
Edge Sparsification for Centrality
Computation

Marie-Christin Litzinger

December 1, 2023

3654112

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisor:
Ernestine Großmann

Marcelo Fonseca Faraj

Co-Referee:
Prof. Dr. Michael Gertz

ii

Acknowledgments

I would like to thank Prof. Dr. Christian Schulz for supervising this thesis, providing
valuable guidance and fostering a supportive academic environment. My special thanks
go to Ernestine Grossmann and Marcelo Fonseca Faraj for their dedicated assistance. I
thank them for their prompt responses and professional expertise, which was essential to
the completion of this thesis. The joint efforts of Prof. Schulz and the research team
contributed greatly to the outcome of this work. I would also like to thank my family and
friends for their ongoing support throughout my entire academic journey.

I hereby certify that I have written the work myself and that I have not used any sources or
aids other than those specified and that I have marked what has been taken over from other
people’s works, either verbatim or in terms of content, as foreign. I also certify that the
electronic version of my thesis transmitted completely corresponds in content and wording
to the printed version. I agree that this electronic version is being checked for plagiarism
at the university using plagiarism software.

Heidelberg, December 1, 2023

Marie-Christin Litzinger

iii

iv

Abstract

A fundamental concept of Network Analysis are centrality measures, which assign a score
to each vertex, representing its structural importance. Especially the relative ranking and
the identification of the most central vertices provide insights into the underlying data set
and are applied in various domains. Even though there exist exact algorithms in polynomial
time, these do not scale well and lots of approximation algorithms have been developed. In
this work, an edge sparsification, which is applied to graphs before centrality computations,
is proposed. It estimates how often each edge occurs on shortest path within the graph. The
reduced graph is then constructed by including only edges that are part of many shortest
paths. The experiments show that the edge sparsification works best for distance-based
centrality measures. For betweenness centrality strongly correlated rankings and an overlap
of 83% between the most central vertices are achieved with an average speedup of 26%.
For closeness centrality, similar results are obtained with an average speedup of 21%.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 Graph Preliminaries . 5
2.2 Centrality Measures . 7

2.2.1 Degree Centrality . 8
2.2.2 Closeness Centrality . 8
2.2.3 k-core Centrality . 9
2.2.4 Betweenness Centrality . 10
2.2.5 Eigenvector Centrality . 12
2.2.6 Katz Centrality . 13

3 Related Work 15
3.1 Degree Centrality . 15
3.2 Closeness Centrality . 16
3.3 k-core Centrality . 17
3.4 Betweenness Centrality . 18
3.5 Eigenvector Centrality . 22
3.6 Katz Centrality . 22

4 Edge Sparsification 25
4.1 Overview . 25
4.2 BFS Variants . 27

4.2.1 BFS-Set . 27
4.2.2 BFS-Single . 28
4.2.3 BFS-Percentage . 29

vii

Contents

4.3 Construction of the Reduced Graph . 31
4.3.1 MWST and Sorted Edges . 32
4.3.2 Iterative Computation of the Reduced Graph 32

4.4 Complexity Analysis . 32

5 Experimental Evaluation 37
5.1 Hardware and Implementation . 37
5.2 Methodology . 38
5.3 Graph Instances . 39
5.4 Parameter Tuning Experiments . 42

5.4.1 Ranking of Vertices . 43
5.4.2 Identification of Most Central Vertices 50

5.5 Comparison Against Unreduced Graphs 56

6 Conclusion 61
6.1 Discussion . 62
6.2 Future Work . 62

A Further Results 65

Abstract (German) 69

Bibliography 71

Acronyms 83

viii

CHAPTER 1
Introduction

1.1 Motivation

In various domains, data is collected to capture the connections or relationships among
arbitrary objects. Examples include social networks, where individual users are intercon-
nected, biological networks modeling protein interactions, or transportation networks con-
necting different locations through routes. By representing these data sets as graphs, they
can be further investigated using techniques from the field of Network Analysis, involving
algorithms and statistical tools. The information and insights derived, such as non-trivial
relations between entities, can be used in practice to optimize processes or strategies [101].

One very important problem of Network Analysis is identifying the most important ver-
tices of a graph, or put differently, the concept of centrality. A centrality measure is a
function, which expresses the relative importance of a vertex [81]. Since the definition of
importance may vary for each application, lots of centrality measures have been developed.
These measures capture diverse aspects, ranging from local to global graph properties, and
exhibiting varying degrees of computational complexity [81]. Some well-known centrality
measures include betweenness, closeness, and eigenvector centrality.

A major application area of centrality measures are biological networks, such as protein
interaction, metabolic and gene regulatory networks. Wuchty and Stadler [103] analyze
three such network types with respect to their centers, while in [47] lethality in protein
networks is investigated. Jothi [48] combines edge betweenness centrality with clustering
and shows that this can be used to identify cancerous tissues. Further work can be found
in [26, 52]. In addition to biological networks, centrality measures are applied across
various domains and contexts, including:

• Terrorist networks [54]

• Collaboration networks [71, 104]

• Transportation and road networks [38, 44]

1

1 Introduction

• Social networks and measurement of influence in social networks [60, 83]

• Partitioning and community detection [28, 39]

For each centrality measure exist algorithms, which compute the exact scores on arbi-
trary graphs. However, they are often computationally expensive and can only be applied
to smaller graphs. Given that today’s graphs can contain millions of edges, improving
the scalability of centrality measures has become a main focus in current research [101].
Consequently, heuristics and approximation algorithms have been developed to compute
approximate instead of exact results while speeding up the overall computation times. In
practice however, it has been shown that not the score of a vertex but rather the relative
ranking and the identification of vertices with the highest centrality scores are most impor-
tant. Thus, lots of algorithms of today’s research focus on these aspects.

While many of these approaches have shown to work well in practice, they reach
their limits when dealing with very large graphs. To overcome this challenge, these al-
gorithms are often augmented with supplementary techniques like parallelism or reduc-
tions [4, 78, 87, 94]. This thesis is situated in precisely this context, providing a novel edge
sparsification. Instead of computing centrality scores directly on the entire graph, the graph
is reduced first. The results obtained on the reduced graph then serve as approximations for
the corresponding results on the full graph. This yields a speedup for centrality computa-
tions, but comes with a potential loss of quality. Since shortest paths are part of many cen-
trality measures and also reflect the topological structure of a graph, they play a major role
in the sparsification. Especially edges that frequently appear in the shortest paths within a
graph are of particular importance. The core concept of the sparsification is therefore, to
keep these edges in the graph while removing unimportant ones, i.e., edges which do not
occur sufficiently often on shortest paths. Thereby, the order of shortest paths is preserved.

1.2 Our Contribution

In this thesis an edge sparsification based on shortest paths is proposed. In order to de-
termine the edges included in the reduced graph and those to be excluded, so-called edge
counts are computed. These counts represent how frequently an edge is part of shortest
paths and can be computed exactly using all-pairs shortest path (APSP). Since this is com-
putationally expensive, three different breadth-first search (BFS) variants are presented,
which conduct single-source shortest path (SSSP) computations only for a subset of ver-
tices. Based on the edge counts, the reduced graph is constructed. Thereby, two maximum-
weight spanning forest (MWSF) methods are proposed, which ensure the connectivity of
the reduced graph while integrating edges with high counts.

In extensive parameter tuning experiments, two parameter configurations are obtained
for each combination of BFS and MWSF method – one focussing on the relative ranking
of vertices and the other one on identifying the most central vertices. Moreover, insights
into the influence of parameters on the approach and on the resulting reduced graphs are

2

1.3 Structure

provided. Finally, the results on the reduced graphs are compared to the ones obtained with-
out edge sparsification. It is shown that betweenness and closeness centrality outperform
other centrality measures. The top 100 centrality vertices are identified with an accuracy
of 73% and 83%, achieving a speedup of 14% and 28% for closeness and betweenness
centrality, respectively. Vertex rankings for these centralities are computed with a speedup
of 14% and 25%, exhibiting correlation coefficients of 0.91 and 0.84.

1.3 Structure

The subsequent chapters of this thesis are organized as follows: In Chapter 2 fundamental
concepts of graphs are provided, followed by the definitions and exact algorithms for the
centrality measures. An overview of state-of-the-art approximation algorithms, heuristics
and other techniques related to each centrality measures is given in Chapter 3. In the sub-
sequent Chapter 4, the edge sparsification, along with all its components and approaches,
is explained. Its experimental evaluation is given in Chapter 5. First, two sets of parameter
tuning experiments are presented, one optimized for the vertex ranking and the other one for
the most central vertices. The properties of reduced graphs and the influence of parameters
are then empirically investigated. The final part of Chapter 5 compares centrality compu-
tations and its results between full and reduced graphs. In Chapter 6 a summary of the
findings is given and aspects, which can be investigated in future research, are discussed.

3

1 Introduction

4

CHAPTER 2
Fundamentals

In the first section of this chapter, graph terminology as well as foundational concepts and
algorithms are introduced. Subsequently, different centrality measures are defined along
with algorithms for their exact calculation.

2.1 Graph Preliminaries

A graph G is an abstract structure used to model pairwise relationships between ob-
jects [27]. It is defined as G = (V,E) where V is a finite set of objects known as vertices
and E ⊆

(
V
2

)
is the set of edges. The number of vertices and edges are denoted by n := |V |

and m := |E| respectively. The vertex set of a graph G is denoted as V (G), and its set of
edges is represented as E(G) or, if the context is clear, simply as V and E.

Two vertices u, v ∈ V are called adjacent or neighbors if there exists an edge connecting
them, i.e., e = {u, v} ∈ E. These edges do not have a direction and the graph is thus called
undirected. The set of neighbors of a vertex v is denoted as N(v) = {u | {v, u} ∈ E}.
The degree of a vertex is defined as the number of neighbors d(v) = |N(v)|. Ad-
ditional information can be encoded by assigning a numeric value to each edge us-
ing a mapping ω : E → R. Every graph that exhibits such weights or costs is then
called a weighted graph [65].

Graphs can be represented by a n×n matrix A = (aij)n×n which is known as adjacency
matrix [27]. Assuming that the vertices of G are labeled from 1 to n, the matrix is defined
as

aij :=

{
1 if {vi, vj} ∈ E

0 otherwise.
(2.1)

In the weighted case, aij = ω({vi, vj}) if the respective edge {vi, vj} exits. Alternatively,
an adjacency list can be used to represent a graph which stores for every vertex vi a list of
its neighbors at the respective index.

5

2 Fundamentals

Algorithm 1 Kruskal’s algorithm for computing a MWSF [65]
Input Weighted graph G = (V,E, ω) where ω is the edge weight function
Output MWSF GF = (V,EF)

1: EF := ∅
2: for each {u, v} ∈ E in descending order of cost do
3: if u and v are in different subtrees of EF then
4: EF := EF ∪ {{u, v}}
5: end if
6: end for
7: GF := (V,EF)
8: return GF

A graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E [27]. If G′ further
contains all edges {u, v} ∈ E with u, v ∈ V ′, G′ is called an induced subgraph of G. Since
every induced subgraph is uniquely defined by its vertex set, this is denoted by G[V ′]. A
subgraph G′ ⊆ G is called a spanning subgraph of G if V ′ = V .

A path p = ⟨v0, . . . , vk⟩ is a sequence of vertices in which consecutive vertices are
connected by edges {v0, v1}, {v1, v2}, . . . {vk−1, vk} ∈ E [27, 65]. A cycle is a path with
common first and last vertex, i.e., c = ⟨v0, . . . , vk, v0⟩. For an unweighted graph, the length
of a path or cycle is its number of edges. In a weighted graph, it is defined as the sum of the
edge weights along that path or cycle. A graph without cycles is called acyclic or a forest.

If there exists a path between any two vertices, a graph is called connected, other-
wise disconnected [27]. A maximal connected subgraph of G, which is automatically
also an induced subgraph, is called (connected) component of G. A connected for-
est is called a tree and degree-1 vertices are called leaves. For a graph G = (V,E)
a spanning tree G′ is defined by a set of edges T ⊆ E such that G′ = (V, T)
is a tree [65]. A maximum-weight spanning tree (MWST) is then a spanning tree
where ω(T) :=

∑
e∈T ω(e) is maximized. Consequently, a MWSF is defined as the union

of MWSTs for each connected component of G.
Originally, Kruskal’s algorithm is proposed for computing the minimum weight span-

ning tree of a graph, which is defined analogue to the MWST [65]. As demonstrated in Al-
gorithm 1, it can also be adapted to compute a MWSF by either inverting the edge weights
or by modifying the order of edges. The algorithm iterates over the edges in descending
order with respect to their weights. For each edge it is checked whether it connects two ver-
tices u, v in either the same or different components in GF . If u and v belong to the same
component, then there exists already a path connecting them and adding the edge {u, v}
to EF creates a cycle, violating the requirement that GF is a forest. Conversely, if the ver-
tices are part of different components, the edge {u, v} is a maximum weight edge in the
cut and is added to EF .

In order to efficiently determine whether an edge connects two vertices from different
components, a union-find data structure can be used [65]. It maintains a partition of the

6

2.2 Centrality Measures

set {1, . . . , n} and provides the operations

• find, which returns for a given i ∈ {1, . . . n} the representative of the subset the index
belongs to and

• union, which combines two given subsets.

Each subset can be represented as a rooted tree, using the root as representative [65]. By
additionally using the optimizations union by rank, which ensures that the depth of the
trees does not exceed log n, and path compression, which decreases the amount of vertices
needed to traverse in find, both operations need amortized constant time. In Kruskal’s
algorithm, the connected components in (V,EF) are the subsets in the union-find data
structure. Due to the efficiency of the latter, the overall running time of Kruskal mainly
depends on the sorting of edges and is thus O(m logm).

The distance d(u, v) between two vertices u, v ∈ V is the length of a shortest uv-path
in G [27, 65]. If the graph is disconnected and no such path exists d(u, v) := ∞. The
diameter of G is then defined as the greatest distance between any two vertices

diam(G) = max
u,v∈V

d(u, v). (2.2)

To determine the distance between a pair of vertices, BFS and Dijkstra’s algorithm can be
used for unweighted and weighted graphs, respectively. These algorithms are also applica-
ble to compute the distances from a single vertex s ∈ V – the source – to all other vertices
in a graph, known as SSSP. Additionally, the APSP problem can be solved by applying
these algorithms to every vertex in a graph. BFS traverses a graph layer by layer while
Dijkstra scans vertices in order of increasing shortest path distances. The actual paths can
be retrieved by recursively iterating through the predecessor array. The runtime complexity
of Dijkstra is O(m + n log n) (using a Fibonacci heap) and BFS runs in O(n + m) time.
Both algorithms construct a shortest path tree rooted in s. Throughout this thesis graphs
are assumed to be undirected, unweighted and connected.

2.2 Centrality Measures

The idea behind centrality measures is to assign a degree of importance to each vertex,
represented by a real number [19]. These numbers are based on structural properties of a
graph. Such measures are a fundamental tool in network analysis and widely applied in
the study of various network types. The first centrality indices were defined in the 1940s
and since then, various ones have been added, each focusing on different properties of a
graph [11]. However, a commonly accepted general definition of a centrality measure does
not exist [19]. This is mainly caused by the fact that importance heavily depends on the
context of the application and the problem at hand.

However, based on which features and characteristics they use to define importance,
centrality measures are divided into groups [19]. Still, there exists no general classification,

7

2 Fundamentals

but a large overlap between different publications. The following presents a subset of the
groups presented in [19, 24].

1. Reachability
Using a vertex’ degree or "the cost it takes to reach all other vertices" [19, p. 20],
centrality measures belonging to this group evaluate the ability of a vertex to reach
other vertices. Representatives are, e.g., degree, closeness, eccentricity and k-core
centrality as well as centroid values.

2. Shortest Paths
In many use cases, information flows through graphs in shortest paths. Thus, there
exist many centrality measures which base a vertex importance on those paths, for
example betweenness, stress and reach centrality [19, 101].

3. Feedback
For these centrality measures, "a node is the more central the more central its neigh-
bors are" [19, p. 46]. Apart from eigenvector and Katz centrality, which are discussed
below, the Hubbell index, PageRank and Bargaining centrality belong to this group.

Centrality measures can also be extended to groups of vertices or turned into edge cen-
tralities. In the following, the centrality measures relevant for this thesis – degree, close-
ness, betweenness, eigenvector, Katz and k-core centrality – are described in detail. For
the remaining groups and other centrality measures, the reader is referred to [11, 19].

2.2.1 Degree Centrality
A widely applied centrality measure is degree centrality, where each vertex is assigned a
centrality score equal to its degree. It is based on the notion that the more connections a
vertex has, the more important it is [19, 24, 95]. For a given vertex v ∈ V , degree centrality
is defined as

cD(v) = d(v) (2.3)

and can further be normalized by n − 1 or the maximum degree in a graph [95]. For
a single vertex, degree centrality is computed in O(n), and for all vertices of a graph
in O(m) [95]. The mayor limitation of degree centrality is its restricted perspective of
the graph’s topology [50]. Only local information about a vertex is used to determine its
importance. However, in various practical applications further information is necessary to
differentiate between vertices with nearly identical degree.

2.2.2 Closeness Centrality
Initially introduced by Bavelas [8], closeness centrality is a measure that assesses the
importance of a vertex within a graph by considering the shortest paths to all other ver-
tices [84]. The underlying concept is that vertices, that are closer to all other vertices, are

8

2.2 Centrality Measures

considered more important. In other words, vertices that can quickly receive information
sent from any part of the graph are considered most central [95]. Mathematically, this is
expressed by using the inverse of the (average) distances to all other vertices. Given a
graph G = (V,E) with |V | = n vertices, closeness centrality is defined as

cC(u) =
1∑

v∈V d(u, v)
(2.4)

which can be normalized with n− 1, resulting in

cC(u) =
n− 1∑

v∈V d(u, v)
. (2.5)

It follows from this definition that closeness centrality can only be applied to connected
graphs [24, 95]. In a disconnected graph, for every vertex u ∈ V , there exists another
vertex v ̸= u, v ∈ V such that u and v belong to different components. Thus, d(u, v) =∞
and both cC(u) and cC(v) are equal to zero. Nevertheless, an extension of closeness central-
ity, known as harmonic centrality deals with pairs of unreachable vertices [11, 89]. Instead
of utilizing the average distance, harmonic centrality employs the harmonic mean of all
distances. For a given vertex u ∈ V , harmonic centrality is defined as follows:

cH(u) =
∑

v ̸=u,v∈V

1

d(u, v)
(2.6)

Closeness centrality can be exactly computed by solving the APSP problem. This is
achieved in O(n2.373) using fast matrix multiplication or in O(nm) by performing BFS n
times [9]. However, fast matrix multiplication involves large hidden constants, making
BFS-based approaches commonly preferred in practical applications.

2.2.3 k-core Centrality

Seidman proposed a centrality measure based on the degree of a vertex, or more precisely
on k-cores. The k-core of a graph is the largest induced subgraph in which every vertex
has at least degree k [25]. The core number of a vertex is then the highest value of k, such
that the vertex belongs to a k-core. Note, that the (k + 1)-core is a subset of the k-core.
The k-core centrality of a vertex is then defined as the core number of that vertex [7, 25].
This can be further normalized, for instance, by the maximum degree of the graph.

A k-shell of a graph is the subgraph induced by the vertices whose core number is k and
thus consists of the vertices that are part of the k-core but do not belong to the (k + 1)-
core [24]. k-core centrality is sometimes also referred as k-shell centrality.

A k-core decomposition algorithm, which computes the core numbers of all vertices in
a graph, is outlined in Algorithm 2. Vertices with degree k are removed from the graph and
their core number is set to k. Their removal decreases the degree of neighboring vertices,

9

2 Fundamentals

Algorithm 2 k-core decomposition algorithm [24, 25]
Input A graph G = (V,E)
Output Core numbers for all vertices in G

1: Set k = 0
2: core_numbers← empty array of size n
3: repeat
4: repeat
5: Remove all vertices with d(v) = k from G
6: core_numbers[v]← k
7: until ∀v ∈ V : d(v) > k
8: k ← k + 1
9: until V = ∅

10: return core_numbers

which then also may have degree k. Therefore, this is iteratively repeated until the graph
contains only vertices with a degree larger than k. In order to compute the core numbers of
all vertices, k is set to zero initially and increased until all vertices have a core number and
are removed from the graph [24, 25].

