
Engineering Algorithms for the
Weighted Maximum Clique Problem

Roman Erhardt

November 18, 2022

3658006

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:

Prof. Dr. Christian Schulz

Co Supervisors:

Dr. Darren Strash
Dr. Nils Morten Kriege

Dr. Kathrin Hanauer

ii

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Dr. Christian Schulz for giving
me the opportunity to write my master thesis about algorithms in graph theory, a field that
I am especially interested in. I thank him and my co-supervisors Dr. Darren Strash, Dr.
Nils Kriege and Dr. Kathrin Hanauer for mentoring and guiding me throughout this work.
It was an enriching experience and a pleasure to work on this project together and to be a
part of your research team. I would also like to thank the Algorithm Engineering Group
Heidelberg as well as the colleagues at the University of Vienna for allowing me to use
their resources for my experiments. Last but not least, I am thankful to my parents for
the opportunities they gave me and to my family and friends for their continuous support
throughout my life.

Bei der eingereichten Arbeit zu dem Thema Engineering Algorithms for the Maximum
Weighted Clique Problem handelt es sich um meine eigenständig erbrachte Leistung. Ich
habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzulässigen
Hilfe Dritter bedient. Ferner versichere ich, dass die übermittelte elektronische Version in
Inhalt und Wortlaut mit der gedruckten vollständig übereinstimmt.

November 18, 2022

Roman Erhardt

iii

iv

Abstract

The maximum weighted clique problem (MWC) is a well-known problem in graph theory
with many applications. In this work, both exact and heuristic algorithms, which interleave
successful techniques from related work with novel graph reduction rules are proposed.
While graph reductions based on upper bounds have been used for MWC in the past, we
present reduction rules, that make use of local graph structures in order to identify and
remove vertices and edges without reducing the optimal solution. A set of exact reduction
rules is employed in an exact algorithm called MWCRedu, while heuristic reduction tech-
niques based on machine learning models such as MLP, Deepset and GNN are explored
in the heuristic framework MWCPeel. Experiments on a broad range of graphs show, that
MWCRedu outperforms the current state-of-the-art exact solver TSM-MWC [25] for most
inputs. Specifically for naturally weighted, medium-sized street network graphs and ran-
dom hyperbolic graphs, which are considered to model real world graphs well, MWCRedu
is faster by orders of magnitudes. The heuristic solver MWCPeel also outperforms its
competitors FastWCLq [12] and SCCWalk4l [47] on these instances, but is slightly less
effective on extremely dense or large instances.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Organization . 3

2 Fundamentals 5
2.1 Graph Preliminaries . 5
2.2 Related Problems . 5
2.3 The Branch and Bound Paradigm . 7
2.4 Hashing . 8

2.4.1 Bloom Filter . 8
2.5 Machine Learning . 9

2.5.1 Multi-Layer Perceptron . 9
2.5.2 DeepSets . 10
2.5.3 Graph Neural Networks . 10

3 Related Work 13
3.1 Exact Solvers for the Maximum Clique Problem 13
3.2 Exact Solvers for the Maximum Weighted Clique Problem 15
3.3 Heuristic Solvers for the Maximum Clique Problem 16
3.4 Heuristic Solvers for the Maximum Weighted Clique Problem 17
3.5 Maximum Weighted IS Reductions . 18

3.5.1 Twin Reduction . 19
3.5.2 Domination Reduction . 20
3.5.3 Simplicial Vertex Removal . 21
3.5.4 Increasing Transformations . 21
3.5.5 Vertex Peeling Reduction . 21
3.5.6 Applying the Reductions . 22

4 Algorithms 23
4.1 Exact Approaches . 23

4.1.1 Exact Reduction Rules . 23

vii

Contents

4.1.2 The Exact Solver . 28
4.2 Heuristic Approaches . 32

4.2.1 Vertex and Graph Features . 32
4.2.2 Machine Learning Model Architectures 33
4.2.3 Training the Machine Learning Model 35
4.2.4 The Heuristic Solver . 36

5 Implementation 39
5.1 Implementing the Exact Approaches . 39

5.1.1 Efficiently Computing Common Neighborhoods 39
5.1.2 Efficiently Computing Dominating Neighborhoods 40
5.1.3 Applying the Reductions . 41

5.2 Implementing the Heuristic Approaches 42
5.2.1 Applying the Reductions . 42
5.2.2 Computing the Features . 43
5.2.3 Implementing the Machine Learning Models 43

6 Experimental Evaluation 45
6.1 Algorithms . 45
6.2 Graph Instances . 45
6.3 Experimental Setup . 46
6.4 Comparing the Exact Algorithms . 47

6.4.1 OpenStreetMap graphs . 47
6.4.2 DIMACS Graphs . 48
6.4.3 Network Data Repository Graphs 50
6.4.4 Random Hyperbolic Graphs . 51

6.5 Comparing the Peeling Rules . 53
6.5.1 OpenStreetMap graphs . 54
6.5.2 DIMACS Graphs . 54
6.5.3 Network Data Repository Graphs 57
6.5.4 Random Hyperbolic Graphs . 58

6.6 Comparing the Heuristic Algorithms . 59
6.6.1 OpenStreetMap Graphs . 59
6.6.2 DIMACS Graphs . 60
6.6.3 Network Repository Graphs . 62
6.6.4 Random Hyperbolic Graphs . 63

7 Conclusion 67
7.1 Future Work . 68

Bibliography 81

viii

CHAPTER 1
Introduction

1.1 Motivation

Finding a clique in a graph is a classic problem in graph theory with applications in any
field where some form of commonality can be used to formulate the problem. One of the
earliest and most well-known applications can be found in social networks, where actors
are modeled as nodes in a graph and the ties between them as edges. A clique is then a
group of actors who all know each other and can be identified by looking for a group of
nodes in the graph that are adjacent to each other. Finding cliques in social networks can
help explain (and predict) various social and psychological observations, like homogeneity
in decision making among groups or the forming of group standards in general [49]. Other
applications can be found in biochemistry, where finding cliques can be used to research
the interaction between rigid molecules, giving important information that may be used,
e.g. in drug discovery [37]. Here, the nodes of a graph model possible matches, i.e. an
assignment of one molecule’s feature to the others that would allow docking at this point.
Edges are used to model the compatibility of matches, where two matches are compatible
if the distance between the respective features is within some tolerance. A clique then
represents a group of matches that can be formed simultaneously. To get the binding mode
that is most likely to be observed in experiments, finding the clique of maximum cardinality
can give a good approximation.
To model more complex scenarios, the nodes in a graph are often assigned different
weights, which gives rise to the more complex generalization of maximum clique (MC),
the maximum weighted clique problem (MWC). One application of MWC has been dis-
covered by Zhang et al. [55] in video object co-segmentation. Their method allows robust
tracking of objects in a video despite noise or occlusion, by exploiting the commonality
of same objects in different frames. This is achieved, by representing video objects from
each frame as nodes and weighing them according to a function over some criteria, such
as boundary definition, difference from surroundings and optical flow gradient. Two nodes

1

1 Introduction

(from two different frames) are then connected by an edge, if their similarity is above some
threshold. A (regulated) maximum weighted clique in this graph then identifies the object
that is most consistent across different frames and best fulfils the scoring criteria. More
applications can be found, e.g. in coding theory [56], combinatorial auctions [51] and
genomics [9].

There has been extensive research on solving the various formulations of the clique prob-
lem using both heuristic and exact approaches. Despite this, state-of-the-art algorithms still
have problems finding the solution to specific graph instances in reasonable time, which is
no surprise as the problem has been proven to be NP-hard [28]. One powerful technique
to tackle NP-hard problems in graph theory are graph reduction rules, which search the
graph for specific local structures in polynomial time and classify the contained vertices
accordingly, effectively reducing the input instance to an equivalent, smaller instance [1].
Such reductions are often seen in related work for the equivalent maximum weighted in-
dependent set problem (MWIS) and minimum weighted vertex cover problem (MWVC),
where they achieve great results [32]. Besides exact reductions, which are guaranteed not
to reduce the solution quality, heuristic reductions that make use of machine learning tech-
niques have been shown to be effective as well [44, 33]. Inspired by these ideas, this work is
focused on engineering a set of exact reduction rules and several heuristic graph reduction
schemes, aimed at reducing the number of vertices and edges in the input graph instance.
While removing edges is mostly useful for freeing up the reduction space for vertex reduc-
tions, reducing the number of vertices that are not part of the solution according to an exact
reduction, a heuristic rule or a machine learning algorithm is guaranteed to speed up any
existing solver that is applied on the reduced graph.

1.2 Contributions

The main contributions of this work are both exact and heuristic algorithms for the MWC
problem, that combine effective techniques from state-of-the-art solvers with novel vertex-
and edge reduction rules. To the best of our knowledge, this is the first attempt at engineer-
ing reduction rules that exploit local graph structures for the MWC problem and the first
attempt at conceiving a reduction solely aimed at reducing the number of edges in a graph.
For the purpose of applying the reductions, a reduce-and-peel framework as seen in recent
algorithms for the MWIS problem is engineered. The framework describes how to apply
each reduction, as well when to stop applying reductions and switch to the exact solver.
For many input graph instances, the resulting solver is able to greatly reduce the graph size
and outperform state-of-the-art solvers.

2

1.3 Organization

1.3 Organization

The remainder of this work is organized as follows. In Chapter 2 fundamentals, such as
graph notations and relevant problems in graph theory are given. Furthermore, several
techniques that are used later on, such as hashing, branch-and-bound and machine learning
are explained. Chapter 3 covers related work, starting with classic algorithms for MC up to
current state-of-the-art algorithms for MWC, as well as techniques from the related mini-
mum vertex cover and maximum independent set problem. The contributions of this work
are presented in Chapter 4, including the novel reductions rules and how to integrate them
in a holistic MWC solver. Chapter 5 then discusses the implementation of the techniques
from a practical point of view. The performance of the presented techniques is evaluated
and compared with state-of-the-art solvers on a broad range of graphs in Chapter 6. We
then conclude this work in Chapter 7 and discuss possible future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

2.1 Graph Preliminaries

A graph G is a mathematical structure that is used to model pairwise relationships between
objects. Objects are represented as a finite set of vertices V = {v1, ..., v|V |}, where each
vertex vi ∈ V is associated with a weight w(vi) ∈ N. An unweighted graph is a special
case where ∀vi ∈ V , w(vi) = 1. The relationships between the vertices are represented by
a set of edges E = {e1, ..., e|E|}. The graph density ρ is computed as ρ = 2|E|

|V |(|V |−1)
. In an

undirected graph, two vertices vi and vj are considered adjacent, if {vi, vj} ∈ E. The set of
adjacent vertices of a vertex vi makes up its neighborhood N(v) = {vj | {vi, vj} ∈ E},
or N [v], if v is included. The number of neighbors of a vertex v is given by the degree
of the vertex d(v) = |N(v)|. The graph containing vertices V and edges E is written as
G = (V,E,w). The sub-graph induced by the subset V ′ ⊆ V is denoted by G[V ′] and
only contains the edges E ′ = {{vi, vj} ∈ E | vi, vj ∈ V ′}. The maximum weight of V ′ is
denoted by w∗(V ′) and can be computed as maxvi∈V ′(w(vi)). A subset C ⊆ V is a clique,
if G[C] is a complete graph. The weight of a clique is computed as

∑
vi∈C w(vi). The most

simple way to represent a graph is an adjacency matrix A, i.e. a boolean |V | × |V | matrix,
where an element Aij evaluates to true, if {i, j} ∈ E. Another way of representation is an
adjacency list Alist. This data structure uses a list with N elements, denoting the vertices
in the graph, where each element points to another list containing the vertices neighbors,
i.e. Alist[v] = N(v).

2.2 Related Problems

The maximum weighted clique problem (MWC) is a generalization of the maximum clique
problem (MC), which is to find a clique of maximum cardinality in an unweighted graph.
Its decision version is among the first 21 NP-complete problems presented in Karp’s

5

2 Fundamentals

a

b

f

e

dc

a

b

f

e

dc

a

b

f

e

dc

Figure 2.1: An illustration of the relation between MC, MIS and MVC. Given the initial graph
G with V = {a, b, c, d, e, f} (left) and its complementary graph G (right), the set
of vertices {c, d, e, f} is an MC of G and an MIS of G, whereas {a, b} forms an
MVC [50].

seminal paper on computational complexity [28]. The difference between the two is
that for MWC, vertex weights can take arbitrary values. The problem is then to find a
clique with the largest combined vertex weight. MC is dual to the maximum indepen-
dent set problem (MIS) and the minimum vertex cover problem (MVC), another two well
known combinatorial optimization problems. The MIS problem is to determine the largest
set of vertices in a graph such that none of the vertices contained in the set are adja-
cent. It is easy to see, that solving MIS on the complement graph G = (V,E), where
E = {vi, vj | vi, vj ∈ V ∧ {vi, vj} /∈ E}, directly gives a solution to MVC in G and
MC in G (Figure 2.1). By extension, MWIS and MWVC are dual to MWC. MIS is also
closely related to the vertex coloring problem (VC), which is to assign a label c ∈ Z to each
vertex, such that all pairs of adjacent vertices are assigned a different label. The labels are
typically assigned starting from 1, where each value represents one color class. Since all
vertices with the same label are non-adjacent, VC partitions the vertices in the graph into
independent sets. The minimum number of labels is also called the chromatic number of
the graph.
Another famous optimization problem that is interesting for solving MC is the maximum
satisfiability problem (MaxSAT), which is to determine the maximum number of clauses
in a Boolean formula in conjunctive normal form that evaluate to true at the same time by
some assignment of values to the variables of the formula. The problem is NP-hard and
APX-complete, meaning that there cannot be a polynomial time approximation scheme
(PTAS) unless P = NP . A variation of the MaxSAT problem called partial MaxSAT can
also be used to encode MC. Partial MaxSAT differentiates between soft clauses, which are
relaxable, and hard clauses, which must evaluate to true. The objective here is, to find a
variable assignment that satisfies all hard clauses and the maximum number of soft clauses.
The encoding is done by introducing a unit soft clause for each vertex, indicating whether
it is in the maximum clique or not, and a hard clause x̄i ∨ x̄j for each non-connected pair
of vertices. The optimal solution to the partial MaxSAT instance then yields the maximum
clique of the graph [34].

6

2.3 The Branch and Bound Paradigm

Algorithm 1 Branch and Bound
function MAIN

x̂← ∅
branch_bound(∅, V)

end function
function branch_bound(x,C)

if f(x) > f(x̂) then
x̂← x

end if
for v ∈ C do

C ′ ← C \ {v}
if upper_bound(C ′) + f(x) > f(x̂) then

branch_bound(x,C ′)
end if
x′ ← x ∪ {v}
if upper_bound(C ′) + f(x′) > f(x̂) then

branch_bound(x′, C ′)
end if

end for
end function

2.3 The Branch and Bound Paradigm

Branch and Bound (B&B) is an algorithm design paradigm for solving optimization prob-
lems exactly by systematically searching the solution space. A general algorithm is given
in Algorithm 1. During the search procedure, the graph nodes V are enumerated accord-
ing to a specific predetermined ordering. At each node in the search tree, the search path
branches in two, with one path including the current node in the solution and one excluding
it. The search space is thus a binary tree where the leaves represent all possible solutions
to the problem. At each node of the tree, the current best solution x̂ and its value f(x̂) are
known and mark the lower bound for the solution quality. Furthermore, an upper bound
can be computed for the subtree rooted at the current node. Before branching on the node,
it is first checked if the upper bound is higher than the lower bound. If not, the subtree
cannot contain a solution that is better than the one which has already been found and the
subtree can be discarded. While B&B algorithms still have exponential running time in
the worst case, they are much faster than brute force search in practice since a large part
of solution candidates can be excluded early thanks to the bounding scheme. How fast the
algorithm will converge to the optimal solution is typically dependent on the tightness and
efficiency of the computed upper bounds.

7

2 Fundamentals

2.4 Hashing

Hashing denotes the process of mapping any value from an arbitrarily sized set to a smaller
set of specific size via a hash function. A common application of hashing is to speed up the
search for specific elements in a list, making it an important asset when checking a graph
represented by an adjacency list for specific edges efficiently. This is done by computing
the hash value of that element and using it as an index for the hash table, potentially giving
its position in constant time if the hash value is unique, or inO(n) otherwise. Since the hash
set is smaller than the input set, the hash function may map two different values from the
input set to the same value of the output set. For this reason some form of collision handling
must be implemented when using the hash value as an index. The hash function should be
chosen, such that the number of collisions and the following, often expensive collision
handling procedures are minimized. A process known as universal hashing guarantees this
in expectation, by selecting the hash function at random from a family of hash functions:

ha = a · x mod m (2.1)

where x = (x1, ..., xk) is the element, which the hash should be computed for,
a = (a1, ..., ak) ∈ {0, ...,m− 1}k is a randomly chosen factor to ensure an equal distri-
bution over the entire solution space and m is the chosen output set size [36].

2.4.1 Bloom Filter

A Bloom filter is a probabilistic data structure that makes use of hashing to check whether
an item is in a given set or not. It was designed by Burton H. Bloom [8] to efficiently trade
off space requirements and performance given a tolerated error margin. The key element
is the lookup function, which has a time complexity ofO(1) and is guaranteed to return no
false negatives. This is done by first computing the hash value of an element before adding
it to the list and using it as an index to set a bit in an internal hash set. Whenever an element
is looked up via the same process, the function returns true if the bit is set, or false if it
is not. While one can be certain, that the element is not contained in the list if the function
returns false, a positive result gives no information as to whether the bit in the hash set
has been set by this element or another element that maps to the same hash value. In this
case, the list would have to be searched for the item using different methods.
The parameters of the Bloom filter are interdependent and can be chosen to achieve a
specific likelihood of false positives. To decrease the chance of a false positive, both a
larger hash table or a higher number of hash functions can be used. If the number of items
n in the list is known and the optimal number of hash functions is chosen, then the size m
of the internal array can be computed as

m =

⌈
n · log(1

p
)

log2(2)

⌉
(2.2)

8

2.5 Machine Learning

where p is the probability of false positives [8]. The optimal number of hashes k is com-
puted as

k =

⌊
m · log(2)

n

⌉
. (2.3)

However, a higher number of hash functions also means more hashes need to be computed
and more bits need to be read during a lookup or written when adding an item. Over-
all k clearly dominates the runtime of the Bloom filter data structure, which is why it is
sometimes beneficial to choose a less than optimal number of hash functions.

2.5 Machine Learning

Machine learning (ML) denotes a field in computer science, where data is leveraged to
improve the performance on some task. ML is a subfield of artificial intelligence, since a
machine learning model typically learns new information such as patterns and correlations
from the given data. Most machine learning approaches can be categorized as either su-
pervised learning, unsupervised learning or reinforcement learning. The latter two have in
common, that no labels, i.e. solutions to a subset of the data, are required. In unsupervised
learning, a loss function that depends only on the input data is minimized. The goal here
is typically to find patterns or cluster the data. Reinforcement learning trains the model by
guiding its actions via a reward function. The model therefore tries to learn a sequence of
actions that maximizes its rewards. However, given the possibility of generating labels for
large amounts of data, supervised learning is usually the most effective method and will be
the approach discussed in the remainder of this section. Especially neural networks (NN)
have proven versatile and efficient ML tools in recent years. For training, the NN model
first receives a data sample as an input and uses its current state of parameters to infer a
prediction. Next, a loss function is employed to measure the distance between the predicted
values and the given label. To learn parameters that result in a prediction close to the label,
this loss function is minimized. This is done during a process called back-propagation,
where the gradients of each parameter w.r.t. the loss are computed and adjusted accord-
ingly. Finishing such a cycle for all given training samples is called an epoch. In this work
we evaluate the following three NN variants: Multi-layer Perceptrons (MLP), DeepSets
and Graph Neural Networks (GNN).

2.5.1 Multi-Layer Perceptron

Artificial neural networks are inspired by the functionality of neurons in the biological
brain, which interpret and relay chemical and electrical input signals as an essential part of
the decision making process. They were first conceived by Rosenblatt [42], who proposed
to model a neuron as a simple linear function

y = w · x+ b (2.4)

9

2 Fundamentals

where x is the input signal, y the output signal and w and b are trainable parameters of the
model. A single model contains many neurons, which are distributed along the input layer,
the hidden layer and the output layer. While the number of neurons in the input and output
layers are necessarily the number of inputs and outputs respectively, the number of neurons
in the hidden layers as well as the number of hidden layers itself can be arbitrarily chosen.
Each layer is followed by a non-linear activation function, such that the MLP does not
degenerate to a linear regression model and is capable of learning even complex functions.
One such activation function is ReLU [2], which only allows positive values to pass on to
the next layer. Neural networks that do not have connections which form a cycle and are
fully connected are called MLPs.

