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Abstract

Modern real life networks are often highly dynamic. Temporal graphs represent these
changes in the network configuration through discrete edge appearances on a fixed set of
vertices. In a temporal graph all these changes are known in advance until a maximal
timestep, the lifetime of the graph. The classical problem of Vertex Cover aims to find
a set of vertices such that all edges are covered by one of their endpoints. This can be
naturally extended in the time changing setting to the Temporal Vertex Cover (TVC) and
Sliding Window Temporal Vertex Cover (∆-TVC). In the TVC every edge is covered once
over the whole lifetime, while in the ∆-TVC every appearing edge is covered once in
every window of ∆ consecutive timesteps. Both extensions are known to be NP-hard. In
this thesis, known (approximation) algorithms for these extensions are implemented and
experimentally evaluated. In particular, we consider two approximation algorithms and
one non-polynomial exact algorithm.
The approximations have approximation ratios bounded by the maximal degree d of any
subgraph in at a certain timestep, leading to a ratio of d and d − 1. Moreover, two new
approximation algorithms for the restricted case of always star temporal graphs are pre-
sented, leading to a 2∆ − 1 and a ∆ − 1 approximation ratio, where ∆ is the sliding
window size. For the experiments a temporal graph generator for certain temporal graph
classes and a framework for solving the (∆-)TVC are introduced. The experiments ver-
ify the stated runtime and approximation ratios of the known algorithms and even provide
some improvements made through the implementations. We show that on real-life in-
stances the d − 1-approximation outperforms the d-approximation. Further, we compare
the computation of the ∆-TVC on restricted inputs of always star temporal graphs through
the known approximation algorithms with the here presented new ones. We show that the
new approximations outperform the known d−1-approximation in shorter runtime even in
some cases where ∆ > d.
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Zusammenfassung

Moderne reale Netzwerke sind oft sehr dynamisch. Temporale Graphen bieten die
Möglichkeit zeitliche Veränderungen durch diskretes Auftreten der Kanten auf einer fes-
ten Menge von Knoten abzubilden. In einem temporalen Graphen sind alle diese Än-
derungen bis zu einem maximalen Zeitschritt, der Lebensdauer des Graphen, im Voraus
bekannt. Das klassische Graphproblem der Knotenüberdeckung (Vertex Cover) zielt darauf
ab, eine Menge von Konten zu finden, so dass alle Kanten durch einen ihrer Endpunkte
abgedeckt sind. Dieses Problem lässt sich in einem zeitlich veränderlichen Umfeld auf das
Temporal Vertex Cover (TVC) und das Sliding Window Temporal Vertex Cover (∆-TVC)
erweitern. Im TVC wird jede Kante einmal über die gesamte Lebensdauer abgedeckt,
während im ∆-TVC jede auftretende Kante einmal in jedem Fenster von ∆ aufeinanderfol-
genden Zeitschritten abgedeckt wird. Beide Erweiterungen sind bekanntermaßen NP-hart.
In dieser Arbeit werden bekannte (Approximations-)Algorithmen für diese Erweiterungen
implementiert und experimentell evaluiert. Im Einzelnen betrachten wir zwei Approxima-
tionsalgorithmen und einen nicht-polynomialen exakten Algorithmus.
Die Approximationen haben Approximationsverhältnisse, die durch den maximalen Grad d
eines beliebigen Subgraphen in einem bestimmten Zeitschritt begrenzt sind, was zu einem
Verhältnis von d und d − 1 führt. Darüber hinaus werden zwei neue Approximationsal-
gorithmen für den eingeschränkten Fall von immer sternförmigen temporalen Graphen
vorgestellt, die zu einem 2∆ − 1- und einem ∆ − 1-Approximationsverhältnis führen,
wobei ∆ die Größe des Sliding Windows ist. Für die Experimente werden ein tem-
poraler Graphengenerator für bestimmte temporale Graphenklassen und ein Framework
zur Lösung der (∆-)TVC eingeführt. Die Experimente verifizieren die angegebenen
Laufzeit- und Approximationsverhältnisse der bekannten Algorithmen und liefern sogar
einige Verbesserungen, die durch die Implementierungen erreicht wurden. Wir zeigen,
dass in realen Graphen die d−1-Approximation die d-Approximation übertrifft. Weiterhin
vergleichen wir die Berechnung der ∆-TVC auf immer sternförmigen temporalen Graphen
durch die bekannten Approximationsalgorithmen mit den hier vorgestellten neuen. Wir
zeigen, dass die neuen Approximationen die bekannte d − 1-Approximation in kürzerer
Laufzeit übertreffen, selbst in Fällen, in denen ∆ > d.
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CHAPTER 1
Introduction

1.1 Motivation

Temporal graphs provide the ability to model systems which change over time. Many real-
life systems such as biological, social or technical ones are highly time-varying in their
behavior, e.g. in the spread of diseases, communication between individuals or the transfer
of data [33] [20]. Therefore, temporal graphs can be used to extract information or solve
problems e.g. monitoring tasks [18]. However, classical known graph problems, e.i. graph
coloring or vertex cover, need to be adapted first into this time varying setting. The study
of temporal graphs has been discussed frequently in recent literature [4], [18], [31]. The
time changes modeled through them are varying in the sense that they have a fixed set of
vertices and appearing/disappearing edges over time in a discrete manner.
This thesis focuses on the Vertex Cover (VC) problem which searches for a set of vertices,
such that all edges are covered by one of their endpoints. This is adapted to Temporal
Vertex Cover (TVC) and Sliding Window Temporal Vertex Cover (SW-TVC) [4] to meet
the edge changes. Similar to the classical (static) VC the adaptations aim to cover all
underlying edges by one of their endpoints. While the classical VC provides a vertex
set as solution, the temporal adaptations provide a set of vertex appearances consisting of
vertices at certain timesteps [4]. In the TVC an edge is considered covered, if the solution
set contains a vertex appearance consisting of one endpoint of the edge and a timesteps,
where the edge appears. Hence, every edge is covered at one appearance during the whole
lifetime of the graph. This might not be sufficient for applications where e.g. repeated
monitoring is required. Therefore, in the SW-TVC provides a window of fixed size ∆ and
each appearing edge needs to be covered in every ∆ consecutive timesteps.
A popular application example of the classical VC is to place guards in a museum, where
edges represent corridors with artwork and guards are placed at the vertices, which repre-
sent junctions [43]. However, if the museum has changing exhibitions, e.i. not all corridors
hold paintings all the time, the problem can not be modeled in the classical way. In this
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1 Introduction

case one can use temporal graphs to model the temporal behavior and Vertex Cover adap-
tations, TVC and SW-TVC, to provide a solution to this problem. Most likely we would
want to use SW-TVC with ∆ = 1, as the artwork should be secured at all time. However, in
other monitoring tasks, e.g. in sensor networks, where we know when sensors are supposed
to send signals, we might want to check repeatedly if the signals work, without checking
every single one. Then we can define a larger ∆ or even use TVC for this. Since many
social, transportation or biological real-life networks change over time the temporal setting
is particularly interesting.
Both adaptations, TVC and SW-TVC, are known to be NP-complete [4], similar
to the VC problem [17]. Therefore, the tools of approximation and input restriction are
commonly used to provided solutions in a polynomial time [4] [18].

1.2 Our Contribution

We provide an overview and (experimental) analysis of algorithms for SW-TVC and im-
prove its approximation for the special case of always star temporal graphs. Therefore,
we look at known approximation algorithms and provide an initial implementation as they
have never been implemented. Through experiments, we verify their stated approxima-
tion ratios on small instances, stated runtimes and test their capability to solve real-life
instances. Further, we focus on the special class of always star temporal graphs in an effort
to derive better approximation ratios and runtime.
For the analysis of approximation algorithms on specific graphs, we want to distinguish
graph instances based on their class to provide valuable input for testing and benchmarking
the algorithms. Since there are no datasets providing a variation of graphs from different
temporal graph classes, we develop a random generator for a range of specific classes
including, among others, arbitrary, always most degree d and always star.
Our main contribution is a framework for storing temporal graphs and computing the ∆-
TVC. Secondly we present for the special case that the inputs are always star temporal
graphs two new approximation approaches. The framework provides the possibility to
compute the ∆−TVC based on different algorithms known in literature and the two new
always star approximation algorithms. The known algorithms are a d-approximation algo-
rithm [4] and a (d− 1)-approximation algorithm [18] for always at most degree d temporal
graphs and an exact (non-polynomial) dynamic programming algorithm [18] for arbitrary
temporal graphs. For the verification of the stated runtimes and approximation ratios we
experiment with the implementations on arbitrary instances. We are using the exact so-
lution computed by the dynamic programming algorithm [18] for the verification of the
stated approximation ratios. These experiments are on small instances since the exact so-
lution is only computable in non-polynomial time. Moreover, we test the performance on
real-life instances of the SNAP-library [28]. In the current literature the d- and (d − 1)-
approximation algorithms for always at most degree d graphs are also the best known
polynomial computable solution for always star temporal graphs. As we are focusing on
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1.3 Structure

this special case, we present two new approaches to approximate the ∆-TVC on them,
achieving a (2∆ − 1)-approximation ratio in O(T ) and a (∆ − 1)-approximation ratio
in O(Tm∆2). We show through experiments that these algorithms provide better ratios in
shorter running time. Through these deliverables we are answering two main questions:
firstly, how (∆-)TVC can be approximated efficiently, secondly, with focus on always star
temporal graphs, how to achieve a better approximation of (∆-)TVC on them.

1.3 Structure

This thesis is structured in six chapters. After the introduction, we present the Preliminaries
in Chapter 2. In Chapter 3 we give an overview of the related work in the temporal graph
field and the known approximation ratios for (Sliding Window) Temporal Vertex Cover.
Chapter 4 provides our main contributions, the presentation of our temporal graph genera-
tor and the framework for the TVC computation. Further, we explain the implementation
of the known algorithms and present the two new approaches for always star temporal
graphs together with the proofs for running time and approximation ratio. The experimen-
tal verification of the known algorithms are shown in Chapter 5 as well as the experimental
comparison of the star algorithms with the current best solution. We conclude in Chapter 6
by summarizing and discussing our results and giving an outline of possible further work.

3
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CHAPTER 2
Fundamentals

In this chapter, the basic definitions for (temporal) graphs, the problem definitions of
(∆-)TVC and approximation algorithms are presented. In addition, the notations used
in this thesis are introduced.

2.1 Graph Preliminaries

A graph G is an abstract structure representing a set of objects together with their pairwise
relationships. The objects are represented as a finite set of nodes V . Let n denote the total
number of nodes. The relationships between them are represented by finite set of edges E.
Let m denote the total number of edges. Hence, a graph G = (V,E). An edge e ∈ E
consists of the connection of two vertices u,w ∈ V , we write e = (u,w). In this thesis we
only consider undirected graphs, meaning that edges have no direction, i.e. e = (u,w) =
(w, u). The nodes u and w are called the endpoints of e. The degree d of a node v is the
number of edges connected to v. It is referred to as d(v) = |{(u,w) ∈ E|u = v or w = v}|.
We call two vertices u, w to be adjacent if {u,w} ∈ E. A common way to store such graphs
is a n×n matrix M, where the entry in row i and column j stores, whether vertices vi and vj
are connected. In the undirected case this matrix is symmetrical. Another way of storing is
an adjacency list of length n, with stores at index i the adjacent vertex indices of vi.

2.2 Temporal Graph Preliminaries

In a temporal graph additionally to the above graph preliminaries the edges appear during a
defined timespan in a discrete manner. This timespan is bounded by a maximal timestep T ,
the so-called lifetime of the graph. For better distinction, we can refer to graphs without
the temporal component as static graphs.
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2 Fundamentals
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Figure 2.1: Visualizations of temporal graphs

Definition 1 (Temporal graphs). A temporal graph is a pair (G, λ), where G = (V,E) is
an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to
every edge of G a set of discrete-time labels.

An edge e ∈ E is called active at timestep t if it appears in that timestep, e.i. t ∈ λ(e). To
represent the temporal changes visually, there are two commonly used techniques, either
by considering the subgraph of G at every timestep, see Figure 2.1a, or by visualizing the
underlying structure of the graph and label each edge with the timesteps, in which it is
active, see Figure 2.1b.

2.3 Temporal Vertex Cover

The studied problem in this thesis is the Temporal Vertex Cover, where one aims to cover
each underlying edge by one of its endpoints through a set of vertices at certain timesteps.
This problem is an adaptation of the classical (static) Vertex Cover Problem (VC). The VC
aims to obtain a set of vertices such that at least one endpoint of every edge is included in
the set. It can be applied in problems like civil and electrical engineering, protein sequenc-
ing or biochemistry [17]. In order to understand the temporal adjustment of the Vertex
Cover problem, a definition of the classical problem is given first.

Definition 2 ((Static) Vertex Cover). Given an undirected graph G = (V,E) and a param-
eter k ∈ N, ∃? a subset V ′ ⊆ V such that |V ′| = k ∧ ∀ {u, v} ∈ E : u ∈ V ′ ∨ v ∈ V ′.

The minimum vertex cover problem aims to obtain the smallest possible number k of ver-
tices in the cover. Since the minimum vertex cover problem can be reduced to Maximum
Independent Set (MIS), which in turn can be reduced to the clique problem, it is NP-
complete [17]. The MIS problem searches for a set of vertices such that no two vertices in
the set are adjacent. If I is a MIS, then (V − I) is a VC of the graph. Since if u,w ∈ I,
then (v, w) /∈ E. Hence, ∀ e = (u,w) ∈ E, u ∈ (V −I) and/or w ∈ (V −I). Every edge
e ∈ E is covered by a vertex v ∈ (V − I), it is a VC.
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2.3 Temporal Vertex Cover

Problems are considered as temporal if they provide a solution considering a temporal
graph, e.i. all edge changes are known in advance. There are different ways of translating
the Vertex Cover Problem into a temporal setting. One approach is to cover every appearing
edge once over the whole lifetime of the graph. This problem is called Temporal Vertex
Cover [4]. In the temporal versions of VC the solution consists of node appearances rather
than nodes. A node appearance or temporal vertex (u, t) describes a node u ∈ V at a
certain timestep t ∈ [0, T − 1]. An edge e is considered temporally covered by a vertex
appearance (w, t), when w is an endpoint of e and e is active at t, e.i. t ∈ λ(e). Hence, (w, t)
covers all adjacent edges to w, which are active at t.

Definition 3 (Temporal Vertex Cover (TVC)). A temporal vertex cover of (G, λ) is a tem-
poral vertex subset S of (G, λ) such that every edge e ∈ E(G) is temporally covered by at
least one vertex appearance (w, t) ∈ S.

For most applications, it may not be sufficient to cover each edge only once over the whole
lifetime of the graph, e.g. if one considers monitoring tasks one wishes a regularly repeated
manner of coverage. A commonly used way to face this is to consider a Sliding Window [4].
A window with specific size ∆ considers a snapshot of the temporal graph covering ∆
consecutive timesteps. It ’slides’ over the lifetime, such that we have one window Wi

starting in every timestep i ∈ [0, T−∆−1], see Figure 2.2. The requirements are tightened
by specifying that every edge should be temporally covered at least once in every window,
in which the edge is active. A time window Wt is a set of time labels starting in t and
covering all time steps until t + ∆ − 1. Let E[Wt] denote the set of appearing edges in a
time window, e.i. E[Wt] = {e ∈ E|λ(e) ∩Wt ̸= ∅}. A vertex appearance (w, t) is called
to be in a time window Wt if t ∈ Wt.

Definition 4 (Sliding Window Temporal Vertex Cover (SW-TVC)). A sliding ∆-window
temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that for every
time window Wt and for every appearing edge e ∈ E[Wt], e is temporally covered by a
vertex appearance (w, t) ∈ S in Wt.

Through the parameterization with ∆, the sliding window model is more versatile and
even includes the TVC as the special case ∆ = T , because this would be equivalent to
considering the problem over the total lifetime T of a temporal graph. SW-TVC with
window-size ∆ is also referred to as ∆-TVC. An example of a 2-TVC is shown in Fig-
ure 2.2 on a temporal graph with lifetime 3. Since the edge (a, b) appears non-overlapping
in both windows, node a needs to be included in two appearances (t = 1 and t = 3)
to provide a valid cover.
The (minimum) SW-TVC problem is known to be NP-hard [4]. Techniques to find solu-
tions for such problems in polynomial time are to approximate the solution or to restrict
the inputs to a specific graph class in order to achieve better results. By using the proper-
ties of restricted inputs the solution quality and/or runtime can be improved. In terms of
restriction there are two general approaches of adapting static graph classes into a temporal

7
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Figure 2.2: Sliding window temporal vertex cover

setting [4]. For a class X of static graphs a temporal graph (G, λ) is called X temporal
graph or underlying X temporal graph if the underlying graph G ∈ X , and it is called al-
ways X temporal graph, if each snapshot Gi ∈ X for every i ∈ [T ] = {0, 1, . . . , T−1} [4].
In this thesis the focus is on always at most degree d temporal graphs, where every snapshot
has at most degree d and always star temporal graphs, where every snapshot is a star graph,
but the center can vary in each timestep.

2.4 Approximation Algorithms

Approximation algorithms are a tool to provide solutions to NP-hard problems in a poly-
nomial runtime, where the solutions are guaranteed close to optimum. The deviation of the
accuracy is bounded by the approximation ratio ρ.
For minimization algorithms, such as the Minimum TVC or SW-TVC, ρ is defined with
respect to an objective function f . It refers to the ratio between the objective values of
the provided and optimal solutions, which is not exceeded for any input I . Let the algo-
rithm compute a solution x(I), while x⋆(I) is the optimal solution for that input, then ρ
is defined as follows:

ρ = sup
I

f(x(I))

f(x⋆(I)) .