2.2.4 Betweenness Centrality
Betweenness centrality originates from the field of social studies and was first defined
in the 1970s [3, 36]. It measures the influence or the amount of control a vertex holds
over connections between pairs of vertices [29, 87]. For a vertex u ∈ V it is defined as
the fraction of all pairwise shortest paths that go through u [19]. Consequently, a high
betweenness centrality score indicates that a significant number of shortest paths traverse
that vertex and its removal would result in longer paths between pairs of vertices [63].

For two vertices s, t ∈ V the number of shortest paths between them is defined
as σst [32, 19]. Furthermore, σst(u) denotes the number of such paths that traverse through
the intermediary vertex u ∈ V . Note, that in an undirected graph it holds σst = σts. Using
these definitions, the following types of dependencies are established:

• Pair-dependency of a vertex pair s, t ∈ V on a vertex u ∈ V

δst(u) =
σst(u)

σst

, (2.7)

which quantifies the fraction of shortest paths between s and t that pass
through v [19].

• Dependency of a source vertex s on a vertex u, with s, u ∈ V

δs•(u) =
∑
t∈V

δst(u), (2.8)

10

2.2 Centrality Measures

which summarizes the collective influence of vertex u on all paths
starting from vertex s [19].

Betweenness centrality of a vertex u ∈ V is then defined as the sum of pair-
dependencies, i.e.,

cB(u) =
∑

s ̸=u∈V

δs•(u) (2.9)

=
∑

s ̸=u̸=t∈V

δst(u) =
∑

s ̸=u̸=t∈V

σst(u)

σst

(2.10)

and can be normalized by multiplying with 1
n(n−1)

[13]. In a disconnected graph, the num-
ber of shortest paths between vertices belonging to different components is zero and con-
sequently, such vertex pairs do not influence the centrality score of a vertex [18]. More-
over, 0

0
= 0 by convention and therefore, betweenness centrality can also be applied to

disconnected graphs.
To compute betweenness centrality scores of all vertices in a graph, it is necessary to

determine the dependencies, which, in turn, requires the calculation of both σst(u) and σst

for all possible triples of vertices s, t, u [19, 32]. Using the fact that u is contained in a
shortest path between s and t if and only if d(s, t) = d(s, u)+d(u, t), it follows that shortest
paths from s to t through u can be written as concatenation of shortest paths from s to u
and from u to t. This property directly transfers to the number of shortest paths, leading to
the equation

σst(u) = σsuσut. (2.11)

The predecessor set of u with respect to s is then defined as

Ps(u) = {v ∈ V | (u, v) ∈ E, d(s, u) = d(s, v) + 1} (2.12)

and it holds
σsu =

∑
v∈Ps(u)

σsv. (2.13)

For a given source s, σsu can be computed for all u ∈ V by running a BFS. Together with
Equation (2.11) this implies that computing cB(u) requires O(n2) for a single vertex u
and O(n3) for all vertices [19, 32, 87].

Theorem 1
For the dependency δs•(u) of a source vertex s ∈ V and any other u ∈ V it holds

δs•(u) =
∑

w:u∈Ps(w)

σsu

σsw

(1 + δs•(w)). (2.14)

11

2 Fundamentals

The previous statement has been proven in [17] where the author also provides a faster
algorithm, which computes betweenness centrality scores for all vertices in O(nm) time
for unweighted graphs. The key idea of that algorithm is to compute accumulated depen-
dencies recursively using Equation (2.14) [17, 19, 32, 87]. The algorithm operates in two
phases: First, a shortest path tree for every s ∈ V is computed to obtain σsu and Ps(u)
for every u ∈ V . In the second phase, the shortest path trees are traversed backwards to
compute δs•(u) for all s ̸= u using Equation (2.14). The final betweenness score of a ver-
tex is then the sum of all dependency values computed during the n SSSP runs. The space
requirements can further be reduced from O(n2) to O(n+m) by directly summing up the
dependency values [19].

Brandes’ algorithm has been shown to be almost optimal [13, 15]. For sparse graphs
computing betweenness centrality in O(mn1−ϵ), ϵ > 0 would contradict some commonly
held complexity assumptions like the Strong Exponential Time Hypothesis or the Orthog-
onal Vector conjecture. For dense, weighted graphs it has been shown that computing
exact betweenness centrality scores is as hard as computing APSP and determining an
approximation with a specified relative error is equally challenging as computing the di-
ameter [1, 13]. For these algorithms, no algorithm running in O(n3−ϵ), ϵ > 0 exists.

2.2.5 Eigenvector Centrality

Bonacich proposed a centrality measure that relies on the eigenvector associated with the
largest eigenvalue of the adjacency matrix [24, 95]. This centrality score quantifies a vertex
importance proportional to the sum of neighboring centrality scores, implying that a vertex
is important if its neighbors are important. Let A be the adjacency matrix of a graph G,
i.e., aij = 1 if vertex vi is connected to vertex vj and aij = 0 otherwise. The eigenvector
centrality of vi is then defined as

cE(vi) =
1

λ

n∑
j=1

aijxj, i = 1, 2, . . . n (2.15)

which can also be written as Ax = λx, with λ being the greatest eigenvalue of A [19, 24,
95]. This can be computed exactly by using the power iteration method [102]. Starting
with an initial vector x(0) ∈ Rn×1, ∥x(0)∥2 = 1 the (k + 1)-th iterate is defined as

x(k+1) =
Ax(k)

∥Ax(k)∥2
=

Akx(0)

∥Akx(0)∥2
(2.16)

where x(k),x(k+1) ∈ Rn×1. For k → ∞, x(k) converges to the eigenvector associated
with the largest eigenvalue. In practice, the method is terminated after a sufficient number
of iterations or a given error tolerance is reached [79].

12

2.2 Centrality Measures

2.2.6 Katz Centrality
To assess the significance of a vertex, Katz centrality considers the number of paths be-
tween vertex pairs [24, 59, 95]. It was initially introduced by Katz and can be viewed as a
generalization of eigenvector centrality [59]. Assuming that the vertices are labeled from 1
to n, the Katz centrality of a vertex vi ∈ V is defined as

cK(vi) =
∞∑
k=1

n∑
j=1

αk(Ak)ij. (2.17)

Here, (Ak)ij denotes the number of paths of length k from vi to vj and α ≥ 0 is a damping
factor, which ensures that longer paths between two vertices vi and vj have less influence
on the centrality of vi than shorter paths [19, 95]. To guarantee convergence α must be
chosen such that λ1 < 1

α
holds, where λ1 is the largest eigenvalue of A [19]. Assuming

convergence, Equation 2.17 can be rewritten as follows:

cK(vi) =
∞∑
k=1

n∑
j=1

αk(Ak)ij (2.18)

=
∞∑
k=1

αk(AT)k1n (2.19)

(2.20)

which is equivalent to

cK = ((I − αAT)−1)1n (2.21)

(I − αAT)cK = 1n. (2.22)

This reformulation into an inhomogeneous system of linear equations highlights the feed-
back nature of Katz centrality, namely that ck(vi) depends on ck(vj), j ̸= i [19]. The exact
computation of Equation (2.22) is computationally infeasible, since the inverse of a matrix
is required [68, 69]. Using Cholesky decomposition is impractical as well, due to its com-
putational complexity of O(n2). Thus, iterative methods which require O(m) time, if the
number of iterations is not very large, are commonly used in practice.

Such a method approximates the solution x of a linear system Mx = b, where b and M
are given [68, 69]. The procedure starts with an initial guess x(0) and in each iteration the
current guess x(k) is improved until a stopping criterion is reached. Such a criterion could,
for example, be a predefined number of iterations or an error tolerance. In the case of Katz
centrality, M = I − αA and b = 1n. This is then iteratively solved for x or cK .

13

2 Fundamentals

14

CHAPTER 3
Related Work

For each centrality presented in the previous section, it has been shown that polynomial
time and space algorithms for computing the exact centrality scores exist. However, these
only work well on smaller graphs. On today’s real world instances their computation takes
prohibitively long, making them inapplicable in practice. Furthermore, it is important to
note that practical applications do not necessarily require exact centrality values. Often
approximations or the ranking of vertices with respect to a given centrality measure are
sufficiently informative. Therefore, lots of research is dedicated to the development of ap-
proximation algorithms and heuristics which make trade-offs between accuracy and com-
putational speed. The key emphasis lies on scalability and minimal runtime dependency
on the graphs’s size. In the following, different such approaches are discussed for all pre-
viously introduced centrality measures. Note, that these are limited to static graphs, for
algorithms on dynamic graphs the reader is referred to [45].

3.1 Degree Centrality

Since the exact computation is already very efficient algorithms, which approximate vertex
degrees are not needed [95]. However, an approach to estimate the rank of a vertex by
using local information is presented in [90]. In a preprocessing step, graph characteristics
such as the maximum and average degree are computed. Subsequently, the rank of a
given vertex is estimated either by utilizing characteristics related to the power law degree
distribution or by applying a sampling based approach. In the latter method, the estimated
global rank is obtained by extrapolation of the exact local rank with respect to the vertices
in the samples. The authors show that using random walk for collecting samples yields the
best results on real-world graphs.

15

3 Related Work

3.2 Closeness Centrality

A randomized approximation algorithm for weighted graphs was firstly proposed by [31].
Instead of computing APSP, their idea is to select a random set of vertices, also known
as samples. For each of those vertices SSSPs are computed, and the remaining centrality
scores are obtained by extrapolation from those shortest path computations. The algorithm
runs in O(logn

ϵ2
(n log n+m)) and approximates the scores within an additive error ϵ∆ with

high probability, where ϵ is a constant and ∆ is the graphs’ diameter. Different strategies for
selecting the samples are investigated in [20], showing that random selection works best.

However, since the sample average is a poor estimator of the average distance, the algo-
rithm is improved in [22]. Similar to the algorithm of [31], a set of k vertices is selected for
which SSSP computations are conducted. For each of the remaining vertices, the centrality
score is then approximated either by using the sample average or the centrality score of the
closest vertex in the sample to the current vertex. The decision on either of the two variants
is based on the distance of a vertex to the set of samples. This hybrid estimator achieves a
small relative error and provides probabilistic guarantees for all graphs and vertices.

While approximation algorithms yield reasonably accurate centrality scores, they may
still not be able to achieve the correct ranking since closeness centrality scores tend to be
distributed within a narrow interval [73, 101]. Moreover, in practice often only the top-k
centrality vertices are needed. Such approaches are presented in [9, 14, 56, 74].

Due to the fact that even for small sample set sizes, exact centrality computations become
computationally expensive, machine learning techniques have been explored [40, 42, 66].
Mendonça et al. [66] propose an algorithm based on neural networks and graph embed-
dings. The encoder uses the adjacency matrix and the degree centrality values of all ver-
tices as input variables and transforms them to a lower dimensional space using weight
matrices. The resulting embeddings serve as inputs for iterative supervised machine learn-
ing. Through backpropagation the weight matrices are updated such that the approach can
be used to predict the closeness centrality scores of vertices.

Another machine learning based approach was presented by Grando and Lamb [40].
Their idea is to use computationally efficient centrality measures as input variables for
neural networks which then learn to predict more complex measures. Here, eigenvector
and degree centrality are used as input and in the experimental evaluation it is shown that
they result in high quality regression models for closeness and betweenness centrality.

Alternative approaches for estimating closeness centrality are presented in [80, 88, 91].
Saxena et al. [91] observe that the reverse ranking of closeness centrality follows a sigmoid
curve, which can be described by a logistic curve whose parameters have to be estimated
for a given graph. Once estimated, the closeness centrality rank of a vertex is computed
in O(1) time. The overall complexity of the algorithm is O(m), however it does not provide
any guarantees. Rattigan et al. [80] introduce a network structure index that uses annota-
tions on vertices to estimate the distance between pairs of vertices. These estimates are
used to compute closeness centrality scores. Although this approach does not offer guar-

16

3.3 k-core Centrality

antees, it performs well in experiments. In [88] the centrality preserving compressions and
graph splits, which are used to reduce the complexity of the graph for faster centrality com-
putations, were extended from betweenness to closeness centrality by the same authors. A
more detailed description can be found in Section 3.4 and [87].

In their paper, Bader and Madduri [4] offer parallel implementations of both, the exact
and the closeness approximation algorithm of [31] on high-end shared memory symmet-
ric multiprocessor and multithreaded architectures. Furthermore, a parallel algorithm for
closeness and betweenness centrality is introduced by Shi and Zhang [94]. They employ
an efficient APSP algorithm in conjunction with graphics processing units (GPUs). Algo-
rithms for computing closeness centrality on dynamic graphs are presented in [75, 86]. For
a more detailed analysis the reader is referred to [45].

3.3 k-core Centrality

Batagelj and Zaversnik [7] propose a linear time algorithm for k-core decomposition.
The key concept of the algorithm is, that by removing all vertices with a degree
smaller than k as well as their incident edges, the resulting graph is a k-core (see Sec-
tion 2.2.3). Using bin-sort, the algorithm runs in O(n + m) but requires reading and
writing to three different arrays in each iteration, which becomes expensive for large
graphs due to memory latency [25]. The synchronization overhead makes this algorithm
also challenging to parallelize.

A distributed k-core decomposition algorithm is given in [67]. The graph is partitioned
and a subset of vertices is assigned to each processor. Additionally, for every vertex a list of
its neighbors along with their corresponding core numbers is maintained. Initially, the core
number of every vertex is equivalent to its degree. As local coreness estimates are updated,
the changes are communicated to its neighbor processors. If necessary, they update their
own core numbers and communicate those changes further. The algorithm is converged if
there are no changes to communicate. However, this approach only works well if lots of
processors are available, each responsible for a small set of vertices [25, 49]. Moreover, in
the worst case the algorithm requires O(nm) time.

The algorithm of Dasari et al. [25] computes the core numbers of each vertex by
processing in levels. This means that all vertices within the l-core are identified before
those in the subsequent (l + 1)-core are computed [49]. Initially, the core number of
all vertices is set to the respective degree. In the scan phase, all vertices belonging to
level l, i.e., those with core number l, are collected. In the process phase, the neighboring
vertices are examined, which potentially results in a decrease of their core numbers.
This in turn leads to more vertices with core number l which are processed in the next
iteration. The whole process is repeated until no more vertices belong to level l [49].
The computational complexity is O(kmaxn + m) where kmax is the largest value of k for
which a k-core exists in the graph. While this complexity is worse than the one of [7], it
achieves much better running times in practice. The algorithm can further be parallelized

17

3 Related Work

by distributing all vertices of a level or sublevel among available threads, processing them
independently and synchronizing at the end of each sublevel. In [49] the authors introduce
an enhanced version of the latter approach, taking advantage of the fact that the majority
of graph vertices have low core values. Additionally, they use less synchronization calls
and atomic operations.

3.4 Betweenness Centrality

Due to its definition and versatile applicability, betweenness centrality is one of the most
popular centrality measures. Various methods for computing exact and approximate re-
sults have been developed. They are categorized into six groups based on the underlying
strategies [23, 62]:

1. Computation of fewer SSSP using sampling

2. Exploitation of parallelism

3. Exploitation of structural graph properties to compress or partition a graph

4. Reduction of complexity through decomposition into clusters

5. Exploitation of correlation with centrality measures that are easier to compute

6. Application of Machine Learning

An overview of the approaches for each group, recent advances and the state-of-the-art
algorithms are presented. It’s worth noting that some approaches can not be clearly
assigned to one group but fit into multiple ones.

Sampling based Approaches. Inspired by [31], Brandes and Pich [20] use a set of sam-
pled vertices to extrapolate the centrality scores of all other vertices. Different strategies
for selecting the samples are investigated, and it is shown that random selection per-
forms better than deterministic strategies. However, this approach leads to an overesti-
mation of betweenness centrality scores for vertices which are close to the samples [38].
Thus, Geisberger et al. [38] propose a different estimator, which is not affected by this
issue and performs well in experiments. The algorithm provides good approximations
even for less important vertices and can also be parallelized. However, it does not
have a theoretical guarantee [2, 38, 62].

Instead of a fixed number of samples, the algorithm introduced in [5] uses an adaptive
approach where the number of samples depends on the information obtained from each
sample. It approximates the centrality score of a single vertex and provides a theoretical
guarantee, which however only holds for high centrality vertices.

18

3.4 Betweenness Centrality

In [81], the authors introduce an alternative sampling based approach. Instead of sam-
pling vertices, they sample vertex pairs (s, t) ∈ V × V with s ̸= t uniformly at random.
For each such pair, a shortest st-path is also sampled at random. Repeating this τ times
results in a sequence of shortest paths π1, π2, . . . πτ [99, 100]. The betweenness centrality
of a vertex v is then approximated by calculating the fraction of those shortest paths that
go through v and is defined as

c̃B =
1

τ

τ∑
i=1

xi(v), xi(v) =

{
1 if v ∈ πi

0 otherwise.
(3.1)

Using this technique, the betweenness centrality scores of all and of the top-k vertices
are within an additive and a multiplicative factor ε ∈ (0, 1) from the exact ones with
probability at least (1− δ), δ > 0, respectively. Additionally, a lower bound for the number
of samples required to achieve a given error guarantee is given. However, this involves the
computation of an upper bound on the vertex-diamter, the maximum number of vertices
on any shortest path [82].

The ADaptive Algorithm for Betweenness via Random Approximation (KADABRA)
algorithm of Borassi and Natale [13] further improves the approach of [81] by

1. Using a balanced bidirectional BFS, which runs in O(|E| 12+o(1)) on many real-world
networks

2. Using an adaptive sampling technique which decreases the required amount of sam-
pled shortest paths

The algorithm stops if f(v), g(v) < ε, ∀v ∈ V where f(v) = (c̃B(v), δL(v), ω, τ)
and g = (c̃B(v), δU(v), ω, τ). ω is the maximal number of samples and δL(v), δU(v) are
per-vertex failure probabilities. Consequently, the KADABRA algorithm is divided into
the following phases [99]:

1. Computation of the diameter to determine the value of ω

2. Calibration of δL and δU using a fixed number of samples

3. Computation of betweenness centrality scores using adaptive sampling of shortest
paths

A similar adaptive sampling approach called Approximating Betweenness with
Rademacher Averages (ABRA) is presented in [82]. It uses Rademacher averages for the
stopping criterion instead of the vertex diameter and a scheduler to decide when this stop-
ping criterion should be tested. Even though both, KADABRA and ABRA provide the
same theoretical guarantees, it is shown in [13] that KADABRA exceeds ABRA in terms
of approximation quality and runtime. This has also been confirmed in the empirical com-
parison of [62] and thus, KADABRA is the state-of-the-art algorithm for approximation of
betweenness centrality scores [99].

19

3 Related Work

The shared-memory parallelization of KADABRA presented by van der Grinten et al.
[100] makes the approach applicable to graphs with hundreds of millions of edges with
an error of ε = 0.01. This is further improved by the same authors in [99] where they
provide a Message Passing Interface (MPI)-based implementation of KADABRA, which
outperforms other implementations in terms of speed and also enables the computation of
betweenness centralitiy scores for graphs with billions of edges.

Exploitation of Structural Graph Properties. Another technique to speed up between-
ness centrality computations involves reducing the size of the graph using reductions
or partitioning. The authors of [78] combine two heuristics to achieve a speedup over
Brandes’ algorithm. They firstly identify structurally equivalent vertices, i.e., vertices
that have the same set of neighbors and in particular the same centrality scores, and
then contract these in linear time. In the second heuristic, the graph is partitioned into
bi-connected components. Finally, the exact centrality scores of all vertices are calculated
component-wise. The idea of contracting structurally equivalent vertices is also used
by [87], together with compressing the graph by, e.g., removing vertices of degree 1. The
graph is split along bridges and articulation vertices, i.e., edges and vertices which increase
the number of connected components when removed. These two steps – compressing and
splitting – are iteratively repeated until the graph does not change anymore. The exact
betweenness centrality scores are computed on the different parts of the graph. Since
information about pair and source dependencies is kept throughout the reduction process,
the exact centrality scores of all vertices are determined.