2.5.2 DeepSets

One drawback of the original neural network model, is that the input is fixed regarding
dimension and ordering. Zaheer et al. [54] find a way around this problem in an architecture
called DeepSets, in which the model input parameters are allowed arbitrary dimensions.
The main idea is to first apply an inner neural network ϕ on each input xm and to then
sum up the outputs and apply another neural network ρ on the sum to compute the final
prediction:

f(X) = ρ

(∑
x∈X

ϕ(x)

)
. (2.5)

With this model, any set functions can be learned and applied on arbitrarily sized inputs. In
order to still be able to perform efficient batching during training and inference, input sets
are zero-padded to a certain dimension.

2.5.3 Graph Neural Networks

Different from MLP and DeepSets, which directly infer a prediction on the target value
from the given input, GNN compute a d-dimensional real vector for each input. Being
specifically engineered to operate on graph-type data, a GNN layer takes an |V | × |V |
adjacency matrix A and a |V | × d vector H(0) containing d features per node as input. To
avoid memory issues for larger graphs, the adjacency matrix is stored in Coordinate list
(COO) format. COO is a sparse matrix format that stores only non-zero entries explicitly.
For this, each entry is represented by the two-tuple (row, column). Similarly to how deep
sets handle arbitrarily sized inputs, each layer updates the given features for each node
by computing a weighted sum over the node features in their neighborhood. GNN were
first presented by Kipf and Welling [29] with a layer called GCN, which implements this
procedure as follows:

H(t) = σ
(
D̃− 1

2 ÃD̃− 1
2H(t−1)W (t−1)

)
(2.6)

10

2.5 Machine Learning

where σ is a non-linear activation function, such as ReLU, Ã = A+ IN , IN is the identity
matrix, D̃ii =

∑
j Ãij and W (t−1) is a layer-specific trainable weight matrix. As shown

by Gilmer et al. [21], different kinds of permutation-invariant differentiable functions fW2
aggr

to aggregate information about the neighbor features, and functions fW1
merge to merge the

vertex feature of the last iteration with the aggregated neighborhood information can be
used, resulting in the following more general formulation:

f (t)(v) = fW1
merge

(
f (t−1)(v), fW2

aggr({f (t−1)(w) | w ∈ N(v)})
)

(2.7)

More recently, Xu et al. [53] present a GNN framework called Graph Isomorphism Net-
work (GIN), which they prove to be at least as effective as the Weisfeiler-Lehman graph
isomorphism test, a famous test for identifying non-isomorphic graphs by computing
signatures for each node based on their neighborhood. The proof extends the idea of
Zaheer et al. from sets to multi-sets. Specifically, they show that there must be a func-
tion f : X → Rn, s.t. h(X) =

∑
x∈X f(x) is unique for each multi-set X ⊂ X of bounded

size. Furthermore any multi-set function g can be obtained from h(X), by applying some
function Φ on it. Both functions f and Φ can be learned by MLP models, which is why the
final function for updating node representations looks as follows:

h(t)
v = MLP (t)

(1 + ϵ(t)) · h(t−1)
v +

∑
u∈N(v)

h(t−1)
u

 (2.8)

where ϵ is either a learnable parameter or a constant.

11

2 Fundamentals

12

CHAPTER 3
Related Work

A lot of research has been done for MC, the unweighted variant of the MWC. Algo-
rithms that aim at finding the exact solution almost exclusively make use of the branch
and bound (B&B) paradigm (Section 2.3), whereas heuristics are typically based on local
search strategies. Both exact and heuristic algorithms leading up to the respective state-of-
the-art solvers are summarized in this section. A more detailed review on approaches to
solve MC has been published in 2015 by Wu and Hao [50]. As the MWIS and MWVC
solvers can be directly applied to solve MWC instances, some algorithms and techniques
for these problems are looked at as well.

3.1 Exact Solvers for the Maximum Clique Problem

The foundation for most exact algorithms these days was laid by CP [13], a B&B based
solver for the MC problem (Algorithm 2). On each including branch, the clique property
can be used to reduce the candidate set P , by keeping only the intersection of the current
candidate set with the neighborhood of the newly included vertex. This is possible since
only vertices that are adjacent to all vertices in the current clique can be added. The size of
the current clique |C| and the current candidate set |P | combined always provide an upper
bound on the current search space, while the lower bound is given by the size of the best
clique that was found at that point, |Ĉ|.
Most exact solvers that follow the CP algorithm use the same framework and focus on com-
puting a tighter upper bound. One successful technique is vertex coloring (Section 2.2): If a
graph can be colored with k colors, then the number of vertices in a clique must be |C| ≤ k.
This holds because every color class can only contribute up to one vertex to a clique since
vertices of the same color must be non-adjacent. With this, a much better upper bound
can be achieved than by only using the candidate set size. However, since VC is NP-hard,
computing a good coloring can be quite expensive in itself, which is why fast heuristics
are preferably employed. A popular heuristic works by iterating the candidate vertices and

13

3 Related Work

Algorithm 2 CP algorithm [13]
function MAIN

Ĉ ← ∅
Clique(∅, V)
return Ĉ

end function
function Clique(set C, set P)

if |C| > |Ĉ| then
Ĉ ← C

end if
if |C|+ |P | > |Ĉ| then

for all p ∈ P in predetermined order do
P ← P \ {p}
C ′ ← C ∪ {p}
P ′ ← P ∩N(p)
Clique(C ′, P ′)

end for
end if

end function

assigning the smallest color class to each vertex that is unique among its neighbors. If all
existing color classes are already used in a neighborhood, an additional class is introduced
until all vertices are colored.
Early classic algorithms to employ VC are e.g. BT [4] and MCQ [45], where the coloring
of G[P] is computed at every node in the search tree s.t. |P | > |Ĉ| , pruning the subtree
whenever the candidate set could be colored with less or equal than |Ĉ| − 1 colors. MCQ
additionally introduces the idea of using the coloring as a branching order by branching
on the highest color vertices first, the intuition being that vertices belonging to a high
color class must have a lot of interconnected neighbors and thus have a high chance of
being in a large clique. Konc and Janezic [30] improve the coloring based upper bound
further with MaxCliqueDyn by presenting the vertices to the greedy coloring heuristic in
a non-increasing order of their degrees. They dynamically recompute the vertex degrees
and reorder the vertices especially near the first few branches and only if its color number
Colorj is below the threshold |Ĉ| − |C| + 1. Another idea of improving the bound is the
idea of recoloring as presented in MCS [46]. That is, changing the color of a vertex to a
color class below kmin = |Ĉ| − |C| in order to decrease the total number of vertices to
be searched. In order to recolor a vertex v, a vertex w ∈ Colorj has to be found, that is
the only neighbor of v in that color class. Furthermore, there must be some color class
that does not contain a neighbor of w. If that is the case, v can be moved to Colorj with
j < kmin. Li et al. [35] improve the upper bound UBColor obtained by VC further, by
applying MaxSAT reasoning in their algorithm MaxCLQ. They do this by transforming the

14

3.2 Exact Solvers for the Maximum Weighted Clique Problem

Algorithm Name Publishing Date Description
CP [13] 1990 Fundamental B&B algorithm.
BT [4] 1990 First algorithm to use vertex coloring to improve

upper bounds.
MCQ [45] 2003 Introduced the idea of using the coloring as an or-

dering for B&B.
MaxCliqueDyn [30] 2007 Improved the coloring heuristic.
MCS [46] 2010 Proposed the idea of decreasing the set of branching

vertices by recoloring.
MaxCLQ [35] 2010 First algorithm to use MaxSAT reasoning for reduc-

ing the search space.

Table 3.1: Overview of exact solvers for MC.

graph into a MaxSAT instance, where they add ISs as soft clauses instead of the vertices
itself. To improve UBColor, they repeatedly look for a set of disjoint conflicting soft clauses.
Each time such a set has been found, UBColor can be reduced by 1, since at least one
color class cannot contribute a vertex to the clique. The set is then relaxed, by adding an
additional variable to each clause, so that further conflicting soft clauses can be searched.
Table 3.1 gives an overview of the exact algorithms for MC.

3.2 Exact Solvers for the Maximum Weighted Clique
Problem

The MWC has significantly less solvers available compared to MC, which may be due to
its higher complexity and the fact that some ideas from MC solvers are not applicable here.
Ideas that have been extended to MWC are the upper bounds based on VC and MaxSAT.
The extension of VC was first proposed by Kumlander [31] as follows: Given a valid ver-
tex coloring of G[P] into the color classes Π = {D1, D2, ..., D|Π|}, the upper bound can be
computed as

∑|Π|
j=1w

∗(Dj). This holds, since each color class can contribute up to one ver-
tex v ∈ Dj of weight w(v) ≤ w∗(Dj) to the same clique. MWCLQ [17] is the first to im-
plement the idea of MaxSAT reasoning introduced by the MC solver MaxCLQ [35]. It does
so, by encoding the graph into a MaxSAT instance as before, but associating a weight with
each literal in a soft clause. When detecting a set of disjoint conflicting soft clauses, the set
is split by weight into the conflicting subset, and a subset that can be searched further, simi-
lar to MaxCLQ. WLMC [26] also relies on MaxSAT reasoning and contributes an efficient
preprocessing step, that computes an initial clique Ĉ, as well as a vertex branching order-
ing. It furthermore computes a simple upper bound on the maximum weight clique a vertex
can be part of as w(N [v]), and removes vertices s.t. w(N [v]) ≤ w(Ĉ). TSM-MWC [25]
refines the approach further with a two-stage MaxSAT reasoning approach, that applies less

15

3 Related Work

Algorithm Name Publishing Date Description
MWCLQ [17] 2016 First algorithm to extend the MaxSAT reasoning ap-

proach to MWC.
WLMC [26] 2017 Extended MWCLQ by an efficient preprocessing step.
TSM-MWC [25] 2018 Refined the MaxSAT reasoning approach used in the

previous solvers. Represents the state-of-the-art.

Table 3.2: Overview of exact solvers for MWC.

expensive MaxSAT techniques to reduce the number of branching vertices, before looking
for disjoint conflicting soft clauses exhaustively. TSM-MWC currently achieves the best
results for a wide spectrum of graph instances, most notably massive real-world graph in-
stances, and can be seen as the current state-of-the-art. Table 3.2 gives an overview of the
exact algorithms for MWC.

3.3 Heuristic Solvers for the Maximum Clique
Problem

The most successful heuristic framework for the MC is local search. In a local search
algorithm, a clique is constructed by inserting a single starting vertex into the growing
clique C and repeatedly adding vertices that are adjacent to all vertices in C using some
evaluation function. The set of candidate vertices is denoted as PA. Once no more add
operations can be performed, some vertices must be removed before a larger clique can
be constructed. In order to avoid loops, local search algorithms typically implement a
prohibition rule that restricts which vertices can be removed or added back into the solution.
In 1993, Gendrau et al. [20] propose two algorithms, DT and PT, implementing this proce-
dure. DT follows a deterministic scheme by adding the vertex with the highest degree first.
When no more vertex can be added, the vertex that results in the largest PA is removed.
As a prohibition rule they simply disallow removed vertices to be added again for some
time. The second algorithm PT randomly selects which vertex to add to the current solu-
tion. Battiti & Tecchiolli build on these ideas in their algorithm RLS [5]. The algorithm
works similar for the most part, but puts more emphasis on diversification by choosing
the prohibition period dynamically and adding a restart mechanism, which ensures that all
vertices are included in a clique at some point. Later, PLS [40] is among the first to in-
clude the swap operator in the main search procedure. This operator looks for a vertex in
OM , a set of vertices that are connected to all but one vertex of C. In PLS, the operator is
applied once no more add operations are possible. If neither operators are applicable, the
clique is perturbed by adding a random vertex and removing all non-adjacent vertices from
the clique. The algorithm uses several vertex selection rules for different types of graphs,
which are later improved by CLS [41]. Wu and Hao show in their algorithm MN/TS [52],

16

3.4 Heuristic Solvers for the Maximum Weighted Clique Problem

Algorithm Name Publishing Date Description
PT & DT[20] 1993 Two early heuristic algorithms implementing tabu

search.
RLS [5] 1994 Improved the previous tabu search approach by dy-

namic rules and a restart mechanism.
PLS [40] 2006 Introduced the swap operator to tabu search.
CLS [41] 2011 Improved vertex selection rules of PLS.
MN/TS [52] 2012 Improved previous algorithms by a proposing a more

liberal usage of the swap operator.
BLS [7] 2013 Introduced dynamic perturbations to improve the

global performance.

Table 3.3: Overview of heuristic solvers for MC.

that it is beneficial to regard neighboring solutions presented by the different operators at
all times. Lastly, Benlic and Hao [7] introduced the idea of entirely changing the search
area upon stagnation in BLS. Table 3.3 gives an overview of the heuristic algorithms for
MC.

3.4 Heuristic Solvers for the Maximum Weighted
Clique Problem

Some of the available solvers for the MC have been extended to the MWC as well. Such is
the case for PLS [39], where instead of adding a random vertex among PA, the vertex is
randomly chosen only among the highest weight vertices. MN/TS [52] is also applicable
on the MWC and even outperforms previous approaches. As the authors point out, it is
especially important for the MWC to combine the search spaces of the three operators add,
swap and drop, since add is not strictly the better choice over swap or swap over drop re-
spectively here. LSCC [48] improves MN/TS by adding a prohibition rule based on config-
uration checking and altering it to fit MWC. In configuration checking, all vertices initially
have a configuration label 1, indicating that they are allowed to be added to the solution.
However they may be disallowed, once their configuration changes to 0. Strong configura-
tion checking (SCC) uses this tool to encourage or disencourage adding the neighbors of
a vertex v to the clique, based on the operation used on v. For example, SCC encourages
adding neighbors of an added vertex, but not neighbors of a dropped vertex. The second
algorithm LSCC+BMS further improves LSCC by using Best from Multiples Selection
(BMS), a strategy used to decide which vertex from the candidate set to add next [10].
BMS works by randomly sampling k different candidate vertices and choosing the best
vertex with respect to some benefit estimation function. Cai and Lin [11] interleave local
search with BMS and graph reductions in FastWCLq. The reductions they use compute

17

3 Related Work

upper bounds for each vertex, including the one used in WLMC, and remove the vertex
if one of the computed upper bounds is lower than the weight of the current best clique.
Every time an improved solution is found by local search, the reductions are reapplied,
in turn improving the odds of local search finding the optimal solution. SCCWalk4l [47]
adopts the previously seen successful strategies SCC, BMS and the graph reductions. They
furthermore introduce a technique called walk perturbation, which, similar to PLS [40],
adds a random vertex to the solution when the search stagnates and removes all vertices
that become invalid by this perturbation from PA. Finally, FastWCLq has been further
improved to also apply a reduction and hill climbing method based on vertex coloring [12].
SCCWalk4l and FastWCLq present the current state-of-the-art for heuristic MWC solvers,
with the former being especially dominant in small dense networks, such as graphs from the
DIMACS and BHOSLIB challenge [47], and the latter showing the best results in massive
real-world networks [12].
Besides local search, other approaches have been tried as well to improve existing state-of-
the-art solvers. Using Machine Learning for Problem Reduction (MLPR), Sun et al. [44]
are able to speed up existing solvers for some problem instances. Their method uses
Support Vector Machines (SVM), a supervised machine learning approach, to learn an
evaluation function on the quality of vertices. They apply this model to remove vertices
that receive a sufficiently low prediction of being in the optimal solution before applying
TSM-MWC or FastWCLq on the reduced graph. Besides basic vertex and graph metrics,
their model uses two probabilistic features, that, while proving effective, don’t scale well
to large graph instances. Very recently, another similar approach has been presented for the
equivalent MWVC by Langedal et al. [33]. Instead of SVM, they employ a graph neural
network model (Section 2.5.3) in their solver GNN & LS to classify whether a vertex is in
the solution or not. The algorithm starts by applying MWVC reductions on the input graph
exhaustively and solving small sub-graphs exactly by a branch-and-reduce. After that, an
ML architecture combining GNN with MLP layers is applied on the remaining graph to
classify the vertices with the highest probability of being in or out of the solution. The so-
lution is then optimized using local search. Overall their approach outperforms competing
state-of-the-art heuristics both in speed and solution quality.

3.5 Maximum Weighted IS Reductions

Being closely related to MWC, ideas from MWIS solvers can often be used to make
progress in solving MWC and vice versa. The MWIS reductions that inspired some of
the novel MWC reductions shown later are outlined in this section. From the numerous
reductions that have been engineered for the MWIS, the three exact reduction rules twin,
domination and isolated vertex removal [32], as well as an inexact reduction introduced by
Dahlum et al. [15] are of particular interest.

18

3.5 Maximum Weighted IS Reductions

Algorithm Name Publishing Date Description
PLS [39] 2008 Extended PLS to MWC.
MN/TS [52] 2012 The same as MN/TS for MC.
LSCC & LSCC+BMS [48] 2016 Two local search algorithms that improved

MN/TS by implementing SCC and BMS.
FastWCLq [11, 12] 2016/2021 Local search algorithm using BMS and

branching techniques in tandem with graph
reductions. Represents the state-of-the-art.

SCCWalk4l [47] 2020 Combined SCC, BMS, graph reductions and
walk perturbation. Represents the state-of-
the-art.

MLPR [44] 2019 Employed an SVM model to remove vertices
that are unlikely to be in the solution.

GNN&LS [33] 2022 MWVC solver using a GNN model to re-
move vertices that are unlikely to be in the
solution.

Table 3.4: Overview of heuristic solvers for MWC.

3.5.1 Twin Reduction

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

{u, v}
w({u, v}) = w(u) + w(v)

Figure 3.1: Twin Reduction for MWIS [32]

The twin reduction can be applied on two vertices v, u ∈ V , if {v, u} ̸∈ E and
N(u) = N(v). Depending on the weight distribution, either u and v or their neighborhood
will be in the MWIS. u and v can thus be simplified to a single vertex {u, v}, as illustrated
in Figure 3.1. Depending on the weight distribution, one of two further reductions may be
applicable:

(i) if w({u, v}) ≥ w(N({u, v}), u and v are part of some maximum IS and G can be
reduced to G′ = V \N({u, v})

19

3 Related Work

(ii) if w({u, v}) < w(N({u, v})), but w({u, v}) > w(N({u, v})) − mini(w(xi)), where
xi ∈ N({u, v}), {u, v} and N({u, v}) can be folded to a new vertex v′ with weight
w(v′) = w(N({u, v})) − w({u, v}). If v′ is in the final MWIS I ′ of the reduced
graph G′, N({u, v}) are in I , otherwise u and v are in I .

3.5.2 Domination Reduction

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

v

w(u)
N [u]

≤
⊇
w(v)
N [v]

Figure 3.2: Domination Reduction for MWIS [32]

For the domination reduction, two vertices v, u ∈ V have to be identified, for which
{u, v} ∈ E, N [u] ⊇ [v] and w(u) ≤ w(v) holds, as illustrated in Figure 3.2. In this
case, an IS including u could always be enlarged by excluding u and including v, which
is why u can safely be removed from the graph without reducing the maximum solution
weight.

20

3.5 Maximum Weighted IS Reductions

3.5.3 Simplicial Vertex Removal

G[V \ {v, p, q, r}]

p

q

r

v

G[V \ {v, p, q, r}]

p

q

r

∀x1, x2 ∈ N [v], {x1, x2} ∈ E
∀u ∈ N(v), w(v) ≥ w(u)

Figure 3.3: Simplicial vertex removal reduction for MWIS [32]

Simplicial vertices are vertices v whose neighborhood forms a clique C, i.e.
∀x1, x2 ∈ N [v], {x1, x2} ∈ E. Since v has no neighbor outside the clique, there must be
some MWIS that includes v, if it has the highest weight of all the vertices in the clique.

3.5.4 Increasing Transformations

Another idea that was first applied on the MWIS by Gellner et al. [19], is to transform the
graph G to G′ by removing specific vertices, and then adding vertices and edges such that
the graphs G and G′ are equivalent. While the transformations may result in a larger graph
initially, they open up the reduction space for other reductions, often leading to a smaller
graph in the end.

3.5.5 Vertex Peeling Reduction

Besides exact reductions that are not always applicable and sometimes take a long time
to compute, some research has been done on heuristic reduction rules as well. First con-
ceived by Dahlum et al. [15] for MIS, the idea is to cut high-degree vertices from the
graph in order to speed up local search, a procedure that was later called vertex peeling by
Chang et al. [14]. The rule is highly intuitive as high-degree vertices exclude more vertices
from an IS than low-degree vertices and are thus less likely to be in the solution. Further-
more, removing these vertices and all edges connected to them sparsifies the graph, often
opening up exact reduction rules that could not be applied before.