For the Minimum TVC or SW-TVC the objective function f is the size of
the computed cover.
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CHAPTER 3
Related Work

This section gives an overview of the current state of research in temporal graphs and var-
ious researched problems on them. Then the focus is set on the temporal vertex cover
problem (TVC) and its approximations. First, we summarize the general research on tem-
poral graphs and temporal graph problems by describing the different notions of temporal
behavior in graphs and the different extensions of the classical (static) path and non-path
related problems into the temporal environment. With a focus on the temporal vertex cover
considered in this thesis, we review the hardness proofs presented in the literature for the
established temporal adaptations of it, the Temporal Vertex Cover and the Sliding Window
Temporal Vertex Cover. Finally, we give an overview of the various existing exact and
approximate algorithms for these extensions on arbitrary or specific graph classes.

3.1 Temporal Graphs

A graph is described as temporal when its structure changes over time. In contrast to static
networks, temporal graphs offer the possibility to map systems with a changing topology
over time, such as mobility, social or biological networks. In the literature temporal graphs
appear under different names, which may refer to different underlying models.
The definition of temporal graphs applied here (see Def. 1) uses a popular model with
fixed nodes and varying edges over time. Such a temporal graph consists of discrete sub-
graphs in which a subset of the underlying edges is active for each timestep during its
lifetime. Besides temporal [18], [4], such graphs are also called evolving [14], [7], dy-
namic [16], [5], [19] or time-varying [38], [8], [42]. The description of these graphs are
varying, with some using a sequence of the subgraphs [14], [7], others a time-labeling
function assigning each edge the timesteps where it is active [4], [18], [8] or a col-
lection of triplets (t, u, v) of two connected vertices u and v at a certain timestep t,
a so-called link stream [42].

9



3 Related Work

Some models for temporal graphs provide additional information regrading the dynamics,
e.g. a model for path-related problems can contain latency descriptions (the required time
to cross an edge) for each edge [8].
Temporal behavior in graphs is also found in the literature to describe models differ-
ent from fixed vertices and discrete appearing edges. Leskovec et al. [27] define a time
changing topology of the graph as a graph over time, where in each timestep new nodes
are attached to the network and new edges created based on a defined network struc-
ture. These can be generated as spreading behaviors such as a Forest Fire Model [27]
or recursive searches [40].
In the following course of the thesis every use of temporal graphs will refer to fixed nodes
with varying edges, described over a time-labeling function as defined in Def. 1. Problems
in this temporal setting are much studied. The focus in the literature is mainly on path-
related problems. However, recently also non-path related problems have received more
attention. A survey of related work on both types is presented below.

3.1.1 Path Related Temporal Graph Problems

In temporal graphs the feasibility of the path is affected by the time component as a path
can only consist of edges appearing in an increasing (or at least non-decreasing) order. The
impact of this restriction has been studied in various path or path-related problems.
In general there is a distinction between strict and non-strict paths referring to the amount
of edges which can be crossed in a path in a single timestep [23], [15]. While in strict
paths one can only cross one edge at a timestep, in non-strict paths one can cross multiple
consecutive edges at the same timestamp.
For the classical shortest path problem, it is no longer sufficient to only consider the
(weighted) shortest distance. There are different various criteria based on the temporal
information of the graph to measure distance. They can be distinguished into four differ-
ent types of the Temporal Shortest Paths: the earliest-arrival path, latest-departure path,
the fastest path, and the shortest (distance) path [7], [44]. Wu et al. [44] propose four
polynomial-time algorithms for them. Different algorithms under various considerations
such as waiting time constraints have been studied since [21], [9], [29].
Path-related problems are much researched. The classical Traveling Salesperson Problem
(TSP) is a well-known combinatorial optimization problem, which seeks to find the short-
est possible tour that visits each city exactly once and returns to the starting city. In the
context of temporal graphs, the Temporal TSP is a variant of the TSP that deals with time-
dependent costs. Michail et al. [32] have shown that Temporal TSP with Costs one and two
is APX-hard and have proposed a polynomial-time (7

4
+ ϵ)-approximation algorithm.

The TSP problem is closely related to the graph exploration problem, while the first is an
optimization problem aiming to minimize the total distance traveled, the latter is a process
of visiting all nodes or edges in a systemic way. In the problem of temporal exploration
an exploration visits every node and explores every edge (or the greatest possible number
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of edges). In the case of star temporal graphs temporal exploration has been shown to be
NP-complete, if every edge has at least 5 labels [3].

The problem of non-strict temporal exploration of a graph has been shown to be NP-hard on
any underlying graph [12]. Even when the temporal diameter of the input graph is bounded
by a constant c, it is NP-hard to approximate the problem with O(n1−ϵ) or O(n

1
2
−ϵ) ratios,

when c ≥ 2 [12], where the temporal diameter is the temporal extension to the classical
diameter of a graph [2].

3.1.2 Non-path Related Temporal Graph Problems

Recently also non-path related temporal problems research has received more attention.
This includes problems such as temporal graph coloring [31], ∆-cliques [42], tempo-
ral spanners [10] and the temporal vertex cover [4], [18] studied in this thesis. While
for path-related problems the extension to the temporal setting is often naturally given
through the consideration of feasible paths, i.e. edges in a correct chronological order,
for non-path related problems the literature considers different techniques of adapting
them into a temporal setting.

There are three commonly used ones [4], [18], [31], [19] [5], [42], [30]: the consideration of
the problem over the whole lifetime, the sliding-window technique and the maintaining of
a correct solution in every timestep. The first two have already been mentioned in Section 1
for the specific Vertex Cover problem, yielding TVC and SW-TVC problems, respectively.

The first intuitive adaptation used in the definition of TVC by Akrida et al. [4] consid-
ers a problem over the total lifetime of the graph. This is also found in other temporal
graph problems such as the Temporal Graph Coloring by Mertzios et al. [31] by provid-
ing a union of vertex colors for each timestep, such that every vertex is colored properly
at least once during the lifetime of the graph. Since these adaptations solve the problem
over the entire lifetime, the relevance for applications may be reduced if the solution has
to be queried frequently.

Therefore, these extensions are not considered as standalone in the literature, but as initial
definitions followed by another technique, where the problem is considered over a temporal
section of the graph, a time window, with a defined size ∆ ∈ N. This technique, which
has become more popular in the recent years, is called the sliding window technique. A
solution is required for every time window of ∆ consecutive time steps. It was introduced
by Virad et al. [42], [41] to find contact patterns among high-school students by using
temporal ∆-cliques. These are defined as a set of nodes and a time interval such that all
pairs of nodes in this set interact at least once during each sub-interval of duration ∆.
The authors also provide an exact algorithm to compute all maximal temporal ∆-cliques
in O(2nn2m3 + 2nn3m2) time [42].

11
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In sliding window temporal coloring [31], each vertex is assigned a color so that each
appearing edge e must be colored correctly at least once during each time window of ∆
successive time slots in which e is active. The extension is known to be NP-complete
when considering more than one color, but it allows for an FPT (fixed-parameter tractable)
algorithm parameterized by the number of vertices in 2O(2n

2
) time [31].

Mertzios et al. [30] introduce the temporal matching problem, with the requirement that no
edge appearance can be included, such that a vertex is matched twice in any ∆-window.
The authors show the NP-completeness of Temporal Matching even if the underlying graph
is a path by a reduction from Independent Set, and they propose an ∆

2∆−1
approximation

algorithm in O(Tm(
√
n+∆)) time.

The sliding window extension and the consideration over the whole lifetime are closely
related as the latter can be interpreted as the sliding window extension where ∆ = T .
The third extension technique is different from the previous adaptations, since the maintain-
ing of a correct solution in every timestep does not consider the whole lifetime, but rather
aims to minimize the update time while guaranteeing an optimal or good solution [6], [5].
Bhattacharya et al. [5] propose an algorithm for maintaining the vertex cover and the max-
imum matching during every time step. Such an adaptation provides a correct problem
solution for every subgraph at a certain timestep, which may be required by some ap-
plications. For maximum matching the authors provide a data structure for maintaining
a (3 + ϵ)-approximation in O(min(

√
n
ϵ
, m

1/3

ϵ2
)) amortized time per update [5]. For vertex

cover they maintain a (2 + ϵ)-approximation in O( logn
ϵ2

) amortized time per update [5].
If all changes over the lifetime are known in advance, solving a problem with this ap-
proach is equivalent to SW-TVC, where ∆ = 1. However, in this extension know-
ing the changes in the network structure is not necessarily a prerequisite and one only
needs to receive edge updates in order to compute a new solution, since the aim of the
extension is to maintain a solution.

3.2 Hardness of Temporal Vertex Cover

The classic/static Vertex Cover problem is known to be NP-hard [17]. In general this
remains true for the adaptations TVC and SW-TVC [4]. This section gives an overview
over known hardness proofs for the (SW-)TVC on special temporal graph classes.
For TVC Akrida et al. [4] have shown that the temporal adaptation TVC remains NP-
complete even on the special case of star temporal graphs by reducing set cover to
it. The set cover problem has a universe U = {1, 2, . . . , n} and a collection of C =
{C1, C2, . . . , Cm} of m subsets of C such that ∪m

i=1Ci = U as inputs. It searches for a
subset C ′ ⊂ C with the smallest cardinality such that ∪Ci∈C′Ci = U . The authors take a
general instance of set cover (U, C) and construct an equivalent (underlying) star temporal
graph (G, λ) for the computation of TVC. They set the lifetime T = m and use n+ 1 ver-
tices. These split into the center vertex c and the leaves v1, . . . , vn. The labeling function λ
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assigns at each timestep i ∈ [1,m] edges form the non-center nodes to the center according
to Ci, e.i. (c, vj) is active ∀ j ∈ Ci. They prove, that S is a TVC on (G, λ) with |S| ≤ k iff
there exist a set cover C ′ of (U, C) with C ′ ≤ k.
In the case where the underlying graph G is a path or a cycle, i.e., when we consider a
path/cycle temporal graph, Hamm et al. [18] show that TVC is solvable in polynomial time.
For ∆-TVC, Akrida et al. [4] provide a polynomial time reduction from ∆-TVC to (∆+1)-
TVC, proving that a (∆ + 1)-TVC is at least as hard as ∆-TVC. As 1-TVC is equiva-
lent to solving the vertex cover separately on T static graphs, it is at least as hard vertex
cover. Since this is NP-hard on an arbitrary graph, ∆-TVC is NP-hard as well. More-
over, for any graph class X where VC is NP-hard, on always X temporal graphs ∆-TVC
is also NP-hard.
The Exponential Time Hypothesis (ETH) states that there exists ε < 1 such that 3SAT
cannot be solved in O(2εn) time, where n is the number of variables in the input 3-CNF
formula [22]. Assuming ETH, Akrida et al. [4] prove that there exists a constant ε such that
SW-TVC cannot be solved in f(T ) · 2εng(∆) time for two (arbitrary) growing functions f
and g. Further, the problem does not admit a Polynomial Time Approximation Scheme
(PTAS) unless P=NP [4]. For the class of path/cycle temporal graphs Hamm et al. [18]
propose a hardness proof for ∆ ≥ 2, but show that a PTAS is admitted in this case.

3.3 Algorithms for Temporal Vertex Cover

The preceding section discussed that the problems of TVC and ∆-TVC are NP-hard, as
well at the classical version of it. For the static vertex cover problem there exist several
approximation algorithms [17] [1] [25]. These algorithms employ various techniques, in-
cluding greedy, heuristic, memetic, or local search methods [17]. Additionally, Vertex
Cover is closely related to other well-known problems, such as maximal matching. The
maximal matching can be computed in O(m) time using a greedy algorithm and is known
to provide a 2-approximation to both maximum matching and minimum vertex cover by
using the endpoints of the maximal matching [5].
This section provides an overview of various exact and approximation algorithms from the
literature that can be used to find solutions for TVC and ∆-TVC. The ideas and approxi-
mations for the algorithms are presented, but none of the algorithms are implemented and
tested. The presented algorithms are categorized based on their temporal graph classes.

3.3.1 Arbitrary Graph Class

In the arbitrary temporal graph class no topological restrictions are made on the input.
This section summarizes known algorithms from the literature on such inputs. Some
of them can perform even better in terms of runtime on special graph classes, but also
work in the general case.
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An exact algorithm for SW-TVC provided by Akrida et al. [4] uses a dynamic programming
approach with a runtime in O(T∆(n+m) · 2n(∆+1)) [4]. This is asymptotically almost op-
timal, assuming ETH. The worst case runtime for this algorithm can be bounded for always
star temporal graphs to O(T∆(n+m) · 2∆) and for always Ck temporal graphs, where Ck

the class of graphs having vertex cover number at most k, to O(T∆(n+m) · nk(∆+1)).
Another approach by Hamm et al. [18] uses dynamic programming to solve the ∆-TVC
in O(TcO|E(G)|)), where c = min{2d∆ ,∆} and d∆ the maximum ∆-window vertex degree.
This algorithm also leads to a FPT algorithm for SW-TVC, which is single exponential in
the number of edges running in O(Tc|E(G)|) where c = min{2O|E(G)|),∆}. This approach
also provides the possibility to only solve a partial graph input, which is used by the d− 1
approximation for always degree at most d temporal graphs implemented in this thesis.
The details of the algorithm and its implementation can be found in Section 4.3. < The
literature also provides several ideas of approximation algorithms for SW-TVC on arbi-
trary graphs. Based on the idea that SW-TVC can be reduced to Set Cover, Akrida et
al. [4] present two approximation algorithms which use set cover approximations. With
Linear Programming, proposed by Vazirani [39], this leads to a 2k-approximation for SW-
TVC [4], where k is the maximum edge frequency (kmax = ∆) defining the maximum
appearance of the edge during an arbitrary window. Instead of Linear Programming it is
also possible to use a greedy approach for set cover from Duh and Fürer[11] resulting in
a (lnn+ ln∆ + 1

2
)-approximation [4].

3.3.2 Always Degree at most d Temporal Graphs
For the temporal graph class where the degree at every snapshot is at most d, i.e. always de-
gree at most d temporal graphs, two approximation algorithms for SW-TVC are provided.
Akrida et al. [4] propose a d-approximation with runtime in O(mT ) where m is the num-
ber of edges in the underlying graph G. The algorithm uses the idea to calculate SW-
TVC on every possible single-edge temporal subgraph exactly in O(T ) for every edge and
take the union of the result.
Another approximation algorithm by Hamm et al. [18] is based on the approach to iter-
atively cover paths with two edges instead of single edges and chooses the middle ver-
tex to be in the vertex cover. With that idea an overall approximation ratio of (d − 1)
can be achieved. The runtime of this is in O(m2T 2) where m is the number of edges
in the underlying graph G.
Both of these algorithms are implemented in this thesis as they build the current state
of the art for always star temporal graphs as well. The details of the functionality and
implementation are described in Section 4.3.

3.3.3 Path/Cycle Temporal Graphs
Hamm et al. [18] show that TVC on instances with a path/cycle as their underlying graph
is exactly solvable in polynomial time. Based on the idea of computing the Vertex Cover
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in a (static) path graph in a greedy way, the proposed algorithm walks along the path from
left to right and takes very second vertex. The running time is O(Tn).
For ∆-TVC on path/cycle temporal graphs Hamm et al. [18] propose a (1 + ϵ)-
approximation algorithm which runs in O(T (n + 1)Oε−2)) time showing that the
problem admits a PTAS.

15



3 Related Work

16



CHAPTER 4
(SW-)TVC Approximation Algorithms

The methodology to answer the research question of how to approximate the (SW-)TVC
efficiently in the general case and in the restricted case of always star temporal graphs
consists of several steps and covers different impelmented components. A graph generator
makes the generation of different temporal graph classes for the later experiments possible.
The main component is the TVC-solver, which provides a framework to solve SW-TVC
on an input graph with a given sliding window size and a certain solving algorithm. The
framework covers several algorithms from the literature and the newly developed algo-
rithms in the scope of this thesis for the restricted case of always star temporal graphs.
The last component is a temporal graph visualizer for temporal graphs and the computed
solutions on them for small instances. The interrelationships of the different components
are shown in Figure 4.1.
The following subsections introduce the individual components and their implementations.
Moreover, the last subsection presents new approximation algorithms for the restricted case
of always star temporal graphs, whose implementation is also provided in the TVC solver.

4.1 Temporal Graph Visualizer

In the temporal graph analysis it is important to study the underlying structural properties
and their temporal evolution. This manifests in the distinction between X temporal graphs
and always X temporal graphs. Therefore, the temporal graph visualizer provides different
visualization methods for temporal graphs and TVC, shown in Figure 4.2, based on the
visualization methods stated in Section 1.
In Figure 4.2a the underlying network structure of a graph with edge labels according
to λ are displayed, while in Figure 4.2b the same graph is split into the discrete timesteps.
The temporal graph class can be seen in one of these visualizations, if it is a X temporal
graph, X is underlying and therefore can be seen in the first display. If the graph is an
always X temporal graph, such as the always star temporal graph in the Figure 4.2, the
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Graph Generator

• Class: arbitrary,
always mostd,
always star, star,
path, cycle

• Lifetime T

• Number of nodes n

• Number of edges m

• Maximal degree
(most d)

• Seed

./graphgen –graph_class=mostd –T=3 –n=8 –
maxd=4 –seed=1 Graph file

n m T
s1 t1 l1 . . . lk
...

Tvc Solver

• Algorithm: dapprox,
d1approx, exact,
startriv, staradv

• Swsize

./tvcsolver ./graph.txt –algo=exact –swsize=2

(Sw)TVC file
n1 t1
n2 t2
...

Visualizer
Underlying graph | Timesteps | TVC

Figure 4.1: Interrelationships of the components

class displays itself in the evolutionary visualization. Moreover, this visualization provides
the possibility to highlight a set of vertex appearances such as a TVC, as these consist of a
vertex at a certain timestep. This is shown in Figure 4.2c.

