
Engineering Generalized Reductions for
the MaximumWeight Independent Set

Problem

Master’s Thesis of

Alexander Gellner

at the Department of Informatics
Institute of Theoretical Computer Science

Reviewer: Prof. Dr. Peter Sanders
Second reviewer: Prof. Dr. Dorothea Wagner
Advisors: M.Sc. Sebastian Lamm

Priv.-Doz. Dr. Christian Schulz, University of Vienna
Dr. Darren Strash, Hamilton College
Dr. Bogdán Zaválnij, Alfréd Rényi Institute of Mathematics

January 30, 2019 – June 30, 2020

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, June 30, 2020

. .
(Alexander Gellner)

Abstract

The maximum weight independent set problem asks on a vertex-weighted, undirected
graph for a subset of pairwise non-adjacent vertices whose total weight is maximum. This
problem has applications in many areas such as map labeling [9, 22], coding theory [10, 44]
or combinatorial auctions [57].

Many of these real-world instances are very large and consist of thousands up to
millions of vertices, making them infeasible for many exact algorithms [33]. A very
well-established approach in practice is kernelization or data reduction, where a problem
instance is transformed into a smaller equivalent instance [3, 33, 52]. This process is
performed by iterative application of reduction rules until an irreducible graph is created.
The so-called branch-and-reduce paradigm is an exact solution method, which has proven
itself in the past and is nowadays used in state-of-the-art solvers. Thereby the input
instance is �rst reduced in size by data reduction, followed by branching into one or more
subproblems by case distinctions and further application of reduction rules [3, 33]. In the
past, a large number of reduction rules have been developed for the maximum weight
independent set problem, which allows a large number of real-world instances to be solved.
However, on some instances that are for example derived from map labeling problems,
these rules still fail to produce small irreducible graphs and hence compute reduced graphs
that are still hard to solve [33].

To tackle this problem, in this thesis we develop new data reduction techniques that
are able to reduce previously irreducible graphs by use of generalized reduction rules.
In this regard, we investigate the theoretical and practical potential of the weighted
stability number reduction (struction) [19, 61]. In contrast to traditional reduction rules,
the struction can not only decrease but also increase the size of the graph. Besides an
algorithm that only uses special cases of the struction which do not increase the graph
size, we develop an additional algorithm that exploits the full potential of the struction
by also allowing struction applications that blow-up the graph. Interestingly, while these
reductions temporarily increase the graph size, they also open up the space for further
reduction rule application and thus are able to obtain smaller irreducible graphs after all.

Our experiments on real-world instances show, that compared to the best state-of-
the-art reduction algorithm, on some instance families we are able to completely reduce
previously irreducible graphs with several thousand vertices to an empty graph or to
obtain reduced graphs which are up to two orders of magnitude smaller. Moreover we are
able to solve 12.5% more instances optimally than the best branch-and-reduce algorithm
and are on average a factor �ve faster on instances that the previous state-of-the-art solver
could solve. Compared to other state-of-the-art local searches, on many instance families
we are able to either �nd better solutions or equivalent solutions in less time.

i

Zusammenfassung

Das Problem der gewichtsmaximalen unabhängigen Menge sucht in einem knotengewich-
teten, ungerichteten Graphen nach einer Teilmenge paarweise nicht benachbarten Knoten
mit maximalem Gesamtgewicht und �ndet in Bereichen wie Kartenbeschriftung [9, 22],
Codierungstheorie [10, 44] oder kombinatorischen Auktionen [57] Anwendung.

Viele dieser Instanzen sind sehr groß und bestehen aus tausenden bis zu millionen von
Knoten, wodurch sie für viele exakte Algorithmen [33] nicht lösbar sind. Ein in der Praxis
bewährter Ansatz ist die Kern�ndung oder Datenreduktion, bei der eine Probleminstanz
in eine kleinere, äquivalente Instanz transformiert wird [3, 33, 52]. Dieser Prozess wird
durch iterative Anwendung von Reduktionsregeln durchgeführt, bis ein irreduzibler Graph
entsteht. Das so genannte branch-and-reduce Paradigma ist eine exakte Lösungsmethode,
die sich in der Vergangenheit bewährt hat und in aktuellen Lösungsverfahren eingesetzt
wird. Dabei wird die Eingabeinstanz zunächst durch Datenreduktion verkleinert, gefolgt
von einer Aufspaltung in ein oder mehrere Teilprobleme durch Fallunterscheidungen und
weitere Anwendung von Reduktionsregeln [3, 33]. In der Vergangenheit wurde eine große
Anzahl von Reduktionsregeln für das Problem der gewichtsmaximalen unabhängigen
Menge entwickelt, wodurch eine große Anzahl von Instanzen aus der Praxis gelöst wer-
den kann. Bei einigen Instanzen, die beispielsweise von Kartenbeschriftungsproblemen
stammen, scheitern diese Regeln jedoch noch immer daran, kleine irreduzible Graphen zu
erzeugen und berechnen reduzierte Graphen, die weiterhin schwer zu lösen sind [33].

Zur Bewältigung dieses Problems entwickeln wir in dieser Arbeit neue Datenredukti-
onstechniken, die bisher irreduzible Graphen durch verallgemeinertere Reduktionsregeln
reduzieren können. Dabei untersuchen wir das theoretische und praktische Potenzial der
sogenannten Struction [19, 61]. Im Gegensatz zu traditionellen Reduktionsregeln kann
diese den Graphen nicht nur verkleinern, sondern auch vergrößern.

Neben einem Algorithmus, der nur Structions verwendet, welche die Graphgröße nicht
erhöhen, entwickeln wir zusätzlich einen Algorithmus, der das volle Potential der Struction
ausschöpft, indem er auch Anwendungen der Struction erlaubt, die den Graphen aufblähen.
Interessanterweise erhöhen diese Reduktionen zwar vorübergehend die Graphengröße,
ö�nen gleichzeitig aber auch den Raum für die Anwendung weiterer Reduktionsregeln,
wodurch sich letztendlich kleinere irreduzible Graphen erhalten lassen.

Unsere Experimente zeigen, dass wir im Vergleich zum aktuell besten Reduktionsal-
gorithmus zuvor irreduzible Graphen mit mehreren tausend Knoten oftmals vollständig
reduzieren können oder reduzierte Graphen erhalten, welche um bis zu zwei Größenord-
nungen kleiner sind. Darüber hinaus sind wir in der Lage, 12,5% mehr Instanzen als der
beste branch-and-reduce Algorithmus optimal zu lösen und zuvor lösbare Instanzen im
geometrischen Mittel um einen Faktor fünf schneller zu lösen. Im Vergleich zu modernen
lokalen Suchen sind wir bei vielen Instanzfamilien in der Lage, entweder bessere Lösungen
oder gleichwertige Lösungen in kürzerer Zeit zu �nden.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Motivation . 1
1.2. Contribution . 2
1.3. Thesis Structure . 2

2. Preliminaries 3
2.1. Basic De�nitions . 3
2.2. Maximum Weight Independent Set And Related Problems 3
2.3. Reduction Rules and Kernelization . 4

3. RelatedWork 5
3.1. Exact Methods . 5
3.2. Heuristic Methods . 6
3.3. Struction . 8

4. Branch-And-Reduce Framework 11
4.1. Basic Reduction Algorithm . 11

4.1.1. Reduction Rules . 11
4.1.2. Reduction Rule Order . 14

5. Struction 17
5.1. Unweighted Struction . 17
5.2. Weighted Struction Variants . 18

5.2.1. Original Weighted Struction . 18
5.2.2. Modi�ed Weighted Struction . 21
5.2.3. Extended Weighted Struction . 22
5.2.4. Extended Reduced Weighted Struction 24

5.3. Relationship To Other Reduction Rules 27
5.3.1. Clique Neighborhood Removal ⊆ Extended Weighted StructionC=C ′ 27
5.3.2. Generalized Fold ⊆ Extended Weighted StructionC=C ′ 28
5.3.3. Isolated Weight Transfer ⊆ Extended Weighted StructionC=C ′ . . 28
5.3.4. Weighted Isolated Vertex Removal ⊆ Isolated Weight Transfer . . 29
5.3.5. Degree Two Fold ⊆ Generalized Fold 29
5.3.6. Neighborhood Removal ⊆ Clique Neighborhood Removal 29
5.3.7. New Reducible Graph Structures 30

v

Contents

6. E�icient Data Reduction Via Struction 31
6.1. Non-Increasing Reduction Algorithm . 32
6.2. Cyclic Blow-Up Algorithm . 33

6.2.1. Blow-Up Phase . 34
6.2.2. Accept Strategies . 37
6.2.3. Cycle Avoidance Strategies . 37
6.2.4. Stopping Criteria . 37

7. Evaluation 39
7.1. Experimental Setup . 39

7.1.1. Environment . 39
7.1.2. Datasets . 39
7.1.3. Methodology . 40
7.1.4. Experimental Design . 41

7.2. Parameter Tuning . 42
7.2.1. Non-Increasing Reduction Algorithm 42
7.2.2. Cyclic Blow-Up Algorithm . 45

7.3. Comparison With Existing Algorithms 50
7.3.1. Comparison With Branch-And-Reduce Framework 51
7.3.2. Comparison With State-Of-The-Art Algorithms 56

8. Discussion 63
8.1. Conclusion . 63
8.2. Future Work . 64

A. Appendix 65
A.1. Basic Graph Property Tables . 65
A.2. Reduced Graph Size Convergence Plots 68
A.3. Time To Solve And Reduced Graph Size Tables 71
A.4. Best Solution Tables . 75
A.5. Solution Quality Convergence Plots . 79

Bibliography 83

vi

1. Introduction

1.1. Motivation

The maximum weight independent set problem (MWIS) is an NP-hard problem [21] which
has many practical applications in areas such as map labeling [9, 22], coding theory [10,
44] or combinatorial auctions [57]. For a weighted graph, it searches for an independent
set, i.e. pairwise non-adjacent vertices, whose total weight is maximum.

In algorithmic cartography, weighted independent sets can be used to automatically
generate high-quality map labelings [9, 22]: A set of potential label candidates is given,
each with an importance i , which e.g. for city name labels is chosen proportional to the
number of inhabitants. The goal is to select a set of non-overlapping labels and thereby
maximize the sum of the label weights. This problem can be solved by �nding an MWIS
on the so-called label con�ict graph, having a vertex with weight i for each label and an
edge for each pair of overlapping labels.

In coding theory [10, 44], large codes with Hamming distance of d can be created by
�rst partitioning the space of all code-words into disjoint subsets, so called orbits. For
each orbit, a vertex is created with a weight corresponding to the number of code-words
it contains, ignoring orbits with code-words that are less than d distant from each other.
Edges are inserted between orbits if the �rst orbit contains a code-word with smaller
distance than d to a code-word of the second orbit. The number of codewords is thus
equivalent to the weight of an independent set in this graph.

Other real-world problems can be found in computational biology in the alignment of
biological networks [6], workload scheduling for energy-e�cient scheduling of disks [15],
computer vision [40], wireless communication [59] and protein structure prediction [41].

Many of these real-world instances are very large, consisting of several thousand up
to millions of vertices, making them intractable for optimal solution methods [33]. A
preprocessing method used in practice is data reduction or kernelization [16], which reduces
the problem to a smaller equivalent instance. By iterative application of reduction rules,
the input graph is reduced in size until an irreducible graph is obtained. This irreducible
graph is called a kernel if it has size bounded by a function of a parameter. Then a solution
is calculated on this irreducible graph and extended to a solution of the original instance
by undoing the reduction rules.

For the maximum weight independent set there are several reduction rules which are
able to calculate small irreducible graphs on a large number of instances, but still fail on
some of them [33]. By researching further and more general reduction rules, we hope to
be able to calculate smaller equivalent instances for these graphs as well and thus make
them feasible.

1

1. Introduction

1.2. Contribution

In this thesis we give a new contribution to data reduction techniques for the maximum
weight independent set problem. We investigate both the theoretical and practical potential
of an already known reduction rule, the stability number reduction (struction). Several
variants of this already exist, but none of them have been tested extensively on real-world
instances so far.

In a theoretical analysis we compare these variants with already existing reduction rules
proposed by Lamm et al. [33]. We �nd that two of these variants subsume six of the eight
rules on their own and can also reduce many new, previously irreducible graphs.

We then design two new reduction algorithms that use the struction and other reduction
rules of the framework. The �rst is a simple extension that uses a restricted variant of
the struction as a new rule that always reduces the graph size or keeps it the same. In
the second algorithm, we further exploit the potential of the struction by also allowing
the application of structions that may increase the number of vertices. The motivation
behind this is to expand the reduction space and create graphs that can be reduced again.
Since common approaches in practice usually try to reduce via incremental application of
reduction rules, which always result in a smaller graph, we explore a far more general
technique with this approach.

In a subsequent evaluation, we show that both algorithms can calculate signi�cantly
smaller equivalent instances on many real-world graphs. Finally, we �nd that we are now
able to optimally solve some real-world instances, which were previously infeasible, using
the branch-and-reduce framework by Lamm et al. [33] combined with our reductions.

1.3. Thesis Structure

We start this thesis with a brief overview of the fundamentals and basic notations in
Chapter 2. Then we introduce related work on weighted independent sets and di�erent
struction variants in Chapter 3, which we want to explore in this work. Chapter 4 gives
us an overview of the branch-and-reduce framework of Lamm et al. [33], providing the
foundation for our study. After that, Chapter 5 introduces the di�erent variants of weighted
struction and shows relationships to other existing reduction rules. Two new struction
based reductions are introduced in Chapter 6. In the following evaluation in Chapter 7
these algorithms are tested on various real-world instances. Finally, we conclude the work
with a short summary and an outlook on future work in Chapter 8.1.

2

2. Preliminaries

In following chapter we introduce some notations that are used in this work. We also give
a brief overview of the maximum independent set problem and related problems. Finally,
a brief outline of the kernelization and reduction rules is given.

2.1. Basic Definitions

A graph G = (V ,E) consists of a vertex set V and an edge set E ⊂ V × V . It is called
undirected if for each edge (u,v) ∈ E the edge set also set contains the corresponding
edge (v,u), i.e. (u,v) ∈ E ⇔ (v,u) ∈ E. In this thesis we only consider undirected graphs
without self loops, i.e. (v,v) < E, and therefore we describe edges by sets {u,v}.

In addition, we denote a graph as (vertex-)weighted if a positive scalar weight w(v)
is assigned to each vertex v ∈ V , i.e. we have a function w : V → R+. The weight
of a vertex set X ⊂ V describes the sum of all its vertices’ weights and is denoted
by w(X) =

∑
v ∈ X w(x).

A graphG′ = (V ′,E′) is called subgraph ofG = (V ,E) ifV ′ ⊂ V and E′ ⊂ E ∩ (V ′ × V ′)
holds. Given a vertex set U ⊂ V the induced subgraph of G is the graph G′ = (U ,E′)
with E′ = E ∩ (U × U) which is denoted by G[U].

Two vertices u,v are called adjacent if there is an edge between them, i.e. {u,v} ∈ E. As
the neighborhood N (v) of a vertex v we describe the set of all vertices adjacent to v .
By N [v] = N (v) ∪ {v} the closed neighborhood and by N (v) = V \ N [v] the non-
neighborhood ofv are denoted. We denote the degree of a vertexv , the number of its neigh-
bors, by δ (v) = |N (v)|. Furthermore, we de�ne the neighborhood of a vertex set U ⊆ V
as N (U) =

⋃
v ∈ U N (v) \ U and the closed neighborhood as N [U] = N (U) ∪ U .

2.2. MaximumWeight Independent Set And Related Problems

For a given graph G = (V ,E) a vertex set I ⊂ V is an independent set if all vertices v ∈ I
are pairwise non adjacent, that is ∀ u,v ∈ I : {u,v} < E ∨ u = v . An independent
set is called maximal if it is not a subset of another independent set and maximum if no
other independent set of greater cardinality exists. The independence number α(G) = |I |,
sometimes also called stability number, of a graph G is the cardinality of a maximum
independent set I in G.

For a weighted graph G an independent set I has maximum weight, if there is no
independent set I ′ inG with a weightw(I ′) greater thanw(I). The weighted independence
number αw (G) = w(I) of a weighted graphG is de�ned as the weight of a maximum weight
independent set I in G. For a given weighted graph G, the maximum weight independent
set problem (MWIS) seeks a maximum weight independent set I in G.

3

2. Preliminaries

Closely related problems to the maximum weight independent set problem are the
maximum weight clique and minimum weight vertex cover problems. A vertex setC ⊂ V
forms a clique in a graph G = (V ,E) if all vertices v ∈ C are pairwise adjacent,
i.e. ∀ u,v ∈ C : {u,v} ∈ E applies. In addition, a vertex set VC ⊂ V is a vertex cover
if each edge is covered by at least one vertex v ∈ VC , thus ∀{u,v} ∈ E : u ∈ VC ∨v ∈ VC
holds. Analogous to the maximum weight independent set problem, the minimum weight
vertex cover (MWVC) looks for a vertex cover of minimum weight and the maximum
weighted clique problem (MWC) for a clique of maximum weight. For any weighted
graph G = (V ,E) a maximum weight independent set I is a maximum weight clique in
the complement graph G = (V ,E) with E = {{u,v} ⊂ V : u , v ∧ {u,v} < E} and V \ I is
a minimum weight vertex cover in G [43, 58].

2.3. Reduction Rules and Kernelization

A frequently used approach for solving maximum (weight) independent set instances
(and analogously also minimum (weight) vertex cover instances) is called kernelization,
which was originally introduced to reduce the complexity of exact solution methods [3,
30, 31, 33, 52], but is nowadays also used in heuristic methods [14, 17, 36]. Besides the
independent set problem, kernelization is also used in many other areas, such as the
dominating set problem [1], minimum cut problem [27, 28, 29], maximum cut problem [20]
or multiterminal cut problem [26].

The goal of kernelization is to reduce the complexity of a given instance in polynomial
time by solving "simple parts" of the graph, leaving the hard to solve core of the problem,
called the kernel. This is achieved by using reduction rules, which e.g. add vertices to the
independent set if they are proven to belong to a maximum (weight) independent set. How
hard a given instance is actually to solve is generally di�cult to say. Motivated by the fact
that exact solution methods have an asymptotic running time exponential in the number
of vertices, the goal is usually to reduce the number of vertices of an instance [3, 33, 52].

In the following a formal de�nition for reduction rules and kernelization is given [16].
We generally consider parameterized problems that are de�ned as languages L ⊆ Σ∗ × N
over an input alphabet Σ. An instance (I ,k) ∈ L is a yes-instance if it is contained in
a set Q ⊆ L, i.e. (I ,k) ∈ Q . For the maximum weight independent set problem, we
obtain a parameterized problem by considering the corresponding decision problem. For
a weighted graph, this problem asks whether there is an independent set with weight
greater than or equal to k . An instance is therefore a yes-instance if such a set exists.

For a given parameterized problem, a reduction rule is a function ϕ : Σ∗ × N → Σ∗ × N,
which converts a problem instance (I ,k) into an equivalent problem instance (I ′,k′) in
polynomial time in |I | and k . Two problem instances (I ,k), (I ′,k′) are called equivalent
if (I ,k) ∈ Q ⇔ (I ′,k′) ∈ Q holds.

On this foundation, a preprocessing algorithm is often used to transform an instance (I ,k)
into an equivalent instance (I ′,k′) in polynomial time by iterative application of reduc-
tion rules. Such an algorithm is called a kernelization algorithm, if for any instance (I ,k)
the size of the output instance (I ′,k′) is bounded by a function д(k), i.e. |I ′| + k′ ≤ д(k).
Kernelization algorithms are called polynomial (linear) if д(k) is polynomial (linear) in k .

4

3. RelatedWork

Motivated by the NP-completeness of the maximum independent set and maximum
weighted independent set problem [21], existing work distinguishes between two major
algorithm classes, namely exact and heuristic methods.

While exact methods always compute optimal solutions in exponential worst case
running time and prove that there is no better solution, heuristic methods usually run
in polynomial time, but generally have no guarantee for the quality of the computed
solutions. In the following we will �rst give a short overview of existing work on both
exact and heuristic procedures, especially outlining how kernelization and preprocessing
methods are used in state-of-the-art algorithms. Furthermore, we examine the mainly
theoretically oriented work on the struction, which is a reduction rule that forms the basis
of this this work.

3.1. Exact Methods

Exact algorithms usually compute their optimal solutions by systematically exploring
the solution space. So-called branch-and-bound methods [46, 54] achieve this by case
distinctions in which vertices are either included into the current solution or excluded
from it, branching into two or more subproblems and resulting in a search tree. In past
work, branch-and bound methods have been improved by new branching schemes or
better pruning methods using upper and lower bounds to exclude certain subtrees. In
practice, exact state-of-the-art algorithms are thus able to calculate optimal solutions on
instances with several hundred to a few thousand vertices [7, 8, 35]. In the following we
want to have a look on important works that follow the branch-and-bound paradigm.

Balas and Yu [8] presented an algorithm for �nding maximum cliques. This algorithm
introduced a very generic branching scheme, which is used in many algorithms for the
weighted case with small adjustments. For this purpose, they look for certain vertex sets
in the graph and for each vertex they branch into a new subproblem.

Babel [7] subsequently presented an algorithm that calculates upper and lower bounds
using a weighted clique heuristic. They are also able to derive a branching scheme from a
weighted clique calculated by their heuristic as a special kind of the scheme by Balas and
Yu.

Warren and Hicks [54] also presented three more branch-and-bound algorithms, all
using weighted clique covers and the branching scheme introduced by Balas and Yu.
The �rst extends the Babel algorithm by accelerating it using a more sophisticated data
representation. The second is an adaptation of the algorithm of Balas and Yu, which uses a
weighted clique heuristic that yields structurally similar results the heuristic of Babel. The

5

3. Related Work

last algorithm is a hybrid version that combines both algorithms and is able to compute
solutions on graphs with hundreds of vertices.

An important part of exact methods are reduction rules which are used in the so-called
branch-and-reduce paradigm [3]. It improves the worst-case runtime of branch-and-bound
algorithms by application of reduction rules to the current graph before each branching
step. For the unweighted case, a large number of branch-and-reduce algorithms have
been developed in the past. However, for a long time, virtually no weighted reduction
rules were known, which is why hardly any branch-and-reduce algorithms exist for the
maximum weighted independent set problem.

To the best of our knowledge, the �rst and only branch-and-reduce algorithm for the
weighted case was recently presented by Lamm et al. [33] The authors �rst introduce two
meta-reductions called neighborhood removal and neighborhood folding, from which they
derive a new set of weighted reduction rules. On this foundation a branch-and-reduce
algorithm is developed using weighted clique covers similar to the approach in [54] for
upper bounds and an adapted version of the ARW local search [5] for lower bounds. The
experimental evaluation shows that their algorithm can solve the majority of the tested
real-world instances and outperforms heuristic algorithms on a large number of instances.

Furthermore, algorithms can be found which follow the branch-and-cut [49], branch-
and-price [56] or branch-price-and-cut [55] paradigm. These are also extensions of branch-
and-bound paradigm, however, these will not be discussed in the following.

There are some other exact procedures, which are based on the reformulation into
other NP-complete problems, for which a variety of solvers already exist. For instance,
Xu et al. [58] recently developed an algorithm called SBMS, which calculates an optimal
solution for a given MWVC instance by solving a series of SAT instances.

3.2. Heuristic Methods

A widely used approach for heuristic methods is local search, which usually �rst computes
an initial solution and then tries to improve it by simple insertion, removal or swap
operations. Although in theory local searches generally o�er no guarantees for the
solutions quality, in practice they often �nd high quality solutions signi�cantly faster than
exact procedures.

For unweighted graphs, the iterated local search by Andrade et al. [5], often referred
to as ARW in the literature, is a very successful state-of-the-art heuristic. It is based on
so-called (1, 2)-swaps which remove one vertex from the current solution and add two new
vertices to it, thus improving the current solution by one. Their algorithm uses special data
structures which �nd such a (1, 2)-swap in linear time in the number of edges or prove
that none exists. A performance optimization presented here consists of an incremental
update strategy, where only vertices within a candidate list have to be considered for
removal during a swap. Consequently, a vertex only needs to be checked again after a
certain change has occurred in its neighborhood. To prevent the search from getting stuck
in a local minimum, ARW also contains a perturbation operation that forces vertices into
the current solution, removing neighboring vertices from the solution.

6

3.2. Heuristic Methods

The hybrid iterated local search (HILS) by Nogueira et al. [43] adapts the ARW for weighted
graphs. In addition to weighted (1, 2) swaps, it also uses (ω, 1) swaps that include one
vertex v into the current solution and exclude ω vertices from it, namely all neighbors
of v contained in the solution. Such swaps are only allowed as long as they improve the
solution, i.e. the the sum of the excluded vertices’ weights is smaller than the weight of v .
These two types of neighborhoods are explored separately using variable neighborhood
descent (VND), i.e. switching to the next neighborhood as soon as the current one fails to
improve the solution and otherwise switching back to the �rst neighborhood. In practice,
the algorithm �nds all known optimal solutions on well-known benchmark instances
within milliseconds and thus outperforms other state-of-the-art local searches.

Two other local searches for the equivalent minimum weighted vertex cover problem are
presented by Cai et al. [12], which extend the existing FastWVC heuristic [37] by dynamic
selection strategies for vertices to be removed from the current vertex cover. While
previous algorithms always select vertices based on a single scoring function, the �rst
approach DynWVC1 dynamically switches between two di�erent scoring functions. DynWVC2
extends this algorithm by dynamically determining the number of removed vertices within
an iteration. In practice, DynWVC1 outperforms previous MWVC heuristics on map labeling
instances and large scale networks, and DynWVC2 provides further improvements on large
scale networks but performs worse on map labeling instances than DynWVC1.

Over the last few years, reduction rules have been combined with local searches. For the
unweighted case, Dahlum et al. [17] accelerated the ARW algorithm with their OnlineMIS
approach, where simple reduction rules are applied on-the-�y during the local search. In
addition, they introduce another approach, KerMIS, which applies a set of reduction rules,
then removes high degree vertices and performs ARW on the resulting graph.

Based on this approach, Chang et al. [14] developed two algorithms with linear and
near-linear time complexity. For the LinearTime algorithm, the authors develop new
linear-time reduction rules that are special cases of the degree-two-fold rule [3] while
for NearLinearTime they additionally present an incremental version of the dominance
rule [3]. Applying these rules, both algorithms compute an initial irreducible graph and
then calculate a solution for it in an iterative fashion by removing high degree vertices
until reduction rules can be applied again.

Most recently, Li et al. [36] presented a local search for the minimum weight vertex
cover problem called NuMWVC, which applies reduction rules during the construction phase
of the initial solution. Furthermore, they adapt the con�guration checking approach [13]
to the MWVC problem which is used to reduce cycling, i.e. returning to a solution that
has been visited recently. Finally, they develop a technique called self-adaptive-vertex-
removing, which dynamically adjusts the number of removed vertices per iteration, similar
to DynWVC2. Experiments show that NuMWVC outperforms state-of-the-art algorithms on
both massive graphs and real-world problems, although a comparison between DynWVC

and NuMWVC is still pending.

7

3. Related Work

3.3. Struction

In general, the struction method can be classi�ed as a reduction rule that reduces the
independence number of a graph. In the literature further similar transformations like the
conic reduction [39] or clique reduction [38] can be found, however in the following the
focus will be on the struction and related variations.

Originally the struction (STability number RedUCTION) was introduced by Ebeneg-
ger et al. [19] and was later improved by Alexe et al. [4]. In fact, this method is a graph
transformation for unweighted graphs, which reduces their stability number by exactly
one. Therefore an arbitrary vertex and its neighborhood is removed from the graph and
new vertices are inserted for each non-adjacent pair of neighbors, which are connected to
the rest of the graph by certain edges. In the following work, we refer to this struction
variant as original struction (see Section 5.1). By successive application of the struction,
the independence number of a graph can be determined. However, since the number of
vertices in the transformed graph can increase in comparison to the original graph, this
method generally has exponential memory requirements and thus exponential runtime. In
their evaluation, the authors �nd that by application of further reduction rules before each
struction execution this vertex increase can be slowed down in some cases, or can even
result in a decrease occasionally. Ebenegger et al. also show that there is an equivalence
between �nding a maximum weight independent set and maximizing a pseudo Boolean
function, i.e. a real-valued function with Boolean variables, which allows to derive the
struction as a special case. Finally, the authors present a generalization of the struction
to weighted graphs (original weighted struction, see Section 5.2.1). This variant creates
the same new vertices as in the unweighted case, but is only applicable to vertices with
minimal weight with respect to their neighbors. Furthermore, this variant only removes
the vertex to which the struction is applied and retains its neighborhood.

On this basis some theoretical algorithms with polynomial time complexity for special
graph classes have been developed [24, 25], using further reduction rules and a careful
selection of vertices on which the struction is applied.

Hoke and Troyon [32] developed another form of the weighted struction, using the
same equivalence found by Ebenegger et al. [19]. They take advantage of the fact that the
struction can be interpreted as a special case of the Basic Algorithm, which is a general
method for �nding a maximum of a pseudo-boolean function. Thus they are able to derive
the revised weighted struction, which, however, is only applicable in claw-free graphs, i.e.
graphs that do not contain a three-leaf star graph. This transformation also removes a
vertex v and its neighborhood, but is able to create fewer new vertices, since these are
only created for pairs of non-adjacent neighbors whose combined weight is greater than
the weight of v .

Most recently, Zavalnij [61] introduced three more variants of the weighted struction.
The �rst version (modi�ed weighted struction, see Section 5.2.2) deals with the fact that
in the original weighted struction, an MWIS in the transformed graph consists of more
vertices than in the original graph. By di�erent weight assignments for the new vertices
and inserting additional edges, this variant ensures that these two numbers are the same.
The second version (extended weighted struction, see Section 5.2.3) is a generalization
of the revised weighted struction, as it can be applied to general graphs on any vertex v

8

3.3. Struction

without the need to ful�ll certain weight constraints. This variant creates a new vertex
for each independent set in the neighborhood of v whose weight is greater than v . By
creating new vertices for only a speci�c subset of these sets, the last version (extended
reduced weighted struction, see Section 5.2.3) reduces the number of new vertices.

Up to now, only little e�ort has been invested in a practical evaluation of the di�erent
struction variants: Ebenegger et al. and Alexe et al. evaluated the struction only on small
graphs with less than a hundred vertices for the unweighted case [4, 19]. Furthermore, for
the weighted case none of the presented struction variants has been evaluated so far [4,
19, 32, 61]. Therefore, a detailed evaluation (on real world instances) especially for the
weighted case is still pending.

