
Engineering Weighted Connectivity
Augmentation Algorithms

Thomas Möller

December 19, 2023

3719463

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Referee:
Prof. Dr. Felix Joos
Ernestine Großmann

Dr. Marcelo Fonseca Faraj

ii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisor Prof.
Christian Schulz for assisting and guiding me throughout this thesis with weekly feedback
and also arousing my excitement for graph algorithms and algorithm engineering during
my whole studies in the first place. Without him this work would not have been possible.
I would also like to give a huge thanks to Dr. Marcelo Fonseca Faraj and Ernestine Groß-
mann for their unwavering support and for always providing feedback and great ideas for
any problem, as well as my co-supervisor Prof. Felix Joos for supporting me throughout
this thesis. Last but not least, I would like to thank my family and friends who supported
and encouraged me throughout my master’s degree.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, December 19, 2023

Thomas Möller

iii

iv

Abstract

Increasing the connectivity of a graph is a fundamental problem in robust network design.
The weighted connectivity augmentation problem (WCAP) is a common version of the
problem that takes costs into account. A solution to the problem is a minimum cost subset
of a given set of weighted links that increases the connectivity of a graph by one when
added to the edge set. In this work, a first implementation of better-than-2 approximations
only discovered recently is given. Furthermore, an optimal ILP and three new heuristic
approaches are proposed. These include a greedy algorithm considering edge weights and
the number of unique cuts covered, an approach based on minimum spanning trees and a
local search algorithm that may improve a given solution by swapping links of paths. An
experimental evaluation shows that the minimum spanning tree based algorithm is fastest
and yields the best solutions, while the local search algorithm is still able to find small
improvements on these solutions.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 Graph and Partition . 5
2.2 Minimum Cut . 5
2.3 Cactus Graphs . 6
2.4 Weighted Connectivity Augmentation Problem 7
2.5 Approximation Algorithms . 8

3 Related Work 9
3.1 Minimum Cuts . 9
3.2 Connectivity Augmentation . 10

3.2.1 Approximations . 10
3.2.2 Randomized Algorithms . 11
3.2.3 Experimentally Evaluated Algorithms 11

3.3 (Integer) Linear Programming . 12

4 Approximation Algorithms 15
4.1 LP-based 2-Approximation . 15
4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation 16
4.3 Local Search (1.5 + ϵ)-Approximation . 24

5 Engineering Weighted Connectivity Augmentation Algorithms 27
5.1 Data Structures . 27
5.2 Integer Linear Program . 31
5.3 Heuristic Algorithms . 32

5.3.1 Greedy Heuristics . 32

vii

Contents

5.3.2 Minimum Spanning Tree . 34
5.3.3 Local Search . 36

5.4 Cactus Graph Generation . 39

6 Experimental Evaluation 41
6.1 Methodology . 41
6.2 Instances . 42
6.3 Objective . 42
6.4 Evaluation . 43

6.4.1 Integer Linear Program . 43
6.4.2 Approximations . 45
6.4.3 Heuristics . 46
6.4.4 Comparison against State-of-the-Art 55

7 Discussion 59
7.1 Conclusion . 59
7.2 Future Work . 59

Bibliography 63

Test Instances 69

viii

CHAPTER 1
Introduction

1.1 Motivation

Many real-world coherences can be modeled as graphs, including technological, social,
and biological networks. A common problem of interest is the robustness of such a graph.
Particularly in technological networks this is important for creating systems that are robust
and fail-safe [17]. An example is a power grid where single lines can fail, either ran-
domly due to age, or by targeted attacks. If a line fails, alternative routes are used which
is increasing the load on them and therefore the chance of failure. To obtain a fail-safe
network that can survive both, random failures and targeted failures of important lines, the
graph needs to be well-connected. Increasing the connectivity and therefore improving
the robustness at minimum cost is known as connectivity augmentation or the survivable
network problem. Another technological example is a computer network like the inter-
net which should be designed in a fail-safe way while reliable transportation networks can
avoid traffic congestion.

However, it is well-known that the weighted connectivity augmentation problem is NP-
hard. Eswaran and Tarjan have shown that the decision problem, whether there is an
augmentation of at most a given weight, is NP-complete [13]. Frederickson and Ja’Ja’
showed that this is also true for the simpler special case where the graph is a tree, with
weights being only 1 or 2 [16]. This justifies the importance of good heuristic algorithms.
Furthermore, the weighted connectivity augmentation problem is APX-hard, which was
also shown for the weighted tree augmentation problem by Kortsarz, Krauthgamer and
Lee [27]. Despite the fact that there is no polynomial time approximation algorithm with
an approximation factor arbitrarily close to 1, there has been much progress in improving
the approximation ratio.

Recently, the connectivity augmentation problem has been discussed fre-
quently in the context of approximation algorithms with approximation factors be-
low 2 [5], [33], [39], [40]. This includes work on special cases like the tree augmentation

1

1 Introduction

problem [39], as well as the general case [5], [40]. As of now, these algorithms are purely
theoretical and there is no implementation or experimental results.

To the best of our knowledge, the only experimentally evaluated algorithms are by
Watanabe et al. [46], [45], [44]. However, their work was done decades ago and algorithmic
and technological progress may make better algorithms possible. Therefore, engineering
weighted connectivity augmentation algorithms is a promising field for further research.

1.2 Contributions

The contribution of this thesis consists of three parts, namely giving the first implementa-
tion of two recent connectivity augmentation approximation algorithms with approxima-
tion factor below 2 from the literature, the proposal of new heuristic algorithms and the
experimental evaluation of both.

The currently best known approximation algorithm is a (1.5+ϵ)-approximation by Traub
and Zenklusen [40]. The paper describes a greedy (1 + ln 2 + ϵ)-approximation and a lo-
cal search based (1.5 + ϵ)-approximation that use the same dynamic program as core part.
For both approximations, the first implementation is given in this thesis. Furthermore, the
computational complexity of O(n4α+7/ϵ) using this implementation is given. An experi-
mental comparison with an optimal ILP verifies the approximation ratios, but also shows
the impact of the large exponent in the complexity. Although giving the best theoretical
guarantees, the algorithms are irrelevant in praxis due to its computational complexity.

Next, three heuristic algorithms are proposed. The first algorithm is a simple greedy
heuristic considering the cost of links and the number of cuts that a link crosses. A data
structure that allows an efficient computation is provided. The next algorithm uses min-
imum spanning trees to find a feasible solution and greedily improves this solution by
removing links. Last, a local search algorithm is presented that can improve a given so-
lution by replacing link sets with cheaper ones. To find such sets, alternating paths with
edges that are and are not in the solution are considered.

The approximation algorithms as well as the heuristic algorithms are experimentally
evaluated using real-world graphs and generated graphs with randomly generated link
weights. The ratios of the approximation algorithms are verified on generated instances
and the limits of the exact ILP are evaluated. The heuristic algorithms are compared to
each other in terms of solution quality and running time. The minimum spanning tree
based algorithm is best with respect to both, quality and running time. Furthermore, differ-
ent link weight distributions and link set sizes are tested. The best parameters for the local
search algorithm are experimentally verified.

2

1.3 Structure

1.3 Structure

The remainder of this thesis is structured into six chapters. Chapter 2 states the funda-
mentals used in this thesis. Chapter 3 gives an overview of related work on the weighted
connectivity augmentation problem itself as well as related problems. The approximation
algorithms from the literature are described in Chapter 4 along with some implementation
details. Our own algorithms contributed in this thesis are presented in Chapter 5. All the
approximation algorithms in Chapter 4 and the algorithms described in Chapter 5 are ex-
perimentally evaluated in Chapter 6. Chapter 7 concludes this work by discussing results
and possible future work.