4.2 Temporal Graph Generation

Since this thesis aims to verify the complexity and compare the solution quality of differ-
ent algorithm, we need various temporal graphs to test them. For classical graphs various
algorithms are known in recent literature [37]. In this chapter we use these and extent
them for the temporal graph generation. The temporal graphs must have different param-
eter ranges to test the behavior of the algorithms when one parameter, e.g., the number of
edges, changes while the others remain constant. Moreover, a classification into to specific
temporal graph classes is necessary to have a restricted input for the algorithms. In partic-
ular, the main restriction for the new approximation algorithms provided later is to always
star temporal graphs. Besides this graph class, the generator includes the class of always at
most degree d temporal graphs, to analyze the d-approximation and d − 1-approximation
algorithms provided by the literature on them. In terms of the underlying topologies of
the graphs the generator can provide arbitrary and star temporal graphs, which can be used
for runtime experiments.
For the required flexibility in the generated graphs, every generation should be configurable
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(a) Visualization of the underlying graph with labels

(b) Visualization with separated timesteps (c) Visualization with separated timesteps with
the solution of 3-TVC marked in the
timesteps

Figure 4.2: Visualizations of temporal graphs

over the number of nodes n and the lifetime T . To provide reproducible randomness every
generator has a configurable random seed.
However, the main focus in this thesis is on the implementation and development of approx-
imation algorithms and the presented generators serve the purpose of providing temporal
graphs as input for their experimental analysis, not optimal generation of them.
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(a) Graph (b) Subgraphs in time

Figure 4.3: Always star temporal graphs

4.2.1 Always Star Temporal Graph Generation

In always star temporal graph topologies every subgraph at a timestep is a star. In addition
to the configuration of the lifetime and node count, a requirement for the generation is
to have a configurable maximal degree of the star, to enable a comparison between the
algorithms for these graph classes and the always degree at most d graphs. The idea of
the generation is to produce one star at each timestep t. To ensure that the configured
maximal degree is reached in the beginning one timestep is chosen randomly, in which this
degree must be reached. In every other timestep a random degree is chosen in [0, d]. Let
the degree of the star at a timestep t be dt. For the generation of the subgraph at t, dt + 1
nodes get chosen randomly in [0, n − 1]. The first chosen node is the star center at t and
edges are created to the remaining d chosen nodes. An example of a generated graph
is shown in Figure 4.3.
The runtime for this generation is clearly in O(Tn), since the selection of d + 1 random
nodes is in O(n) when calculating a permutation of all nodes and selecting the first d + 1
and the generation of maximal d edges in every timestep is clearly bounded by n as well.

4.2.2 Always Degree at most d Temporal Graph Generation

When generating temporal graphs with always at most degree d it is important to ensure
that no degree exceeds the maximum degree allowed. However, to obtain a good graph for
analysis, it is also desirable that the maximum degree is reached in at least one time step.
The generation is based on an G(n, p) Erdős-Rényi model [34] in every timestep, but pro-
vides additional monitoring of the node degrees to never generate an edge, when the degree
of one of the considered nodes already reached d. To ensure that the maximum degree is
reached, the generator randomly selects a time step in which the maximum degree is en-
forced and the edge probability is adjusted accordingly. A generated always most d graph
is shown in Figure 4.4. Moreover, the parameter p of the G(n, p) is no input parameter, but
rather chosen in dependence of d.
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(a) Graph (b) Subgraphs in time

Figure 4.4: Always degree at most d temporal graphs

The runtime of the G(n, p) model [34] is O(n + m), and we generate a separate sub-
graph at every timestep. Hence, the overall runtime of the generation is O((n + m)T ).
However, caused by the enforcement of the maximal degree in one timestep, this progress
might have a large constant in this timestep and therefore take significantly longer than
in the other timesteps.

4.2.3 Underlying Topology Temporal Graph Generation

Temporal graphs with an underlying topology X refer to a topology in static graphs with
the addition of having discrete time labels for each edge, describing when the edge is active.
The basic idea to generate these, is to generate a static graph with this topology and add
randomly discrete time labels to the edges.
For runtime experiments, we want to generate arbitrary temporal graphs with configurable
number of egdes m. For arbitrary static graphs a well known model to generate G(n,m)
graphs is the Erdős-Rényi model [37]. For generating these static graphs we use the Ka-
Gen [37] library. After the generation we assign each edge a random size and fill the vector
with time labels. An example of a generated graph is shown in Figure 4.5.
The underlying star generation of the static graph is created in the same way as for always
star temporal graphs, see Figure 4.6, by randomly choosing d+1 nodes and connecting the
first one with the others. Then each edge gets assigned a random number of time labels. In
this model d can either be configured or is chosen randomly.
The runtime for this generator type is the runtime of the underlying graph with class X
generator plus the insertion of labels for each edge. We implemented this by iterating over
the edges. Then we permute a vector of all possible labels and chose a random amount of
them. This ensures, that no label is picked twice. Since there can be at most T labels per
edges, the runtime is in OGenX +O(Tm).
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(a) Graph (b) Subgraphs in time

Figure 4.5: Arbirtary temporal graphs

(a) Graph (b) Subgraphs in time

Figure 4.6: Star temporal graphs

4.3 Framework Design

The TVC-solver framework provides the possibility to compute SW-TVC on different input
graphs with defined window size and algorithms to solve SW-TVC. Therefore, it holds
a temporal graph data structure to store the input graph and implementations of several
algorithms to solve SW-TVC, including an exact algorithm, d- and d − 1-approximations
and two always star approximation algorithms introduced in Section 4.4.

4.3.1 Temporal Graph Data Structure
The graph data structure holds an array of all the undirected edges, where an edge consists
of two vertices and an array of time labels during the edge is active. The edges are stored
in the vector edges. Besides this vector, the data structure provides two ways of access-
ing the edges. To provide the possibility to access all edges of a node, the data structure
holds an adjacency list adj, in which the respective edge indices can be retrieved for each
node. Every edge index is listed twice in this map, once at each endpoint, as the graph
is undirected. Additionally, some algorithms require to access all edges of a particular
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timestep. To provide this, a vector of length T stores all edge indices active at a timestep.
This can lead to edge indices being referred to at multiple timestep. As this is not needed
in all algorithms, this vector is only initialized for algorithms using it. The data structure is
visualized in Figure 4.7.

. . .

. . .

adj

n

. . .edges

m

. . .

T ime

T

Figure 4.7: Temporal graph data structure

This provides the possibility to store temporal graphs efficiently, since the space complexity
is in O(adj)+O(edges)+O(Time) = O(n+2m)+O((2+T )·m)+O(Tm) = O(n+Tm).

4.3.2 Implementation of the d-Approximation Algorithm
The d-approximation algorithm for ∆-TVC [4], where d is the maximal degree appearing
in any timestep, is based on the idea, that on a single edge graph TVC can be solved
optimally in polynomial time. In particular the algorithm scans over all uncovered windows
and selects one endpoint of the latest appearance of the single edge in the window to cover
it. On a graph with more than one edge, this process is repeated individually for every
edge and a union of these solutions builds an overall approximate solution. The runtime of
the algorithm is in O(Tm). The approximation ratio is d, since in the worst case scenario
for every vertex appearance included in the optimal solution all outgoing edges could be
covered by the other endpoint in the solution calculated by the algorithm. Therefore, this
solution is at most d times the optimal solution in size. The algorithm is implemented
straightforward from the pseudocode in [4], which is presented below.

4.3.3 Implementation of an Exact Algorithm
Since SW-TVC is known to be NP-hard, an exact algorithm can only be a non-polynomial
one. A dynamic-programming exact algorithm is provided by Hamm et al. [18], solving
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Algorithm 1 SW-TVC on single-edge temporal graphs from [4]
Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A temporal vertex cover X of (G, λ)

1 X := ∅ t = 1 while t ≤ T −∆+ 1 do
2 if ∃r ∈ [t, t+∆− 1] such that (u, v) ∈ Er then
3 choose maximum such r and add (u, r) to X
4 t = r + 1

5 end
6 else
7 t = t+ 1
8 end
9 end

10 return X

Algorithm 2 d-approximation of SW-TVC on always degree at most d temporal graphs
from [4]
Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A temporal vertex cover X of (G, λ)

1 for i = 1 to T do
2 Xi := ∅
3 end
4 foreach e = (u, v) ∈ E do
5 Compute the optimal solution X e of the problem for (G[{u, v}], λ) by Algorithm 1
6 for i = 1 to T do
7 Xi = Xi ∪ X e

8 end
9 end

10 return X
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SW-TVC in O(T∆O(m)) time. The main idea is to split the problem into subinstances.
These subinstances are the variation of SW-TVC called Partial ∆-TVC, which has the
same requirements as SW-TVC but every edge has a range of uncovered windows, for
which the solution should apply. Additionally, solution vertices (v, t) are only allowed in
a defined time range described via start-/end-point in T [18]. The Partial ∆-TVC involves
additionally to (G, λ) two functions h : E(G) → [T ] and l : E(G) → [T ] assigning each
edge its highest and lowest uncovered windows. The aim is to find a solution to cover every
edge given the range of uncovered windows of it. We developed Algorithm 3 based on the
description in [18].
The exact algorithm uses a dynamic-programming table f , where every entry corresponds
to exactly one such Partial ∆-TVC problem and stores the size of the optimal solution to it.
The lowest uncovered window is modified to look at different instances. This is achieved
by indexing the table with tuples (t, x1, . . . , xm), where l′(e) = t + xe. The index is split
into the number t ∈ [0, T −∆+ 1] of the starting window Wt and xi ∈ [0,∆] ∀ i ∈ [m].
A minimal sized solution is called witness.
In every recursion one optimal witness for one sub-instance (t, x1, . . . , xm) is found. If all
edges e are covered in window Wt, l′(e) > t and hence xe ̸= 0. In this case we move on to
the next window, since

f(t, x1, . . . , xm) = f(t+ 1, x1 − 1, . . . , xm − 1)

If there are still uncovered edges in the window Wt, there is at least one xi = 0, which
needs to be covered to get to the next recursion. If there are multiple xi = 0 the algorithm
always selects the lowest such i to cover next. To find an optimal witness in this step the
authors use edge configurations and choose the best one to cover the edge.
An edge configuration γ of edge ei consists of all adjacent edges at one endpoint and one
timestep. Formally, if ei = (u,w), Then

γ(ei, t)v = {e ∈ E(G)|v ∈ ei ∩ e, t ∈ λ(t)}
is the edge configuration incident to ei at t in endpoint v. The set of all edge configurations
of ei in endpoint t considers all timesteps, where ei is active, and represented by

γ(et)v = {γ(ei, t)v|t ∈ λ(ei)}
Each of these configurations corresponds to one vertex appearance (v, ti), where v is the
endpoint the configuration is based on and ti is the time, where this configuration appears
in the time window. Hamm et al. [18] proved that it is sufficient to consider the latest
appearance of an edge configuration, in case there are multiple. This vertex appearance
covers ei. Moreover, the edge configuration stores all edges, which are covered in case this
corresponding vertex appearance is added to the solution. In case an edge configuration is
chosen to cover ei, we update all xks of the index according to

x′
k =


ti − t, if k = i

max(xk, ti − t), if k ∈ γ(ei, t)v

xk, otherwise
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4 (SW-)TVC Approximation Algorithms

Algorithm 3 Exact computation of a (partial) SW-TVC on temporal graphs based on the
description in [18]
Input: Compute a partial ∆-TVC for temporal graph (G, λ) with a dynamic programming

table f , and index (t, x), and the highest uncovered window for each edge h
Output: The minimum size of the partial ∆-TVC (t, x, h)

1 Function SolvePartialSWTVC(G, λ, ∆, f , t, x, h):
2 if f(t, x) ̸= ∅ then
3 return f(t, x)[0]
4 end

// Case 1: All edges are covered in window Wt

5 if ∀ xi ∈ x : i ̸= 0 then
// Check if all edges are covered, trivial case

6 if ∀ i ∈ [0, |x| − 1] : x[i] > h[i] then
7 f(t, x) = (0, null, null)
8 end
9 x′[i] = x[i]− 1 ∀ i ∈ [0, |x| − 1]

10 c = SolvePartialSWTV C(f, t+ 1, x′, h)
11 f(t, x) = (c, null, (t+ 1, x′))
12 return c

13 end
// Case 2: At least one edge is not covered in window Wt

14 i = smallest i, where x[i] == 0
15 if Edge i does not appear in Wt then
16 x′[j] = x[j] ∀ j ̸= i ∈ [0, |x| − 1]
17 x′[i] = x[i] + 1
18 c = SolvePartialSWTV C(f, t, x′, h)
19 f(t, x) = (c, null, (t, x′))
20 return c

21 end
22 best = (intmax, null, null)
23 foreach ec ∈ All latest configurations of i in Wt do
24 (v, ti) = Vertex appearance corresponding to ec
25 x′[i] = ti− t
26 x′[j] = max(x[j], ti− t) ∀ j ∈ ec
27 x′[k] = x[k] ∀ k ̸= i /∈ ec
28 c = SolvePartialSWTV C(f, t, x′, h)
29 if c+ 1 < best[0] then
30 best = (c+ 1, (v, ti), (t, x′))
31 end
32 end
33 f(t, x) = best
34 return best[0]
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Input: A dynamic programming table f with the solution, and the start index (t, x)
Output: A minimum size ∆-TVC for the given index

35 Function ExtractSolution(f , t, x):
36 X := ∅
37 repeat
38 (c,v, i) = f(t, x)
39 if v ̸= null then
40 X = X ∪ {v}
41 end
42 (t, x) = i

43 until i == null;
44 return X

Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A minimum size ∆-TVC

45 Function ExactSWTCV(G, ∆):
46 m = |E|
47 Initialize f based on T,m,∆
48 x[i] = 0 ∀ i ∈ [0,m− 1]
49 h[i] = T −∆+ 1 ∀ i ∈ [0,m− 1]
50 SolvePartialSWTV C(G, λ,∆, f, 0, x, h)
51 return ExtractSolution(f, 0, x)
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4 (SW-)TVC Approximation Algorithms

such that f(t, x′
0, . . . , x

′
m) corresponds to the sub-problem similar to f(t, x0, . . . , xm) ex-

cept that all edges are covered, which were covered if (v, ti) of the edge configuration was
added to the solution.
In the description of the algorithm by Hamm et al. [18] not all implementation details
are provided. In particular, those regarding start and default cases, choosing the optimal
solution and storing the witnesses of an entry.
We begin the process with the tuple (0, 0, . . . , 0), referring to the state, where all edges are
uncovered in the first window, and a fixed h(e) = T−∆+1, the last window, to calculate the
Partial ∆-TVC equal to the ∆-TVC problem. The termination case is l′(ei) > h(ei) ∀ i ∈
[m], since no edge needs to be covered, therefore the solution is empty and can be returned.
To find the optimal solution for one f(t, x0, . . . , xm), we test all configurations of ei in both
endpoints and choose the vertex appearances based in the configuration resulting a minimal
solution. The witness of f(t, x0, . . . , xm) is then the witness of f(t, x′

0, . . . , x
′
m) + (v, ti).

In terms of implementation our dynamic programming table f not only stores the size
of the optimal solution, but also the new chosen vertex appearance to add to the wit-
ness and the index to the next considered entry, to provide the possibility to reconstruct
the witness of this entry. By doing so the overall solution of f(0, 0, . . . , 0) can be easily
reconstructed in the end.
Since the dynamic table has space complexity in O((∆+1)mT ) and not all entries are com-
puted, we only store an indexed map instead to be able to calculate large temporal graphs.

4.3.4 Implementation of the d− 1-Approximation Algorithm
While the d-approximation considers every edge in a separated manner and solves a single
edge optimally, Hamm et al. [18] provide a d−1-approximation, based on the idea that not
every edge should be considered separately, but as long as there are at least two connected
uncovered edges they should be considered as a connected triangle. Such a triangle the
authors call P3. The idea is to split the graph in such P3s and solve them optimally. Our
developed pseudocode based on the description in [18] can be found in Algorithm 4.
The algorithm therefore processes the graph in two phases. The first phase runs while there
is still an uncovered P3 and the second phase if only single edges still need to be covered.
In the first phase, the authors select such an uncovered P3 and build independent sub-
instances of Partial ∆-TVC to solve them optimally. Therefore, we consider a set S of all
timesteps, where this P3 is uncovered. This set is split into independent subsets Si. The
independence is provided by a gap of at least 2∆−1 between the highest time label in Si−1

and the lowest time label in Si, since then no two windows with the defined size ∆, one
having a time labels in Si and the other in Si+1, overlap. On every of these Si a Partial ∆-
TVC is build and solved optimally with the exact algorithm in 4.3.3. The instance of
the Partial ∆-TVC is provided by (G[P3], λ

′
i(P3), li(P3), hi(P3)). The graph is restricted

to the three node and two edges of the P3, while λ′
i(P3) assigns the two edges all their

time labels in any window, where at least one time label is in Si. Formally, the range
between [minSi − ∆ + 1,maxSi + ∆ − 1] is considered. Similar, the lowest uncovered
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Algorithm 4 d−1-approximation of SW-TVC on always degree at most d temporal graphs
based on the description in [18]
Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A temporal vertex cover X of (G, λ)

1 X := ∅
2 Initialize U with all edge appearances
// Check if there is an uncovered P3 in some time window Wi

3 foreach e1 = (n1, v) ∈ E ∀ n1 ∈ V do
4 foreach e2 = (u, n2) ∈ E ∀ n2 ∈ V do
5 S = U(e1) ∩ U(e2)
6 if S ≠ ∅ then

// Found a P3

7 SolveSubinstances(S, {e1, e2}, U , X )
8 end
9 end

10 end
// Check if there are any uncovered edges left in some time

window Wi

11 foreach e ∈ E do
12 if U [e] ̸= ∅ then
13 SolveSubinstances(U [e], {e}, U , X )
14 end
15 end
16 return X

Input: The sub-problem, consisting of the uncovered appearances S of the edges in E,
where U are all uncovered appearances, and X is the solution set

Output: No direct output, note that the function edits U and X
17 Function SolveSubinstances(S , E, U , X):
18 Split S into subsets Sk, such that max(Sk)−min(Sk+1 ≥ 2∆− 1 ∀ k)
19 foreach Sk do
20 lmin = min(Sk)−∆+ 1 or 0 if first term is negative
21 lmax = max(Sk) + ∆− 1
22 λ′

i(e) = λ(e) restricted to [lmin, lmax] ∀ e ∈ E
23 (G[V (E), E], λ′

i)
24 x[e] = 0 ∀ e ∈ E
25 h[e] = max(Sk) ∀ e ∈ E
26 Initialize f based on T,m,∆
27 SolvePartialSWTV C(G[V (E), E], λ′

i, f, lmin, x, h) from Algorithm 3
28 XE = ExtractSolution(f, lmin, x) from Algorithm 3
29 X = X ∪ XE

30 end
31 Remove all appearances of e ∈ E in range [min(Sk),max(Sk)]
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4 (SW-)TVC Approximation Algorithms

window for the edges is li(P3) = minSi − ∆ + 1 and the highest uncovered window
is hi(P3) = maxSi. The union of the solutions provided by the exact algorithm are added
to the overall solution.
In the second phase there are no P3s left, but there still may be uncovered single edges.
For each still uncovered edge e independent sub-instances are provided in the same man-
ner as in the first phase. In the beginning the appearances of the single edge are split
in independent subsets Si. The Partial ∆-TVC (G[e], λ′

i(e), li(e), hi(e)) is build on the
graph restricted to the single edge e, where λ′

i(e), li(e) and hi(e) are restricted simi-
lar to the first phase except that only one edge is considered. These sub-instances are
solved optimally again. The union of the solutions with the solution from the first phase
build the overall solution.
The runtime of this algorithm is in O(T 2m2), since the number of P3s is bounded
by O(Tm2), the number of single edges by O(Tm), every restricted exact solution is
computable in O(T ). The approximation ratio d − 1 is proved via the idea to break the
temporal graph into sub-instances of two edge paths, where the middle vertex covers this
optimal. Since at least two edge appearances can not be covered by fewer instances, the
approximation ratio is at most d− 1.
For the implementation the details of the detection of such uncovered P3 and uncovered
edges in general is not provided through the paper. For the consideration of uncovered
edges, we store a mark for all uncovered edge appearances to use for the detections. Then
the detection of P3 can be handled via the center node, i.e. comparing uncovered edges of
a node to check whether they have common appearances.

