∈ E is stored in two sep-
arate batch graphs Gb, and consequently, every edge is processed as a vertex in a batch
CSPAC graph S∗ exactly once. Secondly, while we have information about block assign-
ment decisions for edges visited in previous batches, we have no such information at hand
about future batches. This allows us to exploit block assignment decisions made in previ-
ous batches, to provide a more global view to our vertex partitioner while in a streaming
setting. In this section, we demonstrate how we exploit past assignment decisions in our
model to improve solution quality.

We initialize β as the CSPAC graph S∗ for the current batch. If the current batch is
not the first batch, we add k artificial vertices to the model which represent the k partition
blocks in their current state, i.e., filled with edges assigned to them from previous batches.
The weight of each artificial vertex i is set to the weight of the block Vi.

In HeiStream for vertex partitioning, a vertex of the current batch is connected to an arti-
ficial vertex i, if it has a neighbor from a previous batch that has been assigned to block Vi.
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However, we do not have such direct access to block assignments in edge partitioning:
during IO, we only know the vertices incident on the edge from the current batch to the
previous batch. To solve this limitation, we maintain an array B of size n throughout the
streaming process which stores for each vertex u ∈ V , the blocks that were assigned to
edges incident on it. Thus, when we assign a partition ID i to an edge (u, v) in a batch, we
insert i to B[u] and B[v]. Later in this section, we discuss various configurations for B that
provide for a runtime, memory and solution-quality trade-off.

Now, we connect vertices of the CSPAC graph S∗ to artificial vertices as follows:
during the construction of S∗, we store for every vertex u∗ ∈ S∗ induced by edge
eb = (ub, vb) ∈ Eb, the original vertex IDs corresponding to the edge eb = e = (u, v) ∈ E
of input graph G. After inserting u∗ and its incident auxiliary edges e∗ = (u∗, v∗) in S∗, we
insert an artificial edge from u∗ to each artificial vertex i such that i ∈ B[u]. Note that for
any vertex u ∈ V , B[u] ̸= ∅ if and only if u is a vertex of a previous batch. This is because
no edge to a vertex v of a future batch would have been considered previously. Further,
as we consider only forward edges (edges (u, v) where u < v), it must be the case that
if the edge is an edge to a previous batch, vertex u was visited previously while vertex v
is a member of the current batch. Thus, when inserting artificial edges to the k artificial
vertices, we only check for blocks i ∈ B[u] for a vertex u∗ = S∗(e), e = (u, v) ∈ E.

Next, we discuss the various configurations for B as showcased in Figure 4.3. Later, in
Section 5.3.2, we present an experimental comparison of the following modes.

4.3.1 Maximal Mode

In maximal mode, for every u ∈ V , we store all unique blocks that were assigned to edges
incident on u, i.e., e ∈ E(u), as we visit them, in B[u]. In the worse case, this requires
O(min{nk,m}) memory. For the current batch, we insert an artificial edge from u∗ ∈ V ∗,
where u∗ = S∗(e), e = (u, v) ∈ E, u ∈ previous batch, to all artificial vertices i ∈ B[u], as
demonstrated in depiction (a) of Figure 4.3. This suggests the vertex partitioner to assign
u∗ to one of these B[u] blocks to avoid replicating the vertex on a new block. The vertex
partitioner is able to comfortably manage balance constraints as it has access to multiple
blocks that u∗ could potentially be assigned to.

This mode produces the best solution quality compared to the alternatives, as it is the
most complete. However, it has the largest memory requirement. It also has slower parti-
tioning runtime due to a larger size of the resulting graph model β, which can have up to k
artificial edges per vertex induced by an edge to a vertex of a previous batch.

4.3.2 r-Subset Mode

The r-Subset mode is similar to the maximal mode, in that, for every u ∈ V , we store in
B[u] all unique blocks that were assigned to edges incident on u as we visit them. How-
ever, when inserting artificial edges from a vertex u∗ ∈ S∗, u∗ = S∗(e), e = (u, v) ∈ E,
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G
Gb

(a) Maximal Mode

(c) Minimal Mode

CSPAC S∗

Graph Model β

intra-batch edge

previous batch edge

future batch edge

block assignments of edges

artificial nodes for blocks

vertex of intra-batch edge in S∗

vertex of prev. batch edge in S∗

artificial edge

(b) r(2)-Subset Mode

Figure 4.3: Graph Model β Construction. β is obtained by appending past assignment decisions
to S∗. If a vertex of the current batch graph u ∈ Gb has an edge e = (u, v) to a
previous batch (colored blue), we connect the CSPAC vertex u∗ induced by e to blocks
assigned to edges incident on v as follows: (a) Maximal Mode: connects all blocks
incident on v (b) r-Subset Mode: Connect r random blocks incident on v (c) Minimal
Mode: Connect only the latest block assigned to the most recently partitioned edge
incident on v.
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u ∈ previous batch, we insert a sample of r artificial edges to r random artificial vertices
among i ∈ B[u]. This is shown for r = 2 in depiction (b) of Figure 4.3.

While B[u] has a memory footprint of O(min{nk,m}) like in maximal mode, the re-
sulting graph model β is smaller due to at most r < k random artificial edges per vertex
induced by a previous batch edge. This leads to faster partitioning runtime, but with a
marginal sacrifice on solution quality.

4.3.3 Minimal Mode

In minimal mode, for every u ∈ V , we store in B[u] only the latest block that was assigned
to the most recently visited edge incident on u. Every time we partition an edge e = (u, v)
visited in the current batch into block i, we update B[u] = B[v] = i. Later, when inserting
artificial edges from u∗ ∈ S∗, u∗ = S∗(e), e = (u, v) ∈ E, u ∈ previous batch, we have
precisely one artificial edge to the artificial vertex i = B[u] as showcased in depiction (c)
of Figure 4.3.

Naturally, this has the smallest memory requirement among alternatives. Here, B has
size exactly n and there is no dependency on k. This also impacts our graph model β,
which has the smallest possible size when inserting artificial edges. With minimal mode,
β has about the same size per batch regardless of k, while in maximal mode, number of
edges in β grows with k.

It is worth noting that with minimal mode, we have the least amount of information re-
garding past block assignments compared to alternatives. One might expect more vertex
replicas, or consider challenges with respect to the balancing constraint when making an
assignment decision for a vertex u∗ of our current batch. However, this is not the case. If
vertex u∗ is connected to a single artificial vertex i, as is the case here, our vertex partition-
ing scheme highly favors assigning u∗ to block Vi. This leads to the same edge-cut of β,
as if we assigned u∗ to any block Vi with i ∈ B[u] of the maximal mode. Further, balance
constraints are kept in check by always updating B[u] with the latest block assigned to an
edge incident on u.

4.4 Vertex Partitioning: Multilevel Weighted Fennel

After we have our graph model β, we apply the multilevel weighted fennel vertex partition-
ing scheme developed by Faraj and Schulz [22] on it. In this section, to be self contained,
we briefly describe the vertex partitioning scheme used in HeiStream, and provide a mod-
ification we adopt to lose the dependency on k in the partitioning runtime. When used in
conjunction with the minimal mode described in Section 4.3.3, the runtime of our entire
edge partitioning process is asymptotically independent of the choice of k.

Our vertex partitioner uses a multilevel partitioning scheme as described in Section 2.2.3.
In this scheme, β is recursively contracted to achieve smaller graphs which reflect the same
structure as β. We then compute an initial partitioning of the smallest graph that minimizes
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edge-cut, and begin uncoarsening the graph. Recall that from Theorem 4.2.1, we can infer
that minimizing edge-cut of the vertex partitioning of the CSPAC graph (in this case, β)
leads to a minimization of the number of replicas in the induced edge partitioning of the
input graph Gb. At each level of uncoarsening, we perform local search to improve the
initial partitioning done at the coarsest level.