9

4. Branch-And-Reduce Framework

In this chapter a short overview of the branch-and-reduce framework by Lamm et al. [33]
is given, which forms the basis for further reduction algorithms in the following chapter.
For this purpose, its individual components will be explained and the in particular the
used reductions will be discussed.

An overview of the framework is given in Algorithm 1 (cf. [33], Algorithm 1), which
outputs the weight of a maximum weight independent set for a given graph. In practice,
the framework computes the actual MWIS with slight adaptation of this algorithm. Dur-
ing the execution the weight of the best independent set found so far and the current
solution weight are maintained. Following the branch-and-reduce paradigm, we obtain
an irreducible graph from our current graph by application of reduction rules. In the
following work we refer to the used reductions as basic reduction algorithm, which we will
discuss in more detail in Section 4.1. At the beginning of the algorithm we �rst obtain an
irreducible graph on which we perform a local search to get a high quality initial solution.
After each irreducible graph computation we use the current best solution weight to prune
the search tree. For this purpose we calculate an upper bound for the solution weight of
the irreducible graph by using a clique cover heuristic and prune if we can’t get a better
current solution. If the irreducible graph consists of several components, we recursively
calculate a solution on each component. Otherwise, a branching step is performed in
which we branch into two subproblems. For this purpose, a static vertex order is computed
at the beginning, which sorts vertices in non-decreasing order by their degree and breaks
ties by their weight. We then branch using a case distinction for the currently highest
vertex of this order.

4.1. Basic Reduction Algorithm

We now explain the reduction algorithm of the framework in detail. First, the reduction
rules used are outlined and then the order in which they are applied is explained. In
the following, a distinction is made between local and global reduction rules [33]. Local
reduction rules only consider a small parts of the graph, which usually consist of a vertex
and its neighborhood. Global reduction rules in contrast consider the entire graph and
therefore usually take much more running time.

4.1.1. Reduction Rules

This section introduces the reduction rules used in the framework. The critical set reduction
(Reduction Rule 9) is due to Butenko and Trukhanov [11] and is the only global reduction

11

4. Branch-And-Reduce Framework

Algorithm 1 Branch-And-Reduce Framework
input graphG , current solution weight c (initially zero), best solution weightW (initially
zero)
function Solve(G, c,W = 0)
(G, c) ← Reduce(G, c)
if W = 0 then W ← c + ILS(G)
if c + UpperBound(G) ≤ W then returnW
if G is empty then return max(W, c)
if G is not connected then

for all Gi ∈ Components(G) do
c ← c + Solve(Gi , 0, 0)

return max(W, c)
(G1, c1), (G2, c2) ← Branch(G, c)
. Run 1st case, update currently best solution
W ← Solve(G1, c1,W)
. Use updated W to shrink the search space
W ← Solve(G2, c2,W)
returnW

rule in the framework. The other reductions are local rules proposed by the authors
Lamm et al. [33]. For more details and proofs we refer the reader to [11, 33].

Local Reduction Rules. Before we state the individual local reduction rules, we �rst intro-
duce a basic graph operation called vertex folding. Let us assume a graph G and a vertex v
with its neighborhood N (v). We fold v and N (v) into a new vertex v′ by removing them
from the graph and connecting v′ to each non-neighbor u ∈ N (v) which was previously
adjacent to at least one of the vertices w ∈ N (v), i.e N (v′) = N (N (v)).

Reduction Rule 1 (Neighorhood Removal). Let v be a vertex withw(v) ≥ w(N (v)). We
obtain the transformed graph G′ by removing N [v] from the graph. For an MWIS I ′ of G′,
the set I = I ′ ∪ {v} forms an MWIS of G. Furthermore we have αw (G) = αw (G

′) +w(v).

ReductionRule 2 (Degree Two Fold). Letv be a vertex of degree two and its neighborsu1,u2
not adjacent. We also requirew(v) < w(u1) + w(u2) andw(v) ≥ max{w(u1),w(u2)}. G′ is
obtained by foldingv,u1,u2 into a single vertexv′with weightw(v′) = w(u1)+w(u2) −w(v).
For an MWIS I ′ of G′ we construct an MWIS I of G in the following way: If v′ ∈ I ′

then we set I = (I ′ \ {v′}) ∪ {u1,u2}, otherwise I = I ′ ∪ {v}. Furthermore we
have αw (G) = αw (G

′) +w(v).

Reduction Rule 3 (Isolated Vertex Removal). Let v be an isolated vertex, i.e. G[N (v)] is a
clique, withw(v) ≥ maxu∈N (v)w(u). Then the transformed graphG′ is obtained by removal
of the vertices N [v]. For an MWIS I ′ ofG′, the set I = I ′ ∪ {v} is an MWIS ofG . Furthermore
we have αw (G) = αw (G

′) +w(v).

Reduction Rule 4 (Isolated Weight Transfer). Let v be an isolated vertex, i.e.G[N (v)] is a
clique, and S(v) ⊆ N (v) the set of isolated vertices u ∈ N (v) withw(v) ≥ maxu∈S(v)w(u).

12

4.1. Basic Reduction Algorithm

We obtain the transformed graphG′ by removal of all vertices u ∈ N (v) withw(u) ≤ w(v),
lowering of the weights for all remaining vertices x ∈ N (v) byw(v), i.e.w(x) = w(x) −w(v),
and removal of the vertex v . For an MWIS I ′ of G′ we construct an MWIS I of G in the
following way: If I ′ ∩ N (v) = ∅ then I = I ′ ∪ {v}, otherwise I = I ′. Furthermore we
have αw (G) = αw (G

′) +w(v).

Reduction Rule 5 (Domination). Let u,v be vertices such that u is dominated by v ,
i.e. N [u] ⊆ N [v], and w(u) ≥ w(v). The graph G′ is obtained by removal of v . For
an MWIS I ′ ofG′, the set I ′ also forms an MWIS ofG . Furthermore we have αw (G) = αw (G

′).

ReductionRule 6 (Twin). Let verticesu,v be twins having independent neighborhoodsN (u) =
N (v) = {p,q, r }. Then we have two cases:

1. w({u,v}) ≥ w({p,q, r }):
The transformed graph G′ is obtained by removal of u,v,p,q, r . For an MWIS I ′ of G′,
the set I = I ′ ∪ {u,v} forms an MWIS of G.

2. w({u,v}) < w({p,q, r }) andw({u,v}) > w({p,q, r }) −minx∈{p,q,r }w(x):
The graph G′ is obtained by folding the vertices u,v,p,q, r into a single vertex v′ with
weight w(v′) = w({p,q, r }) − w({u,v}). For an MWIS I ′ of G′ we construct an
MWIS I of G in the following way: If v′ ∈ I ′ then I = (I ′ \ {v′}) ∪ {p,q, r },
otherwise I = I ′ ∪ {u,v}.

Furthermore we have αw (G) = αw (G
′) +w({u,v}).

Reduction Rule 7 (Clique Neighborhood Removal). Let v be a vertex and C be a partition
of its neighborhood N (v) into cliques, i.e. any set C ⊂ C is a clique and

⋃
C ∈ C C = V . If

furthermore
∑

C ∈ C maxu ∈ C w(u) ≤ w(v) holds, we obtain the transformed graph G′ by
removing N [v] from the graph. For an MWIS I ′ of G′, the set I = I ′ ∪ {v} forms an MWIS
of G. Furthermore we have αw (G) = αw (G

′) +w(v).

Reduction Rule 8 (Generalized Fold). Let v be a vertex only having a single MWIS IN (v)
withw(IN (v)) > w(v) in its induced neighborhood graph G[N (v)]. We obtain G′ by removal
of any vertex u ∈ N (v) \ IN (v) and folding IN (v) ∪ {v} into a single vertex v′ with
weightw(v′) = w(IN (v)) − w(v). For an MWIS I ′ ofG′ we construct an MWIS I ofG in the
following way: Ifv′ ∈ I ′ then I = (I ′ \ {v′}) ∪ IN (v), otherwise I = I ′ ∪ {v}. Furthermore
we have αw (G) = αw (G

′) +w({u,v}).

At this point we should note that the two reduction rules Isolated Weight Transfer

and Isolated Vertex Removal are combined into one reduction rule in the framework,
called Clique Reduction.

Global Reduction Rules. The only global reduction rule of the framework is based on
critical independent sets. A subset Uc ⊆ V is called a critical weighted independent set
(CWIS) if w(Uc) − w(N (Uc)) = max{w(U) −w(N (U) | U ⊆ V } applies. Butenko and
Trukanov [11] showed that each CWIS is always a subset of an MWIS. They calculate such
a CWIS by solving the selection problem, which is equivalent to calculating a minimum
cut [2]. Therefore this rule can be executed in polynomial time in the number of vertices.

13

4. Branch-And-Reduce Framework

Algorithm 2 Incremental Reduction Rule Application
1: input graph G, (zero indexed) reduction rule list R
2: function IncrementalReduce(G,R)
3: k ← 0 . reduction rule selector
4: while k < Length(R) do
5: . Try to reduce graph by kth reduction rule of R
6: G′← ReduceByRule(R[k],G)
7: if G′ = G then
8: k ← k + 1
9: else

10: k ← 0
11: G ← G′

12: return G

Reduction Rule 9 (Critical Weighted Independent Set). LetU ⊆ V be a critical weighted
independent set. We obtain the transformed graph G′ by removing N [U]. From an MWIS I ′

inG′we obtain anMWIS inG using I = I ′∪U . Furthermore we haveαw (G) = αw (G
′)+w(U).

4.1.2. Reduction Rule Order

After the reduction rules have been presented in the previous section, we now explain in
which order they are applied. For local reduction rules, the dependency checking method
is presented �rst. It allows to apply reduction rules only to parts of the graph which
have changed and can therefore be potentially reduced. Then we will brie�y discuss the
incremental reduction rule application, which provides a scheme for the order in which
di�erent reduction rules are applied.

4.1.2.1. Dependency Checking

In general, local reduction rules are applied to a graph by attempting to execute them
on any vertex in it. However, especially in later phases of the algorithm, local rules can
only be applied to a few vertices of the graph. Thus, a complete check of the graph for
each rule would require a lot of time for a minor decrease of the current graphs vertex
number. The idea of dependency checking is to apply local rules only to vertices that can
potentially be reduced. The basic observation is that after an unsuccessful application of
a rule R to a vertex v , the applicability of R on v only needs to be checked again when
its neighborhood has changed. Therefore, for each local reduction rule R, a set CR of all
vertices which currently need to be checked is maintained. After a vertex has changed,
we add it to CR for each reduction rule, along with its neighborhood. Initially, these sets
contain all vertices in the graph, so that for each vertex at least one attempt is made to
apply each rule.

14

4.1. Basic Reduction Algorithm

4.1.2.2. Incremental Reductions

The idea of an iterative reduction rule application is to �rst reduce a graph by using
reduction rules that are favorable in terms of running time and to switch to more expensive
ones as soon as they are no longer applicable. At the beginning the reduction rules are
therefore arranged in a list R. The graph is then reduced by a current rule, which at
the beginning is the �rst one in this list. If the graph has changed due to the successful
application of the rule, we switch back to the �rst rule in the list. Otherwise we switch
to the next rule in the list until the graph can no longer be reduced by any rule. This
procedure is described in Algorithm 2. Overall, Lamm et al. apply their reduction rules
in the following order: R = [Neighborhood Removal, Degree Two Fold, Cliqe
Reduction, Domination, Twin, Cliqe Neighborhood Removal, Critical Weighted
Independent Set, Generalized Fold].

15

5. Struction

In this chapter both the unweighted struction and the four di�erent forms of the weighted
struction are presented and illustrated with examples. We also provide correctness proves
for each weighted variant for deeper understanding. Subsequently, for the weighted case,
we examine relationships to other reduction rules that are already used in practice by
outlining inclusions among them.

Before we introduce the individual struction variants, we �rst want to introduce some
conventions and notation for this section. We call the vertex on which we want to
apply one of the variants the center vertex and denote it by v0. We arrange the vertices
in its neighborhood N (v) in an arbitrary but �xed order and index them according to
their occurrence, i.e. N (v0) = {v1,v2, ...,vr }. For a (non-empty) subset X ⊆ N (v0) of
neighbors, we denote the vertex with the smallest index of this order by m(X) and the
vertex with the largest index accordingly by M(X). We denote the transformed graph
by G′ = (V ′,E′) and use the notation N ′ and w′ for neighborhoods and vertex weights
respectively.

Finally, both the unweighted and three of the four weighted variants use a construction
where a set of vertices U is partitioned into distinct layers. Therefore the set U consists
of vertices vi,j , that are indexed by two parameters i ∈ X , j ∈ Y . The sets X ,Y either
contain scalar values or vertex sets. For k ∈ X a layer Lk contains each vertex having k
as �rst parameter, i.e. Lk = {vi,j ∈ U : i = k}. Conversely, we denote the layer of a
vertex vi,j by L(vi,j) = i .

5.1. Unweighted Struction

The main idea of the unweighted struction is to remove an arbitrary vertex v0 and its
neighbors from the graph and represent any independent sets in its neighborhood by a set
of new vertices. In particular, an independent set IN (v0) ⊂ N (v0) is thereby represented by
a set of vert pairs (vi ,vj) with vi = m(IN (vo)). New vertices are therefore created for each
non-adjacent neighbor pair vi ,vj ∈ N (v0) with i > j. Since this representation requires
one vertex less than in the original graph, we are able to reduce the stability number of
the graph by one. In the following a formal de�nition of the transformation is given, an
example can be found in Figure 5.1.
Unweighted Reduction Rule 1 (Unweighted Struction). Let v0 ∈ V be an arbitrary
vertex. We derive the transformed graph G′ as follows: We remove N [v0] and create new
vertices v′i,j for each pair of non-adjacent neighbors vi ,vj ∈ N (v0) with i < j. We
insert edges between two vertices v′i1,j1,v

′
i2,j2

if either vj1 and vj2 were adjacent or they belong
to di�erent layers, i.e. i1 , i2. Finally, each vertex v′i,j is also connected to each non-
neighborv ∈ N (v0) adjacent to eithervi orvj . For an MIS I ′ ofG′ we obtain an MIS I ofG as

17

5. Struction

1

2

0

5

34

3

(a) Original Graph

5

,21

,41 ,31

,42

(b) Transformed Graph

Figure 5.1.: Application of unweighted struction. Vertices representing the same indepen-
dent set in the di�erent graphs are highlighted in gray. For simplicity we just
write i and i, j instead of vi and vi,j

follows: If I ′ ∩ N (v0) = ∅ applies, we have I = I ′ ∪ {v0}, otherwise the new vertices in I ′

are of the form I ′ \ V = {v′i,j1,v
′
i,j2
, ...,v′i,jr } and we replace them by the original vertices,

i.e. I = I ′ ∩ V ∪ {vi ,vj1,vj2, ...,vjr }. Furthermore we have α(G) = α(G′) + 1.

5.2. Weighted Struction Variants

The �rst presented struction variant is the original weighted struction introduced by
Ebenegger et al. [19], while the other three variants presented are from Zavalnij [61].

5.2.1. Original Weighted Struction

In order to be applicable, in this variant the center vertex v0 must have minimum weight
among its neighbors, i.e. w(v0) < minv ∈ N (v0) w(v). In general, we apply the origi-
nal weighted struction to the center vertex by removing v0 and creating new vertices
for each pair vi ,vj of non-adjacent vertices, i.e. an independent set of size two in the
graph G[N [v]]. To guarantee that we can obtain an MWIS I of G by an MWIS I ′ of G′
withw(I) = w(I ′) + w(v0), we also insert new edges between new and original vertices. In
the following we describe the original weighted struction in detail. An example application
of the original weighted struction can be found in Figure 5.2b.

Reduction Rule 10 (Original Weighted Struction). Letv0 ∈ V be a vertex with minimum
weight among its neighbors, i.e. w(v0) < minv ∈ N (v0) w(v). We derive the transformed
graph G′ as follows: First, we remove v0 and lower the weight of each neighbor vi ∈ N (v0)
byw(v0), i.e.w′(vi) = w(vi) −w(v0). For each pair of non-adjacent neighborsvi ,vj ∈ N (v0)
with i < j we create a new vertexv′i,j with weightw

′(v′i,j) = w(v0). We insert edges between
two vertices v′i1,j1,v

′
i2,j2

if either vj1 and vj2 are adjacent or they belong to di�erent layers,
i.e. i1 , i2. Finally, each vertex v′i,j is also connected to each vertex v ∈ N ({vi ,vj}). For
an MWIS I ′ of G′ we obtain an MWIS I of G as follows: If I ′ ∩ N (v0) = ∅ applies, we

18

5.2. Weighted Struction Variants

1

2

0

5

34

3

(a) Original Graph

1

5

3

,21

4

2

,41 ,31

,42

(b) Original Weighted Struc-
tion

1

5

3

,21

4

2

,41 ,31

,42

(c) Modi�ed Weighted Struc-
tion

Figure 5.2.: Application of original weighted struction and modi�ed weighted struction.
Vertices representing the same independent set in the di�erent graphs are
highlighted in gray. For simplicity we just write i and i, j instead of vi and vi,j

have I = I ′ ∪ {v0}, otherwise we remove the new vertices, i.e. I = I ′ ∩ V . Furthermore
we have αw (G) = αw (G

′) + w(v0).

Proof. We show the statement by proving two sub-statements. First we state that for an
MWIS I ′ ofG′ the obtained set I forms an independent set ofG withw(I) ≥ w′(I ′) + w(v0).
Then we show how we can derive an independent set I ′? of G′ from an MWIS I? of G
with w(I?) = w′(I ′?) + w(v0). Finally we conclude that αw (G) = αw (G

′) + w(v0) holds
and that I is an MWIS of G.

To prove the �rst statement let I ′ be an arbitrary MWIS ofG′. First of all we can observe
that for any vertex v′i,j ∈ I ′ \ V the vertices vi and vj are also contained in I ′: Suppose
an arbitrary vertex v′i,j ∈ I ′ \ V . By construction, any neighbor v ∈ N ′({vi ,vj}) is
also a neighbor of v′i,j . Since the vertices vi ,vj ,v′i,j are also pairwise non-adjacent, the
set I ′ ∪ {vi ,vj} forms an independent set ofG′. We �nally can concludevi ,vj ∈ I ′ since I ′
is an MWIS and the observation follows. We now distinguish two cases.
Case 1: I ′ ∩ N (v0) = ∅. Based on our observation, I ′ only consists of non-neighbors
of v0, i.e. I ′ ⊆ N (v0). Therefore I = I ′ ∪ {v0} is an independent set in G with
weight w(I) = w′(I ′) + w(v0) .
Case 2: I ′ ∩ N (v0) , ∅. Since I ′ is an independent set ofG′, the set I = I ′ ∩ V forms an
independent set of G. Furthermore, the vertices I ′ \ V belong to the same layer, since by
construction, new vertices of di�erent layers are connected to each other. Following our
initial observation, I ′ contains less new vertices V ′ \ V than neighbors N (v0) of v0, i.e.

| I ′ \ V | ≤ | I ′ ∩ N (v0) | + 1 .

19

5. Struction

Therefore we get the following relationship between vertex weights of the sets I and I ′

w′(I ′ \ N (v0)) = w′(I ′ ∩ N (v0)) + w′(I ′ \ V)

=
∑

v ∈ I ′ ∩ N (v0)

w′(v) +
∑

v ∈ I ′ \ V

w′(v)

=
∑

v ∈ I ′ ∩ N (v0)

(w(v) − w(v0)) +
∑

v ∈ I ′ \ V

w(v0)

=
∑

v ∈ I ′ ∩ N (v0)

w(v) −
∑

v ∈ I ′ ∩ N (v0)

w(v0) +
∑

v ∈ I ′ \ V

w(v0)

= w(I ′ ∩ N (v0)) − | I
′ ∩ N (v0) | · w(v0) + | I

′ \ V | · w(v0)

≤ w(I \ N (v0)) − w(v0) ,

that �nally allows us to conclude
w(I) = w(I ∩ N (v0)) + w(I ∩ N (v0))

≥ w′(I ′ ∩ N (v0)) + w′(I ′ \ N (v0)) + w(v0)

= w′(I ′) + w(v0) .

To show the second statement let I? be an arbitrary MWIS ofG . We also have two cases.
Case 1: v0 ∈ I?. Since I? is an independent set of G, the set I ′? = I? \ {v0} forms an
independent set of G′ with weight w′(I ′?) = w(I?) − w(v0).
Case 2:v0 < I?. Let IN (v0) = I? ∩ N (v0) be the set of all neighborsvj ∈ N (v0) contained
in I?. This set is not empty, since otherwise I? ∪ {v0} formed an independent with
greater weight than I and I ′ was not an MWIS. Therefore let vi =m(IN (v0)) be the vertex
with minimum index in IN (v0) and I−

N (v0)
= IN (v0) \ {vi}. We obtain I ′? by adding the

vertex v′i,j to I? for each vertex vj ∈ I−
N (v0)

, i.e I ′? = I? ∪ {v
′
i,j | vj ∈ I−

N (v0)
}. Since the

new vertices I ′? \ V belong to the same layer (and are therefore independent) and any
vertex v ∈ V that is adjacent to v′i,j is also adjacent to vi or vj , we conclude that I ′? is
independent. By construction of I ′?, the number of new vertices I ′? \ V equals the number
of neighbors I ′? ∩ N (v0) of v0 plus one:

| I ′? \ V | = | I
′
? ∩ N (v0) | + 1

and we therefore can derive a similar equation to case 2 of the �rst statement
w′(I ′? \ N (v0)) = w(I? \ N (v0)) − w(v0) ,

which analogously gives us
w(I?) = w′(I ′?) + w(v0) .

Since I ′ is an MWIS of G′ we can conclude by the two statements that
w(I) ≥ w′(I ′) + w(v0)

≥ w′(I ′?) + w(v0)

= w(I?)

applies. Since I? is an MWIS of G , we therefore know that I is also an MWIS of G′. Finally,
we can conclude αw (G) = αw (G

′) +w(v0), since I ′ and I are maximum weight independent
sets of G′ and G.

20

5.2. Weighted Struction Variants

5.2.2. Modified Weighted Struction

This variant extends the original weighted struction and aims to reduce the number of
vertices in a maximum weight independent set in the transformed graph. While in the
original weighted struction, the number of vertices of an MWIS increases in comparison to
the original graph, this number remains the same in this variant. We therefore use a vertex
construction quite similar to the original weighted struction that di�ers in the weight
assignment of the new vertices and inserts some extra edges. An example application of
the modi�ed weighted struction can be found in Figure 5.2c.

Reduction Rule 11 (Modi�ed Struction). Let v0 ∈ V be a vertex with minimum weight
among its neighbors, i.e. w(v0) < minv ∈ N (v0) w(v). We derive the transformed graph G′

as follows: First, we remove v0 and lower the weight of each neighbor vi ∈ N (v0) byw(v0),
i.e. w′(vi) = w(vi) − w(v0). For each pair of non-adjacent neighbors vi ,vj ∈ N (v0)
with i < j we create a new vertexv′i,j with weightw

′(v′i,j) = w(vj). We insert edges between
two vertices v′i1,j1,v

′
i2,j2

if either vj1 and vj2 are adjacent or they belong to di�erent layers,
i.e. i1 , i2. Furthermore, we connect each vertex v′i,j to each non-neighbor v ∈ N (v0)
adjacent to either vi or vj . We also connect each neighbor vk ∈ N (v0) to each vertex v′i,j
belonging to a di�erent layer than k , i.e. i , k . Finally we extend N (v0) to a clique, i.e. we
insert edges between vertices vi ,vj ∈ N (v0) if they are not already present. For an MWIS I ′

ofG′ we obtain an MWIS I ofG as follows: If I ′ ∩ N (v0) = ∅ applies, we have I = I ′ ∪ {v0},
otherwise we obtain I by replacing each new vertex v′i,j ∈ I ′ with the original vertex vj ,
i.e. I = (I ′ ∩ V) ∪ {vj | v

′
i,j ∈ I ′ \ V }. Furthermore we have αw (G) = αw (G

′) + w(v0).

Proof. We show the statement by proving two sub-statements. First we state that for an
MWIS I ′ ofG′ the obtained set I forms an independent set ofG withw(I) = w′(I ′) + w(v0).
Then we show how we can derive an independent set I ′? of G′ from an MWIS I? of G
with w(I?) = w′(I ′?) + w(v0). Finally we conclude that αw (G) = αw (G

′) + w(v0) holds
and that I is an MWIS of G. For the �rst statement we have two cases:
Case 1: I ′ ∩ N (v0) = ∅. Since I ′ is an MWIS, we can show by contradiction that it does
not contain any new vertex v′i,j ∈ V ′ \ V , i.e. we have I ′ ⊆ V : Let us assume that there
is a vertex v′i,j ∈ I ′ \ V . Since every neighbor of vi in G′ is also a neighbor of v′i,j , the
set I ′ ∪ {vi} forms an independent set ofG′. As I ′ is an MWIS, we therefore have vi ∈ I ′,
which is a contradiction to the condition I ′∩ N (v0) = ∅. Therefore, the set I = I ′ ∪ {v0}
forms an independent set of G with w(I) = w′(I ′) + w(v0).
Case 2: I ′ ∩ N (v0) , ∅. By construction ofG′, for each vertexvj ∈ N (v0) andv′i,j ∈ I ′ \ V
we have N (vj) ⊆ N ′(v′i,j). We therefore can obtain an independent set I ofG by replacing
each vertex v′i,j ∈ I ′ \ V with the original vertex vj . Thus, I = (I ′ ∩ V) ∪ I−

N (v0)
with I−

N (v0)
= {vj | v

′
i,j ∈ I ′ \ V } forms an independent set of G. Since the ver-

tices vj ∈ N (v0) form a clique in G′, we have I ′ ∩ N (v0) = {vi}. Furthermore, since
any new vertex v′

k,j
∈ V ′ \ V belonging to a layer k , i is connected to vi , the new

vertices I ′ \ V in I ′ belong to the layer i . This leads us to the following equation:

w′(I ′ \ V) = w′({v′i,j1,v
′
i,j2, ...}) = w({vj1,vj2, ...}) = w(I−N (v0))

21

5. Struction

and we can conclude

w(I) = w(I ′ ∩ V) + w(I−N (v0))

= w(I ′ ∩ N (v0)) + w(vi) + w(I−N (v0))

= w′(I ′ ∩ N (v0)) + w′(vi) + w(v0) + w′(I ′ \ V)

= w′(I ′) + w(v0) .

To prove the second statement, let I? be an arbitrary MWIS of G. We have two cases.
Case 1: v0 ∈ I?. Since I? is independent, I ′? = I? \ {v0} is an independent set of G′
with w(I?) = w

′(I ′?) − w(v0).
Case 2: v0 < I?. Let IN (v0) = I? ∩ N (v0) be the set of all neighbors N (v0) contained in I?.
This set is not empty, since otherwise I? ∪ {v0} formed an independent set with greater
weight than I and I ′ was not an MWIS. Therefore let vi = m(IN (v0)) be the vertex with
minimum index in IN (v0) and I−

N (v0)
= IN (v0) \ {vi}. We obtain I ′? from I? by replacing

each vertex vj ∈ I ′
N (v0)

with v′i,j , i.e I ′? = (I? \ I−
N (v0)
) ∪ {v′i,j | vj ∈ I−

N (v0)
}. Since any

new vertex v′i,j ∈ I ′? \ V belongs to layer i and N ′(v′i,j) ∩ N (v0) = N (vi) ∪ N (vj)
applies by construction ofG′, we conclude that I ′? forms an independent set ofG′. We now
can show that the weight of the set I ′? meets the requirements as follows:

w′(I ′?) = w′(I? \ I−N (v0)) + w′({v′i,j | vj ∈ I−N (v0)})

= w′(I? \ I−N (v0)) + w(I−N (v0))

= w′(I? \ IN (v0)) + w′(vi) + w(IN (v0)) − w(vi)

= w(I?) + w′(vi) − w(vi)

= w(I?) − w(v0)

Since I ′ is an MWIS of G′ we can conclude by the two statements that

w(I) = w′(I ′) + w(v0)

≥ w′(I ′?) + w(v0)

= w(I?)

applies. Since I? is an MWIS of G , we therefore know that I is also an MWIS of G′. Finally,
we can conclude αw (G) = αw (G

′) +w(v0), since I ′ and I are maximum weight independent
sets of G′ and G.

5.2.3. ExtendedWeighted Struction

The extended weighted struction removes the weight restriction for the vertex v0 in the
former variants. Unlike the previous two variants, this variant considers independent
sets of arbitrary size in the neighborhood N (v0). In fact, we create new vertices for each
independent set of G[N (v)] if its weight is greater than w(v0). Since the number of inde-
pendent sets i(G) in an arbitrary graphG of size n can reach a maximum of i(G) = 2n [47],
we consequently can create O(2δ (v0)) new vertices. An example application of the extended
weighted struction can be found in Figure 5.3b.

22

5.2. Weighted Struction Variants

1

2

3

0

5

4

6

(a) Original Graph

6

,41,42

,52

,4,52 1

2

(b) Extended Weighted Struc-
tion

;52

1

2

;42

6

;41

(c) Extended Reduced
Weighted Struction

Figure 5.3.: Application of extended weighted struction and extended reduced weighted
struction. Vertices representing the same independent set in the di�erent
graphs are highlighted in gray. We assume some weight constraints in the
original graph for the construction in b) and c): w(v1) > w(v0),w(v2) > w(v0)
and w(v3) + w(v4) + w(v5) ≤ w(v0). For simplicity we just write i, .., j
and i, .., j;k instead of v{i,..,j} and v{i,..,j},k .

Reduction Rule 12 (Extended Weighted Struction). Let v0 ∈ V be an arbitrary vertex
and C the set of all independent sets C of G[N (v0)] with w(C) > w(v0). We derive the
transformed graph G′ as follows: First, we remove the vertices N [v0] and create a new
vertex v′c with weightw′(v′c) = w(c) − w(v0) for each independent set c ∈ C . We connect
each vertex v′c to each vertex v ∈ N (v0) ∩ N (c). Finally, the vertices v′c are connected with
each other, forming a clique. For an MWIS I ′ of G′ we obtain an MWIS I of G as follows:
If I ′ \ V = ∅ applies, we set I = I ′ ∪ {v0}, otherwise there is a single vertex v′c ∈ I ′ \ V
that we replace with the vertices of its independent set c , i.e. I = (I ′ ∩ V) ∪ c . Furthermore
we have αw (G) = αw (G

′) + w(v0).