4.4 SW-TVC on Always Star Temporal Graphs

In this section, the problem is restricted to the special case of always star temporal graphs.
First, we deduce that TVC remains NP-complete on this temporal graph class and then
present two approximation algorithms to improve SW-TVC calculation. The current state
of the art to solve them, would be using the always degree at most d algorithms. The
algorithms devised and presented in this thesis can improve the solution quality as they use
the main idea, that at most one (easily detectable) node in every timestep is included in
the cover, i.e. the star center in that timestep. The first trivial algorithm includes the star
center in every timestep and can approximate the ∆-TVC in O(T ) time with a 2∆ − 1
approximation ratio. A more advanced technique is to check at a timestep if all edges can
be covered by other instances in this window, resulting in a ∆ − 1- approximation, which
is computable in O(Tm∆2) time.

4.4.1 Hardness Conclusion

Akrida et al. [4] proved that TVC is NP-complete on star temporal graphs by showing that
set cover is reducible to it. The problem in fact remains NP-hard on always star temporal
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graphs: star temporal graphs can be seen as the subclass of always star graphs, where the
star center is the same in every timestep. Therefore, this already implies that solving it has
to be at least as hard. Hence, solving TVC on always star temporal graphs is NP-complete.
Therefore, the general SW-TVC is also NP-complete as TVC is the sub-problem of SW-
TVC where ∆ = T . However, Akrida et al [4] provide an FPT algorithm parameterized
by the sliding window size ∆, solving it optimally in O(T∆(n + m) · 2∆). This thesis
provides in the following Algorithms 5 and 6, which are polynomial-time exact algorithms
for the cases ∆ ≤ 1 and ∆ ≤ 2 and approximation algorithms for higher ∆.

4.4.2 Trivial Algorithm
The trivial idea to solve (∆-)TVC problem for always star classes is to include the star
center in every time step, where at least one edge is active, in the cover. To detect the star
center for timesteps with at least two active edges, we compare any two edges to identify
the common vertex. In case only one edge is active in the timestep, both vertices are valid
to be considered as the star center, since through its inclusion all edges in the timestep are
covered. For an only edge e = (v, w) at some timestep we use v as star center. This is
realized in Algorithm 5.

Algorithm 5 Trivial always star algorithm
Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A temporal vertex cover X of (G, λ)

1 X := ∅
2 foreach t in T do
3 if there is an edge e = (u,w) in Et then
4 if Et has more than two edges then
5 X = X ∩ {(centert, t)}
6 else
7 X = X ∩ {(u, t)}
8 end
9 end

10 end
11 return X

Theorem 1. The trivial always star algorithm approximates ∆-TVC on always star tem-
poral graphs with T ≥ ∆ and ∆ ≥ 2 with ratio 2∆− 1 in O(T ) time.

Proof. To prove Theorem 1, we need to prove the running time and approximation ratio
of Algorithm 5. The running time of the algorithm is in O(T ), since we loop over all
timesteps and the detection of the star center is in O(1), as we compare at most two edges.
For the approximation ratio, we need to consider the worst case and compare the solution

31



4 (SW-)TVC Approximation Algorithms

computed by Algorithm 5 with the optimal ∆-TVC. The worst case for the trivial algorithm
is, when all edges are active in all time steps, because in that case our algorithm includes the
(static) star center in every timestep, while only one coverage per window is required for
the minimum TVC. Formally, let the size of the optimal ∆-TVC be x⋆ and the size of our
solution be x. Then x⋆ = ⌊ T

∆
⌋ and x = |X | = T . We need to show that the approximation

ratio x
x⋆ is bounded:

T

⌊ T
∆
⌋
≤ 2∆− 1 (4.1)

To break this down, we consider a representation of the lifetime in terms of the window
size: T = c ·∆ + d, where c, d ∈ N, c ≥ 1 and 0 ≤ d ≤ ∆ − 1. Then, we can derive the
modulo classes Rd ∈ {R0, . . . , R∆−1} for the denominator of the equation. Since the most
round-off is achieved in the R∆−1 class, a value in this class maximizes the ratio T/⌊ T

∆
⌋.

In this class T can be represented as T = c ·∆+(∆− 1) = a ·∆− 1 with a = c+1, a > 1
and hence ⌊a·∆−1

∆
⌋ = a− 1. To derive the maximum value of the left-hand side in equation

(4.1), we consider any value T = a · ∆ − 1 and show that the next larger element of the
class R∆−1, represented as T = (a+1)·∆−1, does not lead to a larger approximation ratio.

a ·∆− 1

a− 1
≥ (a+ 1) ·∆− 1

a

a ·∆− 1 ≥ (a+ 1)(a− 1) ·∆− a+ 1

a

a ·∆− 1 ≥ (a2 − 1) ·∆− a+ 1

a

a ·∆− 1 ≥ (a− 1

a
) ·∆− 1 +

1

a

a ·∆− 1 ≥ a ·∆− 1− ∆− 1

a

0 ≥ 1−∆

Which clearly holds, since ∆ ≥ 2 as stated in Theorem 1. Therefore, the T with the
smallest valid value of a, which is a = 2, leads to the maximum value of T

⌊ T
∆
⌋ .

2∆− 1

⌊2∆−1
∆

⌋
=

2∆− 1

1
= 2∆− 1

Hence, equation (4.1) is true and Algorithm 5 has an approximation ratio of 2∆− 1.

For the case ∆ = 1, the algorithm provides the optimal solution. Which makes sense, since
in the 1-TVC every snapshot is considered separately and the optimal solution consists of
every star center similar to the computed solution by Algorithm 5.
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4.4.3 More Advanced Algorithm
The second algorithm for always star temporal graphs is based on the idea of maintaining a
table to monitor every sliding window and checking if all edges in a certain timestep t can
be covered by other appearances in the window. In that case the star center of t does not
need to be added to the cover for that window. However, it still may be needed to cover the
edges in a later window. The pseudocode for the algorithm can be found in Algorithm 6.
The monitoring table C holds all timesteps of a window and stores for all edges, whether
they are active in it. To have minimal update costs in each iteration we keep a pointer for
the first timestep in the window, which is the only one to be overwritten in every iteration.
An additional vector I stores for each timestep in the current window, whether it is already
included (2), available (1) or excluded (0) form the cover. The process is to iteratively go
through all windows and check if any star center can be excluded from the cover. Therefore,
we firstly update C and I based on the pointer to the first element and then iterate over the
timesteps in the window. If a timestep is not already included in the cover and any of its
edges can not be covered by other appearances, we add the star center of the timestep to the
solution and mark it as included. Otherwise, we exclude it from the cover in that window.
In that case we need to include all star center appearances in timestep t + j to cover that
step in the solution. Each j is chosen optimal (line 21) in the sense that we either choose
the latest appearance to cover it or an earlier one, which is already included in the cover.

Theorem 2. The advanced always star algorithm approximates ∆-TVC on always star
temporal graphs with T ≥ ∆ and ∆ ≥ 2 with ratio ∆− 1 in O(Tm∆2) time.

Proof. The runtime of Algorithm 6 is in O(Tm∆2), since the loops in lines 7 and 10 take
time O(T∆). Checking if any edge is not covered by another star center (line 14) takes
at most O(m∆), since we need to look at all edges in every timestep in the window. The
loop in line 21 takes time at most O(m), since we store the cover candidates of every edge
separately, to choose the optimal candidate. Hence, the overall runtime is in O(Tm∆2).
The approximation ratio of the algorithm results from the fact that the algorithm excludes
the first possible star center appearance which can be covered though others, even if several
others could be excluded later if it was kept in the cover. Therefore, the worst case in
terms of the approximation ratio arises on temporal topologies such as the one shown in
Figure 4.8. In a general instance of the considered topology the lifetime T is a multiple
of ∆. Let Gt denote the (static) subgraph of timestep t. Each subgraph repeats every ∆
timesteps, i.e. Gt = Gt+∆. Moreover, the subgraphs G1, . . . , G∆−1 are distinct in their
edges and E(G0) =

⋃
i∈∆ E(Gi).

The green marked node appearances show the optimal solution, while the red marked ones
are the solution computed by Algorithm 6. The optimal ∆-TVC contains the star center
appearance of every Gi, where i%∆ = 0. Hence, its size is

⌈
T
∆

⌉
, since this is the amount

of such Gi. The solution of Algorithm 6 on the other hand would exclude the star center
appearances of these Gi if ∆ ≥ 2, since they appear first and all their edges can be covered
through the other star center appearances in each window, but would include the star center
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Algorithm 6 More advanced always star algorithm
Input: A temporal graph (G, λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T
Output: A temporal vertex cover X of (G, λ)

1 X := ∅
2 C[∆][m] := ⟨⟨0, . . . , 0⟩, . . . , ⟨0, . . . , 0⟩⟩
3 I[∆] = ⟨1, . . . , 1⟩
4 first = 0
5 Init C for timesteps [0,∆− 2]
6 first = ∆− 1
7 foreach t in [0, T −∆+ 1] do
8 Update C and I for timestep t+∆− 1 at first
9 Update first

10 foreach i in [0,∆− 1] do
11 idxi = (first+ i)%∆
12 if I[idxi] is already included in cover then
13 continue
14 end
15 if Any edge m in C[idxi] is not covered by another (not excluded) star center in Wt

then
16 ti = t+ i
17 X = X ∩ {(centerti, ti)}
18 I[idxi] = 2

19 else
20 I[idxi] = 0
21 foreach optimal j needed to cover an edge mi in i do
22 tj = t+ j
23 idxj = (first+ j)%∆
24 X = X ∩ {(centertj, tj)}
25 I[idxj] = 2

26 end
27 end
28 end
29 end
30 return X
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Figure 4.8: A worst case instance for the star-advance algorithm

of all other timesteps, since the subgraphs in the timesteps {j|i < j < i + ∆ ∀ i%∆ =
0} are distinct in every window. Hence, on instances with the considered topology our
algorithm computes a solution of size T −

⌈
T
∆

⌉
when ∆ ≥ 2, what is stated in Theorem 2.

By decomposing the lifetime over ∆, we get T = a ·∆ + b, where a, b ∈ N+
0 and b < ∆.

To get to the ratio, we distinguish two cases, b = 0 and b > 0. In the first case, we
consider T = a ·∆ (b = 0). The size of the optimal solution is⌈

T

∆

⌉
=

⌈
a ·∆
∆

⌉
= a

Therefore the approximation ratio is

T −
⌈
T
∆

⌉⌈
T
∆

⌉ =
a ·∆− a

a
= ∆− 1

For b > 0 we have T = a ·∆+ b and the size of the optimal solution is⌈
T

∆

⌉
=

⌈
a ·∆+ b

∆

⌉
= a+ 1

In this second case the ratio can be calculated as

T −
⌈
T
∆

⌉⌈
T
∆

⌉ =
a ·∆+ 1− (a+ 1)

a+ 1

=

(
1− 1

a+ 1

)
∆+

b

a+ 1
− 1

= ∆− 1− ∆− b

a+ 1

Since b < ∆ the last subtrahend is always positive and the maximal ratio arise in the first
case. Therefore, the approximation ratio of Algorithm 6 is ∆− 1.
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Similar to Algorithm 5 the more advanced Algorithm 6 computes the optimal solution
for 1-TVC. The algorithm includes every appearing star center in that case, as every win-
dow has size 1 and no appearing edges can be covered by a star center from another
timestep. This is also the optimal solution for 1-TVC. Further, the algorithm is also ex-
act for 2-TVC, since Theorem 2 proves a ratio of 1 for ∆ = 2.
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CHAPTER 5
Experimental Evaluation

This section provides the experimental results of the algorithms presented in Section 4. In
particular, the d-approximation and d− 1-approximation are verified regarding their stated
runtime and approximation bounds. We then test their performance on real-life instances.
Moreover, on restricted inputs of always star temporal graphs the two new approximation
algorithms are tested against the current stateof the art being the approximations for always
at most d approximation algorithms.
For the experiments we use slurm-jobs with 8 cores and 100GiB of RAM on an Ubuntu
20.04.5 LTS machine with linux kernel version 5.4.0-135, 112-core Intel(R) Xeon(R) Gold
6238R CPU running at 2.20GHz, and 512GiB main memory.

5.1 Runtime and Approximation Ratio Verification
for d and d− 1 Approximation Algorithms

The d-approximation algorithm states a runtime of O(Tm) and the d − 1 approximation
a runtime of O(T 2m2). In this part we are running experiments increasing the number of
edges and the lifetime of the input graphs to verify the stated bounds. Moreover, their solu-
tion size is then tested against the exact solver to show the approximation ratio. However,
the approximation experiments are only run on small instances, since the exact algorithm
runs in exponential time.

5.1.1 Runtime Experiments with Increasing Edge Number

The runtime of the stated approximations is dependent on the number of
edges. In these first experiments this is to be checked. Therefore, we
generate graphs with the arbitrary temporal graph generator with n ∈
{2 048, 16 384, 262 144}, T = 256 and the number of edges is varied in m ∈
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Figure 5.1: Runtime comparison in terms of m

{2 048, 301 202, 600 356, 899 510, 1 198 665, 1 497 819, 1 796 973, 2 096 128}. To re-
duce the effect of a generated temporal graph being randomly favored by one of
the algorithms, we generate three instances of each configuration with different
random seeds s ∈ {0, 3, 5}.

Figure 5.1 shows the experimental runtime of computing 16-TVC with the d and d − 1
approximation algorithms averaged with the geometric mean over the instances. The d-
approximation algorithm runs as claimed linear in terms of the edge number, while the d−
1-approximation, which is stated to be quadratic to the edge number, appears to also be
linear on the given instances.

The algorithm works over detecting and covering not yet covered two length paths, so
called P3s. The linear runtime can be explained through the way the detection of these P3s
is implemented, which happens over the center node, e.i. comparing uncovered edges of
every node. Hence, only already connected edges are tested. When the graph has an arbi-
trary topology this results in the maximal underlying degree begin small compared to m.

More detailed insights into these results for both algorithms are shown in Figure 5.2 for
the d-approximation and in Figure 5.3 for the d− 1-approximation. Both clearly show the
linear runtime increase in terms of m on the input graphs.