3

1 Introduction

4

CHAPTER 2
Fundamentals

This chapter introduces the preliminaries necessary for the weighted connectivity augmen-
tation problem. Furthermore, the related minimum cut problem and the cactus graph rep-
resentation of minimum cuts are described.

2.1 Graph and Partition

A graph G = (V,E) is a structure that consists of a set of vertices V and a set of edges
E ⊆ V × V connecting pairs of vertices. The number of vertices is denoted as n and the
number of edges as m. For a vertex set W ⊆ V the graph G[W] = (W, {(u, v) ∈ E |
u, v ∈ W}) is called the induced subgraph. A graph G is connected if there is a path
between any two vertices. The edge connectivity of a graph is the number of edge disjoint
paths that exist between any pair of vertices. A graph is k-connected, if k − 1 arbitrary
edges can be removed without disconnecting the graph. A vertex a ∈ V of a connected
graph G is an articulation point if the graph G′ = (V \{a}, E) is disconnected. A partition
of a graph is a partition of the vertex set into mutually disjoint non-empty sets. A cut of a
graph is a partition of the vertex set into two disjoint subsets, also called a bipartition. For a
more concise notation, any cut can be represented as one of its two constituent vertex sets,
i.e. the complementary vertex set is implied. Every non-empty proper subset of V is a cut.
The size or weight of a cut is the number of edges or the sum of the edge weights that have
one endpoint in each subset.

2.2 Minimum Cut

A cut of a graph G is a minimum cut if there is no cut with smaller size or weight. The set
of all minimum cuts is denoted as CG and cut : CG × V 2 → {0, 1} is a function that is 1
if and only if the endpoints u and v of an edge e = (u, v) ∈ V 2 lie in different sets of the

5

2 Fundamentals

partition of a cut c ∈ CG. To prevent different representations of the same cut using the
notation where a cut is given as one set of the partition, only the representation that does
not include an arbitrarily chosen root r ∈ V (G) is used.

2.3 Cactus Graphs

Below the cactus graph is defined and some of its properties as well as the representation
of minimum cuts are discussed.

Definition 1 (Cactus Graph). A cactus graph is a connected graph C = (V,E), such that
any two cycles have at most one vertex in common.

Such a cactus graph consists of cycles that touch in at most one vertex and eventually
vertices that do not lie in a cycle (but are connected by edges). To distinguish between
edges that lie within a cycle and those that do not, they are called cycle edges and tree
edges, respectively. Tree edges can also be seen as a cycle between two vertices, sometimes
also defined as two parallel edges. Using this definition, a cactus graph can equivalently
be defined as a connected graph where each edge lies in exactly one cycle. Vertices that
belong to multiple cycles are articulation points of the cactus graph because removing the
vertex disconnects the cycles it is contained in. Visually, a cactus graph is a tree of cycles
where each cycle is a vertex and there is an edge between two vertices if the corresponding
cycles share a vertex in the cactus. Figure 2.1 gives an example for a cactus graph.

Dinitz et al. [10] have shown that all minimum cuts of a connected graph G can be
represented as a cactus graph C = C(G).

Definition 2 (Cactus Graph Representation of Minimum Cuts). The cactus graph rep-
resentation of the set of minimum cuts CG of a graph G = (V,E) is a cactus graph
C = C(G) = (V ′, E ′) with a function Π : V → V ′ and its inverse Π−1 : V ′ → 2V

defined as v 7→ {u ∈ V : Π(v) = u}, such that the following conditions are fulfilled:

∀c ∈ CC :
⋃
v∈c

Π−1(v) ∈ CG (2.1)

∀cG ∈ CG : ∃cC ∈ CC : Π(v) ∈ cC∀v ∈ cG (2.2)

Figure 2.1: Example of a larger cactus graph

6

2.4 Weighted Connectivity Augmentation Problem

2

1

1
1

Figure 2.2: A graph and its weighted cactus graph with corresponding minimum cuts drawn as
dashed lines of same color. Vertex colors encode the function Π.

The function Π ensures that each vertex of the original graph G is contained in exactly
one vertex of the cactus graph C. (2.1) means that each minimum cut in C corresponds
to a minimum cut in G while (2.2) ensures that each cut in G corresponds to at least one
cut in C. This requires the cactus graph to have weighted edges; the weight of a tree
edge corresponds to the minimum cut and the weight of a cycle edge corresponds to one
half of the minimum cut, because a cut through a cycle cuts two edges. A graph with a
corresponding cactus graph is illustrated in Figure 2.2. To transfer a cut from the cactus
graph to the original graph (in set notation), one needs to transfer the partition with respect
to Π−1, i.e. a cut c ⊂ VC becomes

⋃
v∈cΠ

−1(v). Note that there can be a vertex v such
that Π−1(v) = ∅ and that a minimum cut in G can correspond to multiple cuts in C if there
are cactus vertices that do not contain vertices of G [32]. For instance, this is the case for
a complete graph K, where each minimum cut separates an arbitrary single vertex. All
minimum cuts can be represented as a star with center vertex v and Π(v) = ∅, and a vertex
connected to the center for each vertex in K. The definition does not give a bound on the
size of the cactus graph, but Dinitz et al. [10] showed that there is always a cactus graph
representation with O(n) vertices with n being the number of vertices of G.

2.4 Weighted Connectivity Augmentation Problem

This section introduces the weighted connectivity augmentation problem (WCAP) and de-
limits it from variations not covered in this thesis.

Definition 3 ((Weighted Connectivity) Augmentation). Let G = (V,E) be a k-connected
graph, L ⊆ V × V a set of links and c : L → R≥0 a cost function on the link set. A
weighted connectivity augmentation is a set S ⊆ L that minimizes (2.3) subject to (2.4).

min
S⊆L

∑
l∈S

c(l) (2.3)

s.t. (V,E ∪ S) is (k + 1)-edge-connected (2.4)

The goal of the weighted connectivity augmentation problem is to increase the edge
connectivity of a graph. Given is a graph G = (V,E) with edge connectivity k and a set
L ⊆ V 2 of links with non-negative cost that can be added to the graph. The task is to find
the cheapest subset S ⊆ L that will increase the edge connectivity to k + 1.

7

2 Fundamentals

A link l ∈ L covers a minimum cut c ∈ CG if cut(c, l) = 1, i.e. the size of the cut c in the
graph G′ = (V,E ∪ {l}) is larger than in G. The graph GL = (V, L) that contains all the
links (but not the edges of G) is called the link graph. The set of all sets S sufficing (2.4)
is denoted as SG,L. For the ease of notation the cost function is extended to sets, where it
is the sum of the cost of all elements, i.e. c : 2L → R≥0 is defined as S 7→

∑
v∈S c(v).

If the graph is disconnected, the weighted connectivity augmentation problem coincides
with the minimum spanning tree problem (MST) among its components. In this thesis
only connected graphs are considered, as the other case is simple to solve via well-known
efficient MST algorithms.

There are many variations of the weighted connectivity augmentation problem, that
are not covered in this thesis. These include modifications from the following non-
exhaustive list.

• The graph G can have edge weights, such that not only the connectivity, but a
weighted minimum cut is increased.

• Parallel links are allowed, i.e. links parallel to already existing edges can be added.

• There is a required connectivity demand between any pair of vertices instead of
a global minimal connectivity. This is also known as the survivable network de-
sign problem.

• The link set is always complete, allowing further assumptions.

2.5 Approximation Algorithms

An approximation algorithm is an algorithm with polynomial running time that guaran-
tees a solution close to the optimal solution. It is commonly used to obtain approximate
solutions of NP-hard problems. A ρ-approximation is an approximation algorithm with
approximation factor ρ guaranteeing that the solution deviates at most by the factor ρ from
the optimal solution.