Proof. We show the statement by proving two sub-statements. First we state that for an
MWIS I ′ ofG′ the obtained set I forms an independent set ofG withw(I) = w′(I ′) + w(v0).
Then we show how we can derive an independent set I ′? of G′ from an MWIS I? of G
with w(I?) = w′(I ′?) + w(v0). Finally we conclude that αw (G) = αw (G

′) + w(v0) holds
and that I is an MWIS of G. For the �rst statement we have two cases:
Case 1: I ′ \ V = ∅. Since I ′ is an independent set of G′, the set I = I ′ ∪ {v0} forms an
independent set of G with w(I) = w′(I ′) + w(v0).
Case 2: I ′ \ V , ∅: Since the new verticesV ′ \ V form a clique, we have I ′ \ V = {v′c}.
By the construction of G′, the set c is independent and for each vertex v ∈ c we
have N (v) ∩ N (v0) ⊆ N ′(v′c). Therefore the set I = I ′ \ {v′c} ∪ c forms an in-

23

5. Struction

dependent set in G with weight

w(I) = w(I ′ \ {v′c}) + w(c)

= w′(I ′ \ {v′c}) + w′(v′c) + w(v0)

= w′(I ′) + w(v0) .

To prove the second statement, let I? be an arbitrary MWIS of G. Again we have two
cases:
Case 1: v0 ∈ I?. Since I? is an independent set, we have I? ∩ N (v0) = ∅. There-
fore I ′? = I? \ {v0} is an independent set of G′ with w(I?) = w(I

′
?) − w(v0).

Case 2: v0 < I?. Let IN (v0) = I? ∩ N (v0) be the set of all neighbors N (v0) contained in I?.
If w(IN (v0)) ≤ w(v0) applies, the set (I? \ IN (v0)) ∪ {v0} forms an independent set of G
with weight

w((I? \ IN (v0)) ∪ {v0}) = w(I?) − w(N (v0)) + w(v0)

≥ w(I?) ,

which we can handle by case 1. Therefore, w.l.o.g. we can assume w(IN (v0)) > w(v0),
resulting in the existence of a vertex v′IN (v0) ∈ V ′ \ V . Since I? is an independent set of G
and N ′(v′IN (v0)

) = N (IN (v0)) ∩ N (v0) holds, we can replace the vertices IN (v0) with v′IN (v0)
and obtain an independent set I ′? = (I? \ IN (v0)) ∪ {v

′
IN (v0)
} which satis�es

w′(I ′?) = w′(I? \ IN (v0)) + w′(v′IN (v0)
)

= w(I? \ IN (v0)) + w(IN (v0)) − w(v0)

= w(I?) − w(v0) .

Since I ′ is an MWIS of G′ we can conclude by the two statements that

w(I) = w′(I ′) + w(v0)

≥ w′(I ′?) + w(v0)

= w(I?)

applies. Since I? is an MWIS of G , we therefore know that I is also an MWIS of G′. Finally,
we can conclude αw (G) = αw (G

′) +w(v0), since I ′ and I are maximum weight independent
sets of G′ and G.

5.2.4. Extended ReducedWeighted Struction

The extended reduced weighted struction is a modi�cation of the extended weighted
struction and aims to reduce the number of new vertices. While the extended weighted
struction considers all independent setsC inG[N (v0)] whose weight is greater thanw(v0),
in this variant we only look at a subset C′ ⊆ C of the "just" greater independent sets.
Such a set c ∈ C′ is characterized by having a weight greater than w(v0), but having a
smaller or equal weight than v0 without its vertex with the largest index M(c). The idea of

24

5.2. Weighted Struction Variants

the extended reduced weighted struction is that any other set c ∈ C \ C′ can be obtained
from a set c′ ∈ C′ by expanding it with additional vertices. For this purpose, the same
construction as in the extended weighted struction is applied to the set C′ instead of C .
Moreover, we add additional vertices which serve as an extension for a set c′ ∈ C′. In
total, this variant creates at most as many vertices as its predecessor, but can also create
fewer vertices. An example for the latter case is illustrated in Figure 5.3c.

Reduction Rule 13 (Extended Reduced Weighted Struction). Let v0 ∈ V be an arbitrary
vertex, C be the set of all independent sets c of G[N (v0)] and C′ be the subset of "just"
greater independent sets, i.e. C′ = {c ∈ C | w(c) − w(M(c)) ≤ w(v0)}. We derive the
transformed graphG′ as follows: We remove the verticesN [v0] and create a new vertexv′c with
weightw′(v′c) = w(c) − w(v0) for each independent set c ∈ C′. We denote the set of these
verticesv′c byVC . We connect any vertexv′c to each vertexv ∈ N (v0) ∩ N (c). The verticesv′c
are also connected with each other, forming a clique. For each pair consisting of an independent
set c ∈ C′ and a vertex vj ∈ N (v0) we create a vertex v′c,j with weight w′(v′c,j) = w(vj),
if c can be extended by vj , i.e. v is not adjacent to any vertex v′ ∈ c . We denote the set of
these vertices v′c,j by VE . We insert edges between two vertices v′c1,j1,v

′
c2,j2

if they either belong
to di�erent layers, i.e. c1 , c2, or vj1 and vj2 have been adjacent. Moreover, we connect any
vertex v′c,j to each vertex v ∈ N (v0) ∩ N (c ∪ {vj}). Finally we connect each vertex v′c1,j
to each vertex v′c2 belonging to a di�erent layer than c1, i.e. c1 , c2. For an MWIS I ′ of G′

we obtain an MWIS I of G as follows: If I ′ ∩ VC = ∅ applies, we set I = I ′ ∪ {v0}.
Otherwise, there is a single vertex v′c ∈ I ′ ∩ VC that we replace with the vertices of its
independent set c . Moreover, we replace each vertex v′c,j ∈ I ′ ∩ VE with the vertex vj .
Altogether we have I = (I ′ ∩ V) ∪ c ∪ {vj | v

′
c,j ∈ I ′ ∩ VE }. Furthermore we

have αw (G) = αw (G
′) + w(v0).

Proof. We show the statement by proving two sub-statements. First we state that for an
MWIS I ′ ofG′ the obtained set I forms an independent set ofG withw(I) = w′(I ′) + w(v0).
Then we show how we can derive an independent set I ′? of G′ from an MWIS I? of G
with w(I?) = w′(I ′?) + w(v0). Finally we conclude that αw (G) = αw (G

′) + w(v0) holds
and that I is an MWIS of G. For the �rst statement we have two cases:
Case 1: I ′ ∩ VC = ∅. We �rst show by contradiction that I ′ only consists of ver-
tices v ∈ V , i.e. I ′ ⊆ V applies: Since we have I ′ ∩ VC = ∅, let us assume that there is a
vertex v′c,j ∈ I ′ ∩ VE . By construction, each neighbor of the vertex v′c is also a neighbor of
the vertex v′c,j . Thus, the set I ′ ∪ {v′c} forms an independent set of G′. By our assumption
we have I ′ ∩ VC and therefore v′c < I ′ applies. This �nally is a contradiction to the
assumption that I ′ is an MWIS, since we have w(I ′ ∪ {v′c}) > w(I ′). Therefore, the
set I = I ′ ∪ {v0} forms an independent set of G with w(I) = w(I ′) + w(v0).
Case 2: I ′ ∩ V , ∅: Since the vertices VC form a clique, there is a unique vertex v′c ∈ VC
that satis�es I ′ ∩ V = {v′c}. Moreover, since any vertex v′c ′,j ∈ VE is connected to v′c ,
if c′ , c applies, the vertices I ′ ∩ VE belong to the same layer c .
First of all, in the following we show that the set I = (I ′ ∩ V) ∪ c ∪ I−

N (v0)
with I−

N (v0)
= {vj | v

′
c,j ∈ I ′ ∩ VE} forms an independent set in G: By construction, each

vertexv′c,j ∈ V ′ \ V is adjacent to each neighborv ∈ N (vj), i.e. N ′(v′c,j) ⊆ N (vj) applies.
Therefore we can replace each vertexv′c,j ∈ I ′ ∩ VE withvj and obtain an independent set

25

5. Struction

in G′ by (I ′ ∩ V) ∪ I−
N (v0)

. Moreover, since the the vertex v′c is created by an independent
set c and we have N ′(v′c,j) = N (c) ∩ N (v0), the set (I ′ ∩ V) ∪ c is also independent.
Finally, we can state per proof by contradiction that I = (I ′ ∩ V) ∪ c ∪ I−

N (v0)
forms an

independent set of G: Suppose I is not an independent set of G. Since (I ′ ∩ V) ∪ I−
N (v0)

and (I ′ ∩V) ∪ c are independent, there are verticesv ∈ c andvj ∈ I−
N (v0)

with {v,vj} ∈ E.
Consequently, the set c ∪ {vj} is not independent and we have v′c,j < V ′. However, since
all vertices I ′ ∩ VE belong to the same layer c , we havevj < I−

N (v0)
, which is a contradiction

to the assumption vj ∈ I−
N (v0)

. Therefore I forms an independent set of G and we are left
to show that w(I) = w′(I ′) + w(v0) is satis�ed.
Since the vertices I ′ ∩ VE belong to the same layer we have the following equation:

w′(I ′ ∩ VE) = w′({v′c,j1,v
′
c,j2, ...}) = w({vj1,vj2, ...}) = w(I−N (v0)) .

Moreover we have w(I ′ ∩ V) = w′(I ′ ∩ V) and w(c) = w′(v′c) + w(v0), leading us to
the conclusion

w(I) = w(I ′ ∩ V) + w(c) + w(I−N (v0))

= w′(I ′ ∩ V) + w′(v′c) + w(v0) + w′(I ′ ∩ VE)

= w′(I ′ ∩ V) + w′(I ′ ∩ VC) + w′(I ′ ∩ VE) + w(v0)

= w′(I ′) + w(v0) .

To prove the second statement, let I? be an arbitrary MWIS of G. We have two cases.
Case 1: v0 ∈ I?. Since I? is independent, I ′? = I? \ {v0} is an independent set of G′
with w(I?) = w

′(I ′?) − w(v0).
Case 2: v0 < I?. Let IN (v0) = I? ∩ N (v0) be the set of all neighbors N (v0) contained
in I?. Based on the order of the neighbors N (v0) = {v1,v2, ...,vr } we denote this set
by IN (v0) = {vj1,vj2, ...,vjs } with j1 < j2 < ... < js . If w(IN (v0)) ≤ w(v0) applies, the
set (I? \ IN (v0)) ∪ {v0} forms an independent set of G with weight

w((I? \ IN (v0)) ∪ {v0}) = w(I?) − w(N (v0)) + w(v0)

≥ w(I?) ,

which we can handle by case 1. Therefore, w.l.o.g. we can assume w(IN (v0)) > w(v0). For
this reason, there is a K ∈ [1, s], so that the set c =

⋃
k ≤ K vjk ful�lls bothw(c) > w(v0)

and w(c) − w(M(c)) ≤ w(v0). Consequently there is a vertex v′c ∈ VC . Further-
more, let I−

N (v0)
= IN (v0) \ c be the set of vertices v ∈ IN (v0) that are not con-

tained in c . We now construct an independent set I ′? of G′ from I? by removing the
vertices c , adding the vertex v′c and replacing each vertex vj ∈ IN (v0) with v′c,j . Thus, we
have I ′? = (I? ∩ N (v0)) ∪ {v

′
c} ∪ {v

′
c,j | vj ∈ IN (v0)}. Since we have N ′(v′c) ⊆ N (c), all

vertices I ′? ∩ VE belong to the same layer c and N ′(v′c,j) ∩ N (v0) = N (c ∪ {vj}) holds,
the set I ′? is an independent set ofG′. We now can show that the weight of the set I ′? meets

26

5.3. Relationship To Other Reduction Rules

the requirements as follows:

w′(I ′?) = w′(I? ∩ N (v0)) + w′(v′c) + w′({v′i,j | vj ∈ I−N (v0)})

= w′(I? ∩ N (v0)) + w′(v′c) + w(I−N (v0))

= w(I? ∩ N (v0)) + w(c) − w(v0) + w(I−N (v0))

= w(I? ∩ N (v0)) + w(I? ∩ N (v0)) − w(v0)

= w(I?) − w(v0)

Since I ′ is an MWIS of G′ we can conclude by the two statements that

w(I) = w′(I ′) + w(v0)

≥ w′(I ′?) + w(v0)

= w(I?)

applies. Since I? is an MWIS of G , we therefore know that I is also an MWIS of G′. Finally,
we can conclude αw (G) = αw (G

′) +w(v0), since I ′ and I are maximum weight independent
sets of G′ and G.

5.3. Relationship To Other Reduction Rules

After we have presented reduction rules that have already been used in practice in the
previous chapter, in this section we want to identify relationships between them and the
di�erent variants of the struction. The aim of this section is to show which of these rules
are already subsumed by struction. We say that a reduction rule R1 is subsumed by a
reduction rule R2 if for each graph G1 produced by any application of R1 we can obtain
an equivalent graph G2 by the application of R2. For the inclusion of a reduction rule
of R1 by R2 we write R1 ⊆ R2. To show the di�erent inclusions to existing rules, we
always use the special case where the extended weighted struction and extended reduced
weighted struction perform the same graph transformation. This is the case for a vertex
v0, if the set of the just greater independent sets C′ is equal to the set of all independent
sets C in G[N (v0)] with greater weight than w(v0). We refer to this special case in the
following as Extended Weighted StructionC=C ′. An overview on existing inclusions is
given in Figure 5.4.

5.3.1. Clique Neighborhood Removal ⊆ ExtendedWeighted StructionC=C ′

Let v be a vertex on which the clique neighborhood reduction rule can be applied and G′

be the transformed graph obtained by removal of N [v]. Since there exists a partition C
of N [v] into cliques with w(v) ≥

∑
C ∈ C maxu ∈ C w(u) and any independent set of G

can include at most one vertex of each clique, there is no independent set IN (v) in G[N (v)]
with w(IN (v)) ≥ w(v) and we therefore have C = C′ = ∅. Thus, when applying the
extended weighted struction to v , we remove N [v] and do not insert any new vertex,
resulting in the same graph G′′ = G′.

27

5. Struction

Extended StructionC=C′

Isolated Weight Transfer

Isolated Vertex Removal Neighborhood Removal

Generalized Fold

Degree Two Fold

Twin Domination

Clique Neighborhood Removal

Extended Struction Extended Reduced Struction

Figure 5.4.: Relationships between reduction rules. An inclusion R1 ⊆ R2 is visualized by
an arrow from R2 to R1.

5.3.2. Generalized Fold ⊆ ExtendedWeighted StructionC=C ′

Letv be a vertex on which the generalized fold rule is applicable andG′ be the transformed
graph. Due to the preconditions there is exactly one MWIS IN (v) with w(IN (v)) > w(v)
in G[N (v)] and we therefore have C = C′ = {IN (v)}. Thus, when we apply the extended
weighted struction on v , we remove the vertices N [v] and insert a single new vertex v′IN (v) .
By construction the neighborhood of this vertex isN (v′IN (v)) = N (IN (v)), which corresponds
to a fold of the vertices N [v]. Moreover, our vertex v′IN (v) and v′, the one obtained in the
generalized fold reduction, have the same weight, because w′(v′IN (v)) = w(IN (v)) −w(v) =
w′(v′) holds. Thus we obtain the same graph G′′ = G′.

5.3.3. Isolated Weight Transfer ⊆ ExtendedWeighted StructionC=C ′

Let v be a vertex on which the isolated weight transfer rule is applicable and G′ \ N (v)]
be the transformed graph. Furthermore, let S(v) ⊆ N (v) be the set of all isolated
vertices in N (v). Since v is an isolated vertex, its neighborhood N (v) forms a clique.
Each independent set IN (v) of G[N (v)] thus consists of a single vertex u ∈ N (v) and we
have C = C′. Therefore, when we apply the extended weighted struction to v we create
a new vertex v′

{u}
if and only if w(u) > w(v) applies, i.e. if we do not remove u from

the graph during the application of the isolated weight transfer rule. We now state that
both transformed graphs are equivalent by showing that these vertices v′

{u}
and u are

equivalent. By construction we have w′(v′
{u}
) = w({u}) −w(v) = w(u) −w(v) = w′(u), so

they ful�ll the weight condition. In addition, N (v′
{u}
) ∩ N (v) = N (u) ∩ N (v) applies,

since we connect v′
{u}

to each non-neighbor x ∈ N (v) being adjacent to u. Finally, both
the remaining vertices u ∈ N (v) and the new vertices v′

{u}
form a clique, resulting in the

equivalence of the neighborhoods of u and v′
{u}

.

28

5.3. Relationship To Other Reduction Rules

N(3) ∩N(0)

0

3

N(1) ∩N(0)

N(2) ∩N(0)

1

2

(a) Original Graph

N({1, 3}) ∩N(0)

N({1, 2}) ∩N(0)

,31

,21

(b) Transformed Graph

Figure 5.5.: Application of extended (reduced) weighted struction on simple new reducible
graph structure. For simplicity we just write i and i, j instead of vi and vi,j

5.3.4. Weighted Isolated Vertex Removal ⊆ Isolated Weight Transfer

Let v be a vertex on which the weighted isolated vertex removal rule is applicable.
Then w(v) ≥ maxu ∈ N (v)w(u) holds, implying the condition w(v) ≥ maxu ∈ S(v)w(u)
for the set of all isolated vertices S(v) ⊆ N (v). Thus, the isolated weight transfer rule
is applicable to v and removes the vertices N [v] from the graph, giving us the same
graph G′′ = G′.

5.3.5. Degree Two Fold ⊆ Generalized Fold

Let v be a vertex on which the degree two fold reduction is applicable and G′ be the
transformed graph obtained by folding N [v] into a single vertex. According to the precon-
dition,v has an independent neighborhood N (v) = {u1,u2} withw(v) < w(u1) + w(u2)
and w(v) ≥ max{w(u1),w(u2)}. Therefore there only exists exactly one independent
set IN (v) = {u1,u2} with w(IN (v)) > w(v) of G[N (v)]. Consequently, the generalized
fold rule can be applied to v and creates the same graph G′′ = G′, since it also folds the
vertices N [v] into a new vertex.

5.3.6. Neighborhood Removal ⊆ Clique Neighborhood Removal

Let v be a vertex on which the neighborhood removal rule can be applied and G′ be the
transformed graph constructed by removal of N [v]. We can obtain a partition of N (v) into
cliques by cliques of size one, i.e. C =

⋃
u ∈ N (v) {u}. Since we have w(v) ≥ w(N (v)),

we can conclude
∑

C ∈ C maxu ∈ C w(u) = w(N (v)) ≤ w(v). Therefore the Clique
Neighborhood Removal reduction is applicable onv and we obtain the same graphG′′ = G′,
since we also remove N [v] from the graph.

29

5. Struction

5.3.7. New Reducible Graph Structures

Finally, we want to show brie�y which previously irreducible graph structures can be
reduced by the extended (reduced) weighted struction in such a way that the transformed
graph has fewer nodes than before. In general these consist of vertices whose neighbor-
hood N (v) does not form a clique and has at least two independent sets of greater weight
than w(v) and there are no twin or domination relationships of vertices v ∈ N [v]. Such
graph structures can occur even with nodes of small degree, an example of a degree three
vertex is shown in Figure 5.5b.

30

6. E�icient Data Reduction Via Struction

In this chapter, the weighted struction is integrated into the branch-and-reduce framework
presented in the previous chapter and two new preprocessing algorithms are developed.
Our general goal in data reduction is to transform an input graph to a simpler, smaller graph.
Since all struction variants are very general reduction rules, which do not necessarily
reduce the number of vertices but can create a large number of new vertices, special cases
of structions are considered. For this purpose, reduction rules are �rst divided into three
di�erent types, depending on how the size of the original graph and transformed graph
di�er.

For decreasing reduction rules or short decreasing reductions the transformed graph G′

has less vertices than the original graph G. All reduction rules in the basic reduction
algorithm of Lamm et al. are of this type. We derive special types of struction, which also
belong to this type. Reduction rules where the number of vertices in the original graph is
the same as in the transformed graph are called plateau reductions. The graphs G′ and G
di�er only structurally, the vertices have di�erent adjacencies. While plateau reductions
cannot reduce the size of a graph, they can potentially produce new subgraphs which can
then be reduced by other (decreasing) reductions. Finally, increasing reductions denote
those reduction rules whose transformed graph has more vertices than the original graph.
Similar to plateau reductions, the idea is to reduce the resulting graph by further reduction
rules. However, increasing structions can lead to a general growth of the graph, even if it
can be reduced again after its application. Therefore, it is di�cult to integrate them into
an incremental reduction algorithm.

Another way we restrict the struction in practice is to de�ne a maximum vertex de-
gree dmax up to which a struction is applicable. Since the number of new nodes can grow
asymptotically exponentially in the vertex degree, we try to avoid applicability checks as
well as the actual execution of expensive structions.

In the next section, our �rst algorithm is presented, called non-increasing reduction
algorithm, which extends the basic reduction algorithm of Section 4.1 by further struction
based reduction rules. The existing reduction rules are therefore extended by decreasing
and plateau structions. These are very general rules, which already cover many rules
of the framework and can also reduce some subgraphs, which are irreducible for the
existing rules. Overall, we hope to be able to obtain smaller irreducible graphs on di�erent
instances. Afterwards we present our second algorithm, called cyclic blow-up algorithm,
which extends the non-increasing reduction algorithm by using increasing structions.
Intuitively seen, this extends the reduction space even more, so that potentially even
smaller irreducible graphs can be calculated. However, increasing structions can lead to a
large increase in the number of vertices of the graph depending on the choice, so special
techniques are needed to avoid this problem.

31

6. E�cient Data Reduction Via Struction

6.1. Non-Increasing Reduction Algorithm

In this section we show how to obtain decreasing and plateau structions from the four
di�erent struction variants. Based on this, an incremental reduction algorithm is developed,
which extends the basic reduction algorithm of Lamm et al.by these struction types.

In general, when applying any struction variant, the number of vertices of the trans-
formed graph G′ depends on the number of removed and newly created vertices. If more
vertices are removed than newly created, we are dealing with a decreasing struction. If
both numbers are equal, we have a plateau struction. It is di�cult to estimate the number
of newly created vertices in advance, since all variants depend on certain independent sets
in the neighborhood N (v) of the center vertex. The general method is therefore to use
one of the struction variants and count the number of vertices created during this process.
If these exceed a maximum value nmax , the execution of the struction is aborted.

At �rst we have a look at the structurally very similar variants original weighted
struction and modi�ed weighted struction. These can reduce the number of vertices in the
graph by a maximum of one, since they only remove the center vertex v . Decreasing or
plateau structions can be found by attempting to execute one of the two struction variants
withnmax = 0 ornmax = 1. At this point, however, we can see that an decreasing struction
is already covered by the isolated weight transfer reduction of the framework: In both
struction variants a new vertex is created for each non-adjacent vertex pair vi ,vj ∈ N (v)
in the neighborhood of v . Consequently, no new vertex is created exactly when the
neighborhood N (v) forms a clique. Thus v is isolated and is removed when the isolated
weight transfer rule is executed on v or a neighbor vertex u ∈ N (v). This means that we
cannot derive new reduction rules for these two struction variants that reduce the number
of vertices. A plateau struction occurs if exactly one pair of vertices vi ,vj ∈ N (v) exists,
which are not adjacent to each other.

This is di�erent for the other two struction variants. Since they remove the center
vertex v and its neighborhood N (v), the graph size can be reduced by up to δ (v) + 1.
Decreasing or plateau structions can be found by executing the corresponding struction
variant with nmax = δ (v) or nmax = δ (v) + 1.

Finally, we show how to integrate the new rules into the basic reduction algorithm from
Section 4.1. To a large extent, we take the reduction rules and their sequence from the basic
reduction algorithm. At this point we decide to only use one of the four struction types
simultaneously. This allows us to better determine the e�ectiveness of each individual
struction variant in the later evaluation. Since the last two struction types in particular are
very general reduction rules, they tend to be expensive in terms of runtime. We therefore
apply them as the last local reduction rule before we move on to the global critical set reduc-
tion. Overall, we apply the reduction rules in the following order: R = [Neighborhood
Removal, Degree Two Fold, Cliqe Reduction, Domination, Twin, Cliqe Neigh-
borhood Removal, Generalized Fold, Decreasing Struction, Plateau Struction,
Critical Weighted Independent Set].

In Section 5.3 we have already seen that the extended weighted struction and the
extended reduced weighted struction subsume several reduction rules. Therefore, in the
later evaluation we will examine whether we can obtain advantages in terms of runtime
by only using a subset of these reduction rules.

32

6.2. Cyclic Blow-Up Algorithm

Algorithm 3 Cyclic Blow-Up Algorithm
1: input graph G
2: function CyclicBlowUp(G)
3: K ← Reduce(G) . current graph
4: K?← K . best graph
5: count ← 0 . iterations since last accept
6: while Vertices(K) < α · Vertices(K?) and count < X do
7: . Modify current graph structure by application of increasing structions
8: K′← BlowUp(K)
9: if K′ = K then

10: return K?

11: . Shrink graph size by non-increasing reduction application
12: K′′← Reduce(K′)
13: . Accept or reject new graph K′′ for next iteration
14: (K ,K?, count) ← Accept(K′′,K ,K?, count)
15: return K?

6.2. Cyclic Blow-Up Algorithm

In this section we introduce another reduction algorithm, called cyclic blow-up algorithm,
which is an extension of the non-increasing reduction algorithm from the previous section.
In the branch-and-reduce framework, this algorithm can theoretically be used whenever
an irreducible graph is calculated, i.e. before each branching step. In practice, however,
due to its complexity, we only use it for the computation of the initial irreducible graph.
Following the lead of previous work [3, 33, 52], in the remainder of this section we will
refer to an (irreducible) graph K as better than an (irreducible) graph K′ if it has fewer
vertices. However, our algorithm can be adapted to other quality criteria by minor changes.

In the preceding non-increasing reduction algorithm, the cyclic blow-up algorithm ties
in at the point where an irreducible graph has been obtained. The basic idea at this point
is to execute increasing structions, which initially increase the size of the current graph
again. The hope here is that the structure of the current graph changes in such a way that
individual subgraphs become reducible again for the non-increasing reduction algorithm
of the previous section. Ideally, we are therefore able to obtain a smaller current graph
than before.

In general the cyclic blow up algorithm can be described as follows (see Algorithm 3):
Similar to local searches we manage two graphs K and K? during the process. K? is the
best graph found so far, i.e. the graph with the least number of vertices and K is the current
graph, which we try to reduce to get a better graph K?. Both graphs are initialized with
the graph obtained by the non-increasing reduction algorithm of the previous section to
the input graph (lines 3,4). The algorithm then runs in iterations consisting of two phases,
a blow-up phase and a reduction phase. During the blow-up phase a set of increasing
structions is applied to the current graph, resulting in a new graph K′ (line 8). More
details about this phase are given in Section 6.2.1. This graph K′ is then reduced using the
non-increasing reduction algorithm, resulting in a reduced graph K′′ (line 12). We then

33

6. E�cient Data Reduction Via Struction

Algorithm 4 Blow-Up Phase
1: input graph G
2: function BlowUp(G)
3: while stopping criterion not reached do
4: v ← PickVertex(G)
5: G′← Struction(G,v,nmax)

6: if G′ = G then
7: return G
8: G ← G′

9: return G

decide whether the new graph K′′ or the old one K should be used as the current graph for
the next iteration. Intuitively it can be advantageous to accept a graph K′′ even if it has
more vertices than K to avoid local minima. The decision between K′′ and K is handled by
the Accept function (line 14), for which two strategies are shown in Section 6.2.2. If the
graph K′′ is rejected for the next iteration, it would be created again in the next iteration
if the blow-up and reduction phase are executed in the same way. In section 6.2.3 simple
approaches are presented to avoid such recurring circles.

Since we generally cannot always obtain an empty graph, we need a stopping criterion
to abort the algorithm prematurely (line 6). In Section 6.2.4 we introduce the stopping
criterion used and also show current weaknesses of it.

Finally we want to note, that we use the full set of reduction rules of the non-increasing
reduction algorithm for the calculation of an initial reduced graph, while we omit the
critical set reduction in subsequent Reduce() calls.

6.2.1. Blow-Up Phase

The starting point of this phase is that the current graph K is irreducible for the non-
increasing reduction algorithm, i.e. in particular no more decreasing or plateau structions
can be applied. The goal of this phase is to change the structure of the current graph by
application of increasing structions in such a way that it can potentially be reduced in the
subsequent reduction phase.

The general procedure of this phase is as follows (see Algorithm 4): We �rst select a
vertex from a candidate set C on which we want to apply the struction (line 4). This set C
consists of all vertices in the current graph K which have not been explicitly excluded
for selection during the algorithm. This vertex selection is a crucial part of the whole
algorithm, because depending on the selection the struction can create a large number
of new vertices and the size of the transformed graph can increase drastically. If the
transformed graph cannot be reduced afterwards, or only slightly, we would stray away
from our main goal of creating a small, easy to solve irreducible graph. We therefore
present a variety of di�erent vertex selection strategies in Section 6.2.1.1.

Afterwards, the struction is applied to the selected vertex v . In order to avoid the
complete execution of a struction, which would be extremely costly in terms of running
time by creating a large number of new vertices including adjacencies, a maximum number

34

6.2. Cyclic Blow-Up Algorithm

of new vertices nmax is speci�ed. The execution is aborted as soon as the number of new
vertices exceeds nmax . In this case the vertex v is excluded from the candidate set C and
the blow-up phase is terminated (line 5). The vertex v will become selectable again as
soon as the corresponding struction would create another transformed graph, i.e. its
neighborhood N (v) changed.

In general, this process is repeated until a certain stopping criterion is reached (line 3).
In Section 6.2.1.2 we present two di�erent criteria for this purpose.

6.2.1.1. Vertex Selection Strategies

Basically, the goal of the vertex selection procedure is to �nd an increasing struction
that calculates a transformed graph from the current one, which can then be reduced to
an overall simpler graph than the original one. In general, however, it is very di�cult
to estimate in advance to what extent the transformed graph can be reduced without
actually performing the reduction phase. Most of the strategies presented therefore aim at
increasing the graph size by only a few vertices. This approach seems promising, since the
graph only needs to be reduced by a few vertices to result in an overall vertex reduction.
In addition, this also gives us an advantage in terms of running time, since the execution
of the corresponding struction takes less time. The value by which the number of vertices
changes by applying a struction to a vertex v depends on the number of newly created
vertices. This in turn is determined by the number of independent sets in the neighborhood
of v having greater weight than v . In general, determining the number of independent
sets is NP-complete and can reach a maximum of 2n sets for graphs of size n with empty
edge sets [48]. Therefore, in addition to an exact selection strategy that always selects the
vertex with the minimum vertex increase, we also present two heuristics that attempt to
�nd vertices with comparable increases.