However, the worst case runtime of the d− 1-approximation is reached on underlying star
temporal graphs, since on these graphs every edge needs to be checked against every other,
because they might form a P3 connected in the single center node of a star temporal graph.
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Algorithms

Figure 5.2: Runtime for the d-approximation in terms of m

Figure 5.3: Runtime for the d− 1-approximation in terms of m

To verify this assumption of the worst case runtime we generate underlying
star temporal graphs with n = 1048576, T = 128 and the number of
edges m ∈ {2 048, 76 653, 151 259, 225 865, 300 470, 375 076, 449 682, 524 288}, again
with random seeds s ∈ {0, 3, 5}. The expected runtime is shown in Figure 5.4.
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Figure 5.4: Runtime comparison in terms of m on underlying star graphs

5.1.2 Runtime Experiments with increasing Lifetime

Next to the number of edges the runtime of the stated approximations is also de-
pended on the lifetime. To show this dependency, we generate different arbi-
trary temporal graphs with n ∈ {128, 2 048, 16 384}, e ∈ {1 024, 8 128} and ran-
dom seeds s ∈ {0, 3, 5}. Moreover, this time the runtime is varied for T ∈
{6, 2 354, 4 692, 7 030, 9 369, 11 707, 14 045}. The runtime results of computing 16-TVC
with the d and d − 1 approximation algorithms averaged with geometric mean are shown
in Figure 5.5 and are as expected for the d-approximation linear to the runtime, while the
d− 1-approximation has quadratic dependency.
More detailed insights into the runtime performance of the algorithms are shown in Fig-
ure 5.6 for the d-approximation and in Figure 5.7 for the d − 1-approximation. In these
each data-point consists of three graphs with the same configuration except of the random
seed s ∈ {0, 3, 5}. The behavior of both algorithms is as expected, showing the linear and
quadratic dependency from the lifetime T .
Moreover, an interesting runtime result shows the variation of ∆, displayed in Fig-
ure 5.8. Therefore, we consider generated arbitrary temporal graph instances with n =
2048, e ∈ {1 024, 8 128} and T = 4692. This time we vary the sliding window
size ∆ ∈ {469, 938, 1 407, 1 876, 2 346, 2 815, 3 284, 3 753, 4 222, 4 692}.
The results state a dependence of ∆ for both algorithms, showing its maximum around ∆ =
T
2

. This makes sense in for both algorithms, as in the d-approximation algorithm during
the optimal solving a single edge, the number of windows to consider and the number of
possible appearances in a window depend on ∆, and for the d−1-approximation algorithm
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Algorithms

Figure 5.5: Runtime comparison in terms of T

Figure 5.6: Runtime for the d-approximation in terms of T

the solving time of a sub-instance as well as the number of sub-instances depend on ∆. This
is particularly interesting, since this shows an additional dependence of the parameter ∆
not covered in the theoretical analysis.
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Figure 5.7: Runtime for the d− 1-approximation in terms of T

Figure 5.8: Runtime comparison in terms of ∆ (T = 4096)

5.1.3 Approximation Ratio Experiments

Next to the runtime bounds, an aim of the thesis is also to verify the stated approximation
ratios. Therefore, instances of always degree at most d temporal graphs are generated
and solved by the approximation algorithms as well as the presented exact algorithm. By
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Algorithms

Figure 5.9: Approximation ratio comparison

dividing the computed solution by the optimal one, we receive the approximation ratio.
This is tested on small instances, since the optimal solution is only computable in exponen-
tial runtime (O(T∆O(m))). As input graphs, we generate always degree at most d graphs
with n = 16, T = 16, and vary the maximal degree d ∈ {5, 8, 11, 14}.
The approximation ratios for 2-TVC are shown in Figure 5.9. To calculate these we di-
vide the computed solutions by the optimal solution, generated by the exact algorithms.
As clearly seen, both algorithms are far within the stated ratios. Surprisingly, the d − 1
approximation performed worse than the d-approximation on these instances. This can be
explained, through the functionality of the d − 1 approximation, since it calculates an op-
timal solution for the P3 in the area affected by all the P3s ([minSi − ∆ + 1,maxSi +
∆ − 1]), but the solution vertex appearances are only computed in the occurrence area
([minSi,maxSi]). On larger graphs this effect is not as substantial. This can be seen in
Figure 5.10, which are the same graphs used in the lifetime increasing experiments.

5.1.4 Experiments on Real-Life Data

As both most d approximation algorithms can solve arbitrary temporal graphs, we test their
performance on reallife graphs. We use graphs from the SNAP library [27], which provides
several social networks based on email communication [36], social media platforms [35],
exchange web sites [36] [26] or hyperlink networks in form of connections between sub-
reddits [24]. The details of the dataset are provided in Table 5.1.
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Figure 5.10: SW-TVC size comparison

As these come in different formats and use timestamps in date format or unix timestamp
(seconds since the epoch), first a preprocessing is required to fit them in the uniform format
used as input for the TVC-solver. In terms of ease, we consider hourly contacts. We remove
the direction of the edges, self-loops and any possible other provided information. The
edges represent then connection point in form of comments, links, etc. between the nodes.

Table 5.1: Reallife temporal graph dataset from the SNAP library [27]
Graph T |V | |E| Description
email-Eu-core-temporal 19 295 1 005 16 064 E-mails between users at a research institution
sx-askubuntu 62 732 515 280 455 691 Comments, questions, and answers on Ask Ubuntu
sx-mathoverflow 56 408 88 580 187 986 Comments, questions, and answers on Math Overflow
sx-superuser 66 560 567 315 714 570 Comments, questions, and answers on Super User
wiki-talk-temporal 55 690 1 140 149 2 787 967 Users editing talk pages on Wikipedia
CollegeMsg 4 649 1 899 13 838 Messages on a Facebook-like platform at UC-Irvine
soc-redditHyperlinks-body 29 184 27 862 137 808 Hyperlinks between subreddits on Reddit
soc-redditHyperlinks-title 29 184 43 694 234 777 Hyperlinks between subreddits on Reddit

Figure 5.11 and 5.12 show the results of a 64-TVC computation normalized by the d-
approximation algorithm. We repeated the experiments three times and built the geo-
metric mean. The detailed results can be found in Table A.1. As expected the d − 1-
approximation algorithm provides better solutions in all cases. Using improvement calcu-
lated as

(
σB

σA
− 1

)
∗ 100% [13], where Algorithm A is compared with Algorithm B and σS

is some objective, the d− 1-approximation algorithm achieved an improvement of 11,58%
in solution size. Rather surprising, is that the d− 1-approximation algorithm is also faster
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Figure 5.11: 64-TVC size comparison on real-life instances

than the d-approximation algorithm is most case, achieving a spectacular time improve-
ment of 1 031,02%. This can be explained as all these graphs are rather sparse in terms of
edge appearances. While the implementation of the d− 1-approximation algorithm works
on uncovered labels, the d-approximation algorithms iterates for every edge through the
lifetime.

5.2 Experimental Evaluation of new Always Star
Approximation Algorithms

The current state of the art provides the always degree at most d approximation algorithms
to solve always star temporal graphs. In Section 4.4 two new algorithms for this restricted
case are presented. This section provides an experimental evaluation of them against the
current state.

5.2.1 Experiments under the Condition ∆ < d

Therefore, we generate always star temporal graphs with n = 128, T = 64 and the random
seed s ∈ {0, 3}. To provide a comparison with the d and d − 1-algorithms, we vary the
maximum degree of the graphs d ∈ {10, 15, 20, 25, 30}. Moreover, to get better insight
into the approximation ratios we also use (underlying) star temporal graphs, a subclass
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Figure 5.12: 64-TVC runtime comparison on real-life instances

of the always star temporal graphs. By doing so, we increase the inputs, where the new
always star algorithms can not compute the optimal solution, since the worst cases of both
algorithms also originate from this class. For the generation we use the same configuration
as for the always star ones. In total, the graph dataset used consists of one half always star
and one half star temporal graphs. The instances with their class, maximal degree, lifetime
and number of nodes and edges are displayed in Table 5.2.
The results of the 3- and 4-TVC are displayed in Figure 5.13, where the solution size is nor-
malized by the exact solution. This experiment shows that the star algorithms provide far
better, even close to optimal solutions than the d-approximation algorithm in this scenario.
As expected the d − 1-approximation performances much better than the d approxima-
tion, as the d− 1-approximation searches for uncovered triangles, leading to the detection
of the star center.
To get insight into the overall performance, we also compare the running time to compute
the solutions and normalized the results by the fastest algorithm. Figure 5.14 shows that
the runtime of the d − 1-approximation algorithm, is by far the largest (≈ 29,977 ms
per instances), while the other algorithms are much faster. The per instances runtimes
are ≈ 0,056 ms for the star-trivial, ≈ 0,917 ms for the d-approximation and ≈ 1,457
for the star-advance approximation, which is completely within the expectations since the
number of edges in the graphs increases with the increase of d, as shown in Table 5.2.
The details of the experiments can be found in Table A.2 and Table A.3. Overall, the
both the star-trivial and the star-advance approximation provide better solutions in shorter
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Table 5.2: Graph dataset 1 of always star temporal graphs
Class Maximal degree d Lifetime T Number of Nodes |V | Number of Edges |E|
star 10 64 128 564
star 10 64 128 548
star 10 64 128 569
star 15 64 128 796
star 15 64 128 784
star 15 64 128 808
star 20 64 128 1 024
star 20 64 128 981
star 20 64 128 1 024
star 25 64 128 1 237
star 25 64 128 1 173
star 25 64 128 1 222
star 30 64 128 1 443
star 30 64 128 1 350
star 30 64 128 1 423
ustar 10 64 128 10
ustar 10 64 128 10
ustar 10 64 128 10
ustar 15 64 128 15
ustar 15 64 128 15
ustar 15 64 128 15
ustar 20 64 128 20
ustar 20 64 128 20
ustar 20 64 128 20
ustar 25 64 128 25
ustar 25 64 128 25
ustar 25 64 128 25
ustar 30 64 128 30
ustar 30 64 128 30
ustar 30 64 128 30

runtime than the d − 1-approximation. While the d-approximation is faster than the star-
advance approximation, its computed solutions are not competetive.

5.2.2 Experiments under the Condition ∆ > d

In terms of analysis the d and d−1-approximations provide better worst case ratios as than
star-trivial and the star-advance approximation, being 2∆ − 1 and ∆ − 1, when ∆ > d.
But the worst case scenario especially for the star-advance approximation is very specific.
We would argue that in most cases the star-advance algorithm still outperforms the most d
approximations, as it is specifically designed for always star temporal graphs and includes
at most one vertex in any timestep. Therefore, the following experiments test the algorithms
in the case where ∆ > d.
The input graph dataset consists again of always star and star temporal graphs generated
with n = 128, T = 64 and the random seed s ∈ {0, 3, 5}. The maximal degree is small d ∈
{3, 4, 5, 6, 7, 8}. Table 5.3 shows the generated temporal graph dataset with class, maximal
degree, lifetime and number of nodes and edges.
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Figure 5.13: Approximation ratios on always star temporal graphs

Figure 5.14: Runtime comparison on always star temporal graphs
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Table 5.3: Graph dataset 2 of always star temporal graphs
Class Maximal degree d Lifetime T Number of Nodes |V | Number of Edges |E|
star 2 64 128 125
star 2 64 128 124
star 2 64 128 127
star 4 64 128 243
star 4 64 128 236
star 4 64 128 245
star 5 64 128 299
star 5 64 128 291
star 5 64 128 296
star 6 64 128 353
star 6 64 128 345
star 6 64 128 350
star 7 64 128 411
star 7 64 128 396
star 7 64 128 406
star 8 64 128 463
star 8 64 128 446
star 8 64 128 460
ustar 2 64 128 2
ustar 2 64 128 2
ustar 2 64 128 2
ustar 4 64 128 4
ustar 4 64 128 4
ustar 4 64 128 4
ustar 5 64 128 5
ustar 5 64 128 5
ustar 5 64 128 5
ustar 6 64 128 6
ustar 6 64 128 6
ustar 6 64 128 6
ustar 7 64 128 7
ustar 7 64 128 7
ustar 7 64 128 7
ustar 8 64 128 8
ustar 8 64 128 8
ustar 8 64 128 8

To ensure the discussed condition of ∆ + 1 > d in any case, we compute 20-TVC. Fig-
ure 5.15 displays the normalized results, showing that our expectation that the star-advance
algorithm computes the best results is true. The star-trivial approximation becomes better
with increase of the maximal degree. This can be explained through the fact that in these
cases especially for underlying stars the size of the optimal solution increases, while the
computed size stays the same. On the one hand the increase of the degree of the underly-
ing star, leads to a larger optimal solution, because there are more possible combinations of
edges in a window. The solution of the star-trivial approximation on the other hand consists
still of every star center and its size stays the same.
To complete these experimental results, Figure 5.16 shows the runtime for computing 20-
TVC on these inputs normalized by the fastest algorithm. Similar to before, within the
runtime expectations, the d − 1-approximation algorithm is the slowest with ≈ 6,854 ms
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Figure 5.15: Approximation ratios on small degree always star temporal graphs

per instance. The star-advance approximation algorithm follows, with ≈ 2,278 ms, fol-
lowed then by the d-approximation algorithm with ≈ 0,259 ms and then the star-trivial
algorithm with ≈ 0,054 ms.
The detailed results are shown in Table A.4. It is clearly shown that the star star-advance
approximation algorithm outperforms the d − 1-approximation in almost all instances
in shorter runtime.

5.2.3 Experiments on large Instances
The experiments in the previous subsection only work with small instances of always star
temporal graphs as they provide the exact solution as reference, which is not computable
in a reasonable time for larger ones. Therefore, we compare in the next experiment only
the size of the approximations for SW-TVC.
We use always star and star temporal graphs as inputs, with n ∈ {1 024, 4 096}, d ∈
{5, 50, 100} and the random seed s ∈ {0, 3, 5}. We increase our input over the life-
time T ∈ {2 354, 4 692, 7 030, 9 369, 11 707, 14 045}. The generated temporal graphs with
class, maximal degree, lifetime and number of nodes and edges are shown in Table 5.4.
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Figure 5.16: Runtime comparison on always star small degree temporal graphs

Table 5.4: Graph dataset 3 of always star temporal graphs
Class Maximal degree d T |V | |E| Class Maximal degree d T |V | |E|
star 100 11 707 1 024 22 126 ustar 100 11 707 1 024 100
star 100 11 707 1 024 21 449 ustar 100 11 707 1 024 100
star 100 11 707 1 024 21 770 ustar 100 11 707 1 024 100
star 50 11 707 1 024 13 930 ustar 50 11 707 1 024 50
star 50 11 707 1 024 13 471 ustar 50 11 707 1 024 50
star 50 11 707 1 024 13 765 ustar 50 11 707 1 024 50
star 5 11 707 1 024 6 340 ustar 5 11 707 1 024 5
star 5 11 707 1 024 6 225 ustar 5 11 707 1 024 5
star 5 11 707 1 024 6 289 ustar 5 11 707 1 024 5
star 100 11 707 4 096 21 954 ustar 100 11 707 4 096 100
star 100 11 707 4 096 22 187 ustar 100 11 707 4 096 100
star 100 11 707 4 096 22 007 ustar 100 11 707 4 096 100
star 50 11 707 4 096 13 768 ustar 50 11 707 4 096 50
star 50 11 707 4 096 13 967 ustar 50 11 707 4 096 50
star 50 11 707 4 096 13 909 ustar 50 11 707 4 096 50
star 5 11 707 4 096 6 293 ustar 5 11 707 4 096 5
star 5 11 707 4 096 6 358 ustar 5 11 707 4 096 5
star 5 11 707 4 096 6 401 ustar 5 11 707 4 096 5
star 100 14 045 1 024 22 784 ustar 100 14 045 1 024 100
star 100 14 045 1 024 22 217 ustar 100 14 045 1 024 100
star 100 14 045 1 024 22 335 ustar 100 14 045 1 024 100
star 50 14 045 1 024 14 448 ustar 50 14 045 1 024 50
star 50 14 045 1 024 14 033 ustar 50 14 045 1 024 50
star 50 14 045 1 024 14 200 ustar 50 14 045 1 024 50
star 5 14 045 1 024 6 663 ustar 5 14 045 1 024 5
star 5 14 045 1 024 6 588 ustar 5 14 045 1 024 5
star 5 14 045 1 024 6 621 ustar 5 14 045 1 024 5
star 100 14 045 4 096 22 705 ustar 100 14 045 4 096 100
star 100 14 045 4 096 22 734 ustar 100 14 045 4 096 100
star 100 14 045 4 096 22 759 ustar 100 14 045 4 096 100
star 50 14 045 4 096 14 325 ustar 50 14 045 4 096 50
star 50 14 045 4 096 14 420 ustar 50 14 045 4 096 50
star 50 14 045 4 096 14 447 ustar 50 14 045 4 096 50
star 5 14 045 4 096 6 678 ustar 5 14 045 4 096 5
star 5 14 045 4 096 6 686 ustar 5 14 045 4 096 5
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star 5 14 045 4 096 6 722 ustar 5 14 045 4 096 5
star 100 2 354 1 024 16 456 ustar 100 2 354 1 024 100
star 100 2 354 1 024 15 571 ustar 100 2 354 1 024 100
star 100 2 354 1 024 15 950 ustar 100 2 354 1 024 100
star 50 2 354 1 024 9 869 ustar 50 2 354 1 024 50
star 50 2 354 1 024 9 483 ustar 50 2 354 1 024 50
star 50 2 354 1 024 9 582 ustar 50 2 354 1 024 50
star 5 2 354 1 024 3 673 ustar 5 2 354 1 024 5
star 5 2 354 1 024 3 684 ustar 5 2 354 1 024 5
star 5 2 354 1 024 3 581 ustar 5 2 354 1 024 5
star 100 2 354 4 096 15 722 ustar 100 2 354 4 096 100
star 100 2 354 4 096 16 554 ustar 100 2 354 4 096 100
star 100 2 354 4 096 16 579 ustar 100 2 354 4 096 100
star 50 2 354 4 096 9 502 ustar 50 2 354 4 096 50
star 50 2 354 4 096 9 965 ustar 50 2 354 4 096 50
star 50 2 354 4 096 9 990 ustar 50 2 354 4 096 50
star 5 2 354 4 096 3 627 ustar 5 2 354 4 096 5
star 5 2 354 4 096 3 672 ustar 5 2 354 4 096 5
star 5 2 354 4 096 3 734 ustar 5 2 354 4 096 5
star 100 4 692 1 024 19 147 ustar 100 4 692 1 024 100
star 100 4 692 1 024 18 043 ustar 100 4 692 1 024 100
star 100 4 692 1 024 18 667 ustar 100 4 692 1 024 100
star 50 4 692 1 024 11 728 ustar 50 4 692 1 024 50
star 50 4 692 1 024 11 201 ustar 50 4 692 1 024 50
star 50 4 692 1 024 11 452 ustar 50 4 692 1 024 50
star 5 4 692 1 024 4 764 ustar 5 4 692 1 024 5
star 5 4 692 1 024 4 734 ustar 5 4 692 1 024 5
star 5 4 692 1 024 4 712 ustar 5 4 692 1 024 5
star 100 4 692 4 096 18 077 ustar 100 4 692 4 096 100
star 100 4 692 4 096 19 116 ustar 100 4 692 4 096 100
star 100 4 692 4 096 18 733 ustar 100 4 692 4 096 100
star 50 4 692 4 096 11 132 ustar 50 4 692 4 096 50
star 50 4 692 4 096 11 717 ustar 50 4 692 4 096 50
star 50 4 692 4 096 11 552 ustar 50 4 692 4 096 50
star 5 4 692 4 096 4 738 ustar 5 4 692 4 096 5
star 5 4 692 4 096 4 798 ustar 5 4 692 4 096 5
star 5 4 692 4 096 4 797 ustar 5 4 692 4 096 5
star 100 7 030 1 024 20 426 ustar 100 7 030 1 024 100
star 100 7 030 1 024 19 517 ustar 100 7 030 1 024 100
star 100 7 030 1 024 19 848 ustar 100 7 030 1 024 100
star 50 7 030 1 024 12 676 ustar 50 7 030 1 024 50
star 50 7 030 1 024 12 143 ustar 50 7 030 1 024 50
star 50 7 030 1 024 12 370 ustar 50 7 030 1 024 50
star 5 7 030 1 024 5 445 ustar 5 7 030 1 024 5
star 5 7 030 1 024 5 377 ustar 5 7 030 1 024 5
star 5 7 030 1 024 5 411 ustar 5 7 030 1 024 5
star 100 7 030 4 096 20 021 ustar 100 7 030 4 096 100
star 100 7 030 4 096 20 303 ustar 100 7 030 4 096 100
star 100 7 030 4 096 20 142 ustar 100 7 030 4 096 100
star 50 7 030 4 096 12 352 ustar 50 7 030 4 096 50
star 50 7 030 4 096 12 583 ustar 50 7 030 4 096 50
star 50 7 030 4 096 12 560 ustar 50 7 030 4 096 50
star 5 7 030 4 096 5 373 ustar 5 7 030 4 096 5
star 5 7 030 4 096 5 468 ustar 5 7 030 4 096 5
star 5 7 030 4 096 5 492 ustar 5 7 030 4 096 5
star 100 9 369 1 024 21 465 ustar 100 9 369 1 024 100
star 100 9 369 1 024 20 692 ustar 100 9 369 1 024 100
star 100 9 369 1 024 20 948 ustar 100 9 369 1 024 100
star 50 9 369 1 024 13 425 ustar 50 9 369 1 024 50
star 50 9 369 1 024 12 921 ustar 50 9 369 1 024 50
star 50 9 369 1 024 13 164 ustar 50 9 369 1 024 50
star 5 9 369 1 024 5 954 ustar 5 9 369 1 024 5
star 5 9 369 1 024 5 848 ustar 5 9 369 1 024 5
star 5 9 369 1 024 5 908 ustar 5 9 369 1 024 5
star 100 9 369 4 096 21 185 ustar 100 9 369 4 096 100
star 100 9 369 4 096 21 440 ustar 100 9 369 4 096 100
star 100 9 369 4 096 21 303 ustar 100 9 369 4 096 100
star 50 9 369 4 096 13 173 ustar 50 9 369 4 096 50
star 50 9 369 4 096 13 375 ustar 50 9 369 4 096 50
star 50 9 369 4 096 13 394 ustar 50 9 369 4 096 50
star 5 9 369 4 096 5 894 ustar 5 9 369 4 096 5
star 5 9 369 4 096 5 961 ustar 5 9 369 4 096 5
star 5 9 369 4 096 5 990 ustar 5 9 369 4 096 5
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Figure 5.17: 16-TVC size comparison on large always star temporal graphs