21

3 Related Work

3.5.6 Applying the Reductions
A straightforward way of computing a reduced graph given a set of Reduction Rules
{r1, ..., rj} used by Akiba and Iwata [3], is to iterate over all reductions and apply each
rule ri to all vertices. Whenever a reduction rule successfully reduces the graph, they re-
set to the first rule, such that once the last rule rj does not reduce the graph, the kernel
has been computed. As trying the reductions on all vertices in each iteration is expensive
and most likely redundant, more targeted reduction schemes are researched as well. For
instance, Chang et al. [14] compute and maintain a triangle count δ(u, v)∀{u, v} ∈ E to
decide whether to apply the domination reduction or not, since a vertex u only dominates
its neighbor v, if δ(u, v) = d(u) − 1. A lot of redundant computation can be avoided by
only applying the domination reduction on v, if the triangle count in N [v] changes.
Hespe et al. [24] conceive a more general strategy for targeted reductions called depen-
dency checking. The idea of dependency checking is, that vertices whose neighborhood
has not changed since last applying a reduction do not need to be rechecked by that same
reduction. To avoid redundant computations, the authors therefore keep a set of viable can-
didate vertices D, which they initially set to D = V and whenever a vertex is removed,
update to D = D ∪ N(v). The reductions are finished once D is empty. They also pro-
pose an additional technique called reduction tracking, which is motivated by the fact that
applying reductions exhaustively typically yields diminishing returns. For that reason, it is
sometimes beneficial to stop applying a rule once its effect becomes small relative to the
previously sampled rate of vertex removals to make room for more efficient reductions.
An important question is when to apply inexact reductions, as these have a high potential of
speeding up the algorithm but at the same time a high risk of reducing the solution quality.
For their vertex peeling reduction, Dahlum et al. [15] consider both removing vertices by
absolute degree, i.e. vertices with a degree higher than a specific threshold, and by relative
degree, where the highest-degree vertices are removed iteratively. In their solvers, the
reduction is applied after a subset of the exact reductions, removing the top 1% of high-
degree vertices and then running local search on the resulting graph. Chang et al. [14]
set a higher priority on exact reductions, by only applying vertex peeling when no more
exact reduction rules can be applied. They furthermore propose to try reapplying the exact
reductions after a heuristic vertex removal.
After applying the graph reduction rules, one option is to switch to an optimal solver such
as B&B to compute the final solution [32]. Another effective method is to interleave the
reductions with a local search or memetic algorithm, where reductions are applied both
initially and whenever more vertices are classified by the respective solver, since this likely
opens up new reductions [22].

22

CHAPTER 4
Algorithms

This chapter covers both exact and heuristic algorithms for tackling the MWC problem.
The exact algorithm applies a set of novel exact reduction rules to reduce the graph before
applying a B&B solver to obtain the solution. The heuristic approach additionally applies
vertex peeling using heuristic rules and machine learning to further speed up the computa-
tion. For the theoretical analysis, we assume that the graph is represented by an adjacency
list Alist and adjacency lookups are possible in O(1) expected time using a hash map.

4.1 Exact Approaches

This section describes the techniques used in the exact algorithm, including the exact re-
duction rules, how to apply them, and how to solve the reduced graph.

4.1.1 Exact Reduction Rules

The number of reductions for MWC so far is very limited. Much more effort has been put
into finding reduction rules for MWIS, some of which are highlighted Section 3. In the fol-
lowing subsections, novel reduction rules for the MWC that take inspiration from the pre-
viously seen MWIS reductions are presented and employed in the exact solver MWCRedu.

Neighborhood Weight Reduction

A simple but effective reduction often seen in literature [11, 12, 26, 25, 47] is based on the
upper bound of v ∈ V , which is given as w(N [v]).

Reduction Rule 1. Let v ∈ V have w(N [v]) ≤ w(Ĉ), where Ĉ is the largest weight clique
found so far. Then v cannot be part of a clique with a weight larger than that of Ĉ and v
can safely be removed from the graph without reducing the maximum solution weight.

23

4 Algorithms

The rule can be applied on a vertex v ∈ V in O(1), given that the neighborhood weight is
stored and maintained throughout the reductions.

Largest Neighbor Reduction

Another reduction rule introduced by Cai et al. [11] tightens Rule 1 by either including or
excluding the highest weight vertex n∗ in the Neighborhood.

Reduction Rule 2. Let v ∈ V and its highest weight neighbor n∗, s.t.
max(w(N [v])− w(n∗), w(v) + w(n∗) + w(N(v) ∩N(n∗))) ≤ w(Ĉ). Then v cannot be
part of a clique with a weight larger than that of Ĉ and v can safely be removed from the
graph without reducing the maximum solution weight.

For applying the rule on a vertex v ∈ V , first its highest weight neighbor is iden-
tified in O(d(v)) and then the intersection of their neighborhood is computed in
O(min(d(v), d(n∗)), resulting in overall O(d(v)).

Twin Reduction

The twin reduction for MWIS (Section 3.5.1) works by the argument, that the two vertices
u and v are either both or neither in the solution. For MWIS, this requires the vertices to
be non-adjacent, since they could otherwise not be in the same solution. In order to be
applicable to the MWC, the reduction is altered slightly, while keeping the notion of twins
intact. Specifically, v and u are required to be adjacent and to share the same neighborhood,
such that if either one of them is in the solution, the other one may always be added as well.
An illustration of the reduction for the MC is shown in Figure 4.1.

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

{u, v}
w({u, v}) = w(u) + w(v)

Figure 4.1: Twin reduction for MWC

Reduction Rule 3. Given two vertices v and u, s.t. {v, u} ∈ E and N(u) = N(v),
the vertices can be contracted to a new vertex v′ with weight w(v′) = w(v) + w(u) and
N(v′) = N(v) = N(u) without reducing the maximum solution weight.

24

4.1 Exact Approaches

Proof. Suppose there is an optimal solution C∗ that, without loss of generality, contains
u, but not v. Then it is always possible to add v to the solution, as it is connected to all
neighbors of u, resulting in a higher weight solution. There can therefore be no optimal
solution that contains u and not v and vice versa.

The only computation that is needed to evaluate two vertices v, u ∈ V is the intersection
of their neighborhoods, which can be computed inO(d(v)). Note that the computation can
be skipped if d(v) ̸= d(u).

Domination Reduction

Given the case that N(v) ⊆ N(u) for v, u ∈ V , the domination reduction for MWIS
(Section 3.5.2) removes the dominating vertex u if it has a weight w(u) ≤ w(v), as it
excludes strictly more vertices if it is included in the solution than v. In the context of
MWC on the other hand, a maximal clique containing u with w(u) ≥ w(v), would have a
weight greater or equal to one including v. Given the two cases, where v and u are either
adjacent or non-adjacent, two different reduction rules can be applied. In the case, that they
are non-adjacent and the dominating vertex u has weight w(u) ≥ w(v), it is possible to
remove v.

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

w(v)
N(v)

≤
⊆
w(u)
N(u)

u

Figure 4.2: Domination reduction (Case 1) for MWC

Reduction Rule 4. Given two vertices v and u, s.t. {v, u} ̸∈ E, N(v) ⊆ N(u) and
w(u) ≥ w(v), vertex v can be removed from the graph without reducing the maximum
solution weight.

Proof. Suppose there is an optimal solution C∗ that, without loss of generality, contains v,
but not u. Then it is always possible to substitute v with u in the solution, as u is connected
to all neighbors of v, resulting in a solution with at least the same weight. There is therefore
at least one optimal solution that does not contain v.

25

4 Algorithms

As the vertices v and u are non-adjacent, u is initially not known. Therefore, the common
intersection of N(v) is computed, in order to find candidates for u, where only vertices w
s.t. w ̸= v, d(w) ≥ d(v), w(w) ≥ w(v) and {w, v} ̸∈ E are considered as candidates. This
can be done in O(d(v)|V |), since each neighbor could be connected to all other vertices in
the worst case. For each candidate, the neighborhood intersection with v is computed in
O(d(v)). This computation can be stopped prematurely, if a vertex w s.t. w ∈ N(v) and
w ̸∈ N(u) is found. Overall, the time complexity of applying the reduction on a vertex v
is O(d(v)|V |).

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

v

w(v)
N(v)

≤
⊆
w(u)
N(u)

u

w′(v) = w(v) + w(u)

Figure 4.3: Domination reduction (Case 2) for MWC

In the case that they are adjacent, simply removing v is not possible, since it may be part of
a clique containing u. It is however possible, to add the weight of u to v and then remove
the edge {u, v}, preserving the best solution achievable by v and u being in the same clique
while reducing the graph at the same time.

Reduction Rule 5. Given two vertices v and u, s.t. {v, u} ∈ E and N(v) ⊆ N(u), the
edge {u, v} can be removed from the graph after updating w(v) to w′(v) = w(v) + w(u)
without reducing the maximum solution weight.

Proof. Equivalence must be shown for two cases. For the first case, without loss of gen-
erality, suppose the optimal solution C∗ in the original graph contains both u and v. Then
w(C∗) ≤ w(u) + w(v) + w(N(v)), which is identical to w′(v) + w(N(v)) in the re-
duced graph. If C∗ in the original graph contains u but not v, its weight is bounded by
w(u) + w(N(u)), which is identical in the reduced graph. The case that C∗ in the original
graph contains v but not u cannot occur, since any solution containing only v can always
be enlarged by adding u, since u is connected to all neighbors of v.

Similar to the twin reduction, only the intersection of the neighborhoods of v and u is
required to evaluate the reduction for the two vertices, resulting in a time complexity of
O(d(v)). Two vertices are only evaluated, if d(v) < d(u), and the computation can be
stopped, as soon as a vertex w s.t. w ∈ N(v) and w ̸∈ N(u) is found.

26

4.1 Exact Approaches

Simplicial Vertex Removal Reduction

G[V \ {v, p, q, r}]

p

q

r

v

G[V \ {v, p, q, r}]

p

q

r

∀x1, x2 ∈ N [v], {x1, x2} ∈ E

Figure 4.4: Simplicial vertex removal reduction for MWC

As is the case for MWIS (Section 3.5.3), simplicial vertices may be removed before apply-
ing the MWC solver as well. This can be done, since once a simplex v has been identified,
the largest clique C it can be part of is known and can be evaluated as w(C) = w(N [v]).
If the weight is larger than the current largest known clique, the lower bound is updated.

Reduction Rule 6. Let v ∈ V s.t. ∀x1, x2 ∈ N [v], {x1, x2} ∈ E . Then if
w(N [v]) > w(Ĉ), the solution is updated to Ĉ = N [v]. After that, v can be removed
from the graph without reducing the maximum solution weight.

Proof. Correctness must be shown for two cases. Either the clique formed by N [v] is an
improved solution, i.e. w(N [v]) > w(Ĉ), or it is not, i.e. w(N [v]) ≤ w(Ĉ). In the first
case, the solution is updated to Ĉ = N [v]. w(N [v]) ≤ w(Ĉ) now holds in both cases and
indicates, that v cannot be part of an improved solution.

Since the adjacency between each pair of vertices in the neighborhood of v needs to be
confirmed, the computation takes O(d(v)2). The computation is stopped, as soon as a
vertex w ∈ N(v) that is not connected to all other vertices in N(v) is found.

Edge Bounding Reduction

The Edge Bounding Reduction is a natural extension to Reduction Rule 2, using the
computed bounds not only to decide whether a vertex can be removed, but also the
edge connecting it with its highest weight neighbor. Given a vertex v ∈ V and
its highest weight neighbor n∗ ∈ N(v), let ubinc denote the including upper bound
w(v) + w(n∗) + w(N(v) ∩N(n∗)) and ubex the excluding upper bound w(N [v])−w(n∗).
The reduction implemented in Rule 2 states, that v can be removed if both ubinc ≤ w(Ĉ)
and ubex ≤ w(Ĉ) hold. The extension provided by the edge bounding reduction is based

27

4 Algorithms

Reduction Rule Time Complexity Application
1 O(1) v ∈ V
2 O(d(v)) v ∈ V
3 O(d(v)) v ∈ V and u ∈ N(v), s.t. d(v) = d(u)
4 O(d(v)|V |) v ∈ V
5 O(d(v)) v ∈ V and u ∈ N(v), s.t. d(v) < d(u)
6 O(d(v)2) v ∈ V
7 O(d(v)) v ∈ V
7(Extended) O(min(d(v), d(u))) v ∈ V and u ∈ N(v)

Table 4.1: Overview of the time complexity of exact reduction rules for MWC.

on the observation, that in the case that ubex > w(Ĉ) but ubinc ≤ w(Ĉ), it is possible to
remove the edge connecting n∗ and v.

Reduction Rule 7. Given the vertices v and n∗, s.t. {v, n∗} ∈ E, if ubinc ≤ w(Ĉ), the edge
{v, n∗} can be removed from the graph without reducing the maximum solution weight.

Proof. ubinc is an upper bound on the weight of any clique containing both v and n∗. If a
clique Ĉ with weight w(Ĉ) ≥ ubinc is known, then there is at least one optimal solution
C∗ that does not contain both v and n∗. The edge {v, n∗} is thus irrelevant in the search for
a higher weight solution.

The time complexity is identical to that of Rule 2: O(d(v)). Another extension can be made
by branching not only on the highest weight neighbor, but on all neighbors. The proof still
holds since the branching procedure does not depend on specific weight configurations.
The time complexity for applying the reduction on a pair of vertices v and u then becomes
O(min(d(v), d(u))).
Table 4.1 gives an overview of the exact reduction rules for MWC, where the first column
indicates the reduction number, the second column the time complexity of applying the
reduction once and the third column the set of eligible vertices.

4.1.2 The Exact Solver
The exact solver presented in this work is denoted as MWCRedu. It works in two stages:
First, the set of exact reduction rules from Section 4.1.1 is used to reduce the graph. Once
the reductions terminate, the reduced graph is passed to an exact B&B solver to compute
the final solution.

28

4.1 Exact Approaches

Algorithm 3 Computing the lower bound
U ← V
for i := 1 to |U | do

vi ← minv∈U(d(v))
if d(vi) = |U | − 1 then

C0 ← U
return C0

end if
U ← U \ vi
for u ∈ N(vi) do

d(u)← d(u)− 1
end for

end for

Computing a Lower Bound

Reduction Rules 1, 2 and 7 compute an upper bound and thus depend on an initial so-
lution to remove vertices. For computing bounds, fast heuristics are generally preferred,
since spending more time on improving the initial solution typically gives diminishing re-
turns. A well suited heuristic for computing an initial lower bound is the one employed in
WLMC [26]. As shown in Algorithm 3, the algorithm works by repeatedly removing the
vertex with the smallest vertex degree from the graph, until after i − 1 vertices have been
removed, all remaining vertices are adjacent to each other and form the initial clique C0.
The initial lower bound is then given as w(C0).
During the reduction phase, the initial solution is continuously improved both by Rule 6
and the local search algorithm from FastWCLq [12], the latter being applied on the reduced
graph in between checking each reduction rule. The local search algorithm starts the clique
construction by adding a single vertex from a set of starting vertices, which is regulated
such that each vertex is used at least once, and enlarges the clique using BMS. Specifically,
a number of random vertices from the set of candidates are evaluated and the best one
according to the following benefit estimation function is added to the clique.

b̂(v) =
2 w(v) + w(N(v) ∩ CandSet)

2
(4.1)

After no more vertices are in the candidate set, further improvements are attempted on the
given clique C using a lightweight B&B algorithm (Section 2.3): For each vertex v ∈ C,
the algorithm computes the maximum weight clique C ′

v among the new candidates of C \v.
If w(C ′

v) > w(v), an improved solution is found and C is updated to C ′
v accordingly. The

B&B algorithm is implemented using a coloring-based upper bound. Given a valid vertex
coloring of G[P] into the color classes Π = {D1, D2, ..., D|Π|}, the upper bound can be
computed as

∑|Π|
j=1 w

∗(Dj). The coloring is computed by iterating the candidate vertices in
descending order of weight, tie-breaking by degree, and assigning the smallest color class

29

4 Algorithms

to each vertex that is unique among its neighbors. If all existing color classes are already
used in a neighborhood, an additional class is introduced until all candidate vertices are
colored [12].
The best solution found by the initial heuristic, local search or the simplex reduction is then
used as a lower bound in the reduction rules 1, 2 and 7. It is furthermore used as an initial
solution for the solver that is applied on the reduced graph.

Applying the Reductions

For applying the exact reduction rules proposed in Section 4.1.1, an adapted version of
the strategy from Hespe et al. [24] (Section 3.5.6) that entails both dependency checking
and reduction tracking is used. Specifically, the reductions {r1, ..., r7} are iterated with
each rule ri being tried on its set of viable vertices Di, which is initially set to Di = V .
Every time a rule fails to reduce a vertex, that vertex is removed from the set of viable
candidates Di, whereas otherwise, the sets of all rules are updated to Di = Di ∪N(v) for
i = {1, ..., 7} and the applicable vertices or edges are removed from the graph. This way
redundant computations are minimized without affecting the final kernel size [24].
Slightly different from the original strategy, reduction tracking is implemented by pausing
a reduction, once it fails to achieve a reduction rate of at least 1 % of the current number
of vertices or edges per second, until another reduction reduces the graph by that amount.
Reduction tracking is checked both in-between applying different reduction rules and peri-
odically during the iteration of candidate vertices, in order to prevent single reductions to
delay the solver and allow either more efficient reductions or the exact solver to take over.
Another addition to the strategy by Hespe et al. is to set a dynamic limitation on the degree
of vertices that are tried in the reductions. The limit is set to 10 % of the highest degree
initially and is increased by 10 % whenever the reductions have been exhaustively applied
in the previous level. This guarantees, that reductions applicable on low degree vertices,
which are typically more efficient, are applied first. The loop terminates once the degree is
no longer limited and all reductions are paused, at which point the reduced graph is passed
to the exact solver to compute the final result.

Solving the Reduced Graph

The reduced graph is solved using the B&B paradigm, which is guaranteed to output the
optimal solution given enough time, by considering all valid combinations of vertices as
a solution. As the procedure has exponential time complexity, it is important to choose a
good ordering and to reduce the set of branching vertices by computing tight upper bounds.
The ordering is computed as in WLMC as v1 < v2 < ... < v|V |, where v1 has the smallest
vertex degree, v2 has the smallest vertex degree after v1 is removed, etc [26].
For computing tight upper bounds and reducing the set of branching vertices, efficient IS-
and MaxSAT-based approaches from related work are applied throughout the search. As
in the B&B solver from Section 4.1.2, the VC heuristic is used to obtain an upper bound

30

4.1 Exact Approaches

ub =
∑|Π|

j=1w
∗(Dj), where the color classes Π = {D1, D2, ..., D|Π|} form the ISs [26]. The

set of branching vertices is then further reduced by using the two-stage MaxSAT reasoning
approach from TSM-MWC [25]. In the first stage, which the authors refer to as binary
MaxSAT reasoning, the set of branching vertices is reduced by inserting as many vertices
as possible into the ISs s.t.

∑|Π|
j=1w

∗(Dj) ≤ w(Ĉ). As these vertices cannot form a clique
with a weight larger than w(Ĉ) by themselves, they can be removed from the set of branch-
ing vertices. If a vertex vi ∈ V has neighbors in all existing ISs but ub+ w(vi) ≤ w(Ĉ)
holds, it is inserted as a new IS. Otherwise it is attempted to split its weight among ISs that
do not contain any of its neighbors, by adding vi with weight w∗(Sj) into IS Sj and updat-
ing the weight to w(vi) = w(vi) − w∗(Sj) for j = 1, 2, ..., k, until its remaining weight
is given as δ = w(vi) −

∑k
j=1 w

∗(Sj). If δ > 0 and ub + δ ≤ w(Ĉ), vi is inserted as a
new IS with weight δ, otherwise the weight splitting procedure is undone and vi is kept
in the set of branching vertices. In the second stage, called ordered MaxSAT reasoning,
the set of branching vertices is reduced further, by detecting disjoint conflicting subsets of
ISs. Firstly, the weight of a branching vertex vi is again split among the ISs {S1, S2, ..., Sk}
that do not contain any of its neighbors, resulting in the remaining weight w(vi) = δ > 0,
since the vertex was not removed from the set of branching vertices in the first stage. After
that, the algorithm tries to find a set of ISs {U1, U2, ..., Ur} that each contain exactly one
neighbor u of vi. It then looks for an IS Dq s.t. Dq ∩N(vi) ∩N(u) = ∅ for any Uj , prov-
ing that the sets {{vi}, Uj, Dq} are conflicting. In this case, ub can be further improved to
ub+ δ − β, where β = min(δ, w∗(Uj), w

∗(Dq)) [25].
Finally, if after considering all Uj ∈ {U1, U2, ..., Ur} ub is still higher than the lower bound,
ub is reduced by identifying conflicting subsets via unit propagation as first implemented
for MWC in MWCLQ [17]. Unit propagation works from the idea that clauses with more
literals are more likely to be satisfied and are thus considered weaker clauses. A unit
clause is thus the strongest clause since it only has one possibility of evaluating to true.
The algorithm repeatedly satisfies such a clause, removing all occurrences of the contained
literal from the other clauses. If an empty clause remains, the set of clauses is identified as
conflicting. Each time a set of conflicting clauses {S0, S1, ..., Sr} is identified, the upper
bound can be reduced by δ = min(w∗(S1), ..., w

∗(Sr)). To tighten the bound further, each
Sj (0 ≤ j ≤ r) is split into S ′

j and S ′′
j so that w∗(S ′

j) = δ and w∗(S ′′
j) = w∗(Sj)− δ. S ′

j

then represents the conflicting subset found so far, whereas further conflicts can be deduced
from S ′′

j [17].
The procedure is run at every branch of the solver in order to reduce the amount of work
to be done. The algorithm terminates, when all branches are either explored or pruned,
i.e. the optimal solution is found, or when the time limit is reached, in which case the best
solution found at that point is reported.