The coarsening phase in HeiStream is an adaptation of the size-constrained label prop-
agation approach [52] that supports artificial vertices of β. In the coarsening phase, to
obtain a graph hierarchy, the algorithm computes a size-constrained cluster on each level,
and then contracts each cluster into a single vertex. This process is recursively repeated
until the graph reaches a small enough size. Here, we ensure that a partition of a coarse
graph, in terms of edge-cut and balance, corresponds to a partition of all the finer graphs in
the hierarchy.

HeiStream computes these clusters at each level with label propagation [56], while ad-
hering to size constraints to avoid large clusters based on the approach in [52]. The algo-
rithm works in rounds as follows: in the first step, we insert every vertex in its own cluster.
In subsequent rounds, we traverse all vertices of the graph. When a vertex u is visited, it
is moved to the cluster Vi that maximizes ω({(u, v)|v ∈ N(u) ∩ Vi}), i.e., u is assigned to
the cluster that has the strongest connection to u. If there are multiple blocks with equally
strong connection where u could be moved, we break the ties randomly. At most L rounds
are performed to obtain clusters of good quality, where L is a tuning parameter.

Further, HeiStream ignores artificial vertices and artificial edges of β during label prop-
agation in order to preserve this information at the coarsest level where initial partitioning
is performed, and to avoid two artificial vertices from getting contracted together. Over-
all, the coarsening process is recursively repeated until the graph has fewer vertices than
O(max( |β|

2xk
, xk)) where x is a tuning parameter, at which point it is considered small

enough for initial partitioning. For large enough buffer sizes, i.e., for δ large enough, this
threshold is O( |β|

k
).

Once we are at the coarsest level βc, we are ready to compute the initial partitioning. In
this step, all vertices of βc, except artificial vertices, are assigned to one of k blocks. This is
achieved using the generalized Fennel algorithm proposed by Faraj and Schulz [22]. More
specifically we run the generalized Fennel algorithm with an explicit balancing constraint
Lmax which serves as an upper bound for block weights. A vertex u of βc is assigned to the
block i that maximizes ∑

v∈Vi∩N(u)

ω(u, v)− c(u)f(c(Vi)),

where f(c(Vi)) = α ∗ γ ∗ c(Vi)
γ−1, α, and γ refer to fennel alpha and gamma respec-

tively, and c(Vi ∪ u) ≤ Lmax. In HeiStream, the algorithm at this point considers all
possible blocks i ∈ {1...k}, and therefore the initial partitioning step has a dependency
on k. We modify this step to make initial partitioning drop the linear dependency on k, as
will be described later in this section. Additionally, in HeiStream, β is simply the current
batch Gb with artificial vertices and edges, whereas in our case, β is the CSPAC graph
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of Gb, namely, S∗ with artificial vertices and edges. Thus, we cannot assume the suitabil-
ity, as HeiStream does for consistency, of the choice of fennel α =

√
k m
n3/2 proposed by

Tsourakakis et al. [66], where m and n are the the number of edges and vertices of the
input graph G respectively. This problem will also be discussed in more detail later in the
section.

When initial partitioning is completed, we transfer the current solution to the next finer
level by assigning block i of the coarse cluster to its constituent vertices of the next level.
At each level of the graph hierarchy, we apply a local search algorithm. This local search
algorithm is similar to the size-constrained label propagation algorithm we used in the con-
traction phase but with a different object function. In particular, when visiting a vertex u,
we remove it from its current block and then assign it to its neighboring block (blocks
assigned to vertices v ∈ N(u)) that maximizes the generalized Fennel gain function de-
scribed above. Note that while in initial partitioning all possible blocks are considered for
a vertex, here we only look at neighboring blocks. This ensures that each round of un-
coarsening can be implemented to run in linear time in the size of the current level. Again,
HeiStream does not allow artificial vertices to be moved during the uncoarsening phase,
but artificial vertices and artificial edges are used to compute the generalized Fennel gain
function of other vertices.

The overall runtime of coarsening and uncoarsening sums up to be linear in the size of
the batch β, while the overall running time of initial partitioning depends linearly on both
the size of β and k. Assuming geometrically shrinking graphs throughout the hierarchy,
and that buffer size δ is sufficiently larger than number of blocks k, the overall runtime to
partition a batch is O(n+m). However, the requirement that δ is sufficiently larger than k
must be dropped in order to ensure that runtime does not increase linearly in the size of k
for a fixed buffer size δ. We provide a modification of initial partitioning that removes the
linear dependency on k by adopting the approach used in [21] for streaming hypergraph
partitioning.

4.4.1 k-Independent Initial Partitioning

In this section, we describe an updated implementation of initial partitioning in HeiStream.
Recall that, for every vertex u ∈ β, HeiStream finds the block with the highest score among
all blocks i ∈ {1...k} (Section 3.1). In the HeiStream approach, we evaluate the score for
each of the k blocks for every vertex, resulting in O(nk) evaluations in total. Eyubov et
al. [21] offer a more efficient alternative which avoids evaluating each block for a vertex
to compute their hypergraph gain function FREIGHT. We adopt their approach to lose the
linear dependency on k in our runtime. The core idea is as follows.

For the current vertex, we separate the blocks Vi for which Vi < Lmax into two disjoint
sets K1 and K2. A block Vi ∈ K1 if a neighbor of u was assigned to block Vi, and otherwise
Vi ∈ K2. With this, we can split the generalized Fennel gain function as follows: Find the
blocks Vmax and V ′

max that maximize the following equations:
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Vmax = argmax
i∈K1

 ∑
v∈Vi∩N(u)

ω(u, v)− c(u)f(c(Vi))

 (4.1)

V ′
max = argmax

i∈K2

 ∑
v∈Vi∩N(u)

−c(u)f(c(Vi))

 (4.2)

Then, the block that maximizes the generalized Fennel gain function is
max(Vmax, V

′
max).

Equation 4.2 is the same as Equation 4.1, but we lose the term ω(u, v) as there exists
no v ∈ β ∧ v ∈ K2 such that e = (u, v) ∈ β by definition of K2. Then, since c(u) is
constant, finding the block Vi ∈ K2 that maximizes Equation 4.2 is equivalent to finding
the block Vi that minimizes f(c(Vi)) = α ∗ γ ∗ c(Vi)

γ−1, i.e., the block Vi ∈ K2 with the
minimum block weight c(Vi). By maintaining a priority queue, we can keep track of the
minimum weight block among all k blocks in O(log k) time with a binary heap or O(1)
time with a bucket priority queue. Then, we no longer need to evaluate all k blocks for
every vertex: we only evaluate blocks assigned to neighbors of u, and the minimum weight
block among all blocks (which may already by assigned to a neighbor of u). This gives us
the optimal block Vi that maximizes the generalized Fennel gain function for every vertex
u in O(d(u) + log(k)) time with a binary heap priority queue, or O(d(u)) for a bucket
priority queue like the one suggested by [21]. Thus, we get an overall linear complexity of
O(m+ n). With this updated approach, our runtime is independent of the choice of k.

4.4.2 Choice of Fennel Alpha

In HeiStream for vertex partitioning of an input graph G = (V,E), with n vertices and m
edges, Fennel α is set to α =

√
k m
n3/2 as advocated by Tsourakakis et al. [66]. Tsourakakis

et al. make this choice of α, regardless of whether it may be sub-optimal, as it provides for
a proper scaling of the objective function. In particular, for this α, the Fennel optimization
problem is reduced to minimizing a natural normalization of the objective function. While
this choice of α results in a good solution for vertex partitioning of G, it can potentially be
quite sub-optimal for edge partitioning of G with the CSPAC graph model. This is perhaps
because in our model, we instead compute a vertex partitioning of the CSPAC graph G∗,
which has n∗ = m/2 vertices and m∗ = {number of auxiliary edges of SPAC graph G′}
edges. For instance, for the in-2004 graph, which is a Web graph, the choice of α could
result in a difference of up to 20% in solution quality.