Decomposition into Clusters. The idea of these approaches is to divide the graph into
clusters, compute the betweenness centrality scores for the vertices inside the clusters and
then on the remaining part of the graph [23]. The computations on the sub-graphs should be
faster than on the original graph, leading to an overall speedup of the approach. The algo-
rithm of [32] first partitions the graph, runs SSSP computations on the different subgraphs
and then uses the centrality scores obtained on the skeleton – a simplified hierarchical rep-
resentation of the graph – to compute all betweenness centrality values. However, these
centrality scores are computed only with respect to a subset S of vertices and for S = V ,
the algorithm converges towards Brandes’ algorithm with longer computation times [23].

In [23] clustering is used to identify the equivalence classes in a graph. An equivalence
class consists of all vertices that, when used as sources for SSSP computations, yield
identical dependency scores for all vertices outside the cluster [23]. The calculation of
betweenness centrality consists of computing local and global dependencies, which are
pair dependencies between vertices of the same and of different clusters, respectively. By
selecting a representative for each equivalence class, the amount of SSSP computations
and the runtime is reduced. To avoid errors, such as intra-cluster errors, hierarchical
sub-network corrections are used, resulting in exact betweenness centrality scores. The
authors provide a sequential and parallel map-reduce version of their algorithm. More
cluster based approaches can be found in [58, 97].

20

3.4 Betweenness Centrality

Exploitation of Correlation. In the last years, lots of variants of betweenness centrality
have been introduced. Firstly, because they focus on different aspects of importance, and
secondly, because they are used to approximate betweenness centrality if the two measures
correlate and the other one is easier to compute. One such measure is k-betweenness
centrality where the length of the shortest paths is limited to k [16, 77]. Pfeffer and
Carley [77] showed that for graphs with low average degree, k-betweenness centrality
scores can be computed in O(n) while achieving high qualitative approximate results.
In [53] the correlation between betweenness centrality and k-path betweenness centrality,
which considers simple paths of length at most k, is investigated. The authors provide
a randomized algorithm that runs in O(k3n2−2α log n) with probabilistic guarantees for
computing the latter and show experimentally that vertices with high k-path centrality
have high betweenness centrality scores. Other variants of betweenness centrality include,
e.g., flow betweenness centrality, which considers paths of all lengths without cycles [37],
routing betweenness centrality, which includes arbitrary loop-free routing schemes [29]
and random-walk betweenness centrality, which is based on an electrical current model
and random walks [72].

Exploitation of Parallelism. Other research focuses on the development of parallel com-
puting approaches, multicore architectures, and GPU technology to increase the scalability
of betweenness centrality calculations. Bader and Madduri [4] use shared memory sym-
metric multiprocessor and multithreaded architectures to implement the exact algorithm
in parallel. This is further enhanced by the same authors through reducing synchroniza-
tion overhead and optimized cache locality [61]. Edmonds et al. [30] propose an algo-
rithm which not only parallelizes shortest path computations but also maintains low space
complexity through a hybrid approach that combines different level of parallelism and dis-
tributes vertices among processors. A fully distributed algorithm is presented in [10]. The
authors provide a distributed preprocessing algorithm, which removes degree-1 vertices
before using bi-dimensional decomposition to split the graph onto multi-GPU systems.
Exact betweenness centrality scores are computed by combining coarse- and fine-grained
parallelism with a data-thread mapping based on prefix sum operations.

Sariyüce et al. [85] introduce a heterogeneous approach, which combines different
levels of parallelism as well as central processing unit (CPU) and GPU architectures.
They utilize a vertex-based approach combined with virtualization of high degree vertices
in order to avoid load imbalance and reduce the graph by iteratively removing degree-1
vertices. The combination of all those techniques makes the approach very efficient.
However, the runtime depends on the diameter of the graph and is in the worst case
quadratic in the number of vertices. Betweenness centrality scores of graphs with large
diameters can be efficiently calculated using [64]. The authors provide a work-efficient
method on the GPU, which works well for these types of graphs and an edge-parallel
approach that is applicable for graphs with smaller diameter. Depending on the structure
of the graph, an online hybrid approach decides on one of the two.

21

3 Related Work

Machine Learning. In [63] the authors introduce a graph neural network (GNN) based ap-
proach with constrained message passing scheme, which estimates betweenness centrality
scores. The focus is thereby set on the relative ranking rather than exact scores. By ag-
gregating features within a multi-hop neighborhood, the model learns to predict how many
vertices a given vertex can reach. The approach yields qualitative promising results, while
requiring less computation time.

Fan et al. [33] use an encoder-decoder framework that maps each vertex to an embedding
vector before estimating its centrality score. For the encoder, a GNN is used. It aggregates
for each vertex information about its neighbors instead of computing shortest paths, similar
to the previous approach. The decoder consists of a multi-layer perceptron which maps
each embedding vector to a centrality score. This achieves overall good accuracy. Further
machine learning techniques for betweenness centrality are provided in [40, 42, 66]. Since
these also include the estimation of closeness centrality scores, a detailed description has
already been presented in Section 3.2.

3.5 Eigenvector Centrality

As described in Section 2.2.5, eigenvector centrality scores are computed using the power
iteration method. This can be speedup by adjusting the error tolerance such that the algo-
rithm stops earlier or by using parallelism and GPUs [93, 96].

Rakaraddi and Pratama [79] use the adjacency matrix and the degree of each vertex as
inputs for an encoder-decoder model, which generates centrality scores for each vertex.
They show that the proposed algorithm works best with unsupervised learning and per-
forms well in experiments, particularly at identifying the most central vertices. A detailed
description for a similar machine learning approach can be found in Section 3.2 and [66].

3.6 Katz Centrality

Solving or approximating the system of linear equations in Section 2.2.6 with numerical
iterative solvers yields good results. However, it takes lots of iterations to converge and is
thus not applicable for large graphs. In [35] the authors propose to compute Katz centrality
iteratively by computing the recurrence cK,i+1 = αAcK,i + I⃗ until a fixed point or a prede-
fined number of iterations is reached. This approach runs in O(n +m) time and performs
well in practice but does not provide guarantees.

In order to obtain the correct ranking of vertices, the calculated centrality scores do
not necessarily have to be fully correct, they just have to yield the correct order. There-
fore, Nathan et al. [70] derive error bounds on the centrality ranking and show that using
these bounds, vertices with high Katz centrality can be found without computing all cen-
trality scores. They develop a stopping criterion, which can be used with any iterative

22

3.6 Katz Centrality

solver and decreases the amount of iterations needed to identify most central vertices. For
the full ranking, however, this does not lead to a speedup [43].

A sampling based approximate algorithm is presented in [59]. For a given vertex, a
set of vertices and edges is sampled first. An approximate Katz centrality score is then
obtained by counting the number of walks in that subgraph. These steps are repeated
multiple times to obtain the desired accuracy. The authors show that the theoretical estima-
tor is unbiased and that estimated values can be bounded with high probability. Working
with subsets makes the approach even more efficient, which is demonstrated by the ex-
periments. For a single vertex the algorithm requires O((l(d − 1) r

2

n2m + ls)) time, where
r is the size of sampled subset, s is the size of the successors set for the given vertex
and l, d are small constants. The approach can be efficiently extended to multiple vertices
by reusing intermediate results.

The algorithm in [43] also computes approximate Katz centrality scores and guarantees
the correct ranking by iteratively improving upper and lower bounds on the centrality score
of each vertex. Different ranking criterions can be used, e.g., the

• top-k criterion which ensures that the top-k vertices are ranked correctly or the

• ranking criterion which ranks all vertices correctly.

A ranking is considered correct, if the respective vertices are ϵ-seperated, i.e., for
the lower bound lr(w) of a vertex w and the upper bound ur(v) of a vertex v it
holds lr(w) > ur(v)− ϵ, ϵ > 0. The algorithm runs in O(r|E| + rC), where C is the com-
plexity of the top-k criterion which requires O(|V |+ k log(k)) time. A speedup of at least
50% compared to numerical methods is achieved and in the same paper, an extension to
dynamic graphs as well as parallel CPU and GPU implementations are provided. For more
implementations of Katz centrality on dynamic graphs, the reader is referred to [45, 69].

23

3 Related Work

24

CHAPTER 4
Edge Sparsification

In this chapter, the shortest path based edge sparsification is explained. Firstly, the overall
structure as well as associated parameters are provided. Then, the two primary components
– the computation of edge counts using a BFS approach and the construction of the reduced
graph based on MWSFs – are described in detail. Finally, the time and space complexity
of the algorithm is analyzed.

4.1 Overview

In order to speedup centrality computations, the graph is first reduced using the edge spar-
sification. Edges that are part many shortest paths, are of particular importance for both
path-based centrality measures and the overall topological structure of a graph. Conse-
quently, these edges are preserved in the reduced graph, while others are removed. The
core components of the approach are the following:

1. Computation of edge counts
The edge count is defined for each edge and approximates how often this edge occurs
on shortest paths. These counts are computed using one of the three BFS-based
variants detailed in Section 4.2.

2. Construction of the reduced graph
Based on the computed edge counts, the reduced graph is constructed using a MWSF.
Two such approaches are described in Section 4.3.

The entire procedure of the edge sparsification is outlined in Algorithm 3. Using the pa-
rameters described in Table 4.1, an undirected, unweighted graph G = (V,E) is reduced
to a graph G′ = (V,E ′) with E ′ ⊂ E. Initially, every edge has count zero and thus ecounts
is initialized accordingly, containing m = |E| elements in total. A set of vertices, whose
size depends on the parameter set_size, is selected randomly to compute the edge counts by

25

4 Edge Sparsification

Algorithm 3 Edge Sparsification of Graph G

Input The graph G = (V,E) and the parameter list in Table 4.1
Output The reduced graph G′ = (V,E ′)

1: ecounts ← empty array of size m
2: for edge e in E(G) do
3: ecounts[e]← 0
4: end for
5: for i← 1 to bfs_repetitions do
6: subset_vertices← select set_size vertices at random from V (G)
7: calculate_edge_counts(ecounts, subset_vertices, bfs_method)
8: end for
9: Gw ← G with edge weights ecounts

10: G′ ← construct_reduced_graph(Gw, edge_percentage, mwsf_method)
11: return G′

one of three BFS variants, i.e., bfs_set, bfs_single and bfs_percentage. Each of them pro-
duces shortest path trees, which are used to increment the associated edge counts (see Sec-
tion 4.2). These two steps are repeated as often as specified in parameter bfs_repetitions.
Since exactly one count is assigned to each edge, these can also be viewed as edge weights,
transforming the originally unweighted graph into a weighted one. In the next step, this
graph is then used to construct the reduced graph G′, employing one of the two MWSF-
based methods described in Section 4.3. The amount of edges added to the reduced graph
is in both variants restricted by the parameter edge_percentage, which defines how many
edges the reduced graph may contain with respect to the full one. The resulting graph G′ is
a spanning subgraph of G.

Parameter Description
set_size size of the subset of vertices

bfs_method defines which approach is used to run the BFS

bfs_percentage
specifies the percentage of vertices that has to be
reached in each iteration of the bfs_percentage approach

repetitions number of repetitions of edge count calculations

edge_percentage
amount of edges in percent which should be part of
the reduced graph

mwsf_method
defines which MWSF-based approach should be used
to construct the reduced graph

Table 4.1: Input parameters of the edge sparsification algorithm

26

4.2 BFS Variants

4.2 BFS Variants

The objective of all the methods outlined below is to determine edge counts, which estimate
how often each edge is included in shortest paths within the graph. This process involves
the following steps: Starting from a set of vertices, a BFS tree is constructed. The edge
counts of all edges belonging to that tree, i.e., which are part of some shortest paths, are
increased by one. Thereby, the methods vary in how they construct the shortest path tree.
In the following, each approach is explained and illustrated using an example graph.

4.2.1 BFS-Set

Instead of initiating SSSP computations from a single vertex, this approach uses multiple
ones – specifically, all vertices contained in the subset_vertices variable of Algorithm 3.
This is achieved by setting these vertices as ’visited’ and inserting them directly into the
queue (see Algorithm 4). Similar to a normal BFS, the graph is then traversed in levels,

Algorithm 4 Computation of edge counts using BFS-set
Input Array ecounts and subset_vertices containing the edge counts and a subset of
vertices respectively
Output Incremented edge counts for all edges belonging to the shortest path tree

1: Initialize an array visited with all elements set to false
2: Q := a queue data structure
3: for each vertex v in subset_vertices do
4: visited[v]← true
5: insert v to the end of Q
6: end for
7: while Q is not empty do
8: u← remove and return vertex from Q
9: neighbors← empty array

10: for each neighbor v of u do
11: if visited[v] is false then
12: visited[v]← true
13: ecounts[{u, v}]← ecounts[{u, v}] + 1
14: insert v into neighbors
15: end if
16: end for
17: shuffle the elements of neighbors at random
18: add elements of neighbors to the end of Q
19: end while
20: return ecounts

27

4 Edge Sparsification

1
1

1

1

1

1

(a) BFS tree and incremented edge counts
using the gray colored vertices as sub-
set.

2
2

1

2

1

1

1
11

(b) Incremented edge counts after the sec-
ond BFS with a different subset

Figure 4.1: Two iterations of the BFS-set approach with subsets consisting of three vertices. Dot-
ted lines connect vertices within the subset, while edges of the BFS tree are depicted
in bold. Unnumbered edges have an edge count of zero.

starting from these very vertices. For each vertex in the queue the following steps are
executed. First, its neighbors are investigated. If a neighboring vertex has not been visited
yet, a shortest path to that vertex is found and simultaneously, an edge of the shortest path
tree is identified. The edge count of the respective edge is then incremented by one. All
newly visited neighbors are then added to the queue in random order. These steps are
repeated for every vertex and the algorithm terminates when the queue is empty and all
vertices of the graph have been visited.

This process is illustrated in Figure 4.1. The subset of vertices is colored in gray and
the edge counts are represented as edge weights. Edges without any number have count
zero. After running Algorithm 4, edges which are part of the shortest path tree – high-
lighted in bold – have count 1 while the others still have count zero. Due to the nature
of this approach, edges connecting vertices within the subset are not considered and thus
illustrated as dotted lines (see Figure 4.1a). This also implies that the BFS does not con-
struct a tree but instead results in disconnected components. Only if the vertices within the
subset are treated as a single, large starting vertex, the result is a tree. If multiple iterations
are specified, the previous steps are repeated with a new at random selected set of ver-
tices (see Figure 4.1b). Since the edge counts are not reset between individual runs of Al-
gorithm 4, they range from zero to one after one iteration and from zero to bfs_repetitions
after bfs_repetitions many iterations, respectively.

4.2.2 BFS-Single

Similar to the previous approach, the BFS-single method receives the edge counts array,
initialized with zeros and a randomly selected subset of vertices as input. However, instead
of just one BFS run, this variant initiates individual runs for each vertex in the subset. The
traversal for the graph and the incrementation of edge counts follow the same procedure

28

4.2 BFS Variants

Algorithm 5 Computation of edge counts using BFS-single
Input Arrays ecounts and subset_vertices containing the edge counts and a subset of
vertices, respectively
Output Incremented edge counts of the edges belonging to the shortest path trees

1: for each vertex v in subset_vertices do
2: ecounts ← BFS_SET(ecounts, [v]) ▷ Call Algorithm 4 with just one ver-

tex in the subset
3: end for
4: return ecounts

as in the BFS-set approach. Thus Algorithm 4 is invoked with just one vertex at a time
(see Algorithm 5). In Figure 4.2 one iteration of the BFS-single approach is shown. The
gray colored vertices in Figure 4.2a are again the ones belonging to the randomly selected
subset. In the first run, the BFS tree is computed starting from the right dark gray vertex,
indicated with bold edges. Consequently, the counts of all edges belonging to that tree are
incremented by one. In contrast to the previous method, this approach naturally encom-
passes all edges and as a result, the shortest path tree is an actual tree, which also contains
a path to the other start vertex. Using Algorithm 4, a BFS tree is then also computed for
the second vertex in the subset (see Figure 4.2b). In total, set_size SSSP computations are
performed in each iteration, leading to edge counts ranging from 0 to set_size for one and
from 0 to set_size · bfs_repetitions for all iterations.

4.2.3 BFS-Percentage

In this approach, the BFS is not terminated when all vertices of the graph are visited.
Instead, it is stopped earlier if a certain percentage of vertices, determined by the parameter

1

1

1

1

1

1

1

1

(a) Edge counts after the first BFS, initiated
from the right gray vertex

2

1

2

2

2

2

1

2 1

1

(b) Resulting edge counts after the second
BFS from the lower gray vertex of the
subset

Figure 4.2: Steps of the BFS-single approach for a subset of two vertices. Edges which belong to
the BFS tree are drawn bold and edges without number have edge count zero.

29

4 Edge Sparsification

Algorithm 6 Computation of edge counts using BFS-percentage
Input Array ecounts, containing the edge counts per edge, one randomly selected start
vertex s and the parameter bfs_percentage
Output Incremented edge counts for all edges belonging to the shortest path trees

1: Initialize an array reached of size n with all elements set to false
2: unreached← [s]
3: while unreached is not empty do
4: u← select one vertex of unreached at random
5: ecounts ← BFS_SET(ecounts, [u], reached, bfs_percentage)
6: remove all elements from unreached
7: for each vertex v of V do
8: if reached[v] is false then
9: insert v into unreached

10: end if
11: end for
12: end while
13: return ecounts

bfs_percentage, is reached. The overall procedure is outlined in Algorithm 6. First, the
vertices of the subset are added to the unreached list. Note, that for this approach the
subset is assumed to contain just one vertex. An extension to multiple ones is discussed
in Section 6.2. From the unreached vertices, one is then selected at random. Starting
from this very vertex, a run of a slightly modified BFS-set algorithm is initiated. This
algorithm differs from the one presented in Section 4.2.1 in the following aspects. A vertex
is considered reached if it is removed from the queue during the BFS, implying that all
its outgoing edges have been explored. The reached array has to be updated accordingly.
Secondly, the stopping criterion of the loop must be adjusted, since the BFS has to be
stopped if bfs_percentage·n vertices of the graph are reached. Note, that this criterion
refers to the vertices reached in the current BFS run. This finally results in calculated
edge counts and an updated reached array, which is then, in turn, used to update the list
of unreached vertices. The procedure is repeated until all vertices of the graph have been
reached in at least one of the BFS runs.

In Figure 4.3a, the randomly selected vertex is colored in gray and let bfs_percentage
be set to 0.5, i.e., ⌊4.5⌋ = 4 vertices. Starting from the gray vertex, all its outgoing edges
are explored, the neighbors are added to the queue and the edge counts are incremented.
Additionally, the gray vertex is set to reached, represented by the dotted outline. In the sub-
sequent iterations, all neighbors of the gray vertex are processed similarly and they, too, are
marked as reached. Since this accumulates to a total of four vertices, the BFS terminates.
Subsequently, a new vertex is selected from the unreached vertices, initiating another BFS
until again four vertices are reached (see Figure 4.3b). After the second iteration, not all
vertices are reached and thus, a third BFS is run from the gray vertex in Figure 4.3c.

30

4.3 Construction of the Reduced Graph

1

11

1 1

1

(a) Incremented edge counts and partial
BFS tree after reaching 50% of the ver-
tices

1

1 1

1

1
2 1

1
1

2
1

1

(b) Resulting edge counts after a second
BFS from an unreached vertex

1

1 2

1

1
2 2

1
1

2
2

2

1

1

(c) Resulting edge counts after running a
third BFS from an unreached vertex.
Now, all vertices have been reached.

Figure 4.3: Steps of the BFS-percentage approach with bfs_percentage= 0.5. Start vertices of
the BFS are colored gray and vertices which have been reached are drawn with dotted
outline. The BFS tree is highlighted with bold edges and edge counts. Edges without
numbers have edge count zero.

4.3 Construction of the Reduced Graph

The last step of Algorithm 3 consists of constructing the reduced graph G′ based on
Gweighted, i.e., the original graph G and the edge counts computed by one of the BFS
variants (see Section 4.2). The goal is thereby to construct G′ such that it is a connected
spanning subgraph primarily composed of edges with high counts. Moreover, G′ may not
contain arbitrary many edges, but only a certain percentage of those contained in G, which
is specified by the parameter edge_percentage. Note, that all edges are added to the re-
duced graph without any associated weights, resulting in an unweighted, connected graph.
Two such approaches are discussed in the following.