31

4 Algorithms

4.2 Heuristic Approaches

As will be evident in Section 6, there are graph instances for which the exact reduction rules
by themselves are not sufficiently effective. Furthermore, in real world scenarios where the
optimal solution is not known, it is often the case that getting a good approximation fast
is preferable over taking a long time to find the optimal solution. For this reason, we
investigate vertex peeling techniques similar to the ones employed by Dahlum et al. [15]
for MIS (Section 3.5.5). Vertex peeling denotes the technique of removing the vertices
from the graph, that are assigned the lowest scores by some heuristic rule. This rule must
therefore capture the likelihood of a vertex belonging to the solution as well as possible. As
for MIS, using the vertex degree is the obvious choice for MC as well, since a vertex with
a high degree is more likely to form a large clique. Specifically d(v) gives an upper bound
on the size of the clique v can be part of. For the measure to remain an upper bound in
the context of MWC, the weight of the neighborhood of each vertex is taken into account.
The resulting simple and intuitive scoring measure w(N [v]) is used in the first peeling rule,
PeelUB.
Another promising approach is to train a machine learning model (Section 2.5) to pre-
dict the likelihood of a vertex belonging to the solution based on some input features.
Graphs for training the model are openly available in online graph repositories from real
world problems [16] or from random graph generators such as KaGen [18]. Since labels
can be obtained by solving easier graphs to optimality using an exact algorithm such as
TSM-MWC [25], supervised learning algorithms are the obvious choice. In order for any
ML model to infer a score representing the potential of a vertex to be in the optimal so-
lution, both information about the weight distribution in the neighborhood and about the
neighborhood connectivity are required. Since the main goal of a heuristic is to find a good
solution fast, the effect of each feature on the accuracy of the model needs to be balanced
with its computational cost.

4.2.1 Vertex and Graph Features

Obvious choices for model features as seen in previous work [44] are the vertex weight,
degree and neighborhood weight, as these features can be aggregated while reading the
graph and maintained in linear time in case of a vertex removal. A feature that is more
expensive to compute but gives valuable information about the neighborhood connectivity,
is the local clustering coefficient (LCC). The LCC is defined as the number of edges in the
neighborhood of a vertex divided by the total possible number of edges and thus gives a
measure of how close the neighborhood is to being a clique. It can be computed for each
vertex v ∈ V inO(d(v)2), by checking the adjacency between each pair of vertices in N(v)
and applying Equation 4.2.

LCC(v) =
2 | {u,w ∈ N(v) | {u,w} ∈ E} |

d(v)(d(v)− 1)
(4.2)

32

4.2 Heuristic Approaches

Another measure to quantify communities in a graph can be obtained from running a semi-
supervised clustering algorithm such as label propagation on the input graph. Label prop-
agation works by first initializing the labels such that each vertex has a unique label. The
algorithm is then executed either until termination, or until ℓ passes have been made. In
each pass, the vertices are iterated and the label of the current vertex is updated to the label
occurring most frequently in its neighborhood. After a few iterations of the algorithm, the
labels of the vertices should give information on their connectivity, since vertices with more
common labels are more likely to be in large communities. The running time is O(ℓ|E|).
Given a selection of vertex features, it is important for the model to generalize to different
types of graphs. If two vertices differ significantly in value for specific features, e.g. be-
cause of different weight distributions, the model will likely over-fit on the higher valued
features as a result. To tackle this issue, all input features of a given graph are divided by
the respective maximum occurring value, except for the LCC, which is already constrained
to [0,1]. Furthermore, graph features can be used to relativize the given vertex feature val-
ues. Such features include the graph density and the graph clustering coefficient (GCC).
The GCC measures the graph connectivity by computing the number of triangles divided
by the number of all triplets, meaning sets of three nodes that are connected by two or
three edges. It can be computed as the average of all LCCs in the graph in O(|V |), if the
LCCs are already known. Optimally, this should lead the ML model to not only interpret
the given vertex features as absolute values, but to evaluate them in the context of the entire
graph, such that a vertex in a dense graph needs a higher local connectivity than a vertex in
a sparse graph to be assigned a high score.

4.2.2 Machine Learning Model Architectures

From the wide range of existing supervised machine learning models, four models are
trained and evaluated in this work: Two MLP models, a DeepSet-based approach and a
GNN model.

Multi-Layer Perceptron Architecture

The first model PeelMLPfast uses MLP layers (Section 2.5.1) and only basic features, i.e.
vertex weight, vertex degree, vertex neighborhood weight and graph density, making it
possible to run inference frequently and on large graph instances. The model is visualized
in Figure 4.5. A second model PeelMLPfull uses the LCC, cluster size and GCC in addition to
the features employed in PeelMLPfast. Both models are made up of the input layer, followed
by three hidden layers with 300, 100 and 30 neurons respectively, and the output layer.
Non-linearity is applied on the first three layers using the ReLU function and on the last
layer using the sigmoid function to allow the output to be interpreted as a probability.

33

4 Algorithms

w(v)

d(v)

w(N [v])

ρ

Input Layer Hidden Layers Output Layer

4× 300 300× 100 100× 30 30× 1

Figure 4.5: MLP model

DeepSet Architecture

The DeepSet architecture [54] (Section 2.5.2) is interesting in this application, since it
enables the use of arbitrarily sized input sets as features for an ML model. The model
PeelDeepSet makes use of this, by using the weights of the inclusive neighborhood of each
vertex as the main input feature. First, given some vertex v ∈ V , the inner MLP ϕ is
applied on w(v) and w(u) ∀ u ∈ N(v). The outputs are then summed up and used as an
input feature for the outer MLP ρ. The idea is, that the model should be able to learn any
function on the weight distribution of each vertex this way. As the weights itself do not
give information on the connectivity, the vertex degree, cluster size, LCC, GCC and graph
density are added as input to ρ as well. To allow efficient batching techniques without
requiring too much RAM space, the input set of ϕ is padded or trimmed to a fixed size
of 100. Both neural networks ϕ and ρ follow the same structure as the one employed in
PeelMLPfast and PeelMLPfull.

Graph Neural Network Architecture

Another natural choice for addressing graph optimization problems is GNN (Section 2.5.3),
an ML framework designed for graph-like structures. GNN layers have access to the adja-
cency matrix, which they use to propagate messages, i.e. vertex features, within neighbor-
hoods. Since information about the graph connectivity is already contained in the adjacency
matrix, the only feature that should be required is the vertex weight. From the various types
of GNN layers in literature, GIN [53] is chosen, as it is best suited for identifying specific
structures in the neighborhood of a vertex, which intuitively should be an advantage when
looking for large interconnected clusters.

34

4.2 Heuristic Approaches

The message passing is implemented as

h(t)
v = MLP (t)

h(t−1)
v +

∑
u∈N(v)

h(t−1)
u

 (4.3)

where h
(t)
v is the feature vector of v ∈ V at time t and the MLP follows the same structure

as in the MLP-based strategies. The ML model is made up of one GIN layer, since the
most relevant information should be contained in the 1-neighborhood of each vertex. The
resulting strategy is denoted as PeelGNN.

4.2.3 Training the Machine Learning Model

For training the models, 220 graphs from openstreetmap.org, the second DIMACS
challenge [27] and the SuiteSparse matrix collection [16] are chosen, that can be solved
within less than a second by TSM-MWC. While training on harder instances would likely
be more fruitful, obtaining high quality labels for these would be difficult. The idea is, that
the model learns to identify high quality vertices based on a local graph structure, which
should generalize to harder instances as well. After labeling the graphs such that the label
represents the potential value of each vertex in a weighted clique, the models are trained
and implemented into the solver.

Procuring the Labels

While GNN & LS [33] achieves a high accuracy of around 80% for MWVC by simply
assigning binary labels to the vertices depending on whether they are in the solution or
not and then applying classification, this approach is less promising for MWC. That is
because for MWVC, the number of vertices in and out of the solution is approximately
equal, assuming a typical power-law distribution w.r.t. the degrees. For MWC however,
being applied on the complement graph, the same labeling strategy would result in a highly
unbalanced class distribution, which is hard to learn by a supervised ML model. For this
reason, an alternative labeling strategy is proposed as shown in Algorithm 4. Each vertex
is assigned a value in [0, 1], denoting the highest weight clique it can potentially be part of
divided by the weight of the optimal solution. The largest weight clique containing a spe-
cific vertex v can be computed with any exact MWC solver, by first increasing the weight
of the respective vertex by a sufficiently large constant to w′(v) = w(v)+ c, computing the
optimal solution (which is guaranteed to contain v due to the increased weight) and finally
reverting the weight augmentation. The labels are then obtained after running the solver n
times as label(v) = w′(Ĉv)

w′(Ĉ)
, where w(Ĉ) = maxv∈V (w(Ĉv)). The advantage of this label-

ing strategy is not only that the class distribution is more balanced, as every vertex receives
a label greater than zero, but also that vertices contained in high weight cliques, that would
have been assigned the label 0 otherwise, are also assigned a high label. This property is

35

openstreetmap.org

4 Algorithms

Algorithm 4 Computing the labeling
for v ∈ V do

w(v)← w(v) + c
Ĉv ←TSM-MWC(G[V])
label[v]← w(Ĉv)− c
w(Ĉ)← max(w(Ĉ), w(Ĉv)− c)
w(v)← w(v)− c

end for
for v ∈ V do

label[v]← label[v]

w(Ĉ)

end for
return label

especially useful for heuristic algorithms, since they aim to find any high quality solution
quickly.

Training Procedure

The training itself is done in a similar manner for each model. First, the labeled graphs are
separated by a 90%-10% split into training- and validation data, where the model only di-
rectly learns from the training data and the validation data serves the purpose of evaluating
how well the model generalizes to data it has not seen before, as will be the case in practice.
The models are then trained for 25 epochs, where one epoch is finished after all batches of
the training set have been passed to the model once. The batch size is chosen as 50,000
vertices for the MLP and DeepSet models and 10 graphs for the GNN models. After each
epoch, the average score the model assigns to vertices with the label 1 in the validation set
is compared with the average score assigned to all other vertices in the validation set to in-
dicate the performance of the model. The models achieving the highest difference between
the two values are taken into consideration for inference later on.

4.2.4 The Heuristic Solver

In this section, the heuristic MWC solver MWCPeel is introduced. The solver works sim-
ilar to MWCRedu described in Section 4.1.2, but implements the peeling reduction on top
of the previously introduced exact reductions. The peeling rule that is used for the heuristic
reduction is determined in Section 6, by comparing the different peeling rules and choosing
the best one. The remainder of this section discusses how to use the scores assigned to each
vertex to reduce the graph and when to stop the heuristic reductions and pass the reduced
graph to the B&B solver.

36

4.2 Heuristic Approaches

Peeling Strategy

A straightforward approach is to run inference on the entire graph and remove the vertices
with the lowest score. Similarly to the approach used by Dahlum et al. [15], a percentage of
the currently remaining number of vertices is removed in each step, in order to minimize the
overhead of running inference on the entire graph. The number of vertices to be removed
in one step num is dynamically determined as follows:

num =

{
10 % · |V |, if |V | > 50,000

max(1 %, 10 % · |V |
50,000

), otherwise.

The differentiation between larger and smaller graphs is made since the exact reductions
would otherwise often be reapplied on many vertices, which would significantly slow down
the solver. Furthermore, as the degree often follows a power-law distribution w.r.t. the
degrees in real-world graph instances [23], the size of the optimal solution makes up a
smaller portion of the graph for large graphs. After each peeling step, the viable candidate
sets are updated and exact reductions are re-evaluated.

Stopping Criteria

Another important decision is when to stop applying the peeling reduction; stopping too
early could result in a much higher running time for the solver applied on the reduced
graph, whereas stopping late might negatively impact the solution quality. Since the op-
timal amount of vertices to reduce is highly dependent on the graph structure, a static
stopping criterion is unlikely a good strategy. For this reason, a dynamic strategy is em-
ployed, that works by comparing the current computed score with previously computed
scores. The first stopping criterion is the deterioration of the maximum score value below
a certain threshold relative to the total maximum score value, as this indicates that the peel-
ing reduction begins to reduce the maximum solution. A second stopping criterion takes
effect, when the difference between the minimum and maximum score shrinks below a cer-
tain threshold, as this shows, that the scoring model can no longer clearly distinguish high
quality vertices from low quality vertices. Both thresholds are chosen as 90% to achieve a
good balance between speed-up and solution quality. As a fail-safe, a backup of the current
graph state is created before applying the heuristic reduction, which can be reloaded in the
case the graph is reduced to zero. Following the reduction procedure, the B&B solver is
applied on the reduced graph to obtain the final result.

37

4 Algorithms

38

CHAPTER 5
Implementation

While the previous chapter focused on the theoretical description and the general idea of
the algorithms, this chapter describes the implementation from a practical point of view.

5.1 Implementing the Exact Approaches

As the solver should be able to process even huge graphs, the space requirement has to
be taken into account when choosing the data structure for representing the graph. The
minimum space requirement of O(|V | + |E|) can be achieved by using a simple ad-
jacency list Alist. Using sequential search, checking whether two vertices are adjacent
takes O(min(d(v), d(u))). This poses a challenge for computing common neighborhoods
(Rule 7), dominating neighborhoods (Rule 3,4,5) and interconnectivity (Rule 6) efficiently.
The naive algorithm to compute the intersection of two neighborhoods, which simply
checks the adjacency of v with each of its neighbors u, is quadratic in the degree, mak-
ing it infeasible for most larger graph instances. One way to speed up these computations
would be to make sure the adjacency list is always sorted, which would lead to a time com-
plexity that is logarithmic in the degree. This is however not an option since the deletion
of vertices itself would become quite costly. The following approaches give a much better
runtime for the given reductions.

5.1.1 Efficiently Computing Common Neighborhoods

An efficient way to compute the common neighborhood of two adjacent vertices v and u,
used by Cai et al. [11] in FastWCLq to check Reduction Rule 2, uses a boolean indicator
list of size |V |. In a first iteration, all neighbors of v are marked as false. After that, the
neighbors of u are marked as true. Finally, all vertices w ∈ N(v) where the indicator list
evaluates to true form the common neighborhood of v and u. Assuming, that the list is

39

5 Implementation

Algorithm 5 Computing the common neighborhood of v and u, where d(v) ≤ d(u).
function COMMON_NEIGHBORHOOD(v, u)

intersection = { }
for w ∈ N(v) do

indicator[w]← false
end for
for w ∈ N(u) do

indicator[w]← true
end for
for w ∈ N(v) do

if indicator[w] then
intersection← intersection ∪ {w}

end if
end for
return intersection

end function

Reduction Rule Time Complexity Application
1 O(1) v ∈ V
2 O(d(v) + d(n∗)) v ∈ V
3 O(d(v) + d(u)) v ∈ V and u ∈ N(v), s.t. d(v) = d(u)
4 O(d(v)|V |) v ∈ V
5 O(d(v) + d(u)) v ∈ V and u ∈ N(v), s.t. d(v) < d(u)
6 O(d(v)2) v ∈ V
7 O(d(v) + d(n∗)) v ∈ V
7(Extended) O(d(v) + d(u)) v ∈ V and u ∈ N(v)

Table 5.1: Overview of the time complexity of exact reduction rules for MWC.

already instantiated, the algorithm (Algorithm 5) achieves a runtime of O(d(v) + d(u)),
where v is the vertex with the smaller degree [11].
The time complexities of the reduction rules are updated as shown in Table 5.1.

5.1.2 Efficiently Computing Dominating Neighborhoods

As mentioned in the beginning of Chapter 4, adjacency lookups may be improved to O(1)
in expectation by using a hash-table. Since the intersection can already be computed effi-
ciently however, a data-structure specialized in improving the performance on computing
dominating neighborhoods and interconnectivity is sufficient. While the dominating neigh-
borhoods can of course be computed by Algorithm 5 as well, this would not make good
use of the easier nature of the problem: That the computation for a pair of vertices may be

40

5.1 Implementing the Exact Approaches

Algorithm 6 Computing, whether v is dominated by u.
function DOMINATING_NEIGHBORHOOD(u, v)

for w ∈ N(v) do
if u ̸= w and not bloom_filter.lookup(u, hash(w))
or u ̸= w and not bloom_filter.lookup(w, hash(u)) then

return false
end if
indicator[w]← false

end for
for w ∈ N(u) do

indicator[w]← true
end for
for w ∈ N(v) do

if not indicator[w] then
return false

end if
end for
return true

end function

stopped early, as soon as it is clear, that neither vertex dominates the other. The Bloom filter
(Section 2.4.1) is a natural extension for speeding up this computation. It is implemented
by assigning a fixed sized hash table to each vertex. For each edge of the graph, the hashes
of both vertices are computed and the corresponding flags are set in the hash-table of the re-
spective other vertex. While checking whether two vertices v and u are adjacent, it is first
checked whether bloom_filter.lookup(u, hash(v)) or bloom_filter.lookup(v, hash(u))
evaluate to false. In that case, the vertices are guaranteed to be non-adjacent and the
computation can be stopped prematurely. The simple universal hash family shown in Sec-
tion 2.4 is used as a hash function, since it is fast to compute and gives an even distribution.
The size of the hash-tables is chosen relative to the respective vertex degree, such that the
hash-table is filled to about 50%, which gives a good balance of space and time efficiency.
Algorithm 6 shows how to compute whether v is dominated by its neighbor u using the
Bloom filter. While the Bloom filter does not improve the theoretical running time of the
reduction rules, it does accelerate them significantly in practice. Especially for Reduction
Rule 6, which has a high time complexity ofO(d(v)2), the Bloom filter is able to stop most
computations early, making Rule 6 very fast in practice.

5.1.3 Applying the Reductions

While optimally all reductions would be applied on the input graph instance exhaustively,
this is not always the best approach in practice, as some reduction rules take a lot of time

41

5 Implementation

for large graphs. It is therefore important to first reduce the graph by using the fastest and
most effective reduction rules and only resort to slow reductions when the former have
been applied exhaustively and the graph size has been sufficiently reduced. In some cases,
where the graph size is still too large, it is even better to pass the reduced graph to the exact
solver early instead.
Among the reductions presented in Section 4.1.1, the fastest reduction is clearly Rule 1
(Bounding Rule 1), since it runs in O(1). It is followed by Rule 3 (Twin) and Rule 6
(Simplex), which run in O(d(v) + d(u)) and O(d(v)2) respectively, but are much faster
in practice, given that it is often possible to stop the computation early. For Rule 7 (Edge
Bounding Rule), the entire intersection needs to be computed, meaning that the compu-
tation cannot be sped up by the Bloom Filter. For this reason, only the highest weight
neighbor of each vertex is considered above a vertex count of 50,000. For smaller graphs,
or once the graph has been sufficiently reduced, the intersection is computed for all neigh-
bors. Rule 4 (Domination 1) has the worst computational complexity and is thus only
executed if the graph contains less than 50,000 vertices. The same limitation is set for
Rule 5 (Domination 2), as it has the same time complexity for removing one edge that
other rules have for removing a vertex along with all its adjacent edges. The reductions are
therefore applied in the following order:

1. Rule 1: Bounding Rule 1

2. Rule 3: Twin

3. Rule 6: Simplicial Vertex Removal

4. Rule 7: Bounding Rule 2 & Edge Bounding Rule

5. Rule 4: Domination 1

6. Rule 5: Domination 2

5.2 Implementing the Heuristic Approaches

As the heuristic solver MWCPeel is an extension of the exact solver MWCRedu, the im-
plementation specifications described in Section 5.1 mostly apply here as well. Some op-
timizations are made in the reduction strategy and the model features, in order to shift the
focus of the solver more towards speed rather than solution quality. After that, implemen-
tation details of the machine learning models are given.

5.2.1 Applying the Reductions

The adjustments concern only the least time efficient reductions, i.e. Rules 4, 5 and 7.
Specifically, Rules 4 and 7 are not run at all, since they take a disproportional amount of

42

5.2 Implementing the Heuristic Approaches

time to process and are the least effective in reducing the graph. Rule 5 is limited to the fast
variation, which only looks at the highest weight neighbor, regardless of graph size. This
is because the highest weight neighbor is most likely to give a tight bound, that not only
allows the removal of an edge, but of the vertex and all its adjacent edges, making it more
efficient than the extended version of this reduction rule.