The presented strategies all make use of an addressable priority queue to manage the
candidate set C (for more details about this data structure we refer the reader to [42]).
They di�er in the used key function, which describes a local selection criterion, i.e. it
only takes the neighborhood of a vertex into account. The vertex selection is done by the
deleteMin function, which removes and returns an element with minimal key from the
queue. As soon as a change in the neighborhood of a vertex occurs, i.e. a new vertex is
added, removed or the weight of a neighbor changes, the key of the corresponding vertex
is updated using the provided changeKey function. In the following, the di�erent vertex
selection strategies are presented, highlighting their advantages and disadvantages.

Random Selection. This is the simplest strategy, which selects a vertex uniformly at
random. However, experiments have shown that the random choice of vertices results
in the application of structions that signi�cantly increase the graph size. As a result, the
algorithm either terminates after applying a few transformations or a lot of time must be
spent to reduce the graph to its original size again. For this reason there is a need for more
sophisticated selection strategies.

Degree Selection. This strategy selects a vertex with a minimum degree, thus minimizing
the worst-case number of newly created vertices. We can calculate the key in constant

35

6. E�cient Data Reduction Via Struction

time, but the worst-case number is not necessarily meaningful, depending on the graph
structure. vertices with a high degree would either not be selected at all or selected very
late with this strategy, but can still be a good choice: If a vertexv has a dense neighborhood,
the number of independent sets in N (v) can be much less than for a vertex v′ of lower
degree with sparse neighborhood N (v′). Depending on the weight distributions between
center vertex v and its neighborhood N (v), the number of new vertices can also be much
less than the number of independent sets; The greater the weight of v compared to its
neighborhood N (v), the fewer independent sets have greater weight than v .

Vertex Increase Selection. This strategy selects the vertex whose corresponding struction
increases the number of vertices of the graph the least. In order to calculate the key for
a vertex v , an exhaustive search is used to �nd the number x of independent sets with
a weight greater than v . Since in the blow-up phase only structions are executed which
create less than nmax vertices, we stop the search as soon as the number of sets found
reaches nmax . The key is thus the di�erence between x and δ (v) + 1, where the latter is
the number of removed vertices. A weakness of this selection strategy is that it can be
very expensive in terms of running time, Especially for vertices with large and sparse
neighborhoods the key calculation can become very time consuming.

Approximate Vertex Increase Selection. This strategy works similarly to the vertex in-
crease selection. However, instead of calculating all independent sets in the neighborhood
of v , only independent sets up to a size of two are considered. This results in a lower
bound L for the number of independent sets [47]. Two vertices form an independent set, if
they are not connected by an edge, so the number of such sets can be calculated in O(∆2)
time, where ∆ is the maximum degree of G. Analogous to the vertex increase selection
key for a vertex is calculated by the di�erence between L and δ (v) + 1.

Since the lower bound L can be far below the actual number of newly created vertices,
we use a tightness-check: It is passed if less than L′ = d β · Le new vertices with β ∈ (1,∞)
are created by the corresponding struction.

In principle, the approximate vertex increase selection then works as follows: We select
a vertexv from the queue with minimal key and perform the tightness-check. If it fails, we
know that at least L′ new vertices are created by the corresponding struction. Therefore L′
forms a tighter bound for the number of new vertices, and we reinsert v to the queue
again using the bound L′. We repeat this process until we �nd a vertex that passes the
check and return it as the result of the vertex selection.

In practice, we combine tightness-check and struction execution by executing the
corresponding struction with a maximum number L′ of new vertices.

6.2.1.2. Stopping Criteria

Generally, we stop the blow-up phase as soon as our candidate set C is empty. This is the
case when we have excluded all remaining vertices in the current graph K from C or K is
empty. In addition, we always use another criterion to avoid excessive increases in graph
size over time. For this purpose we present two criteria, which we will compare to each
other in the later evaluation.

36

6.2. Cyclic Blow-Up Algorithm

The �rst criterion allows a maximum number of structions Z to be executed per phase.
Since the growth of the graph heavily depends on the selected structions, this criterion is
not adaptive.

The second criterion therefore terminates the blow-up phase if the current graph exceeds
a percentage limit. Therefore the size of the graph at the beginning of the blow-up phase is
recorded. We stop executing further structions as soon as the size of the current graph K′

exceeds the initial graph size by a factor of γ ∈ [1,∞).

6.2.2. Accept Strategies

After we have calculated a new graphK′′ during an iteration of the cyclic blow up algorithm,
we have to decide if we want to keep or abandon it. We present two simple Accept
strategies, which are later evaluated in chapter 7.

Both procedures calculate the new best graph K? from the minimum of K? and K′′.
The �rst strategy accepts any calculated graph K′′ for the next iteration. Since this also
allows to keep graphs K′′ which are much larger than the current graph K , we investigate
a second strategy. This accepts K′′ only if it has fewer vertices than the current graph,
i.e. Vertices(K′′) < Vertices(K). Other strategies could use a midway between the two
extremes by accepting a graph K′′ whose size is at most a factor η ≥ 1 worse than K . Our
two procedures are derived from this by η = ∞ or η = 1.

6.2.3. Cycle Avoidance Strategies

In this section we describe two simple approaches that should help to avoid that a rejected
graph K′′ is produced again in the next iteration by running the same blow-up and
reduction phase.

Randomized Tie Breaking. This approach introduces a random component into the blow-
up phase. For this purpose, ties between vertices, i.e. vertices with the same keys, are
randomly broken during vertex selection. We achieve this by using �oating point keys
whose decimal part corresponds to random noise. The original key can be reconstructed
by cutting o� the decimal part.

Tabu Mechanic. This strategy avoids the execution of the same blow-up phase by exclud-
ing vertices from the candidate set C for vertex selection. After a calculated graph K′′ has
been rejected, all vertices from the previous blow-up phase become unselectable. These
vertices only become available again after their neighborhood has changed, which causes
the corresponding struction to generate a di�erent transformed graph.

6.2.4. Stopping Criteria

If we have obtained an empty graph during the algorithm, we essentially solved the
problem. Otherwise, we sooner or later have to make the decision to output the current
best graph as the result. As termination criteria for the algorithm we consider two factors.
First we want to avoid that the size of the current graph K distances too much from that

37

6. E�cient Data Reduction Via Struction

of the best graph K?. Therefore we abort the algorithm as soon as the size of the current
graph K exceeds the size of the best graph K? by a factor α ∈ [1,∞). Reaching this
criterion depends on the used Accept strategy. Therefore we also count the number of
unsuccessful iterations, i.e. iterations in which the new graph K′′ has been rejected. Our
second criterion aborts the algorithm if this value exceeds some constant X ∈ [1,∞).

At this point we would like to state that this is a very simple stopping criterion. In
general, the size of the best graph in the algorithm can decrease very slowly or even exhibit
oscillatory behavior. However, our current stopping criterion does not prevent this in
general. This can cause the algorithm to take a long time to improve the current graph or
even fails to improve it at all. In practice, it might be more practical to stop the algorithm
at this point and try to calculate an optimal solution on the best graph K?. This could
result in a reduction of the overall runtime for calculating an optimal solution. Therefore,
a more general stopping criterion would be desirable, which aborts the algorithm in such
cases. A stopping criterion similar to the one used by Hespe et al. [31], which measures the
rate of change of the current graph and aborts when it becomes too small, is not directly
applicable here. The problem is that we generally want to allow graph size increases
during a blow-up phase. The question of a suitable stopping criterion is therefore still
open at this point.

38

7. Evaluation

7.1. Experimental Setup

7.1.1. Environment

We ran all the experiments on a machine with four Octa-Core Intel Xeon E5-4640 processors
running at 2.4 GHz, 512 GB of main memory, 420 MB L3-Cache and 48256 KB L2-Cache.
The machine runs Ubuntu 18.04.4 and Linux kernel version 4.15.0-96. All algorithms were
implemented in C++11 and compiled with g++ version 7.5.0 with optimization �ag -O3. All
algorithms were executed sequentially with a time limit of 1 000 seconds. The experiments
for heuristic methods were performed with �ve di�erent random seeds.

7.1.2. Datasets

For our experimental evaluation we use data sets already known from previous works
on the maximum (weight) independent set problem [5, 12, 33]. Before we introduce the
instance types in detail, we �rst want to note that all instances except the OSM instance
family are unweighted. To be suitable for maximum weight independent sets, a commonly
used approach is to assign random weights to the vertices. Following the example of
previous work [12, 33, 37], we use uniformly distributed weights in the interval [1, 200].
Basic properties like number of vertices |V | and edges |E | of our test instances can be
found in the appendix in Tables A.1-A.4.

Map Labeling (OSM). These instances are label con�ict graphs obtained from Open-
StreetMap(OSM) data [45] using a method described by Barth et al. [9] to generate
map labelings. In general, label con�ict graphs can be obtained by considering points of
interest (POIs) of a region, that should be labeled in a map. For each label we therefore cre-
ate a vertex and connect it to other vertices, if their labels overlap each other. The weights
are chosen proportionally to the importance of the label respectively, so that by obtaining
an MWIS on this graph we determine an overlap-free labeling that maximizes the sum
of importance of labels. More speci�cally, our instances were generated by considering
a dynamic setup, where vertices are associated with labels and certain activity intervals,
corresponding to the time they are displayed [9]. Thereby we consider the same instances
as Cai et al. [12], which were created for three di�erent Activity Modes (AM1,AM2,AM3)
for states in North America. Following the lead of previous work, we omit instances with
less than 1 000 vertices, since they are easy to solve [12, 33].

39

7. Evaluation

Stanford Large Network Dataset Repository (SNAP) [34]. This data set contains large scale
network instances from many di�erent areas, namely collaboration networks, communi-
cation networks, road networks, social networks, peer-to-peer networks and web crawl
networks. These instances are unweighted and are a well-known benchmark data set for
the maximum independent set problem [3, 14, 17].

Mesh. This instance family consists of the dual graphs of well-known triangle meshes.
During the conversion, vertices of degree zero and one have already been iteratively
removed from the graph. Originally this instance family was motivated by an application
of Sanders et al. [50]: To e�ciently process a triangulation in hardware, a small subset
of triangles covering all edges of the mesh is required. Since adjacent facets in the mesh
are adjacent vertices in the dual graph of the mesh, this problem corresponds to �nding a
vertex cover in the dual graph and thus �nding an independent set.

Finite Elements (FE). These instances were obtained from 3d meshes, which stem from
simulation using the �nite element method. Originally these graphs were used as bench-
mark instances for graph partitioning algorithms[23, 60].

Furthermore, we have also tested our reduction rules on benchmark instances for the
maximum weight clique problem [53]. To transfer these instances to the maximum weight
independent set problem, we need to calculate the complement graph which is feasible
since these instances only consist of a few hundred to thousand vertices. However, we
have observed that this results in very dense graphs, which are already (almost) irreducible
for our reduction algorithms. This behavior has already been observed by Akiba and
Iwata [3] on DIMACS graphs of the maximum clique problem for di�erent reduction rules
as well. In the following, we will therefore focus on the benchmark instances for the
maximum (weight) independent set problem.

7.1.3. Methodology

During the evaluation we present some of our collected data by using three types of plots,
which we explain brie�y.

CactusPlots. These plots show the number of instances solved over time for exact solution
methods. For each algorithm and instance, the time needed to solve it (if possible within
the time limit) is logged. At these times we get one step for the line of the corresponding
algorithm, in which the solved instances increase by one.

Convergence Plots. For a single test instance, convergence plots show how the solution
quality of an optimization algorithm changes over time. For reduction algorithms we plot
the size of the smallest irreducible graph found, while for optimization algorithms for the
maximum weight independent set problem we consider the weight of the largest weight
independent set found. We therefore obtain a new tuple (time,value) consisting of the

40

7.1. Experimental Setup

current best solution (value) and current time for each algorithm, as soon as it has found a
new best solution.

An accumulated view for multiple seeds or execution runs can be obtained as described
by Sanders and Schulz [51] by event-based geometric means: For this purpose, we log
triples (time,value,seed) during the measurement, which include besides the time and
solution quality (value) also the used seed. Afterwards we create a list S , containing all
measured triples sorted ascending by time. For each seed we manage a current value,
which we initialize by the �rst measured triple of the corresponding seed. Then we iterate
over S and update the current value for the seed of the current triple (time,value,seed).
From the current values of all seeds we determine the geometric mean G and append
a tuple (time,G) to our (initially empty) result list Sд. To additionally accumulate over
multiple instances, we can use the same procedure by simply logging instance names
instead of seeds.

Note that we always set the current values for determining the geometric means to a
minimum value of one, even if we have obtained an empty graph. This way we avoid that
the geometric mean drops to zero as soon as one of the current values has reached zero.

Performance Plots [18]. A performance plot consists of a performance pro�le in form
of a curve for each evaluated optimization algorithm. Thereby performance pro�les are
distribution functions for a speci�c performance metric that allow to benchmark and
compare optimization algorithms with each other. In our case, for reduction algorithms we
use the size of the obtained irreducible graph as metric, while for exact solvers we consider
the total time needed to both calculate an optimal solution and prove its optimality.
Furthermore, we refer to the output of an algorithm as the irreducible graph size or
total run time respectively. In particular, a performance pro�le of an algorithm maps a
variable τ ≥ 1 to the fraction of instances on which its output is not worse than the best
output found by any of the evaluated algorithms multiplied by τ . For instance for τ = 1
we obtain the fraction of all instances on which the algorithm calculates the best output,
whereas for τ = 2 we get the fraction of all instances on which the algorithm produces
an output that is at most twice as bad as the best found output on this instance.

7.1.4. Experimental Design

In the following section we perform a parameter tuning to �nd reasonable con�gurations
for the non-increasing and cyclic blow-up algorithm. This results in three concrete reduc-
tion algorithms, namely one con�guration for the non-increasing algorithm and two for
the cyclic blow-up algorithm. While the �rst cyclic blow up con�gurationCstrong calculates
the smaller reduced graphs, Cfast takes less time to calculate larger reduced graphs. We
then perform a comparison with other state-of-the-art solvers for the maximum weight
independent set problem including both exact and heuristic methods. For this purpose
we equip the branch-and-reduce framework of Lamm et al. [33] with our three reduction
algorithms. When we refer to this framework in the following, we will omit the addition
of the authors, since we do not use any alternative branch-and-reduce framework.

41

7. Evaluation

Graph
NonIncreasing Plain Plain Plain Plain
[no struction] orig. struction mod. struction ext. struction ext. red. struction

n t n t n t n t n t
fe_body 15992 0.88 44430 0.02 44469 0.02 1437 0.22 1753 0.32
fe_sphere 15269 0.41 16386 0.01 16386 0.01 5416 0.50 5448 0.29
buddha 107265 14.53 1087716 0.18 1087716 0.18 387 2.11 2804 2.04
ecat 26270 9.33 684496 0.22 684496 0.35 1995 3.01 9514 2.47
georgia-AM3 861 3.13 1462 0.01 1458 0.00 870 0.29 870 0.65
rhode-island-AM2 1103 0.51 2653 0.03 2653 0.02 1801 2.64 1798 4.17
roadNet-PA 35442 3.83 971421 0.52 991000 0.44 771 1.51 3611 1.56
soc-LiveJournal1 29419 98.37 4266942 7.69 4283809 7.78 11947 104.27 12210 145.88
web-NotreDame 6052 1.49 299118 0.19 299724 0.20 2109 0.61 2061 0.58

Table 7.1.: Obtained irreducible graph size by basic reduction rule set (NonIncreasing [no
struction]) and each struction variant and time (in seconds) required to compute
it. The global best irreducible graph size is highlighted in bold.

7.2. Parameter Tuning

We notice, that some parameters, such as the struction variant used in the non-increasing
reduction algorithm, can be determined almost independently of the choice of other
parameters. Other highly interdependent parameters such as the maximum number of
unsuccessful blow-ups X , the maximum number of vertices nmax allowed to be created
during a struction application and the maximum struction degree dmax had to be evaluated
simultaneously using a grid search. However, with a large number of parameters, this
would lead to an unreasonable runtime e�ort, so we will limit ourselves to looking at just
a few con�gurations to �nd a good one. For the quality of an irreducible graph found, on
one hand we take its size, i.e. the number of vertices, into account. If one con�guration
�nds a smaller irreducible graph in a slower time than another, they are non-comparable
by this criterion. Therefore, on the other hand, we also use the total runtime needed to
solve an instance as metric, i.e. the time needed to calculate the irreducible graph and
subsequent branch-and-reduce runtime.

7.2.1. Non-Increasing Reduction Algorithm

First, we evaluate the di�erent weighted struction variants in order to �nd a suitable
selection for the subsequent experiments. We therefore form an evaluation set that
consists of nine instances from our data sets. From each of the instance groups OSM,
�nite elements and mesh, we select two instances, while we take three SNAP instances of
di�erent network types. These instances are chosen in a way that the obtained irreducible
graphs by the reduction rules of Lamm et al. [33] consists of several hundred to thousands
of vertices, so that there is room for improvement. In the following we refer to these
reduction rules by Lamm et al. as basic reduction rule set or simply basic reductions. In the
following tables, we use the notation NonIncreasing[X] for the non-increasing reduction
algorithm from Section 6.1 where X is a particular struction variant or takes the value
"no struction" if we use the non-increasing reduction algorithm without any struction
application. Furthermore we write Plain X, if we reduce a graph by using only using a
single struction variant X.

42

7.2. Parameter Tuning

Graph
NonIncreasing NonIncreasing NonIncreasing NonIncreasing NonIncreasing
[no struction] [orig. struction] [mod. struction] [ext. struction] [ext. red. struction]

n t n t n t n t n t
fe_body 15992 0.88 14018 0.86 15333 1.51 1167 0.82 1206 0.82
fe_sphere 15269 0.41 15269 0.41 15269 0.45 3540 1.26 3578 1.38
buddha 107265 14.53 71574 13.96 227833 22.10 103 8.89 263 8.73
ecat 26270 9.33 17626 9.56 121122 17.14 251 7.55 919 7.83
georgia-AM3 861 3.13 861 3.11 860 2.97 780 3.33 781 3.40
rhode-island-AM2 1103 0.51 1100 0.64 1098 0.53 853 2.49 901 1.96
roadNet-PA 35442 3.83 20572 4.10 63621 6.93 282 3.16 377 3.31
soc-LiveJournal1 29419 98.37 23107 127.25 42270 118.01 4319 153.87 4293 147.40
web-NotreDame 6052 1.49 5511 1.54 6348 1.39 516 1.38 544 1.41

Table 7.2.: Obtained irreducible graph sizes by non-increasing reduction algorithm for
each struction variant and time (in seconds) required to compute it. The global
best irreducible graph size is highlighted in bold.

7.2.1.1. Struction Variant

In the �rst experiment we execute the di�erent struction variants on the evaluation set to
get an impression of their practical potential. In detail, we use an incremental reduction
rule application, where we execute the corresponding struction �rst as a decreasing
reduction and then as a plateau reduction without using any further reduction rules. We
compare both the size of the irreducible graph and the run time required to obtain it with
the basic reduction rule set. In particular, we use the non-increasing reduction algorithm
from Section 6.1 without any struction variant. This corresponds to the basic reduction
algorithm (see Section 4.1) with the only di�erence that we apply the generalized fold
reduction after the weighted critical set reduction. The results can be found in Table 7.1.
We �nd that both the original and the modi�ed weighted struction have shorter run times
but at the same time obtain much larger irreducible graphs than the other methods. In
detail, the geometric mean of the runtime of the latter two is about 20 times as much as
for the other two and even have run times on the two OSM instances georgia-AM3 and
rhode-island-AM2 that are more than two orders of magnitude greater. At the same time,
the graph sizes of the extended and extended reduced weighted struction are about 35 times
smaller on geometric mean, and especially on all SNAP instances and the mesh instance
buddha more than two orders of magnitude smaller. This is primarily due to the weight
limitation for the center vertex, which means that generally only few struction applications
are available for these types. For the extended and extended reduced struction, we can
see that the irreducible graphs of the OSM instances are larger than those obtained by
the basic reductions. While on the georgia-AM3 instance, this di�erence only amounts to
nine vertices, the reduced graphs on the rhode-island-AM2 instance are larger by a factor
of 1.6. However, we can achieve signi�cant improvements of several orders of magnitude
on the remaining instances. This can be explained by the inclusions of existing reduction
rules and new reducible subgraphs found in Section 5.3. Except for the rhode-island-AM2

and soc-LiveJournal1 instances, the run times of both struction variants are also lower
than for the existing reduction rule set. On the georgia-AM3 instance this di�erence even
goes up to a factor of ten for the extended weighted struction.

In the second experiment we execute the non-increasing reduction algorithm with
the four di�erent struction variants and compared them to the non-increasing reduction

43

7. Evaluation

Graph extended extendedg extendedgn extendedgnc
n t n t n t n t

fe_body 1167 0.82 1177 0.20 1162 0.17 1162 0.19
fe_sphere 3540 1.26 3662 0.33 2961 0.31 3510 0.30
buddha 103 8.89 86 2.12 86 1.90 86 2.07
ecat 251 7.55 258 2.66 274 2.29 253 2.92
georgia-AM3 780 3.33 796 0.33 796 0.29 796 0.29
rhode-island-AM2 853 2.49 845 1.27 845 1.20 835 1.46
roadNet-PA 282 3.16 282 1.11 300 1.07 302 1.27
soc-LiveJournal1 4319 153.87 4319 22.33 4319 22.72 4293 31.45
web-NotreDame 516 1.38 516 0.50 516 0.35 516 0.38

Table 7.3.: Obtained irreducible graph size by non-increasing reduction algorithm with ex-
tended reduced weighted struction but without generalized fold/neighborhood
clique removal/clique reduction and time (in seconds) required to compute it.
The global best time is highlighted in bold.

algorithm without any struction variant. Again, we measure the irreducible graph sizes as
well as the time required to obtain them; the results can be found in Table 7.2. We get a
similar pattern as in the previous experiment: The �rst two struction variants produce
much larger irreducible graphs than the last two, in the geometric mean again by one
order of magnitude more. The biggest di�erence can be found between the modi�ed and
the extended weighted struction on the buddha instance, where the graph sizes di�er by
a factor of more than 2 200. Except for the modi�ed weighted struction, we can always
obtain smaller irreducible graphs compared to using no struction. We also observe that
the discrepancy of the obtained graph sizes between extended and extended reduced
weighted struction decreases, which we explain by the fact that the struction is applied less
often in both algorithms, since many structures are already reduced by other reduction
rules. Nevertheless, the non-increasing reduction algorithm using the extended weighted
struction produces slightly smaller irreducible graphs. Therefore, the two experiments
lead us to the conclusion that we will use the non-increasing reduction algorithm with the
extended weighted reduced struction.

However, in direct comparison, we �nd that the overall run times between the exclusive
use of struction in the �rst experiment and the integrated form in the non-increasing
algorithm in the second experiment are higher. Overall, we believe that this behavior can
be explained by the fact that we get a larger runtime overhead due to an increased number
of (unsuccessful) applicability checks. In the following section, we therefore try to �nd a
subset of reduction rules with which we can obtain comparable irreducible graph sizes in
a shorter runtime.

7.2.1.2. Reduction Rules

We have already noticed that the runtime increases on many instances as soon as we use
the extended weighted struction in the non-increasing algorithm instead of in a standalone
mode. In this section, we therefore want to examine to what extent the overall runtime

44

7.2. Parameter Tuning

can be reduced if other expensive reduction rules, which are already included by the
extended weighted struction, are not used. This is of particular importance since we
later execute the non-increasing algorithm as subroutine in the cyclic blow up multiple
times. Therefore we execute the non-increasing algorithm again on the instances with the
extended weighted struction and successively disable the application of the generalized
fold, the clique neighborhood reduction and the clique reduction. The results can be found
in Table 7.3. We �rst note that no signi�cant changes occur in the obtained irreducible
graph sizes. However, especially without using the generalized fold, but also without
the application of the clique neighborhood reduction, a large run-time advantage can
be obtained. In particular we can always obtain the best run times that are faster by
a factor of four with the exception of the soc-LiveJournal1 instance, where we get a
negligibly higher runtime of less than 2%. We assume that the strong negative in�uence
of the generalized fold reduction is due to the fact that several recursive calls of the
branch-and-reduce algorithm (using a small subset of reduction rules that are favorable
in terms of runtime) are executed on induced neighborhood graphs to determine the
applicability. Finally, this experiment leads us to execute the non-increasing reduction
algorithm without the usage of the generalized fold and clique neighborhood reduction in
the following sections.

7.2.2. Cyclic Blow-Up Algorithm

In the following sections we want to �nd good parameter con�gurations for the cyclic
blow-up algorithm. Based on the acceptance and cycle avoidance strategy used, we obtain
three basic con�gurations for the cyclic blow-up algorithm: If we always accept the new
graph after a blow-up phase, we call the con�guration Caccept, otherwise we refer to these
con�gurations as Ctabu and Ctie break, dependent on the cycle avoidance strategy used. For
these three con�gurations, we determine reasonable values for the remaining parameters
in the following experiments. Finally, by selecting one of these basic con�gurations with
two di�erent parameter sets we obtain two con�gurations of the cyclic blow-up algorithm,
which we compare with state-of-the-art solvers in the subsequent section.

7.2.2.1. Vertex Selection Strategy

The goal of this section is to select a vertex selection strategy for the following experiments.
For this purpose we run the cyclic blow up algorithm with the di�erent vertex selection
strategies and a single struction application per blow up phase. For the approximate
vertex increase selection we used β = 2 as tightness check factor. By using accumulated
convergence plots of the graph size for di�erent instance families we can derive a statement
about quality and convergence independent of the stopping criterion. Therefore, we
disable the stopping criterion of the cyclic blow up algorithm and do not use any further
restrictions like maximum struction degree or maximum number of new vertices per
struction. At this point, we only consider instances on which the non-increasing reduction
algorithm generates irreducible graphs with more than 100 vertices. The measurement
of the graph size starts immediately before we execute the �rst blow up phase, while we
start the timing at the beginning of the cyclic blow up algorithm. The �rst logged point of

45

7. Evaluation

4000

6000

8000

10-1 100 101 102 103

Time [s]

G
ra
ph

si
ze

FE

500

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

700

800

900

1000

1100

1200

1300

10-2 10-1 100 101 102 103

Time [s]

OSM

random degree increase approximate increase

Figure 7.1.: Accumulated convergence plots for con�guration Ctabu with di�erent vertex
selection strategies.

each vertex selection strategy thus corresponds to the size of the graph calculated by the
non-increasing algorithm and the time required to obtain it.

The results for con�guration Ctabu are shown in Figure 7.1, we obtain similar results
for the other two con�gurations that can be found in the appendix in Figures A.1-A.3.
Since already six of the ten mesh instances can be reduced to an empty graph by the
non-increasing algorithm and the remaining four reduced graphs consist of a few hundred
vertices, we omit them at this point. First of all, we see that we are always able to obtain a
smaller irreducible graph than with the non-increasing reduction algorithm, using any
of the strategies. However, as expected, we also �nd that the random selection performs
worst. It produces both the largest irreducible graphs and takes the most time to calculate
them. In particular, on the FE family the smallest obtained graphs by the random selection
are with a factor of 2.4 more than twice as large as those of the best strategy (approximate
increase vertex selection), on the SNAP and OSM family we get a factor of 1.8 and 1.6. By
selecting a vertex with a minimum degree, we can further reduce both convergence and
graph size. Finally, we see that using the increase and approximate increase selection we
can always get the smallest graphs, and in the case of SNAP instances these are even a
factor of three smaller than with the non-increasing reduction algorithm. However, we
also see that the increase selection needs more time than the degree selection to reduce
the graph size, especially at the beginning of the algorithm. By using the approximate
increase selection we overcome this problem and can obtain the smallest graph sizes. On
the FE family, the graph sizes are by a factor of 3.2 smaller than the ones obtained by the
non-increasing algorithm, on the SNAP and OSM families we obtain the factors 3 and 1.8.
Since we obtain similar results for the other two con�gurationsCaccept andCtie break, in the
following experiments we use the approximate increase vertex selection for all strategies.

46

7.2. Parameter Tuning

4000

6000

8000

10-1 100 101 102 103

Time [s]

Gr
ap
h
siz

e
FE

500

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

600

700

800

900

10-2 10-1 100 101 102 103

Time [s]

OSM

1 5 10 0.1% 1% 5%

Figure 7.2.: Accumulated convergence plots for the cyclic blow up algorithm with con�gu-
ration Ctabu and di�erent blow-ups per phase limit.

7.2.2.2. Struction Application Limit Per Blow-Up Phase

In this section we want to determine proper limits for the amount of struction applications
per phase for each of the three basic con�gurations. For this purpose, we run the cyclic
blow-up algorithm for each con�guration with di�erent struction application limits and
again we looked at the convergence of the graph sizes. We use both �xed struction limits,
which only allow a certain number of struction applications per phase, and percentage
limits, where the current graph size may only increase by a de�ned fraction compared to
the graph size at the beginning of the blow-up phase. For the �xed struction limits we use
a maximum of one, �ve and ten struction applications per phase, while for the percentage
limits we examine values of 0.1%, 1% and 5%. As an example, Figure 7.2 shows the
convergence plots for con�guration Ctabu. Convergence plots for all con�gurations can be
found in the appendix in �gures A.4-A.6. For the con�gurationsCaccept andCtabu, we found
that the quality decreases with an increasing number of struction application per blow-up
phase, so we get the best results by one struction per phase. For con�guration Ctie break,
however, we get the best results for �ve struction applications per phase. A closer look
at Caccept and Ctabu shows that for both percentage and �xed limits, as the number of
structions per phase increases, both the convergence speeds decrease and the minimum
reduced graph sizes increase. Especially on the SNAP instances, we get about twice as
large reduced graph sizes in the end for both con�gurations with a 1% and 5% phase limit
than with a limit of a single struction application per phase. Furthermore, we can observe
that multiple struction applications per phase tend to have a worse e�ect on graph sizes
forCaccept than forCtabu. When using �xed struction limits with up to ten applications per
phase we obtain with Ctabu on all instance families a maximum of 15% larger graphs than
with one application. With Caccept this is more than twice as much with 35% on the FE
family.