31

4 Edge Sparsification

Algorithm 7 Construction of the reduced graph G′ using a single MWST
Input The graph Gw and the parameter edge_percentage
Output The reduced graph G′ of G

1: G′ ← (V,E ′) where E ′ is empty
2: GMWST ← Kruskal(Gw)
3: add edges E(GMWST) to G′

4: esorted ← sort edges E(Gw) \ E(G′) in descending order
5: add the first edge_percentage·|E(Gw)| elements of esorted to G′

6: return G′

4.3.1 MWST and Sorted Edges
In the first step of Algorithm 7 a MWST is computed using Kruskal’s algorithm where
edges with equal weights are considered in random order. Since G, and consequently, Gw

are connected, such a MWST is guaranteed to exist in Gw. The edges of that tree are
then added to the reduced graph G′, ensuring its connectivity. The remaining edges, which
are not part of the MWST, are sorted in descending order with respect to their weight,
i.e., their edge count. Finally, the top k edges with the highest counts are added to the
reduced graph. k depends on the parameter edge_percentage and can be computed by k =
edge_percentage·|E(Gw)|. As this approach is based on a single MWST or MWSF, it is
referred to as MWSF-single.

4.3.2 Iterative Computation of the Reduced Graph
The second approach iteratively computes G′ using the steps outlined in Algorithm 8. First,
Kruskal’s algorithm is applied to (V,E(Gweighted) \ E(G′)). Since G′ does not contain
any edges in the first iteration, the result of that is a MWST by the same argument as in
the previous approach. The edges from this tree are then incorporated into the reduced
graph. In the next iteration, Kruskal’s algorithm is called again, but since E(G′) is now
non-empty, (V,E(Gweighted) \ E(G′)) does not necessarily have to be connected and thus
Kruskal’s algorithm computes a MWSF, indicated by GMWSF . The edges are added to
G′ and the next iteration follows. This procedure is repeated until at least k edges, where
k = edge_threshold·|Gweighted(E)|, are contained in the reduced graph. Due to the iterative
computation of MWSFs, this method is referred to as MWSF-iterative.

4.4 Complexity Analysis

Theorem 2
The BFS variants BFS-set, BFS-single and BFS-percentage require O(bfs_repetitions(n+
m)), O(bfs_repetitions · set_size(n + m)) and O(bfs_repetitions(n2 + nm)) time. Con-
structing the reduced graph can either be done in O(m logm) using MWSF-single or

32

4.4 Complexity Analysis

Algorithm 8 Iterative construction of the reduced graph G′ using MWSFs
Input The graph Gw and the parameter edge_percentage
Output The reduced graph G′ of G

1: G′ ← (V,E ′) where E ′ is empty
2: num_edges_reduced = edge_percentage · |E(Gw)|
3: while |E(G′)| < num_edges_reduced do
4: GMWSF ← Kruskal((V,E(Gw) \ E(G′)))
5: add edges E(GMWSF) to G′

6: end while
7: return G′

in O(nm logm) with MWSF-iterative. By combining the latter with BFS-percentage,
the worst case complexity of Algorithm 3 is therefore O(bfs_repetitions(n2 + nm) +
nm logm) = O(bfs_repetitions · n2 + nm logm).

Proof. In order to determine the complexity of Algorithm 3, each BFS and MWSF vari-
ant is analyzed separately. The BFS-set approach is a BFS with minor modifications, re-
quiring O(n + m) time (see Algorithm 4). In the BFS-single approach, Algorithm 4 is
executed for each vertex of the subset separately (see Algorithm 5) which implies an over-
all complexity of O(set_size(n + m)). The initialization steps of BFS-percentage shown
in Algorithm 6 can be computed in O(n). Inside the loop, Algorithm 4 is called for a
randomly selected vertex and afterwards unreached vertices are determined by iterating
over the reached array. The latter can be computed in O(n) and thus, the complexity of
BFS-percentage depends on how often Algorithm 4 is executed.

One might assume that the highest complexity is reached when Algorithm 4 has to be
executed for every vertex. However, this would imply that the algorithm terminates after
reaching only one vertex. The complexity of Algorithm 4 then reduces to O(1 + d(v)) for
a single vertex v, resulting in a total runtime of O(n + m) for BFS-percentage. Instead,
the worst-case complexity occurs when, in each call of Algorithm 4, only already reached
vertices, except for the starting vertex, are visited. The more vertices are newly reached,
the longer the runtime of Algorithm 4, but at the same time, the number of necessary
iterations decreases. If always the same 50% of the vertices in a graph are reached, with
only the starting vertex being previously unvisited, then Algorithm 4 must be called for
each of the remaining 50% of the vertices. If the majority of edges in the graph runs
between the repeatedly visited 50%, not only the number of iterations but also the runtime
of Algorithm 4 is maximized.

Consider a graph G with n vertices and m edges with the following structure. Let n
2

of
the vertices form a complete graph and let each of the remaining n

2
vertices be connected

to exactly one vertex from that complete graph. Note, that two such vertices may not
be connected to the same vertex in the complete subgraph. The resulting graph G then
contains n(n−1)

2
+ n

2
edges. An example graph with 10 vertices is shown in Figure 4.4. Let

33

4 Edge Sparsification

Figure 4.4: Example of a graph with 10 vertices where the five blue vertices form a complete
subgraph and the orange vertices have degree 1.

the parameter bfs_percentage then be defined such that exactly n
2
+ 1 vertices are reached

in each run and let further the first randomly selected vertex be a vertex of degree one, i.e.,
a vertex that does not belong to the complete subgraph.

Algorithm 4 then traverses the vertices in the following order: When the start vertex is
dequeued, its only neighbor is enqueued. Since this vertex is part of the complete subgraph,
all its neighbors, i.e., all vertices from the complete graph, are inserted into the queue
and traversed accordingly. Eventually, also unreached vertices will be contained in the
queue. However, since bfs_percentage is chosen such that only n

2
+ 1 are reached, the

algorithm terminates after the last vertex belonging to the complete subgraph is dequeued.
Consequently, in this iteration, no additional previously unreached vertices, apart from
the starting vertex, are reached. Thus, all other degree-1 vertices remain unreached, and
inevitably, a degree-1 vertex will be used as the starting vertex in the next iteration. The
previously described steps are repeated, and consequently, Algorithm 4 must be invoked
separately for all degree-1 vertices.

In a single run of Algorithm 4, n
2
+ 1 vertices and n(n−1)

2
+ 1 edges are traversed.

Since n(n−1)
2

+ 1 ≈ m, this requires O(n
2
+ 1 + m) time. The overall complexity of

BFS-percentage is then O(n
2
(n
2
+ 1 + m)) = O(n(n + m)) because there are n

2
degree-1

vertices. In total, the complexity for computing the edge counts is

• O(bfs_repetitions(n+m)) for BFS-set,

• O(bfs_repetitions · set_size(n+m)) for BFS-single and

• O(bfs_repetitions(n2 + nm)) for BFS-percentage.

Using a union-find data structure with union by rank and path compression as described
in Chapter 2, the complexity of Kruskal’s algorithm is O(m logm) [65]. For the MWSF-
single approach outlined in Section 4.3.1, which computes one MWST and then adds edges
with high counts to the reduced graph, the sorting of edges is the most expensive part and
thus, the overall complexity remains O(m logm).

34

4.4 Complexity Analysis

It can be seen in Algorithm 8 that for MWSF-iterative the complexity depends on the
amount of times Kruskal’s algorithm is executed. Assume that the maximum number of
iterations is required, i.e., the parameter edge_percentage is set to one. In each iteration,
either n− 1 or n− c edges, where c is the amount of connected components, are removed
from the graph. However, c depends on the structure of the graph and can also vary be-
tween iterations. An upper bound on the number of iterations is obtained by considering
a complete graph. This graph can be constructed by the union of edge-disjoint spanning
cycles (when n is odd) or it can be factored in paths [21, 76]. Thus, there exist ⌊n

2
⌋ dis-

joint spanning trees, implying that at most n − 1 iterations are possible. Even though it is
possible that in an arbitrary graph fewer edges are added per iteration, the total number of
required iterations is then smaller since the graph contains fewer edges. The overall com-
plexity of MWSF-iterative is therefore O(⌊n

2
⌋m logm) = O(nm logm). By combining

BFS-percentage and MWSF-iterative, the statement follows.

Theorem 3
Algorithm 3 requires O(n+m) space for all combinations of BFS and MWSF approaches.

Proof. Storing the graph using an adjacency list requires O(n+m) space. This also holds
for the edge counts array and the subset of vertices. As for a normal BFS without any
modifications, BFS-set requires O(n) space for the queue, the visited and the neighbors
array (see Algorithm 4) in total. Since BFS-single calls Algorithm 4 multiple times, its
space complexity is also O(n). In addition to O(n) space for Algorithm 4, BFS-percentage
stores reached and unreached vertices. This also requires O(n) space. Using a union-
find data structure, Kruskal’s algorithm needs only O(n) memory. Thereby, no additional
weighted graph Gw has to be created in order to implement Kruskal’s algorithm. More-
over, edges can be added directly to the reduced graph without constructing the intermedi-
ate graph GMWSF . Thus, both MWSF approaches require O(n) space. Combining these
arguments leads to the statement.

35

4 Edge Sparsification

36

CHAPTER 5
Experimental Evaluation

In this chapter, an experimental evaluation of the edge sparsification algorithm, described
in Chapter 4, is provided. First, the general structure of the experiments as well as eval-
uation measures are presented, followed by the utilized graph instances. To determine
suitable parameter configurations a series of tuning experiments is conducted. Finally, the
results on reduced and unreduced graphs are compared.

5.1 Hardware and Implementation

The edge sparsification is implemented in C++ and compiled with gcc version 9.4. All
experiments are performed on an Intel(R) Xeon(R) Silver 4,216 @ 2.10GHz with 16 cores
and 93 GB main memory under Ubuntu 20.04.1 LTS and Linux kernel version 5.4.0-152-
generic. The computation of the evaluation measures is done in python 3.10.12 using the
libraries numpy (version 1.25.2) and scipy (version 1.11.2).

The code strongly relies on the open-source toolkit NetworKit1 [2] version 10.1,
which includes a variety of efficient algorithms for network analysis. Graphs are repre-
sented using an adjacency array data structure which requires O(n + m) memory where
n and m are the number of vertices and edges, respectively. Each vertex is represented by
a 64 bit integer and within a graph, these IDs form a consecutive range. Edge IDs can be
assigned optionally. NetworKit provides multiple exact and approximate algorithms for
centrality computations. The following ones are used in the experiments2:

• DegreeCentrality: This algorithm computes the degree centrality of each ver-
tex, normalized by the maximum degree of a graph in O(n).

1https://networkit.github.io/ (Accessed Dec. 1, 2023)
2https://networkit.github.io/dev-docs/python_api/centrality.html (Accessed

Dec. 1, 2023)

37

https://networkit.github.io/
https://networkit.github.io/dev-docs/python_api/centrality.html

5 Experimental Evaluation

• ApproxCloseness: This function implements the algorithm of [22]. The scores
are normalized by n−1 and the parameters nSamples = 1000 and ϵ = 0.03 are used.

• CoreDecomposition: The algorithm is an implementation of the ParK-
algorithm of [25] with normalization by the maximum degree of a graph.

• KadabraBetweenness: Using the improvements of [100], this algorithm com-
putes betweenness centrality based on the KADABRA algorithm [13]. The centrality
scores are normalized by n(n− 1) per default.

• EstimateBetweenness: This function implements the algorithm of [38], which
provides normalized estimated betweenness centrality scores without guarantees.

• EigenvectorCentrality: Using parallel power iteration, eigenvector central-
ity scores are computed up to a certain error tolerance [96].

• KatzCentrality: This algorithm calculates approximate Katz centrality scores
based on [43].

For the remaining parameters, the default values of NetworKit are chosen. All these
algorithms originate from current research and belong to the state-of-the-art for their re-
spective centrality measure. More detailed information about each approach is provided
in Chapter 3. Most of these algorithms provide parallel implementations, however, for
a fair comparison between the sparsification and centrality computations on unreduced
graphs, the algorithms of NetworKit are executed sequentially.

5.2 Methodology

In order to evaluate the effectiveness of the approach, the experiments are conducted as
follows. Firstly, the graph is reduced using the edge sparsification. Subsequently, cen-
trality scores for each vertex are calculated using the previously described algorithms of
NetworKit. The obtained results, i.e., centrality scores and computation times, are then
compared to the ones on the full graph. Note, that computation times on the reduced graph
include the time required for the edge sparsification.

Each experiment is repeated four times per graph instance, initialized with different ran-
dom seeds. Across these repetitions, computation times and centrality scores are averaged
using the geometric mean and arithmetic average, respectively. These results are further
averaged over all graphs. Analogous to [34], let the runtime of a specific centrality algo-
rithm on the full graph be denoted as σfull and on the reduced graph as σreduced. The time
ratio over computations on the full graph is defined as

σfull

σreduced

. (5.1)

38

5.3 Graph Instances

Similarly, the speedup or time improvement is then defined as

(
σfull

σreduced

− 1) · 100%. (5.2)

To assess the quality of approximate centrality scores on the reduced graphs, two evalu-
ation measures are used: the Kendall τb correlation coefficient and the centrality similarity.
The correlation coefficient τb measures the similarity between two rankings given the same
set of vertices [41]. Since it is not affected by variations in normalization and distribution,
it is particularly suitable for centrality computations. The coefficient τb varies between±1,
indicating a perfect association for values close to ±1 and no relation for values close to 0.

Centrality similarity was first introduced in [98] and can be defined as follows. Let
A = [a(1), a(2), . . . , a(n)] and B = [b(1), b(2), . . . , b(n)], where a(i), b(i) ∈ V, i ∈ {1, . . . , n},
be two vertex rankings with respect to a given centrality measure. The centrality sim-
ilarity MA,B(δ) is the percentage of vertices in [a(1), a(2), . . . , a(⌊δn⌋)] that also occur in
[b(1), b(2), . . . , b(⌊δn⌋)] where δ ∈ [0, 1]. It thus measures the overlap of vertices be-
tween the rankings of the top 100δ% nodes. This can be extended to absolute val-
ues ∆ ∈ N,∆ < n such that MA,B(∆) is then the overlap of rankings [a(1), a(2), . . . , a(∆)]
and [b(1), b(2), . . . , b(∆)]. In the experiments, centrality similarity is used to compare rank-
ings on the full graph Afull to ones on the reduced graph Breduced, i.e., Mf,r(·).

5.3 Graph Instances

For the experiments a diverse set of undirected graphs, originating from various classes
and of varying sizes, is utilized in order to assess the edge sparsifications’ performance.
These graph instances have been obtained from the Stanford Network Analysis Plat-
form (SNAP) [57] and Koblenz Network Collection (KONECT) dataset [55] as well as
from the 10th DIMACS implementation challenge [6, 46]. For each graph, the following
preprocessing steps are applied:

• Reduction to its largest connected component to ensure connectivity, such that close-
ness centrality can be calculated

• Removal of self-loops

• Assignment of edge IDs for computing edge counts

The information in Tables 5.1 and 5.2 refers to the preprocessed graphs. The set of graphs
is further divided into two disjoint sets: one designated for the parameter tuning exper-
iments and the other set is used for the comparison against computations without prior
sparsification in Section 5.5.

39

5 Experimental Evaluation

Graph n m Type

out.dbpedia-occupation 127,569 250,934 Affiliation
out.dbpedia-team 901,132 1,366,463 Affiliation
out.flickr-groupmemberships 395,978 8,537,702 Affiliation
oregon1_010526 11,174 23,408 Autonomous
out.higgs-twitter-social 456,289 12,508,221 Online Social
out.hyves 1,402,672 2,777,419 Online Social
out.livemocha 104,102 2,193,082 Online Social
UGA50 24,380 1,174,051 Online Social
Villanova62 7,754 314,980 Online Social
Rutgers89 24,568 784,596 Online Social
FSU53 27,731 1,034,798 Online Social
out.citeseer 365,154 1,721,980 Citation
out.patentcite 3,764,117 16,511,739 Citation
CA-AstroPh 17,902 196,972 Collaboration
CA-CondMat 21,363 91,285 Collaboration
CA-HepPh 11,203 117,619 Collaboration
out.cit-HepTh 27,399 352,020 Collaboration
Email-EuAll 224,832 339,925 Communication
WikiTalk 2,388,953 4,656,681 Communication
out.arenas-email 1,133 5,451 Communication
HR_edges 54,573 498,202 Social
Slashdot0902 82,167 504,230 Social
deezer_europe_edges 28,281 92,752 Social
large_twitch_edges 168,114 6,797,556 Social
soc-pokec-relationships 1,632,803 22,301,964 Social
twitter_combined 81,306 1,342,296 Social
out.dimacs9-COL 435,666 521,200 Infrastructure
out.dimacs9-FLA 1,070,375 1,343,951 Infrastructure
out.opsahl-powergrid 4,941 6,593 Infrastructure
roadNet-PA 1,087,562 1,541,513 Infrastructure
roadNet-TX 1,351,137 1,879,201 Infrastructure
out.flickrEdges 105,721 2,316,668 Miscellaneous
shipsec5.mtx 179,860 4,966,617 Miscellaneous
GaAsH6.mtx 61,349 1,660,230 Miscellaneous
web-BerkStan 654,782 6,581,870 Web
web-Google 855,801 4,291,351 Web
web-NotreDame 325,728 1,090,107 Web

Table 5.1: Graph instances for the experiments against unreduced graphs, obtained from the 10th
DIMACS implementation challenge, as well as the SNAP and KONECT data set.

40

5.3 Graph Instances

Graph n m Type

out.dimacs10-as-22july06 22,963 48,435 Autonomous
out.dbpedia-recordlabel 168,261 233,259 Affiliation
CA-GrQc 4,158 13,421 Collaboration
CA-HepTh 8,637 24,806 Collaboration
Email-Enron 33,695 180,811 Communication
out.subelj_cora_cora 23,165 89,157 Citation
out.com-amazon 334,862 925,872 Miscellaneous
pdb1HYS.mtx 36,417 2,154,174 Miscellaneous
out.petster-friendships-dog-uniq 426,485 8,543,320 Online Social
out.petster-cat-household 68,315 494,561 Online Social
UConn91 17,205 604,866 Online Social
Smith60 2,970 97,133 Online Social
Michigan23 30,105 1,176,488 Online Social
out.dimacs9-NY 264,345 365,050 Infrastructure
musae_facebook_edges 22,469 170,822 Social
Slashdot0811 77,359 469,179 Social
com-dblp.ungraph 317,079 1,049,866 Social
facebook_combined 4,038 88,233 Social
soc-Epinions1 75,877 405,738 Social
rgg_n_2_17_s0 131,067 728,749 Random
web-Stanford 255,264 1,941,926 Web

Table 5.2: Graph instances for the tuning experiments, obtained from the 10th DIMACS imple-
mentation challenge, as well as the SNAP and KONECT data set.

Parameter Value Range
set_size [1, n)

bfs_method {bfs_set, bfs_single, bfs_percentage}
bfs_percentage (0, 1)

bfs_repetitions Z+

edge_percentage (0, 1)

mwsf_method {mwsf_single,mwsf_iterative}

Table 5.3: Ranges of the parameters included in the edge sparsification algorithm (see Algo-
rithm 3).

41

5 Experimental Evaluation

5.4 Parameter Tuning Experiments

As shown in Table 5.3, the edge sparsification algorithm involves several parameters for
which an optimal configuration must be determined. Thus, parameter tuning experiments
have to be conducted first. These experiments aim to reveal the influence of parameters by
exploring various combinations. The strategy is thereby the following: one parameter is
altered at a time, while keeping the others constant. The value for which the best results
are obtained is adopted for the corresponding parameter. To determine whether a result is
good or better than another, various criteria can be employed. In the present thesis, two
criteria are pursued simultaneously:

• Maximization of quality

• Minimum speedup of 10%

A threshold of 10% has been chosen to avoid over-optimization on the tuning set and to
ensure that the approach maintains practical relevance by offering a substantial speedup.
Regarding centrality measures, there are two primary goals, namely (i) identifying the most
central nodes and (ii) obtaining a ranking of nodes based on a specific measure (see Chap-
ter 3). As these objectives differ significantly from each other, separate parameter config-
urations are determined in the parameter tuning experiments, indicated by Sections 5.4.1
and 5.4.2. These are referred to as the ranking and top configuration, respectively.