Let f be an objective function, I be an arbitrary input, x(I) the solution of the approxi-
mation and x∗(I) the optimum solution. A minimization algorithm has the approximation
factor ρ if the following holds:

f(x(I))

f(x∗(I))
≤ ρ ∀I

For the weighted connectivity augmentation problem, an algorithm A is a ρ-approximation
if the weight of the augmentation c(A(I)) is at most ρ · c(x∗(I)) for all instances I .

8

CHAPTER 3
Related Work

This chapter presents prior work done on the weighted connectivity augmentation problem,
as well as closely related problems. First, the state of the art for computing all minimum
cuts of a graph in the cactus graph representation is presented, followed by research and
implementations in the field of connectivity augmentation problems and the current state
of (integer) linear program solvers.

3.1 Minimum Cuts

Computing all minimum cuts is usually a fundamental step in connectivity augmentation.
Near-minimum cuts can be computed in linear time based on cluster contractions [21].
Nagamochi, Nakao and Ibaraki presented an efficient algorithm to compute all minimum
cuts in the cactus graph representation [32]. They observed that all minimum cuts between
two vertices s and t can be computed by running a maximum s-t-flow algorithm, and edges
that are cut by no minimum cut can be contracted. In each iteration of the algorithm a max-
imum s-t-flow is computed for an edge e = (s, t), and either e is contracted, or the graph
is bi-partitioned such that the cactus graph can be computed in both parts independently. A
detailed description can be found in [32].

The current state of the art algorithm is VieCut by Henzinger, Noe, Schulz and
Strash [22], [23]. It uses linear time edge contraction based reduction rules and an op-
timized version of the algorithm by Nagamochi, Nakao and Ibaraki. An edge can be con-
tracted if the connectivity of its endpoints is larger than the minimum cut. Such edges could
be found by computing k edge-disjoint spanning trees where k is the size of the minimum
cut [22], [31]. Furthermore, reduction rules by Padberg and Rinaldi [35] were adapted
from the problem of finding one minimum cut to the problem of finding all minimum cuts.
Lastly, edges that form a trivial minimum cut are contracted and remembered. These cuts
are reintroduced at the end of the algorithm. The reduction rules are used exhaustively as

9

3 Related Work

long as a significant number of edges is contracted. The remaining kernel is solved based
on the algorithm by Nagamochi, Nakao and Ibaraki [32].

3.2 Connectivity Augmentation

This section gives related research for the weighted connectivity augmentation problem,
including approximation algorithms, randomized algorithms and experimentally evaluated
heuristic algorithms.

3.2.1 Approximations
There have been several approximation algorithms for the weighted connectivity augmen-
tation problem in the past. An early approach is using minimum cost arborescences, which
was introduced by Frederickson and Ja’Ja’ for bridge connectivity augmentation, the case
where the graph is 1-connected but not 2-connected [16] The algorithm was generalized
for the weighted connectivity augmentation problem by Watanabe et al. [44]. The idea is
to compute a minimum cost arborescence in a graph that contains links as well as directed
versions of edges of the original graph. The intuition is that for an augmentation a path
needs to be added between vertices u and v that are not (k + 1)-connected. However, this
path must not entirely consist of new links, but can also use backward edges of the original
graph rooted at an arbitrary vertex. This is shown in Figure 3.1, where edges of the original
graph are drawn as solid edges and new links are drawn as dashed edges. After adding
the dashed links to the graph, there is a path from u to v and vice versa using links and
backward edges, and the edge connectivity is increased from one to two. The bridge con-
nectivity algorithm results in a 2-approximation while the generalization cannot guarantee
an approximation factor.

There are, however, well-known 2-approximations for WCAP. One possibility, which
was discovered in 1992, reduces the problem to a directed version by replacing each undi-
rected edge of the graph with two directed edges in opposite direction [26]. The directed
version can be solved in polynomial time based on minimum-cost flows [15] or by using a
linear program which has integral solutions for the cactus augmentation problem [6]. An-
other approach involves the LP relaxation of an ILP formulation combined with iterative
rounding techniques [25].

Only recently, progress beyond an approximation factor of 2 has been made with var-
ious approximation algorithms regarding special cases of the connectivity augmentation

u v

Figure 3.1: Directed augmenting path

10

3.2 Connectivity Augmentation

problem, as well as the general case. For the unweighted version of the connectivity aug-
mentation problem the first approximation with factor below 2 was found in 2020 by Byrka,
Grandoni and Ameli [5], [33]. The unweighted connectivity augmentation problem is re-
duced to the steiner tree problem, for which a specialized approximation gives an approxi-
mation factor of 1.91.

For the tree augmentation problem, the special case where the cactus graph is a tree,
and the unweighted connectivity augmentation problem an approximation factor of 1.393
was found in 2021 [6]. For the weighted tree augmentation problem, a (1 + ln 2 + ϵ)-
approximation was discovered [39], which builds upon the 2-approximation which reduces
the problem to a directed one, and greedily improves this solution. The algorithm was
transferred to the weighted connectivity augmentation problem and refined to a (1.5 + ϵ)-
approximation [40], which improves an arbitrary solution through local search. How-
ever, no implementations or experimental results of those algorithms exist so far. For the
weighted connectivity augmentation problem an implementation for both, the (1+ln 2+ϵ)-
approximation and the (1.5+ϵ)-approximation, is given in this thesis. Therefore, a detailed
description follows in Chapter 4.

3.2.2 Randomized Algorithms

There has been recent work on randomized Monte Carlo algorithms for the weighted con-
nectivity augmentation problem that give a solution with high probability on graphs with
integer edge weights. Algorithms based on maximum flow computations achieve a running
time of Õ(m +

√
n3) where Õ(f) = O(f · polylog(f)) abstracts logarithmic factors [7].

They were able to solve the connectivity augmentation problem by running a logarithmic
number of maximum flow computations. The state of the art is an Õ(m) time algorithm
that gives a near-linear running time by Cen, Li and Panigrahi [8]. This shows that the
connectivity augmentation problem is simpler than the maximum flow problem as there is
no known Õ(m) time maximum flow algorithm.

3.2.3 Experimentally Evaluated Algorithms

Many theoretical algorithms lack an implementation and practical results. In praxis there
can be a large gap between theoretical algorithms and efficient implementations. It is there-
fore important to transfer algorithms to actual hardware and do experiments with real data.
This is particularly true for fixed-parameter algorithms, where Abu-Khzam, Lamm, Mnich,
Noe, Schulz and Strash [1] described possible techniques. There have been fast, practically
applicable heuristic algorithms for WCAP in the past, however, there has not been much
progress recently. Watanabe, Mashima and Taoka [30], [44], [45], [46] proposed five differ-
ent approaches, called FSA, MW, FSM, SMC and HBD, including experimental evaluation.
An observation used for all algorithms is that there is a subset of all vertices of the cactus
graph called leafs that must be an endpoint in any augmentation. A vertex of a cactus is a

11

3 Related Work

leaf if it has degree 1 or if it is part of a cycle and has degree 2. Vertices that are not a leaf
of the cactus do not necessarily have to be an endpoint in an augmentation.

The algorithm FSA uses minimum cost arborescences based on the ideas of Frederickson
and Ja’Ja’ mentioned in the previous section [16]. MW is a stronger algorithm also based
on arborescences that guarantees a 2-approximation. FSM is based on maximum cost
matchings. In the cactus graph, a link must be added to every leaf vertex v, otherwise there
is still a minimum cut, namely {v}. To find a solution with as few links as possible while
still minimizing their weight, a maximum weight matching algorithm along with a special
cost function is used. The third approach, SMC, is a greedy strategy adding the cheapest
incident link for each vertex of the cactus graph. HBD combines FSM and SMC and tries
to use the best of both concepts.