While we know n∗, we cannot directly obtain m∗ without visiting all vertices of the
graph. This is because the number of auxiliary edges of the CSPAC graph G∗ is equal to
(3 ∗m) − (2 ∗ (nd1 + nd2) −m, where nd1 is the number of vertices in V with degree 1,
and nd2 is the number of vertices in V with degree 2, as shown in Theorem 4.2.5. Without

39



4 Buffered Streaming Edge Partitioning

visiting all vertices, we cannot obtain this value. Thus, we need some way to approximate
it. Here, we provide the various α values we tested.

Static Alpha: In this version we keep the α value constant throughout all batches. It is
set to α =

√
kmapprox

n∗3/2 , where n∗ = m/2, mapprox = y ∗ m, and y is a tuning parameter.
We set values of y in the range [1, 3] as the number of auxiliary edges is upper bounded by
3 * m.

Batch Alpha: Unlike static alpha, when using batch alpha, we update the Fennel α
for every batch. After computing the CSPAC graph S∗ for our batch graph Gb, we set
α =

√
k ms

n
3/2
s

, where ns is the number of vertices of S∗, i.e., the number of edges of Gb,
and ms is the number of edges of S∗, i.e., auxiliary edges of the SPAC graph of Gb. As we
compute these values for every batch, we can also update α accordingly.

Dynamic Alpha: Dynamic alpha, like batch alpha, updates the Fennel α for every batch.
However, in this setting, we begin by setting α equal to static alpha with y = 3. Then, as
we proceed through batches, we revise mapprox by computing the number of degree 1 and
degree 2 vertices encountered, and subsequently update α. As we advance, we get to a
better approximation of m∗, which is perfect for the final batch. In the experimentation
Section 5.3.3, we showcase a comparison of these different choices for the Fennel α.
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CHAPTER 5
Experimental Evaluation

After describing our overall streaming edge partitioning approach in Chapter 4, we now
provide an experimental evaluation in this section. We begin by introducing our experi-
mental methodology, and enlist the graph instances we used. Then, we showcase a series
of tuning experiments to identify parameters with which to compose HeiStreamEdge. We
conclude the section by providing a comparison with the current state-of-the-art.

5.1 Methodology

We implemented HeiStreamEdge inside the KaHIP framework (using C++) and compiled
it using gcc 9.3 with full optimization enabled (-O3 flag). For comparison with competi-
tors, we obtained implementations of the Two-Phase Streaming algorithm (including both
Two-Phase-HDRF and Two-Phase-Linear) and Hybrid Edge Partitioner (HEP) by Mayer et
al. [49] [51], KaHIP, and the Streaming Neighbor Expansion (SNE) algorithm by Zhang et
al. [70], from their official repositories. Mayer et al. [50] also provide implementations of
HDRF and DBH that we used for further comparison. All experiments were performed on
the same machine. The machine has two sixteen-core Intel(R) Xeon(R) Silver 4216 proces-
sors running at 2.10GHz, 93GB of main memory, and 16 MB of L2-Cache. It runs Ubuntu
GNU/Linux 20.04.1 LTS and Linux kernel version 5.4.0-65-generic. We set the number of
blocks of partition, k = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384}
for all experiments except those on huge graphs. We allow an imbalance of 3% for all
experiments (and all algorithms). Further, we configure all competitor algorithms with the
optimal settings provided by the authors. 2PS-HDRF, 2PS-L, HDRF and DBH are com-
piled with the flag for the number of blocks for each experiment, to optimize for memory
consumption. The provided code for 2PS-HDRF, 2PS-L, and HDRF in the official reposi-
tory sets a hard-coded soft limit on the number of partitions to 256. We override this limit
to test the algorithms for larger block partitions. For HDRF, we set λ = 1.1, and for SNE,
we use a cache size of 2 ∗ |V |. HEP can be configured with a parameter τ , which controls
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the proportion of edges that are partitioned in-memory. We set τ = 1 for our experiments,
which, as stated by the authors of HEP, makes HEP’s memory overhead similar to that of
a streaming partitioner [49]. We refer to HEP with τ = 1 as HEP(1). Finally, we run
the edge partitioner in KaHIP with the fastsocial configuration. All competitors other than
KaHIP ingest the graph in a binary edgelist format with 32-bit vertex IDS. This allows
for faster IO during program execution. Additionally, all these programs offer a converter
which is capable of loading a graph in the standard edgelist format, converting it into the
binary edgelist format, and writing it to memory before proceeding. For a fair compari-
son with our proposed HSE partitioner, which reads graphs in the METIS format [39], all
graphs are passed into competitor algorithms in the standard edgelist format, and the time
for conversion is included in the runtime for these partitioners.

Our experiments are focused on computing the overall running time and/or replication
factor depending on the objective. Unless stated otherwise, we perform 10 repetitions per
algorithm and per instance using different random seeds for initialization. We then compute
the arithmetic average of the computed objective functions and runtime per instance. When
further averaging over all instances, we use the geometric mean to give every instance the
same influence on the final score. Further, we average all results of each algorithm grouped
by k, to explore performance with increasing k values. Let the runtime or replication factor
be denoted by the score σA for some ki-partition generated by an algorithm A. We express
this score relative to others using one or more of the following tools, as used by Faraj and
Schulz [22] in HeiStream:

• improvement over an algorithm B, computed as a percentage (σA

σB
− 1) ∗ 100%;

• ratio over optimal, computed as ( σA

σmax
) where σmax is the best score (maximum or

minimum) for ki among all algorithms including A

• relative value over an algorithm B, computed as σA

σB

Additionally, we present pair-wise performance profiles by Dolan and Moré [20] for bench-
marking our algorithms. These profiles relate the running time (resp. solution quality) of
the slower (resp. worse) algorithm to the faster (resp. better) one on a per-instance ba-
sis, rather than grouped by k. Their x-axis shows a factor τ while their y-axis shows the
percentage of instances for which an algorithm has up to τ times the running time (resp.
solution quality) of the faster (resp. better) algorithm.

5.2 Instances

Our graph instances for experiments are shown in Table 5.1. We obtain these through var-
ious sources [6] [23] [43] [57]. All instances evaluated have been used for benchmarking
in previous works on graph partitioning. The roadNet graphs, wiki graphs, web-Google,
web-NotreDame, and all social, co-purchasing, and autonomous systems graphs were ob-
tained from the publicly available SNAP dataset [43]. For testing with HeiStreamEdge, we
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converted these graphs to a vertex-stream format (METIS) while removing parallel edges,
self loops, and directions, and assigning unitary weight to all vertices and edges. These
METIS graphs were then converted back into the edgelist format that SNAP uses to be
compatible with all competitor algorithms. We also used graphs from the 10th DIMACS
Implementation Challenge, namely eu-2005, in-2004 and uk-2007-05 [7]. Any remaining
graphs are available on the network repository website [57]. From these graph instances,
we construct three disjoint sets: a tuning set for parameter study experiments, a test set for
comparison against state-of-the-art and a set of huge graphs, for which in-memory parti-
tioners ran out of memory on our machine. While streaming, we use the natural order of
the vertices in these graphs.
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Table 5.1: Graphs for experiments
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5 Experimental Evaluation

5.3 Tuning: Parameter Study

In this section, we provide experiments to tune parameters and modes used in
HeiStreamEdge, and to explore its performance under various configurations. All tests
are performed on the Tuning Set in Table 5.1. Our strategy is to tune a single parame-
ter in every experiment, while keeping all others constant. We start with the following
baseline configuration: β construction does not use any mode, i.e., the per-batch graph
model is the CSPAC graph itself, without any extensions, fennel alpha is set to batch al-
pha, 5 rounds of coarsening label propagation, 5 rounds of uncoarsening local search label
propagation, and x = 4 in the expression of the coarsest model size. After each tuning
experiment, we update the baseline configuration with the best found parameter. We run
all tuning experiments on HeiStreamEdge as defined in Chapter 4, with a buffer size of
δ = {32768, 131072, 262144}. As we found that the choice of the best tuning parame-
ter was independent of buffer size, in this section, we only showcase experiments with
δ = 32768 for brevity. The results of each tuning experiment are shown through plots
presenting, on the y-axis, (a) the ratio of time required and (b) the percentage improvement
in replication factor relative to the baseline configuration against the number of blocks k
on the x-axis.