The parameters of the edge sparsification include two categorical ones, namely the BFS
and MWSF approach, represented by bfs_method and mwsf_method, respectively (see Ta-
ble 5.3). Comparing these components provides important insights into their impact on the
reduced graph, computation times, and the quality of centrality scores. Thus, the parameter
tuning experiments of each objective are conducted for all possible combinations of these
two parameters. Furthermore, the tuning experiments are limited to betweenness centrality,
specifically the EstimateBetweenness algorithm. This decision is motivated by the
following reasons:

• The optimization for multiple centrality measures may yield suboptimal configura-
tions, which do not show the potential of the sparsification.

• Throughout the experiments, it has been shown that the edge sparsification achieves
the best results for EstimateBetweenness. This will be further discussed
in Section 5.5.

• In an experimental evaluation, computation time becomes a major concern. Espe-
cially distance based centrality measures are computationally more expensive, and
thus focussing on a single measure reduces the required time for each experiment.

42

5.4 Parameter Tuning Experiments

5.4.1 Ranking of Vertices

In the following, the results of the parameter tuning experiments for maximizing rank-
ing quality are presented. This section is organized by the individual parameters, and
corresponding results are explained and interpreted. The baseline configurations can
be found in Table A.1 and are adjusted according to the optimal values identified for
each parameter. Evaluation measures include time ratios for assessing the computational
speed and the Kendall τb correlation coefficient for reviewing the ranking quality. It
is important to note that not all BFS variants share the same parameters, resulting in
variations across subsections.

Set Size

The first parameter of the tuning experiments for BFS-set and BFS-single is the set size.
Both, time ratios and correlation coefficients, are displayed in joined plots in Figure 5.1.
The results with respect to the time ratio are split into two plots in order to show long term
trends (Figure 5.1a) as well as variations for smaller set sizes (Figure 5.1b). The set size in
BFS-percentage is always equivalent to one and therefore does not have to be determined
in the tuning experiments.

Regarding BFS-set, both MWSF approaches exhibit comparable speedups for single-
digit set sizes (see Figure 5.1b). Only for set sizes greater than 10, the curves begin
to diverge, resulting in MWSF-single being one average faster than MWSF-iterative. As
set sizes increase, a downward trend is observed for both approaches. However, these
variations are only marginal. For MWSF-iterative, the speedup decreases from set size
two to set size 100 by just 2%, while for MWSF-single, it reduces by only one percent.
Additionally, the difference between the two MWSF approaches remains marginal, ranging
from one to two percent.

The rather constant computation times for varying set sizes are caused by the fact that
the parameter does not affect the amount of BFS in the sparsification algorithm (see Sec-
tion 4.2.1). In the BFS-set approach only one BFS is executed for the whole subset of
vertices, regardless of its size. Therefore, for a fixed amount of bfs_repetitions, no drastic
changes with respect to the speedup are determined.

Concerning BFS-single, the results in Figure 5.1b show that MWSF-iterative achieves
higher speedups than MWSF-single, apart from an outlier observed at 5 vertices. Both
approaches are faster for smaller set sizes and reach a maximum at 2 nodes. In contrast
to BFS-set, BFS-single executes a BFS for every vertex in the subset, and thus the subset
size directly affects the number of BFS. This explains the strong decrease of speedup for
increasing set sizes; for instance, MWSF-single drops below the 10% threshold with a set
size of 15 vertices, MWSF-iterative at about 50 vertices. For comparison, BFS-set still
maintains a speedup of around 12% with a set size of 100.

The quality of vertex rankings obtained on the reduced graphs is depicted in Figure 5.1c.
It is observed that (i) MWSF-single achieves better results over all set sizes and (ii) the

43

5 Experimental Evaluation

BFS-set: MWSF-single BFS-set: MWSF-iterative BFS-single: MWSF-single BFS-single: MWSF-iterative

0 20 40 60 80 100

set_size

1.06

1.08

1.10

1.12

1.14

T
im

e
R
at
io

(a) Time ratios of BFS-set and BFS-single for vary-
ing set sizes.

0 5 10 15 20 25

set_size

1.09

1.10

1.11

1.12

1.13

1.14

1.15

T
im

e
R
at
io

(b) Time ratios of BFS-set and BFS-single for set
sizes up to 25 vertices.

0 20 40 60 80 100

set_size

0.78

0.80

0.82

0.84

0.86

C
or
re
la
ti
on

co
effi

ci
en
t
g 1

(c) Correlation coefficients τb for BFS-set and BFS-
single.

Figure 5.1: Results of the tuning experiments for the parameter set_size. Time ratios and coeffi-
cients τb are computed with respect to the full graphs. For BFS-single set sizes 5 and
3, and for BFS-set 2 are chosen for MWSF-single and MWSF-iterative, respectively.

shapes of the curves within a BFS method are similar and differ only by a qualitative gap.
For BFS-set, the correlation coefficients are highest for smaller set sizes and then decrease
continuously. The difference between the two correlation coefficients of the MWSF ap-
proaches is around 5%. While MWSF-single reaches its maximum at 2 vertices, indicating
strong correlation with τb = 0.84, MWSF-iterative’s correlation coefficient is equivalent
to 0.79 for 5 vertices. In general, both approaches exhibit moderate to strong correlations
with a clear tendency towards smaller set sizes.

44

5.4 Parameter Tuning Experiments

This can be explained by the fact that the BFS-set approach does not consider edges that
run between vertices of the subset (see Section 4.2.1). The larger the number of vertices in
the subset, the greater the number of edges that are not considered in a BFS. Since their
edge count is thus smaller, these edges are less likely to be part of the reduced graph even
though they are potentially important.

For BFS-single, a strong increase of the correlation coefficients can be observed for both
MWSF approaches. However, this only applies to small set sizes: MWSF-iterative reaches
a plateau with τb = 0.79 already at 3 vertices and more vertices do not yield significant
changes. For MWSF-single the initial increase is significantly larger than for MWSF-
iterative and even after the first peek at 5 nodes with τb = 0.85, the correlation coefficient
still increases. However, these variations become marginal and remain at τb ≈ 0.86.

These results are counterintuitive in the sense that one might expect larger subsets, and
consequently more BFS calculations, to result in an improvement in quality since more
information about shortest paths within a graph is obtained. However, these observations
could be explained with the following argument. While more BFS executions lead to a
few edges with high edge counts, they also result in numerous edges with the same counts,
making it difficult to distinguish between them. Hence, edges, especially those with in-
termediate ranks, are more frequently selected at random. This particularly affects the
iterative computation of MWSFs.

For both, BFS-set and BFS-single qualitative peaks are reached for small subset sizes,
while achieving a speedup of over 10%. Thus, the parameter set_size is set to 2 for both
MWSF approaches related to BFS-set. Concerning BFS-single, set sizes 3 and 5 are chosen
for MWSF-iterative and MWSF-single.

BFS Percentage

The results of the tuning experiments for parameter bfs_percentage are shown in Figure 5.2.
This only applies to BFS-percentage since it is the only BFS variant, where the subset of
vertices is not pre-selected but depends on the amount of BFS needed to reach all vertices.
In general, it holds that for smaller percentages, fewer vertices are reached within a BFS
and therefore more runs are needed overall. This leads to increasing computation times.

For MWSF-single only high percentages achieve a comparable runtime (see Fig-
ure 5.2a). Starting from the maximum at 99%, the speedup decreases rapidly and at 85%,
it is already less than 10%. For MWSF-iterative the results look quite different. Although
the speedup also decreases along with the percentages, it remains on average above 20%.
Even for single-digit values, a significant speedup is achieved.

As shown in Table A.3, the number of required BFS steadily increases as the percentages
decrease, reaching a maximum of on average 2,473 runs for 2%. For comparison, with
BFS-single, the speedup for MWSF-iterative already dropped below 10% for 50 nodes.
This can be explained by examining the computation times for centralities on the reduced
graph, excluding the runtime of the sparsification algorithm (see Figure A.1). MWSF-
iterative exhibits a speedup of over 30%. This is significantly higher than the speedup

45

5 Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

bfs_percentage

1.05

1.10

1.15

1.20

1.25

1.30

T
im

e
R
at
io

MWSF-single
MWSF-iterative

(a) Time ratios of BFS-percentage.

0.0 0.2 0.4 0.6 0.8 1.0

bfs_percentage

0.70

0.72

0.74

0.76

0.78

0.80

0.82

C
or
re
la
ti
on

co
effi

ci
en
t
g 1

MWSF-single
MWSF-iterative

(b) Correlation coefficients τb for BFS-percentage.

Figure 5.2: Results of the tuning experiments for the parameter bfs_percentage. Time ratios and
correlation coefficients are computed with respect to the full graphs. The percentages
0.99 and 0.02 are chosen MWSF-single and MWSF-iterative, respectively.

of MWSF-single and the speedup of MWSF-iterative combined with BFS-single. This
compensates for the increased computational effort required for more BFS. The increased
speedup of centrality computations for MWSF-iterative results from the amount of edges
in the graphs. Due to the baseline configuration with edge_percentage= 0.30, the reduced
graphs contain on average 38% of the edges, significantly fewer than for MWSF-single
with 52%. Since these graphs are smaller, the centrality algorithms run faster.

Interestingly, the increasing amount of BFS using MWSF-iterative does not lead to sig-
nificant variations in quality. For both, small and large percentages, peaks are observed,
reaching nearly 72%, but for moderate values, only minor fluctuations are evident. Most
importantly, the quality of MWSF-iterative lags behind that of the MWSF-single approach
by approximately 10%. The latter achieves the best results at 99%, decreasing along with
the parameter bfs_percentage. Given that the highest correlation coefficients are observed
for 2% and 99% with sufficient speedup, the parameter bfs_percentage is adjusted accord-
ingly for MWSF-iterative and MWSF-single, respectively.

BFS Repetitions

For BFS-single, the repeated selection of a random subset with subsequent edge count
calculation is equivalent to selecting one subset of larger size. Therefore, this parameter
does not have to be considered for this approach. It is implicitly part of the previous
experiments for the set size. The results for BFS-set and BFS-percentage are depicted
in Figure 5.3.

Since the parameter bfs_repetitions determines the amount of BFS runs, it has a higher
influence on the speedup of BFS-set than the parameter set_size. As expected, the highest

46

5.4 Parameter Tuning Experiments

BFS-set: MWSF-single BFS-set: MWSF-iterative BFS-percentage: MWSF-single BFS-percentage: MWSF-iterative

0 50 100 150 200

bfs_repetitions

0.8

0.9

1.0

1.1

1.2

T
im

e
R
at
io

(a) Time ratios of BFS-set and BFS-percentage.

0 50 100 150 200

bfs_repetitions

0.72

0.74

0.76

0.78

0.80

0.82

0.84

C
or
re
la
ti
on

co
effi

ci
en
t
g 1

(b) Correlation coefficients τb for BFS-set and BFS-
percentage.

Figure 5.3: Results of the tuning experiments for the parameter bfs_repetitions. Time ratios and
correlation coefficients are computed with respect to the full graphs. For BFS-set
repetition counts 25 and 5, and for BFS-percentage repetition count 1, are chosen for
MWSF-single and MWSF-iterative, respectively.

speedup is achieved for few repetitions, with MWSF-single surpassing MWSF-iterative by
about 6% (see Figure 5.3a). While MWSF-iterative consistently decreases with increasing
repetitions, MWSF-single exhibits a steep drop of 6% in the first 25 repetitions. As both
MWSF curves are decreasing, they start to converge, until there is less than one percent
difference between them.

With increasing number of repetitions, the correlation coefficients of both MWSF ap-
proaches increase, as depicted in Figure 5.3b. One could assume that these continue to
rise, as the repeated calculation of SSSP should increase the quality and accuracy of the
edge counts and thus, the overall quality of the ranking. However, the results in Figure 5.2b
show that after a strong increase for relatively few repetitions, the correlation coefficients
stay rather constant and even start to decrease. This shows that for both MWSF approaches
quality does not automatically improve with more repetitions. On the contrary, a few are
sufficient to achieve adequate improvements; too many reduce the speedup and sometimes
even the quality. A similar behavior was already noted during the set_size experiments for
BFS-single in Section 5.4.1. No significant improvement in quality was determined for
more vertices in the subset, i.e., for more BFS runs. Consequently, it is also assumed this
behavior is caused by many edge counts sharing the same value.

Since the BFS-percentage approach executes significantly more BFS in a single repeti-
tion compared to BFS-set, fewer parameter values are tested (see Figure 5.3a). Even for
these limited repetitions, the speedup drops significantly below 10% or fully disappears,

47

5 Experimental Evaluation

BFS-set: MWSF-single
BFS-set: MWSF-iterative

BFS-single: MWSF-single
BFS-single: MWSF-iterative

BFS-percentage: MWSF-single
BFS-percentage: MWSF-iterative

10 20 30 40 50

edge_percentage

1.0

1.2

1.4

1.6

1.8

2.0

T
im

e
R
at
io

(a) Time ratios of BFS-set, BFS-single and BFS-
percentage.

10 20 30 40 50

edge_percentage

0.5

0.6

0.7

0.8

0.9

C
or
re
la
ti
on

co
effi

ci
en
t
g 1

(b) Correlation coefficients τb for BFS-set, BFS-
single and BFS-percentage.

Figure 5.4: Results of the tuning experiments for the parameter edge_percentage. Time ratios and
correlation coefficients are computed with respect to the full graphs. The following
values are chosen for MWSF-single and MWSF-iterative: 0.25 and 0.45 for BFS-set,
0.35 and 0.45 for BFS-single and 0.25 for BFS-percentage.

making the approach slower than computations on the full graph. Also in terms of quality,
multiple repetitions do not yield significant improvements and correlation coefficients stay
constant (see Figure 5.3b). Although more repetitions would have to be tested in order to
derive a definitive conclusion, the experiments for bfs_repetitions and set_size for BFS-set
and BFS-single suggest that the correlation coefficients would vary only marginally with
more repetitions. Consequently, one repetition is used for both MWSF approaches with
respect to BFS-percentage. For BFS-set, 5 and 25 repetitions are used for MWSF-iterative
and MWSF-single in the subsequent experiments.

Percentage of Edges

The last parameter to be determined in the tuning experiments is the edge percentage,
which is included in all BFS variants. The time ratios and correlation coefficients of all
approaches are depicted in Figure 5.4. As expected, all combinations of BFS- and MWSF-
method achieve their highest speedups with very low percentages. The reduced graph then
contains fewer edges, increasing the speed of the centrality computations. With increasing
percentages, all speedups continuously decrease until at around 55%, the computations
on reduced and full graphs are equally fast. The reason for this is not the sparsification,
but the centrality computation algorithms, which require nearly as much time for an edge
threshold of 55% as they do on the full graphs. Using BFS-single as an example, this is

48

5.4 Parameter Tuning Experiments

stated in Tables A.4 and A.5. This indicates that computations are not necessarily faster
if the graph contains fewer edges. There is a certain quantity of edges beyond which the
calculations take as long as on the full graph.

The plot in Figure 5.4a also shows, that for varying percentages, MWSF-iterative
achieves generally better results with respect to the speedup than MWSF-single. For
smaller percentages, the speedup of MWSF-iterative is on average 0.2 bigger. How-
ever, with increasing edges in the graph the difference decreases, and both approaches
perform similarly (see Figure 5.4b). This can be explained by looking at the time im-
provements of just the centrality computations and the average amount of edges in the
graphs. Centrality computations are faster on the reduced graphs obtained from MWSF-
iterative than MWSF-single, most likely because these graphs contain fewer edges (see Ta-
bles A.4 and A.5). When comparing the speedups of the two MWSF approaches that
generate a similar number of edges in the reduced graph, the difference between them is
already significantly smaller.

For all MWSF-single approaches a fast increase of τb can be observed from 5% to
15% (see Figure 5.4b). The correlation coefficients continue to further increase, however,
with continuously less steep slopes. Beyond an edge percentage of 0.45, the rankings on
the reduced and unreduced graphs exhibit a strong correlation, indicated by values of 0.85
or higher for τb. The results for MWSF-iterative display a similar trend: as the number
of edges in the graph increases, the quality improves. However, this improvement is less
strong, reaching a maximum correlation coefficient of approximately 0.8. As discussed for
the time improvement, the reason for the qualitatively higher results of MWSF-single is
most likely the fact, that the reduced graphs contain more edges than the ones constructed
with MWSF-iterative. Especially for lower percentages, the comparison in Tables A.4
and A.5 demonstrates that both approaches perform equally well. However, for higher
values of edge_percentage, MWSF-single clearly outperforms MWSF-iterative.

In general, the correlation coefficients shown in Figure 5.4b imply that with more edges,
the reduced graphs exhibit better ranking quality. This is caused by the fact that the reduced
graphs converge closer to the full graphs. Besides the slopes of all curves decrease with
increasing values for edge_percentage. This suggests that, for a perfect correlation, the
majority of edges must be present in the reduced graph.

Looking solely at the correlation coefficients, the best choice would be to use higher
percentages. However, the speedup strongly decreases with increasing amount of edges
and thus the best possible choices for MWSF-single and MWSF-iteartive, which align
with the strategy presented in Section 5.2, are the following: 0.25 and 0.45 for BFS-set,
0.35 and 0.45 for BFS-single and 0.25 for BFS-percentage.

Summary

In the following, the insights gained throughout the previous experiments are shortly sum-
marized, and the resulting parameter configurations are listed in Table 5.4. For BFS-set
and BFS-single, smaller set sizes result in the highest correlation coefficients. Only a

49

5 Experimental Evaluation

BFS
MWSF Set Size

BFS
Repetitions Edge [%] τb

Time
Variant Percentage Improvement [%]

Set
Single 2 − 25 25 0.82 20.4

Iterative 2 − 5 45 0.8 13.8

Single
Single 5 − − 35 0.86 12.89

Iterative 3 − − 45 0.79 13.05

Percentage
Single 1 0.99 1 25 0.79 20.78

Iterative 1 0.2 1 25 0.67 32.23

Table 5.4: Resulting parameter configurations of the ranking tuning experiments.

certain amount of repetitions is beneficial for BFS-set, as too many do not lead to qual-
itative improvements. Concerning BFS-percentage, it has been shown that variations of
the parameter bfs_percentage are only possible if the reduced graphs contain fewer edges.
However, these perform qualitatively worse. Multiple repetitions do not yield improve-
ments. Regarding the parameter edge_percentage, it is observed, that across all variants
the quality increases with more edges in the graph at the cost of a decreasing speedup.
Generally, MWSF-single achieves qualitatively better results, while MWSF-iterative yields
the highest speedup. With respect to the correlation coefficient τb, the combination of
BFS- and MWSF-single yields the best results. BFS-percentage achieves the highest
speedups (see Table 5.4). To assess the effectiveness of the sparsification, the configura-
tion with the best quality, i.e., the one involving BFS-single, is utilized for the experiments
in Section 5.5.

5.4.2 Identification of Most Central Vertices

In this section, the outcomes of the parameter tuning experiments for identifying the most
central vertices are presented. Similar to the previous section, the results are described, in-
terpreted, and organized by each involved parameter. The baseline configurations are listed
in Table A.2. Evaluation measures include time ratios as well as the centrality similarity
with ∆ = 100.

Set Size

The results for the tuning experiments of the parameter set_size are shown in Figure 5.5.
Note, that since some approaches required fewer data points than others to capture gen-
eral trends effectively, the number of data points in the plots differs between the curves.
Concerning BFS-single, a consistent downward trend is observable for both MWSF ap-
proaches. Starting with a speedup of approximately 18%, MWSF-iterative steadily dimin-
ishes, loosing around 2% of speedup every 40 vertices. However, even for 200 vertices,
a speedup over 10% is still achieved. The results for MWSF-single, however, exhibit a
different behavior. After an initial speedup of approximately 14% for a set size of up to 5

50

5.4 Parameter Tuning Experiments

BFS-set: MWSF-single BFS-set: MWSF-iterative BFS-single: MWSF-single BFS-single: MWSF-iterative

0 50 100 150 200

set_size

1.06

1.08

1.10

1.12

1.14

1.16

1.18

T
im

e
R
at
io

(a) Time ratios for BFS-set and BFS-single.

0 50 100 150 200

set_size

0.70

0.75

0.80

0.85

0.90

C
en
tr
al
it
y
Si
m
ila

ri
ty
"
5
,A
(1

00
)

(b) Centrality Similarity Mf,r(100) for BFS-set and
BFS-single in percent.