5.2.2 Computing the Features
Another optimization targets the vertex feature LCC, since computing it for a single ver-
tex takes O(d(v)3) with adjacency lookups taking O(min(d(v), d(u))), which would also
effect the computation of the GCC. The LCC is therefore computed using the approxima-
tion algorithm by Becchetti et al. [6]. The algorithm first assigns a random label to each
vertex and identifies for each vertex the smallest label occurring in its neighborhood. It
then checks for each edge {v, u} if the minimum label at the endpoints is equal, and if
so, increases the counters Zv and Zu. This procedure is repeated l times, where l can be
varied to trade off time and solution quality. The estimation of the triangle count of a ver-
tex v can finally be computed as Zv

3l
, which can be plugged into Equation 4.2 to compute

the LCCs. The algorithm can therefore compute the LCC for all vertices in O(l|E|). The
authors show, that the algorithm achieves a Pearson correlation coefficient of greater than
0.9 between the approximate- and the exact solution for l ≥ 20.

5.2.3 Implementing the Machine Learning Models
The models presented in Section 4.2.2 are trained using PyTorch, a python library that pro-
vides implementations of most commonly used ML components, such as neural network
layers and activation functions. The GNN layer is implemented using the python library
PyTorch Geometric. After training a machine learning model in python, the model is seri-
alized using the PyTorch function torch.jit.script, which compiles the model source code
as TorchScript and returns a ScriptModule. In order to run inference directly from C++, the
PyTorch C++ frontend LibTorch is used, which allows a model saved in the ScriptModule
format to be de-serialized and deployed in C++ code. For GNN models, the torch-scatter
and torch-sparse C++ APIs are required additionally. The score is finally obtained by com-
puting the respective features for the current graph and passing them to the model.

43

5 Implementation

44

CHAPTER 6
Experimental Evaluation

In this section, the effectiveness of the proposed techniques is shown on a broad selection
of graph instances and compared with state-of-the-art MWC solvers.

6.1 Algorithms

The solvers presented in this work are the exact solver MWCRedu, which employs the
reduction strategy described in Section 4.1 and the heuristic solver MWCPeel, which ad-
ditionally employs vertex peeling as described in Section 4.2.4. For comparison, three
solvers that can each be regarded as state-of-the-art are included in the experiments:
TSM-MWC [25] (exact), FastWCLq [12] (heuristic) and SCCWalk4l [47] (heuristic). The
hyper-parameters are chosen as recommended by the authors in the original papers: For
FastWCLq, the minimum and maximum number of candidates selected for BMS are cho-
sen as t0 = 4 and tmax = 64. For SCCWalk4l the search depth l, the number of unsuccess-
ful operations before walk perturbation r and the number of candidates for BMS k are set
to l = 4000, r = 500 and k = 100 respectively. Exact solvers are being assigned a time
limit of 3,600 seconds and heuristic solvers a time limit of 1,000 seconds, since they are
expected to compute a result more quickly.

6.2 Graph Instances

The algorithms are evaluated on a broad selection of graphs, covering different sizes, den-
sities, weightings and application areas. Some of the graphs are originally unweighted
and thus have to be assigned weights artificially. To cover as many applications as pos-
sible, multiple random weighting schemes are considered in the experiments. For each
unweighted graph, weights are drawn in the range [1, 200] from uniform (uni), power-law
(pow) and exponential (exp) distributions. For more general results, three different random

45

6 Experimental Evaluation

seeds are used for each distribution and the average results are reported. Four datasets are
highlighted in this work:

Network data repository graphs. 10 real-world graphs are taken from the network
data repository (REP) [43], ranging from biological applications to social network
statistics. Most of these graphs are very sparse (0.01 to 0.00001) but huge, some
having over a million vertices.

OpenStreetMap graphs. 12 real-world instances are taken from
openstreetmap.org. These graphs are generally smaller but slightly
more dense and have the advantage of having non-artificial weights.

Random hyperbolic graphs. Random Hyperbolic Graphs (RHG) are randomly gen-
erated graphs, such that the vertex degrees follow a power-law distribution, i.e., the
number of vertices with degree i is proportional to i−β , where β is the power-law
exponent. RHGs are assumed to model real world graphs very well, since these
usually follow a power-law distribution as well [23]. For more information on ran-
dom graph generation techniques we refer to a recently published survey by Pen-
schuck et al. [38]. 13 RHGs with between 250,000 and 750,000 vertices are gen-
erated using the random graph generator KaGen [18]. The power-law exponent is
varied between 1.75 and 2.25 and the average degree is chosen between 100 and
500.

DIMACS graphs. In the second DIMACS implementation challenge [27], many graphs
specifically intended for comparing different algorithms for clique-related problems
were made available. As they are also used in most relevant literature, they are a
natural choice for comparing with other state-of-the-art solvers. Chosen from the
dataset are 23 graphs that are relatively small but have high densities ranging from
0.5 to 0.99.

For more detailed information on the graph instances, see Tables 7.1-7.14 in the Appendix.

6.3 Experimental Setup

Experiments are performed on a Intel Xeon Silver 4216 CPU @ 2.10GHz with 16 cores
under Linux with 95 GB of RAM. All solvers are implemented in C/C++ and compiled
using GNU gcc -O3. For computing the results, each solver solves up to 16 graph instances
in parallel; by running the solver exclusively on the machine, there is no relevant difference
to solving the graph instances sequentially. For all solvers, the solution quality w(Ĉ),
and the time to find that solution tsol are reported. For exact solvers, the time to prove
its optimality tprv is measured additionally. Solvers that use random number generation
(RNG) are run five times with different seeds and report their average solutions, in order to
better capture their general performance. Furthermore, for the graphs that were assigned

46

6.4 Comparing the Exact Algorithms

artificial weights, the results for the different weightings are averaged, such that each solver
reports one result tuple per graph for each weighting scheme. The solution weights are
rounded to integer numbers for better interpretability in this case.
The results are presented for each weighting scheme separately, in order to get a better idea
of each solvers individual strengths and weaknesses. For better interpretability, the best
values are marked as bold in each line. If an exact algorithm is not able to prove one of the
three graphs in time, tprv is marked as −. As exact- and heuristic solvers follow different
objectives, the discussion focuses on comparing them among each other. An algorithm
is generally considered to outperform another algorithm, if it reaches a higher solution
weight, or if it reaches the same solution weight faster. In the case of heuristic solvers
however, a solver computing a slightly lower weight solution significantly faster can also
be considered superior, depending on whether speed or quality is more important for the
use-case.

6.4 Comparing the Exact Algorithms

First, the exact solver MWCRedu is compared with the state-of-the-art solver TSM-MWC
on each dataset, starting with the OpenStreetMap graph instances.

6.4.1 OpenStreetMap graphs
The results for all exact solvers on the OSM dataset are shown in Table 6.1. Between
TSM-MWC and MWCRedu, the latter clearly dominates, both when it comes to the time
to find the solution tsol, and the time to prove its optimality tprv. In two cases TSM-MWC
even fails to find the optimal solution within the time limitation of 3,600 seconds.

tsol tprv w(Ĉ)
Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

district-of-columbia-AM2 0.80 0.15 0.88 0.21 235,777 235,777
district-of-columbia-AM3 1,937.83 5.64 1,938.06 6.52 545,969 545,969

greenland-AM3 10.31 0.82 11.91 3.30 604,575 604,575
hawaii-AM3 3,598.87 30.88 - 54.68 1,110,978 1,229,741
idaho-AM3 218.66 4.47 220.42 5.55 1,101,721 1,101,721

kentucky-AM3 3,580.19 114.09 - 144.51 1,808,419 1,860,308
massachusetts-AM3 0.81 0.03 1.01 0.13 115,636 115,636

oregon-AM3 8.93 1.70 11.07 2.47 557,634 557,634
rhode-island-AM3 81.30 11.03 93.69 18.40 1,162,925 1,162,925

vermont-AM3 4.57 0.49 4.90 0.56 604,213 604,213
virginia-AM3 0.13 0.06 0.21 0.06 207,457 207,457
washington-AM3 12.22 1.01 12.75 1.06 356,314 356,314

Geometric mean
27.62 1.55 31.01 2.43 537,149 542,993

Table 6.1: OSM exact results

47

6 Experimental Evaluation

6.4.2 DIMACS Graphs
Table 6.2 shows the results of the exact solvers for the DIMACS instances. There is no big
difference in performance between the two solvers here, since none of the exact reductions
employed in MWCRedu are able to remove vertices or edges for any DIMACS instance,
and the solver thus quickly proceeds to apply the B&B solver on the unreduced graph,
which uses the same techniques as TSM-MWC. The overhead from applying the reduction
rules is only notable for the easier instances. MWCRedu even performs slightly better on
average, which is likely due to better initial solutions obtained from running local search
during the reduction phase.

tsol tprv w(Ĉ)
Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

Uniform weighted
brock800_1 1,122.28 1,191.32 2,667.43 2,820.98 3,006 3,006
brock800_2 2,601.19 2,752.57 3,111.08 3,285.93 3,074 3,074
brock800_3 1,318.78 1,400.10 2,735.77 2,896.13 2,984 2,984
brock800_4 2,019.67 2,137.40 - - 3,059 3,059
C1000.9 2,889.65 1,429.16 - - 7,338 7,459
C2000.5 1,867.49 1,908.40 - - 2,395 2,395
C2000.9 2,248.93 697.11 - - 7,898 8,284
C4000.5 2,804.98 2,488.93 - - 2,460 2,437
C500.9 2,716.53 2,611.48 - - 6,789 6,789

gen400_p0.9_55 2,359.72 2,378.30 - - 6,654 6,654
gen400_p0.9_65 2,768.34 2,772.78 - - 6,535 6,535
gen400_p0.9_75 1,420.53 1,388.95 2,522.75 2,511.52 7,492 7,492
hamming10-4 3,110.88 3,018.87 - - 5,205 5,125
johnson32-2-4 1,983.31 2,070.46 - - 2,935 2,935

keller5 2,801.07 2,821.09 - - 3,807 3,827
keller6 2,569.15 2,301.13 - - 5,617 6,175
MANN_a27 2.67 2.09 2.81 2.14 17,866 17,866
MANN_a45 121.72 59.03 126.40 63.31 49,459 49,459
MANN_a81 3,599.91 1,922.82 - 3,116.00 118,898 161,903

p_hat1000-3 2,177.09 2,068.98 - - 8,261 8,261
p_hat1500-2 952.79 902.21 2,491.91 2,371.21 7,556 7,556
p_hat1500-3 1,212.92 1,111.24 - - 10,796 10,796
sanr400_0.7 11.86 12.69 26.63 28.43 2,926 2,926

Powerlaw weighted
brock800_1 2.13 2.38 2.78 3.03 1,249 1,249
brock800_2 2.23 2.48 2.58 2.83 1,329 1,329
brock800_3 1.71 1.95 2.12 2.35 1,427 1,427
brock800_4 1.00 1.30 2.34 2.59 1,347 1,347
C1000.9 1,276.17 1,957.97 - - 3,181 3,226
C2000.5 14.67 16.13 30.77 31.50 1,284 1,284
C2000.9 2,221.50 1,926.19 - - 3,407 3,409

48

6.4 Comparing the Exact Algorithms

C4000.5 2,426.53 2,309.13 - 3,235.54 1,521 1,521
C500.9 2.11 2.15 2.98 3.04 2,432 2,432

gen400_p0.9_55 0.48 0.50 0.64 0.66 2,110 2,110
gen400_p0.9_65 0.48 0.52 0.69 0.73 2,043 2,043
gen400_p0.9_75 0.55 0.58 0.73 0.77 2,075 2,075
hamming10-4 7.11 7.78 10.85 11.38 2,232 2,232
johnson32-2-4 0.72 0.95 0.94 1.16 1,666 1,666

keller5 1.79 2.19 2.46 2.68 1,591 1,591
keller6 2,080.84 2,670.39 - - 3,370 3,407
MANN_a27 2.84 0.22 2.89 0.59 4,049 4,049
MANN_a45 144.45 6.06 145.28 11.54 10,617 10,617
MANN_a81 3,599.86 751.85 - 915.33 21,120 35,092

p_hat1000-3 3.81 4.33 6.43 6.81 2,199 2,199
p_hat1500-2 0.85 2.41 6.69 7.91 2,031 2,031
p_hat1500-3 17.18 18.43 39.87 40.15 2,793 2,793
sanr400_0.7 0.18 0.23 0.26 0.31 1,135 1,135

Exponential weighted
brock800_1 29.47 29.27 100.94 100.37 509 509
brock800_2 54.97 54.65 97.37 97.06 516 516
brock800_3 139.08 138.13 143.18 142.29 502 502
brock800_4 37.68 37.63 71.59 70.75 533 533
C1000.9 1,768.54 2,121.71 - - 1,087 1,100
C2000.5 462.88 429.93 1,096.22 1,033.57 481 481
C2000.9 714.16 652.71 - - 1,191 1,295
C4000.5 2,728.03 2,628.18 - - 507 507
C500.9 1,307.10 1,139.58 - - 1,005 1,005

gen400_p0.9_55 192.14 187.58 284.62 278.19 949 949
gen400_p0.9_65 950.94 930.35 1,091.49 1,067.74 945 945
gen400_p0.9_75 509.76 501.27 634.89 624.50 987 987
hamming10-4 1,451.38 734.07 - - 900 890
johnson32-2-4 2.93 3.50 3.32 4.00 643 643

keller5 50.26 51.46 65.47 66.55 618 618
keller6 1,628.11 1,915.29 - - 1,007 1,009
MANN_a27 1.33 0.34 1.40 0.74 2,257 2,257
MANN_a45 65.69 11.41 66.52 13.92 6,285 6,285
MANN_a81 3,599.61 739.94 - 767.71 17,249 20,926

p_hat1000-3 1,534.97 1,423.81 - 2,083.65 1,025 1,025
p_hat1500-2 61.17 57.27 96.95 90.46 1,020 1,020
p_hat1500-3 1,366.75 1,273.09 - - 1,419 1,419
sanr400_0.7 2.05 2.17 2.28 2.40 449 449

Geometric mean
128.36 106.57 204.09 179.36 2,485 2,531

Table 6.2: DIMACS exact results

49

6 Experimental Evaluation

6.4.3 Network Data Repository Graphs

The results of the REP instances are shown in Table 6.3. MWCRedu and TSM-MWC both
outperform the respective other for specific instances. TSM-MWC proves very efficient for
large instances with more than 1,000,000 vertices, whereas MWCRedu clearly outperforms
TSM-MWC for the smaller, more dense biology graphs. While TSM-MWC is faster on
average, it fails to prove a solutions optimality five times, three of which actually being
suboptimal.

tsol tprv w(Ĉ)
Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

Uniform weighted
aff-digg 16.55 45.40 244.04 273.67 3,829 3,829

bio-human-gene1 3,598.98 2,010.82 - 3,327.65 136,325 136,692
bio-human-gene2 2,298.36 474.49 - 1,380.66 131,904 131,904
bio-mouse-gene 1,789.70 198.47 - 240.97 50,785 59,476

sc-TSOPF-RS-b2383 9.70 27.59 9.70 365.22 913 913
soc-flickr-und 35.10 133.73 74.52 162.42 10,847 10,847

soc-orkut 56.42 135.79 67.48 144.89 5,832 5,832
soc-orkut-dir 46.26 116.30 60.22 128.33 5,261 5,261

web-wikipedia_link_it 170.90 45.99 171.08 46.15 87,175 87,175
web-wikipedia-growth 13.09 84.77 17.30 88.57 3,334 3,334

Powerlaw weighted
aff-digg 10.03 165.91 61.06 212.16 1,369 1,369

bio-human-gene1 3,599.34 445.04 - 611.50 21,278 21,689
bio-human-gene2 2,174.21 330.54 2,289.48 430.11 19,341 19,341
bio-mouse-gene 168.31 123.91 277.04 154.11 9,252 9,252

sc-TSOPF-RS-b2383 3.14 301.66 5.59 618.56 565 565
soc-flickr-und 5.39 124.55 28.66 137.52 2,530 2,530

soc-orkut 43.33 176.24 43.69 176.59 1,420 1,420
soc-orkut-dir 36.38 150.88 36.93 151.23 1,322 1,322

web-wikipedia_link_it 165.36 47.57 165.43 47.69 13,005 13,005
web-wikipedia-growth 7.58 46.50 9.36 46.68 921 921

Exponential weighted
aff-digg 8.94 30.44 99.98 117.26 581 581

bio-human-gene1 2,797.16 1,135.33 - 1,847.39 15,258 15,258
bio-human-gene2 604.93 241.30 930.09 627.22 14,903 14,903
bio-mouse-gene 267.89 161.45 383.23 190.15 6,429 6,429

sc-TSOPF-RS-b2383 2.62 189.53 5.89 512.73 222 222
soc-flickr-und 16.11 126.65 50.38 152.17 1,198 1,198

soc-orkut 52.04 152.53 59.15 157.67 735 735
soc-orkut-dir 39.85 136.78 51.93 145.51 675 675

web-wikipedia_link_it 24.95 48.80 25.01 48.89 9,616 9,616
web-wikipedia-growth 10.76 75.80 13.96 79.01 414 414

Geometric mean
69.78 141.39 117.80 215.87 4,420 4,446

Table 6.3: REP exact results

50

6.4 Comparing the Exact Algorithms

6.4.4 Random Hyperbolic Graphs
The results of each solver on the RHG instances are shown in Table 6.4. Here MWCRedu
outperforms its competitor TSM-MWC clearly. The reason for its good performance is
likely the structure of RHGs, which allows it to remove most vertices quickly using very
efficient reductions. For most of the instances, the graph is reduced to 0, such that there
is no need to apply B&B on the reduced graph. MWCRedu reaches the optimal solution
faster than TSM-MWC 35 out of 39 times, often by magnitudes, with TSM-MWC failing
to find the optimal solution twice.

tsol tprv w(Ĉ)
Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

Uniform weighted
rhg_250000_100_1.75 94.71 2.26 94.91 2.72 99,839 99,839
rhg_250000_100_2.25 2.53 2.02 2.75 2.10 37,947 37,947
rhg_250000_250_1.75 101.48 4.74 107.14 4.76 112,769 112,769
rhg_250000_250_2.25 21.87 4.53 22.60 4.66 71,001 71,001
rhg_250000_500_1.75 1,079.84 35.47 1,092.32 38.43 137,234 137,234
rhg_250000_500_2.25 51.02 9.05 52.12 9.25 102,364 102,364
rhg_500000_250_1.75 3,093.33 37.09 - 37.70 130,973 131,559
rhg_500000_250_2.25 88.77 11.36 89.79 11.71 88,512 88,512
rhg_500000_500_2.25 43.49 15.11 47.06 21.09 122,781 122,781
rhg_750000_250_1.75 3,599.25 33.80 - 55.44 150,676 160,845
rhg_750000_250_2.25 132.25 18.15 132.43 18.33 96,362 96,362
rhg_750000_500_1.75 9.74 311.73 226.52 1,173.96 207,197 207,197
rhg_750000_500_2.25 35.91 34.13 49.39 34.19 119,936 119,936

Powerlaw weighted
rhg_250000_100_1.75 111.00 3.29 111.11 3.62 14,183 14,183
rhg_250000_100_2.25 13.12 2.06 13.18 2.07 5,801 5,801
rhg_250000_250_1.75 152.12 4.82 153.23 5.14 16,771 16,771
rhg_250000_250_2.25 37.22 4.31 37.38 4.32 10,541 10,541
rhg_250000_500_1.75 873.87 32.70 881.02 32.74 20,188 20,188
rhg_250000_500_2.25 189.67 12.36 190.08 12.75 14,720 14,720
rhg_500000_250_1.75 1,043.61 34.01 1,051.70 34.51 19,356 19,356
rhg_500000_250_2.25 137.13 12.11 137.44 12.27 12,997 12,997
rhg_500000_500_2.25 360.74 21.86 360.99 23.01 18,100 18,100
rhg_750000_250_1.75 1,014.10 40.73 1,027.87 53.30 22,720 22,720
rhg_750000_250_2.25 125.19 16.95 125.22 17.51 14,014 14,014
rhg_750000_500_1.75 406.34 547.85 595.45 798.33 29,071 29,071
rhg_750000_500_2.25 249.15 35.45 257.06 38.04 17,746 17,746

Exponential weighted
rhg_250000_100_1.75 14.45 1.92 14.58 2.04 10,808 10,808
rhg_250000_100_2.25 4.15 2.04 4.26 2.09 4,270 4,270
rhg_250000_250_1.75 32.84 4.43 37.15 4.44 12,368 12,368
rhg_250000_250_2.25 12.28 4.93 12.59 4.98 7,930 7,930
rhg_250000_500_1.75 332.80 36.26 345.84 38.85 15,189 15,189
rhg_250000_500_2.25 51.83 11.02 52.34 11.12 11,225 11,225
rhg_500000_250_1.75 261.02 33.81 278.67 39.47 14,518 14,518
rhg_500000_250_2.25 27.72 11.38 28.07 11.40 9,675 9,675

51

6 Experimental Evaluation

rhg_500000_500_2.25 45.58 23.03 45.93 23.31 13,894 13,894
rhg_750000_250_1.75 639.05 54.61 654.30 62.65 17,391 17,391
rhg_750000_250_2.25 24.35 17.75 24.60 17.84 10,849 10,849
rhg_750000_500_1.75 62.11 379.38 244.05 554.79 22,404 22,404
rhg_750000_500_2.25 7.43 33.59 18.56 33.64 13,387 13,387

Geometric mean
92.71 15.60 110.56 17.49 26,932 26,980

Table 6.4: RHG exact results

Figure 6.1 shows the solution quality achieved by MWCRedu and TSM-MWC for each
dataset, where the value 0 indicates that the solver found the better solution, and values
above 0 give the percentage the found solution was below the best solution. For the in-
stances where no bar is visible, both algorithms compute the same solution weight and are
thus assigned the value 0. Otherwise, MWCRedu mostly finds a higher weight solution,
with TSM-MWC sometimes reaching a significantly lower solution weight.
Figure 6.2 shows for both exact solvers the time to get to the solution relative to the best
time among the solvers on a logarithmic scale. A value of 100 for example indicates, that
the solver took 100 times longer to get to its solution. The graphic illustrates the strength
of each solver well, with TSM-MWC being faster for most REP instances, and MWCRedu
taking the lead for most OSM and RHG instances.