Looking at the con�gurationCtie break we see that we can achieve the best results in terms
of convergence speed and reduced graph size with a maximum of �ve or ten struction

47

7. Evaluation

4000

6000

8000

10-1 100 101 102

Time [s]

Gr
ap
h
siz

e

FE

500

750

1000

1250

1500

100 101 102

Time [s]

SNAP

600

700

800

900

10-2 10-1 100 101 102 103

Time [s]

OSM

tabu tie break accept

Figure 7.3.: Accumulated convergence plots for the three basic con�gurations with best
found blow-ups per phase limit.

applications per phase, while �ve applications are slightly superior. Here, too, we get the
relatively largest deviations in the minimum reduced graph sizes on the SNAP instances.
While ten struction applications provide a graph that is only about 1% larger in the end
than �ve applications, these fractions vary between 80% and 120% for all other variants.

7.2.2.3. Base Configuration

In the following we compare the individual con�gurations Caccept, Ctabu and Ctie break with
each other using the determined struction limits per phase from the previous section.
Based on this, we want to determine a base con�guration that we will use for the following
experiments. Therefore, Figure 7.3 shows the convergence plots for the base con�gurations
with the determined struction limits per phase. Here, we can see that we always have
a comparable or better convergence for con�guration Ctabu in comparison to the other
con�gurations and always get the smallest geometric mean of the reduced graph sizes. On
closer examination we can see that all con�gurations �rst compute similar sized reduced
graphs over time until the graphs of con�guration Ctie break become always larger than
those of con�gurations Caccept or Ctabu. Furthermore we see that Caccept is always superior
to con�gurationCtie break by geometric means of equal or smaller size of the reduced graphs.
While Ctie break cannot achieve signi�cant changes on the FE instances after about one
second, on SNAP instances this is the case after about six seconds. On the OSM family,
Ctie break can still achieve improvements in graph size until the time limit is reached, but
they are still dominated by Caccept and Ctabu. In total, the geometric mean of the reduced
graph sizes on the FE instances of Ctie break is about one third larger compared to Caccept,
while they are about one quarter larger on the OSM and SNAP instances. If we look at
the con�guration Caccept, we see it calculates graphs with similar sizes compared to Ctabu
over a much longer time than Ctie break. However, Ctabu can achieve larger improvements
especially on the OSM instances towards the end and calculates on those about 10% smaller

48

7.2. Parameter Tuning

Graph Cfast Cstrong Cfull
n tr tt n tr tt n tr tt

fe_sphere 147 0.71 0.92 0 0.70 0.72 0 0.69 0.71
alabama-AM3 456 1.51 4.03 0 32.27 32.31 0 33.81 33.85
�orida-AM3 661 0.44 2.85 267 42.65 45.46 267 1057.72 -
georgia-AM3 587 0.47 10.49 425 12.63 31.83 425 1054.47 -
mexico-AM3 483 0.39 1.75 0 20.83 21.10 0 22.62 22.89
roadNet-PA 0 1.03 1.27 0 1.42 1.92 0 1.07 1.33
web-NotreDame 2061 0.58 1.71 117 2.44 2.59 101 1056.04 -

Table 7.4.: Obtained irreducible graph sizes n, time tr (in seconds) needed to obtain them
and total solving time tt (in seconds) for di�erent con�gurations. The global
best solving time tt is highlighted in bold.

reduced graphs. Therefore, in the following we will restrict ourselves on using the cyclic
blow-up algorithm with the con�guration Ctabu.

7.2.2.4. Stopping Criterion And Maximal Struction Degree

In the last sections we have already found a con�guration that allows us to compute small
reduced graphs as well as to obtain them faster than with other con�gurations. Now
we want to deal with the question to what extent it makes sense to use a larger graph
instead of the smallest possible reduced graph in practice. The idea is to save time during
the initial reduction step, which then becomes more available during the branch-and-
reduce algorithm, resulting in a shorter overall solving runtime. For this purpose we
equip the branch-reduce framework with our cyclic blow-up algorithm for computing
an initial reduced graph from the input graph. All subsequent graph reductions before
each branching step are performed by our non-increasing reduction algorithm, since we
consider the additional time required for the cyclic blow-up algorithm to be excessively
high.

Since we always discard a new reduced graph K′′ after a blow-up phase if it has more
vertices than our current best graph K?, the percentage factor α of the stopping criterion
(see Section 6.2.4) has no impact. So at this point we just need to �nd a good value
for the maximum number of unsuccessful blow-up phases X . The maximum number
of vertices nmax that can be created during a struction application serves as a further
stopping criterion for our con�guration: As soon as the number of new vertices exceeds
the limit nmax , we stop the current blow-up phase. Since we only run a single struction
application per blow-up phase, the graph K′ corresponds to the current graph K , so we
terminate the cyclic blow-up algorithm. Finally, we examine the in�uence of the maximum
vertex degree dmax up to which a struction application is available.

Intuitively, we tend to get smaller reduced graphs the larger we choose our values
for X ,nmax ,dmax , but this takes more time: While the �rst two values directly in�uence
the runtime of the algorithm, a larger choice of dmax gives us a larger reduction space. In
the following, we consider di�erent combinations of the three values, expressed as tuples
(X ,nmax ,dmax). For each con�guration, we run the branch-and-reduce algorithm on a small

49

7. Evaluation

set of test instances and log the total runtime tt to solve these instances as well as the initial
reduced graph size n and the time tr needed to obtain it. The results for three di�erent
con�gurations are listed in Table 7.4 with Cfull = (∞,∞,∞), Cstrong = (512, 2048, 64)
and Cfast = (64, 512, 25).

The con�guration Cfull executes the cyclic blow-up algorithm without any additional
stopping criteria or maximum struction degree and always computes the smallest reduced
graphs. However, this con�guration is not able to obtain solutions on three out of seven
instances, because the cyclic blow-up algorithm does not terminate within the time limit. In
contrast, the con�guration Cstrong always �nds reduced graphs of the same size except for
the SNAP instance web-NotreDame, but computes them faster and is always able to �nd an
optimal solution on the seven instances. The last con�gurationCfast aims to achieve a good
trade o� between initial reduction and branch-and-reduce time. We notice, that we always
compute larger or equally sized reduced graphs than by Cstrong, for the web-NotreDame

instance it is even larger than a factor of 17. However, except for the instance fe_sphere

this con�guration is able to �nd optimal solutions in less time than Cstrong due to the
smaller reduction time. On the two OSM instances florida-AM3 and mexico-AM3 these
times are up to an order of magnitude smaller.

We conclude that the stopping criterion is an essential part of the cyclic blow-up
algorithm for calculating optimal solutions on real-world instances. In the following
we will evaluate the two con�gurations Cstrong and Cfast against existing state-of-the-art
solvers.

7.3. ComparisonWith Existing Algorithms

We now compare our two cyclic blow-up con�gurations and the non-increasing reduction
algorithm with other state-of-the art algorithms. For this purpose, we �rst perform a
comparison to the two existing con�gurations of the branch-and-reduce framework. We
therefore analyze the sizes of the reduced graphs, the number of solved instances, and the
required solving time. Then we carry out a general comparison with other state-of-the-art
algorithms, where we also take into consideration the local searches HILS and DynWVC.
Short descriptions of the local searches can be found in Section 3.2. Hereby we investigate
the best obtained solution quality and the required calculation time and �nally we consider
the convergence behavior of the individual algorithms.

For all experiments, we equipped the branch-and-reduce framework with our two
cyclic blow-up algorithm con�gurations Cfast and Cstrong from the previous section and
our non-increasing algorithm. Accordingly, we call the three solvers Cyclic-Fast, Cyclic-
Strong and NonIncreasing in the following. While we always use the di�erent reduction
algorithms to compute an initial reduced graph, subsequent Reduce() calls in the branch-
and-reduce algorithm during recursion are performed by the non-increasing reduction
algorithm. Furthermore, we have replaced the local search of the framework with the
hybrid iterated local search (HILS) of Nogueira et al. [43] for our three algorithms. In pre-
liminary experiments we have found that this search �nds comparable or better solutions
than the previous search within 1 000 iterations and tends to take less time to obtain them.

50

7.3. Comparison With Existing Algorithms

0.00

0.25

0.50

0.75

1.00
Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Graph size relative to best

Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(a) Mesh

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Graph size relative to best

Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(b) OSM

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Graph size relative to best

Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(c) FE

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Graph size relative to best

Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(d) SNAP

Figure 7.4.: Performance plots of obtained reduced graph sizes for each algorithm on the
di�erent instance families.

7.3.1. Comparison With Branch-And-Reduce Framework

In the following, a comparison of our new reduction algorithms with the existing branch-
and-reduce framework is presented. Our competitors are the two con�gurations Basic-
Sparse and Basic-Dense of the framework as proposed in [33]. While the former always
uses all reduction rules as described in Section 4.1, the latter only uses a subset of them.
In detail the critical set and clique neighborhood reduction are omitted here. During
recursion, the generalized fold reduction is omitted and a simpli�ed clique neighborhood
reduction version is used instead, which only takes triangles into account.

Our comparison is divided into a consideration of the initially calculated irreducible
graphs and a subsequent evaluation of the number of solved instances and required time.

51

7. Evaluation

7.3.1.1. Reduced Graph Sizes

Figure 7.4 shows performance plots for the initial reduced graph sizes calculated for the
individual instance families and algorithms. We omit an investigation of Basic-Dense,
because it always calculates equal or larger irreducible graphs than Basic-Sparse [33].
Complete tables can be found in the appendix in Tables A.5-A.8. We �rst note that, with the
exception of the fe_ocean instance, we can always obtain the smallest reduced graphs by
using Cyclic-Strong. For this one instance we get a larger graph than with Basic-Sparse,
because here the critical set reduction rule is applied earlier than in the other algorithms.
Thus Basic-Sparse is able to obtain an empty reduced graph. The other algorithms change
the graph structure by applying additional reduction rules in such a way that the critical set
reduction rule is no longer applied as e�ectively and an empty graph cannot be obtained.
However, we �nd that the Cyclic-Strong algorithm allows us to create much smaller
reduced graphs than the original Basic-Sparse algorithm. On the mesh instances, the
greatest improvement can be seen, since all graphs obtained with Cyclic-Strong are
always empty and Basic-Sparse is not able to obtain an empty graph on a single instance
and ends up with reduced graphs of several hundred up to thousands of vertices. While
the reduced graphs of Cyclic-Strong and Cyclic-Fast always have the same size on
the mesh instances, the quality of Cyclic-Fast decreases slightly on the other instance
families. For example, on the OSM instances, Cyclic-Fast calculates a reduced graph of
the same size as Cyclic-Strong on only 16 out of 34 instances and can obtain an empty
graph on three less instances than Cyclic-Strong. Due to the in�uence of the weighted
critical set reduction described above, the performance pro�le of the NonIncreasing
algorithm on the FE instances always contains the same number of instances or at one
less than the one of Basic-Sparse for each quality factor τ . However, on all other families
the NonIncreasing algorithm is able to outperform Basic-Sparse. Especially on the
mesh instances we achieves much smaller graphs by application of the extended weighted
struction, which in about 60% of the instances already results in an empty kernel.

7.3.1.2. Time To Solve

To compare the run times as well as the number of solved instances of the evaluated
exact solvers, we present the obtained data in the form of tables with run times of some
instances as well as number of solved instances per instance family (see Table 7.5). Our
selection focuses on instance on which Basic-Dense or Basic-Sparse are not already
able to obtain empty reduced graphs, since we could not measure signi�cant di�erences
between our algorithms on these instances. Full tables can be found in the appendix in
Tables A.5-A.8. In addition, we use cactus plots (see Figure 7.5) and performance pro�le
plots (see Figure 7.6) for a graphical visualization of the data in order to obtain information
about the run times of the individual algorithms over all instances of a family.

First we want to compare the total number of solved instances. We can see that with our
NonIncreasing algorithm we are already able to solve �ve instances more than by Basic-
Sparse and Basic-Dense. We get an increase of �ve more solvable instances with Cyclic-
Fast and �nally, Cyclic-Strong is able to solve the OSM instance north-carolina-AM3, so
we are able to solve 11 more instances than with Basic-Sparse and Basic-Dense. In terms

52

7.3. Comparison With Existing Algorithms

Graph ts ts ts ts
OSM instances Basic-Dense NonIncreasing Cyclic-Fast Cyclic-Strong
district-of-columbia-AM1 - 39.81 0.80 3.66
georgia-AM3 892.17 25.97 10.35 32.53
north-carolina-AM3 - - - 379.09
rhode-island-AM2 - 163.07 0.53 4.58
Solved instances 47.1% (16/34) 55.9% (19/34) 61.8% (21/34) 64.7% (22/34)
SNAP instances Basic-Sparse NonIncreasing Cyclic-Fast Cyclic-Strong
roadNet-TX 24.30 3.98 1.64 1.65
web-BerkStan - 120.05 6.83 8.25
web-NotreDame - - 1.60 2.57
web-Stanford - 2.50 1.99 2.38
Solved instances 80.6% (25/31) 87.1% (27/31) 90.3% (28/31) 90.3% (28/31)
mesh instances Basic-Sparse NonIncreasing Cyclic-Fast Cyclic-Strong
buddha 67.85 2.74 2.26 2.39
dragon 3.83 0.21 0.23 0.25
ecat 12.93 3.16 2.51 2.56
turtle 4.98 0.65 0.49 0.56
Solved instances 100.0% (15/15) 100.0% (15/15) 100.0% (15/15) 100.0% (15/15)
FE instances Basic-Sparse NonIncreasing Cyclic-Fast Cyclic-Strong
fe_4elt2 - - 0.13 0.17
fe_ocean 5.99 - - -
fe_sphere - - 0.83 0.77
fe_tooth - 0.46 0.34 0.32
Solved instances 14.3% (1/7) 14.3% (1/7) 42.9% (3/7) 42.9% (3/7)

Table 7.5.: Time ts (in seconds) needed to solve and total solved instances for di�erent exact
solvers and instance families. The global best solving time ts is highlighted in
bold.

of absolute number of solved instances, we can report the greatest improvements on the
OSM family with six newly solvable instances by Cyclic-Strong. As has already observed
by Lamm et al. [33], Basic-Dense performs better on these than Basic-Sparse and is able
to solve 16 out of 34 instances. With our Cyclic-Strong algorithm we are now able to
solve 22 of 34 instances, corresponding to 17.6% more solvable instances. On the SNAP
instances we can see that we can solve all web graphs now and thus three more instances
become feasible by Cyclic-Fast and Cyclic-Strong. Only two social networks and the
instance as-skitter of the SNAP family are still not solvable within the time limit of 1 000
seconds. While we are already able to solve all instances of the mesh family by Basic-
Sparse, two more FE instances can be solved by Cyclic-Fast and Cyclic-Strong than by
Basic-Sparse. It is interesting to note that we actually can solve three new instances here.
However, the fe_ocean instance becomes infeasible for our algorithms since we obtain
a reduced graph with more than 100 000 vertices and Basic-Dense generates an empty
reduced graph as described in the previous section.

Comparing the time that our algorithms require to solve the instances with the two
methods Basic-Sparse and Basic-Dense, we can see improvements on almost all instances.
Our Cyclic-Fast algorithm �nds solutions on �ve mesh instances, 13 OSM instances and
three SNAP instances by a factor of ten faster than Basic-Sparse and Basic-Dense, on
the two OSM instances pennsylvania-AM3 and utah-AM3 as well as roadNet-CA of the
SNAP family we even �nd solutions faster by two orders of magnitude. We can explain
these large di�erences by two reasons. First, we have already noticed in the previous
section that Cyclic-Fast calculates much smaller reduced graphs than Basic-Sparse

53

7. Evaluation

0

5

10

15

10-2 10-1 100 101 102 103

Time [s]

So
lv
ed

in
st
an
ce
s

Cyclic-Fast
Cyclic-Strong
Non-Increasing

Basic-Dense
Basic-Sparse

(a) Mesh

0

5

10

15

20

10-2 10-1 100 101 102 103

Time [s]

So
lv
ed

in
st
an
ce
s

Cyclic-Fast
Cyclic-Strong
Non-Increasing

Basic-Dense
Basic-Sparse

(b) OSM

0

1

2

3

10-1 100 101 102 103

Time [s]

So
lv
ed

in
st
an
ce
s

Cyclic-Fast
Cyclic-Strong
Non-Increasing

Basic-Dense
Basic-Sparse

(c) FE

0

10

20

10-2 10-1 100 101 102 103

Time [s]

So
lv
ed

in
st
an
ce
s

Cyclic-Fast
Cyclic-Strong
Non-Increasing

Basic-Dense
Basic-Sparse

(d) SNAP

Figure 7.5.: Cactus plots for the di�erent instance families and evaluated solvers.

and Basic-Dense, so the actual solution time tends to be shorter. Furthermore, we have
also already seen in section 7.2.1.2 that the generalized fold reduction rule has a very
negative in�uence on the runtime of the non-increasing reduction algorithm. While all
our algorithms Cyclic-Fast, Cyclic-Strong and NonIncreasing do not use this rule, it
is applied in both con�gurations Basic-Sparse and Basic-Dense. This results in reduction
times for the Cyclic-Fast algorithm that are up to several orders of magnitude lower than
for Basic-Sparse and Basic-Dense on many instances even though we have a certain
overhead by the cyclic blow-up algorithm (see Tables A.5-A.8).

Looking at the cactus plots from Figure 7.5, we �nd that our three algorithms can
always solve more instances over time than Basic-Sparse and Basic-Dense. In particular,
we can see great improvements on the OSM instances: Our Cyclic-Fast algorithm for
instance can solve 19 of its 21 solved instances within ten seconds and thus performs better

54

7.3. Comparison With Existing Algorithms

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Solving time relative to best

Basic-Dense
Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(a) Mesh

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Solving time relative to best

Basic-Dense
Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(b) OSM

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Solving time relative to best

Basic-Dense
Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(c) FE

0.00

0.25

0.50

0.75

1.00

Fr
ac
tio

n
of

in
st
an
ce
s

1 1.05 1.1 1.5 2
Solving time relative to best

Basic-Dense
Basic-Sparse
Cyclic-Fast

Cyclic-Strong
NonIncreasing

10 100 1000

(d) SNAP

Figure 7.6.: Performance plots of solving time for each algorithm on the di�erent instance
families.

than Cyclic-Strong since it has only solved 15 instances at this time. If we compare
Cyclic-Fast with the two existing algorithms Basic-Sparse and Basic-Dense, we see that
after one second with Cyclic-Fast we already have solved 15 instances, which is three
times as many as Basic-Sparse and Basic-Dense. Finally, the algorithm Basic-Sparse
is always able to solve more instances than Basic-Dense at any time. If we look at the
NonIncreasing algorithm, it has fewer instances solved than Cyclic-Fast at all times
and is outperformed outside the one to ten second interval by Cyclic-Strong.

Regarding the SNAP instances, we can hardly see any di�erences between the di�er-
ent solvers within the �rst second. This is due to the fact that already on 20 of the 31
instance can be reduced by the reduction rule set of Basic-Dense to graphs with less than
ten vertices, namely all peer-to-peer networks, collaboration networks, communication
networks and three out of �ve social networks. Fundamental di�erences are due to the

55

7. Evaluation

newly solvable web-crawl instances and shorter run times for the road net instances by
Cyclic-Fast and Cyclic-Strong.

For the mesh family there are almost no di�erences between our three algorithms.
Compared to Basic-Sparse, we can state that we are always able to solve at least two
or more instances at the same time within the �rst ten seconds using one of our three
algorithms. We also note that Basic-Dense can only solve one instance of this family.
This is especially interesting because Basic-Dense can solve more OSM instances than
Basic-Sparse, but in particular our two algorithms Cyclic-Strong and Cyclic-Fast
always get better results on all families than both algorithms.

If we look at the performance pro�le plots in Figure 7.6 we can make further statements
especially for the quality between our three algorithms. This shows that with Cyclic-Fast
we can solve more than half of all mesh instances and about 75% of all OSM instances at
the same speed or faster than any other algorithm. In contrast, Basic-Sparse can solve
only one instance of the mesh and OSM families in less than twice the time of the best
solver. Although Cyclic-Strong can solve one OSM instance more than Cyclic-Fast, it
only solves about 10% of all OSM instances the fastest and takes at least 1.5 times the time
on half of all instances to solve.

7.3.2. Comparison With State-Of-The-Art Algorithms

In the following we provide a comparison of our algorithms with state-of-the-art solvers
for the maximum weight independent set problem. Besides the two con�gurations Basic-
Sparse and Basic-Dense of the branch-and-reduce framework we compare our algorithms
with the two local searches DynWVC and HILS. For the former we use both con�gurations
DynWVC1 and DynWVC2 described by Cai et al. [12]. We compare both the best achievable
solutions of the di�erent methods as well as the convergence behavior regarding the
solution quality.

7.3.2.1. Best Solution Quality And Time

In Table 7.6 an overview of the results of our comparison with heuristic methods is given.
We list the maximum obtained weights wmax of each algorithm over the �ve runs

with di�erent random seeds and the time tmin to obtain them. If several solutions with
maximum weight wmax were found in di�erent runs, tmax corresponds to the minimum
time to obtain them. The global best solution among all algorithms for each instance is
highlighted in bold. Furthermore, for our exact algorithms the number of optimal solved
instances is shown, while for heuristic methods the percentage of exactly solved instances
is given, on which they can also �nd an optimal solution. Finally, lines are highlighted in
gray if one of our two con�gurations Cyclic-Fast or Cyclic-Strong is able to solve the
corresponding instance. For the individual instance families, we always list only either
DynWVC1 or DynWVC2 depending on which of the two con�gurations provides better
performance. We omit a listing of Basic-Sparse, Basic-Dense and NonIncreasing, since
as seen before, Cyclic-Fast and Cyclic-Strong outperform these in terms of reduced
graph size, number of solved instances and solving time. For full tables we refer the reader
to the Tables A.9-A.12 in the appendix.

56

7.3. Comparison With Existing Algorithms

Graph tmax wmax tmax wmax tmax wmax tmax wmax
OSM instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong
alabama-AM2 0.24 174269 0.03 174309 0.01 174309 0.01 174309
district-of-columbia-AM2 915.18 208977 400.69 209132 4.21 209132 84.21 209131
�orida-AM3 862.04 237120 3.98 237333 1.57 237333 40.97 237333
georgia-AM3 1.31 222652 0.04 222652 0.98 222652 12.97 222652
greenland-AM3 640.46 14010 1.18 14011 10.95 14011 58.24 14008
new-hampshire-AM3 1.63 116060 0.03 116060 0.05 116060 0.08 116060
rhode-island-AM2 13.90 184576 0.24 184596 0.41 184596 4.37 184596
utah-AM3 136.90 98847 0.07 98847 0.09 98847 0.27 98847
Solved instances 61.8% (21/34) 64.7% (22/34)
Optimal weight 68.2% (15/22) 100.0% (22/22)
SNAP instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong
as-skitter 383.97 123273938 999.32 122658804 346.69 124137148 354.71 124137365
ca-AstroPh 125.05 797480 13.47 797510 0.02 797510 0.02 797510
email-EuAll 132.62 25286322 338.14 25286322 0.07 25286322 0.07 25286322
p2p-Gnutella06 186.97 548611 1.29 548612 0.01 548612 0.01 548612
roadNet-PA 469.18 60990177 999.94 60037011 0.96 61731589 1.04 61731589
soc-LiveJournal1 999.99 279231875 1000.00 255079926 51.33 284036222 44.19 284036239
web-Google 324.65 56206250 995.92 56008278 1.72 56326504 6.44 56326504
wiki-Vote 0.32 500079 10.34 500079 0.02 500079 0.02 500079
Solved instances 90.3% (28/31) 90.3% (28/31)
Optimal weight 28.6% (8/28) 57.1% (16/28)
mesh instances DynWVC2 HILS Cyclic-Fast Cyclic-Strong
buddha 797.35 56757052 999.94 55490134 1.75 57555880 1.77 57555880
dragon 981.51 7944042 996.01 7940422 0.21 7956530 0.22 7956530
ecat 542.87 36129804 999.91 35512644 2.19 36650298 2.29 36650298
Solved instances 100.0% (15/15) 100.0% (15/15)
Optimal weight 0.0% (0/15) 0.0% (0/15)
FE instances DynWVC1 HILS Cyclic-Fast Cyclic-Strong
fe_ocean 983.53 7222521 999.57 7069279 18.85 6591832 19.04 6591537
fe_sphere 875.87 616978 843.67 616528 0.63 617816 0.67 617816
Solved instances 42.9% (3/7) 42.9% (3/7)
Optimal weight 0.0% (0/3) 0.0% (0/3)

Table 7.6.: Best solution found by each algorithm and time (in seconds) required to compute
it. The global best solution is highlighted in bold. Rows are highlighted in gray
if one of our exact solvers is able to solve the corresponding instances.

Considering the OSM family, we can see that HILS calculates optimal solutions on
all 22 of the 34 instances that can be solved by our algorithm Cyclic-Strong. In contrast,
DynWVC2 can �nd an optimal solution on 15 of 22 instances which is one more than
DynWVC1. On the 12 remaining instances on which our algorithms Cyclic-Fast and
Cyclic-Strong obtain solutions whose optimality they cannot prove during the time
limit, HILS is able to calculate the best solution among all algorithms on ten instances.
Cyclic-Strong on the other hand can obtain a globally best solution on two of these
unsolved instances, while Cyclic-Fast computes best solutions on four further instances.
On two of these instances, the solution is even better than the solution found by HILS.
Finally, both DynWVC con�gurations can only compute a global best solution on the
unsolved instance idaho-AM3, which is also found by HILS. In direct comparison, HILS
can get better solutions than Cyclic-Fast on �ve unsolved instances, while conversely
Cyclic-Fast can compute better solutions than HILS on two instances. If we compare
the required run times of the individual algorithms to obtain their best solutions, we
�nd that HILS performs better than the other algorithms. On all 17 instances on which
one of the DynWVC con�gurations and HILS compute solutions of the same weight,

57

7. Evaluation

HILS needs less time to obtain them, which is at least one order of magnitude less on
most instances. In contrast, on the 27 instances where Cyclic-Fast and HILS calculate
solutions of the same weight, HILS is faster on 19 instances, on seven instances even by
one order of magnitude. Conversely, Cyclic-Fast obtains the solutions on eight instances
faster than HILS and on the district-of-columbia-AM2 instance even by almost more
than two orders of magnitude. Altogether we can state that the solutions found by the
local searches are always very close to each other and mostly di�er by less than 0.1%.
However, the solution quality of our two algorithms Cyclic-Fast and Cyclic-Strong
on the unsolved instances exhibits a much greater di�erence in some cases. Here, we
can observe a certain connection to the reduced graph size found by Cyclic-Fast and
Cyclic-Strong (see Table A.7). So we obtain solutions on the district-of-columbia-AM3

instance which have only about 60% of the weight of the best solution found by HILS. At
the same time, the reduced graphs of both algorithms have more than 25 000 vertices. The
reason for this behavior is the initial solution of the local search, which turns out to be
very poor within 1 000 iterations on graphs of that size. Since this solution also serves as
a bad lower bound, it cannot be further improved in the subsequent branch-and-reduce
process.

If we look at the SNAP instances, we get a similar picture as Lamm et al. [33] with its
con�gurations Basic-Sparse and Basic-Dense. In the previous section we have already
seen that Cyclic-Fast and Cyclic-Strong can solve 28 of the 31 instances optimally. In
contrast, HILS can only calculate optimal solutions on 16 of these 28 instances. Further-
more, DynWVC2 performs better than DynWVC1 and is able to obtain optimal solutions
on eight of the solved instances. Looking at the three unsolved instances, Cyclic-Strong
computes the best solution on as-skitter and soc-LiveJournal1, while DynWVC1 ob-
tains it on soc-pokec-relationships. In a direct comparison of the local searches we
can state that HILS �nds the better solutions on peer-to-peer networks, collaboration
networks and communication networks as DynWVC2 and needs less time to obtain them.
Conversely, DynWVC2 is superior to HILS on road networks and web-crawl instances
both in terms of quality and runtime. Overall, we recognize that both DynWVC1 and HILS
are inferior in terms of runtime to our algorithms Cyclic-Fast and Cyclic-Strong and
exhibit several orders of magnitude higher run times for calculating their best solutions.
Since the reduced graphs of both algorithms Cyclic-Fast and Cyclic-Strong on the
soc-pokec-relationships have several million vertices, this is the only instance on which
the best solutions of our algorithms are inferior to the ones of the local searches.

On the mesh instances, we can observe a similar pattern to the SNAP instances. Our
algorithms Cyclic-Fast and Cyclic-Strong are able to solve all instances optimally
and always need less than three seconds to obtain them. On the other hand, none of
the evaluated local searches is able to compute an optimal solution on a single instance
and require run times which are several orders of magnitude higher than those of our
algorithms.

Finally, on the FE family we can conclude that again neither DynWVC nor HILS are able
to obtain a solution of equal weight on any of the three solved instances by Cyclic-Fast
and Cyclic-Strong. However, considering the unsolved instances, the fe_body instance
is the only one on which Cyclic-Fast calculates the global best solution since the reduced
graph only consists of a few hundred vertices. On all remaining instances, one of the two

58

7.3. Comparison With Existing Algorithms

5.6e+07

5.8e+07

6.0e+07

6.2e+07

100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

roadNet-PA

17300000

17400000

17500000

17600000

17700000

17800000

101 102 103

Time [s]

web-Stanford

5600000

5620000

5640000

5660000

10-1 100 101 102 103

Time [s]

soc-Slashdot0811

75000

80000

85000

90000

95000

100000

10-3 10-2 10-1 100 101 102

Time [s]

So
lu
tio

n
qu

al
ity

utah-AM3

275000

280000

285000

290000

295000

10-3 10-2 10-1 100 101

Time [s]

virginia-AM2

1.0e+07

1.1e+07

1.2e+07

1.3e+07

1.4e+07

100 101 102 103

Time [s]

turtle

175000

200000

225000

250000

10-2 10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

cow

570000

580000

590000

600000

610000

620000

10-1 100 101 102 103

Time [s]

fe sphere

2400000

2500000

2600000

101 102 103

Time [s]

fe rotor

Cyclic-Fast
Cyclic-Strong

Non-Increasing
Basic-Dense

Basic-Sparse
DynWVC2

HILS

Figure 7.7.: Solution quality over time for three SNAP instances (upper row), two OSM
instances (utah-AM3, virginia-AM2), two mesh instances (turtle, cow) and two
fe instances (fe_sphere, fe_rotor).