5.3.1 Initial Partitioning: k-Independent Adaptation

Before showcasing experiments to tune parameters, we highlight the improvement obtained
from using the k-independent initial partitioning approach described in Section 4.4.1 rela-
tive to not using it (referred to here as vanilla initial partitioning). In our implementation,
we use a binary heap priority queue to obtain the block with the smallest weight in O(1)
time. Our expectation is to retain solution quality, while achieving a high speedup for larger
k-values. The results of this experiment are shown in Figure 5.1.

As expected, using k-independent initial partitioning, we obtain a tremendous speedup
for larger k values, while maintaining solution quality. Figure 5.1a displays that the inflec-
tion point for speedup using the k-independent initial partitioning version is k = 28 = 256;
the speedup accelerates as k increases, with the k-independent initial partitioning ver-
sion taking only 7.9% and 2.6% of the time required by vanilla initial partitioning, for
k = 213 = 8192 and k = 214 = 16384 respectively. Across all k values, we achieve 46%
faster runtime on average over the baseline. For values of k = 256 or higher, k-independent
initial partitioning is 76.2% faster on average than vanilla initial partitioning. Figure 5.1b
shows that the k-independent initial partitioning version produces higher solution quality
than vanilla initial partitioning for the majority of k values tested. Across all instances, the
k-independent initial partitioning version produces 0.84% better solution quality on aver-
age than vanilla initial partitioning. Surprisingly, we find that solution quality is on average
1.54% better for k > 256 when using k-independent initial partitioning. This is likely
due to the effects of randomness in tie breaking when finding the block with the minimum

44



5.3 Tuning: Parameter Study

 0

 0.2

 0.4

 0.6

 0.8

 1

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

T
im

e
 R

a
ti

o

k

heistreamedge(vanillaIP)

heistreamedge(k-indepIP)

(a) Running time ratio.

 0

 0.5

 1

 1.5

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

Im
p
ro

v
em

en
t 

in
 %

k

heistreamedge(vanillaIP)

heistreamedge(k-indepIP)

(b) Quality improvement over vanilla IP.

Figure 5.1: Tuning Experiment: Initial Partitioning. For all plots depicting time ratio and per-
centage improvement in replication factor, the running time ratio is calculated against
the longest average runtime for each k, and the percentage improvement in replication
factor is calculated against a chosen baseline. Here, we select vanilla initial partition-
ing (vanillaIP) of HeiStream as the baseline for comparison.

weight. In our implementation of k-independent initial partitioning, we prioritize blocks
assigned to neighbors of a vertex u (set K1 from Section 4.4.1) in the case of a tie with
blocks outside of the neighborhood (set K2). On the other hand, vanilla initial partitioning
considers all blocks with equal importance in the case of a tie. This likely is the cause for
the marginal increase in solution quality with k-independent initial partitioning. Based on
these results, we compose our baseline configuration with k-independent initial partitioning
instead of vanilla initial partitioning.

5.3.2 Model Construction Modes

Our first tuning experiment relates to choosing a suitable per-batch graph model mode
among the options described in Section 4.3. As described, the baseline configuration uses
no mode, i.e., it does not have any artificial vertices or edges. This experiment revises this
baseline to use the maximal, minimal, and r-Subset modes and compares these with each
other and with the no-mode configuration.

The results are shown in Figure 5.2, which demonstrate that using any of the modes
significantly improves solution quality - thus highlighting the necessity of using a model
mode over using no mode - while increasing runtime, with the minimal mode producing
the fastest runtime among the different model modes. Figure 5.2b shows that all modes
produce a higher solution quality than using no mode, with only a small difference in solu-
tion quality between modes. On average across all instances and all k values, we achieve
an improvement of 11.73% to 12.8%, depending on the mode, over not using any artifi-
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Figure 5.2: Tuning Experiment: Graph Model Modes. We arbitrarily show results for r = 5 for
the r-Subset mode, as a similar trend is observed for other r values as well.

cial extensions to the per-batch CSPAC graph. This is because the modes are designed to
leverage block assignment decisions from previous batches when partitioning the current
batch as was described in Section 4.3. A surprising result here is that minimal mode per-
forms extremely well, despite being significantly more light-weight than maximal mode
and r-Subset mode. Minimal mode improves solution quality by 11.73% over the baseline,
while maximal mode produces only 0.73% better solution quality on average over minimal
mode.

Figure 5.2a demonstrates that, while using no mode (which results in the smallest graph
model per batch) is the fastest, minimal mode is the fastest among the different mode
choices. Relative to using no mode, minimal mode requires 11% more time on average,
while maximal mode and 5-Subset require 56% and 43% more time respectively. Minimal
mode is 28.9% faster than maximal mode.

Based on these results, we update our baseline configuration with minimal mode. Be-
sides offering a substantial increase in solution quality while being faster than other modes,
minimal mode also has a much lower memory overhead compared to r-Subset and maximal
mode, as we store only one block per vertex v (instead of up to min{k, d(v)} blocks).

5.3.3 Fennel Alpha

Next, we perform a comparison of the different choices of fennel alpha as discussed in
Section 4.4.2. We run our updated baseline configuration, including minimal mode and
k-independent initial partitioning, with static, batch and dynamic alpha. Figure 5.3 shows
the impact of the alpha choices on replication factor. As we do not observe a significant
difference in runtime between the choices for fennel alpha, we do not display comparisons
for runtime.
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Figure 5.3: Tuning Experiment: Fennel Alpha. Replication factor improvement with choice of
Fennel α. Here, batch alpha is selected as the baseline.

Figure 5.3 demonstrates that batch alpha provides the best solution quality for a majority
of k values, particularly for k values above 32. On average, across all instances and all k
values, batch alpha produces 0.86% and 3.27% better solution quality than static alpha and
dynamic alpha respectively. For k values above 32, these averages increase to 2.1% and
5.2% for static alpha and dynamic alpha respectively. As batch alpha is shown to produce
the best solution quality, particularly for larger k values, we retain batch alpha as our choice
for fennel alpha in the baseline configuration for subsequent tuning experiments.

5.3.4 Label Propagation

We evaluate how the number of label propagation rounds, which is responsible for com-
puting clusters during the contraction phase of our multilevel partitioning scheme, impacts
solution quality and runtime. We run the current baseline configurations of HeiStreamEdge
with 1, 5, 10, and 25 rounds of label propagation, and report the results in Figure 5.4. We
find that increasing the number of label propagation rounds does not have a significant
impact on solution quality, and using 5 rounds produces the fastest runtime.

In Figure 5.4b, we observe a very small improvement in solution quality as the number
of rounds increases. Taking 1 round as the baseline, we notice a maximum improvement of
approximately 1% when we use 25 rounds. On average, across all instances and k values,
we find that 25 rounds of label propagation results in an improvement of only 0.41% in
solution quality over 1 round of label propagation. Using 5 or 10 rounds gives an average
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Figure 5.4: Tuning Experiment: Label Propagation Rounds.

improvement of 0.24% and 0.27% respectively. The solution quality improvement over 1
round is not significant, so we consider the runtime to make a decision.