Experimental results on random graphs with up to 1400 vertices showed that the solu-
tion quality of FSM is the best, followed by HBD, SMC, FSA and lastly MW [30], [44].
Regarding running time, SMC is the fastest algorithm, followed by FSA, HBD, FSM and
lastly MW. HBD is considered the best general algorithm, because it prevents arbitrary bad
solutions that may be produced by FSM or SMC. MW is the only algorithm with a guaran-
teed approximation factor, however, in practice it is slower and the solution quality of the
other algorithms is better [30].

To the best of our knowledge, no other experimentally evaluated algorithms are men-
tioned in the literature. Furthermore, there is a variety of random graph models that have
different features present in real-world graphs. Penschuck et al. [36] present aspects of
generating different graph models at a large scale in a survey. There are no experimental
results using such generated instances.

3.3 (Integer) Linear Programming

Linear programs (LPs) are part of the basic algorithm toolbox and have been heavily studied
in the last decades. For a long time the algorithm by Vaidya [42] based on the interior
point method was the fastest linear program solver for dense matrices achieving a bound of
O(n2.5 log(n/δ)) where δ is a numerical accuracy. This bound comes from

√
n iterations

of the multiplication of an approximate matrix with a vector, which has Ω(n2) complexity
for dense vectors. Recently, Chen et al. [9] have proposed a randomized algorithm with
complexity Õ(nω log(n/δ)) = O(nω log(n/δ) polylog(n)) where ω is the exponent for
matrix multiplication, currently ω ≈ 2.37. This was achieved by sparsifying the vector
through random sampling. Brand [43] gave a deterministic version of the algorithm also
achieving a complexity of Õ(nω log(n/δ)), in particular O(nω log2(n) log(n/δ)). The key
difference is that not only the approximate matrix is maintained, but also the product with
the sparse vector.

Integer linear programs (ILPs) are NP-complete in general, which includes mixed integer
linear programs with integer and continuous variables and binary (integer) linear programs,
where variables can have the value 0 or 1. A general approach to solving those problems

12

3.3 (Integer) Linear Programming

is using the branch and bound paradigm examining possible solutions in exponential time
and was first introduced by Land and Doig [28]. The running time of the branch and bound
algorithm could be improved by finding a good heuristic solution in the beginning such
that more branches can be cut off. A further improvement is a presolve step, which applies
reductions eventually fixing variables if their value in an optimal solution can be known,
removing redundant constraints or tightening the bounds of variables or constraints [2].
This step aims at improving the model definition before the ILP solver starts solving the
problem. There are reductions considering individual constraints / variables, a set of con-
straints / variables or the whole problem. Most recent progress has been made using the
concept of cutting planes. Cutting planes were introduced by Gomory in 1958 [19]. First,
the LP relaxation is solved by dropping the integrality constraints. Then, infeasible solu-
tions including fractional values are excluded by adding additional constraints. However,
the method is not guaranteed to find an optimal solution and there are many possibilities
how these constraints are selected. Selections have influence on solution quality and the
number of cuts necessary. Heuristics can be used to determine good cuts. A recent ap-
proach uses deep reinforcement learning to select cuts [38]. They came to the conclusion
that reinforcement learning can do better decisions than heuristics in a similar running
time.

13

3 Related Work

14

CHAPTER 4
Approximation Algorithms

This section describes two approximation algorithms with approximation factors (1+ln 2+
ϵ) and (1.5 + ϵ) by Traub and Zenklusen [40] for which a first implementation is given in
this thesis. As a prerequisite a 2-approximation is also given [6]. Some technical details as
well as correctness proofs are left out and can be looked up in [40].

4.1 LP-based 2-Approximation

As mentioned in Section 3.2.1, one way to achieve a 2-approximation is to reduce the
problem into a directed one, solve this easier problem and transfer the solution back to
the original problem. For the reduction each undirected link l = (u, v) is replaced by two
directed links l1 = (u, v) and l2 = (v, u), resulting in a set L⃗ with |L⃗| = 2 · |L|. A directed
solution is transferred to the undirected problem by replacing each link in the directed
solution with the undirected one while removing duplicates. To solve the reduced problem,
the linear program based algorithm is implemented. This approach was first proposed by
Jain [25], and Cecchetto, Traub and Zenklusen provided a definition where the solution is
integral for any cactus augmentation instance [6].

To define the connectivity augmentation problem in a directed setting, let CG be the set
of cuts using the set representation not including a fixed root r ∈ V (G). A cut C ∈ CG is
only increased by a link l⃗ = (u, v) if v ∈ C and u /∈ C, i.e. the link l⃗ is entering the cut C.
The function c⃗ut : CG × L⃗→ {0, 1} is 1 if and only if v ∈ C and u /∈ C. This is a weaker
formulation as every incoming and outgoing link increases a cut in the undirected problem.
Equation (4.1) and (4.2) give the LP using this definition. The constraints in (4.2) ensure
that each cut is covered by a link in the augmentation.

15

4 Approximation Algorithms

min
x

∑
l∈L⃗

xlc(l) (4.1)

s.t.
∑
l∈L⃗

c⃗ut(c, l)xl ≥ 1 ∀c ∈ CG

x ∈ [0, 1]|L⃗|
(4.2)

Complexity

The number of variables of the linear program is equal to the number of directed links,
which is twice the number of undirected links. This can be O(n2) in case of a near-
complete graph. The number of constraints corresponds to the number of minimum
cuts, which is bounded by O(n2) in the case where the graph is a ring. Using Brand’s
O(N2.37 log2N logN/δ) algorithm [43] where N is the number of variables, this results in
a complexity of O(n4.74 log2 n log n/δ).

The space complexity follows from the constraint set. O(n2) constraints may use up to
O(n2) variables, which results in a matrix with O(n4) entries. However, links may not
cover many cuts, which results in a sparse matrix.

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

Traub and Zenklusen [40] presented a greedy approach to obtain a better undirected so-
lution from a directed solution than a 2-approximation as described in Section 4.1. This
section briefly describes the algorithm. More details including correctness proofs can be
found in [40]. This section first gives an outline of the algorithm and then describes the
single steps in more detail.

Algorithm Outline

On a high level, the algorithm first does an exact reduction of the cactus graph of the
problem to a ring graph. It starts with a directed solution of this ring graph that has at most
two times the optimum weight.

In this solution, directed links are replaced by shorter versions called shadows that have
the same weight as the original links and together still form an augmentation (this means
a solution to the original problem can be found by selecting the original links of the same
weight later). Such a shortened solution forms an arborescence whose structure is useful.

Next, sets of directed links are greedily replaced by sets of undirected links called com-
ponents, resulting in mixed solutions that contain directed as well as undirected links and

16

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

still depict an augmentation. If all directed links are replaced by undirected ones, the so-
lution is a solution to the original problem. The greedy objective is the ratio of the cost of
the added undirected links and the cost of the directed links that are not needed anymore.

That is, however, difficult to compute. This is why only link sets that can be constructed
iteratively by a dynamic program are considered. Furthermore, it is easier to check if a
given ratio is better or worse than the optimum. The algorithm uses binary search with
respect to the ratio to determine the optimum along with a set of links that achieves this
ratio. For each bisection a dynamic program is run.

The individual steps of the algorithm including some implementation details are de-
scribed in more detail in the next subsections.

Reduction to a Ring Graph

Gálvez, Grandoni, Ameli and Sornat first gave an approximation preserving reduction from
a cactus graph to a ring graph [18]. An easy algorithm using Eulerian walks is given in [40].
As a cactus consists of cycles that are connected in at most one vertex, an Eulerian walk
can easily be found. Going along this Eulerian walk, every time a vertex is visited multiple
times, a new vertex is introduced along with a link of weight 0 to the original vertex. All
vertices with the edges of the Eulerian walk result in a ring graph. An example is shown
in Figure 4.1 where corresponding vertices have the same color and links of weight 0 that
were introduced are drawn as dashed lines.