DynWVC con�gurations calculates the best solution, because our algorithms fail to reduce
them enough and yield reduced graphs with several 10 000 vertices. In a direct comparison
of the two DynWVC con�gurations and HILS we see that DynWVC can obtain better
solutions on �ve of the seven instances, and that it takes less time except for the fe_sphere

instance. However, HILS is able to get better solutions on the fe_4elt2 and fe_tooth

instances than both DynWVC con�gurations and takes less time on the fe_4elt2 instance.

59

7. Evaluation

7.3.2.2. Solution Quality Convergence

In order to make a more detailed statement for the evaluated solvers about the solution
quality over time, we present convergence plots for some instances in Figure 7.7. Further
convergence plots for other instances can be found in the appendix in Figures A.7-A.9.
Any convergence plot was therefore accumulated over �ve runs with di�erent random
seeds using event-based geometric means. Since DynWVC2 and DynWVC1 exhibit almost
the same convergence behavior, only DynWVC2 is shown in the �gures for the sake of
simplicity. Furthermore, we always reference both algorithms as DynWVC. Depending on
the instance family, we can observe very di�erent convergence patterns of the individual
solvers, which we will brie�y examine in the following.

If we take a look at the OSM instances, we see that the local search HILS always gets an
initial solution fastest of all algorithms and converges to optimal solutions much faster
than DynWVC. For almost every instance, the current solution of HILS is always as good
as that of DynWVC or better. In comparison to all exact methods, the local searches are
usually able to output high-quality initial solutions much faster. If we take a closer look at
our algorithm Cyclic-Fast, it �nds an initial solution on about two thirds of the instances
later than DynWVC, however, this solution is usually better than the current best solution
of DynWVC. On the remaining instances, Cyclic-Fast �nds an initial solution faster than
DynWVC, which is already optimal in most cases. Compared to the other algorithms,
Cyclic-Strong always needs more time to output a �rst solution than Cyclic-Fast, due
to the increased overhead of the initial reduction, while NonIncreasing computes an
initial solution earlier on some instances. In comparison to the two exact algorithms Basic-
Sparse and Basic-Dense we can see that we often need considerably less time to calculate
an initial solution with Cyclic-Fast and that this solution always turns out to be as good
or better than the ones obtained by Basic-Dense and Basic-Sparse. We can explain this
behavior by the smaller reduction times of Cyclic-Fast in comparison to Basic-Sparse
and Basic-Dense, caused by the application of the generalized fold reduction rule, that
we already observed in Section 7.3.1.2. For example, on the instance utah-AM3, it takes
Basic-Sparse and Basic-Dense with 8.2 seconds a factor of 70 longer than Cyclic-Fast
to compute an initial solution that has also only about 77% of the weight of the (optimal)
initial solution found byCyclic-Fast. Even after nine seconds, the weight of the best
found solution by Basic-Sparse and Basic-Dense is still only about 93% of the weight of
an optimal solution. Another aspect that we can observe is that in about two thirds of all
instances for Cyclic-Fast and Cyclic-Strong, the initial solution already corresponds to
their overall best solution. For the NonIncreasing algorithm this is only the case in about
one third of the instances, while Basic-Sparse and Basic-Dense usually have several
intermediate solutions until they obtain their optimal solution. We can explain this by the
sizes of the irreducible graphs, which are larger for the latter algorithms. Especially for
Basic-Sparse and Basic-Dense we could observe in preliminary experiments that their
obtained irreducible graphs consist of several large components, which explains the large
steps in convergence behavior.

Regarding the SNAP family, we can state that our algorithms Cyclic-Fast and Non-
Increasing are able to output an initial solution faster than the local searches on al-
most every instance and at the same time they are comparable even better than the

60

7.3. Comparison With Existing Algorithms

overall best found solution of the local searches. The only exceptions are the instances
soc-pokec-relationships and wiki-Vote. On the wiki-Vote instance, HILS can output
an initial solution earlier, but the initial solutions of our algorithms then dominate both
local searches. Looking at the soc-pokec-relationships instance, DynWVC can �nd
both the �rst and overall best solution and has at any time a better current solution
than our approaches. In a direct comparison of the two local searches we see a cer-
tain pattern on peer-to-peer networks, collaboration networks, communication networks
and social networks. With the exception of the instances soc-pokec-relationships and
soc-LiveJournal1, HILS is always able to output an initial solution faster than DynWVC.
Subsequently, DynWVC is either able to obtain a better current solution than HILS by its
initial solution or it catches up with HILS on many instances over time. While HILS is ulti-
mately able to outperform DynWVC on all communication networks with better solutions,
there is no clear result on the remaining instances, since both algorithms �nd very similar
solutions over time. On the road networks and web-crawl instances, however, we can
clearly see that DynWVC outputs initial solutions faster and always has a better current
solution than HILS, thus DynWVC outperforms HILS on these instances. Comparing our
algorithms to the exact solution methods Basic-Sparse and Basic-Dense we can observe
either the same convergence behavior or a better one. Especially on the web-crawl and
road network instances all of our algorithms can �nd initial solutions with better weight
faster than Basic-Sparse and Basic-Dense. Furthermore, the current best solutions of
Cyclic-Fast, Cyclic-Strong and NonIncreasing are always better than those of the
other two exact methods. If we take a closer look at the road network instance roadNet-PA,
for example, we see that our two algorithms Cyclic-Fast and Cyclic-Strong have already
obtained an optimal solution after about one second. At the same time NonIncreasing
�nds an initial solution, which it can improve to an optimal solution after a total of two
seconds. On the other hand, we see that the algorithm Basic-Sparse also outputs an initial
solution after two seconds, but its weight is only 90% of the optimum. After �ve seconds
DynWVC is �nally able to output an initial solution that is better than the current solution
of Basic-Dense. During the time interval between ten and thirty seconds, Basic-Sparse
has a better current solution than DynWVC, but then DynWVC can beat Basic-Dense in
terms of solution quality until the time limit is reached. Because of the increased reduction
overhead of Basic-Sparse compared to Basic-Dense, the algorithm Basic-Sparse needs
about one order of magnitude more time to output its �rst solution than Cyclic-Fast,
which is about 1% away from the optimum. In total Basic-Sparse needs about a factor 20
longer to get an optimal solution than Cyclic-Fast. Finally, we see that HILS needs just
under 600 seconds to output an initial solution whose weight is only 97% of the optimal
solution and cannot be increased signi�cantly until the time limit is reached.

For the mesh family we can also see a clear advantage of our algorithms compared to
the state-of-the-art solvers. On almost every instance, Cyclic-Fast and Cyclic-Strong
always compute an initial solution the fastest, which is also always optimal. Only on the
instances cow and venus, HILS outputs an initial solution prior to the other algorithms.
However, both local searches do not achieve an optimal solution within the time limit on
any instance. In direct comparison, HILS is outperformed on about half of the instances
by DynWVC, because DynWVC obtains its initial solutions faster and always has a better
current solution until the end. On the remaining instances, HILS can initially output

61

7. Evaluation

solutions faster, but is soon caught up by DynWVC until both algorithms have nearly
equal current best solutions. In comparison, Basic-Sparse always takes longer to compute
an initial solution except for the instance gameguy, but then converges to the optimal
solution in a short time. On the other hand, Basic-Sparse is able to calculate an initial
solution earlier due to the shorter reduction time, but due to the large size of the graph it
is much worse and converges to an optimal solution only on the instance beethoven.

When looking at the FE family, we �nd a quite heterogeneous situation. While our
con�guration Cyclic-Fast can obtain initial solutions on four of the seven instances
within one second, which are always better than the best solutions of both local searches
and the exact methods Basic-Sparse and Basic-Dense, on the other instances, Cyclic-
Fast requires more time to compute much worse initial solutions. For example, on the
instance fe_ocean, the calculation of an initial solution takes about 20 seconds and cannot
be improved further, so the best solution of Cyclic-Fast is about 10% away from the
optimum. As already mentioned in Section 7.3.1.1, Basic-Sparse can obtain an empty
reduced graph on this instance due to a di�erent reduction rule order and thus �nds an
optimal solution. Even though Basic-Dense can often compute initial solutions faster
than our algorithms, they are much worse in quality, so our algorithms can outperform
both Basic-Sparse and Basic-Dense on all other instances by providing better solutions.
In a direct comparison of the two local searches, HILS is outperformed by DynWVC. On
the two instances fe_ocean and fe_rotor, DynWVC both obtains initial solutions faster
and has better current solutions than HILS of time. From the moment when both searches
have generated an initial solution on the instance fe_ocean, the strongest deviation of
the solutions from HILS compared to DynWVC takes 5%. On the two instances fe_body
and fe_tooth, DynWVC can initially get better solutions until both searches �nally get
solutions of almost the same weight. On the last three instances HILS and DynWVC
alternate several times in calculating the better solution among each other until DynWVC
can �nally slightly dominate HILS.

62

8. Discussion

8.1. Conclusion

In this thesis we have developed new e�ective data reduction techniques for the maximum
weight independent set problem using the weighted struction. Through a theoretical
analysis we have shown that two of the struction variants are very powerful reduction
rules and already subsume six of the eight reduction rules of the state-of-the-art algorithm
by Lamm et al. [33]. By distinguishing between three di�erent classes of structions, we
then developed two new reduction algorithms based on the existing reduction rule set
of Lamm et al. [33]. While our non-increasing reduction algorithm uses decreasing and
plateau structions, i.e. structions that decrease the number of vertices or it the same, to
reduce the input graph iteratively, our cyclic blow-up algorithm uses increasing structions
to exploit the full potential of the struction, by also allowing struction applications that
blow-up the graph. Although these structions initially increase the number of vertices,
they can also allow further application of reduction rules, potentially resulting in an overall
decrease of the graph size.

Through our experimental evaluation on real-world instances, we could �nally show
that our reduction algorithms are not only advantageous in theory but are also very
e�ective in practice. By only using the extended weighted struction or the extended
reduced weighted struction we were able to obtain smaller irreducible graphs on a large
number of instances compared to previous methods. By combining these structions with
already existing reduction rules we were able to reduce the obtained graph sizes even
further by our non-increasing reduction algorithm. Finally, we were able to show that our
approach of the cyclic blow-up algorithm also works well in practice, since it ultimately
enabled us to obtain considerably smaller reduced graphs than all algorithms mentioned
previously. All in all, on some instances we able to completely reduce previously irreducible
graphs with several thousand vertices to an empty graph or to obtain reduced graphs
which are up to two orders of magnitude smaller.

During the parameter tuning, where we integrated the cyclic blow-up algorithm into
the branch-and-reduce framework of Lamm et al. [33], we could determine two di�erent
con�gurations. While our strong con�guration now allows us to solve about 12.5% more of
the evaluated instances than existing approaches, we are also able by our fast con�guration
to reduce the geometric mean of the run times of all previously solvable instances by a
factor of �ve.

Nevertheless, we have also seen that some instances still cannot be solved by branch-and-
reduce algorithms, since their reduced graphs still have several thousand up to millions of
vertices. By further research on even more advanced data reduction techniques some or
even all of these instances might become feasible in the future.

63

8. Discussion

8.2. Future Work

In the description of the cyclic blow-up algorithm we have seen that it has a large number
of adjustable components. Our current con�gurations Cyclic-Fast and Cyclic-Strong do
not use the full potential of the cyclic blow-up algorithm yet and for instance always reject
new graphs if they are larger than the current graph. At this point, we want to investigate
in the future to what extent progress can be achieved by taking a middle ground between
always accept and only accept if the graph is smaller than before. This could lead both
to runtime advantages, since backtracking would have to be done less frequently, and to
potentially smaller reduced graphs. In this context, a new quality criterion, that measures
the hardness of a graph in terms of the solvability by (exact) methods, could be developed.
Ideas that emerged during this work would involve the convergence behavior of local
searches on the graph. Faster convergence would then intuitively indicate a simpler to
solve graph than vice versa.

Also, the cyclic blow-up algorithm could be extended to handle a multitude of reduced
graphs as individuals, similar to evolutionary algorithms. Mutations would thus be per-
formed by applying increasing structions and other reduction rules, while for the �tness
function either the graph size or the convergence behavior as described above would be
taken into account.

Now that we have seen that generalized reduction rules can yield great progress in
terms of reduced graph size, further research in this area could also lead to considerable
success. For instance, existing rules of the unweighted case like conic reduction [39] or
clique reduction [38] could be investigated for the weighted case and integrated into the
cyclic blow-up algorithm. Alternatively, new techniques are also conceivable, which could,
for example, extend the twin or domination reduction, which are not subsumed by the
struction.

Finally, in a larger context, the basic idea of the cyclic blow-up algorithm could be
applied to other NP-complete problems where data reduction techniques are already
used, such as the dominating set or minimum cut problem.

64

A. Appendix

A.1. Basic Graph Property Tables

Graph |V | |E|
fe_4elt2 11143 65636
fe_body 45087 327468
fe_ocean 143437 819186
fe_pwt 36519 289588
fe_rotor 99617 1324862
fe_sphere 16386 98304
fe_tooth 78136 905182

Table A.1.: Basic properties of FE instances

Graph |V | |E|
beethoven 4419 12982
blob 16068 48204
buddha 1087716 3263148
bunny 68790 206034
cow 5036 14732
dragon 150000 450000
dragonsub 600000 1800000
ecat 684496 2053488
face 22871 68108
fandisk 8634 25636
feline 41262 123786
gameguy 42623 127700
gargoyle 20000 60000
turtle 267534 802356
venus 5672 17016

Table A.2.: Basic properties of mesh instances

65

A. Appendix

Graph |V | |E|
as-skitter 1696415 22190596
ca-AstroPh 18772 396100
ca-CondMat 23133 186878
ca-GrQc 5242 28968
ca-HepPh 12008 236978
ca-HepTh 9877 51946
email-Enron 36692 367662
email-EuAll 265214 728962
p2p-Gnutella04 10876 79988
p2p-Gnutella05 8846 63678
p2p-Gnutella06 8717 63050
p2p-Gnutella08 6301 41554
p2p-Gnutella09 8114 52026
p2p-Gnutella24 26518 130738
p2p-Gnutella25 22687 109410
p2p-Gnutella30 36682 176656
p2p-Gnutella31 62586 295784
roadNet-CA 1965206 5533214
roadNet-PA 1088092 3083796
roadNet-TX 1379917 3843320
soc-Epinions1 75879 811480
soc-LiveJournal1 4847571 85702474
soc-Slashdot0811 77360 938360
soc-Slashdot0902 82168 1008460
soc-pokec-relationships 1632803 44603928
web-BerkStan 685230 13298940
web-Google 875713 8644102
web-NotreDame 325729 2180216
web-Stanford 281903 3985272
wiki-Talk 2394385 9319130
wiki-Vote 7115 201524

Table A.3.: Basic properties of SNAP instances

66

A.1. Basic Graph Property Tables

Graph |V | |E|
alabama-AM2 1164 38772
alabama-AM3 3504 619328
district-of-columbia-AM1 2500 49302
district-of-columbia-AM2 13597 3219590
district-of-columbia-AM3 46221 55458274
�orida-AM2 1254 33872
�orida-AM3 2985 308086
georgia-AM3 1680 148252
greenland-AM3 4986 7304722
hawaii-AM2 2875 530316
hawaii-AM3 28006 98889842
idaho-AM3 4064 7848160
kansas-AM3 2732 1613824
kentucky-AM2 2453 1286856
kentucky-AM3 19095 119067260
louisiana-AM3 1162 74154
maryland-AM3 1018 190830
massachusetts-AM2 1339 70898
massachusetts-AM3 3703 1102982
mexico-AM3 1096 94262
new-hampshire-AM3 1107 36042
north-carolina-AM3 1557 473478
oregon-AM2 1325 115034
oregon-AM3 5588 5825402
pennsylvania-AM3 1148 52928
rhode-island-AM2 2866 590976
rhode-island-AM3 15124 25244438
utah-AM3 1339 85744
vermont-AM3 3436 2272328
virginia-AM2 2279 120080
virginia-AM3 6185 1331806
washington-AM2 3025 304898
washington-AM3 10022 4692426
west-virginia-AM3 1185 251240

Table A.4.: Basic properties of OSM instances

67

A. Appendix

A.2. Reduced Graph Size Convergence Plots

4000

6000

8000

10-1 100 101

Time [s]

Gr
ap
h
siz

e

FE

750

1000

1250

1500

100 101 102

Time [s]

SNAP

800

900

1000

1100

1200

1300

10-2 10-1 100 101 102 103

Time [s]

OSM

random degree increase approximate increase

Figure A.1.: Accumulated convergence plots for con�guration Caccept with di�erent vertex
selection strategies.

4000

6000

8000

10-1 100 101 102 103

Time [s]

Gr
ap
h
siz

e

FE

500

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

700

800

900

1000

1100

1200

1300

10-2 10-1 100 101 102 103

Time [s]

OSM

random degree increase approximate increase

Figure A.2.: Accumulated convergence plots for con�guration Ctabu with di�erent vertex
selection strategies.

68

A.2. Reduced Graph Size Convergence Plots

7500

8000

8500

9000

10-1 100 101

Time [s]

Gr
ap
h
siz

e

FE

1100

1200

1300

1400

1500

100 101

Time [s]

SNAP

1100

1200

10-2 10-1 100 101 102 103

Time [s]

OSM

random degree increase approximate increase

Figure A.3.: Accumulated convergence plots for con�guration Ctie break with di�erent ver-
tex selection strategies.

4000

6000

8000

10-1 100 101

Time [s]

Gr
ap
h
siz

e

FE

500

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

600

700

800

900

10-2 10-1 100 101 102 103

Time [s]

OSM

1 5 10 0.1% 1% 5%

Figure A.4.: Accumulated convergence plots for the cyclic blow up algorithm with con�g-
uration Caccept and di�erent blow-ups per phase limit.

69

A. Appendix

4000

6000

8000

10-1 100 101 102 103

Time [s]

Gr
ap
h
siz

e

FE

500

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

600

700

800

900

10-2 10-1 100 101 102 103

Time [s]

OSM

1 5 10 0.1% 1% 5%

Figure A.5.: Accumulated convergence plots for the cyclic blow up algorithm with con�g-
uration Ctabu and di�erent blow-ups per phase limit.

4000

6000

8000

10-1 100 101 102 103

Time [s]

G
ra
ph

si
ze

FE

750

1000

1250

1500

100 101 102 103

Time [s]

SNAP

650

700

750

800

850

900

10-2 10-1 100 101 102 103

Time [s]

OSM

1 5 10 0.1% 1% 5%

Figure A.6.: Accumulated convergence plots for the cyclic blow up algorithm with con�g-
uration Ctie break and di�erent blow-ups per phase limit.

70

A.3. Time To Solve And Reduced Graph Size Tables

A.3. Time To Solve And Reduced Graph Size Tables

Gr
ap

h
Ba

si
c-

D
en

se
Ba

si
c-

Sp
ar

se
N

on
In

cr
ea

si
ng

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tr
on

g
n

t r
t t

n
t r

t t
n

t r
t t

n
t r

t t
n

t r
t t

fe
_4

el
t2

85
80

0.2
9

-
85

78
0.8

7
-

56
2

0.1
0

-
0

0.1
2

0.
13

0
0.1

6
0.1

7
fe

_b
od

y
16

10
7

0.6
9

-
15

99
2

3.4
0

-
11

62
0.1

6
-

62
5

0.4
4

-
55

3
0.9

4
-

fe
_o

ce
an

14
12

83
1.0

5
-

0
5.9

4
5.
99

13
83

38
8.9

0
-

13
81

34
9.6

1
-

13
80

49
10

.78
-

fe
_p

w
t

34
52

1
0.4

6
-

34
52

1
2.7

0
-

25
55

0
0.7

8
-

20
24

1
1.8

0
-

14
10

7
5.6

5
-

fe
_r

ot
or

98
27

1
9.8

0
-

98
27

1
24

.47
-

91
94

6
4.8

0
-

91
63

4
4.8

2
-

89
64

7
11

.11
-

fe
_s

ph
er

e
15

26
9

0.2
1

-
15

26
9

1.4
7

-
29

61
0.3

4
-

14
7

0.6
2

0.
83

0
0.7

5
0.7

7
fe

_t
oo

th
10

92
2

1.6
9

-
10

80
1

3.7
9

-
15

0.4
1

0.4
6

0
0.3

0
0.
34

0
0.2

8
0.3

2

Ta
bl

e
A

.5.
:O

bt
ai

ne
d

irr
ed

uc
ib

le
gr

ap
h

siz
es

n
,t

im
et

r
(in

se
co

nd
s)

ne
ed

ed
to

ob
ta

in
th

em
an

d
to

ta
ls

ol
vi

ng
tim

et
t

(in
se

co
nd

s)
on

FE
in

st
an

ce
s.

Th
e

gl
ob

al
be

st
so

lv
in

g
tim

et
t

is
hi

gh
lig

ht
ed

in
bo

ld
.

71

A. Appendix

Gr
ap

h
Ba

si
c-

D
en

se
Ba

si
c-

Sp
ar

se
N

on
In

cr
ea

si
ng

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tr
on

g
n

t r
t t

n
t r

t t
n

t r
t t

n
t r

t t
n

t r
t t

as
-s

ki
tte

r
26

58
4

25
.82

-
85

85
36

.69
-

34
26

4.7
5

-
27

82
5.5

0
-

23
43

6.8
0

-
ca

-A
st

ro
Ph

0
0.0

2
0.
03

0
0.0

2
0.0

3
0

0.0
2

0.0
3

0
0.0

3
0.0

4
0

0.0
3

0.0
3

ca
-C

on
dM

at
0

0.0
2

0.0
3

0
0.0

1
0.0

2
0

0.0
1

0.
02

0
0.0

3
0.0

3
0

0.0
1

0.0
2

ca
-G

rQ
c

0
0.0

0
0.0

0
0

0.0
0

0.0
0

0
0.0

0
0.
00

0
0.0

0
0.0

0
0

0.0
0

0.0
0

ca
-H

ep
Ph

0
0.0

1
0.0

2
0

0.0
1

0.0
2

0
0.0

1
0.
01

0
0.0

1
0.0

2
0

0.0
1

0.0
1

ca
-H

ep
Th

0
0.0

1
0.0

1
0

0.0
0

0.0
1

0
0.0

1
0.
01

0
0.0

1
0.0

1
0

0.0
0

0.0
0

em
ai

l-E
nr

on
0

0.0
2

0.
03

0
0.0

2
0.0

3
0

0.0
4

0.0
4

0
0.0

3
0.0

3
0

0.0
3

0.0
3

em
ai

l-E
uA

ll
0

0.0
8

0.1
7

0
0.0

9
0.1

6
0

0.0
6

0.
08

0
0.0

9
0.1

3
0

0.0
7

0.1
0

p2
p-

Gn
ut

el
la

04
0

0.0
1

0.0
1

0
0.0

1
0.0

1
0

0.0
1

0.
01

0
0.0

1
0.0

1
0

0.0
1

0.0
1

p2
p-

Gn
ut

el
la

05
0

0.0
1

0.
01

0
0.0

1
0.0

1
0

0.0
1

0.0
1

0
0.0

1
0.0

1
0

0.0
1

0.0
1

p2
p-

Gn
ut

el
la

06
0

0.0
1

0.0
1

0
0.0

1
0.0

1
0

0.0
1

0.
01

0
0.0

1
0.0

1
0

0.0
1

0.0
1

p2
p-

Gn
ut

el
la

08
0

0.0
0

0.0
0

0
0.0

0
0.0

1
0

0.0
0

0.0
0

0
0.0

0
0.
00

0
0.0

0
0.0

0
p2

p-
Gn

ut
el

la
09

0
0.0

0
0.0

1
0

0.0
1

0.0
1

0
0.0

0
0.0

1
0

0.0
0

0.
00

0
0.0

0
0.0

1
p2

p-
Gn

ut
el

la
24

0
0.0

1
0.0

2
0

0.0
2

0.0
3

0
0.0

1
0.
01

0
0.0

1
0.0

2
0

0.0
1

0.0
1

p2
p-

Gn
ut

el
la

25
10

0.0
1

0.0
2

0
0.0

1
0.0

2
0

0.0
1

0.
01

0
0.0

1
0.0

2
0

0.0
2

0.0
2

p2
p-

Gn
ut

el
la

30
0

0.0
1

0.0
2

0
0.0

2
0.0

3
0

0.0
2

0.0
2

0
0.0

2
0.
02

0
0.0

1
0.0

2
p2

p-
Gn

ut
el

la
31

0
0.0

4
0.0

7
0

0.0
4

0.0
7

0
0.0

3
0.
03

0
0.0

5
0.0

6
0

0.0
4

0.0
5

ro
ad

N
et

-C
A

23
44

33
3.9

6
-

66
40

6
20

.51
43

7.6
2

47
8

2.1
4

5.7
0

0
2.4

2
3.
57

0
2.5

9
3.0

7
ro

ad
N

et
-P

A
13

38
14

2.4
3

-
35

44
2

7.7
3

23
.86

30
0

1.0
5

2.2
4

0
1.1

9
1.
44

0
1.1

4
1.4

0
ro

ad
N

et
-T

X
15

39
85

2.6
5

-
40

35
0

10
.49

24
.30

88
2

1.2
3

3.9
8

0
1.3

2
1.
64

0
1.3

4
1.6

5
so

c-
Ep

in
io

ns
1

7
0.0

5
0.
07

0
0.0

6
0.0

8
0

0.0
8

0.1
0

0
0.0

7
0.0

8
0

0.0
7

0.0
8

so
c-

Li
ve

Jo
ur

na
l1

60
04

1
23

6.8
8

-
29

50
8

21
3.7

4
-

43
19

22
.27

-
35

30
24

.13
-

13
14

37
.77

-
so

c-
Sl

as
hd

ot
08

11
0

0.0
8

0.1
1

0
0.0

8
0.1

1
0

0.0
7

0.
08

0
0.0

7
0.0

9
0

0.0
6

0.0
7

so
c-

Sl
as

hd
ot

09
02

0
0.0

7
0.
09

0
0.0

7
0.1

0
0

0.0
9

0.1
1

0
0.0

8
0.1

0
0

0.1
0

0.1
2

so
c-

po
ke

c-
re

la
tio

ns
hi

ps
92

63
46

29
9.1

1
-

89
87

79
10

13
.39

-
80

85
42

18
8.5

7
-

80
74

12
21

7.8
3

-
80

73
95

38
8.5

7
-

w
eb

-B
er

kS
ta

n
36

63
7

6.5
8

-
16

66
1

8.7
0

-
19

99
6.8

6
12

0.0
5

15
1

6.4
6

6.
83

15
1

7.8
9

8.2
5

w
eb

-G
oo

gl
e

28
10

1.5
7

2.
40

12
54

2.4
2

3.6
6

36
1

1.7
5

2.9
5

46
1.8

8
2.4

7
46

7.9
7

9.2
4

w
eb

-N
ot

re
D

am
e

13
46

4
1.0

3
-

60
52

2.0
3

-
24

60
0.4

0
-

20
61

0.5
6

1.
60

11
7

2.4
4

2.5
7

w
eb

-S
ta

nf
or

d
14

15
3

1.8
1

-
33

25
2.4

5
-

11
2

2.2
5

2.5
0

0
1.8

0
1.
99

0
2.1

7
2.3

8
w

ik
i-T

al
k

0
1.0

0
1.
71

0
1.3

2
1.9

6
0

1.2
6

1.8
4

0
1.2

4
1.8

0
0

1.6
7

2.2
8

w
ik

i-V
ot

e
47

7
0.0

3
0.1

2
0

0.0
2

0.0
3

0
0.0

2
0.
02

0
0.0

2
0.0

2
0

0.0
2

0.0
2

Ta
bl

e
A

.6.
:O

bt
ai

ne
d

irr
ed

uc
ib

le
gr

ap
h

siz
es

n
,t

im
et

r
(in

se
co

nd
s)

ne
ed

ed
to

ob
ta

in
th

em
an

d
to

ta
ls

ol
vi

ng
tim

et
t

(in
se

co
nd

s)
on

SN
AP

in
st

an
ce

s.
Th

e
gl

ob
al

be
st

so
lv

in
g

tim
et

t
is

hi
gh

lig
ht

ed
in

bo
ld

.