On these inputs we compute the 16-TVC. Table A.5 shows the detailed results. The nor-
malized sizes of the computed solutions are shown in Figure 5.17. They show the expected
results of the d-approximation algorithm performing worst with an average 16-TVC size of
19 582, then the star-trivial approximation algorithm with 7 908. The d− 1 approximation
algorithm reaches an average size of 3 441, which is again surpassed by the star-advance
approximation algorithm with 2 450. This is an improvement of 40.46% of the star-advance
approximation compared to the d− 1 approximation.
The runtimes normalized by the fastest algorithm of this experiment is shown in Fig-
ure 5.18. The star-trivial approximation algorithm runs on average 12,13ms per instances,
followed by the d-approximation algorithm with 256,16ms and the star-advance approxi-
mation algorithm 3 199,48ms. The longest runtime per instance is needed by the d− 1 ap-
proximation algorithm with on average 6 996,85ms per instances. Taking the improvement
formula from above this leads to a time improvement of the star-advance approximation
algorithm of 218.69%.
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Figure 5.18: Runtime comparison on large always star temporal graphs
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CHAPTER 6
Discussion

6.1 Evaluation

This section assesses the research questions formulated in Section 1 and how they are
answered, and identifies the limitations which the thesis is subject to.

6.1.1 Improvement Through the new Always Star
Approximation Algorithms

The experiments in the previous section have shown that the new star approximation algo-
rithms perform better on always star temporal graphs because they use the known topology
of this class of graphs. In particular, both star approximation algorithms outperform the
current best known approximations, even in the case ∆ + 1 > d the star-advance ap-
proximation algorithms outperforms the approximation algorithms with at most degree d
for most temporal graphs.
The experiments where ∆ < d (see Figure 5.13) clearly show that the provided star ap-
proximation algorithms always provide the best, even near-optimal solution. They also
verify the expected behavior of the d-approximation computing worse in terms of solution
size than the d− 1-approximation for these inputs.
In the experiment on small maximal degree temporal graphs with a large window size ∆
(see Figure 5.15) the condition ∆+ 1 > d holds, leading to the analytical fact, that ∆− 1-
approximation provided by the advance star algorithm and 2∆−1-approximation provided
by the star-trivial algorithm might compute worse results than the d- or d−1-approximation.
However, the experiments prove that assumption to be wrong for the star-advance approx-
imation algorithm on most inputs, because its worse case is very specific.
Comparing the computation of 16-TVC on larger instances (see Figure 5.17) again clearly
show the superiority of the star-advance algorithm with an 40.46% solution size improve-
ment and 218.69% runtime improvement compared to the d− 1-approximation.
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Overall, the experiments reveal significant improvement of the solution size of the (∆)-
TVC on always star temporal graphs achieved by the star-advance approximation algo-
rithms compared to the know state of research.

6.1.2 Research Questions
The two questions answered in this thesis were how (∆-)TVC can be approximated effi-
ciently and how to achieve a better approximation of (∆-)TVC on the restricted input of
always star temporal graphs.
The overview of the state of research showed that (∆-)TVC is NP-hard on arbitrary inputs.
Moreover, several exact and approximation algorithms have been provided in the literature
for arbitrary and specific temporal graph classes. To experimentally demonstrate the per-
formance of these approximations, we choose one exact algorithm and two approximation
algorithms, with d and d − 1 approximation ratios for always degree at most d temporal
graphs, for implementation in the TVC-solver framework. The advantage of these algo-
rithms is, that they can run on every input graph, while the solution quality is bounded by
the maximum degree d. Therefore, we were able to run them on real-life instances not
categorized in any temporal graph class. Using these as inputs, which are sparse in their
edge appearances, the d − 1 approximation algorithm outperformed the d approximation
algorithm with an 11,58% improvement in solution size and 1 031,02% in runtime. Over-
all, the experiments on these approximations gave a good overview on how (∆-)TVC can
be approximated efficiently. Especially when the inputs are sparse in their edge appear-
ances, the d− 1 approximation algorithm is a good solution. Since the focus in this thesis
was on providing a first implementation and verify the stated complexity, we believe some
additional engineering in the implementations is possible to make the computations faster
in their actual runtime.
For the restricted input of always star temporal graphs we provide two algorithms using the
known topology of the input graph class to derive better approximation ratios. They take
advantage of the fact, that at most one vertex appearance, the star center, in any timestep
should be included into the solution. By doing so the star-trivial approximation algorithm
we derive achieves a 2∆ − 1 ratio in O(T ) and the star-advance approximation algorithm
achieves a ∆ − 1 ratio in O(Tm∆2). They all known approximations in terms of solu-
tion quality, even if they are analytically not directly comparable, as they use different
parameters in their worst case bounds. This was still the case on graphs where ∆ > d. In
terms of runtime, the star-advance algorithm is much faster than the d − 1 approximation
and slower than the d-approximation, with regard to exact analyzed runtimes. Looking
at the initial question of how to achieve better approximations for (∆-)TVC on the re-
stricted input of on always star temporal graphs, this can clearly be answered using the
provided star-advance algorithm.
Which algorithm a practitioner uses depends heavily on the input data set. If it can be
restricted to the class of always star temporal graphs and ∆ >> d does not apply, this
thesis showed that the star advance approximation algorithm is the best choice.
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6.1.3 Limitations

The used datasets in the experiments were mostly artificially created by the temporal graph
generator presented in Section 4.2. As the real-life temporal graph dataset lack a classifica-
tion into temporal graph classes, especially the always star temporal graph class, we were
only able to run the always at most d algorithms on real-life data.
In terms of the approximation ratio, the experiments were limited by the exact solver, whose
runtime and space usage were both exponential. Therefore, the available resources are
easily exhausted even by small input sizes. In terms of space the algorithm has the dynamic
programming table and the dynamic programming recursive function calls, both increasing
exponentially with the input. Through the use of an indexed map instead of a full table,
the space used was reduced to only contain the actually computed values. Even with this
improvement the algorithms aborts on most instances, because there is not enough memory
available and can only compute solutions on very small instances.
For further research it could be interesting to look at other exact solvers as the one provided
by Akrida et al. [4] as this is almost optimal in terms of runtime, assuming the ETH.
This approach still uses dynamic programming, which could lead to a bottleneck for the
space usage. As the exact solving is NP-hard in any case, there is no efficient algorithm
for this, yet the considerations of other techniques and improvements could lead to the
computation of exact solutions for slightly larger inputs, without the computation being
aborted by exhausting the space resources.
The experiments ran on a server with slurm scheduler. Therefore, even if the setup for all
the experiments was the same for all experiments (8 cores with 100GiB), the other running
jobs on the server might have had an impact in the frequency of the CPUs and therefore the
runtimes as well.

6.2 Conclusion

This section presents the key findings in this thesis and offers an outlook on further work
in the field of temporal graphs.
The aims of the thesis were to explore the state of the art algorithms for extensions of the
vertex cover problem into the temporal environment, to evaluate them experimentally and
to make improvements for the restricted case of always star temporal graphs. These were
fulfilled by giving a survey of the current state of research, providing a temporal graph
generator and a framework in which (SW-)TVC can be solved, then presenting two new
approximation algorithms, and finally performing several experiments with them.
The presented temporal graph generator enables the generation of temporal graphs with
defined temporal graph classes, in particular arbitrary, always at most d-degree, always star
and star temporal graphs.
A key achievement of this thesis is the TVC-solver framework, which provides implemen-
tations for solving SW-TVC covering five algorithms. When the silding window size ∆

57



6 Discussion

is configured as T , then these algorithms also solve the TVC problem. The framework
offers a first implementation for the d and d − 1 approximation algorithms for always at
most degree d temporal graphs presented in [4], [18] and a first implementation of the
exact algorithm presented in [18]. Moreover, the framework implements of the two new
approximation algorithms presented in this thesis.
This already leads to the second main achievement being the introduction of these two
new approximation algorithms for computing ∆-TVC on the restricted case of always star
temporal graphs. The first trivial approach includes every star center and leads to a 2∆− 1
approximation ratio in O(T ) runtime. The second approach is based on the more advanced
idea, that a star center only needs to be included if there is any edge in the associated
timestep not appearing again in any window which includes that timestep. This algorithm
offers a ∆− 1 approximation ratio in O(Tm∆2) runtime.
In conclusion, we provide the implementations for a temporal graph generator and a TVC-
solver framework with known algorithms as well as the proposed star-trivial and star-
advance approximation algorithms.
The purpose of the experiments was to verify the runtime and approximation ratios stated
for the known approximation algorithms and to test them against the proposed algorithms
on always star temporal graphs.
For the first aim the runtimes and approximation ratios of the d and d−1 approximation al-
gorithms were tested. Therefore, the first experiments were run with increasing edge num-
bers and lifetime, where the d-approximation stated a linear increase and the d−1 approxi-
mation a quadratic on in both parameters. While all stated bounds for the d-approximation
held, the implementation of the d− 1 approximation lead to a linear runtime increase over
the edge number on arbitrary temporal graphs. Nevertheless, the worst runtime with re-
spect to the number of edges could be shown on underlying star temporal graphs. The ratio
verifications were only run on small instances since the exact algorithm runs in exponential
time, but they showed the ratios on arbitrary graphs were well within the stated bounds.
On real-life instances the d − 1 approximation algorithm is found to be the best choice
considering solution size as well as runtime.
The second part of the experimental evaluation was to test the new proposed approximation
algorithms on always star temporal graphs against the best current state of the art being
the d and d − 1 approximation algorithms. The exact ratios again were only testable on
small instances. The experiments clearly show that both proposed algorithms outperform
the best known algorithm, the d− 1 approximation, in shorter runtime.
Looking at the approximation ratios when computing a ∆-TVC in the case ∆ > d in-
dicates that one would get a better solution using the d − 1 approximation algorithm.
However, the experiments show that the star-advance algorithm outperforms in shorter
runtime the d− 1 approximation algorithm even in that case on all tested inputs. The star-
trivial algorithm computes, as expected, a worse solution when considering very small d,
as on underlying star temporal graphs this generates to close to static graphs, the worst
case for this algorithm. The experiments on larger instances show that the star-advance al-
gorithm leads to an 40.46% improvement in the solution size and 218.69% improvement
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in the runtime compared to the d− 1-approximation when computing the 16-TVC.
Overall, the experimental evaluation has shown the runtime and quality bounds for the
known algorithms and confirmed an improvement in both runtime and ratio of the proposed
star-advance algorithm against the d− 1-approximation algorithm.

6.3 Further work

To build on the research presented in this thesis, there are several directions for further
work. One possible area could be to make the temporal graph generation more efficient.
As the focus of this thesis was primarily on the approximation algorithms and their im-
plementation and analysis, there may be opportunities to optimise the graph generation
process to allow for faster and perhaps parallel generation.
Another area of interest would be to implement other exact or approximation algorithms
for (SW)-TVC in the presented TVC-solver framework on general or other restricted tem-
poral graphs or to engineer the implemented ones, as we believe there still could be some
improvements made to allow computations on larger graphs in shorter time. Furthermore,
the framework could be extended by implementing algorithms for other temporal graph
problems such as temporal matching or temporal coloring.
In terms of (SW)-TVC analysis, one could also consider restrictions to other classes of
temporal graphs and to analyse these cases in terms of complexity and potential approxi-
mation ratios. By studying the problem for these constrained inputs, it may be possible to
develop more efficient or even optimal algorithms to compute it.
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APPENDIX A
Further Results

This section presents further details of the experiments above. Note that the artificial graphs
are described in the form graphclass_maxd_T_n_m_seed.

A.1 Details of the Experiments on Real-Life
Instances

Table A.1: Results for the 64-TVC on real-life temporal graphs
dapprox d1approx

Graph |∆-TVC| t |∆-TVC| t

CollegeMsg 21 649 19 493,071 19 693 9 119,800
email-Eu-core-temporal-Dept1 25 230 7 249,439 19 605 12 152,959
email-Eu-core-temporal-Dept2 19 848 5 731,778 17 211 9 905,366
email-Eu-core-temporal-Dept3 7 308 5 461,386 5 916 3 557,490
email-Eu-core-temporal-Dept4 16 716 4 738,784 13 157 11 805,710
soc-redditHyperlinks-body 268 512 884 924,502 242 497 28 868,536
soc-redditHyperlinks-title 521 559 1 389 602,348 459 034 71 972,082
sx-mathoverflow-a2q 99 904 1 000 302,961 92 882 9 142,004
sx-mathoverflow-c2a 113 990 803 290,062 106 658 17 392,584
sx-mathoverflow-c2q 121 238 994 914,564 110 552 16 404,972
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A.2 Details of the Experiments under the
Condition ∆ < d

Table A.2: Results for the 3-TVC on small degree always star temporal graphs
Exact dapprox d1approx startriv staradv

Graph |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t

star_10_64_128_564_0 64 24 630,741 307 1,464 64 18,052 64 0,055 64 3,407
star_10_64_128_548_3 64 24 347,696 325 1,378 64 17,049 64 0,055 64 3,498
star_15_64_128_796_0 64 55 813,187 440 2,694 65 34,736 64 0,061 64 4,542
star_15_64_128_784_3 64 57 717,567 478 1,968 71 33,852 64 0,055 64 4,709
star_20_64_128_1024_0 64 98 117,401 593 2,695 64 33,238 64 0,056 64 6,074
star_20_64_128_981_3 64 91 840,151 626 1,980 64 53,555 64 0,043 64 6,014
star_25_64_128_1237_0 64 162 988,901 750 3,213 65 32,419 64 0,056 64 7,548
star_25_64_128_1173_3 64 155 141,819 788 3,108 67 43,529 64 0,056 64 6,886
star_2_64_128_125_0 64 857,431 100 0,333 64 4,433 64 0,054 64 0,936
star_2_64_128_124_3 64 850,592 104 0,324 64 3,261 64 0,054 64 0,837
star_30_64_128_1443_0 64 227 029,399 906 3,167 64 45,736 64 0,056 64 8,675
star_30_64_128_1350_3 64 200 734,248 954 3,665 64 58,075 64 0,057 64 7,905
star_5_64_128_299_0 64 6 143,851 181 0,743 68 8,747 64 0,058 64 1,943
star_5_64_128_291_3 64 5 680,281 189 0,748 72 11,059 64 0,055 64 1,843
ustar_10_64_128_10_0 50 303,007 126 0,180 63 16,797 63 0,052 51 0,240
ustar_10_64_128_10_3 56 105,587 61 0,378 62 12,324 63 0,072 58 0,369
ustar_15_64_128_15_0 58 1 302,143 161 0,271 69 17,410 63 0,055 59 0,283
ustar_15_64_128_15_3 60 417,719 101 0,240 62 15,305 63 0,052 62 0,276
ustar_20_64_128_20_0 61 5 210,725 212 0,333 68 19,754 63 0,054 61 0,312
ustar_20_64_128_20_3 62 2 775,284 143 0,306 69 15,558 63 0,054 62 0,303
ustar_25_64_128_25_0 63 40 181,146 279 0,426 80 39,615 63 0,061 63 0,367
ustar_25_64_128_25_3 63 10 569,073 183 0,391 74 24,468 63 0,054 63 0,352
ustar_2_64_128_2_0 28 3,247 44 0,077 32 3,604 55 0,041 30 0,144
ustar_2_64_128_2_3 24 1,709 25 0,065 26 1,152 36 0,028 26 0,121
ustar_30_64_128_30_0 63 127 914,023 316 0,515 80 34,036 63 0,055 63 0,379
ustar_30_64_128_30_3 63 27 637,473 193 0,463 72 42,580 63 0,054 63 0,372
ustar_5_64_128_5_0 34 42,953 98 0,203 46 12,405 63 0,052 36 0,216
ustar_5_64_128_5_3 46 19,421 56 0,112 57 4,359 62 0,051 51 0,188