Adding a link of weight zero when visiting a vertex twice can be seen as the inverse of
an edge contraction as described in [18]. Contracting all links that were added would result
in the original cactus graph. Therefore, a solution of the ring graph can be transferred to a
solution of the cactus graph by removing links of weight 0.

To efficiently store a ring graph, vertices are relabeled in the order they appear in the
ring. This has the following advantages:

• Edges can be stored implicitly, i.e. there is an edge between two vertices u and v if
|u− v| = 1 or if {u, v} = {0, n− 1}.

Figure 4.1: Reduction from a cactus graph to a ring graph

17

4 Approximation Algorithms

• It gives the ring an implicit root at vertex 0 and a direction which will be needed
later. There is also no need for a BFS or DFS in the ring graph, as a path between
two vertices is just the sequence of vertices between their IDs.

• Cuts can be represented as an interval on the ring, making it only necessary to store
the first and last vertex while still being able to check in constant time on which side
of the cut a given vertex is. In this section, a cut C is defined as the set of vertices in
its interval.

Shortened Directed Solutions

A directed solution of a ring graph G with weight at most two times the optimum of the
undirected problem can for instance be found using the linear program described in Sec-
tion 4.1. The result is an arbitrary set of links in the ring. To obtain a more structured
solution, links are shortened with respect to a root r and a direction of the ring. The direc-
tion is given by an edge er = (r, w). In the data structure described above r is always 0 and
er is always (0, n−1). A shortening of a directed link (u, v) is another directed link (u′, v)
that has the same endpoint, and the source is a vertex on the unique uv-path in G\er. Such
a link is also called shadow. For an example see the orange link (u, v) in the top left graph
and its shortening (u′, v) in the top right graph in Figure 4.2. The length of the shadow is
v − u′, i.e. the distance of the vertices on the ring. Computing a shortening of the solution
is done by going over all directed links in an arbitrary order and replacing them with the
shortest shadow such that the solution is still an augmentation. If the shadow has length
0, it is dropped and not necessary. To find a shortening of a link, all candidates need to
be checked in increasing order by length to determine if the result is still an augmentation,
using the first valid one. The result is a spanning arborescence F⃗0, rooted at vertex 0 in the
data structure described in the previous subsection. Figure 4.2 gives an example of how a
directed solution is shortened.

Checking whether replacing a link l = (s, t) with a shorter shadow l′ = (s′, t) still results
in an augmentation can be done in a naive way by checking if all cuts are still entered by
at least one link. To keep the running time of checking a replacement linear in the number
of cuts and independent of the number of links, the number of links entering each cut is
stored. The replacement results in a valid augmentation if every cut that is crossed by l but
not l′ is covered by at least two links including l. If a link is replaced by a shadow, the
counts need to be updated, which is also linear in the number of cuts.

Finding Components with Optimum Ratio

The shortened directed solution F⃗0 is converted step by step into an undirected one by
replacing a subset of the remaining directed links F⃗i in step i with a set Ki of undirected
links. The ratio of the cost of Ki and the gain of replaced links is minimized. The formula

18

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

r

u

v

er
r

u′

u

v

er

r
er

r
er

Figure 4.2: A ring graph with directed solution (top left) and a shortening of the links (u, v), (v, u)
and the remaining links in three steps

is given in (4.3) where DropF⃗0
(Ki) is the set of directed links that are covered by links in

Ki with respect to the shortened solution F⃗0.

ρ =
c(Ki)

c(DropF⃗0
(Ki) ∩ F⃗i)

(4.3)

To ensure a polynomial running time of the algorithm, Ki is only picked from a component
class K that ensures Ki is α-thin as stated in Definition 4.

Definition 4 (α-thin). Let CG be the set of minimum cuts of a graph G and α ∈ Z>0. A
set K ⊆ L is α-thin if there exists an inclusion-wise maximal laminar family L ⊆ CG such
that at most alpha links cross C for all C ∈ L.

α-thinness ensures that only a constant number of links crosses relevant cuts. A fam-
ily of sets is laminar if every two sets are either disjoint or one is a subset of the other,
i.e. ∀C,D ∈ L : C ∩ D = ∅, C ⊆ D or C ⊇ D. Visually, because L is maximal, Defi-
nition 4 requires that all cuts

⋃
v∈V \{r}{v} can iteratively be combined to the cut V \ {r},

such that all intermediate cuts are crossed by at most α links. The maximal laminar family
L does not need to be known, but by construction during the dynamic program α-thinness
of sets K will be ensured later. α depends on the desired approximation ratio, namely

19

4 Approximation Algorithms

α = 4⌈2
ϵ
⌉. Note that the approximation ratio can only be improved if (1 + ln 2 + ϵ) < 2,

requiring ϵ < 1− ln 2 and therefore α ≥ 28.

The minimum ρ∗ = min

{
c(Ki)

c(Drop
F⃗0

(K)∩F⃗i)

}
is hard to compute directly, but it turns out

that for a fixed ρ′ it can be computed in polynomial time whether ρ′ > ρ∗ or ρ′ ≤ ρ∗. For
that, a slack function is introduced:

slackρ(K) := ρ · c(DropF⃗0
(K) ∩ F⃗i)− c(K) (4.4)

The slack function is maximized in (4.5) using a dynamic program described later in
this section.

η := max{slackρ(K) : K ∈ K} (4.5)

Note that ρ ∈ [0, 1] because the ratio cannot be negative and there is always a K with
ratio 1, i.e. replacing a directed link with its undirected version, which will become clear
in the next subsection. The slack function is constructed such that η is 0 if ρ = ρ∗, and
max{slackρ(K) : K ∈ K} > 0 ⇔ ρ > ρ∗. To compute ρ∗ along with a set K, binary
search with respect to ρ is applied where in each step a dynamic program is executed to
solve (4.5). If the interval is sufficiently small (for integral weights, the interval size is

1
c(F)2

, otherwise weights need to be scaled up), the link set K computed by the dynamic
program corresponds to a minimizer of (4.3).

Computing Droppable Links

To be able to compute η of (4.5), it is necessary to compute DropF⃗0
(K) for a link set K,

i.e. the set of links that are dropped by K. A link (u, v) covers entering the subtree at v in
the arborescence F⃗0. It can therefore be dropped if all sets including v and any subset of its
descendants are covered by K (and do not form a 2-cut). The set of descendants is always
an interval on the ring (colored in orange for the link l in Figure 4.3).

r

v

u

er

l

r

v

u K

er

a
b

c

H[K]

a

b

c

Figure 4.3: A shortened solution (left), a link set K (green in the middle) dropping link l in the
shortened solution and the link intersection graph H[K] (right)

20

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

To check if a link l is in the drop in a well-defined way, the link intersection graph of
K is introduced. Two links are called intersecting if they interleave on the ring or if they
share an endpoint. In Figure 4.3, a and b are intersecting and b and c are intersecting, but
not a and c. The link intersection graph H has the links L as vertex set and has an edge
between two vertices if they are intersecting. The link intersection graph of K ⊆ L is the
induced subgraph H[K].

A link l = (u, v) is droppable if and only if v is connected to an ancestor of itself in the
link intersection graph H[K], where connected means that a link incident to v is connected
to a link incident to an ancestor of v. In Figure 4.3 l is dropped by K because a is incident
to v, c is incident to an ancestor of v and a is connected to c in H[K].