72

A.3. Time To Solve And Reduced Graph Size Tables

Gr
ap

h
Ba

si
c-

D
en

se
Ba

si
c-

Sp
ar

se
N

on
In

cr
ea

si
ng

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tr
on

g
n

t r
t t

n
t r

t t
n

t r
t t

n
t r

t t
n

t r
t t

al
ab

am
a-

A
M

2
17

3
0.0

6
0.3

1
17

3
0.0

7
0.5

5
0

0.0
1

0.
01

0
0.0

1
0.0

1
0

0.0
1

0.0
1

al
ab

am
a-

A
M

3
16

14
12

.05
-

16
14

14
.37

-
12

88
0.3

4
-

45
6

1.4
5

3.
94

0
33

.11
33

.16
di

st
ric

t-o
f-c

ol
um

bi
a-

A
M

1
80

0
1.2

2
-

80
0

1.2
8

-
36

7
0.0

3
39

.81
18

5
0.4

1
0.
80

0
3.6

5
3.6

6
di

st
ric

t-o
f-c

ol
um

bi
a-

A
M

2
63

60
11

.86
-

63
60

14
.39

-
56

06
0.8

5
-

18
55

2.5
1

-
14

84
84

.91
-

di
st

ric
t-o

f-c
ol

um
bi

a-
A

M
3

33
36

7
63

.23
-

33
36

7
35

8.1
4

-
32

32
0

33
.68

-
28

84
2

66
.67

-
25

03
1

44
1.4

4
-

�o
rid

a-
A

M
2

41
0.0

1
0.0

1
41

0.0
1

0.0
1

0
0.0

0
0.0

0
0

0.0
0

0.
00

0
0.0

0
0.0

0
�o

rid
a-

A
M

3
10

69
31

.52
45

.81
10

69
35

.20
-

81
4

0.1
3

3.8
5

66
1

0.4
4

2.
93

26
7

42
.26

45
.05

ge
or

gi
a-

A
M

3
86

1
8.9

9
89

2.1
7

86
1

10
.14

-
79

6
0.0

8
25

.97
58

7
0.6

9
10

.3
5

42
5

12
.84

32
.53

gr
ee

nl
an

d-
A

M
3

39
42

3.8
1

-
39

42
24

.77
-

39
53

3.9
4

-
33

39
10

.27
-

33
39

54
.44

-
ha

w
ai

i-A
M

2
42

8
2.0

8
4.2

7
42

8
2.1

5
10

.22
26

2
0.0

7
0.1

8
0

0.0
9

0.
09

0
0.1

0
0.1

0
ha

w
ai

i-A
M

3
24

43
6

70
.38

-
24

43
6

74
3.0

4
-

24
18

4
98

.22
-

22
99

7
11

8.5
2

-
21

08
7

63
2.0

2
-

id
ah

o-
A

M
3

32
08

3.1
7

-
32

08
29

.91
-

32
04

6.9
6

-
31

60
8.7

4
-

29
09

33
.77

-
ka

ns
as

-A
M

3
16

05
2.4

6
-

16
05

4.8
1

-
15

50
0.4

9
-

90
3

2.4
6

43
0.
93

86
0

41
.61

48
9.1

5
ke

nt
uc

ky
-A

M
2

44
2

2.0
5

11
.85

44
2

2.1
9

67
.28

18
3

0.2
0

0.3
9

0
0.2

2
0.
23

0
0.4

1
0.4

2
ke

nt
uc

ky
-A

M
3

16
87

1
10

9.4
7

-
16

87
1

33
44

.67
-

16
80

7
23

7.8
6

-
15

94
7

29
8.4

9
-

15
68

4
70

5.4
6

-
lo

ui
sia

na
-A

M
3

38
2

4.5
6

6.5
5

38
2

5.0
4

25
.22

34
9

0.0
3

0.8
2

0
0.0

7
0.
07

0
0.1

6
0.1

6
m

ar
yl

an
d-

A
M

3
18

7
7.5

9
8.4

9
18

7
8.6

5
10

.73
33

5
0.0

3
0.1

9
0

0.1
1

0.
11

0
0.1

5
0.1

5
m

as
sa

ch
us

et
ts

-A
M

2
19

6
0.0

4
0.3

6
19

6
0.0

4
0.5

8
19

3
0.0

2
0.0

7
0

0.0
6

0.
06

0
0.0

7
0.0

7
m

as
sa

ch
us

et
ts

-A
M

3
20

08
9.4

2
-

20
08

12
.62

-
19

28
0.3

6
-

16
36

1.0
8

-
16

32
31

.83
-

m
ex

ic
o-

A
M

3
62

0
25

.29
80

.23
62

0
27

.52
99

1.9
9

51
4

0.0
3

1.
47

48
3

0.2
8

1.5
0

0
21

.03
21

.30
ne

w
-h

am
ps

hi
re

-A
M

3
24

7
4.9

9
6.1

9
24

7
5.6

9
15

.89
16

4
0.0

2
0.1

7
0

0.0
7

0.
07

0
0.0

9
0.0

9
no

rth
-c

ar
ol

in
a-

A
M

3
11

78
0.6

9
-

11
78

1.2
2

-
11

46
0.2

5
-

11
44

0.4
3

-
70

0
47

.38
37

9.0
88

or
eg

on
-A

M
2

35
0.0

4
0.0

5
35

0.0
5

0.0
5

0
0.0

1
0.
01

0
0.0

2
0.0

2
0

0.0
1

0.0
1

or
eg

on
-A

M
3

36
70

9.9
5

-
36

70
34

.95
-

35
84

3.9
2

-
34

17
6.2

1
-

27
21

38
.72

-
pe

nn
sy

lv
an

ia
-A

M
3

31
5

16
.69

20
.71

31
5

19
.39

11
3.8

7
31

7
0.0

3
0.3

9
0

0.0
7

0.
07

0
0.1

2
0.1

2
rh

od
e-

isl
an

d-
A

M
2

11
03

0.5
5

-
11

03
0.6

8
-

84
5

0.1
7

16
3.0

7
0

0.5
3

0.
53

0
4.5

7
4.5

8
rh

od
e-

isl
an

d-
A

M
3

13
03

1
7.7

5
-

13
03

1
19

3.7
6

-
12

93
4

26
.54

-
12

65
3

29
.75

-
12

65
3

59
.69

-
ut

ah
-A

M
3

56
8

8.2
1

51
.91

56
8

8.9
7

27
6.2

7
39

6
0.0

3
0.8

7
0

0.0
9

0.
09

0
0.4

0
0.4

1
ve

rm
on

t-A
M

3
26

30
4.7

9
-

26
30

9.8
2

-
22

89
0.9

7
-

20
69

1.3
7

-
20

45
55

.28
-

vi
rg

in
ia

-A
M

2
23

7
0.1

3
0.6

1
23

7
0.1

2
0.9

9
0

0.0
3

0.
03

0
0.0

3
0.0

3
0

0.0
3

0.0
3

vi
rg

in
ia

-A
M

3
38

67
34

.13
-

38
67

39
.74

-
37

38
0.4

0
-

28
27

1.2
8

-
25

47
81

.67
-

w
as

hi
ng

to
n-

A
M

2
38

2
0.2

4
5.3

1
38

2
0.1

8
8.5

8
17

1
0.0

5
0.3

7
0

0.0
6

0.
06

0
0.0

7
0.0

7
w

as
hi

ng
to

n-
A

M
3

80
30

50
.21

-
80

30
67

.00
-

76
49

2.1
9

-
68

95
3.1

2
-

61
59

73
.52

-
w

es
t-v

irg
in

ia
-A

M
3

99
1

10
.69

-
99

1
12

.13
-

97
0

0.0
8

23
8.3

9
89

0
0.3

3
15

5.
49

88
1

38
.73

24
1.6

8

Ta
bl

e
A

.7.
:O

bt
ai

ne
d

irr
ed

uc
ib

le
gr

ap
h

siz
es

n
,t

im
et

r
(in

se
co

nd
s)

ne
ed

ed
to

ob
ta

in
th

em
an

d
to

ta
ls

ol
vi

ng
tim

et
t

(in
se

co
nd

s)
on

OS
M

in
st

an
ce

s.
Th

e
gl

ob
al

be
st

so
lv

in
g

tim
et

t
is

hi
gh

lig
ht

ed
in

bo
ld

.

73

A. Appendix

Gr
ap

h
Ba

si
c-

D
en

se
Ba

si
c-

Sp
ar

se
N

on
In

cr
ea

si
ng

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tr
on

g
n

t r
t t

n
t r

t t
n

t r
t t

n
t r

t t
n

t r
t t

be
et

ho
ve

n
12

54
0.0

2
7.8

6
42

7
0.0

2
0.0

8
0

0.0
1

0.
01

0
0.0

1
0.0

1
0

0.0
1

0.0
1

bl
ob

57
46

0.0
8

-
14

64
0.0

6
0.2

0
0

0.0
3

0.
03

0
0.0

3
0.0

4
0

0.0
3

0.0
3

bu
dd

ha
38

03
15

5.5
6

-
10

72
65

26
.19

67
.85

86
1.8

3
2.7

4
0

1.8
7

2.
26

0
1.9

1
2.3

9
bu

nn
y

24
58

0
0.3

4
-

32
90

0.5
6

0.8
9

0
0.1

2
0.
14

0
0.1

3
0.1

6
0

0.1
5

0.1
8

co
w

19
16

0.0
2

-
51

3
0.0

2
0.0

6
0

0.0
1

0.0
1

0
0.0

1
0.
01

0
0.0

1
0.0

1
dr

ag
on

51
88

5
0.8

9
-

12
89

3
1.3

4
3.8

3
0

0.1
8

0.
21

0
0.1

9
0.2

3
0

0.2
1

0.2
5

dr
ag

on
su

b
21

87
79

2.6
0

-
19

47
0

4.1
5

5.6
6

50
6

1.0
3

2.0
8

0
1.1

3
1.
36

0
1.0

7
1.2

8
ec

at
23

97
87

4.0
7

-
26

27
0

10
.09

12
.93

27
4

2.1
2

3.1
6

0
2.1

2
2.
51

0
2.1

4
2.5

6
fa

ce
75

88
0.0

9
-

15
40

0.1
0

0.2
1

0
0.0

3
0.0

4
0

0.0
3

0.
03

0
0.0

3
0.0

4
fa

nd
isk

28
51

0.0
5

-
33

6
0.0

3
0.0

7
51

0.0
2

0.0
3

0
0.0

2
0.
02

0
0.0

2
0.0

2
fe

lin
e

14
81

7
0.2

0
-

27
43

0.2
5

0.4
7

0
0.0

8
0.0

9
0

0.0
8

0.
09

0
0.0

8
0.0

9
ga

m
eg

uy
13

95
9

0.1
7

-
31

2
0.1

0
0.1

2
0

0.0
6

0.0
7

0
0.0

6
0.
07

0
0.0

6
0.0

7
ga

rg
oy

le
65

12
0.1

5
-

18
19

0.1
4

0.3
6

0
0.0

3
0.0

3
0

0.0
3

0.
03

0
0.0

3
0.0

3
tu

rtl
e

91
62

4
1.1

7
-

16
09

5
1.9

2
4.9

8
18

6
0.4

2
0.6

5
0

0.4
1

0.
49

0
0.4

7
0.5

6
ve

nu
s

18
98

0.0
2

-
17

5
0.0

1
0.0

2
0

0.0
1

0.0
1

0
0.0

1
0.
01

0
0.0

1
0.0

1

Ta
bl

e
A

.8.
:O

bt
ai

ne
d

irr
ed

uc
ib

le
gr

ap
h

siz
es

n
,t

im
et

r
(in

se
co

nd
s)

ne
ed

ed
to

ob
ta

in
th

em
an

d
to

ta
ls

ol
vi

ng
tim

et
t

(in
se

co
nd

s)
on

m
es

h
in

st
an

ce
s.

Th
e

gl
ob

al
be

st
so

lv
in

g
tim

et
t

is
hi

gh
lig

ht
ed

in
bo

ld
.

74

A.4. Best Solution Tables

A.4. Best Solution Tables

Gr
ap

h
D

yn
W

VC
1

D
yn

W
VC

2
H

IL
S

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tro
ng

N
on

-In
cr

ea
sin

g
Ba

sic
-S

pa
rs

e
Ba

sic
-D

en
se

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

fe
_4

el
t2

96
1.1

2
42

77
55

97
4.8

7
42

77
55

75
9.2

3
42

76
46

0.1
1

42
80

29
0.1

1
42

80
29

0.1
8

42
80

16
0.6

6
42

04
77

0.2
4

42
12

35
fe

_b
od

y
50

4.3
1

16
78

61
6

49
9.0

3
16

78
49

6
80

6.4
6

16
78

70
8

0.5
1

16
80

18
2

0.8
6

16
80

11
7

0.2
7

16
80

13
3

85
8.2

2
11

94
61

9
26

.78
11

27
79

0
fe

_o
ce

an
98

3.5
3

72
22

52
1

37
9.7

5
72

20
12

8
99

9.5
7

70
69

27
9

18
.85

65
91

83
2

19
.04

65
91

53
7

18
.85

65
97

69
8

4.9
1

72
48

58
1

3.3
5

66
04

88
0

fe
_p

w
t

81
4.2

3
11

76
72

1
32

0.0
5

11
76

78
4

93
2.4

3
11

75
75

4
3.0

3
11

62
23

2
5.4

5
88

89
59

1.5
7

11
51

77
7

3.0
2

11
32

62
2

0.7
9

11
32

62
2

fe
_r

ot
or

96
1.7

6
26

59
65

3
87

4.6
8

26
59

47
3

97
3.9

2
26

50
13

2
13

.95
25

31
15

2
20

.55
25

38
11

7
13

.56
25

32
16

8
20

.76
24

96
99

2
10

.12
24

96
99

2
fe

_s
ph

er
e

87
5.8

7
61

69
78

87
2.3

6
61

69
78

84
3.6

7
61

65
28

0.6
3

61
78

16
0.6

7
61

78
16

0.4
6

61
75

85
1.1

0
60

09
36

0.4
5

60
01

64
fe

_t
oo

th
35

3.2
1

30
31

26
9

61
9.9

6
30

31
38

5
99

4.9
7

30
32

81
9

0.2
6

30
33

29
8

0.2
6

30
33

29
8

0.2
7

30
33

29
8

13
.02

26
94

79
2

1.5
5

26
77

85
1

Ta
bl

e
A

.9.
:B

es
ts

ol
ut

io
n

fo
un

d
by

ea
ch

al
go

rit
hm

on
FE

in
st

an
ce

sa
nd

tim
e(

in
se

co
nd

s)
re

qu
ire

d
to

co
m

pu
te

it.
Th

eg
lo

ba
lb

es
t

so
lu

tio
n

is
hi

gh
lig

ht
ed

in
bo

ld
.R

ow
sa

re
hi

gh
lig

ht
ed

in
gr

ay
if

an
ex

ac
ts

ol
ve

ri
sa

bl
e

to
so

lv
e

th
e

co
rr

es
po

nd
in

g
in

st
an

ce
s.

75

A. Appendix

Gr
ap

h
D

yn
W

VC
1

D
yn

W
VC

2
H

IL
S

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tro
ng

N
on

-In
cr

ea
sin

g
Ba

sic
-S

pa
rs

e
t m

a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

as
-s

ki
tte

r
98

9.0
5

12
36

13
40

4
38

3.9
7

12
32

73
93

8
99

9.3
2

12
26

58
80

4
34

6.6
9

12
41

37
14

8
35

4.7
1

12
41

37
36

5
43

1.9
0

12
41

36
62

1
80

1.9
9

12
40

25
25

5
ca

-A
st

ro
Ph

32
.46

79
74

75
12

5.0
5

79
74

80
13

.47
79

75
10

0.0
2

79
75

10
0.0

2
79

75
10

0.0
2

79
75

10
0.0

2
79

75
10

ca
-C

on
dM

at
11

4.8
5

11
47

81
4

27
.75

11
47

84
5

50
.90

11
47

95
0

0.0
1

11
47

95
0

0.0
1

11
47

95
0

0.0
1

11
47

95
0

0.0
2

11
47

95
0

ca
-G

rQ
c

4.8
7

28
64

89
1.9

3
28

64
89

0.3
4

28
64

89
0.0

0
28

64
89

0.0
0

28
64

89
0.0

0
28

64
89

0.0
0

28
64

89
ca

-H
ep

Ph
13

.21
58

10
14

17
.34

58
10

28
7.7

3
58

10
39

0.0
1

58
10

39
0.0

1
58

10
39

0.0
1

58
10

39
0.0

1
58

10
39

ca
-H

ep
Th

6.5
7

56
19

82
5.3

0
56

19
74

4.6
8

56
20

04
0.0

0
56

20
04

0.0
0

56
20

04
0.0

0
56

20
04

0.0
0

56
20

04
em

ai
l-E

nr
on

45
4.4

9
24

64
88

7
59

4.9
3

24
64

89
0

71
.07

24
64

92
2

0.0
2

24
64

93
5

0.0
3

24
64

93
5

0.0
2

24
64

93
5

0.0
2

24
64

93
5

em
ai

l-E
uA

ll
13

4.8
3

25
28

63
22

13
2.6

2
25

28
63

22
33

8.1
4

25
28

63
22

0.0
7

25
28

63
22

0.0
7

25
28

63
22

0.0
6

25
28

63
22

0.0
9

25
28

63
22

p2
p-

Gn
ut

el
la

04
1.4

6
67

91
05

2.3
4

67
91

11
94

.12
67

91
11

0.0
1

67
91

11
0.0

1
67

91
11

0.0
1

67
91

11
0.0

1
67

91
11

p2
p-

Gn
ut

el
la

05
1.1

5
55

49
26

3.5
5

55
49

31
13

5.1
7

55
49

43
0.0

1
55

49
43

0.0
1

55
49

43
0.0

1
55

49
43

0.0
1

55
49

43
p2

p-
Gn

ut
el

la
06

52
5.3

5
54

86
11

18
6.9

7
54

86
11

1.2
9

54
86

12
0.0

1
54

86
12

0.0
1

54
86

12
0.0

1
54

86
12

0.0
1

54
86

12
p2

p-
Gn

ut
el

la
08

0.1
5

43
45

75
0.1

8
43

45
77

0.1
2

43
45

77
0.0

0
43

45
77

0.0
0

43
45

77
0.0

0
43

45
77

0.0
0

43
45

77
p2

p-
Gn

ut
el

la
09

0.3
9

56
84

39
0.2

8
56

84
39

0.0
9

56
84

39
0.0

0
56

84
39

0.0
0

56
84

39
0.0

0
56

84
39

0.0
0

56
84

39
p2

p-
Gn

ut
el

la
24

8.0
1

19
84

56
7

5.5
1

19
84

56
7

3.1
7

19
84

56
7

0.0
1

19
84

56
7

0.0
1

19
84

56
7

0.0
1

19
84

56
7

0.0
1

19
84

56
7

p2
p-

Gn
ut

el
la

25
2.6

6
17

01
96

7
2.2

0
17

01
96

7
1.1

7
17

01
96

7
0.0

1
17

01
96

7
0.0

1
17

01
96

7
0.0

1
17

01
96

7
0.0

1
17

01
96

7
p2

p-
Gn

ut
el

la
30

8.8
3

27
87

90
3

13
2.7

1
27

87
89

9
15

.14
27

87
90

7
0.0

1
27

87
90

7
0.0

1
27

87
90

7
0.0

2
27

87
90

7
0.0

2
27

87
90

7
p2

p-
Gn

ut
el

la
31

70
.88

47
76

96
0

47
.97

47
76

96
1

11
5.0

1
47

76
98

6
0.0

2
47

76
98

6
0.0

2
47

76
98

6
0.0

3
47

76
98

6
0.0

3
47

76
98

6
ro

ad
N

et
-C

A
99

9.9
8

10
95

86
05

4
99

9.9
0

10
95

82
57

9
10

00
.00

10
65

84
64

5
1.9

4
11

13
60

82
8

1.8
6

11
13

60
82

8
4.0

9
11

13
60

82
8

43
7.3

4
11

13
60

82
8

ro
ad

N
et

-P
A

51
1.5

9
60

99
01

77
46

9.1
8

60
99

01
77

99
9.9

4
60

03
70

11
0.9

6
61

73
15

89
1.0

4
61

73
15

89
1.8

3
61

73
15

89
16

.49
61

73
15

89
ro

ad
N

et
-T

X
78

9.4
3

77
67

23
88

69
4.3

3
77

67
23

88
99

9.9
7

76
34

76
66

1.2
9

78
59

99
46

1.2
9

78
59

99
46

3.4
2

78
59

99
46

22
.78

78
59

99
46

so
c-

Ep
in

io
ns

1
29

0.8
4

56
90

65
1

27
2.5

6
56

90
77

3
25

3.1
0

56
90

87
4

0.0
8

56
90

97
0

0.0
8

56
90

97
0

0.0
8

56
90

97
0

0.0
7

56
90

97
0

so
c-

Li
ve

Jo
ur

na
l1

99
9.9

9
27

91
50

68
6

99
9.9

9
27

92
31

87
5

10
00

.00
25

50
79

92
6

51
.33

28
40

36
22

2
44

.19
28

40
36

23
9

39
.36

28
39

70
29

5
23

1.8
0

28
40

10
26

3
so

c-
Sl

as
hd

ot
08

11
23

8.1
8

56
60

38
5

88
0.6

8
56

60
55

5
44

6.9
5

56
60

78
7

0.0
9

56
60

89
9

0.0
8

56
60

89
9

0.0
8

56
60

89
9

0.0
8

56
60

89
9

so
c-

Sl
as

hd
ot

09
02

27
0.8

5
59

71
30

8
43

5.9
0

59
71

47
6

60
4.0

7
59

71
66

4
0.1

1
59

71
84

9
0.1

1
59

71
84

9
0.1

2
59

71
84

9
0.1

1
59

71
84

9
so

c-
po

ke
c-

re
la

tio
ns

hi
ps

99
9.8

5
83

22
36

68
99

9.1
3

83
15

52
17

10
00

.00
82

02
19

46
25

4.5
9

76
07

51
11

48
8.3

1
76

07
57

00
22

8.0
7

76
06

34
76

0.0
0

0
w

eb
-B

er
kS

ta
n

19
4.2

0
43

64
08

33
16

4.1
0

43
63

73
82

99
8.7

3
43

42
43

73
6.7

4
43

90
74

82
8.0

5
43

90
74

82
16

.01
43

90
74

82
50

.88
43

74
23

39
w

eb
-G

oo
gl

e
34

9.0
8

56
20

90
05

32
4.6

5
56

20
62

50
99

5.9
2

56
00

82
78

1.7
2

56
32

65
04

6.4
4

56
32

65
04

2.1
7

56
32

65
04

2.8
6

56
32

65
04

w
eb

-N
ot

re
D

am
e

94
9.8

4
26

01
07

91
90

5.7
2

26
00

92
87

99
7.0

0
26

00
27

93
1.6

0
26

01
69

41
2.7

4
26

01
69

41
1.3

6
26

01
69

41
99

.49
26

01
69

41
w

eb
-S

ta
nf

or
d

94
3.8

5
17

74
87

98
67

1.3
2

17
74

10
43

99
9.5

0
17

70
98

27
1.6

8
17

79
29

30
1.8

6
17

79
29

30
1.7

1
17

79
29

30
2.5

1
17

79
28

24
w

ik
i-T

al
k

95
1.5

1
23

58
36

83
7

97
2.9

3
23

58
36

91
3

99
9.6

9
23

58
18

82
3

1.2
9

23
58

37
34

6
1.2

9
23

58
37

34
6

1.3
1

23
58

37
34

6
1.3

0
23

58
37

34
6

w
ik

i-V
ot

e
18

8.7
6

50
00

75
0.3

2
50

00
79

10
.34

50
00

79
0.0

2
50

00
79

0.0
2

50
00

79
0.0

2
50

00
79

0.0
2

50
00

79

Ta
bl

e
A

.10
.:

Be
st

so
lu

tio
n

fo
un

d
by

ea
ch

al
go

rit
hm

on
SN

A
P

in
st

an
ce

sa
nd

tim
e

(in
se

co
nd

s)
re

qu
ire

d
to

co
m

pu
te

it.
Th

e
gl

ob
al

be
st

so
lu

tio
n

is
hi

gh
lig

ht
ed

in
bo

ld
.R

ow
sa

re
hi

gh
lig

ht
ed

in
gr

ay
if

an
ex

ac
ts

ol
ve

ri
sa

bl
et

o
so

lv
et

he
co

rr
es

po
nd

in
g

in
st

an
ce

s.

76

A.4. Best Solution Tables

Gr
ap

h
D

yn
W

VC
1

D
yn

W
VC

2
H

IL
S

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tro
ng

N
on

-In
cr

ea
sin

g
Ba

sic
-S

pa
rs

e
Ba

sic
-D

en
se

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

al
ab

am
a-

A
M

2
0.1

8
17

42
52

0.2
4

17
42

69
0.0

3
17

43
09

0.0
1

17
43

09
0.0

1
17

43
09

0.0
1

17
43

09
0.2

8
17

43
09

0.2
8

17
43

09
al

ab
am

a-
A

M
3

72
5.3

4
18

55
18

19
9.9

4
18

56
55

0.5
8

18
57

44
1.7

6
18

57
44

32
.42

18
57

44
0.6

0
18

57
44

71
.87

18
57

07
22

.23
18

57
07

di
st

ric
t-o

f-c
ol

um
bi

a-
A

M
1

23
.96

19
64

75
28

.42
19

64
75

0.1
4

19
64

75
0.3

2
19

64
75

3.5
2

19
64

75
0.0

6
19

64
75

2.4
6

19
64

75
2.0

1
19

64
75

di
st

ric
t-o

f-c
ol

um
bi

a-
A

M
2

15
9.0

8
20

89
89

91
5.1

8
20

89
77

40
0.6

9
20

91
32

4.2
1

20
91

32
84

.21
20

91
31

68
6.2

6
17

41
14

21
4.1

8
14

85
13

23
.26

14
85

13
di

st
ric

t-o
f-c

ol
um

bi
a-

A
M

3
46

1.1
0

22
47

60
31

3.1
7

22
39

55
84

9.3
7

22
76

13
90

4.9
1

14
24

54
80

4.7
9

15
69

67
16

8.5
5

12
03

66
67

3.8
9

92
80

4
65

.42
92

80
4

�o
rid

a-
A

M
2

0.1
8

23
05

95
0.5

3
23

05
95

0.0
4

23
05

95
0.0

0
23

05
95

0.0
0

23
05

95
0.0

0
23

05
95

0.0
1

23
05

95
0.0

1
23

05
95

�o
rid

a-
A

M
3

42
5.8

7
23

72
29

86
2.0

4
23

71
20

3.9
8

23
73

33
1.5

7
23

73
33

40
.97

23
73

33
2.0

8
23

73
33

30
5.2

0
22

67
67

42
.70

23
73

33
ge

or
gi

a-
A

M
3

0.4
2

22
26

52
1.3

1
22

26
52

0.0
4

22
26

52
0.9

8
22

26
52

12
.97

22
26

52
14

.56
22

26
52

86
1.0

5
22

26
52

84
2.7

8
22

26
52

gr
ee

nl
an

d-
A

M
3

58
.88

14
00

7
64

0.4
6

14
01

0
1.1

8
14

01
1

10
.95

14
01

1
58

.24
14

00
8

5.0
6

14
01

2
35

.22
13

82
9

15
.89

13
82

9
ha

w
ai

i-A
M

2
1.8

9
12

52
70

1.6
3

12
52

70
0.2

0
12

52
84

0.0
9

12
52

84
0.1

0
12

52
84

0.1
3

12
52

84
8.4

4
12

52
84

4.0
5

12
52

84
ha

w
ai

i-A
M

3
40

6.5
7

14
06

56
88

7.4
4

14
05

95
21

3.3
2

14
10

35
15

2.3
8

11
62

02
68

1.3
9

12
12

22
15

5.2
1

10
78

79
77

1.3
1

96
77

4
20

4.4
8

10
62

51
id

ah
o-

A
M

3
79

.67
77

14
5

58
.83

77
14

5
0.7

8
77

14
5

11
.95

77
14

1
40

.71
77

14
4

8.8
9

77
14

4
42

.51
76

99
1

45
5.1

8
77

01
0

ka
ns

as
-A

M
3

33
3.6

0
87

97
6

27
6.2

6
87

97
6

0.5
5

87
97

6
2.2

5
87

97
6

11
0.4

1
87

97
6

33
7.8

3
87

97
6

14
.95

87
95

5
12

.67
87

95
5

ke
nt

uc
ky

-A
M

2
3.2

3
97

39
7

2.9
2

97
39

7
0.2

6
97

39
7

0.2
3

97
39

7
0.4

4
97

39
7

0.2
6

97
39

7
36

.56
97

39
7

11
.72

97
39

7
ke

nt
uc

ky
-A

M
3

95
1.9

1
10

04
76

96
.83

10
04

55
51

5.9
9

10
05

07
35

4.4
5

10
05

10
77

6.6
9

10
05

10
30

5.0
1

10
04

97
0.0

0
0

83
1.0

7
10

03
11

lo
ui

sia
na

-A
M

3
8.6

3
60

02
4

0.1
8

60
00

2
0.0

1
60

02
4

0.0
5

60
02

4
0.1

1
60

02
4

0.1
5

60
02

4
18

.50
60

02
4

5.9
6

60
02

4
m

ar
yl

an
d-

A
M

3
0.7

9
45

49
6

0.5
9

45
49

6
0.0

1
45

49
6

0.1
1

45
49

6
0.1

5
45

49
6

0.1
4

45
49

6
10

.01
45

49
6

8.4
6

45
49

6
m

as
sa

ch
us

et
ts

-A
M

2
0.2

5
14

00
95

0.7
4

14
00

95
0.0

1
14

00
95

0.0
4

14
00

95
0.0

5
14

00
95

0.0
3

14
00

95
0.3

2
14

00
95

0.3
1

14
00

95
m

as
sa

ch
us

et
ts

-A
M

3
98

0.1
1

14
58

52
27

0.2
8

14
58

62
0.7

7
14

58
66

1.3
9

14
58

66
31

.04
14

58
66

0.7
6

14
58

66
22

.52
14

58
19

19
.32

14
58

19
m

ex
ic

o-
A

M
3

0.7
1

97
66

3
2.2

8
97

66
3

0.0
2

97
66

3
0.9

6
97

66
3

21
.19

97
66

3
0.6

7
97

66
3

25
9.3

1
97

66
3

32
.63

97
66

3
ne

w
-h

am
ps

hi
re

-A
M

3
0.0

8
11

60
60

1.6
3

11
60

60
0.0

3
11

60
60

0.0
5

11
60

60
0.0

8
11

60
60

0.0
6

11
60

60
7.3

2
11

60
60

6.0
9

11
60

60
no

rth
-c

ar
ol

in
a-

A
M

3
0.5

8
49

69
4

11
4.4

5
49

72
0

0.0
3

49
72

0
0.7

4
49

72
0

45
.82

49
72

0
0.4

7
49

72
0

11
.20

49
56

3
10

.67
49

56
3

or
eg

on
-A

M
2

0.6
2

16
50

47
0.3

7
16

50
47

0.0
2

16
50

47
0.0

1
16

50
47

0.0
1

16
50

47
0.0

1
16

50
47

0.0
4

16
50

47
0.0

3
16

50
47

or
eg

on
-A

M
3

17
4.6

4
17

50
59

51
1.1

0
17

50
67

4.6
5

17
50

78
9.5

0
17

50
78

39
.78

17
50

77
21

.29
17

50
78

41
8.1

0
16

49
41

28
2.5

0
17

49
31

pe
nn

sy
lv

an
ia

-A
M

3
0.0

6
14

38
70

0.1
4

14
38

70
0.0

2
14

38
70

0.0
7

14
38

70
0.1

2
14

38
70

0.1
6

14
38

70
33

.01
14

38
70

20
.61

14
38

70
rh

od
e-

isl
an

d-
A

M
2

7.7
5

18
45

37
13

.90
18

45
76

0.2
4

18
45

96
0.4

1
18

45
96

4.3
7

18
45

96
0.2

7
18

45
96

14
.50

18
45

96
9.8

7
18

45
96

rh
od

e-
isl

an
d-

A
M

3
23

0.5
3

20
14

70
71

1.9
7

20
13

59
30

.15
20

17
58

44
.88

16
71

62
82

.02
16

71
62

45
.46

16
61

03
19

6.0
7

16
31

50
13

.44
16

31
50

ut
ah

-A
M

3
21

5.8
8

98
80

2
13

6.9
0

98
84

7
0.0

7
98

84
7

0.0
9

98
84

7
0.2

7
98

84
7

0.4
4

98
84

7
29

.25
98

84
7

49
.25

98
84

7
ve

rm
on

t-A
M

3
28

.77
63

23
4

76
8.4

3
63

24
8

97
9.1

4
63

31
0

14
5.3

9
63

31
2

44
8.5

4
63

31
2

21
7.6

7
63

31
2

35
7.4

7
55

57
7

73
.99

55
58

4
vi

rg
in

ia
-A

M
2

0.5
3

29
57

58
20

.50
29

56
38

0.0
7

29
58

67
0.0

2
29

58
67

0.0
2

29
58

67
0.0

2
29

58
67

0.5
5

29
58

67
0.5

6
29

58
67

vi
rg

in
ia

-A
M

3
75

4.8
6

30
77

82
80

9.2
4

30
79

07
2.5

2
30

83
05

34
.42

30
83

05
20

0.1
3

30
83

05
49

.42
30

83
05

96
8.5

4
24

77
90

10
9.0

5
30

77
41

w
as

hi
ng

to
n-

A
M

2
1.2

4
30

56
19

13
.35

30
56

19
0.2

5
30

56
19

0.0
6

30
56

19
0.0

7
30

56
19

0.0
8

30
56

19
1.5

3
30

56
19

1.6
0

30
56

19
w

as
hi

ng
to

n-
A

M
3

37
.94

31
36

89
38

3.6
2

31
38

44
10

.17
31

42
88

3.6
0

28
46

84
72

.84
28

81
16

4.5
6

28
20

20
46

9.2
0

27
24

04
22

8.4
7

27
24

04
w

es
t-v

irg
in

ia
-A

M
3

2.7
5

47
92

7
2.8

4
47

92
7

0.0
7

47
92

7
2.8

8
47

92
7

41
.73

47
92

7
2.6

0
47

92
7

83
1.8

5
47

92
7

22
.09

47
92

7

Ta
bl

e
A

.11
.:

Be
st

so
lu

tio
n

fo
un

d
by

ea
ch

al
go

rit
hm

on
O

SM
in

st
an

ce
sa

nd
tim

e
(in

se
co

nd
s)

re
qu

ire
d

to
co

m
pu

te
it.