Table A.3: Results for the 4-TVC on small degree always star temporal graphs
Exact dapprox d1approx startriv staradv

Graph |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t

star_10_64_128_564_0 64 26 360,635 307 1,542 64 18,032 64 0,055 64 3,333
star_10_64_128_548_3 64 26 005,341 324 1,438 64 16,357 64 0,055 64 3,366
star_15_64_128_796_0 64 58 346,683 440 2,766 65 37,479 64 0,080 64 6,330
star_15_64_128_784_3 64 62 872,995 477 2,076 71 39,789 64 0,054 64 4,743
star_20_64_128_1024_0 64 108 204,005 593 2,732 64 38,201 64 0,058 64 6,032
star_20_64_128_981_3 64 105 096,569 625 2,608 64 53,957 64 0,054 64 6,052
star_25_64_128_1237_0 64 180 665,710 749 3,354 65 33,481 64 0,057 64 7,443
star_25_64_128_1173_3 64 188 687,488 786 3,210 67 45,411 64 0,056 64 6,934
star_2_64_128_125_0 64 815,347 100 0,342 64 2,293 64 0,055 64 0,848
star_2_64_128_124_3 64 830,142 104 0,338 64 3,364 64 0,053 64 0,864
star_30_64_128_1443_0 64 280 464,185 905 3,972 64 42,995 64 0,060 64 8,538
star_30_64_128_1350_3 64 282 755,102 951 3,811 64 57,302 64 0,056 64 8,000
star_5_64_128_299_0 64 5 868,629 181 0,760 68 8,670 64 0,057 64 1,711
star_5_64_128_291_3 64 5 648,038 189 0,766 72 11,952 64 0,055 64 1,890
ustar_10_64_128_10_0 47 907,205 108 0,165 59 18,761 63 0,055 52 0,341
ustar_10_64_128_10_3 48 368,975 55 0,301 59 12,452 63 0,075 52 0,447
ustar_15_64_128_15_0 54 5 672,509 140 0,241 67 16,201 63 0,056 57 0,364
ustar_15_64_128_15_3 54 2 822,163 91 0,209 61 16,702 63 0,052 56 0,342
ustar_20_64_128_20_0 57 36 735,923 186 0,288 72 24,180 63 0,054 57 0,379
ustar_20_64_128_20_3 57 28 419,462 127 0,268 66 17,366 63 0,052 57 0,400
ustar_25_64_128_25_0 58 600 265,517 237 0,392 75 46,645 63 0,054 58 0,459
ustar_25_64_128_25_3 59 179 791,849 160 0,342 70 25,585 63 0,055 59 0,453
ustar_2_64_128_2_0 21 4,409 34 0,069 23 4,048 55 0,041 25 0,201
ustar_2_64_128_2_3 21 1,639 22 0,058 25 1,492 36 0,040 23 0,146
ustar_30_64_128_30_0 62 3 883 609,293 268 0,422 77 39,002 63 0,052 62 0,461
ustar_30_64_128_30_3 61 771 898,714 170 0,385 68 47,026 63 0,054 61 0,357
ustar_5_64_128_5_0 28 87,201 77 0,116 42 14,377 63 0,051 32 0,306
ustar_5_64_128_5_3 39 30,748 48 0,101 50 4,409 62 0,051 43 0,238
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A.3 Details of the Experiments under the
Condition ∆ > d

Table A.4: Results for the 20-TVC on small degree always star temporal graphs
Exact dapprox d1approx startriv staradv

Graph |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t

star_2_64_128_125_0 64 1 154,255 100 0,480 64 4,780 64 0,057 64 0,874
star_2_64_128_124_3 64 1 019,370 104 0,464 64 3,909 64 0,056 64 0,856
star_2_64_128_127_5 64 679,698 91 0,439 64 3,234 64 0,054 64 0,857
star_3_64_128_184_0 64 13 416,341 127 0,649 73 6,050 64 0,052 64 1,595
star_3_64_128_181_3 64 10 404,411 135 0,638 78 5,208 64 0,054 64 1,158
star_3_64_128_188_5 64 3 219,050 116 0,704 70 5,514 64 0,054 64 1,190
star_4_64_128_243_0 64 120 337,030 153 0,843 64 6,483 64 0,070 64 1,511
star_4_64_128_236_3 64 52 325,829 165 0,818 64 6,106 64 0,053 64 1,433
star_4_64_128_245_5 64 13 280,033 137 0,877 64 5,688 64 0,056 64 1,552
star_5_64_128_299_0 64 247 481,594 180 1,004 68 6,628 64 0,056 64 1,770
star_5_64_128_291_3 64 151 024,671 186 1,082 72 7,844 64 0,054 64 1,799
star_5_64_128_296_5 64 61 910,675 162 0,994 68 12,446 64 0,078 64 2,515
star_6_64_128_353_0 64 858 697,847 201 1,247 64 9,652 64 0,058 64 2,019
star_6_64_128_345_3 64 599 432,356 210 1,177 64 10,446 64 0,056 64 2,012
star_6_64_128_350_5 64 222 513,955 190 1,164 64 8,658 64 0,054 64 2,031
star_7_64_128_411_0 64 1 263 262,993 229 1,376 67 8,807 64 0,056 64 2,351
star_7_64_128_396_3 64 840 424,921 235 1,354 72 10,769 64 0,055 64 2,282
star_7_64_128_406_5 64 590 604,531 215 1,367 65 10,658 64 0,055 64 2,371
star_8_64_128_463_0 64 1 417 327,784 252 1,565 64 13,330 64 0,057 64 2,778
star_8_64_128_446_3 64 3 197 551,518 260 1,539 64 15,443 64 0,054 64 2,563
star_8_64_128_460_5 64 1 053 271,975 239 1,604 64 17,808 64 0,057 64 2,726
ustar_2_64_128_2_0 3 5,091 6 0,039 6 3,902 55 0,040 3 1,470
ustar_2_64_128_2_3 4 2,462 6 0,042 6 2,278 36 0,027 7 0,825
ustar_2_64_128_2_5 3 1,845 6 0,042 3 1,611 61 0,047 9 1,713
ustar_3_64_128_3_0 3 95,053 9 0,046 3 4,698 59 0,048 3 2,116
ustar_3_64_128_3_3 4 45,910 9 0,046 9 2,693 52 0,031 8 1,167
ustar_3_64_128_3_5 3 5,558 9 0,046 6 1,366 63 0,050 9 2,287
ustar_4_64_128_4_0 4 786,300 12 0,050 10 6,151 59 0,047 7 2,188
ustar_4_64_128_4_3 6 733,235 10 0,048 12 2,679 60 0,044 8 1,559
ustar_4_64_128_4_5 3 105,900 12 0,051 6 5,954 63 0,053 10 3,016
ustar_5_64_128_5_0 4 8 617,290 15 0,054 12 4,077 63 0,051 7 2,997
ustar_5_64_128_5_3 6 10 541,954 11 0,054 15 5,315 62 0,052 8 2,225
ustar_5_64_128_5_5 3 2 912,667 15 0,056 8 4,575 63 0,054 6 3,256
ustar_6_64_128_6_0 5 49 055,531 17 0,059 15 4,519 63 0,052 15 2,936
ustar_6_64_128_6_3 8 18 058,933 13 0,058 19 4,854 62 0,051 8 2,090
ustar_6_64_128_6_5 4 79 407,595 18 0,063 9 7,231 63 0,055 10 3,909
ustar_7_64_128_7_0 5 453 595,579 20 0,084 17 4,713 63 0,055 18 3,287
ustar_7_64_128_7_3 8 100 928,573 15 0,062 21 4,626 62 0,053 9 2,158
ustar_7_64_128_7_5 6 408 463,550 22 0,066 10 9,940 63 0,054 16 3,904
ustar_8_64_128_8_0 7 4 774 784,390 21 0,119 20 7,518 63 0,055 16 3,095
ustar_8_64_128_8_3 8 1 005 514,269 16 0,066 18 7,532 63 0,054 10 2,511
ustar_8_64_128_8_5 7 6 158 481,487 25 0,073 11 7,411 63 0,054 17 4,029

A.4 Details of the Experiments on larger Always Star
Temporal Graphs

Table A.5: Results for the 16-TVC on larger always star temporal graphs
dapprox d1approx startriv staradv