Checking if a directed link (u, v) is dropped by a link set K is reduced to a BFS in the
link intersection graph H[K] of size |K| with multiple sources and multiple targets. The
sources are links incident to v and the targets are links having an ancestor of v as endpoint.

Maximizing Slack through a Dynamic Program.

The central part of the algorithm is a dynamic program to find good components that can
be added to the solution. The dynamic program optimizes (4.5), maximizing the slack
function (4.4).

Entries in the dynamic programming table are addressed by a pattern P = (C,B), where
C ∈ CG is a cut and B ⊆ L is a set of links crossing C. Each entry stores auxiliary data
including a set S called realizer for the pattern, corresponding to the link set K, and an
objective value π, corresponding to the value of the slack function for the set S. For the
set S only links that have at least one endpoint in C are considered, i.e. S ⊆ {(u, v) ∈ L :
{u, v} ∩ C ̸= ∅}. S consists of links crossing C and links that have both endpoints in C.
B is the subset of S that has exactly one endpoint in C, i.e. the subset of links crossing C.
For a shorter notation the subset of links of a set S that have exactly one endpoint in a set
C is denoted as δS(C). In case of a set S⃗ of directed links, the notation δ−

S⃗
(C) depicts the

subset of links entering the cut C.
The objective π keeps track of the cost and gain achieved regarding the cut C, consider-

ing only directed links that have their target endpoint in C. The function is defined in (4.6)
and for C = V \ {r} it is the same as the slack function (4.4).

π(S,C) := ρ ·

(
DropF⃗0

(S) ∩
⋃
v∈C

δ−
F⃗0
(v)

)
− c(S) (4.6)

The dynamic programming table has a 3-dimensional structure. The first dimension is
the size of the cut such that all entries with a specific cut size can easily be accessed, the
second dimension is the cut itself, and the third dimension is the set B. The first two
dimensions are arrays indexed by the cut size and the first vertex in the cut, respectively.
The third dimension is a hash map indexed by B.

21

4 Approximation Algorithms

The first row of the dynamic programming table contains all patterns where |C| = 1,
i.e. patterns where the cut is cutting off exactly one vertex. The pattern must be α-thin,
which means |B| ≤ α. Therefore, all possibilities of B can be enumerated for the first row,
resulting in a polynomial number of patterns. Note that S is equal to B because |C| = 1.

To fill the following rows 2 to (n−1) of the dynamic programming table, corresponding
to the size of C, previous patterns are combined. Each row still has polynomial size because
the number of cuts of size k is linear, and the exponent for the number of possibilities for
B is bounded by the constant α. A pattern can be reached through different combinations
with different realizers S, but only the one with the highest objective π is of interest. To be
able to combine two patterns (C1, B1) and (C2, B2), they must be compatible, as defined
in Definition 5.

Definition 5 (Compatible). Two patterns (C1, B1) and (C2, B2) are compatible if the fol-
lowing three conditions are fulfilled.

1. C1 and C2 are neighboring, meaning C1 ∩ C2 = ∅ and C1 ∪ C2 ∈ CG

2. δB1(C2) = δB2(C1), i.e. the subset of links between C1 and C2 must be in B1 and B2

3. |δB1∪B2(C1 ∪ C2)| ≤ α, ensuring α-thinness

Combining two patterns (C1, B1) and (C2, B2) with objectives π1, π2 and realizers S1,
S2 to a new pattern (C,B) with objective π and realizer S can, on a high level, be done in
the following steps:

1. C = C1 ∪ C2

2. B = δB1∪B2(C1∪C2), i.e. the union of B1 and B2 without links having both endpoints
in C1 ∪ C2

3. S = S1 ∪ S2

4. π = π1 + π2 + c(B1 ∩ B2) + ρ · c(R), where c(B1 ∩ B2) is the weight of links in
B that have one endpoint in C1 and one endpoint in C2 and R is a set of additionally
droppable links. Details on how R is computed can be found in [40].

By combining patterns and therefore cuts of size one to V \ {r}, the existence of a
maximal laminar family L and therefore α-thinness and K ∈ K is ensured. When all rows
of the dynamic program are computed, the maximizer of (4.6) can be found by picking a
dynamic programming table entry with maximum objective π.

Complexity

The (1+ln 2+ ϵ)-approximation has a polynomial running time, however, it is very expen-
sive. The most expensive part is the dynamic program for which the size of the dynamic

22

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

programming table is analyzed first. The first row of the table (cuts of size one) involves
enumerating all subsets of size at most α of links outgoing from a vertex v. There can be
at most n− 3 links, one to every other vertex except the neighboring ones. This leads to up
to (n− 3)min(α,n−3) table entries for each vertex except the root. The size of the first row is
therefore (n− 1) · n′min(α,n′) with n′ = n− 3. For subsequent rows B can be chosen from
a larger set of links crossing C. For row and cut size k there can be k · (n− k)− 2 crossing
links. The number of cuts of size k decreases with increasing k, because the root vertex is
never part of a cut and the first vertex of a cut must be in {1, . . . , n − k}. This leads to a
row size of (n − k) · n′min(α,n′) with n′ = k · (n − k) − 2. The total number of entries in
the dynamic programming table is:

n−1∑
k=1

(n− k) · n′min(α,n′) with n′ = k · (n− k)− 2

Assuming a non-tiny graph with n > α+ 2 and therefore α < k · (n− k)− 2 ∀k, this can
be simplified:

n−1∑
k=1

(n− k) · (k · (n− k)− 2)α <
n−1∑
k=1

n ·
(
n2

4

)α

< n2 · (n2)α = O(n2α+2) (4.7)

Recall that the algorithm gives a (1 + ln 2 + ϵ)-approximation and α = 4⌈2
ϵ
⌉, such that

α ≥ 28 for an approximation ratio below 2. For graphs with at most α vertices the size of
the dynamic programming table as well as the running time is therefore exponential in n.

Now the computational complexity is analyzed. Computing the dynamic programming
table involves computing the first row by enumeration and combining all feasible entries
for subsequent rows, where the combinations depict the significant part. An upper bound
can be given by the number of all possible combinations, O

((
n2α+2

2

))
= O(n4α+4). Al-

though for each row of the dynamic programming table entries are combined, every distinct
combination is only checked for a single row due to the required size of the cut. This results
in the complexity O(n4α+4 · Tcombine).

When combining two entries, the necessary conditions in Definition 5 need to be
checked, and the combined pattern needs to be computed. The conditions can be checked
in O(n + α lnα) time; checking if cuts are neighboring is constant work, the sets B1

and B2 can have O(n) size and δB1(C2) and δB2(C1) can have size α and need to be com-
pared. Combining two patterns involves constructing a link intersection graph with vertices
B1∪B2 of sizeO(n) and iterating over all vertex pairs to determine edges. Details on how
patterns are combined can be found in [40]. Combining two patterns has therefore the
complexity Tcombine = O(n2). Note that this is the worst case and in many cases patterns
are not compatible and do not need to be combined. An upper bound for the complexity of
a dynamic program execution is therefore O(n4α+4n2) = O(n4α+6).

The algorithm iteratively adds link sets Ki to the solution and drops directed links from
F⃗0. In the worst case only one directed link is removed in each step while F⃗0 has n−1 links.

23

4 Approximation Algorithms

Finding a component Ki with optimum ratio requires a binary search with respect to the
ratio ρ ∈ [0, 1] until the interval has at most the size 1/c(F)2 (assuming integer or upscaled

weights). Therefore, log2(c(F)2) = O(ln c(F))
c(F)≤2OPT

= O(ln(OPT)) steps are needed,
where each step maximizes the slack function (4.5) using the dynamic program. In total
there are at most O(n ln(OPT)) dynamic program invocations.

An upper bound for the total complexity is therefore given by O(n4α+6n ln(OPT)) =
O(n4α+7 ln(OPT)) with α ≥ 28 for an approximation ratio below 2.