Figure 5.5: Results of the tuning experiments for the parameter set_size. Time ratios and centrality
similarity values are computed with respect to the full graphs. For BFS-single set sizes
10 and 150, and for BFS-set 2 and 5 are chosen for MWSF-single and MWSF-iterative,
respectively.

vertices, the speedup sharply declines, falling below 10% for 15 vertices already. As the
set size increases, the speedup continues to decrease.

In terms of quality, MWSF-single distinctly surpasses MWSF-iterative. An offset of
approximately 10% is evident between the two approaches, even for small single-digit val-
ues. As the number of vertices increases, the centrality similarity grows for both methods.
However, for MWSF-iterative, the maximum of 77% is reached at around 20 vertices and
remains relatively constant up to a set size of 150. This behavior is similar to the one
observed during the ranking tuning experiments (see Section 5.4.1). In contrast to MWSF-
iterative, the centrality similarity of MWSF-single continues to increase. Although the rate
of increase diminishes, the shape of the curve still shows an upward trend. In contrast to the
findings of the ranking tuning experiments, these results suggest that an increasing number
of vertices in the subset improves the quality.

For a set size of 2 vertices, both approaches of BFS-set achieve similar speedups of
around 12.5% and 11.5%. The curves initially begin to rise, with MWSF-single showing a
stronger ascent than MWSF-iterative, and reach a peak at a subset size of 35 vertices. The
speedups then consistently decline as the number of vertices increases, falling below the
10% threshold at 100 and 140 vertices. Similar to the previous experiments in Section 5.4.1,
differences between both MWSF approaches and the variations of the time improvements
are rather small and can be attributed to the fact that the number of BFS does not change.

51

5 Experimental Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

bfs_percentage

0.60

0.65

0.70

0.75

0.80

0.85

C
en
tr
al
it
y
Si
m
ila

ri
ty
"
5
,A
(1

00
)

MWSF-single
MWSF-iterative

Figure 5.6: Results of the tuning experiments for the parameter bfs_percentage. The time ra-
tios are equivalent to the ones shown in Figure 5.3a. The centrality similarities are
computed with respect to the full graphs. The percentages 0.85 and 0.02 are chosen
MWSF-single and MWSF-iterative, respectively.

In terms of centrality similarity, the two MWSF methods differ by approximately 12%,
which persists throughout varying set sizes. Similar to the experiments on ranking opti-
mization, smaller subsets yield qualitatively better results and maxima are reached at 2 and
5 vertices with Mf,r(100) = 0.88 and Mf,r(100) = 0.76. This is caused by the fact that
for subsets with an increased number of vertices, the loss of information from the edges
unconsidered between these vertices becomes too substantial. Consequently, the parameter
set_size is set to 2 and 5 for MWSF-single and MWSF-iterative. With respect to BFS-
single, set sizes 10 and 150 are used for the following experiments.

BFS Percentage

Since the same baseline configuration is used as for the ranking tuning experiments, the
results in terms of time ratios are identical to the ones described in Figure 5.2a and sum-
marized briefly: With decreasing values for bfs_percentage, more BFS runs have to be
performed, resulting in smaller speedups. While MWSF-iterative still attains a substantial
speedup for single-digit percentages, MWSF-single drops below 10% for 85% already.

In contrast to the outcomes of the ranking experiments, the results show that as per-
centages decrease, the quality improves, indicating the identification of a growing num-
ber of most central nodes. For MWSF-single, a significant increase is observed between
bfs_percentage values of 0.99 and 0.8. Beyond this point, the centrality similarity only
marginally deviates, despite an increase of conducted BFS. For higher percentages, this
pattern is also observed for MWSF-iterative. However, with a more extensive range of per-
centage values tested, it becomes apparent that the centrality similarity starts to gradually
rise again from 50%. For single-digit values it further increases, reaching a maximum of

52

5.4 Parameter Tuning Experiments

BFS-set: MWSF-single BFS-set: MWSF-iterative BFS-percentage: MWSF-single BFS-percentage: MWSF-iterative

0 50 100 150 200

bfs_repetitions

0.8

0.9

1.0

1.1

1.2

T
im

e
R
at
io

(a) Time ratios for BFS-set and BFS-percentage.

0 50 100 150 200

bfs_repetitions

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C
en
tr
al
it
y
Si
m
ila

ri
ty
"
5
,A
(1

00
)

(b) Centrality Similarity Mf,r(100) for BFS-set and
BFS-single in percent.

Figure 5.7: Results of the tuning experiments for the parameter bfs_repetitions. Time ratios and
centrality similarities are computed with respect to the full graphs. For BFS-set repe-
tition counts 100 and 75 and for BFS-percentage repetition counts 1 and 2 are chosen
for MWSF-single and MWSF-iterative, respectively.

68% at 0.02. Nevertheless, the qualitative performance of this approach is lower than the
one of MWSF-single, which attains up to 85% centrality similarity.

Since maximum quality and a speedup of at least 10% is guaranteed at bfs_percentage
values 0.02 and 0.85, these values are adopted for MWSF-iterative and MWSF-single in
the following experiments.

BFS Repetitions

The impact of varying the number of BFS repetitions on both BFS-set and BFS-percentage
is illustrated in Figure 5.7. Concerning BFS-set, the results closely resemble those obtained
during the previous tuning experiments. For few repetitions, the difference between both
MWSF approaches is largest, while at the same time both achieve their highest speedups.
However, as the repetition count increases, this improvement diminishes and the curves
converge. The results for BFS-percentage also exhibit similarities to those of the ranking
tuning experiments. For single-digit values, the speedup of MWSF-iterative dramatically
decreases, resulting in no improvement at all. Regarding MWSF-single, however, a peak
with over 20% speedup is achieved with just two repetitions. Interestingly, this time ratio
peak does not coincide with a quality peak. Instead, the centrality similarity decreases
from 85% to 62%. For MWSF-iterative, multiple iterations only marginally improve the
observed quality.

53

5 Experimental Evaluation

BFS-set: MWSF-single
BFS-set: MWSF-iterative

BFS-single: MWSF-single
BFS-single: MWSF-iterative

BFS-percentage: MWSF-single
BFS-percentage: MWSF-iterative

10 20 30 40 50

edge_percentage

1.0

1.2

1.4

1.6

1.8

2.0

T
im

e
R
at
io

(a) Time ratios for BFS-set, BFS-single and BFS-
percentage.

10 20 30 40 50

edge_percentage

0.4

0.5

0.6

0.7

0.8

0.9

C
en
tr
al
it
y
Si
m
ila

ri
ty
"
5
,A
(1

00
)

(b) Centrality similarity Mf,r(100) for BFS-set,
BFS-single and BFS-percentage.

Figure 5.8: Results of the tuning experiments for the parameter edge_percentage. Time ratios
and centrality similarities are computed with respect to the full graphs. The following
edge percentages are chosen for MWSF-single and MWSF-iterative for BFS-set, BFS-
single and BFS-percentage: 0.25 and 0.35, 0.35 and 0.25.

Similar to the quality results of Figure 5.2b, a steep increase of centrality similarities
is observed for both BFS-set approaches with only few repetitions. In contrast to the
ranking experiments, no downward trend for further repetitions can be observed. Particu-
larly for MWSF-single, the centrality similarities do not stagnate but continue to exhibit a
slight upward trend, implying that multiple repetitions improve the ability to identify the
most central vertices.

Concerning BFS-percentage, multiple repetitions only achieve a marginal increase in
quality for MWSF-iterative. Thus, repetition counts 1 and 2 are used for MWSF-single
and MWSF-iterative in the subsequent experiments. For BFS-set, an increased count of
repetitions has positive effects and thus 100 repetitions are chosen for MWSF-single and
75 for MWSF-iterative.

Edge Percentage

In terms of time ratios, varying the percentage of edges in the reduced graphs produces
results similar to those observed in the ranking experiments. The greater the number of
edges included in the graph, the smaller the speedup (see Figures 5.4b and 5.8a). For
BFS-set and BFS-single, MWSF-iterative consistently outperforms MWSF-single. Only
for BFS-percentage, MWSF-iterative eventually falls below the speedup of MWSF-single.
This can be attributed to the two BFS repetitions.

54

5.4 Parameter Tuning Experiments

BFS
MWSF

Set BFS
Repetitions Edge [%] Mf,r(100)

Time
Variant Size Percentage Improvement [%]

Set
Single 2 − 100 25 0.88 15.67

Iterative 5 − 75 35 0.71 15.11

Single
Single 10 − − 35 0.88 10.66

Iterative 150 − − 35 0.73 12.58

Percentage
Single − 0.85 1 25 0.84 15.4

Iterative − 0.02 2 25 0.67 19.19

Table 5.5: Resulting parameter configurations of the tuning experiments regarding the most central
vertices.

Concerning quality, it is again observed that an increase in the number of edges in the
graph yields improvements and the curves of the MWSF approaches exhibit notable sim-
ilarity (see Figure 5.8b). In contrast to the previous edge_percentage experiments, all
MWSF-single approaches already reach a centrality similarity Mf,r(100), of 70% at 5%
edges. The quality then increases by another 10% up to edge_percentage= 0.15, after
which the rate of increase levels off. At 55%, all three BFS variants achieve an overlap of
86-90% among the top 100 centrality vertices.

For BFS-percentage, the progression of MWSF-iterative closely mirrors that observed in
the preceding edge_percentage experiments (see Figure 5.4b). However, for BFS-set and
BFS-single, some differences are evident: Initially, both approaches display a centrality
similarity of 40% which is significantly lower than the initial quality results in Figure 5.4b.
For increasing edge percentages, the curves start to increase, particularly strong between
20 and 30%, until at 55%, a centrality similarity of approximately 75% is reached.

Despite different initial quality, all MWSF approaches reach similar qualitative results as
in the ranking tuning experiments. Since variations of edge_percentage induce significant
changes with respect to the time ratios and quality, it highlights the influential role of this
parameter in the sparsification. Ensuring a minimum speedup of 10%, the following edge
percentage values are chosen for MWSF-single and MWSF-iterative: 0.25 and 0.35 for
BFS-set, 0.35 for BFS-single and 0.25 for BFS-percentage.

Summary

The findings of the tuning experiments, focused on the most central vertices, are summa-
rized in the following. Concerning the set size, few vertices yield the best qualitative results
for BFS-set, whereas an increased amount is beneficial for BFS-single. However, this sig-
nificantly reduces the speedup. Smaller values for bfs_percentage improve the centrality
similarity and multiple repetitions quickly become infeasible due to the lack of speedup.
For BFS-set, an increased repetition count yields qualitative better results. With more edges
in the reduced graph, the most central vertices are identified better, at the cost of increasing
computation time. As for the previous experiments, the results shown in Table 5.5 imply

55

5 Experimental Evaluation

Centrality Algorithm Time Ratio τb Mf,r(100)

KadabraBetweenness 0.949 0.67 0.84

EstimateBetweenness 1.042 0.87 0.86

DegreeCentrality 0.002 0.90 0.80

ApproxCloseness 1.018 0.93 0.71

EigenvectorCentrality 0.455 0.88 0.62

KatzCentrality 0.187 0.89 0.80

CoreDecomposition 0.095 0.89 0.39

Table 5.6: Time ratios, correlation coefficients τb and the centrality similarity for the top 100 ver-
tices obtained by using the configuration optimized for the vertex ranking.

that MWSF-single yields results with the highest quality, while MWSF-iterative achieves
higher speedups. With a centrality similarity of 0.88, BFS-set combined with MWSF-
single produces the best results with the highest speedup and is therefore applied in the
experiments of Section 5.5 (see Table 5.5).

5.5 Comparison Against Unreduced Graphs

To evaluate the performance of the edge sparsification and explore the characteristics of
the resulting graphs, experiments are conducted on the second group of graph instances
(see Table 5.1). For each of the primary goals, i.e., the identification of most central ver-
tices and the ranking of vertices, the best parameter configurations of the tuning experi-
ments are utilized (see Tables 5.4 and 5.5). The scores of all centrality measures discussed
in Chapter 2 are calculated using the algorithms described in Section 5.2.

Using the ranking configuration, time improvements are achieved for two algorithms,
namely ApproxCloseness and EstimateBetweenness (see Table 5.6). With av-
eraged speedups of 1% and 4%, the edge sparsification slightly outperforms computations
on the full graph while achieving coefficients τb of 0.87 and 0.83, indicating a strong corre-
lation with respect to the ranking. For DegreeCentrality, CoreDecomposition,
KatzCentrality and EigenvectorCentrality, no speedup is obtained. On the
contrary, the sparsification requires at least 50% more time compared to unreduced graphs.
The reason for that is the fact that these centrality algorithms are already highly efficient
on full graphs. While the calculations on the reduced graphs show a slight improvement
in speed, this marginal gain is not enough to offset the additional time required. The edge
sparsification is therefore not suitable for these centrality algorithms.

Even though KadabraBetweenness is known as the fastest betweenness approx-
imation algorithm, a slowdown and even the worst correlation coefficient is obtained
for both parameter configurations (see Tables 5.6 and 5.7). The results do not pro-
vide a clear explanation for these outcomes. In early experiments, it was observed that
KadabraBetweenness exhibits highly fluctuating performances on graphs of the same

56

5.5 Comparison Against Unreduced Graphs

Centrality Algorithm Time Ratio τb Mf,r(100)

KadabraBetweenness 0.594 0.64 0.84

EstimateBetweenness 1.055 0.83 0.86

DegreeCentrality 0.0002 0.76 0.73

ApproxCloseness 0.925 0.87 0.52

EigenvectorCentrality 0.105 0.74 0.33

KatzCentrality 0.027 0.76 0.72

CoreDecomposition 0.012 0.70 0.11

Table 5.7: Time ratios, correlation coefficients τb and the centrality similarity for the top 100 ver-
tices obtained by the configuration focused on the most central vertices.

size. A possible reason for this could be the diameter. However, an analysis on this aspect
is still open.

Similar findings are obtained for the top configuration in terms of time ratios.
EstimateBetweenness achieves the overall best results with an average speedup
of 5% and a centrality similarity of 86%. In comparison to the results in Table 5.6,
the KadabraBetweenness algorithm is even slower, and no speedup is achieved for
ApproxCloseness. This holds true for other centrality algorithms as well, which take
nearly twice as long as on the full graphs (reasoning explained above).

In terms of quality, the ranking configuration produces more accurate rankings compared
to the top configuration (see Tables 5.6 and 5.7). ApproxCloseness yields the highest
correlation coefficient of τb = 0.93 but also for the other centrality measures, promising
results are obtained. Except for KadabraBetweenness with τb = 0.66, the config-
uration consistently achieves coefficients exceeding 0.8, indicating a strong correlation
between rankings in full and sparsified graphs. Interestingly, the ranking configuration
also yields impressive results for identifying the most central nodes. Both configurations
perform equally well for the two betweenness algorithms. However, for other centrali-
ties, the ranking configuration clearly surpasses the top configuration with improvements
ranging from 7% to 28%.

To analyze the properties of the resulting graphs and the differences between the two
configurations, we investigate the number of edges in the reduced graphs. Figure 5.9 shows
that the ranking configuration produces graphs with more edges than the top configuration.
This is a direct result of the edge percentage parameter, which is set to 0.35 for the ranking
and 0.25 for the top configuration. At the same time, it is observed that many reduced
graphs contain slightly more edges than specified. This is because in the MWSF-single
approach, the edges are added in addition to the tree edges.

The majority of graphs contains less than 60% of edges; however, there are a couple of
graphs that include significantly more, or nearly all edges. These graphs mainly correspond
to infrastructure graphs, or graphs for which on average m

(n−1)
≈ 1.5, i.e., sparse graphs.

Thus, when applying the MWSF-single approach, which involves inserting a MWST and
an additional 25% or 35% of edges, the reduced graph automatically includes all or close to

57

5 Experimental Evaluation

Ranking parameter configuration Top parameter configuration

FS
U5
3

CA
-H
ep
Ph

ou
t.p
ate
nt
cit
e

so
c-p
ok
ec-
rel
ati
on
sh
ips

Ru
tge
rs8
9

ou
t.c
it-
He
pT
h

Ga
As
H6
.m
tx

ou
t.o
ps
ah
l-p
ow
erg
rid

HR
_e
dg
es

ou
t.fl
ick
rE
dg
es

de
eze
r_
eu
ro
pe
_e
dg
es

tw
itt
er_

co
mb
ine
d

or
eg
on
1_
01
05
26

ou
t.d
bp
ed
ia-
oc
cu
pa
tio
n

ou
t.a
ren
as
-em

ail

ou
t.h
yv
es

ou
t.c
ite
see
r

ro
ad
Ne
t-T

X

ou
t.fl
ick
r-g
ro
up
me
mb
ers
hip
s

CA
-C
on
dM

at

Sla
sh
do
t09
02

we
b-N

otr
eD
am
e

we
b-G

oo
gle

ro
ad
Ne
t-P
A

ou
t.l
ive
mo
ch
a

Em
ail
-E
uA
ll

lar
ge
_t
wi
tch
_e
dg
es

we
b-B

erk
St
an

ou
t.d
im
ac
s9
-C
OL

W
iki
Ta
lk

sh
ips
ec5
.m
tx

ou
t.d
bp
ed
ia-
tea
m

ou
t.h
igg
s-t
wi
tte
r-s
oc
ial

ou
t.d
im
ac
s9
-F
LA

Vi
lla
no
va
62

UG
A5
0

CA
-A
str
oP
h

Graphs

0.0

0.2

0.4

0.6

0.8

1.0

A
m
ou

nt
of

ed
ge
s
in

%

Figure 5.9: Comparison of the amount of edges in reduced graphs obtained by the ranking and top
parameter configuration. The percentage is calculated with respect to the full graph.

all edges. Therefore, further sparsification is not useful for graphs that are already sparse.
Consequently, the results on the other graphs are now investigated, excluding

sparse graphs. In comparison to the previous findings, the speedup for all cen-
trality algorithms increases for the ranking configuration (see Table 5.8). As ex-
pected, DegreeCentrality, EigenvectorCentrality, KatzCentrality
and CoreDecomposition still lag significantly behind the computation times on full
graphs. For EstimateBetweenness and ApproxCloseness, however, the speedup
is notably higher with 20% and 13%, respectively. The corresponding correlation co-
efficients are only marginally smaller, leading to still consistently qualitative good re-
sults. With the exception of EigenvectorCentrality, KatzCentrality and
CoreDecomposition, τb and Mf,r(100) are in general smaller than those in Table 5.6.
However, it is expected that tuning the parameters exclusively on denser graphs improves
these results.

An increased speedup of 13% and 23% is also observed for ApproxCloseness and
EstimateBetweenness using the top configuration (see Table 5.9). The sparsifica-
tion, however, does not yield improvements for the other centrality measures; in fact, the
speedup for KadabraBetweenness decreases significantly. In terms of quality, the

58

5.5 Comparison Against Unreduced Graphs

Centrality Measure Time Ratio τb Mf,r(100)

KadabraBetweenness 1.0 0.63 0.80

EstimateBetweenness 1.253 0.84 0.83

Degree 0.001 0.87 0.74

Closeness 1.148 0.91 0.73

Eigenvector 0.493 0.87 0.55

Katz 0.193 0.86 0.73

k-core 0.096 0.85 0.24

Table 5.8: Time ratios, correlation coefficients τb and the centrality similarity for the top 100 ver-
tices of denser graphs for the ranking configuration.

correlation coefficients are on average higher, while the centrality similarity experiences a
slight decline.

On average, the ranking configuration produces qualitatively higher results in terms of
both correlation coefficients and centrality similarity, even though only 5 BFS – signifi-
cantly fewer than the 100 executed for the top configuration – are performed. Since both
configurations have a similar subset size, this is primarily attributed to the two parameters
bfs_repetitions and edge_percentage. Despite executing only 5 BFS, the higher amount of
edges in the graphs seems to be sufficient to achieve qualitative good and also better results
than with 100 BFS. This emphazises the insights gained from the tuning experiments that
number of edges highly influences the quality of the approach.