Figure 6.1: Solution quality for exact solvers.

52

6.5 Comparing the Peeling Rules

Figure 6.2: Time to solution for exact solvers.

6.5 Comparing the Peeling Rules

Before the heuristic solvers are compared amongst each other, first the peeling rule that
should be employed in MWCPeel has to be decided. One indicator of the quality of each
peeling rule are the performance scores after training the models, where the score is the
difference between the average score assigned to solution vertices and the average score
assigned to other vertices (Section 4.2.3). The performance measures for each approach
are listed in Table 6.5. As indicated by the low values of 1 % and 2 %, both PeelMLPfast and
PeelMLPfull are not capable of learning a pattern that lets them reliably distinguish solution
vertices from ordinary vertices. Both strategies are therefore not further investigated in
this work, though it cannot be ruled out that a different MLP architecture or additional

Approach Performance
PeelMLPfast 1 %
PeelMLPfull 2 %
PeelDeepSet 45 %
PeelGNN 54 %

Table 6.5: The highest achieved difference between the average prediction for solution vertices vs.
other vertices on the validation set during training by each peeling approach.

53

6 Experimental Evaluation

features may improve the performance. The DeepSet and GNN approach both show a
good performance on the validation data, assigning a prediction score to solution vertices
that is on average around 50 % higher than the prediction for other vertices. These models
will therefore be compared along with the heuristic rule PeelUB, which computes the score
for each v ∈ V as w(N [v]) (Section 4.2), in order to determine the best peeling strategy
for employment in the heuristic solver. For the comparison, a preliminary experiment is
conducted, where each solver uses the same set of exact reduction rules and reduction
strategy. Each algorithm is run with five different random seeds and a time limit of 1,000 s.

6.5.1 OpenStreetMap graphs
For the OSM instances all peeling rules achieve similar results (Table 6.6), since the graphs
can be reduced by the exact reduction rules for the most part. While all peeling rules lead
to the optimal solutions, PeelUB is slightly faster than its competitors.

6.5.2 DIMACS Graphs
For the DIMACS instances, shown in Table 6.7, both the time and quality of the solutions
differ notably between the peeling rules. Out of the 69 instances, PeelUB achieves the best
solution among the three 43 times and the best speed 42 times. It furthermore achieves a
lower time and higher solution weight on average, proving to be the best general DIMACS
solver out of the three.

tsol w(Ĉ)
Graph PeelUB PeelDeepSet PeelGNN PeelUB PeelDeepSet PeelGNN

district-of-columbia-AM2 0.16 0.21 0.18 235,777 235,777 235,777
district-of-columbia-AM3 5.26 5.59 5.46 545,969 545,969 545,969

greenland-AM3 0.85 0.99 0.85 604,575 604,575 604,575
hawaii-AM3 29.82 31.38 31.90 1,229,741 1,229,741 1,229,741
idaho-AM3 4.29 4.72 4.36 1,101,721 1,101,721 1,101,721

kentucky-AM3 102.17 109.32 112.18 1,860,308 1,860,308 1,860,308
massachusetts-AM3 0.03 0.04 0.04 115,636 115,636 115,636

oregon-AM3 1.72 1.90 1.73 557,634 557,634 557,634
rhode-island-AM3 9.34 10.04 9.66 1,162,925 1,162,925 1,162,925

vermont-AM3 0.39 0.50 0.42 604,213 604,213 604,213
virginia-AM3 0.05 0.07 0.06 207,457 207,457 207,457

washington-AM3 0.96 1.14 1.03 356,314 356,314 356,314

Geometric mean
1.45 1.67 1.55 542,993 542,993 542,993

Table 6.6: OSM peeling results

54

6.5 Comparing the Peeling Rules

tsol w(Ĉ)
Graph PeelUB PeelDeepSet PeelGNN PeelUB PeelDeepSet PeelGNN

Uniform weighted
brock800_1 45.67 296.95 123.71 2,886 2,911 2,689
brock800_2 59.84 280.14 60.74 2,935 2,949 2,696
brock800_3 37.69 295.42 56.04 2,912 2,870 2,756
brock800_4 48.01 253.46 65.69 2,887 2,864 2,661
C1000.9 262.85 476.10 196.86 7,779 8,116 7,473
C2000.5 536.78 388.36 559.53 2,390 2,379 2,348
C2000.9 123.18 223.43 57.84 8,603 9,249 8,234
C4000.5 638.30 572.47 722.99 2,472 2,504 2,392
C500.9 474.51 152.05 81.93 6,964 6,832 6,853

gen400_p0.9_55 50.16 114.81 24.39 6,614 6,301 6,230
gen400_p0.9_65 59.97 100.00 59.04 6,654 6,420 6,305
gen400_p0.9_75 10.78 91.87 8.96 7,261 6,763 6,863
hamming10-4 527.12 281.45 512.84 5,279 5,562 5,093
johnson32-2-4 537.90 334.79 103.21 3,020 3,042 3,022

keller5 326.39 268.56 787.34 3,545 3,700 3,657
keller6 400.16 528.21 353.12 6,103 6,680 6,054
MANN_a27 1.63 12.19 6.46 17,710 17,694 17,710
MANN_a45 93.78 55.44 54.00 49,312 49,221 49,345
MANN_a81 7.17 7.78 7.62 161,648 161,648 161,648

p_hat1000-3 404.89 289.30 358.53 8,223 8,052 8,184
p_hat1500-2 475.25 506.69 287.15 7,546 7,540 7,411
p_hat1500-3 206.37 340.88 257.59 10,801 10,640 10,740
sanr400_0.7 0.91 158.29 34.69 2,874 2,877 2,741

Powerlaw weighted
brock800_1 0.87 472.33 95.75 1,242 1,205 1,242
brock800_2 0.84 392.52 94.97 1,274 1,286 1,280
brock800_3 0.78 479.05 92.87 1,415 1,398 1,415
brock800_4 0.81 421.78 106.22 1,335 1,319 1,335
C1000.9 4.41 341.67 141.83 3,276 3,077 3,259
C2000.5 3.58 597.93 177.25 1,275 1,190 1,207
C2000.9 592.43 504.53 206.57 4,129 3,806 3,973
C4000.5 27.26 465.50 239.89 1,494 1,358 1,377
C500.9 0.57 235.04 93.65 2,387 2,385 2,419

gen400_p0.9_55 0.36 210.98 68.19 2,093 2,061 2,097
gen400_p0.9_65 0.38 191.70 58.81 2,005 1,966 2,027
gen400_p0.9_75 0.37 203.90 57.89 2,025 2,016 2,047
hamming10-4 2.32 219.49 85.25 2,214 2,047 2,214
johnson32-2-4 0.81 389.37 75.59 1,666 1,638 1,666

keller5 0.95 388.03 47.00 1,539 1,536 1,539
keller6 521.83 291.14 142.58 3,249 2,932 3,078
MANN_a27 2.76 3.98 3.52 4,048 4,045 4,049

55

6 Experimental Evaluation

MANN_a45 35.96 16.36 18.19 10,616 10,592 10,616
MANN_a81 62.98 7.73 7.58 34,937 34,867 34,867

p_hat1000-3 2.40 305.36 59.17 2,198 2,051 2,188
p_hat1500-2 2.33 374.30 126.81 2,031 1,873 2,031
p_hat1500-3 10.13 367.65 132.96 2,788 2,517 2,770
sanr400_0.7 0.23 326.94 73.13 1,131 1,102 1,131

Exponential weighted
brock800_1 2.33 292.66 137.05 504 491 496
brock800_2 2.57 240.58 140.50 502 485 497
brock800_3 3.47 316.01 137.44 495 478 488
brock800_4 2.73 343.82 140.67 525 512 522
C1000.9 499.37 232.02 156.05 1,225 1,209 1,259
C2000.5 20.92 292.28 175.98 480 452 462
C2000.9 469.85 320.14 181.93 1,416 1,453 1,533
C4000.5 483.52 221.37 363.51 518 501 476
C500.9 23.52 172.45 106.23 1,043 988 1,037

gen400_p0.9_55 0.50 137.73 82.33 914 887 917
gen400_p0.9_65 0.65 139.43 82.78 935 887 918
gen400_p0.9_75 0.51 93.08 60.30 975 930 960
hamming10-4 445.21 246.87 128.07 886 851 900
johnson32-2-4 0.95 333.90 108.72 643 615 643

keller5 5.05 299.65 98.06 600 574 588
keller6 599.11 394.02 683.51 1,038 1,158 1,014
MANN_a27 1.38 9.39 2.48 2,249 2,250 2,249
MANN_a45 122.03 0.23 49.71 6,275 6,252 6,280
MANN_a81 7.07 7.76 7.60 20,810 20,810 20,810

p_hat1000-3 240.07 211.71 79.32 1,023 979 1,006
p_hat1500-2 58.95 299.75 87.60 1,020 1,003 993
p_hat1500-3 488.84 172.07 124.61 1,414 1,332 1,421
sanr400_0.7 0.23 202.82 79.50 438 437 439

Geometric mean
16.28 171.11 86.07 2,527 2,479 2,488

Table 6.7: DIMACS peeling results

56

6.5 Comparing the Peeling Rules

6.5.3 Network Data Repository Graphs
The experimental results for the peeling rules on REP graphs are presented in Table 6.8.
Again, PeelUB achieves the highest weight solution while taking the least time on average,
closely followed by PeelGNN.

tsol w(Ĉ)
Graph PeelUB PeelDeepSet PeelGNN PeelUB PeelDeepSet PeelGNN

Uniform weighted
aff-digg 47.68 118.74 63.92 3,829 3,829 3,829

bio-human-gene1 493.36 521.23 719.66 136,713 136,708 136,661
bio-human-gene2 89.59 156.39 283.12 131,904 131,901 131,904
bio-mouse-gene 13.43 5.26 4.82 59,146 58,839 58,839

sc-TSOPF-RS-b2383 1.43 1.67 1.50 870 870 870
soc-flickr-und 44.40 57.08 65.27 10,847 9,829 10,847

soc-orkut 183.51 89.51 219.76 5,582 3,870 4,715
soc-orkut-dir 185.02 73.54 259.54 5,116 3,338 4,501

web-wikipedia_link_it 36.59 43.17 41.91 87,175 87,175 104,319
web-wikipedia-growth 66.06 164.50 58.48 3,136 2,999 3,065

Powerlaw weighted
aff-digg 31.39 553.41 264.93 1,369 1,183 1,334

bio-human-gene1 142.75 241.61 393.90 21,689 21,688 21,689
bio-human-gene2 97.32 167.18 287.44 19,300 19,316 19,341
bio-mouse-gene 27.07 43.39 135.55 9,210 9,102 9,233

sc-TSOPF-RS-b2383 5.38 54.24 7.18 525 565 445
soc-flickr-und 43.09 298.11 203.82 2,460 2,243 2,503

soc-orkut 169.20 348.77 184.20 1,417 1,233 1,395
soc-orkut-dir 147.82 256.43 149.83 1,322 1,244 1,322

web-wikipedia_link_it 45.00 54.22 44.54 13,005 13,005 13,005
web-wikipedia-growth 48.24 108.89 65.59 900 907 913

Exponential weighted
aff-digg 35.14 203.74 249.47 581 581 565

bio-human-gene1 248.47 306.64 661.16 15,258 15,248 15,245
bio-human-gene2 82.10 149.66 173.95 14,903 14,898 14,903
bio-mouse-gene 10.40 18.79 51.77 6,380 6,357 6,376

sc-TSOPF-RS-b2383 4.18 41.79 11.97 195 222 168
soc-flickr-und 48.66 338.18 184.58 1,198 1,175 1,151

soc-orkut 173.35 75.52 217.32 672 434 574
soc-orkut-dir 165.67 95.36 254.82 633 404 549

web-wikipedia_link_it 49.29 78.34 56.21 10,236 9,614 9,615
web-wikipedia-growth 57.94 214.70 63.43 384 350 381

Geometric mean
51.83 98.12 95.70 4,355 4,041 4,226

Table 6.8: REP graphs peeling results

57

6 Experimental Evaluation

6.5.4 Random Hyperbolic Graphs
Lastly the results on the RHGs are presented in Table 6.9. These graphs are mostly reduced
by exact reduction rules, leading to similar results for the different peeling rules. PeelGNN
computes slightly higher weight solutions, closely followed by PeelUB.

tsol w(Ĉ)
Graph PeelUB PeelDeepSet PeelGNN PeelUB PeelDeepSet PeelGNN

Uniform weighted
rhg_250000_100_1.75 2.67 2.72 2.76 99,839 99,839 99,839
rhg_250000_100_2.25 2.09 3.63 5.74 37,947 37,944 37,947
rhg_250000_250_1.75 4.24 12.64 15.81 112,756 112,711 112,757
rhg_250000_250_2.25 4.58 4.40 5.27 71,001 70,971 71,001
rhg_250000_500_1.75 18.39 37.00 45.21 136,884 136,765 137,167
rhg_250000_500_2.25 10.15 8.56 11.16 102,364 102,352 102,364
rhg_500000_250_1.75 22.69 24.62 35.67 131,100 130,973 131,518
rhg_500000_250_2.25 11.40 11.60 13.15 88,512 88,502 88,512
rhg_500000_500_2.25 15.33 10.15 20.86 122,781 122,781 122,781
rhg_750000_250_1.75 22.72 22.58 23.01 160,845 160,845 160,845
rhg_750000_250_2.25 17.00 16.73 16.77 96,362 96,349 96,362
rhg_750000_500_1.75 21.41 4.07 22.39 207,197 207,195 207,197
rhg_750000_500_2.25 36.00 19.49 51.35 119,936 119,891 119,936

Powerlaw weighted
rhg_250000_100_1.75 3.17 3.11 3.06 14,183 14,183 14,183
rhg_250000_100_2.25 2.04 1.93 2.42 5,801 5,799 5,801
rhg_250000_250_1.75 5.24 5.75 6.58 16,771 16,770 16,771
rhg_250000_250_2.25 4.63 4.96 4.93 10,541 10,539 10,541
rhg_250000_500_1.75 17.32 25.10 35.80 20,140 20,123 20,148
rhg_250000_500_2.25 12.46 11.86 11.84 14,720 14,720 14,720
rhg_500000_250_1.75 19.29 27.25 34.34 19,212 19,265 19,356
rhg_500000_250_2.25 11.87 11.53 12.03 12,997 12,995 12,997
rhg_500000_500_2.25 22.28 22.79 22.23 18,100 18,100 18,100
rhg_750000_250_1.75 27.64 27.99 28.20 22,720 22,720 22,720
rhg_750000_250_2.25 17.01 17.93 17.92 14,014 14,014 14,014
rhg_750000_500_1.75 48.08 42.90 77.46 29,071 28,958 29,071
rhg_750000_500_2.25 34.75 29.76 40.63 17,746 17,727 17,746
rhg_250000_100_1.75 2.67 2.72 2.76 99,839 99,839 99,839

Exponential weighted
rhg_250000_100_1.75 2.33 2.30 2.38 10,808 10,808 10,808
rhg_250000_100_2.25 1.86 2.08 3.32 4,270 4,267 4,270
rhg_250000_250_1.75 4.92 4.81 14.28 12,368 12,356 12,368
rhg_250000_250_2.25 4.74 5.32 5.60 7,930 7,927 7,930
rhg_250000_500_1.75 19.47 27.97 31.95 15,157 15,153 15,186
rhg_250000_500_2.25 11.68 12.31 12.30 11,225 11,224 11,225
rhg_500000_250_1.75 22.81 30.34 34.94 14,488 14,485 14,518

58

6.6 Comparing the Heuristic Algorithms

rhg_500000_250_2.25 11.62 11.95 13.13 9,675 9,675 9,675
rhg_500000_500_2.25 22.31 23.11 21.87 13,894 13,894 13,894
rhg_750000_250_1.75 28.84 28.54 28.77 17,391 17,391 17,391
rhg_750000_250_2.25 17.66 17.59 18.04 10,849 10,849 10,849
rhg_750000_500_1.75 50.97 23.51 87.37 22,404 22,368 22,404
rhg_750000_500_2.25 30.40 16.81 52.04 13,386 13,384 13,387

Geometric mean
11.62 11.52 15.48 26,966 26,958 26,978

Table 6.9: RHG peeling results

Overall, it is clear, that each peeling rule has its strengths and weaknesses. Especially
PeelUB and PeelGNN show comparable performance on average. PeelUB proves to be the
more consistent of the two, achieving better results for the DIMACS and REP instances.
PeelUB is therefore chosen as the peeling rule employed in MWCPeel.

6.6 Comparing the Heuristic Algorithms

In this section MWCPeel, using the peeling rule PeelUB, is compared with the state-of-the-
art solvers FastWCLq and SCCWalk4l.

6.6.1 OpenStreetMap Graphs

As shown in Table 6.10, MWCPeel performs best for 11 out of 12 OSM instances. It is
noteworthy, that both MWCPeel and FastWCLq find the optimal solution to all OSM in-
stances despite MWCPeel using inexact reductions to remove some of the graphs vertices.

tsol w(Ĉ)
Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

district-of-columbia-AM2 0.32 4.91 0.16 235,777 234,219 235,777
district-of-columbia-AM3 16.87 208.46 5.26 545,969 545,969 545,969

greenland-AM3 2.96 39.33 0.85 604,575 604,575 604,575
hawaii-AM3 86.47 727.42 29.82 1,229,741 1,224,690 1,229,741
idaho-AM3 15.76 162.51 4.29 1,101,721 1,098,044 1,101,721

kentucky-AM3 374.57 997.09 102.17 1,860,308 1,437,770 1,860,308
massachusetts-AM3 0.25 50.59 0.03 115,636 113,381 115,636

oregon-AM3 6.06 239.62 1.72 557,634 546,314 557,634
rhode-island-AM3 34.16 252.86 9.34 1,162,925 1,162,920 1,162,925

vermont-AM3 0.37 2.32 0.39 604,213 602,793 604,213
virginia-AM3 0.20 6.38 0.05 207,457 207,457 207,457
washington-AM3 1.88 23.11 0.96 356,314 356,314 356,314

Geometric mean
4.45 64.29 1.45 542,993 528,956 542,993

Table 6.10: OSM heuristic results

59

6 Experimental Evaluation

6.6.2 DIMACS Graphs
For the DIMACS graphs (Table 6.11), SCCWalk4l clearly dominates its competitors for all
weightings schemes. Between FastWCLq and MWCPeel, FastWCLq mostly computes
slightly higher weight solutions, though it takes longer to compute them. Looking at
the instances where TSM-MWC fails to find the optimal solution, both FastWCLq and
MWCPeel achieve higher weight solutions in a much smaller amount of time for most of
them.

tsol w(Ĉ)
Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

Uniform weighted
brock800_1 150.98 0.33 45.67 3,000 3,006 2,886
brock800_2 163.22 73.82 59.84 3,024 3,074 2,935
brock800_3 127.04 0.36 37.69 2,984 2,984 2,912
brock800_4 230.35 98.56 48.01 3,007 3,059 2,887
C1000.9 409.16 1.45 262.85 8,693 9,058 7,779
C2000.5 404.03 8.25 536.78 2,426 2,467 2,390
C2000.9 351.96 105.48 123.18 9,822 10,874 8,603
C4000.5 375.71 82.45 638.30 2,580 2,787 2,472
C500.9 251.22 0.28 474.51 7,277 7,313 6,964

gen400_p0.9_55 169.17 0.09 50.16 6,781 6,781 6,614
gen400_p0.9_65 312.92 0.28 59.97 6,869 6,881 6,654
gen400_p0.9_75 104.98 84.15 10.78 7,547 7,551 7,261
hamming10-4 287.81 1.42 527.12 5,727 5,917 5,279
johnson32-2-4 459.61 0.06 537.90 3,004 3,042 3,020

keller5 390.66 2.14 326.39 3,811 3,851 3,545
keller6 347.22 216.10 400.16 6,727 8,412 6,103
MANN_a27 16.84 168.23 1.63 17,866 17,864 17,710
MANN_a45 79.35 43.89 93.78 49,459 49,459 49,312
MANN_a81 180.29 376.13 7.17 161,903 161,895 161,648

p_hat1000-3 375.61 0.51 404.89 8,248 8,295 8,223
p_hat1500-2 423.40 1.22 475.25 7,519 7,556 7,546
p_hat1500-3 356.96 4.08 206.37 10,725 10,926 10,801
sanr400_0.7 6.94 0.06 0.91 2,926 2,926 2,874