Graph |∆-TVC| t |∆-TVC| t |∆-TVC| t |∆-TVC| t

star_100_11707_1024_22126_0 500 921 11 757,671 13 559 46 374,379 11 707 11,554 11 707 19 821,947
star_100_11707_1024_21449_3 485 381 11 404,086 13 509 47 745,287 11 707 11,737 11 707 19 234,884
star_100_11707_1024_21770_5 493 042 11 590,530 13 573 47 700,282 11 707 12,036 11 707 20 068,499
star_50_11707_1024_13930_0 267 916 7 173,214 12 796 21 274,967 11 707 12,659 11 707 12 730,092
star_50_11707_1024_13471_3 259 908 6 868,859 12 817 21 130,757 11 707 11,209 11 707 12 200,148
star_50_11707_1024_13765_5 264 158 7 395,377 12 872 21 490,555 11 707 12,384 11 707 12 895,693
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star_5_11707_1024_6340_0 33 635 3 179,968 12 875 1 774,420 11 707 9,218 11 707 5 704,968
star_5_11707_1024_6225_3 33 120 3 071,300 12 778 1 852,149 11 707 9,222 11 707 5 591,945
star_5_11707_1024_6289_5 33 473 3 123,525 12 888 1 745,913 11 707 9,234 11 707 5 631,434
star_100_11707_4096_21954_0 488 334 11 530,723 13 629 48 212,073 11 707 11,568 11 707 20 297,328
star_100_11707_4096_22187_3 490 971 11 671,493 13 547 46 348,544 11 707 12,328 11 707 19 861,291
star_100_11707_4096_22007_5 486 798 11 360,290 13 583 47 681,916 11 707 12,880 11 707 19 618,950
star_50_11707_4096_13768_0 261 494 7 116,953 12 877 20 988,240 11 707 12,057 11 707 12 520,851
star_50_11707_4096_13967_3 262 926 7 102,937 12 867 21 525,114 11 707 11,178 11 707 12 790,532
star_50_11707_4096_13909_5 260 629 7 308,158 12 878 21 847,768 11 707 11,389 11 707 12 746,835
star_5_11707_4096_6293_0 33 327 3 152,780 12 832 1 748,769 11 707 9,403 11 707 5 765,765
star_5_11707_4096_6358_3 33 439 3 290,806 12 804 1 794,649 11 707 9,680 11 707 5 896,473
star_5_11707_4096_6401_5 33 302 3 205,310 12 768 1 778,918 11 707 9,306 11 707 5 727,456
star_100_14045_1024_22784_0 599 043 14 569,003 16 266 57 329,785 14 045 15,548 14 045 25 305,339
star_100_14045_1024_22217_3 582 401 13 928,273 16 225 57 011,371 14 045 14,219 14 045 23 927,530
star_100_14045_1024_22335_5 589 981 14 161,514 16 259 57 155,197 14 045 14,084 14 045 24 454,375
star_50_14045_1024_14448_0 320 532 8 820,032 15 374 25 795,469 14 045 14,779 14 045 15 747,823
star_50_14045_1024_14033_3 311 649 8 589,266 15 381 25 447,548 14 045 14,366 14 045 14 876,722
star_50_14045_1024_14200_5 316 222 8 980,295 15 453 26 078,356 14 045 13,831 14 045 15 681,821
star_5_14045_1024_6663_0 40 336 4 171,156 15 461 2 176,461 14 045 11,163 14 045 7 164,989
star_5_14045_1024_6588_3 39 647 4 272,750 15 329 2 226,976 14 045 11,142 14 045 7 322,980
star_5_14045_1024_6621_5 40 013 4 009,637 15 418 2 158,981 14 045 11,265 14 045 7 210,725
star_100_14045_4096_22705_0 584 077 14 430,714 16 298 58 871,562 14 045 15,043 14 045 24 422,580
star_100_14045_4096_22734_3 587 859 14 785,812 16 282 57 490,557 14 045 15,383 14 045 25 665,256
star_100_14045_4096_22759_5 579 465 14 476,052 16 266 57 351,081 14 045 14,437 14 045 24 503,708
star_50_14045_4096_14325_0 312 876 9 039,127 15 423 26 363,451 14 045 14,167 14 045 15 315,741
star_50_14045_4096_14420_3 314 805 8 853,127 15 442 25 924,275 14 045 13,967 14 045 15 689,124
star_50_14045_4096_14447_5 310 600 9 078,838 15 429 26 023,150 14 045 13,535 14 045 16 013,614
star_5_14045_4096_6678_0 39 916 4 178,478 15 356 2 180,308 14 045 10,882 14 045 7 223,188
star_5_14045_4096_6686_3 40 057 3 972,368 15 389 2 257,906 14 045 10,839 14 045 7 114,840
star_5_14045_4096_6722_5 39 784 4 158,938 15 290 2 134,444 14 045 10,965 14 045 7 354,068
star_100_2354_1024_16456_0 102 829 1 781,804 2 713 9 670,128 2 354 2,020 2 354 3 010,554
star_100_2354_1024_15571_3 99 151 1 777,638 2 706 9 903,041 2 354 1,992 2 354 2 763,978
star_100_2354_1024_15950_5 97 343 1 708,911 2 759 9 819,751 2 354 2,007 2 354 3 013,584
star_50_2354_1024_9869_0 54 743 1 042,883 2 562 4 295,936 2 354 1,969 2 354 1 805,254
star_50_2354_1024_9483_3 52 816 977,546 2 563 4 381,554 2 354 1,890 2 354 1 717,415
star_50_2354_1024_9582_5 52 212 1 015,710 2 602 4 282,722 2 354 1,892 2 354 1 791,758
star_5_2354_1024_3673_0 6 862 385,758 2 612 358,598 2 354 1,899 2 354 688,203
star_5_2354_1024_3684_3 6 666 386,385 2 584 384,316 2 354 1,835 2 354 677,394
star_5_2354_1024_3581_5 6 735 362,193 2 598 365,645 2 354 1,902 2 354 648,349
star_100_2354_4096_15722_0 98 528 1 642,638 2 699 9 464,577 2 354 1,954 2 354 2 834,355
star_100_2354_4096_16554_3 101 592 1 843,739 2 710 9 737,382 2 354 1,960 2 354 2 996,988
star_100_2354_4096_16579_5 98 749 1 711,114 2 766 9 489,266 2 354 2,043 2 354 3 012,117
star_50_2354_4096_9502_0 52 746 1 070,132 2 575 4 358,206 2 354 1,947 2 354 1 769,241
star_50_2354_4096_9965_3 54 096 1 029,706 2 597 4 313,696 2 354 1,923 2 354 1 775,190
star_50_2354_4096_9990_5 52 890 1 018,817 2 622 4 315,972 2 354 1,903 2 354 1 827,569
star_5_2354_4096_3627_0 6 696 369,347 2 560 365,837 2 354 1,871 2 354 659,811
star_5_2354_4096_3672_3 6 853 373,436 2 570 366,613 2 354 1,929 2 354 658,646
star_5_2354_4096_3734_5 6 755 386,099 2 578 358,136 2 354 1,791 2 354 703,070
star_100_4692_1024_19147_0 201 762 3 938,203 5 390 18 776,287 4 692 3,902 4 692 6 855,237
star_100_4692_1024_18043_3 198 696 3 776,812 5 404 18 970,826 4 692 4,344 4 692 6 421,203
star_100_4692_1024_18667_5 197 593 3 836,926 5 455 19 537,807 4 692 3,961 4 692 6 879,251
star_50_4692_1024_11728_0 107 664 2 638,712 5 083 8 295,084 4 692 3,898 4 692 4 130,379
star_50_4692_1024_11201_3 105 878 2 343,003 5 125 8 517,608 4 692 3,767 4 692 4 050,515
star_50_4692_1024_11452_5 105 967 2 340,158 5 169 8 713,020 4 692 3,873 4 692 4 121,413
star_5_4692_1024_4764_0 13 514 1 055,863 5 165 689,678 4 692 3,956 4 692 1 700,000
star_5_4692_1024_4734_3 13 309 1 025,434 5 141 689,425 4 692 3,933 4 692 1 763,140
star_5_4692_1024_4712_5 13 478 930,577 5 156 712,920 4 692 3,766 4 692 1 770,965
star_100_4692_4096_18077_0 195 644 3 813,686 5 444 18 505,426 4 692 3,959 4 692 6 478,127
star_100_4692_4096_19116_3 201 824 3 937,803 5 382 18 946,264 4 692 4,070 4 692 7 003,442
star_100_4692_4096_18733_5 194 361 3 905,430 5 487 19 313,325 4 692 4,254 4 692 6 900,983
star_50_4692_4096_11132_0 104 868 2 272,529 5 154 8 351,121 4 692 3,756 4 692 3 990,558
star_50_4692_4096_11717_3 107 686 2 394,353 5 148 8 594,615 4 692 3,854 4 692 4 297,348
star_50_4692_4096_11552_5 104 379 2 733,495 5 186 8 718,171 4 692 3,921 4 692 4 164,974
star_5_4692_4096_4738_0 13 385 952,287 5 121 701,128 4 692 3,739 4 692 1 713,703
star_5_4692_4096_4798_3 13 564 1 067,044 5 134 731,389 4 692 3,826 4 692 1 759,727
star_5_4692_4096_4797_5 13 401 924,211 5 132 726,043 4 692 3,705 4 692 1 741,391
star_100_7030_1024_20426_0 303 655 6 278,545 8 107 28 316,814 7 030 6,278 7 030 11 106,534
star_100_7030_1024_19517_3 291 581 6 635,713 8 078 27 844,636 7 030 6,989 7 030 10 855,845
star_100_7030_1024_19848_5 298 971 6 076,525 8 143 27 663,215 7 030 5,823 7 030 10 691,886
star_50_7030_1024_12676_0 161 958 3 925,702 7 642 12 664,173 7 030 5,989 7 030 6 893,937
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star_50_7030_1024_12143_3 155 945 3 717,791 7 704 12 963,919 7 030 5,948 7 030 6 468,956
star_50_7030_1024_12370_5 160 063 3 744,237 7 756 13 073,418 7 030 5,635 7 030 6 733,403
star_5_7030_1024_5445_0 20 218 1 677,491 7 731 1 054,603 7 030 5,748 7 030 2 970,120
star_5_7030_1024_5377_3 19 885 1 662,078 7 669 1 038,797 7 030 5,406 7 030 2 952,925
star_5_7030_1024_5411_5 20 225 1 634,294 7 757 1 075,554 7 030 5,538 7 030 2 961,485
star_100_7030_4096_20021_0 293 315 6 215,703 8 173 26 574,309 7 030 6,188 7 030 10 975,874
star_100_7030_4096_20303_3 297 247 6 207,147 8 103 28 857,511 7 030 5,984 7 030 10 938,785
star_100_7030_4096_20142_5 290 152 6 230,430 8 212 29 386,717 7 030 6,325 7 030 10 755,033
star_50_7030_4096_12352_0 157 111 3 900,416 7 710 13 160,286 7 030 5,616 7 030 6 649,863
star_50_7030_4096_12583_3 159 108 3 855,095 7 717 12 580,172 7 030 5,607 7 030 6 749,396
star_50_7030_4096_12560_5 155 555 4 630,327 7 774 13 459,074 7 030 6,075 7 030 6 949,141
star_5_7030_4096_5373_0 20 012 1 607,005 7 695 1 064,980 7 030 5,441 7 030 2 915,401
star_5_7030_4096_5468_3 20 136 1 800,084 7 676 1 032,711 7 030 5,392 7 030 2 926,502
star_5_7030_4096_5492_5 19 951 1 835,451 7 651 1 073,902 7 030 5,540 7 030 2 967,702
star_100_9369_1024_21465_0 403 842 9 653,248 10 845 37 719,498 9 369 9,191 9 369 15 873,637
star_100_9369_1024_20692_3 389 110 8 630,456 10 806 37 426,241 9 369 9,720 9 369 14 776,156
star_100_9369_1024_20948_5 397 767 8 708,228 10 862 37 461,994 9 369 9,534 9 369 15 085,356
star_50_9369_1024_13425_0 215 576 5 504,672 10 216 16 977,443 9 369 9,091 9 369 9 653,507
star_50_9369_1024_12921_3 208 145 5 405,966 10 249 17 273,177 9 369 9,113 9 369 9 401,788
star_50_9369_1024_13164_5 213 002 5 457,557 10 306 17 797,152 9 369 9,533 9 369 9 510,210
star_5_9369_1024_5954_0 26 920 2 657,104 10 305 1 469,272 9 369 7,623 9 369 4 293,960
star_5_9369_1024_5848_3 26 533 2 401,356 10 214 1 458,734 9 369 7,409 9 369 4 283,171
star_5_9369_1024_5908_5 26 947 2 433,127 10 332 1 388,696 9 369 7,329 9 369 4 315,038
star_100_9369_4096_21185_0 392 868 8 925,401 10 920 38 065,854 9 369 9,123 9 369 14 942,135
star_100_9369_4096_21440_3 394 344 8 870,725 10 809 37 580,647 9 369 9,991 9 369 15 384,308
star_100_9369_4096_21303_5 389 410 8 846,750 10 901 38 274,586 9 369 9,998 9 369 15 416,756
star_50_9369_4096_13173_0 210 328 5 423,646 10 322 17 194,751 9 369 9,017 9 369 9 493,572
star_50_9369_4096_13375_3 211 083 5 753,605 10 276 16 889,491 9 369 8,749 9 369 9 685,126
star_50_9369_4096_13394_5 208 567 5 655,034 10 357 17 438,441 9 369 9,203 9 369 9 958,550
star_5_9369_4096_5894_0 26 795 2 396,164 10 280 1 397,112 9 369 7,541 9 369 4 249,876
star_5_9369_4096_5961_3 26 764 2 415,739 10 242 1 423,002 9 369 7,556 9 369 4 450,545
star_5_9369_4096_5990_5 26 657 2 394,540 10 205 1 380,103 9 369 8,032 9 369 4 331,863
ustar_100_11707_1024_100_0 35 409 67,347 2 801 19 177,590 11 672 32,740 1 291 6 131,939
ustar_100_11707_1024_100_3 7 240 54,974 2 530 17 930,730 11 705 36,007 1 294 6 229,118
ustar_100_11707_1024_100_5 38 428 65,272 2 991 19 232,955 11 706 41,833 1 326 6 729,020
ustar_50_11707_1024_50_0 16 582 35,606 1 971 9 699,211 11 662 32,835 1 058 2 991,117
ustar_50_11707_1024_50_3 5 485 23,170 2 118 10 746,668 11 703 33,187 1 046 3 226,722
ustar_50_11707_1024_50_5 20 839 33,656 2 230 11 221,738 11 704 39,072 1 009 3 763,876
ustar_5_11707_1024_5_0 1 934 5,944 774 2 291,969 10 723 32,689 719 409,244
ustar_5_11707_1024_5_3 1 046 5,582 726 1 316,726 10 223 23,268 675 323,700
ustar_5_11707_1024_5_5 2 450 6,010 771 3 607,897 11 700 36,853 763 503,463
ustar_100_11707_4096_100_0 7 472 57,119 3 562 28 756,604 11 667 38,430 1 351 6 914,350
ustar_100_11707_4096_100_3 6 301 55,732 2 540 16 236,386 11 699 35,904 1 312 6 003,413
ustar_100_11707_4096_100_5 4 005 52,583 2 814 21 892,437 11 706 39,191 1 314 6 507,262
ustar_50_11707_4096_50_0 6 428 30,341 2 867 17 104,686 11 358 34,117 1 067 3 267,243
ustar_50_11707_4096_50_3 4 461 28,943 2 078 9 609,171 11 694 35,453 1 061 2 948,323
ustar_50_11707_4096_50_5 3 705 28,165 2 143 13 718,278 11 674 33,038 1 040 2 971,590
ustar_5_11707_4096_5_0 643 5,634 670 2 264,421 9 855 27,794 658 382,155
ustar_5_11707_4096_5_3 1 745 5,798 1 034 3 954,429 11 012 24,095 732 400,351
ustar_5_11707_4096_5_5 1 350 5,876 1 356 6 556,056 11 629 38,576 771 470,869
ustar_100_14045_1024_100_0 42 845 76,422 3 733 35 300,881 14 044 53,637 1 464 7 662,910
ustar_100_14045_1024_100_3 7 126 63,400 3 740 22 993,125 14 043 51,054 1 449 7 312,494
ustar_100_14045_1024_100_5 44 416 80,318 3 039 19 000,937 14 001 45,034 1 455 7 676,640
ustar_50_14045_1024_50_0 21 786 39,347 3 575 21 691,109 13 880 50,172 1 182 4 107,398
ustar_50_14045_1024_50_3 4 635 33,467 2 405 11 913,710 14 043 46,760 1 192 3 376,279
ustar_50_14045_1024_50_5 21 724 38,825 2 237 10 522,597 13 990 48,079 1 202 3 857,094
ustar_5_14045_1024_5_0 2 271 6,891 1 162 2 853,075 13 828 46,816 914 487,256
ustar_5_14045_1024_5_3 498 6,538 465 384,578 5 999 8,394 418 199,699
ustar_5_14045_1024_5_5 2 058 6,831 1 020 2 584,628 10 540 32,470 705 437,956
ustar_100_14045_4096_100_0 7 359 66,177 3 348 21 522,534 14 043 51,173 1 471 7 683,996
ustar_100_14045_4096_100_3 7 017 64,632 3 216 20 331,752 14 038 53,530 1 456 7 539,955
ustar_100_14045_4096_100_5 6 253 64,283 3 564 31 151,148 13 996 51,020 1 499 7 648,056
ustar_50_14045_4096_50_0 6 358 34,167 2 916 15 109,704 13 855 51,151 1 176 4 063,052
ustar_50_14045_4096_50_3 4 980 33,125 2 702 12 252,796 14 038 45,359 1 190 3 666,720
ustar_50_14045_4096_50_5 5 218 34,780 3 032 21 069,261 13 981 51,194 1 225 3 715,837
ustar_5_14045_4096_5_0 1 805 7,316 1 214 4 039,073 13 046 37,863 860 554,344
ustar_5_14045_4096_5_3 2 684 7,413 1 383 6 770,807 13 467 49,044 885 601,050
ustar_5_14045_4096_5_5 1 539 6,696 1 386 12 391,540 13 144 44,503 861 510,968
ustar_100_2354_1024_100_0 8 209 13,212 1 094 5 063,488 2 350 2,816 639 1 345,236
ustar_100_2354_1024_100_3 1 569 11,322 996 4 125,710 2 353 2,875 631 1 287,012
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ustar_100_2354_1024_100_5 7 024 13,212 1 111 3 407,977 2 353 2,770 690 1 145,688
ustar_50_2354_1024_50_0 4 029 6,977 694 1 743,094 2 279 2,629 437 710,460
ustar_50_2354_1024_50_3 1 319 6,180 689 2 580,170 2 353 2,885 428 651,380
ustar_50_2354_1024_50_5 3 540 7,022 752 2 150,314 2 353 2,824 463 558,998
ustar_5_2354_1024_5_0 297 1,270 153 205,928 1 950 2,025 157 67,742
ustar_5_2354_1024_5_3 238 1,260 192 167,656 1 792 2,063 150 71,651
ustar_5_2354_1024_5_5 339 1,852 158 149,042 1 916 1,911 163 69,318
ustar_100_2354_4096_100_0 1 652 11,174 991 3 607,103 2 353 2,930 672 1 143,752
ustar_100_2354_4096_100_3 1 714 11,426 976 3 394,842 2 353 2,846 655 1 233,398
ustar_100_2354_4096_100_5 1 426 11,333 1 014 4 358,043 2 353 2,840 678 1 279,970
ustar_50_2354_4096_50_0 1 424 6,244 625 2 320,766 2 353 2,850 427 607,809
ustar_50_2354_4096_50_3 1 217 6,230 644 1 855,090 2 298 2,997 474 655,045
ustar_50_2354_4096_50_5 1 076 6,062 755 2 421,178 2 350 2,773 468 654,143
ustar_5_2354_4096_5_0 195 1,371 205 463,551 1 753 1,985 152 81,597
ustar_5_2354_4096_5_3 397 1,431 225 344,852 2 238 2,675 177 77,078
ustar_5_2354_4096_5_5 228 0,946 238 643,905 2 110 1,718 174 109,501
ustar_100_4692_1024_100_0 12 778 26,178 1 464 6 341,132 4 691 7,661 844 2 206,666
ustar_100_4692_1024_100_3 2 596 23,117 1 432 6 018,463 4 691 7,988 832 2 575,368
ustar_100_4692_1024_100_5 14 264 26,468 1 795 6 566,760 4 691 8,146 857 2 348,928
ustar_50_4692_1024_50_0 6 289 13,266 995 3 854,085 4 691 7,090 606 1 160,019
ustar_50_4692_1024_50_3 1 784 11,521 1 034 3 123,691 4 691 7,878 574 1 321,274
ustar_50_4692_1024_50_5 6 854 13,725 1 297 3 657,873 4 691 7,783 567 1 165,423
ustar_5_4692_1024_5_0 429 2,333 312 299,681 3 977 4,876 290 107,053
ustar_5_4692_1024_5_3 499 2,351 327 307,835 4 517 5,220 332 139,675
ustar_5_4692_1024_5_5 668 2,433 288 559,835 3 904 5,534 289 138,179
ustar_100_4692_4096_100_0 3 619 22,816 1 464 9 833,122 4 650 8,047 893 2 445,113
ustar_100_4692_4096_100_3 3 053 21,962 1 629 10 229,905 4 690 8,851 839 2 931,863
ustar_100_4692_4096_100_5 2 205 21,310 1 606 8 980,153 4 691 9,044 868 2 670,985
ustar_50_4692_4096_50_0 2 683 11,896 974 5 803,003 4 634 8,730 630 1 307,196
ustar_50_4692_4096_50_3 2 459 12,248 1 321 8 039,746 4 677 8,729 594 1 558,858
ustar_50_4692_4096_50_5 2 129 11,802 1 222 5 738,743 4 691 8,790 581 1 476,267
ustar_5_4692_4096_5_0 538 2,617 369 1 686,684 3 252 5,067 241 141,627
ustar_5_4692_4096_5_3 899 2,574 631 2 202,088 4 432 7,610 318 217,026
ustar_5_4692_4096_5_5 489 2,591 436 1 681,287 3 824 6,727 272 178,145
ustar_100_7030_1024_100_0 23 690 41,310 2 414 18 632,435 7 002 16,021 1 051 4 083,797
ustar_100_7030_1024_100_3 3 245 31,660 1 996 8 072,090 7 029 16,494 1 033 3 276,506
ustar_100_7030_1024_100_5 22 490 39,974 2 061 14 210,834 7 022 14,499 1 030 3 987,761
ustar_50_7030_1024_50_0 11 247 19,683 1 813 10 353,227 6 914 15,662 747 1 958,017
ustar_50_7030_1024_50_3 2 454 17,014 1 470 4 396,982 7 028 15,985 743 1 631,887
ustar_50_7030_1024_50_5 10 959 20,267 1 603 7 283,285 7 019 14,150 759 1 963,048
ustar_5_7030_1024_5_0 864 3,637 482 739,316 6 436 12,915 439 192,091
ustar_5_7030_1024_5_3 285 3,308 287 422,028 3 714 6,086 272 124,280
ustar_5_7030_1024_5_5 810 3,576 339 653,848 4 280 7,674 312 178,238
ustar_100_7030_4096_100_0 4 611 32,750 1 807 10 237,909 7 029 11,609 939 4 234,822
ustar_100_7030_4096_100_3 4 604 32,647 1 978 14 521,770 6 961 15,764 1 020 3 791,835
ustar_100_7030_4096_100_5 3 062 31,328 2 132 13 322,537 7 029 14,399 1 000 3 994,468
ustar_50_7030_4096_50_0 3 723 17,603 1 354 5 606,070 7 029 14,261 755 2 009,259
ustar_50_7030_4096_50_3 3 112 17,255 1 426 9 138,213 6 945 15,718 749 1 968,541
ustar_50_7030_4096_50_5 2 905 17,518 1 595 8 399,080 6 740 14,012 745 1 903,728
ustar_5_7030_4096_5_0 395 3,505 381 542,011 4 861 6,617 341 144,307
ustar_5_7030_4096_5_3 927 3,927 542 648,743 6 627 10,990 460 210,376
ustar_5_7030_4096_5_5 1 061 3,972 724 4 005,550 5 599 12,761 401 225,516
ustar_100_9369_1024_100_0 25 800 52,215 2 344 13 437,311 9 215 21,132 1 155 4 498,207
ustar_100_9369_1024_100_3 7 259 44,499 2 202 17 416,668 9 367 25,125 1 186 5 573,948
ustar_100_9369_1024_100_5 28 205 51,753 2 602 17 192,247 9 143 21,380 1 181 4 838,071
ustar_50_9369_1024_50_0 12 818 27,285 1 662 8 476,812 9 070 22,291 853 2 385,345
ustar_50_9369_1024_50_3 4 955 23,310 1 763 10 119,711 9 364 26,902 873 2 778,250
ustar_50_9369_1024_50_5 14 956 26,118 1 931 10 984,717 9 123 21,036 881 2 665,844
ustar_5_9369_1024_5_0 932 4,461 322 798,964 4 697 9,465 330 214,731
ustar_5_9369_1024_5_3 977 4,444 549 2 132,913 7 984 21,228 548 348,549
ustar_5_9369_1024_5_5 1 630 4,525 564 1 846,000 7 633 20,345 517 354,646
ustar_100_9369_4096_100_0 6 384 44,580 2 364 19 153,019 9 328 24,063 1 186 5 447,590
ustar_100_9369_4096_100_3 5 378 44,360 2 529 17 565,642 9 222 22,302 1 162 4 828,836
ustar_100_9369_4096_100_5 3 500 42,885 2 875 18 355,866 9 368 26,967 1 161 4 414,953
ustar_50_9369_4096_50_0 4 335 23,570 2 161 11 647,938 9 318 26,739 937 2 830,459
ustar_50_9369_4096_50_3 4 064 23,477 1 886 10 950,661 9 208 22,785 875 2 617,345
ustar_50_9369_4096_50_5 3 369 22,914 2 249 11 812,362 9 366 23,698 904 2 306,804
ustar_5_9369_4096_5_0 479 4,667 543 1 061,132 6 462 13,363 440 247,107
ustar_5_9369_4096_5_3 865 4,772 635 1 531,394 8 842 25,485 605 342,821
ustar_5_9369_4096_5_5 1 043 4,897 695 1 720,500 7 396 18,707 512 294,662
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