The best results are achieved for EstimateBetweenness as well as
ApproxCloseness: For EstimateBetweenness, an approximate vertex ranking
with a correlation coefficient of 0.84 is computed 25% faster, and the top 100 vertices
are calculated with 28% speedup and an accuracy of 83%. With a speedup of 14% each,
an approximate closeness centrality ranking with τb = 0.91, and the top 100 vertices
with an accuracy of 73% are obtained. The combination of sparsification and centrality
computations results in speedups in the double-digit range for EstimateBetweenness

Centrality Measure Time Ratio τb Mf,r(100)

KadabraBetweenness 0.591 0.60 0.81

EstimateBetweenness 1.285 0.80 0.83

Degree 0.001 0.69 0.66

Closeness 1.051 0.85 0.53

Eigenvector 0.103 0.72 0.27

Katz 0.03 0.69 0.65

k-core 0.015 0.60 0.04

Table 5.9: Time ratios, correlation coefficients τb and the centrality similarity for the top 100 ver-
tices of denser graphs for the top configuration.

59

5 Experimental Evaluation

and ApproxCloseness, making it significantly faster than computations on full graphs.
The vertex rankings exhibit strong correlation, with correlation coefficients surpassing
0.8. Moreover, good results are achieved for the overlap of the most central vertices. It is
expected that a speedup will be evident even for larger graphs, highlighting the potential
of the approach.

60

CHAPTER 6
Conclusion

In this work, a novel edge sparsification algorithm is presented. Edges that occur frequently
on shortest paths are preserved, while less relevant edges are removed. To determine their
importance, three variants of BFS are introduced, which perform SSSP computations on
subsets of vertices. Subsequently, the reduced graph is constructed using MWSFs for which
two approaches are proposed. The parameters are tuned for two distinct objectives – the
ranking of vertices and the identification of the most central vertices. Thereby, all com-
binations of BFS variants and MWSF methods are investigated. The goal is to achieve
maximum quality with a minimum speedup of 10%.

The tuning experiments indicate that for identifying the most central vertices, an in-
creased number of BFS computations enhance the quality. However, for the ranking, a
plateau is already reached after a few BFS executions and more repetitions do not lead to
qualitative improvements. Simultaneously, the number of edges in the reduced graph plays
an important role. As the number of edges decreases, the approach becomes faster, at the
cost of decreasing quality. Concerning the most central vertices, this can be improved by
increasing the number of BFS executions. The increased computational effort is then com-
pensated by the speedup of centrality computations on graphs with fewer edges. As the
number of edges increases, the quality improves steadily, but at the same time, the speedup
decreases. Therefore, a trade-off must be found between the number of BFS executions
and removed edges. If more than 60% of edges are preserved during edge sparsification,
no difference in computation time between reduced and full graphs is achieved.

Based on the parameter configurations of the tuning experiments, the approach is evalu-
ated on a diverse graph collection using multiple centrality measures. The results for path-
based centralities clearly outperform the ones for degree, eigenvector, Katz and k-core cen-
trality. No speedup is observed for these measures; on the contrary, the computation times
surpass those on full graphs. The edge sparsification introduces a computational overhead
that the centrality measures can not compensate for, because they are already highly effi-
cient on unreduced graphs. Betweenness and closeness centrality lead to speedups of 28%
and 14% on average.

61

6 Conclusion

Path-based centralities achieve notably higher qualitative outcomes. The best ranking
results are obtained for closeness centrality, showing a strong correlation between reduced
and unreduced graphs. Moreover, there is a large overlap concerning the most central
vertices. While betweenness centrality is faster, its ability to determine the correct ranking
lacks behind closeness centrality. However, most central vertices are identified with a
higher accuracy. The remaining centrality measures can not compete with these findings –
neither qualitatively nor with respect to the runtime.

6.1 Discussion

Throughout the experiments, the variation of parameters has shown that the results follow
clear tendencies. It is expected that between data points no significant outliers occur. Con-
sequently, employing linear interpolation between two data points provides valid parameter
selections. Choosing the mean value of two consecutive parameters is, therefore, a practical
approach, particularly in situations where an optimal value is assumed to lie between two
tested options. This can be repeated iteratively to eventually converge to a local optimum.

Moreover, the results demonstrated that the amount of removed edges is an important
parameter of the proposed approach. It was observed that the number of edges in the
reduced graph varies significantly between the two MWSF methods. MWSF-single first
computes a MWST and then inserts a certain amount of edges. In contrast, MWSF-iterative
conducts iterations until the reduced graph contains at least a specified amount of edges.
Consequently, MWSF-single could be altered, such that the reduced graph does not exceed
the specified percentage.

Each centrality algorithm exhibits an error tolerance that ensures the accuracy of com-
puted centrality scores. This directly affects the quality and runtime of the approach. For
certain centralities, the scores often fall into a narrow interval [101, 73], making them hard
to distinguish. In order to compare and rank them, a high level of accuracy must be ensured.
In the case of betweenness centrality, the majority of vertices have tiny scores with only a
few exhibiting higher values. Consequently, the error tolerance must be chosen very small,
leading to a significantly higher runtime. It is thus worth exploring how different values
influence the outcome of the edge sparsification. Determining suitable error tolerances for
each individual method is expected to further improve the results.

6.2 Future Work

Through the experiments, a lot of insights have been gained regarding the various methods
and parameters of the edge sparsification algorithm. Several extensions are yet unexplored
and could be investigated further. In all BFS variants, the vertices in the subset are chosen
randomly. Alternative strategies, such as selecting vertices depending on certain criteria,
potentially improve the performance and more accurately capture the importance of edges

62

6.2 Future Work

within a graph. The set could be chosen, such that the vertices correspond to a distribution,
for example, in terms of the degree or any other attributes associated with vertices, like
labels or weights.

Concerning the calculation of edge counts, not only one but multiple BFS methods could
be combined. They either operate on the same subset or select different sets independently.
Moreover, the BFS-percentage approach can be extended to sets of vertices. This, can be
further divided into two methods, depending on whether a BFS is executed for all vertices
or for each vertex individually.

The experimental evaluation demonstrated that the ranking quality does not improve
with an increased number of BFS executions. A possible explanation is the presence of
many edges with the same count. To tackle this issue, an additional criterion could be
developed, such that a differentiation among these edges is possible. This could be an
interesting future research direction.

The combination of MWSF approaches could also be an aspect of further research. For
instance, MWSF-iterative is initially applied until the graph contains a certain amount
of edges. An additional percentage of edges with the highest counts is subsequently in-
serted into the graph. Moreover, different criteria can be explored for selecting edges with
MWSF-single. Instead of choosing solely important edges, a certain number of edges
could be sampled randomly, which potentially improves the performance of the approach.
To further reduce the overall running time of the edge sparsification, components can be
parallelized, such as the BFS and centrality computations.

63

6 Conclusion

64

APPENDIX A
Further Results

BFS
MWSF Set Size BFS Percentage Repetitions Edge [%]

Variant

Set
Single 5 − 25 30

Iterative 5 − 5 45

Single
Single 5 − − 35

Iterative 3 − − 45

Percentage
Single 1 0.99 1 30

Iterative 1 0.02 1 30

Table A.1: Baseline parameter configuration for the tuning experiments with focus on the ranking
of vertices.

BFS
MWSF Set Size BFS Percentage Repetitions Edge [%]

Variant

Set
Single 10 − 35 30

Iterative 5 − 35 45

Single
Single 50 − − 35

Iterative 40 − − 40

Percentage
Single 1 0.99 1 30

Iterative 1 0.02 1 30

Table A.2: Baseline parameter configuration for the tuning experiments with focus on the most
central vertices.

65

A Further Results

bfs_percentage Average number of BFS
0.02 2473.88

0.04 1911.33

0.06 1603.6

0.08 1404.44

0.1 1258.94

0.2 836.61

0.3 654.35

0.4 528.87

0.5 442.73

0.6 354.93

0.7 284.22

0.75 251.62

0.8 219.13

0.85 182.8

0.9 143.33

0.95 91.79

0.98 52.31

0.99 34.83

Table A.3: Average number of BFS runs for increasing values of bfs_percentage during the tuning
experiments of Section 5.4.1.

0.05 0.15 0.25 0.35 0.45 0.55

Amount of edges in % 0.24 0.29 0.34 0.44 0.52 0.62

Time Ratio for centrality computations 2.08 1.72 1.47 1.24 1.17 1.04

Correlation coefficient τb % 0.56 0.63 0.7 0.76 0.8 0.83

Table A.4: Amount of edges, time ratios and correlation coefficients for varying values of the
parameter edge_percentage for BFS-single combined with MWSF-iterative during the
ranking tuning experiments Section 5.4.1.

66

0.0 0.2 0.4 0.6 0.8 1.0

BFS Percentage

15

20

25

30

35
T
im

e
Im

pr
ov
em

en
t
in

%

MWSF-single
MWSF-iter

Figure A.1: Time improvement in percent for the centrality computations over varying values for
bfs_percentage. Note that the speedups depend solely on the centrality computations,
excluding the computation time of the sparsification algorithm. On the reduced graphs
obtained with MWSF-iterative centrality computations run on average 25% faster than
on the ones resulting from MWSF-single.

0.05 0.15 0.25 0.35 0.45 0.55

Amount of edges in % 0.28 0.38 0.48 0.57 0.66 0.75

Time Ratio for centrality computations 1.81 1.41 1.22 1.09 1.01 0.96

Correlation coefficient τb % 0.55 0.74 0.82 0.86 0.89 0.91

Table A.5: Amount of edges, time ratios and correlation coefficients for varying values of the
parameter edge_percentage for BFS-single combined with MWSF-single during the
ranking tuning experiments Section 5.4.1.

67

A Further Results

68

Zusammenfassung

Ein grundlegendes Konzept der Graphenanalyse sind Zentralitätsmetriken, die jedem
Knoten eine Wertigkeit zuweisen, die seine Relevanz darstellt. Insbesondere die relative
Rangfolge und die Identifizierung der wichtigsten Knoten bieten Einblicke in den zugrunde
liegenden Datensatz und finden Einsatz in verschiedenen Anwendungsbereichen. Obwohl
es exakte Algorithmen in polynomialer Laufzeit gibt, sind diese nicht gut skalierbar und
daher wurden zahlreiche Approximationsalgorithmen entwickelt. In dieser Arbeit wird
eine Edge Sparsification vorgestellt, die vor den Zentralitätsberechnungen auf Graphen
angewendet wird. Dabei wird ermittelt, wie oft jede Kante auf kürzesten Wegen innerhalb
eines Graphen vorkommt. Der reduzierte Graph wird dann konstruiert, indem nur Kanten
einbezogen werden, die Teil vieler kürzester Pfade sind. Die Experimente zeigen, dass
die Edge Sparsification am besten für distanzbasierte Zentralitätsmetriken funktioniert.
Für Betweenness Centrality werden stark korrelierte Rangfolgen und eine Überlappung
von 83% zwischen den wichtigsten Knoten mit einer durchschnittlichen Verbesserung der
Laufzeit von 26% erreicht. Für Closeness Centrality werden ähnliche Ergebnisse mit einer
durchschnittlichen Beschleunigung von 21% erzielt.

69

Bibliography

[1] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic
Equivalences between Graph Centrality Problems, APSP, and Diameter. ACM
Transactions on Algorithms, 19(1):1–30, January 2023. ISSN 1549-6325, 1549-
6333. doi: 10.1145/3563393.

[2] Eugenio Angriman, Alexander van der Grinten, Michael Hamann, Henning Meyer-
henke, and Manuel Penschuck. Algorithms for Large-Scale Network Analysis and
the NetworKit Toolkit. In Hannah Bast, Claudius Korzen, Ulrich Meyer, and Manuel
Penschuck, editors, Algorithms for Big Data, volume 13201, pages 3–20. Springer
Nature Switzerland, Cham, 2022. ISBN 978-3-031-21533-9 978-3-031-21534-6.
doi: 10.1007/978-3-031-21534-6_1.

[3] Jac M. Anthonisse. The rush in a directed graph. Stichting Mathematisch Centrum,
Amsterdam, Netherlands, Technical Report BN 9/71:1–10, 1971.

[4] D.A. Bader and K. Madduri. Parallel Algorithms for Evaluating Centrality Indices
in Real-world Networks. In 2006 International Conference on Parallel Processing
(ICPP’06), pages 539–550, Columbus, OH, USA, 2006. IEEE. ISBN 978-0-7695-
2636-2. doi: 10.1109/ICPP.2006.57.

[5] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approxi-
mating Betweenness Centrality. In Anthony Bonato and Fan R. K. Chung, ed-
itors, Algorithms and Models for the Web-Graph, volume 4863, pages 124–137.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-77003-9.
doi: 10.1007/978-3-540-77004-6_10.

[6] David A. Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea
Kappes, and Dorothea Wagner. Benchmarking for Graph Clustering and Partition-
ing. In Reda Alhajj and Jon Rokne, editors, Encyclopedia of Social Network Anal-
ysis and Mining, pages 73–82. Springer New York, New York, NY, 2014. ISBN
978-1-4614-6169-2 978-1-4614-6170-8. doi: 10.1007/978-1-4614-6170-8_23.

[7] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores Decomposition of
Networks, October 2003.

71

Bibliography

[8] Alex Bavelas. A Mathematical Model for Group Structures. Human Organization,
7(3):16–30, July 1948. ISSN 0018-7259, 1938-3525. doi: 10.17730/humo.7.3.
f4033344851gl053.

[9] Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and
Henning Meyerhenke. Computing top- k Closeness Centrality Faster in Unweighted
Graphs. ACM Transactions on Knowledge Discovery from Data, 13(5):1–40, Octo-
ber 2019. ISSN 1556-4681, 1556-472X. doi: 10.1145/3344719.

[10] Massimo Bernaschi, Giancarlo Carbone, and Flavio Vella. Scalable betweenness
centrality on multi-GPU systems. In Proceedings of the ACM International Confer-
ence on Computing Frontiers, pages 29–36, Como Italy, May 2016. ACM. ISBN
978-1-4503-4128-8. doi: 10.1145/2903150.2903153.

[11] Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10
(3-4):222–262, 2014. doi: 10.1080/15427951.2013.865686.

[12] Phillip Bonacich. Factoring and weighting approaches to status scores and clique
identification. The Journal of Mathematical Sociology, 2(1):113–120, January 1972.
ISSN 0022-250X, 1545-5874. doi: 10.1080/0022250X.1972.9989806.

[13] Michele Borassi and Emanuele Natale. KADABRA is an ADaptive Algorithm for
Betweenness via Random Approximation. ACM Journal of Experimental Algo-
rithmics, 24:1–35, December 2019. ISSN 1084-6654, 1084-6654. doi: 10.1145/
3284359.

[14] Michele Borassi, Pierluigi Crescenzi, and Andrea Marino. Fast and simple compu-
tation of top-k closeness centralities. CoRR, abs/1507.01490, 2015.

[15] Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the Square: On
the Complexity of Some Quadratic-time Solvable Problems. Electronic Notes in
Theoretical Computer Science, 322:51–67, April 2016. ISSN 15710661. doi:
10.1016/j.entcs.2016.03.005.

[16] Stephen P. Borgatti and Martin G. Everett. A Graph-theoretic perspective on cen-
trality. Social Networks, 28(4):466–484, October 2006. ISSN 03788733. doi:
10.1016/j.socnet.2005.11.005.

[17] Ulrik Brandes. A faster algorithm for betweenness centrality*. The Journal of
Mathematical Sociology, 25(2):163–177, June 2001. ISSN 0022-250X, 1545-5874.
doi: 10.1080/0022250X.2001.9990249.

[18] Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic
computation. Social Networks, 30(2):136–145, May 2008. ISSN 03788733. doi:
10.1016/j.socnet.2007.11.001.

72

Bibliography

[19] Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodological
Foundations. Number 3418 in LCNS, Tutorial. Springer, Berlin ; New York, 2005.
ISBN 978-3-540-24979-5.

[20] Ulrik Brandes and Christian Pich. Centrality Estimation in Large Networks. In-
ternational Journal of Bifurcation and Chaos, 17(07):2303–2318, July 2007. ISSN
0218-1274, 1793-6551. doi: 10.1142/S0218127407018403.

[21] Gary Chartrand and Linda M. Lesniak. Graphs and Digraphs (2. Ed.). Wadsworth
& Brooks / Cole Mathematics Series. Wadsworth, 1986. ISBN 978-0-534-06324-5.

[22] Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F. Werneck. Computing
Classic Closeness Centrality, at Scale. In Proceedings of the Second ACM Con-
ference on Online Social Networks, pages 37–50, October 2014. doi: 10.1145/
2660460.2660465.

[23] Cecile Daniel, Angelo Furno, Lorenzo Goglia, and Eugenio Zimeo. Fast cluster-
based computation of exact betweenness centrality in large graphs. Journal
of Big Data, 8(1):92, December 2021. ISSN 2196-1115. doi: 10.1186/
s40537-021-00483-1.

[24] Kousik Das, Sovan Samanta, and Madhumangal Pal. Study on centrality measures in
social networks: A survey. Social Network Analysis and Mining, 8(1):13, December
2018. ISSN 1869-5450, 1869-5469. doi: 10.1007/s13278-018-0493-2.

[25] Naga Shailaja Dasari, Ranjan Desh, and M. Zubair. ParK: An efficient algorithm for
k-core decomposition on multicore processors. In 2014 IEEE International Confer-
ence on Big Data (Big Data), pages 9–16, Washington, DC, USA, October 2014.
IEEE. ISBN 978-1-4799-5666-1. doi: 10.1109/BigData.2014.7004366.

[26] A. Del Sol, H. Fujihashi, and P. O’Meara. Topology of small-world networks of
protein-protein complex structures. Bioinformatics, 21(8):1311–1315, April 2005.
ISSN 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/bti167.

[27] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts in Mathematics.
Springer, Berlin, fifth edition, first softcover printing edition, 2018. ISBN 978-3-
662-53621-6 978-3-662-57560-4.

[28] Mark Ditsworth and Justin Ruths. Community detection via katz and eigenvector
centrality. CoRR, abs/1909.03916, 2019.

[29] Shlomi Dolev, Yuval Elovici, and Rami Puzis. Routing betweenness centrality.
Journal of the ACM, 57(4):1–27, April 2010. ISSN 0004-5411, 1557-735X. doi:
10.1145/1734213.1734219.

73

Bibliography

[30] Nick Edmonds, Torsten Hoefler, and Andrew Lumsdaine. A space-efficient paral-
lel algorithm for computing betweenness centrality in distributed memory. In 2010
International Conference on High Performance Computing, pages 1–10, Goa, In-
dia, December 2010. IEEE. ISBN 978-1-4244-8518-5. doi: 10.1109/HIPC.2010.
5713180.

[31] David Eppstein and Joseph Wang. Fast approximation of centrality. Journal of
Graph Algorithms and Applications, 8:39–45, 2004. doi: 10.7155/JGAA.00081.

[32] Dóra Erdős, Vatche Ishakian, Azer Bestavros, and Evimaria Terzi. A Divide-and-
Conquer Algorithm for Betweenness Centrality. In Proceedings of the 2015 SIAM
International Conference on Data Mining, pages 433–441. Society for Industrial
and Applied Mathematics, June 2015. ISBN 978-1-61197-401-0. doi: 10.1137/1.
9781611974010.49.

[33] Changjun Fan, Li Zeng, Yuhui Ding, Muhao Chen, Yizhou Sun, and Zhong Liu.
Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel
Graph Neural Network Approach. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 559–568, Beijing
China, November 2019. ACM. ISBN 978-1-4503-6976-3. doi: 10.1145/3357384.
3357979.

[34] Marcelo Fonseca Faraj and Christian Schulz. Buffered Streaming Graph Partition-
ing. ACM Journal of Experimental Algorithmics, 27:1–26, December 2022. ISSN
1084-6654, 1084-6654. doi: 10.1145/3546911.

[35] Kurt C. Foster, Stephen Q. Muth, John J. Potterat, and Richard B. Rothenberg. A
Faster Katz Status Score Algorithm. Computational & Mathematical Organization
Theory, 7(4):275–285, 2001. ISSN 1381298X. doi: 10.1023/A:1013470632383.

[36] Linton C. Freeman. A Set of Measures of Centrality Based on Betweenness. So-
ciometry, 40(1):35, March 1977. ISSN 00380431. doi: 10.2307/3033543.