Powerlaw weighted
brock800_1 42.48 2.08 0.87 1,249 1,249 1,242
brock800_2 6.77 9.25 0.84 1,329 1,329 1,274
brock800_3 8.16 0.32 0.78 1,427 1,427 1,415
brock800_4 14.50 0.99 0.81 1,347 1,347 1,335
C1000.9 384.40 20.23 4.41 3,261 3,291 3,276
C2000.5 284.59 1.12 3.58 1,282 1,284 1,275
C2000.9 261.90 151.81 592.43 4,027 4,262 4,129
C4000.5 455.80 4.88 27.26 1,417 1,521 1,494
C500.9 178.03 54.30 0.57 2,431 2,431 2,387

60

6.6 Comparing the Heuristic Algorithms

gen400_p0.9_55 45.79 29.80 0.36 2,109 2,110 2,093
gen400_p0.9_65 164.23 43.52 0.38 2,042 2,039 2,005
gen400_p0.9_75 249.30 15.96 0.37 2,072 2,055 2,025
hamming10-4 416.49 30.78 2.32 2,194 2,232 2,214
johnson32-2-4 21.05 0.11 0.81 1,666 1,666 1,666

keller5 191.47 1.44 0.95 1,590 1,591 1,539
keller6 238.74 55.31 521.83 2,639 3,540 3,249
MANN_a27 0.16 0.08 2.76 4,049 4,049 4,048
MANN_a45 4.70 1.11 35.96 10,617 10,617 10,616
MANN_a81 65.02 27.68 62.98 35,084 35,092 34,937

p_hat1000-3 325.44 37.05 2.40 2,178 2,199 2,198
p_hat1500-2 192.27 1.57 2.33 2,020 2,031 2,031
p_hat1500-3 258.36 7.43 10.13 2,745 2,793 2,788
sanr400_0.7 0.77 2.14 0.23 1,135 1,135 1,131

Exponential weighted
brock800_1 97.11 0.49 2.33 509 509 504
brock800_2 52.63 1.31 2.57 516 516 502
brock800_3 274.15 0.74 3.47 501 502 495
brock800_4 189.82 0.44 2.73 531 533 525
C1000.9 261.31 93.17 499.37 1,328 1,368 1,225
C2000.5 316.07 0.77 20.92 471 481 480
C2000.9 272.79 32.21 469.85 1,580 1,731 1,416
C4000.5 404.33 5.31 483.52 508 547 518
C500.9 285.87 1.92 23.52 1,059 1,061 1,043

gen400_p0.9_55 289.76 2.16 0.50 946 949 914
gen400_p0.9_65 125.29 2.97 0.65 944 945 935
gen400_p0.9_75 214.58 0.48 0.51 987 987 975
hamming10-4 374.66 4.75 445.21 903 938 886
johnson32-2-4 11.64 0.06 0.95 643 643 643

keller5 392.02 0.81 5.05 607 618 600
keller6 401.76 12.03 599.11 1,035 1,396 1,038
MANN_a27 0.50 0.08 1.38 2,257 2,257 2,249
MANN_a45 217.75 2.95 122.03 6,284 6,285 6,275
MANN_a81 219.77 49.30 7.07 20,901 20,926 20,810

p_hat1000-3 237.96 12.69 240.07 1,018 1,025 1,023
p_hat1500-2 287.51 1.35 58.95 1,013 1,020 1,020
p_hat1500-3 346.58 18.52 488.84 1,412 1,443 1,414
sanr400_0.7 0.46 18.35 0.23 449 449 438

Geometric mean
111.01 3.96 16.28 2,564 2,628 2,527

Table 6.11: DIMACS heuristic results

61

6 Experimental Evaluation

6.6.3 Network Repository Graphs

As shown in Table 6.12, performance on REP graphs is very competitive among the heuris-
tic solvers. While all algorithms compute the best solution an approximately equal amount
of times, the solution quality of SCCWalk4l is the lowest on average. Taking speed into
account, MWCPeel shows a good performance in comparison. It should be noted however,
that TSM-MWC computes even higher weight solutions faster for most of the instances.

tsol w(Ĉ)
Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

Uniform weighted
aff-digg 240.01 30.73 47.68 3,514 3,829 3,829

bio-human-gene1 719.13 640.92 493.36 136,581 136,647 136,713
bio-human-gene2 457.56 534.75 89.59 131,763 131,862 131,904
bio-mouse-gene 593.17 412.13 13.43 59,439 59,473 59,146

sc-TSOPF-RS-b2383 33.02 243.56 1.43 913 900 870
soc-flickr-und 601.63 252.98 44.40 10,806 8,968 10,847

soc-orkut 135.88 526.16 183.51 5,832 4,552 5,582
soc-orkut-dir 157.93 521.46 185.02 5,261 4,080 5,116

web-wikipedia_link_it 71.06 972.97 36.59 87,175 2,903 87,175
web-wikipedia-growth 44.03 343.25 66.06 3,334 2,960 3,136

Powerlaw weighted
aff-digg 260.55 203.20 31.39 1,166 1,369 1,369

bio-human-gene1 350.41 442.01 142.75 21,572 21,688 21,689
bio-human-gene2 284.12 357.18 97.32 19,223 19,340 19,300
bio-mouse-gene 390.77 551.27 27.07 9,201 9,230 9,210

sc-TSOPF-RS-b2383 249.42 2.38 5.38 565 565 525
soc-flickr-und 580.29 240.61 43.09 2,514 2,530 2,460

soc-orkut 159.10 387.90 169.20 1,420 1,278 1,417
soc-orkut-dir 147.52 500.74 147.82 1,322 1,250 1,322

web-wikipedia_link_it 65.98 949.06 45.00 13,005 482 13,005
web-wikipedia-growth 69.48 204.15 48.24 921 907 900

Exponential weighted
aff-digg 275.54 153.36 35.14 491 581 581

bio-human-gene1 357.68 554.11 248.47 15,196 15,254 15,258
bio-human-gene2 546.57 496.33 82.10 14,856 14,899 14,903
bio-mouse-gene 298.26 354.75 10.40 6,414 6,429 6,380

sc-TSOPF-RS-b2383 247.86 2.33 4.18 222 222 195
soc-flickr-und 615.71 177.61 48.66 1,188 1,198 1,198

soc-orkut 164.46 664.54 173.35 735 597 672
soc-orkut-dir 466.39 428.66 165.67 674 562 633

web-wikipedia_link_it 68.53 1,032.91 49.29 9,616 364 10,236
web-wikipedia-growth 114.46 324.19 57.94 414 391 384

Geometric mean
218.15 265.90 51.83 4,378 3,038 4,355

Table 6.12: REP graphs heuristic results

62

6.6 Comparing the Heuristic Algorithms

6.6.4 Random Hyperbolic Graphs
The results for the RHGs are presented in Table 6.13. Here, MWCPeel outperforms the
other solvers in 31 out of 39 instances. While FastWCLq sometimes finds a slightly higher
weight solution than MWCPeel, it has a higher running time on average. SCCWalk4l is
clearly outperformed both in speed and solution quality.

tsol w(Ĉ)
Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

Uniform weighted
rhg_250000_100_1.75 10.56 134.23 2.67 99,839 99,839 99,839
rhg_250000_100_2.25 2.76 59.67 2.09 37,947 37,947 37,947
rhg_250000_250_1.75 42.01 501.91 4.24 112,769 112,074 112,756
rhg_250000_250_2.25 9.82 204.35 4.58 71,001 71,001 71,001
rhg_250000_500_1.75 125.03 869.09 18.39 137,234 86,773 136,884
rhg_250000_500_2.25 36.98 624.17 10.15 102,364 100,087 102,364
rhg_500000_250_1.75 90.36 854.58 22.69 131,559 67,352 131,100
rhg_500000_250_2.25 22.04 647.54 11.40 88,512 85,244 88,512
rhg_500000_500_2.25 71.83 995.47 15.33 122,781 46,201 122,781
rhg_750000_250_1.75 122.79 998.01 22.72 160,845 36,006 160,845
rhg_750000_250_2.25 28.23 687.98 17.00 96,362 95,558 96,362
rhg_750000_500_1.75 375.30 1,017.89 21.41 207,197 27,079 207,197
rhg_750000_500_2.25 72.82 1,002.84 36.00 119,936 43,470 119,936

Powerlaw weighted
rhg_250000_100_1.75 11.06 92.52 3.17 14,183 14,183 14,183
rhg_250000_100_2.25 2.11 48.48 2.04 5,801 5,783 5,801
rhg_250000_250_1.75 27.71 321.83 5.24 16,771 16,516 16,771
rhg_250000_250_2.25 8.13 142.50 4.63 10,541 10,512 10,541
rhg_250000_500_1.75 77.55 825.63 17.32 20,188 20,093 20,140
rhg_250000_500_2.25 23.04 455.24 12.46 14,720 14,556 14,720
rhg_500000_250_1.75 52.87 763.45 19.29 19,356 17,332 19,212
rhg_500000_250_2.25 17.22 484.21 11.87 12,997 12,856 12,997
rhg_500000_500_2.25 44.85 838.71 22.28 18,100 17,948 18,100
rhg_750000_250_1.75 80.25 998.05 27.64 22,720 7,428 22,720
rhg_750000_250_2.25 23.56 629.66 17.01 14,014 13,730 14,014
rhg_750000_500_1.75 280.47 1,027.30 48.08 29,071 3,897 29,071
rhg_750000_500_2.25 64.95 999.31 34.75 17,746 8,528 17,746

Exponential weighted
rhg_250000_100_1.75 11.22 260.80 2.33 10,808 10,652 10,808
rhg_250000_100_2.25 2.43 54.90 1.86 4,270 4,270 4,270
rhg_250000_250_1.75 34.48 396.15 4.92 12,368 11,321 12,368
rhg_250000_250_2.25 9.59 245.29 4.74 7,930 7,769 7,930
rhg_250000_500_1.75 89.77 810.86 19.47 15,189 13,046 15,157
rhg_250000_500_2.25 26.08 501.97 11.68 11,225 11,220 11,225
rhg_500000_250_1.75 75.88 779.39 22.81 14,518 11,303 14,488

63

6 Experimental Evaluation

rhg_500000_250_2.25 21.02 535.28 11.62 9,675 9,675 9,675
rhg_500000_500_2.25 57.95 914.79 22.31 13,894 12,167 13,894
rhg_750000_250_1.75 101.71 999.02 28.84 17,391 4,475 17,391
rhg_750000_250_2.25 27.01 603.72 17.66 10,849 10,564 10,849
rhg_750000_500_1.75 268.55 1,034.19 50.97 22,404 2,816 22,404
rhg_750000_500_2.25 72.35 998.22 30.40 13,387 4,984 13,386

Geometric mean
34.59 479.59 11.62 26,980 17,956 26,966

Table 6.13: RHG heuristic results

Figure 6.3 shows the solution quality of the heuristic solvers relative to the respective best
value. The most notable observation here is the drop in performance of SCCWalk4l for
multiple instances, while both FastWCLq and MWCRedu maintain a consistent solution
quality.

The time to get to the best solution is compared in Figure 6.4. It shows again, that except
for DIMACS, where the exact reductions are not applicable, MWCRedu performs very
well in comparison with the other solvers.

Figure 6.3: Solution quality for heuristic solvers.

64

6.6 Comparing the Heuristic Algorithms

Figure 6.4: Time to solution for heuristic solvers.

65

6 Experimental Evaluation

66

CHAPTER 7
Conclusion

In this work, we proposed both exact and heuristic algorithms for the MWC problem,
that combine effective techniques from previously seen solvers with novel graph reduction
techniques that significantly reduce the size of the input graph for many instances. As the
experiments show, especially the exact solver MWCRedu shows significant improvements
over the state-of-the art solver TSM-MWC. For graphs where the reduction rules are espe-
cially effective, such as graphs resembling the structure of the RHG or OSM instances from
the experiments, MWCRedu clearly outperforms TSM-MWC. Even in the case that the re-
duction cannot be applied on the input instance, MWCRedu still sometimes reaches higher
weight solutions due to the local search algorithm. TSM-MWC only consistently reaches
the optimal solution faster for very large graphs, where the reductions employed by MW-
CRedu are applicable but relatively inefficient. Overall, as TSM-MWC fails to compute
the optimal solution several times more often than MWCRedu and takes longer on average
to find and prove the optimal solution, MWCRedu appears to be the more consistent of the
two.
We furthermore extend the research for heuristic algorithms for MWC, by investigating ma-
chine learning approaches, as well as a heuristic rule for reducing the graph. The heuristic
solver MWCPeel, implementing both the exact reduction rules from MWCRedu and the
novel heuristic reduction rule, proves to be competitive with the state-of-the-art solvers
FastWCLq and SCCWalk4l. It clearly outperforms both competitors for most of the OSM
and RHG instances, especially when it comes to the time to compute the solution. While
it is outperformed by SCCWalk4l for the DIMACS instances, MWCPeel reaches signifi-
cantly higher weight solutions on average. FastWCLq achieves higher quality solutions on
average, but usually takes longer to get there. It therefore depends on the use-case which
solver should be employed, depending on whether speed or solution quality is more impor-
tant. The approach of scoring the vertices using machine learning models for the heuristic
reductions also shows potential, but is not yet able to fully capture the complex nature of
the MWC problem. We believe that given more complex models and/or features, machine
learning will be a natural extension to many of the presented techniques.

67

7 Conclusion

7.1 Future Work

Among the ideas presented in this work, many can be extended and evolved into new
techniques to further speed up the solver. The first extension that might be worth looking
into concerns the heuristic vertex removal rule. Specifically, as exact edge reduction rules
have proven very effective in reducing some graph instances, the peeling reduction can be
extended to also remove edges according to some heuristic criterion, further reducing the
input instance and speeding up solvers applied on the reduced graph. Possible choices for
the criterion could be the combined neighborhood weight of the endpoints, the weight of
their common neighborhood or some score assigned by a machine learning model. As the
understanding and development of machine learning continues to grow, it would also be
interesting to evaluate more powerful models on the MWC problem. A prediction that is
correlated to the potential of a vertex to be in the optimal solution can be used not only
to improve the heuristic vertex reduction rule, but also, e.g., as an evaluation function for
BMS in local search algorithms, or as an ordering for exact B&B solvers. For the heuristic
solver, it would also be possible to use some state-of-the-art local search algorithm, such
as the one employed in FastWCLq or SCCWalk4l, to look for higher weight solutions
in the reduced graph instead of applying B&B, possibly reaching a high quality solution
faster. Lastly, an extension that is certain to further speed up MWCRedu and MWCPeel
is parallelization. This could be done, e.g., by partitioning the graph and applying the
reductions on each partition in parallel.

68

Appendix

69

7 Conclusion

Instance |V | |E| ρ dmin dmax davg
vermont-AM3 3,436 1,136,164 3.27× 10−1 1 1,608 661.33

massachusetts-AM3 3,703 551,491 1.10× 10−1 1 1,188 297.86
idaho-AM3 4,064 3,924,080 4.75× 10−1 1 3,332 1,931.14

greenland-AM3 4,986 3,652,361 1.74× 10−2 1 3,354 1,465.05
oregon-AM3 5,588 2,912,701 2.60× 10−2 1 2,906 1,042.48
virginia-AM3 6,185 665,903 3.48× 10−2 1 775 215.33
washington-AM3 10,022 2,346,213 4.67× 10−2 1 1,986 468.21

district-of-columbia-AM2 13,597 1,609,795 8.05× 10−2 1 1,126 236.79
rhode-island-AM3 15,124 12,622,219 1.26× 10−1 1 5,930 1,669.17

kentucky-AM3 19,095 59,533,630 2.94× 10−1 1 14,928 6,235.51
hawaii-AM3 28,006 49,444,921 1.87× 10−1 1 10,313 3,531.02

district-of-columbia-AM3 46,221 27,729,137 1.93× 10−1 1 5,940 1,199.85

Table 7.1: OSM graphs

Instance wmin wmax wavg

vermont-AM3 33 2,539 648.90
massachusetts-AM3 33 2,731 324.38

idaho-AM3 33 2,506 547.21
greenland-AM3 33 1,029 324.32
oregon-AM3 33 2,392 432.76
virginia-AM3 33 3,048 659.48
washington-AM3 33 3,672 523.41

district-of-columbia-AM2 33 1,389 292.83
rhode-island-AM3 33 2,939 469.78
kentucky-AM3 33 2,825 292.36
hawaii-AM3 33 3,628 328.71

district-of-columbia-AM3 33 1,389 209.55

Table 7.2: OSM graphs weight distribution

70

7.1 Future Work

Instance |V | |E| ρ dmin dmax davg
MANN_a27 378 70,551 9.90× 10−1 364 374 373.29

sanr400_0.7 400 55,869 7.00× 10−1 252 310 279.35
gen400_p0.9_55 400 71,820 9.00× 10−1 334 375 359.10
gen400_p0.9_65 400 71,820 9.00× 10−1 333 378 359.10
gen400_p0.9_75 400 71,820 9.00× 10−1 335 380 359.10
johnson32-2-4 496 107,880 8.79× 10−1 435 435 435.00

C500.9 500 112,332 9.00× 10−1 431 468 449.33
keller5 776 225,990 7.52× 10−1 560 638 582.45

brock800_3 800 207,333 6.49× 10−1 474 558 518.33
brock800_1 800 207,505 6.49× 10−1 477 560 518.76
brock800_4 800 207,643 6.50× 10−1 481 565 519.11
brock800_2 800 208,166 6.51× 10−1 472 566 520.42
p_hat1000-3 1,000 371,746 7.44× 10−1 582 895 743.49

C1000.9 1,000 450,079 9.01× 10−1 868 925 900.16
hamming10-4 1,024 434,176 8.29× 10−1 848 848 848.00
MANN_a45 1,035 533,115 9.96× 10−1 1,012 1,031 1,030.17

p_hat1500-2 1,500 568,960 5.06× 10−1 335 1,153 758.61
p_hat1500-3 1,500 847,244 7.54× 10−1 912 1,330 1,129.66

C2000.5 2,000 999,836 5.00× 10−1 919 1,074 999.84
C2000.9 2,000 1,799,532 9.00× 10−1 1,751 1,848 1,799.53
MANN_a81 3,321 5,506,380 9.99× 10−1 3,280 3,317 3,316.10
keller6 3,361 4,619,898 8.18× 10−1 2,690 2,952 2,749.12
C4000.5 4,000 4,000,268 5.00× 10−1 1,895 2,123 2,000.13

Table 7.3: DIMACS graphs

71

7 Conclusion

Instance wmin wmax wavg

MANN_a27 1 200 98.78
sanr400_0.7 1 200 98.69

gen400_p0.9_55 1 200 98.69
gen400_p0.9_65 1 200 98.69
gen400_p0.9_75 1 200 98.69
johnson32-2-4 1 200 97.99

C500.9 1 200 98.00
keller5 1 200 98.54

brock800_3 1 200 98.62
brock800_1 1 200 98.62
brock800_4 1 200 98.62
brock800_2 1 200 98.62
p_hat1000-3 1 200 99.29
C1000.9 1 200 99.29

hamming10-4 1 200 99.41
MANN_a45 1 200 99.46

p_hat1500-2 1 200 98.68
p_hat1500-3 1 200 98.68
C2000.5 1 200 98.83
C2000.9 1 200 98.83
MANN_a81 1 200 99.64
keller6 1 200 99.68
C4000.5 1 200 99.76

Table 7.4: DIMACS graphs with uniform weighting scheme

72

7.1 Future Work

Instance wmin wmax wavg

MANN_a27 1 189 14.43
sanr400_0.7 1 189 14.82

gen400_p0.9_55 1 189 14.82
gen400_p0.9_65 1 189 14.82
gen400_p0.9_75 1 189 14.82
johnson32-2-4 1 190 14.66

C500.9 1 190 14.59
keller5 1 196 14.31

brock800_3 1 196 14.32
brock800_1 1 196 14.32
brock800_4 1 196 14.32
brock800_2 1 196 14.32
p_hat1000-3 1 197 14.10
C1000.9 1 197 14.10

hamming10-4 1 197 14.07
MANN_a45 1 197 14.04

p_hat1500-2 1 199 13.68
p_hat1500-3 1 199 13.68
C2000.5 1 199 13.82
C2000.9 1 199 13.82
MANN_a81 1 199 14.17
keller6 1 199 14.16
C4000.5 1 199 14.04