In general, we expect runtime to increase as we increase the number of rounds of label
propagation. While this is observed for 10 and 25 rounds, using 5 rounds of label propa-
gation gives a lower overall runtime compared to 1 round of label propagation, as shown
in Figure 5.4a. This is because with 5 rounds, improvement in cluster quality over 1 round
results in lesser vertex movements in the later stages of the multilevel scheme and thus
offsets the time required by additional iterations of label propagation. Our results show
that on average, 10 rounds take 13.51%, and 25 rounds take 67.28% longer than 1 round
respectively, while using 5 rounds of label propagation is 3.76% faster than using 1 round.

We retain 5 rounds of label propagation in our baseline configuration, as our results
demonstrate that this configuration produces the fastest runtime, while the impact of label
propagation rounds on solution quality is non-significant.

5.3.5 Local Search Label Propagation
After deciding on the number of rounds of label propagation during coarsening, we con-
sider the number of rounds of local search label propagation during uncoarsening. We
evaluate the solution quality and runtime impact of increasing the number of rounds of
local search label propagation by testing 1, 5, 10, 25, 50 and 100 rounds of local search
label propagation with our current configuration. Figure 5.5, displays the results of these
experiments, indicating that both solution quality and runtime increase with the number of
rounds of local search label propagation.

Figure 5.5b demonstrates that increasing the number of local search rounds improves
solution quality over 1 round, and this improvement increases with k. Using 5 rounds
of local search achieves, on average, a 1% improvement in solution quality over 1 round.
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Figure 5.5: Tuning Experiment: Local Search Rounds.

However, the rate of improvement slows down as the number of rounds increases beyond
5. Using 10 rounds produces an average improvement in solution quality of 0.05% over 5
rounds, and using 100 rounds of local search results in a negligible average improvement
of only 0.09% over 5 rounds.

Figure 5.5a shows that, in general, runtime increases with the number of local search
rounds used. We find that using 100 rounds of local search takes on average 3.62% longer
than 1 round, while 5 and 10 rounds take 2.5% and 2.68% longer respectively.

Since improvement in solution quality above 10 rounds is negligible, and runtime in-
creases with the number of rounds, we restricted our choice between 5 or 10 rounds. We
chose 10 rounds as, compared to 5 rounds, it offers marginally better solution quality for
large k values with a minimal runtime overhead.

5.3.6 Coarsest Model Size
Our final tuning experiment pertains to the parameter x associated with the expression
max( |β|

2xk
, xk), which determines the size of the coarsest graph in our multilevel scheme.

We run experiments for x = 2i, with i ∈ {1, ..., 6}. Results are reported in Figure 5.6.
We observe from Figure 5.6b that solution quality is not impacted by x for smaller k

values till k = 26. Then we observe solution quality improving between k = 27 and
k = 210, before tapering down again. For instance, on average across all k values, setting
x = 2 improves the solution by 1.33% over x = 64. However, between 27 ≤ k ≤ 210,
x = 2 improves solution quality by 2.46% over x = 64 on average, while between 211 ≤
k ≤ 214, x = 2 improves solution quality by 2.09% over x = 64 on average. This
trend is because: firstly, for smaller k values, any of the tested x values still produces a
large enough coarse graph that initial partitioning generates a good global result. Then as
k increases, larger x values make the coarse graph small enough that initial partitioning
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Figure 5.6: Tuning Experiment: Coarsest Graph Size = max( |β|
2xk , xk).

produces relatively lower solution quality. Finally, when k becomes large enough relative
to x, i.e., k >> x, then k dominates the expression of the coarsest graph size, resulting in
a small (or large) enough coarsest graph regardless of the choice of x for solution quality
to not get significantly impacted.

On the other hand, we see in Figure 5.6a that x = 64 has the least runtime, while
x = 2 has the most, particularly for larger k values. Again, we note however that the
runtime difference peaks at around k = 212 before reducing again. On average, x = 2 has
3.88% more runtime than x = 64. However, for k ≤ 256, x = 2 only requires 0.85%
more runtime than x = 64. This is again because smaller x, relative to k, produces larger
coarsest graphs, resulting in more initial partitioning runtime. As k becomes much larger
than x, the difference between our various test x begins to reduce since k dominates the
expression of the coarsest graph size.

As our runtime is independent of k, we are already able to deliver very fast performance
for larger k values. Therefore, we are able to sacrifice some runtime for larger k values for
higher solution quality. Therefore, we choose x = 2 as our parameter.

5.4 Exploration

After performing the above tuning experiments, we compose HeiStreamEdge for further
exploration with the parameters shown in Table 5.2. In the exploration experiments, we
start by investigating how buffer size impacts solution quality and runtime. We start with a
buffer size of 8x, where x = 1024 vertices, and repeatedly double the buffer size until any
graph in the tuning set in Table 5.1 fits entirely in a single buffer. In our case, therefore,
the maximum buffer size explored is 128x = 131072. The resulting plots are shown in
Figure 5.7.
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5.4 Exploration

Parameter Choice
Mode Minimal

Initial Partitioning k-Independent
Fennel α Batch α

Label Propagation Rounds 5
Local Search Rounds 10

Coarsest Graph x 2

Table 5.2: HeiStreamEdge parameters chosen after tuning experiments.
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Figure 5.7: Exploration Experiment: Buffer Size = δ. Here, x = 1024.

We note that, in general, solution quality and runtime both increase with an increase in
buffer size. On average, each time we double the buffer size, solution quality increases
by approximately 1.4% over the baseline of δ = 8x. Concurrently, each time the buffer
size is doubled, runtime increases on average by approximately 6.2% over the baseline.
For instance, δ = 16x produces a solution quality improvement of 1.35%, and a runtime
increase of 6.1% over the baseline on average. When setting δ = 128x, solution quality
increases by 7.3%, and runtime increases by 31.23% over the baseline on average. This
pattern occurs because a larger buffer size grants our multilevel partitioner the ability to
leverage more comprehensive and complex graph structures. As a result, there is a trade-
off between solution quality and resource consumption: we can improve replication factor
at the cost of memory and runtime.

As we observed in the coarsest model size tuning experiment in Figure 5.6b, we note in
Figure 5.7b that the improvement in replication factor with increasing buffer size begins
to narrow with increasing k. Likewise, we see in Figure 5.7a that time ratio begins to
converge at larger k values. In the expression of the coarsest model size of our multilevel
partitioning scheme, i.e., max( |β|

2xk
, xk), |β| depends on the buffer size: the greater the

51



5 Experimental Evaluation

number of vertices we read in a batch, the larger is the resulting graph model. At small
enough k values relative to the size of the input graph, the first term, |β|

2xk
, determines the

size of the coarsest graph: as |β| increases, so too does the size of the coarsest graph, which
results in higher quality partitions overall. We find, however, that for most of our tuning
instances, at high k values, the size of the coarsest graph on which initial partitioning is
computed, is controlled by xk instead of |β|

2xk
. Thus, beyond some k value, depending

on the size of the graph instance, buffer size no longer influences the size of the coarsest
graph. This, in turn, reduces the impact of buffer size on both solution quality and runtime.
For huge graphs, we still expect both solution quality and runtime to keep growing with
an increase in buffer size, even for larger k values. In general, these results warrant an
exploration into a potentially dynamic coarsest graph tuning parameter which can change
the size of the coarsest graph depending on the size of the input graph and k. This will be
described further in Section 6.2 on future work.