[37] Linton C. Freeman, Stephen P. Borgatti, and Douglas R. White. Centrality in valued
graphs: A measure of betweenness based on network flow. Social Networks, 13(2):
141–154, June 1991. ISSN 03788733. doi: 10.1016/0378-8733(91)90017-N.

[38] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better Approxima-
tion of Betweenness Centrality. In J. Ian Munro and Dorothea Wagner, editors,
2008 Proceedings of the Tenth Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pages 90–100. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, January 2008. ISBN 978-1-61197-288-7. doi: 10.1137/1.
9781611972887.9.

74

Bibliography

[39] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
June 2002. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.122653799.

[40] Felipe Grando and Luis C. Lamb. On approximating networks centrality measures
via neural learning algorithms. In 2016 International Joint Conference on Neural
Networks (IJCNN), pages 551–557, Vancouver, BC, Canada, July 2016. IEEE. ISBN
978-1-5090-0620-5. doi: 10.1109/IJCNN.2016.7727248.

[41] Felipe Grando, Diego Noble, and Luis C. Lamb. An Analysis of Centrality Measures
for Complex and Social Networks. In 2016 IEEE Global Communications Confer-
ence (GLOBECOM), pages 1–6, Washington, DC, USA, December 2016. IEEE.
ISBN 978-1-5090-1328-9. doi: 10.1109/GLOCOM.2016.7841580.

[42] Felipe Grando, Lisandro Z. Granville, and Luis C. Lamb. Machine Learning in
Network Centrality Measures: Tutorial and Outlook. ACM Computing Surveys, 51
(5):1–32, September 2019. ISSN 0360-0300, 1557-7341. doi: 10.1145/3237192.

[43] Alexander Grinten van der, Elisabetta Bergamini, Oded Green, David A. Bader,
and Henning Meyerhenke. Scalable Katz Ranking Computation in Large Static and
Dynamic Graphs. ACM Journal of Experimental Algorithmics, 27:1–16, December
2022. ISSN 1084-6654, 1084-6654. doi: 10.1145/3524615.

[44] R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral. The worldwide air trans-
portation network: Anomalous centrality, community structure, and cities’ global
roles. Proceedings of the National Academy of Sciences, 102(22):7794–7799, May
2005. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.0407994102.

[45] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent Advances in
Fully Dynamic Graph Algorithms – A Quick Reference Guide. ACM Journal of
Experimental Algorithmics, 27:1–45, December 2022. ISSN 1084-6654, 1084-6654.
doi: 10.1145/3555806.

[46] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a scalable
high quality graph partitioner. In 24th IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010
- Conference Proceedings, pages 1–12. IEEE, 2010. doi: 10.1109/IPDPS.2010.
5470485.

[47] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality
in protein networks. Nature, 411(6833):41–42, May 2001. ISSN 0028-0836, 1476-
4687. doi: 10.1038/35075138.

[48] R. Jothi. A Betweenness Centrality Guided Clustering Algorithm and Its Applica-
tions to Cancer Diagnosis. In Ashish Ghosh, Rajarshi Pal, and Rajendra Prasath,

75

Bibliography

editors, Mining Intelligence and Knowledge Exploration, volume 10682, pages 35–
42. Springer International Publishing, Cham, 2017. ISBN 978-3-319-71927-6 978-
3-319-71928-3. doi: 10.1007/978-3-319-71928-3_4.

[49] Humayun Kabir and Kamesh Madduri. Parallel k-Core Decomposition on Multicore
Platforms. In 2017 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 1482–1491, Orlando / Buena Vista, FL, USA,
May 2017. IEEE. ISBN 978-1-5386-3408-0. doi: 10.1109/IPDPSW.2017.151.

[50] U Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. Centralities in
Large Networks: Algorithms and Observations. In Proceedings of the 2011 SIAM
International Conference on Data Mining, pages 119–130. Society for Industrial and
Applied Mathematics, April 2011. ISBN 978-0-89871-992-5 978-1-61197-281-8.
doi: 10.1137/1.9781611972818.11.

[51] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18
(1):39–43, March 1953. ISSN 0033-3123, 1860-0980. doi: 10.1007/BF02289026.

[52] Dirk Koschützki and Falk Schreiber. Centrality Analysis Methods for Biological
Networks and Their Application to Gene Regulatory Networks. Gene Regulation
and Systems Biology, 2:GRSB.S702, January 2008. ISSN 1177-6250, 1177-6250.
doi: 10.4137/GRSB.S702.

[53] Nicolas Kourtellis, Tharaka Alahakoon, Ramanuja Simha, Adriana Iamnitchi, and
Rahul Tripathi. Identifying high betweenness centrality nodes in large social net-
works. Social Network Analysis and Mining, 3(4):899–914, December 2013. ISSN
1869-5450, 1869-5469. doi: 10.1007/s13278-012-0076-6.

[54] Vladis E Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52,
2002.

[55] Jérôme Kunegis. KONECT – The Koblenz Network Collection. In Proc. Int. Conf.
on World Wide Web Companion, pages 1343–1350, 2013.

[56] Erwan Le Merrer, Nicolas Le Scouarnec, and Gilles Trédan. Heuristical top-k: Fast
estimation of centralities in complex networks. Information Processing Letters, 114
(8):432–436, August 2014. ISSN 00200190. doi: 10.1016/j.ipl.2014.03.006.

[57] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection, June 2014.

[58] Yong Li, Wenguo Li, Yi Tan, Fang Liu, Yijia Cao, and Kwang Y. Lee. Hierarchical
Decomposition for Betweenness Centrality Measure of Complex Networks. Scien-
tific Reports, 7(1):46491, April 2017. ISSN 2045-2322. doi: 10.1038/srep46491.

76

Bibliography

[59] Mingkai Lin, Wenzhong Li, Lynda J. Song, Cam-Tu Nguyen, Xiaoliang Wang, and
Sanglu Lu. SAKE: Estimating Katz Centrality Based on Sampling for Large-Scale
Social Networks. ACM Transactions on Knowledge Discovery from Data, 15(4):
1–21, August 2021. ISSN 1556-4681, 1556-472X. doi: 10.1145/3441646.

[60] Jing-Kai Lou, Shou-de Lin, Kuan-Ta Chen, and Chin-Laung Lei. What Can the
Temporal Social Behavior Tell Us? An Estimation of Vertex-Betweenness Using
Dynamic Social Information. In 2010 International Conference on Advances in So-
cial Networks Analysis and Mining, pages 56–63, Odense, Denmark, August 2010.
IEEE. ISBN 978-1-4244-7787-6. doi: 10.1109/ASONAM.2010.46.

[61] Kamesh Madduri, David Ediger, Karl Jiang, David A. Bader, and Daniel Chavarria-
Miranda. A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets. In 2009 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, pages 1–8, Rome, Italy,
May 2009. IEEE. ISBN 978-1-4244-3751-1. doi: 10.1109/IPDPS.2009.5161100.

[62] John Matta, Gunes Ercal, and Koushik Sinha. Comparing the speed and accuracy
of approaches to betweenness centrality approximation. Computational Social Net-
works, 6(1):2, December 2019. ISSN 2197-4314. doi: 10.1186/s40649-019-0062-5.

[63] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Fast Approximations of
Betweenness Centrality with Graph Neural Networks. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, pages
2149–2152, Beijing China, November 2019. ACM. ISBN 978-1-4503-6976-3. doi:
10.1145/3357384.3358080.

[64] Adam McLaughlin and David A. Bader. Scalable and High Performance Between-
ness Centrality on the GPU. In SC14: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 572–583, New Orleans,
LA, USA, November 2014. IEEE. ISBN 978-1-4799-5500-8 978-1-4799-5499-5.
doi: 10.1109/SC.2014.52.

[65] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Tool-
box. Springer, Berlin, 2008. ISBN 978-3-540-77977-3 978-3-540-77978-0.

[66] Matheus R. F. Mendonça, André M. S. Barreto, and Artur Ziviani. Approximating
Network Centrality Measures Using Node Embedding and Machine Learning. IEEE
Transactions on Network Science and Engineering, 8(1):220–230, January 2021.
ISSN 2327-4697, 2334-329X. doi: 10.1109/TNSE.2020.3035352.

[67] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. Distributed k-
core decomposition. In Cyril Gavoille and Pierre Fraigniaud, editors, Proceedings of
the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC

77

Bibliography

2011, San Jose, CA, USA, June 6-8, 2011, pages 207–208. ACM, 2011. doi: 10.
1145/1993806.1993836.

[68] Eisha Nathan and David A. Bader. Approximating Personalized Katz Centrality
in Dynamic Graphs. In Roman Wyrzykowski, Jack Dongarra, Ewa Deelman, and
Konrad Karczewski, editors, Parallel Processing and Applied Mathematics, volume
10777, pages 290–302. Springer International Publishing, Cham, 2018. ISBN 978-
3-319-78023-8 978-3-319-78024-5. doi: 10.1007/978-3-319-78024-5_26.

[69] Eisha Nathan and David A. Bader. Incrementally updating Katz centrality in dy-
namic graphs. Social Network Analysis and Mining, 8(1):26, December 2018. ISSN
1869-5450, 1869-5469. doi: 10.1007/s13278-018-0504-3.

[70] Eisha Nathan, Geoffrey Sanders, James Fairbanks, Van Emden Henson, and
David A. Bader. Graph Ranking Guarantees for Numerical Approximations to Katz
Centrality. Procedia Computer Science, 108:68–78, 2017. ISSN 18770509. doi:
10.1016/j.procs.2017.05.021.

[71] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality. Physical Review E, 64(1):016132, June 2001. ISSN 1063-
651X, 1095-3787. doi: 10.1103/PhysRevE.64.016132.

[72] M. E. J. Newman. A measure of betweenness centrality based on random walks.
Social Networks, 27(1):39–54, 2005. doi: 10.1016/J.SOCNET.2004.11.009.

[73] Mark E. J. Newman. Networks. Oxford University Press, Oxford, second edition
edition, 2018. ISBN 978-0-19-880509-0. doi: 10.1093/oso/9780198805090.001.
0001.

[74] Paul W. Olsen, Alan G. Labouseur, and Jeong-Hyon Hwang. Efficient top-k close-
ness centrality search. In 2014 IEEE 30th International Conference on Data Engi-
neering, pages 196–207, Chicago, IL, USA, March 2014. IEEE. ISBN 978-1-4799-
2555-1. doi: 10.1109/ICDE.2014.6816651.

[75] Rasmus Pagh and Suresh Venkatasubramanian, editors. 2018 Proceedings of the
Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX). Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, January 2018. ISBN
978-1-61197-505-5. doi: 10.1137/1.9781611975055.

[76] Edgar M. Palmer. On the spanning tree packing number of a graph: A survey. 230
(1-3):13–21, 2001. doi: 10.1016/S0012-365X(00)00066-2.

[77] Jürgen Pfeffer and Kathleen M. Carley. K-Centralities: Local approximations of
global measures based on shortest paths. In Proceedings of the 21st International
Conference on World Wide Web, pages 1043–1050, Lyon France, April 2012. ACM.
ISBN 978-1-4503-1230-1. doi: 10.1145/2187980.2188239.

78

Bibliography

[78] Rami Puzis, Polina Zilberman, Yuval Elovici, Shlomi Dolev, and Ulrik Bran-
des. Heuristics for Speeding Up Betweenness Centrality Computation. In 2012
International Conference on Privacy, Security, Risk and Trust and 2012 Inter-
national Confernece on Social Computing, pages 302–311, Amsterdam, Nether-
lands, September 2012. IEEE. ISBN 978-1-4673-5638-1 978-0-7695-4848-7. doi:
10.1109/SocialCom-PASSAT.2012.66.

[79] Appan Rakaraddi and Mahardhika Pratama. Unsupervised Learning for Identi-
fying High Eigenvector Centrality Nodes: A Graph Neural Network Approach.
In 2021 IEEE International Conference on Big Data (Big Data), pages 4945–
4954, Orlando, FL, USA, December 2021. IEEE. ISBN 978-1-66543-902-2. doi:
10.1109/BigData52589.2021.9671902.

[80] Matthew J. Rattigan, Marc Maier, and David Jensen. Using structure indices for
efficient approximation of network properties. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 357–366, Philadelphia PA USA, August 2006. ACM. ISBN 978-1-59593-
339-3. doi: 10.1145/1150402.1150443.

[81] Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of between-
ness centrality through sampling. In Proceedings of the 7th ACM International Con-
ference on Web Search and Data Mining, pages 413–422, New York New York USA,
February 2014. ACM. ISBN 978-1-4503-2351-2. doi: 10.1145/2556195.2556224.

[82] Matteo Riondato and Eli Upfal. ABRA: Approximating Betweenness Centrality
in Static and Dynamic Graphs with Rademacher Averages. ACM Transactions on
Knowledge Discovery from Data, 12(5):1–38, October 2018. ISSN 1556-4681,
1556-472X. doi: 10.1145/3208351.

[83] Agnieszka Rusinowska, Rudolf Berghammer, Harrie de Swart, and Michel Gra-
bisch. Social networks: Prestige, centrality, and influence (Invited paper). In
de Swart, editor, RAMICS 2011, Lecture Notes in Computer Science (LNCS) 6663,
pages 22–39. Springer, 2011.

[84] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,
December 1966. ISSN 0033-3123, 1860-0980. doi: 10.1007/BF02289527.

[85] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. Be-
tweenness centrality on GPUs and heterogeneous architectures. In Proceedings of
the 6th Workshop on General Purpose Processor Using Graphics Processing Units,
pages 76–85, Houston Texas USA, March 2013. ACM. ISBN 978-1-4503-2017-7.
doi: 10.1145/2458523.2458531.

[86] Ahmet Erdem Sariyuce, Kamer Kaya, Erik Saule, and Umit V. Catalyurek. Incre-
mental algorithms for closeness centrality. In 2013 IEEE International Conference

79

Bibliography

on Big Data, pages 487–492, Silicon Valley, CA, October 2013. IEEE. ISBN 978-
1-4799-1293-3. doi: 10.1109/BigData.2013.6691611.

[87] Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Shatter-
ing and Compressing Networks for Betweenness Centrality. In Proceedings of the
2013 SIAM International Conference on Data Mining, pages 686–694. Society for
Industrial and Applied Mathematics, May 2013. ISBN 978-1-61197-262-7 978-1-
61197-283-2. doi: 10.1137/1.9781611972832.76.

[88] Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. Graph
Manipulations for Fast Centrality Computation. ACM Transactions on Knowledge
Discovery from Data, 11(3):1–25, August 2017. ISSN 1556-4681, 1556-472X. doi:
10.1145/3022668.

[89] Akrati Saxena and Sudarshan Iyengar. Centrality measures in complex networks: A
survey. CoRR, abs/2011.07190, 2020.

[90] Akrati Saxena, Ralucca Gera, and S. R. S. Iyengar. Degree ranking using local
information. CoRR, abs/1706.01205, 2017.

[91] Akrati Saxena, Ralucca Gera, and S. R. S. Iyengar. Fast Estimation of Close-
ness Centrality Ranking. In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017, pages
80–85, Sydney Australia, July 2017. ACM. ISBN 978-1-4503-4993-2. doi:
10.1145/3110025.3110064.

[92] Stephen B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269–287, September 1983. ISSN 03788733. doi: 10.1016/0378-8733(83)
90028-X.

[93] Puneet Sharma, Udayan Khurana, Ben Shneiderman, Max Scharrenbroich, and John
Locke. Speeding Up Network Layout and Centrality Measures for Social Comput-
ing Goals. In John Salerno, Shanchieh Jay Yang, Dana Nau, and Sun-Ki Chai,
editors, Social Computing, Behavioral-Cultural Modeling and Prediction, volume
6589, pages 244–251. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN
978-3-642-19655-3 978-3-642-19656-0. doi: 10.1007/978-3-642-19656-0_35.

[94] Zhiao Shi and Bing Zhang. Fast network centrality analysis using GPUs. BMC
Bioinformatics, 12(1):149, December 2011. ISSN 1471-2105. doi: 10.1186/
1471-2105-12-149.

[95] Rishi Ranjan Singh. Centrality measures: A tool to identify key actors in social
networks. CoRR, abs/2011.01627, 2020.

80

Bibliography

[96] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A
tool suite for large-scale complex network analysis. Network Science, 4(4):508–530,
December 2016. ISSN 2050-1242, 2050-1250. doi: 10.1017/nws.2016.20.

[97] Paolo Suppa and Eugenio Zimeo. A Clustered Approach for Fast Computation of
Betweenness Centrality in Social Networks. In 2015 IEEE International Congress
on Big Data, pages 47–54, New York City, NY, USA, June 2015. IEEE. ISBN
978-1-4673-7278-7. doi: 10.1109/BigDataCongress.2015.17.

[98] S. Trajanovski, J. Martin-Hernandez, W. Winterbach, and P. Van Mieghem. Robust-
ness envelopes of networks. Journal of Complex Networks, 1(1):44–62, June 2013.
ISSN 2051-1310, 2051-1329. doi: 10.1093/comnet/cnt004.

[99] Alexander Van Der Grinten and Henning Meyerhenke. Scaling Betweenness Ap-
proximation to Billions of Edges by MPI-based Adaptive Sampling. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 527–
535, New Orleans, LA, USA, May 2020. IEEE. ISBN 978-1-72816-876-0. doi:
10.1109/IPDPS47924.2020.00061.

[100] Alexander van der Grinten, Eugenio Angriman, and Henning Meyerhenke. Parallel
adaptive sampling with almost no synchronization. In Ramin Yahyapour, editor,
Euro-Par 2019: Parallel Processing - 25th International Conference on Parallel
and Distributed Computing, Göttingen, Germany, August 26-30, 2019, Proceedings,
volume 11725 of Lecture Notes in Computer Science, pages 434–447. Springer,
2019. doi: 10.1007/978-3-030-29400-7_31.

[101] Alexander Van Der Grinten, Eugenio Angriman, and Henning Meyerhenke. Scal-
ing up network centrality computations – A brief overview. it - Information
Technology, 62(3-4):189–204, May 2020. ISSN 2196-7032, 1611-2776. doi:
10.1515/itit-2019-0032.

[102] James H. Wilkinson. The Algebraic Eigenvalue Problem. Monographs on Numerical
Analysis. Clarendon Press, Oxford, reprinted from corr. sheets of the 1. ed edition,
1978. ISBN 978-0-19-853403-7.

[103] Stefan Wuchty and Peter F. Stadler. Centers of complex networks. Journal of
Theoretical Biology, 223(1):45–53, July 2003. ISSN 00225193. doi: 10.1016/
S0022-5193(03)00071-7.

[104] Erjia Yan and Ying Ding. Applying centrality measures to impact analysis: A coau-
thorship network analysis. Journal of the American Society for Information Science
and Technology, 60(10):2107–2118, October 2009. ISSN 15322882, 15322890. doi:
10.1002/asi.21128.

81

Bibliography

82

Acronyms

Acronyms

ABRA Approximating Betweenness with Rademacher Averages

APSP all-pairs shortest path

BFS breadth-first search

CPU central processing unit

GNN graph neural network

GPU graphics processing unit

KADABRA ADaptive Algorithm for Betweenness via Random Approximation

KONECT Koblenz Network Collection

MPI Message Passing Interface

MWSF maximum-weight spanning forest

MWST maximum-weight spanning tree

SNAP Stanford Network Analysis Platform

SSSP single-source shortest path

83

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	Graph Preliminaries
	Centrality Measures
	Degree Centrality
	Closeness Centrality
	bold0mu mumu kksubsectionkkkk-core Centrality
	Betweenness Centrality
	Eigenvector Centrality
	Katz Centrality

	Related Work
	Degree Centrality
	Closeness Centrality
	bold0mu mumu kksectionkkkk-core Centrality
	Betweenness Centrality
	Eigenvector Centrality
	Katz Centrality

	Edge Sparsification
	Overview
	BFS Variants
	BFS-Set
	BFS-Single
	BFS-Percentage

	Construction of the Reduced Graph
	MWST and Sorted Edges
	Iterative Computation of the Reduced Graph

	Complexity Analysis

	Experimental Evaluation
	Hardware and Implementation
	Methodology
	Graph Instances
	Parameter Tuning Experiments
	Ranking of Vertices
	Identification of Most Central Vertices

	Comparison Against Unreduced Graphs

	Conclusion
	Discussion
	Future Work

	Further Results
	Abstract (German)
	Bibliography
	Acronyms