Table 7.5: DIMACS graphs with powerlaw weighting scheme

73

7 Conclusion

Instance wmin wmax wavg

MANN_a27 1 107 10.85
sanr400_0.7 1 107 10.77

gen400_p0.9_55 1 107 10.77
gen400_p0.9_65 1 107 10.77
gen400_p0.9_75 1 107 10.77
johnson32-2-4 1 107 10.99

C500.9 1 107 10.97
keller5 1 107 10.85

brock800_3 1 107 10.82
brock800_1 1 107 10.82
brock800_4 1 107 10.82
brock800_2 1 107 10.82
p_hat1000-3 1 107 10.78
C1000.9 1 107 10.78

hamming10-4 1 107 10.79
MANN_a45 1 107 10.80

p_hat1500-2 1 107 10.84
p_hat1500-3 1 107 10.84
C2000.5 1 107 10.80
C2000.9 1 107 10.80
MANN_a81 1 107 11.04
keller6 1 107 11.05
C4000.5 1 107 10.99

Table 7.6: DIMACS graph instances with exponential weighting scheme

Instance |V | |E| ρ dmin dmax davg
bio-human-gene2 14,340 9,027,024 8.78× 10−2 0 7,228 1,259.00
bio-human-gene1 22,283 12,323,680 4.96× 10−2 0 7,938 1,106.10
sc-TSOPF-RS-b2383 38,121 16,115,324 2.22× 10−2 0 16,353 845.48
bio-mouse-gene 45,101 14,461,095 1.42× 10−2 0 8,031 641.27

aff-digg 872,622 22,501,699 5.91× 10−5 0 75,587 51.19
soc-flickr-und 1,715,256 15,555,040 1.06× 10−5 0 27,236 17.78

web-wikipedia-growth 1,870,710 36,532,530 2.09× 10−5 0 226,073 38.98
web-wikipedia_link_it 2,936,414 86,754,663 2.01× 10−5 0 825,147 58.53

soc-orkut-dir 2,997,167 106,349,208 2.37× 10−5 0 27,466 70.85
soc-orkut 3,072,442 117,185,082 2.48× 10−5 0 33,313 76.17

Table 7.7: Real-world graphs

74

7.1 Future Work

Instance wmin wmax wavg

bio-human-gene2 1 200 99.98
bio-human-gene1 1 200 100.08
sc-TSOPF-RS-b2383 1 200 100.31
bio-mouse-gene 1 200 100.33

aff-digg 1 200 100.48
soc-flickr-und 1 200 100.48

web-wikipedia-growth 1 200 100.48
web-wikipedia_link_it 1 200 100.43

soc-orkut-dir 1 200 100.43
soc-orkut 1 200 100.43

Table 7.8: Real-world graphs with uniform weighting scheme

Instance wmin wmax wavg

bio-human-gene2 1 199 14.12
bio-human-gene1 1 199 14.05
sc-TSOPF-RS-b2383 1 199 14.05
bio-mouse-gene 1 199 14.07

aff-digg 1 199 14.10
soc-flickr-und 1 199 14.09

web-wikipedia-growth 1 199 14.09
web-wikipedia_link_it 1 199 14.04

soc-orkut-dir 1 199 14.03
soc-orkut 1 199 14.03

Table 7.9: Real-world graphs with powerlaw weighting scheme

75

7 Conclusion

Instance wmin wmax wavg

bio-human-gene2 1 110 10.96
bio-human-gene1 1 110 10.94
sc-TSOPF-RS-b2383 1 122 10.98
bio-mouse-gene 1 122 10.97

aff-digg 1 179 10.99
soc-flickr-und 1 179 11.00

web-wikipedia-growth 1 179 11.00
web-wikipedia_link_it 1 179 11.00

soc-orkut-dir 1 179 11.00
soc-orkut 1 179 11.00

Table 7.10: Real-world graphs with exponential weighting scheme

Instance |V | |E| ρ dmin dmax davg
rhg_250000_100_1.75 250,000 7,755,473 2.48× 10−4 0 145,773 62.04
rhg_250000_100_2.25 250,000 10,546,938 3.38× 10−4 6 77,509 84.38
rhg_250000_250_1.75 250,000 17,828,988 5.71× 10−4 3 206,689 142.63
rhg_250000_250_2.25 250,000 24,036,880 7.69× 10−4 19 119,003 192.29
rhg_250000_500_1.75 250,000 35,161,098 1.13× 10−3 11 225,762 281.29
rhg_250000_500_2.25 250,000 47,230,197 1.51× 10−3 45 210,238 377.84
rhg_500000_250_1.75 500,000 35,493,799 2.84× 10−4 1 333,324 141.97
rhg_500000_250_2.25 500,000 49,954,694 4.00× 10−4 21 343,333 199.82
rhg_500000_500_2.25 500,000 92,901,492 7.43× 10−4 47 216,025 371.61
rhg_750000_250_1.75 750,000 53,201,080 1.89× 10−4 1 676,852 141.87
rhg_750000_250_2.25 750,000 73,667,026 2.62× 10−4 19 339,764 196.44
rhg_750000_500_1.75 750,000 102,363,505 3.64× 10−4 8 506,104 272.81
rhg_750000_500_2.25 750,000 139,633,569 4.96× 10−4 46 425,575 372.34

Table 7.11: RHG graphs

76

7.1 Future Work

Instance wmin wmax wavg

rhg_250000_100_1.75 1 200 100.49
rhg_250000_100_2.25 1 200 100.49
rhg_250000_250_1.75 1 200 100.49
rhg_250000_250_2.25 1 200 100.49
rhg_250000_500_1.75 1 200 100.49
rhg_250000_500_2.25 1 200 100.49
rhg_500000_250_1.75 1 200 100.48
rhg_500000_250_2.25 1 200 100.48
rhg_500000_500_2.25 1 200 100.48
rhg_750000_250_1.75 1 200 100.48
rhg_750000_250_2.25 1 200 100.48
rhg_750000_500_1.75 1 200 100.48
rhg_750000_500_2.25 1 200 100.48

Table 7.12: RHG graphs with uniform weighting scheme

Instance wmin wmax wavg

rhg_250000_100_1.75 1 199 14.11
rhg_250000_100_2.25 1 199 14.11
rhg_250000_250_1.75 1 199 14.11
rhg_250000_250_2.25 1 199 14.11
rhg_250000_500_1.75 1 199 14.11
rhg_250000_500_2.25 1 199 14.11
rhg_500000_250_1.75 1 199 14.09
rhg_500000_250_2.25 1 199 14.09
rhg_500000_500_2.25 1 199 14.09
rhg_750000_250_1.75 1 199 14.10
rhg_750000_250_2.25 1 199 14.10
rhg_750000_500_1.75 1 199 14.10
rhg_750000_500_2.25 1 199 14.10

Table 7.13: RHG graphs with powerlaw weighting scheme

77

7 Conclusion

Instance wmin wmax wavg

rhg_250000_100_1.75 1 138 11.00
rhg_250000_100_2.25 1 138 11.00
rhg_250000_250_1.75 1 138 11.00
rhg_250000_250_2.25 1 138 11.00
rhg_250000_500_1.75 1 138 11.00
rhg_250000_500_2.25 1 138 11.00
rhg_500000_250_1.75 1 138 10.99
rhg_500000_250_2.25 1 138 10.99
rhg_500000_500_2.25 1 138 10.99
rhg_750000_250_1.75 1 179 10.99
rhg_750000_250_2.25 1 179 10.99
rhg_750000_500_1.75 1 179 10.99
rhg_750000_500_2.25 1 179 10.99

Table 7.14: RHG graphs with exponential weighting scheme

78

Abstract (German)

Das Maximum Weighted Clique Problem (MWC) ist ein bekanntes Problem der Graphen-
theorie mit vielen praktischen Anwendungen. In dieser Arbeit stellen wir sowohl ex-
akte als auch heuristische Algorithmen vor, die erfolgreiche Techniken aus verwandten
Arbeiten mit neuen Graphenreduktionen kombinieren. Während für MWC in der Ver-
gangenheit ausschließlich Graphenreduktionen basierend auf oberen Schranken verwen-
det wurden, präsentieren wir Reduktionsregeln, die lokale Graphenstrukturen ausnutzen,
um Knoten und Kanten zu identifizieren und zu entfernen, ohne die optimale Lösung
zu reduzieren. Ein Satz exakter Reduktionsregeln wird in einem exakten Algorithmus
namens MWCRedu verwendet, während heuristische Reduktionstechniken basierend auf
maschinellen Lernmodellen wie MLP, Deepset und GNN im heuristischen Framework
MWCPeel untersucht werden. Experimente mit einer breiten Palette von Graphen zeigen,
dass MWCRedu den exakten Algorithmus TSM-MWC [25], welcher den aktuellen Stand
der Technik repräsentiert, für die meisten Grapheninstanzen übertrifft. Insbesondere für
mittelgroße, gewichtete Graphen, die Straßennetzwerke modellieren, und zufällig gener-
ierte hyperbolische Graphen, die als gute Annäherung an Graphen der realen Welt gelten,
ist MWCRedu um Größenordnungen schneller. MWCPeel übertrifft seine Konkurrenten
FastWCLq [12] und SCCWalk4l [47] ebenfalls auf diesen Instanzen, ist jedoch auf extrem
dichten oder großen Instanzen etwas weniger effektiv.

79

Bibliography

[1] Faisal Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian
Schulz, and Darren Strash. “Recent advances in practical data reduction”. In: arXiv
preprint arXiv:2012.12594 (2020).

[2] Abien Fred Agarap. “Deep learning using rectified linear units (relu)”. In: arXiv
preprint arXiv:1803.08375 (2018).

[3] Takuya Akiba and Yoichi Iwata. “Branch-and-reduce exponential/FPT algorithms
in practice: A case study of vertex cover”. In: Theoretical Computer Science 609
(2016), pp. 211–225.

[4] Luitpold Babel and Gottfried Tinhofer. “A branch and bound algorithm for the maxi-
mum clique problem”. In: Zeitschrift für Operations Research 34.3 (1990), pp. 207–
217.

[5] Roberto Battiti and Giampietro Tecchiolli. “The reactive tabu search”. In: ORSA
journal on computing 6.2 (1994), pp. 126–140.

[6] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. “Efficient semi-
streaming algorithms for local triangle counting in massive graphs”. In: Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining. 2008, pp. 16–24.

[7] Una Benlic and Jin-Kao Hao. “Breakout local search for maximum clique prob-
lems”. In: Computers & Operations Research 40.1 (2013), pp. 192–206.

[8] Burton H Bloom. “Space/time trade-offs in hash coding with allowable errors”. In:
Communications of the ACM 13.7 (1970), pp. 422–426.

[9] Sergiy Butenko and Wilbert E Wilhelm. “Clique-detection models in computational
biochemistry and genomics”. In: European Journal of Operational Research 173.1
(2006), pp. 1–17.

[10] Shaowei Cai. “Balance between complexity and quality: Local search for minimum
vertex cover in massive graphs”. In: Twenty-Fourth International Joint Conference
on Artificial Intelligence. 2015.

[11] Shaowei Cai and Jinkun Lin. “Fast Solving Maximum Weight Clique Problem in
Massive Graphs.” In: IJCAI. 2016, pp. 568–574.

81

Bibliography

[12] Shaowei Cai, Jinkun Lin, Yiyuan Wang, and Darren Strash. “A semi-exact algorithm
for quickly computing a maximum weight clique in large sparse graphs”. In: Journal
of Artificial Intelligence Research 72 (2021), pp. 39–67.

[13] Randy Carraghan and Panos M Pardalos. “An exact algorithm for the maximum
clique problem”. In: Operations Research Letters 9.6 (1990), pp. 375–382.

[14] Lijun Chang, Wei Li, and Wenjie Zhang. “Computing a near-maximum independent
set in linear time by reducing-peeling”. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. 2017, pp. 1181–1196.

[15] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash,
and Renato F Werneck. “Accelerating local search for the maximum independent
set problem”. In: International symposium on experimental algorithms. Springer.
2016, pp. 118–133.

[16] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collec-
tion”. In: ACM Transactions on Mathematical Software (TOMS) 38.1 (2011), pp. 1–
25.

[17] Zhiwen Fang, Chu-Min Li, and Ke Xu. “An exact algorithm based on maxsat reason-
ing for the maximum weight clique problem”. In: Journal of Artificial Intelligence
Research 55 (2016), pp. 799–833.

[18] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders,
Christian Schulz, Darren Strash, and Moritz von Looz. “Communication-free mas-
sively distributed graph generation”. In: Journal of Parallel and Distributed Com-
puting 131 (2019), pp. 200–217.

[19] Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdán
Zaválnij. “Boosting Data Reduction for the Maximum Weight Independent Set Prob-
lem Using Increasing Transformations”. In: 2021 Proceedings of the Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM. 2021, pp. 128–142.

[20] Michel Gendreau, Patrick Soriano, and Louis Salvail. “Solving the maximum clique
problem using a tabu search approach”. In: Annals of operations research 41.4
(1993), pp. 385–403.

[21] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. “Neural message passing for quantum chemistry”. In: International confer-
ence on machine learning. PMLR. 2017, pp. 1263–1272.

[22] Ernestine Großmann, Sebastian Lamm, Christian Schulz, and Darren Strash.
“Finding Near-Optimal Weight Independent Sets at Scale”. In: arXiv preprint
arXiv:2208.13645 (2022).

[23] Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. “Random hyperbolic
graphs: degree sequence and clustering”. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2012, pp. 573–585.

82

Bibliography

[24] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable kernelization for
maximum independent sets”. In: Journal of Experimental Algorithmics (JEA) 24
(2019), pp. 1–22.

[25] Hua Jiang, Chu-Min Li, Yanli Liu, and Felip Manya. “A two-stage maxsat reasoning
approach for the maximum weight clique problem”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[26] Hua Jiang, Chu-Min Li, and Felip Manya. “An exact algorithm for the maximum
weight clique problem in large graphs”. In: Proceedings of the AAAI conference on
artificial intelligence. Vol. 31. 1. 2017.

[27] David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second
DIMACS implementation challenge, October 11-13, 1993. Vol. 26. American Math-
ematical Soc., 1996.

[28] Richard M Karp. “Reducibility among combinatorial problems”. In: Complexity of
computer computations. Springer, 1972, pp. 85–103.

[29] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph con-
volutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[30] Janez Konc and Dušanka Janezic. “An improved branch and bound algorithm for the
maximum clique problem”. In: proteins 4.5 (2007), pp. 590–596.

[31] Deniss Kumlander. “A new exact algorithm for the maximum-weight clique problem
based on a heuristic vertex-coloring and a backtrack search”. In: Proc. 5th Int’l Conf.
on Modelling, Computation and Optimization in Information Systems and Manage-
ment Sciences. Citeseer. 2004, pp. 202–208.

[32] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo
Zhang. “Exactly solving the maximum weight independent set problem on large
real-world graphs”. In: 2019 Proceedings of the Twenty-First Workshop on Algo-
rithm Engineering and Experiments (ALENEX). SIAM. 2019, pp. 144–158.

[33] Kenneth Langedal, Johannes Langguth, Fredrik Manne, and Daniel Thilo Schroeder.
“Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Net-
works”. In: 20th International Symposium on Experimental Algorithms (SEA 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2022.

[34] Chu Min Li and Felip Manya. “MaxSAT, hard and soft constraints”. In: Handbook
of satisfiability. IOS Press, 2021, pp. 903–927.

[35] Chu-Min Li and Zhe Quan. “An efficient branch-and-bound algorithm based on
maxsat for the maximum clique problem”. In: Twenty-fourth AAAI conference on
artificial intelligence. 2010.

[36] Kurt Mehlhorn, Peter Sanders, and Peter Sanders. Algorithms and data structures:
The basic toolbox. Vol. 55. Springer, 2008.

83

Bibliography

[37] Ingo Muegge and Matthias Rarey. “Small molecule docking and scoring”. In: Re-
views in computational chemistry 17 (2001), pp. 1–60.

[38] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. “Recent advances in scalable
network generation”. In: arXiv preprint arXiv:2003.00736 (2020).

[39] Wayne Pullan. “Approximating the maximum vertex/edge weighted clique using
local search”. In: Journal of Heuristics 14.2 (2008), pp. 117–134.

[40] Wayne Pullan. “Phased local search for the maximum clique problem”. In: Journal
of Combinatorial Optimization 12.3 (2006), pp. 303–323.

[41] Wayne Pullan, Franco Mascia, and Mauro Brunato. “Cooperating local search for
the maximum clique problem”. In: Journal of Heuristics 17.2 (2011), pp. 181–199.

[42] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[43] Ryan A. Rossi and Nesreen K. Ahmed. “The Network Data Repository with Interac-
tive Graph Analytics and Visualization”. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence. 2015.

[44] Yuan Sun, Xiaodong Li, and Andreas Ernst. “Using statistical measures and machine
learning for graph reduction to solve maximum weight clique problems”. In: IEEE
transactions on pattern analysis and machine intelligence 43.5 (2019), pp. 1746–
1760.

[45] Etsuji Tomita and Tomokazu Seki. “An efficient branch-and-bound algorithm for
finding a maximum clique”. In: International conference on discrete mathematics
and theoretical computer science. Springer. 2003, pp. 278–289.

[46] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo
Wakatsuki. “A simple and faster branch-and-bound algorithm for finding a maxi-
mum clique”. In: International Workshop on Algorithms and Computation. Springer.
2010, pp. 191–203.

[47] Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. “SCCWalk: An effi-
cient local search algorithm and its improvements for maximum weight clique prob-
lem”. In: Artificial Intelligence 280 (2020), p. 103230.

[48] Yiyuan Wang, Shaowei Cai, and Minghao Yin. “Two efficient local search algo-
rithms for maximum weight clique problem”. In: Thirtieth AAAI Conference on Ar-
tificial Intelligence. 2016.

[49] Stanley Wasserman, Katherine Faust, et al. “Social network analysis: Methods and
applications”. In: (1994).

[50] Qinghua Wu and Jin-Kao Hao. “A review on algorithms for maximum clique prob-
lems”. In: European Journal of Operational Research 242.3 (2015), pp. 693–709.

84

Bibliography

[51] Qinghua Wu and Jin-Kao Hao. “Solving the winner determination problem via a
weighted maximum clique heuristic”. In: Expert Systems with Applications 42.1
(2015), pp. 355–365.

[52] Qinghua Wu, Jin-Kao Hao, and Fred Glover. “Multi-neighborhood tabu search for
the maximum weight clique problem”. In: Annals of Operations Research 196.1
(2012), pp. 611–634.

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are
graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).

[54] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in neural infor-
mation processing systems 30 (2017).

[55] Dong Zhang, Omar Javed, and Mubarak Shah. “Video object co-segmentation by
regulated maximum weight cliques”. In: European Conference on Computer Vision.
Springer. 2014, pp. 551–566.

[56] Hootan Zhian, Masoud Sabaei, Nastooh Taheri Javan, and Omid Tavallaie. “Increas-
ing coding opportunities using maximum-weight clique”. In: 2013 5th Computer
Science and Electronic Engineering Conference (CEEC). IEEE. 2013, pp. 168–173.

85

	Introduction
	Motivation
	Contributions
	Organization

	Fundamentals
	Graph Preliminaries
	Related Problems
	The Branch and Bound Paradigm
	Hashing
	Bloom Filter

	Machine Learning
	Multi-Layer Perceptron
	DeepSets
	Graph Neural Networks

	Related Work
	Exact Solvers for the Maximum Clique Problem
	Exact Solvers for the Maximum Weighted Clique Problem
	Heuristic Solvers for the Maximum Clique Problem
	Heuristic Solvers for the Maximum Weighted Clique Problem
	Maximum Weighted IS Reductions
	Twin Reduction
	Domination Reduction
	Simplicial Vertex Removal
	Increasing Transformations
	Vertex Peeling Reduction
	Applying the Reductions

	Algorithms
	Exact Approaches
	Exact Reduction Rules
	The Exact Solver

	Heuristic Approaches
	Vertex and Graph Features
	Machine Learning Model Architectures
	Training the Machine Learning Model
	The Heuristic Solver

	Implementation
	Implementing the Exact Approaches
	Efficiently Computing Common Neighborhoods
	Efficiently Computing Dominating Neighborhoods
	Applying the Reductions

	Implementing the Heuristic Approaches
	Applying the Reductions
	Computing the Features
	Implementing the Machine Learning Models

	Experimental Evaluation
	Algorithms
	Graph Instances
	Experimental Setup
	Comparing the Exact Algorithms
	OpenStreetMap graphs
	DIMACS Graphs
	Network Data Repository Graphs
	Random Hyperbolic Graphs

	Comparing the Peeling Rules
	OpenStreetMap graphs
	DIMACS Graphs
	Network Data Repository Graphs
	Random Hyperbolic Graphs

	Comparing the Heuristic Algorithms
	OpenStreetMap Graphs
	DIMACS Graphs
	Network Repository Graphs
	Random Hyperbolic Graphs

	Conclusion
	Future Work

	Bibliography