Th
e

gl
ob

al
be

st
so

lu
tio

n
is

hi
gh

lig
ht

ed
in

bo
ld

.R
ow

sa
re

hi
gh

lig
ht

ed
in

gr
ay

if
an

ex
ac

ts
ol

ve
ri

sa
bl

et
o

so
lv

et
he

co
rr

es
po

nd
in

g
in

st
an

ce
s.

77

A. Appendix

Gr
ap

h
D

yn
W

VC
1

D
yn

W
VC

2
H

IL
S

Cy
cl

ic
-F

as
t

Cy
cl

ic
-S

tro
ng

N
on

-In
cr

ea
sin

g
Ba

sic
-S

pa
rs

e
Ba

sic
-D

en
se

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

t m
a
x

w
m
a
x

be
et

ho
ve

n
8.8

6
23

87
26

8.7
9

23
87

26
46

2.3
1

23
87

46
0.0

0
23

87
94

0.0
0

23
87

94
0.0

0
23

87
94

0.0
5

23
87

94
5.3

7
23

87
94

bl
ob

39
.91

85
48

43
40

.00
85

48
43

35
1.9

1
85

50
04

0.0
2

85
55

47
0.0

2
85

55
47

0.0
2

85
55

47
0.1

9
85

55
47

0.1
4

61
66

13
bu

dd
ha

87
9.4

2
56

75
70

52
79

7.3
5

56
75

70
52

99
9.9

4
55

49
01

34
1.7

5
57

55
58

80
1.7

7
57

55
58

80
2.2

4
57

55
58

80
60

.29
57

55
58

80
74

2.4
7

41
42

37
03

bu
nn

y
70

2.1
3

36
83

00
0

69
5.5

5
36

83
00

0
96

4.6
0

36
81

69
6

0.1
1

36
86

96
0

0.1
3

36
86

96
0

0.1
1

36
86

96
0

0.5
7

36
86

96
0

44
.84

36
52

62
0

co
w

62
.04

26
93

40
61

.40
26

93
40

93
5.5

8
26

94
64

0.0
1

26
95

43
0.0

1
26

95
43

0.0
1

26
95

43
0.0

6
26

95
43

0.2
2

26
92

06
dr

ag
on

97
0.3

4
79

43
91

1
98

1.5
1

79
44

04
2

99
6.0

1
79

40
42

2
0.2

1
79

56
53

0
0.2

2
79

56
53

0
0.2

2
79

56
53

0
3.8

2
79

56
53

0
92

6.0
1

59
51

67
2

dr
ag

on
su

b
32

3.0
7

31
76

20
35

37
9.1

1
31

76
20

35
99

9.5
4

31
30

43
63

1.1
0

32
21

38
98

1.1
1

32
21

38
98

1.8
8

32
21

38
98

5.1
1

32
21

38
98

93
6.7

2
22

32
72

11
ec

at
56

5.0
3

36
12

98
04

54
2.8

7
36

12
98

04
99

9.9
1

35
51

26
44

2.1
9

36
65

02
98

2.2
9

36
65

02
98

2.4
4

36
65

02
98

12
.26

36
65

02
98

89
9.3

8
25

77
34

21
fa

ce
87

.05
12

18
51

0
86

.38
12

18
51

0
22

8.7
7

12
18

56
5

0.0
3

12
19

41
8

0.0
3

12
19

41
8

0.0
3

12
19

41
8

0.2
1

12
19

41
8

22
.99

94
33

27
fa

nd
isk

8.2
6

46
29

50
8.4

2
46

29
50

23
2.9

6
46

30
90

0.0
1

46
32

88
0.0

1
46

32
88

0.0
1

46
32

88
0.0

4
46

32
88

5.5
3

46
22

00
fe

lin
e

73
0.8

0
22

04
92

5
73

4.3
4

22
04

92
5

64
0.9

8
22

04
91

1
0.0

9
22

07
21

9
0.0

8
22

07
21

9
0.0

9
22

07
21

9
0.5

1
22

07
21

9
27

0.2
7

17
13

60
1

ga
m

eg
uy

51
9.1

2
23

23
94

1
52

5.9
3

23
23

94
1

73
6.6

4
23

22
82

4
0.0

5
23

25
87

8
0.0

5
23

25
87

8
0.0

5
23

25
87

8
0.1

1
23

25
87

8
17

7.0
0

19
04

92
4

ga
rg

oy
le

29
.25

10
58

49
6

29
.11

10
58

49
6

72
4.4

1
10

58
65

2
0.0

3
10

59
55

9
0.0

3
10

59
55

9
0.0

3
10

59
55

9
0.2

8
10

59
55

9
22

9.5
6

87
58

11
tu

rtl
e

98
2.0

0
14

21
54

29
97

6.5
7

14
21

35
16

99
9.6

8
14

15
16

16
0.4

2
14

26
30

05
0.4

3
14

26
30

05
0.5

6
14

26
30

05
4.5

8
14

26
30

05
40

7.5
8

10
23

37
23

ve
nu

s
55

9.2
9

30
55

71
55

6.3
8

30
55

71
13

0.8
3

30
57

24
0.0

1
30

57
49

0.0
1

30
57

49
0.0

1
30

57
49

0.0
2

30
57

49
0.0

8
30

44
52

Ta
bl

e
A

.12
.:

Be
st

so
lu

tio
n

fo
un

d
by

ea
ch

al
go

rit
hm

on
m

es
h

in
st

an
ce

sa
nd

tim
e

(in
se

co
nd

s)
re

qu
ire

d
to

co
m

pu
te

it.
Th

e
gl

ob
al

be
st

so
lu

tio
n

is
hi

gh
lig

ht
ed

in
bo

ld
.R

ow
sa

re
hi

gh
lig

ht
ed

in
gr

ay
if

an
ex

ac
ts

ol
ve

ri
sa

bl
et

o
so

lv
et

he
co

rr
es

po
nd

in
g

in
st

an
ce

s.

78

A.5. Solution Quality Convergence Plots

A.5. Solution Quality Convergence Plots

1.20e+08

1.21e+08

1.22e+08

1.23e+08

1.24e+08

101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

as-skitter

792000

794000

796000

10-1 100 101 102 103

Time [s]

ca-AstroPh

1142000

1144000

1146000

1148000

10-1 100 101 102

Time [s]

ca-CondMat

2452500

2455000

2457500

2460000

2462500

2465000

10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

email-Enron

550000

551000

552000

553000

554000

555000

10-2 10-1 100 101 102

Time [s]

p2p-Gnutella05

4765000

4770000

4775000

10-1 100 101 102

Time [s]

p2p-Gnutella31

1.02e+08

1.05e+08

1.08e+08

1.11e+08

101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

roadNet-CA

5650000

5660000

5670000

5680000

5690000

10-1 100 101 102 103

Time [s]

soc-Epinions1

7.6e+07

7.8e+07

8.0e+07

8.2e+07

102 103

Time [s]

soc-pokec-relationships

2.6e+08

2.7e+08

2.8e+08

102 103

Time [s]

So
lu
tio

n
qu

al
ity

soc-LiveJournal1

25600000

25800000

26000000

100 101 102 103

Time [s]

web-NotreDame

496000

497000

498000

499000

500000

10-2 10-1 100 101 102

Time [s]

wiki-Vote

Cyclic-Fast
Cyclic-Strong

Non-Increasing
Basic-Dense

Basic-Sparse
DynWVC2

HILS

Figure A.7.: Solution quality over time for 12 SNAP instances.

79

A. Appendix

150000

160000

170000

180000

10-2 10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

alabama-AM3

125000

150000

175000

200000

10-1 100 101 102 103

Time [s]

district-of-columbia-AM2

224000

226000

228000

230000

10-3 10-2 10-1 100

Time [s]

florida-AM2

190000

200000

210000

220000

10-3 10-2 10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

georgia-AM3

13000

13250

13500

13750

14000

10-2 10-1 100 101 102 103

Time [s]

greenland-AM3

115000

120000

125000

10-2 10-1 100 101 102 103

Time [s]

hawaii-AM2

41000

42000

43000

44000

45000

10-3 10-2 10-1 100 101

Time [s]

So
lu
tio

n
qu

al
ity

maryland-AM3

40000

42500

45000

47500

50000

10-3 10-2 10-1 100 101 102 103

Time [s]

north-carolina-AM3

130000

135000

140000

10-3 10-2 10-1 100 101

Time [s]

pennsylvania-AM3

140000

160000

180000

200000

10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

rhode-island-AM3

200000

225000

250000

275000

300000

10-1 100 101 102 103

Time [s]

washington-AM3

35000

40000

45000

10-3 10-2 10-1 100 101 102 103

Time [s]

west-virginia-AM3

Cyclic-Fast
Cyclic-Strong

Non-Increasing
Basic-Dense

Basic-Sparse
DynWVC2

HILS

Figure A.8.: Solution quality over time for 12 OSM instances.

80

A.5. Solution Quality Convergence Plots

180000

200000

220000

240000

10-2 10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

beethoven

4.0e+07

4.5e+07

5.0e+07

5.5e+07

101 102 103

Time [s]

buddha

6e+06

7e+06

8e+06

100 101 102 103

Time [s]

dragon

900000

1000000

1100000

1200000

10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

face

1600000

1800000

2000000

2200000

10-1 100 101 102 103

Time [s]

gameguy

225000

250000

275000

300000

10-2 10-1 100 101 102 103

Time [s]

venus

410000

420000

10-1 100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

fe 4elt2

1100000

1200000

1300000

1400000

1500000

1600000

1700000

100 101 102 103

Time [s]

fe body

6200000

6600000

7000000

101 102 103

Time [s]

fe ocean

900000

1000000

1100000

100 101 102 103

Time [s]

So
lu
tio

n
qu

al
ity

fe pwt

570000

580000

590000

600000

610000

620000

10-1 100 101 102 103

Time [s]

fe sphere

2700000

2800000

2900000

3000000

100 101 102 103

Time [s]

fe tooth

Cyclic-Fast
Cyclic-Strong

Non-Increasing
Basic-Dense

Basic-Sparse
DynWVC2

HILS

Figure A.9.: Solution quality over time for six mesh instances (upper two rows) and six FE
instances (lower two rows).

81

Bibliography

[1] F. N. Abu-Khzam, S. Cai, J. Egan, P. Shaw, and K. Wang. “Turbo-charging dominating
set with an FPT subroutine: Further improvements and experimental analysis”.
In: International Conference on Theory and Applications of Models of Computation.
Springer. 2017, pp. 59–70. doi: 10.1007/978-3-319-55911-7_5.

[2] A. A. Ageev. “On Finding Critical Independent and Vertex Sets”. In: SIAM Journal
on Discrete Mathematics 7.2 (1994), pp. 293–295. doi: 10.1137/S0895480191217569.

[3] T. Akiba and Y. Iwata. “Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover”. In: Theoretical Computer Science 609, Part 1 (2016),
pp. 211–225. doi: 10.1016/j.tcs.2015.09.023.

[4] G. Alexe, P. L. Hammer, V. V. Lozin, and D. de Werra. “Struction revisited”. In:Discrete
applied mathematics 132.1-3 (2003), pp. 27–46. doi: 10.1016/S0166-218X(03)00388-
3.

[5] D. V. Andrade, M. G. Resende, and R. F. Werneck. “Fast local search for the maximum
independent set problem”. In: Journal of Heuristics 18.4 (2012), pp. 525–547. doi:
10.1007/s10732-012-9196-4.

[6] F. Ay, M. Kellis, and T. Kahveci. “SubMAP: aligning metabolic pathways with sub-
network mappings”. In: Journal of computational biology 18.3 (2011), pp. 219–235.
doi: 10.1089/cmb.2010.0280.

[7] L. Babel. “A fast algorithm for the maximum weight clique problem”. In: Computing
52.1 (1994), pp. 31–38. doi: 10.1007/BF02243394.

[8] E. Balas and C. S. Yu. “Finding a maximum clique in an arbitrary graph”. In: SIAM
Journal on Computing 15.4 (1986), pp. 1054–1068. doi: 10.1137/0215075.

[9] L. Barth, B. Niedermann, M. Nöllenburg, and D. Strash. “Temporal Map Labeling:
A New Uni�ed Framework with Experiments”. In: Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems.
GIS ’16. ACM, 2016, 23:1–23:10. doi: 10.1145/2996913.2996957.

[10] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith. “A new table of
constant weight codes”. In: IEEE Transactions on Information Theory 36.6 (1990),
pp. 1334–1380. doi: 10.1109/18.59932.

[11] S. Butenko and S. Trukhanov. “Using critical sets to solve the maximum independent
set problem”. In: Operations Research Letters 35.4 (2007), pp. 519–524. doi: 10.1016/
j.orl.2006.07.004.

83

https://doi.org/10.1007/978-3-319-55911-7_5
https://doi.org/10.1137/S0895480191217569
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/S0166-218X(03)00388-3
https://doi.org/10.1016/S0166-218X(03)00388-3
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1089/cmb.2010.0280
https://doi.org/10.1007/BF02243394
https://doi.org/10.1137/0215075
https://doi.org/10.1145/2996913.2996957
https://doi.org/10.1109/18.59932
https://doi.org/10.1016/j.orl.2006.07.004
https://doi.org/10.1016/j.orl.2006.07.004

Bibliography

[12] S. Cai, W. Hou, J. Lin, and Y. Li. “Improving Local Search for Minimum Weight Vertex
Cover by Dynamic Strategies”. In: Proceedings of the Twenty-Seventh International
Joint Conference on Arti�cial Intelligence (IJCAI 2018). 2018, pp. 1412–1418. doi:
10.24963/ijcai.2018/196.

[13] S. Cai, K. Su, and A. Sattar. “Local search with edge weighting and con�guration
checking heuristics for minimum vertex cover”. In: Arti�cial Intelligence 175.9-10
(2011), pp. 1672–1696. doi: 10.1016/j.artint.2011.03.003.

[14] L. Chang, W. Li, and W. Zhang. “Computing a near-maximum independent set
in linear time by reducing-peeling”. In: Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD ’17). 2017, pp. 1181–1196. doi: 10.
1145/3035918.3035939.

[15] J. Chou, J. Kim, and D. Rotem. “Energy-aware scheduling in disk storage systems”. In:
31st International Conference on Distributed Computing Systems. IEEE. 2011, pp. 423–
433. doi: 10.1109/ICDCS.2011.40.

[16] M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Vol. 4. 8. Springer, 2015, pp. 17–20. doi:
10.1007/978-3-319-21275-3.

[17] J. Dahlum, S. Lamm, P. Sanders, C. Schulz, D. Strash, and R. F. Werneck. “Acceler-
ating Local Search for the Maximum Independent Set Problem”. In: Experimental
Algorithms (SEA 2016). Ed. by A. V. Goldberg and A. S. Kulikov. Vol. 9685. LNCS.
Springer, 2016, pp. 118–133. doi: 10.1007/978-3-319-38851-9_9.

[18] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance
pro�les”. In: Mathematical programming 91.2 (2002), pp. 201–213. doi: 10.1007/
s101070100263.

[19] C. Ebenegger, P. Hammer, and D. De Werra. “Pseudo-Boolean functions and stability
of graphs”. In: North-Holland mathematics studies. Vol. 95. Elsevier, 1984, pp. 83–97.
doi: 10.1016/S0304-0208(08)72955-4.

[20] D. Ferizovic, D. Hespe, S. Lamm, M. Mnich, C. Schulz, and D. Strash. “Engineering
Kernelization for Maximum Cut”. In: Proceedings of the Twenty-Second Workshop
on Algorithm Engineering and Experiments (ALENEX). SIAM. 2020, pp. 27–41. doi:
10.1137/1.9781611976007.3.

[21] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some Simpli�ed NP-Complete
Problems”. In: Proceedings of the 6th ACM Symposium on Theory of Computing (STOC
’74). ACM, 1974, pp. 47–63. doi: 10.1145/800119.803884.

[22] A. Gemsa, M. Nöllenburg, and I. Rutter. “Evaluation of Labeling Strategies for
Rotating Maps”. English. In: Experimental Algorithms (SEA’14). Vol. 8504. LNCS.
Springer, 2014, pp. 235–246. doi: 10.1007/978-3-319-07959-2_20.

[23] J. R. Gilbert, G. L. Miller, and S.-H. Teng. “Geometric mesh partitioning: Imple-
mentation and experiments”. In: SIAM Journal on Scienti�c Computing 19.6 (1998),
pp. 2091–2110. doi: 10.1109/IPPS.1995.395965.

84

https://doi.org/10.24963/ijcai.2018/196
https://doi.org/10.1016/j.artint.2011.03.003
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1145/3035918.3035939
https://doi.org/10.1109/ICDCS.2011.40
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/S0304-0208(08)72955-4
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1145/800119.803884
https://doi.org/10.1007/978-3-319-07959-2_20
https://doi.org/10.1109/IPPS.1995.395965

[24] P. L. Hammer, N. V. R. Mahadev, and D. de Werra. “The struction of a graph:
Application to CN-free graphs”. In: Combinatorica 5.2 (1985), pp. 141–147. doi:
10.1007/BF02579377.

[25] P. L. Hammer, N. V. Mahadev, and D. de Werra. “Stability in CAN-free graphs”. In:
Journal of Combinatorial Theory, Series B 38.1 (1985), pp. 23–30. doi: 10.1016/0095-
8956(85)90089-9.

[26] M. Henzinger, A. Noe, and C. Schulz. “Faster Parallel Multiterminal Cuts”. In: arXiv
preprint arXiv:2004.11666 (2020).

[27] M. Henzinger, A. Noe, and C. Schulz. “Shared-memory exact minimum cuts”. In:
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE.
2019, pp. 13–22. doi: 10.1109/IPDPS.2019.00013.

[28] M. Henzinger, A. Noe, C. Schulz, and D. Strash. “Finding All Global Minimum Cuts
In Practice”. In: arXiv preprint arXiv:2002.06948 (2020).

[29] M. Henzinger, A. Noe, C. Schulz, and D. Strash. “Practical minimum cut algorithms”.
In: Journal of Experimental Algorithmics (JEA) 23 (2018), pp. 1–22. doi: 10.1145/
3274662.

[30] D. Hespe, S. Lamm, C. Schulz, and D. Strash. “WeGotYouCovered: The Winning
Solver from the PACE 2019 Challenge, Vertex Cover Track”. In: Proceedings of the
SIAM Workshop on Combinatorial Scienti�c Computing. SIAM. 2020, pp. 1–11. doi:
10.1137/1.9781611976229.1.

[31] D. Hespe, C. Schulz, and D. Strash. “Scalable Kernelization for Maximum Independent
Sets”. In: Proceedings of the Twentieth Workshop on Algorithm Engineering and Ex-
periments (ALENEX). SIAM. 2018, pp. 223–237. doi: 10.1137/1.9781611975055.19.

[32] K. W. Hoke and M. Troyon. “The struction algorithm for the maximum stable
set problem revisited”. In: Discrete Mathematics 131.1-3 (1994), pp. 105–113. doi:
10.1016/0012-365X(94)90377-8.

[33] S. Lamm, C. Schulz, D. Strash, R. Williger, and H. Zhang. “Exactly solving the maxi-
mum weight independent set problem on large real-world graphs”. In: Proceedings
of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX).
SIAM. 2019, pp. 144–158. doi: 10.1137/1.9781611975499.12.

[34] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data. 2014.

[35] C.-M. Li, H. Jiang, and F. Manyà. “On minimization of the number of branches in
branch-and-bound algorithms for the maximum clique problem”. In: Computers &
Operations Research 84 (2017), pp. 1–15. doi: 10.1016/j.cor.2017.02.017.

[36] R. Li, S. Hu, S. Cai, J. Gao, Y. Wang, and M. Yin. “NuMWVC: A novel local search for
minimum weighted vertex cover problem”. In: Journal of the Operational Research
Society (2019), pp. 1–12. doi: 10.1080/01605682.2019.1621218.

85

https://doi.org/10.1007/BF02579377
https://doi.org/10.1016/0095-8956(85)90089-9
https://doi.org/10.1016/0095-8956(85)90089-9
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1145/3274662
https://doi.org/10.1145/3274662
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/1.9781611975055.19
https://doi.org/10.1016/0012-365X(94)90377-8
https://doi.org/10.1137/1.9781611975499.12
http://snap.stanford.edu/data
https://doi.org/10.1016/j.cor.2017.02.017
https://doi.org/10.1080/01605682.2019.1621218

Bibliography

[37] Y. Li, S. Cai, and W. Hou. “An E�cient Local Search Algorithm for Minimum
Weighted Vertex Cover on Massive Graphs”. In: Asia-Paci�c Conference on Simulated
Evolution and Learning (SEAL 2017). Vol. 10593. LNCS. 2017, pp. 145–157. doi:
10.1007/978-3-319-68759-9_13.

[38] L. Lovász and M. D. Plummer. Matching theory. Vol. 29. 1986, pp. 471–482.
[39] V. V. Lozin. “Conic reduction of graphs for the stable set problem”. In: Discrete

Mathematics 222.1-3 (2000), pp. 199–211. doi: 10.1016/S0012-365X(99)00408-2.
[40] T. Ma and L. J. Latecki. “Maximum weight cliques with mutex constraints for video

object segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2012, pp. 670–677. doi: 10.1109/CVPR.2012.6247735.

[41] F. Mascia, E. Cilia, M. Brunato, and A. Passerini. “Predicting structural and functional
sites in proteins by searching for maximum-weight cliques”. In: Twenty-Fourth AAAI
Conference on Arti�cial Intelligence. 2010.

[42] K. Mehlhorn and P. Sanders. Algorithms and data structures: The basic toolbox.
Springer Science & Business Media, 2008, pp. 133–139.

[43] B. Nogueira, R. G. S. Pinheiro, and A. Subramanian. “A hybrid iterated local search
heuristic for the maximum weight independent set problem”. In: Optimization Letters
12.3 (2018), pp. 567–583. doi: 10.1007/s11590-017-1128-7.

[44] K. J. Nurmela, M. K. Kaikkonen, and P. Ostergard. “New constant weight codes from
linear permutation groups”. In: IEEE Transactions on Information Theory 43.5 (1997),
pp. 1623–1630. doi: 10.1109/18.623163.

[45] OpenStreetMap. url: https://www.openstreetmap.org.
[46] P. R. Östergård. “A fast algorithm for the maximum clique problem”. In: Discrete

Applied Mathematics 120.1-3 (2002), pp. 197–207. doi: 10.1016/S0166-218X(01)
00290-6.

[47] A. S. P. Pedersen, P. D. Vestergaard, et al. “Bounds on the number of vertex indepen-
dent sets in a graph”. In: Taiwanese Journal of Mathematics 10.6 (2006), pp. 1575–1587.
doi: 10.11650/twjm/1500404576.

[48] H. Prodinger and R. Tichy. “Fibonacci numbers of graphs”. In: The Fibonacci Quarterly
20.1 (1982), pp. 16–21.

[49] S. Rebennack, M. Oswald, D. O. Theis, H. Seitz, G. Reinelt, and P. M. Pardalos. “A
branch and cut solver for the maximum stable set problem”. In: Journal of combina-
torial optimization 21.4 (2011), pp. 434–457. doi: 10.1007/s10878-009-9264-3.

[50] P. V. Sander, D. Nehab, E. Chlamtac, and H. Hoppe. “E�cient traversal of mesh
edges using adjacency primitives”. In: ACM Transactions on Graphics (TOG) 27.5
(2008), pp. 1–9. doi: 10.1145/1409060.1409097.

[51] P. Sanders and C. Schulz. “Distributed evolutionary graph partitioning”. In: Proceed-
ings of the FourteenthWorkshop on Algorithm Engineering and Experiments (ALENEX).
SIAM. 2012, pp. 16–29. doi: 10.1137/1.9781611972924.2.

86

https://doi.org/10.1007/978-3-319-68759-9_13
https://doi.org/10.1016/S0012-365X(99)00408-2
https://doi.org/10.1109/CVPR.2012.6247735
https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1109/18.623163
https://www.openstreetmap.org
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.11650/twjm/1500404576
https://doi.org/10.1007/s10878-009-9264-3
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1137/1.9781611972924.2

[52] R. E. Tarjan and A. E. Trojanowski. “Finding a maximum independent set”. In: SIAM
Journal on Computing 6.3 (1977), pp. 537–546. doi: 10.1137/0206038.

[53] J. Trimble. Version v0.2. 2017. doi: 10.5281/zenodo.848647. url: https://doi.org/
10.5281/zenodo.848647.

[54] J. S. Warren and I. V. Hicks. “Combinatorial branch-and-bound for the maximum
weight independent set problem”. 2006. url: https : / / www . caam . rice . edu /
~ivhicks/jeff.rev.pdf.

[55] D. Warrier. “A branch, price, and cut approach to solving the maximum weighted
independent set problem”. PhD thesis. Texas A&M University, 2007. doi: 1969.1/
5814.

[56] D. Warrier, W. E. Wilhelm, J. S. Warren, and I. V. Hicks. “A branch-and-price approach
for the maximum weight independent set problem”. In: Networks: An International
Journal 46.4 (2005), pp. 198–209. doi: 10.1002/net.20088.

[57] Q. Wu and J.-K. Hao. “Solving the winner determination problem via a weighted
maximum clique heuristic”. In: Expert Systems with Applications 42.1 (2015), pp. 355–
365. doi: 10.1016/j.eswa.2014.07.027.

[58] H. Xu, T. S. Kumar, and S. Koenig. “A new solver for the minimum weighted vertex
cover problem”. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. Springer. 2016, pp. 392–405.
doi: 10.1007/978-3-319-33954-2_28.

[59] X. Xu, S. Tang, and P.-J. Wan. “Maximum weighted independent set of links under
physical interference model”. In: International Conference on Wireless Algorithms,
Systems, and Applications. Springer. 2010, pp. 68–74. doi: 10.1007/978-3-642-
14654-1_8.

[60] R. Zamprogno and A. R. Amaral. “An e�cient approach for large scale graph
partitioning”. In: Journal of combinatorial optimization 13.4 (2007), p. 289. doi:
10.1007/s10878-006-9026-4.

[61] B. Zavalnij. “Generalizing struction kernelization method for maximum weighted
independent set”. private communication. 2019.

87

https://doi.org/10.1137/0206038
https://doi.org/10.5281/zenodo.848647
https://doi.org/10.5281/zenodo.848647
https://doi.org/10.5281/zenodo.848647
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://www.caam.rice.edu/~ivhicks/jeff.rev.pdf
https://doi.org/1969.1/5814
https://doi.org/1969.1/5814
https://doi.org/10.1002/net.20088
https://doi.org/10.1016/j.eswa.2014.07.027
https://doi.org/10.1007/978-3-319-33954-2_28
https://doi.org/10.1007/978-3-642-14654-1_8
https://doi.org/10.1007/978-3-642-14654-1_8
https://doi.org/10.1007/s10878-006-9026-4

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Contribution
	Thesis Structure

	Preliminaries
	Basic Definitions
	Maximum Weight Independent Set And Related Problems
	Reduction Rules and Kernelization

	Related Work
	Exact Methods
	Heuristic Methods
	Struction

	Branch-And-Reduce Framework
	Basic Reduction Algorithm
	Reduction Rules
	Reduction Rule Order

	Struction
	Unweighted Struction
	Weighted Struction Variants
	Original Weighted Struction
	Modified Weighted Struction
	Extended Weighted Struction
	Extended Reduced Weighted Struction

	Relationship To Other Reduction Rules
	Clique Neighborhood Removal Extended Weighted StructionC=C'
	Generalized Fold Extended Weighted StructionC=C'
	Isolated Weight Transfer Extended Weighted StructionC=C'
	Weighted Isolated Vertex Removal Isolated Weight Transfer
	Degree Two Fold Generalized Fold
	Neighborhood Removal Clique Neighborhood Removal
	New Reducible Graph Structures

	Efficient Data Reduction Via Struction
	Non-Increasing Reduction Algorithm
	Cyclic Blow-Up Algorithm
	Blow-Up Phase
	Accept Strategies
	Cycle Avoidance Strategies
	Stopping Criteria

	Evaluation
	Experimental Setup
	Environment
	Datasets
	Methodology
	Experimental Design

	Parameter Tuning
	Non-Increasing Reduction Algorithm
	Cyclic Blow-Up Algorithm

	Comparison With Existing Algorithms
	Comparison With Branch-And-Reduce Framework
	Comparison With State-Of-The-Art Algorithms

	Discussion
	Conclusion
	Future Work

	Appendix
	Basic Graph Property Tables
	Reduced Graph Size Convergence Plots
	Time To Solve And Reduced Graph Size Tables
	Best Solution Tables
	Solution Quality Convergence Plots

	Bibliography