Based on our exploration of buffer size, we recommend using the largest possible buffer
size given the memory constraints of the machine, for the best solution quality. To further
improve solution quality, without additional memory requirement, we investigate the pos-
sibility to perform the entire multilevel partitioning process for each batch multiple times.
We test this by repeating the multilevel partitioning 1, 2, 3, 5 and 10 times for every batch.
Results are shown in Figure 5.8. As these plots demonstrate, the first repeat generates a
limited solution quality improvement of 0.8% over the baseline on average. Thereafter, we
get marginal returns, with ten repetitions improving the solution quality by just 1.69% on
average over one repetition. On the other hand, performing each additional repetition, on
average, requires approximately 45% more time than performing one repetition. In sum-
mary, we note that the limited improvement in solution quality with more repetitions is not
worth the substantial increase in runtime.
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Figure 5.8: Exploration Experiment: Repetition of entire multilevel partitioning process.
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5.5 Comparison against State-of-the-Art

We now provide experiments in which we compare HeiStreamEdge (from here on referred
to as HSE) against the current state-of-the-art algorithms for streaming edge partitioning.
These experiments were performed on the Test Set and the Huge Set of graphs in Table
5.1. We compose HSE with the configuration shown in Table 5.2 obtained from the tuning
experiments, and test various buffer sizes.

We primarily compare our performance against the two state-of-the-art streaming edge
partitioners, namely, Two-Phase-HDRF (2PS-HDRF) and Two-Phase-Linear (2PS-L). Ad-
ditionally, we run comparisons with DBH, HDRF and Streaming Neighborhood Expansion
(SNE). Aside from streaming algorithms, we also perform experiments with KaHIP, an
in-memory partitioner, and Hybrid Edge Partitioner (HEP), which, as the name suggests,
partitions a portion of the edges in-memory and the remaining edges with a streaming al-
gorithm, namely, HDRF. DBH, which is based on hashing, produces the highest (worst)
replication factor and shortest runtime in the group. This is expected as it is a stateless
streaming partitioner. Among the stateful streaming algorithms, SNE delivers better solu-
tion quality than HDRF at the cost of higher runtime and memory [51], and 2PS-HDRF
outperforms both HDRF and SNE in terms of replication factor and runtime [50]. While
2PS-L produces lower solution quality than 2PS-HDRF, it was shown to be significantly
faster than all other stateful streaming and in-memory partitioners [51]. This is because
the runtime of 2PS-L, unlike 2PS-HDRF, is independent of k. HEP was shown to produce
better replication factor than HDRF, DBH and SNE [49].

5.5.1 Pair-wise Comparisons on Test Set

In this section, we present the results of our experiments comparing HSE to state-of-the-
art streaming edge partitioners, namely 2PS-HDRF, 2PS-L, DBH and HDRF. We exclude
comparisons with SNE as it fails to execute for k > 127, and has been shown to be slower,
and produce worse solution quality than 2PS-HDRF [50]. Further, we relegate comparisons
with in-memory (KaHIP) and hybrid partitioners (HEP) to the appendix. Here, we report
comparisons with HSE using a buffer size of δ = 32x, where x = 1024, i.e., a buffer
size of 32768. For comparisons, we present pairwise performance profiles, as described in
Section 5.1, of each algorithm compared with HSE. For comparison with 2PS-HDRF and
2PS-L, we additionally present comparisons of runtime and solution quality grouped by k.
For runtime, we plot the ratio of time taken by the slower algorithm compared to the faster
one against k values on the x-axis. For solution quality, we take 2PS-HDRF (resp. 2PS-L)
as the baseline and plot the percentage improvement in replication factor of HSE against k
values on the x-axis.

We find that HSE, with δ = 32x, produces better solution quality than state-of-the-art
streaming edge partitioners for all k values, with an average improvement in solution qual-
ity of 7.56% compared to 2PS-HDRF, which produces the next best solution quality (See
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Figure 5.9). Additionally, as the runtime of HSE is not linearly dependent on k, HSE is
substantially faster for large k values (particularly above 256) compared to 2PS-HDRF
and HDRF. While the runtime of 2PS-L is also independent of k, and is shorter than that
of HSE, HSE produces significantly higher solution quality than 2PS-L with an average
improvement of 48.51% percent over 2PS-L (See Figure 5.10). Further, HSE’s improve-
ment in solution quality over 2PS-L increases with k, making it more suitable for large k
values. Thus, HSE is the only existing streaming edge partitioner that maintains high so-
lution quality while producing fast solutions for large k. Additionally, while HSE has the
highest memory consumption on average across all instances, its memory consumption is
not asymptotically dependent on k. As a consequence, HSE consumes less memory than
2PS-HDRF, 2PS-L, and HDRF for larger k values. For instance, among test set instances,
at k = 16384, HSE has a peak memory consumption of 4.14GB, while 2PS-HDRF, 2PS-
L, and HDRF consume up to 6.76, 6.63GB, and 6.37GB respectively. Only DBH, which
is a stateless partitioner, consumes less memory than HSE at larger k, requiring only a
maximum of 321.18MB across test set instances.

In Figure 5.9, we present detailed comparisons between HSE and 2PS-HDRF for run-
time and solution quality, demonstrating that HSE is significantly faster than 2PS-HDRF
for high k values, and HSE produces higher solution quality than 2PS-HDRF for all k
values. Figure 5.9c demonstrates that, while HSE is slower than 2PS-HDRF for k values
lower than 28, k = 28 is an inflection point after which HSE is faster than 2PS-HDRF,
with speedup increasing with k. On average, for k ≥ 29 = 512, HSE takes 83.86% less
time than 2PS-HDRF. As shown in Figure 5.9a, HSE produces the fastest runtime in ap-
proximately 42% of all instances, and is, at worst, approximately 5 times slower than 2PS-
HDRF, whereas, 2PS-HDRF is up to approximately 63 times slower than HSE at worst.
Figure 5.9d shows that HSE produces on average better solution quality than 2PS-HDRF
for all k values. As displayed in Figure 5.9b, HSE produces better solution quality than
2PS-HDRF in approximately 80% of all instances.

Figure 5.10, which compares HSE and 2PS-L, shows that while 2PS-L is faster than HSE
for most k values, HSE produces substantially better solution quality, with improvements
in solution quality increasing with k. For instance, for k ≥ 512, HSE delivers 68.46%
better solution quality than 2PS-L on average. Figure 5.10a shows that 2PS-L is faster
than HSE for over 90% of all instances, however, Figure 5.10c demonstrates that the differ-
ence in runtime between 2PS-L and HSE begins to converge for k values larger than 256.
Further, HSE is faster than 2PS-L for k = 214. Figure 5.10b shows that HSE produces
solutions of higher quality than 2PS-L for about 99% of all instances. As shown in Fig-
ure 5.10d, HSE’s improvement in solution quality over 2PS-L increases substantially with
increasing k values.

Figure 5.11 depicts comparisons of HDRF and DBH with HSE. Figures 5.11b and 5.11d
show that HSE produces better solution quality than HDRF and DBH for all instances. As
shown in Figure 5.11c, DBH is faster than HSE for about 99% of all instances, as expected
since DBH is a hashing algorithm. A runtime comparison of HSE and HDRF, depicted in
Figure 5.11a, demonstrates that HSE is slower than HDRF approximately 40% of the time.
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Figure 5.9: Comparison of 2PS-HDRF with HSE(32x) where x = 1024, i.e., buffer size is 32768.

However, similar to the comparison between HSE and 2PS-HDRF, HSE is significantly
faster than HDRF for larger k values. In particular, for k ≥ 512, HSE takes 87.5% less
time than HDRF on average.

5.5.2 Comparison With Large Buffer Size

While all the comparisons presented thus far were computed with HSE with a buffer size
of 32x (x = 1024) in this section we present a comparison of HSE with a buffer size of
512x, i.e., HSE(512x), with HSE(32x) and 2PS-HDRF. The results, as shown in Figure
5.12 demonstrate that HSE’s improvement in solution quality over 2PS-HDRF is further
pronounced at larger buffer sizes, at the cost of higher runtime and memory overhead. No-
tably, however, at large k values runtime does not increase with buffer size, and HSE(512x),
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Figure 5.10: Comparison of 2PS-L with HSE(32x) where x = 1024, i.e., buffer size is 32768.

like HSE(32x), is substantially faster than 2PS-HDRF. These results confirm the results
of the exploration experiments described in Section 5.4. The same trend is achieved in
comparisons with other state-of-the-art streaming edge partitioners, though the results are
omitted here for brevity.