4.3 Local Search (1.5 + ϵ)-Approximation

The state-of-the-art approximation algorithm by Traub and Zenklusen [40] is a (1.5 + ϵ)-
approximation where a detailed description and correctness proofs can be found in. The
algorithm is based on the ideas and the dynamic program of their relative greedy (1+ln 2+
ϵ)-approximation described in the previous section.

The main difference is that the algorithm does not only greedily replace all links of a
directed solution with undirected links. Instead, replaced links should iteratively improve
the solution and can themselves be replaced in further iterations.

The algorithm can start with an arbitrary solution. To reduce the number of iterations,
it is useful to start with a solution that is already good. This can for instance be the 2-
approximation from Section 4.1 that was also used for the (1 + ln 2 + ϵ)-approximation.

A high-level outline is given in Algorithm 1. First, the cactus graph is reduced to a ring
graph in line 3 as described in the relative greedy (1 + ln 2 + ϵ)-approximation. Then,
an initial undirected solution F is computed in line 4 using the LP-based 2-approximation
from Section 4.1.

The dynamic program requires a directed, shortened solution F⃗ of F , which is computed
by bidirecting F and shortening the result as described for the relative greedy approxima-
tion. The directed versions of links l = (u, v) ∈ F (or their shadow) are called witnesses.
The set of up to two witnesses of l is called the witness set Wl. If for any link l ∈ F both
directed links are removed from F⃗ and the witness set Wl becomes empty, l is also removed
from F .

To keep track of the progress in reducing the weight of the augmentation F that was
already made, a special objective function Φ : 2L → R≥0 is introduced in (4.8). This
function gives a higher weight to a link l ∈ F if shadows of both directed versions are in F⃗
than to links where only one shadow of directed versions is in F⃗ . This follows the intuition
that it is easier to replace just one directed link than two.

Φ(F) :=
∑

l∈F :|Wl|=2

3

2
· c(l) +

∑
l∈F :|Wl|=1

c(l) (4.8)

While the objective Φ decreases significantly by a factor of at least
(
1− ϵ

6n

)
, link sets

are replaced. The dynamic program computes a link set K maximizing the gain in Φ.

24

4.3 Local Search (1.5 + ϵ)-Approximation

Algorithm 1 (1.5 + ϵ)-Approximation

input Cactus graph C = (V,E), LC , cC : LC → R≥0

output augmentation S ⊆ L
procedure (1.5 + ϵ)-Approximation(G, L, c)

G,L, c← reduction of C,LC , cC to a ring graph
F ← any augmentation of G, i.e. a 2-approximation
F⃗ ← bidirect F
F⃗ ← shortening of F⃗
remove links from F that have no shadow in F⃗
do

K ← 4⌈4
ϵ
⌉-thin link set through dynamic program

remove all links from F and F⃗ that can be dropped by adding K
add K to F and K bi-directed to F⃗
F⃗ ← shortening of F⃗
remove links from F that have no shadow in F⃗

while Φ(F) decreases at least by factor
(
1− ϵ

6n

)
return undirected version of F⃗ without duplicates

Further details follow below. All directed links in F⃗ that are dropped by K are removed,
also removing their correspondents from F if the witness set becomes empty. Then, K is
added to F and a bidirected version of K to F⃗ . This results in an arbitrary solution, which
can be shortened again to be able to start with the next iteration.

Dynamic Program

The dynamic program works very similar to the dynamic program of the (1 + ln 2 + ϵ)-
approximation. The key difference is a different objective function, such that the difference
of the function Φ measuring the progress is maximized. In particular, instead of the slack
function slackρ(K) := ρ · c(DropF⃗0

(K) ∩ F⃗i) − c(K) given in (4.4), the Function (4.10)
is maximized with an adjusted cost function c for directed links as defined in (4.9). c(F⃗)

gives the cost of an undirected version of a directed link set F⃗ without duplicates.

c(F⃗) :=
∑

l∈F⃗ :|Wl|=2

1

2
· c(l) +

∑
l∈F⃗ :|Wl|=1

c(l) (4.9)

c(DropF⃗i
(K))− 1.5 · c(K) (4.10)

Using this cost function, the dynamic program is able to compute a link set reducing Φ as
far as possible. Note that unlike the (1 + ln 2 + ϵ)-approximation this iterative approach
does not require binary search.

25

4 Approximation Algorithms

Complexity

The main part of the algorithm, the dynamic program, is the same as for the (1 + ln 2+ ϵ)-
approximation. Therefore, the size of the dynamic programming table is bounded by
O(n2α+2) and the running time of one dynamic program invocation is bounded by
O(n4α+6) with α = 4⌈4

ϵ
⌉ > 32 for an approximation ratio below 2. The maximum number

of iterations after which the algorithm terminates is given in (4.11) [40].

ln

(
1.5 · c(F0)

c(OPT)

)
· 6n
ϵ

(4.11)

If the algorithm starts with a 2-approximation, this is bounded by ln(3)·6n
ϵ

< 7n
ϵ

. This results
in a total running time of O(n4α+7/ϵ). In contrast to the (1 + ln 2 + ϵ)-approximation this
is independent of the (upscaled) augmentation weight OPT .

26

CHAPTER 5
Engineering Weighted Connectivity Aug-
mentation Algorithms

This chapter first describes the data structures required for the algorithms. Then, an exact
algorithm and heuristic approaches for the weighted connectivity augmentation problem
are described. As WCAP is NP-hard, exact algorithms will only be able to solve small in-
stances. Unlike the approximation algorithms in the previous chapter, the heuristics cannot
give guarantees on the solution quality, but aim at being fast or giving good solutions in
many real-world cases.

5.1 Data Structures

This chapter describes data structures that will be used in different algorithms. First, the
data necessary regarding the original graph and the cactus graph is discussed. Second, a
dynamic cactus graph data structure is introduced, that maintains an updated cactus graph
while links are being added.

Graph Data Structure

All minimum cuts of a graph G can be represented as a (potentially significantly smaller)
cactus graph C as described in Section 2.3. Therefore, it is sufficient to do computations
on the cactus graph C. To be able to give an augmentation for the original graph G, or to
output an augmented graph G′, G must be known. To achieve this, G is stored in adjacency
list representation along with an array modeling the function Π : V (G)→ V (C) and using
vertex IDs as indices.

Additionally, the link set L must be transferred to a link set LC in the cactus graph C. A
link l = (u, v) is translated to a link lC = Π(l) := (Π(u),Π(v)) in the cactus graph. To be
able to reverse this function and obtain a link in G again, the endpoints of the original edge

27

5 Engineering Weighted Connectivity Augmentation Algorithms

l are stored as well. Multiple vertices of G may be mapped to a single vertex in C. This
can lead to different links g, h ∈ L, g ̸= h with Π(g) = Π(h), i.e. to parallel edges in the
link graph GLC

(with not necessarily equal weight). The following proposition shows that
all parallel links in GLC

can be dropped except for one of smallest weight.

Proposition 1. Let C be a cactus graph representing all minimum cuts of a graph G, LC

a set of links in C such that LC is an augmentation, and GLC
be the link graph of LC . Let

L′
C ⊆ LC be the set

⋃
(u,v)∈V (C)2 arb(argminl=(u,v)∈LC

c(l)) that contains an arbitrary link
of minimum weight for each set of parallel edges of GLC

. Then there is a minimum weight
connectivity augmentation of C that only uses links in L′

C .