Figure 5.12b shows that HSE(512x) achieves a higher average solution quality across all
k values than both HSE(32x) and 2PS-HDRF. Using a buffer size of 512x, HSE achieves
on average 13.95% higher solution quality than 2PS-HDRF. As shown in Figure 5.12a, for
small k values the increased buffer size of 512x results in longer running time, however, for
large k, HSE(512x) is only marginally slower than HSE(32x) and still substantially faster
than 2PS-HDRF.

56



5.5 Comparison against State-of-the-Art

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60

#
 i

n
st

a
n
c
e
s 

≤ 
τ 

fa
st

e
st

τ

HSE(32x)

hdrf

(a) Running time performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30

#
 i

n
st

a
n
c
e
s 

≤ 
τ 

b
e
st

τ

HSE(32x)

hdrf

(b) Rep. factor performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8

#
 i

n
st

a
n
c
e
s 

≤ 
τ 

fa
st

e
st

τ

HSE(32x)

DBH

(c) Running time performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30

#
 i

n
st

a
n
c
e
s 

≤ 
τ 

b
e
st

τ

HSE(32x)

DBH

(d) Rep. factor performance profile.

Figure 5.11: Comparison of HDRF (a)(b) and DBH (c)(d) with HSE(32x) where x = 1024, i.e.,
buffer size is 32768.

5.5.3 Performance on Huge Set

Next, we present findings from our experiments testing HSE and state-of-the-art streaming
edge partitioners on huge graphs. Computing high-quality partitions of huge graphs on
small machines is the primary use case of streaming algorithms. Our experiments are run
on the huge graphs listed in Table 5.1, and are performed on the same machine as our
previous experiments. We ran experiments for HSE, 2PS-HDRF, 2PS-L and DBH with
k = {8, 32, 128, 256, 512, 1024, 2048}. We did not repeat each test with different seeds as
in previous experiments.

The results are recorded in Table 5.3. They show that HSE produces better solution qual-
ity than all competitor algorithms for most instances, providing the best solution quality for
all k values for three of the four huge graphs, and the best solution quality for most k values,
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Figure 5.12: Comparison of HSE(32x), HSE(512x) and 2PS-HDRF.

and especially large k, for the fourth graph. HSE computes, on average across all instances
and graphs, 8.3% higher solution quality than the next highest solution quality by 2PS-
HDRF, and 57.6% and 83.8% higher solution quality than 2PS-L and DBH respectively.
HSE is, on average, slower than all competitor algorithms. While it is slower than 2PS-L
and DBH for all instances, it is faster than 2PS-HDRF for large k values. For k = 1024
and larger, it is faster than 2PS-HDRF for all instances, and for k = 512 it is faster than
2PS-HDRF in three of the four graphs. On average, across all graphs for k = 512 or larger,
HSE is 43.6% faster than 2PS-HDRF, and up to 84.6% faster at k = 2048. Our findings on
huge graphs confirm that HSE outperforms all competitors for solution quality, and is sub-
stantially faster on large graphs for larger k values than 2PS-HDRF, the algorithm with the
next best solution quality. HSE produces significantly higher solution quality than 2PS-L,
the only stateful streaming edge partitioner whose runtime does not depend on k. Lastly, as
observed for test set instances, HSE has larger memory consumption on average across the
instances. However, due to an asymptotic dependency on k in memory consumption, 2PS-
HDRF and 2PS-L eventually require more memory than HSE for large enough k, relative
to the size of the graph instance. For example, both 2PS-HDRF and 2PS-L were not able
to partition uk-2007-05 at k = 8192 without exceeding memory available on the machine,
while HSE and DBH ran successfully.
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Graph k HSE(256x) 2PS-HDRF 2PS-L DBH
RF RT(s) RF RT(s) RF RT(s) RF RT(s)

com-friendster

8 2.85 7342.51 2.64 1663.15 3.25 1569.51 3.15 1288.86
32 5.51 7441.01 5.21 2022.79 6.99 1577.613 7. 12 1106.69

128 8.30 7624.01 9.00 3240.04 12.17 1671.237 13.76 1121.26
256 10.43 7869.91 11.12 4534.69 15.05 1703.251 17.56 1136.48
512 13.07 8313.52 13.19 7173.64 17.69 1739.348 21.05 1141.5
1024 13.06 8319.1 15.16 12517.5 20.03 1824.121 23.86 1135.8
2048 14.14 8290.15 16.95 22542.7 21.87 2012.934 25.83 1278.63

in-2004

8 1.12 1049.49 1.15 364.56 1.55 351.942 2.29 323.984
32 1.08 1103.68 1.21 410.067 2.12 355.2272 4.80 326.647

128 1.09 1055.59 1.27 452.48 2.40 358.9895 7.34 323.336
256 1.09 1056.67 1.31 670.65 2.52 362.0369 9.39 323.373
512 1.20 1165.29 1.35 1233.1 2.98 371.6388 11.94 262.147
1024 1.25 1259.41 1.39 2268.03 3.46 395.2373 14.98 291.517
2048 1. 33 1065.18 1.51 4892.87 4.33 450.19 17.42 303.434

uk-2007-05

8 1.03 3896.43 1.12 1240.08 1.56 1178.78 2.24 1187.32
32 1.05 3851.37 1.16 1508.18 2.05 1364.442 4.57 1077.38

128 1.09 3844.68 1.22 2049.12 2.64 1142.67 6.98 1006.03
256 1.12 3878.09 1.26 2728.56 3.06 1154.225 8.90 846.077
512 1.17 3850.61 1.30 4304.9 3.60 1178.537 11.26 1073.75
1024 1.22 3860.52 1.38 8187.78 4.39 1521.79 14.05 1151.92
2048 1.28 3853.47 1.51 16997.7 5.58 1453.76 16.37 1165.52

sk-2005

8 1.12 2341.45 1.20 635.067 1.74 623.442 2.46 525.734
32 1.15 2287.56 1.25 752.249 3.06 760.468 5.10 676.57

128 1.24 2057.34 1.33 933.922 4.67 648.516 7.31 549.877
256 1.30 2047.7 1.38 1791.23 5.65 657.114 8.94 551.149
512 1.37 2270.33 1.51 3030.68 7.04 684.072 10.82 687.486
1024 1.43 2266.85 1.72 6303.33 8.93 776.8 12.86 561.702
2048 1.52 2077.48 1.99 13497.4 9.79 939.648 14.89 576.28

Geo. Mean 1.98 2929.35 2.16 2451.50 4.67 878.96 12.25 688.66

Table 5.3: Results of experiments on the Huge Set in Table 5.1. Here, we compare HSE(256x), i.e,
HSE with a buffer size of 256 · 1024, with state-of-the-art streaming edge partitioners
on huge graph instances. We exclude HDRF as it is outperformed in both runtime and
solution quality by 2PS-HDRF, while showing a similar trend against HSE. The best
solution quality for each instance is emboldened.
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CHAPTER 6
Discussion

6.1 Conclusion

In this work, we proposed HeiStreamEdge, a buffered streaming edge partitioner that
achieves state-of-the-art results in solution quality. HeiStreamEdge uses a buffered ap-
proach, where batches of vertices, along with their edges, are loaded and partitioned se-
quentially. From each loaded batch of vertices, we generate a novel Contracted Split-
and-Connect (CSPAC) graph, which is derived from the Split-and-Connect transformation
introduced by Li et al. [45]. In this CSPAC graph, vertices are edges of the input graph,
and edges model adjacencies among edges of the input graph. We prove that a vertex
partition of the CSPAC graph yields an edge partition of the input graph with an approx-
imation factor of O(∆

√
log n log k) of the optimal edge partition, where n is the number

of vertices, ∆ is the maximum degree of the input graph, and k is the number of blocks of
partition. The CSPAC graph for each batch is extended using artificial edges and vertices
representing block assignments of edges visited in previous batches. We then partition the
extended CSPAC graph using a multilevel scheme, wherein the initial partitioning is com-
puted using a modified version of the generalized Fennel algorithm proposed by Faraj and
Schulz [22]. This modification allows our overall runtime to be asymptotically indepen-
dent of k. In particular, we achieve a linear runtime of O(n + m). Additionally, to the
best of our knowledge, we are the only stateful streaming edge partitioner whose memory
consumption is asymptotically independent of k. As a consequence, we not only achieve
the best solution quality for all k values, but also, we are faster than most, and require less
memory than all alternate stateful streaming edge partitioners for large k values.
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6.2 Future Work

Our work opens up several lucrative avenues for future work, to further improve solution
quality, or to save running time. Firstly, we can apply restreaming to yield a lower (bet-
ter) replication factor. To implement restreaming, the general structure of HeiStreamEdge
would remain as proposed. However, after the first round of streaming, we would adapt the
per-batch graph model to also include edges to future batches, for which, we would now
have block assignment decisions. These assignment decisions can be incorporated into
our graph model using the modes described in Section 4.3. Note that currently, we only
consider edges to previous batches, as we only have partitioning decisions for previously
visited edges.

Secondly, we can save on overall running time by implementing asynchronous graph
model construction and partitioning. After the first batch of vertices is loaded, and the
corresponding CSPAC graph model is constructed from it, we can simultaneously partition
the batch, and construct the graph model for the following batch. In this case, we expect a
slightly worse solution quality, as we cannot incorporate block assignment decisions of the
preceding batch to the current batch for which we are developing the graph model. On the
other hand, we can achieve a speedup up to a factor of 2, as for most instances, graph model
construction and partitioning required similar amount of time in our experimentation. This
asynchronous execution, however, comes at the cost of greater memory consumption, as at
any given moment, we are dealing with two batch graph models loaded into memory.

Thirdly, building on the asynchronous approach, another direction for future work is a
parallel implementation of our overall buffered streaming model, wherein every process-
ing element (PE) can operate on its own buffer of vertices along with their edges. In this
case, however, we would not be able to extend the CSPAC graph for each batch with block
assignment decisions of edges in other batches, which may be getting processed simultane-
ously on another PE. Thus, the approach would lead to a worse replication factor. Taking
the "no model mode" configuration we tested in Section 5.3.2 as an analogous scenario
where we incorporate no past batch assignment decisions, we can expect replication factor
to be approximately 10.5% worse than the minimal mode configuration (Section 4.3) we
compose HeiStreamEdge with in this work to leverage past block assignment decisions.

Finally, to improve solution quality for large k values, we suggest the exploration of
a dynamic parameter x in the expression of the size of the coarsest graph model of our
multilevel partitioning scheme, i.e., max( |β|

2xk
, xk). As demonstrated in the coarsest graph

size tuning experiment (Section 5.3.6) and the buffer size experiment (Section 5.4), to
continue improving solution quality for large k values, we require the size of the coarsest
graph to be suitably large, relative to the size of the input graph and choice of k. This would
allow the initial partitioning step to be performed on a graph that contains more complex
global graph structures, thereby resulting in better solution quality overall. To this end,
function tuning experiments, or potentially machine learning, can be deployed to identify
an optimal function for x given k and the input graph size (or buffer size).
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Further Results

Comparison with KaHIP

As shown in Figure A1, HSE(32x) is faster than KaHIP for all instances, but produces
worse solution quality. On average, across all k values, HEP(32x) is 88.75% faster than
KaHIP(fastsocial), however, KaHIP(fastsocial) produces 16.04% better solution quality.
Comparing with an increased buffer size of 1024x, KaHIP(fastsocial) produces a 8.97%
better solution quality, but HSE(1024x) is 85.26% faster on average across all k values.

Comparison with HEP

Figure A2 shows experimental results comparing HSE(32x) with HEP(1) on the Test Set
in Table 5.1 (excluding Dubcova1 for which HEP(1) failed to execute for k ≥ 2048). Here,
HEP(1) refers to the Hybrid Edge Partitioner [49] with τ = 1. By setting τ = 1, we
instruct HEP to partition all edges e = (u, v), for which d(u) and d(v) are greater than
τ · ϕd (if τ = 1, simply ϕd), where ϕd is the mean degree of all vertices of the input graph,
with a streaming algorithm, and the remaining edges with an in-memory partitioner. We
find that HSE(32x) produces 4.48% better solution quality than HEP(1) on average across
all k values, while being 53.84% faster. Figure A2b demonstrates that HSE(32x) produces
better solution quality for approximately 60% of all instances. Figure A2c shows that while
HEP(1) is faster for k values below k = 28 = 256, HSE(32x) is significantly faster above
that. In particular, for k ≥ 512, HSE(32x) is 92.82% faster than HEP(1) on average.
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Figure A1: Comparison of KaHIP with fastsocial configuration, with HSE(32x) where x = 1024,
i.e., buffer size is 32768 on the Test Set in Table 5.1.

64



6.2 Future Work

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  40  60  80  100  120  140  160  180

#
 i

n
st

an
ce

s 
≤ 

τ 
fa

st
es

t

τ

HSE(32x)

hep(1)

(a) Running time performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.2  1.4  1.6  1.8  2

#
 i

n
st

an
ce

s 
≤ 

τ 
b
es

t

τ

HSE(32x)

hep(1)

(b) Rep. factor performance profile.

 0

 0.2

 0.4

 0.6

 0.8

 1

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

T
im

e
 R

a
ti

o

k

HSE(32x)

hep(1)

(c) Running time ratio.

 0

 1

 2

 3

 4

 5

 6

 7

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

Im
p
ro

v
em

en
t 

in
 %

k

HSE(32x)

hep(1)

(d) Rep. factor improvement over HEP(1).

Figure A2: Comparison of HEP composed with τ = 1 with HSE(32x) where x = 1024, i.e., buffer
size is 32768 on the Test Set in Table 5.1.
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Zusammenfassung

Die Partitionierung eines Graphen in ausgeglichene Blöcke ist ein wichtiger Vorverar-
beitungsschritt für die verteilte Verarbeitung von Graphen. Bei der Kantenpartition-
ierung wird die Kantenmenge eines Eingangsgraphen in k ungefähr gleich große Blöcke
aufgeteilt, wobei die Replikation von Knoten, ein Maß für die Qualität einer Partionierung,
über die Blöcke hinweg minimiert wird. Streamende Partitionierer können riesige Graphen
mit weniger Rechenressourcen partitionieren als In-Memory Partitionierer. In dieser Ar-
beit schlagen wir ein gepuffertes Streaming-Modell für die Kantenpartitionierung vor, das
schrittweise Stapel von Kanten lädt und ihnen dauerhaft Blöcke zuweist. Für jeden Stapel
konstruieren wir eine umfassende Graphenrepräsentation, die Adjazenzbeziehungen zwis-
chen den Kanten modelliert, und partitionieren sie mithilfe eines mehrstufigen Schemas.
Unser Ansatz ist sowohl in Laufzeit als auch Speicherbedarf asymptotisch unabhängig von
k. In Experimenten zeigen wir, dass unser Algorithmus bessere Lösungsqualität liefert als
alle konkurrierenden Algorithmen und bei großen k-Werten wesentlich schneller ist und
weniger Speicher benötigt als vergleichbare qualitativ hochwertige Algorithmen.
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