Proof. Assume for a contradiction that every minimum weight connectivity augmentation
A includes a link not in L′

C . There can be two reasons:

1. The augmentation contains two links g and h that are parallel in LC . As they have
the same endpoints in C, they are cut by the same set of minimum cuts and therefore
increase the same set of cuts and A \ {h} is also an augmentation. �

2. The augmentation contains a link l /∈ L′
C . Because of the definition of L′

C a parallel
link l′ of equal or less weight must be in L′

C . This link increases the same set of cuts,
which means A \ {l} ∪ {l′} is also an augmentation of equal or less cost. �

Applying those cases iteratively, an augmentation A′ ⊆ L′
C can always be found.

Using Proposition 1 the link set LC can be stored in an adjacency matrix only keeping
an arbitrary link of minimum weight per vertex pair.

Dynamic Cactus

Some algorithms will iteratively add links to a solution and require an up-to-date set of
minimum cuts. Explicitly storing and updating this set is expensive, but the cactus repre-
sentation can be updated rather efficiently. A similar approach of updating the cactus was
proposed by Henzinger, Noe and Schulz in [24], where a union find data structure is used
to keep track of the function Π that associates each vertex of G with a vertex of the cactus
C. To be able to provide more information, i.e. computing the number of minimum cuts
that a given link crosses, a different data structure is implemented.

When adding a link l = (u, v) that crosses minimum cuts, the cactus must shrink. Dinitz
has shown that cuts on the uv-path are affected [11]. In particular, vertices that lie on every
uv-path in the cactus must be contracted to update the cactus [24]. Those can be found by
computing a path in the tree of cycles. That is the graph that contains all cycles as vertices
and has an edge between two vertices if the corresponding cycles share a vertex. There is
a unique path because the graph is a tree. For every cycle in the path, the shared endpoints
need to be contracted (at the end points of the path u and v are contracted). If u ̸= v,

28

5.1 Data Structures

u v

Figure 5.1: Updating a cactus graph by contracting a path (red) after inserting an edge (u, v).
Dashed edges do not exist in the cactus graph

at least one contraction is done and the graph becomes smaller. An example is shown in
Figure 5.1.

To be able to quickly find the path in the tree of cycles, this graph is maintained by the
data structure. The cactus graph is implicitly stored and could easily be constructed. In
particular the following three lists are maintained.

1. The list of vertices, node_list. Each vertex corresponds to a cycle in the cactus
graph. The index of a vertex in the list corresponds to its ID while the value at the
position is the ordered list of vertices in the cycle. This is necessary to be able to
reconstruct the cactus graph and determine the cycles that emerge if two vertices are
contracted.

2. The adjacency lists, edge_lists. Two cycles are adjacent if they share a vertex.
Because this common vertex is needed to contract a path, it is stored along with the
edge. If two cycles i and j are connected via a vertex v, the list with index i contains
a pair of the target cycle j and the common vertex v, and vice versa.

3. A mapping cactus_to_cycle, that stores for each cactus graph vertex the list of
cycles it is contained in. This is necessary to efficiently determine which vertices
need to be contracted without updating every link after a contraction.

Figure 5.2 gives an example of how the data structure looks for a small cactus graph.
IDs of cactus graph edges are written in black and IDs of cycles are written in blue. Using
only the first value of pairs in edge_lists, this is a commonly used adjacency list graph
data structure.

In this graph data structure the unique path in the cycle tree can easily be computed using
a DFS. Next, the edges in the path are contracted one after the other. When contracting two
vertices u and v there can be three cases that need to be handled differently.

1. u and v are the only vertices in the cycle. In this case the cycle disappears and the
cycle tree looses a vertex. To keep the data structure valid, the last vertex is moved
to the position of the removed vertex.

2. u and v are connected by an edge in the cactus graph, but the cycle has at least three
vertices. In this case the number of cycles does not change and v can be removed

29

5 Engineering Weighted Connectivity Augmentation Algorithms

Cactus graph Cycle tree

0

1

2

3

4

5

6

0
1

2 0 1 2

node_list

ID value
0 [0, 1, 2, 3]
1 [2, 4]
2 [4, 5, 6]

edge_lists

ID value
0 [(1, 2)]
1 [(0, 2), (2, 4)]
2 [(1, 4)]

cactus_to_cycle

ID value ID value
0 [0] 4 [1, 2]
1 [0] 5 [2]
2 [0, 1] 6 [2]
3 [0]

Figure 5.2: Example of data structure for dynamic cactus graph

from the list of vertices in the cycle. However, edges of the cycle graph that have u
or v as connecting vertex need to be updated. Note that new links are added if there
is a cycle attached to u and a cycle attached to v because the cycles now share the
contracted vertex uv.

3. u and v are not connected by an edge in the cactus graph. In this case a cycle is split
into two cycles, where the new cycle is appended to the list of vertices. Similar to
the previous case, edges between cycles containing u or v need to be updated.

The main goal of this data structure is the ability to count the number of cuts that a
given link crosses and improve theO(n2) complexity of checking every possible cut. A cut
always cuts two edges of the same cycle, therefore each cycle can be considered separately.
As a link l = (u, v) affects all cuts on the uv-path [10], all cycles on the uv-path need to be
considered. In Figure 5.1 each cycle containing a red link has to be considered for counting
the number of cuts that the link l = (u, v) crosses. These cycles can be found by doing a
BFS in the cycle graph. In case of a tree edge there is only one minimum cut. An example
is the leftmost edge in Figure 5.3. Otherwise, there are two vertices a1 and a2 that lie on
every uv-path and there are two edge-disjoint a1a2-paths p1 and p2. In Figure 5.3 this is the
cycle in the center with a1 and a2 being the articulation points and p1 and p2 being the upper
and the lower part of the cycle. Picking any edge from p1 and any edge from p2 results in a
minimum cut that is covered by l. The number of covered minimum cuts through the cycle
containing a1 and a2 is therefore the product of the path lengths, |p1| · |p2|. The number of
minimum cuts covered by l is hence the sum of these products over all edges (cycles) in the
uv-path. Figure 5.3 also shows all minimum cuts covered by l. To determine the lengths
|p1| and |p2| in the cycle i, the distance d of a1 and a2 in the vertex list node_list[i] is
computed. |p1| is equal to the distance d, while |p2| = |node_list[i]| − d− 1.

30

5.2 Integer Linear Program

u

v

Figure 5.3: Cuts (green) covered by a link l = (u, v)

Complexity

The contraction of two vertices in the same cycle (i.e. an edge of the path in the cycle tree)
may require updating the whole data structure in all three cases described above. In the
worst case this is O(n2) work in the case of a star, where every two cycles share the center
vertex as common vertex. However, a contraction can be done in linear or even constant
time in many cases, i.e. when contracting two vertices that are no articulation points. The
total number of contractions is bounded by the number of vertices in the cactus graph
because each contraction reduces the number of vertices in the cactus graph by one. In the
worst case, contracting the whole cactus into a single vertex has O(n3) complexity.

The main reason for this data structure is the ability to compute the number of cuts that
a given link crosses. The complexity for the BFS in the cycle tree is bounded by O(n)
because the structure is a tree and there cannot be more cycles than vertices in the cactus
graph. Counting the number of cuts that the computed path crosses can be done in linear
time too; for each edge in the path one needs to go through all vertices contained in the
corresponding cycle to find the distance of the articulation points. As this is done at most
once per cycle, the overall work required is O(n).

5.2 Integer Linear Program

This section gives an optimal algorithm that can be used to solve small instances. The
optimal solution will later be used to measure the quality of non-optimal algorithms. Fur-
thermore, the maximum problem size that an optimal solver is able to solve is of interest.

A commonly used approach to solve a problem to optimality is an (integer) linear pro-
gram (ILP). To define an integer linear program for the weighted connectivity augmentation
problem, |L| binary variables are introduced that decide which links are added to the aug-
mentation. The objective given in (5.1) sums up the weight of all selected links. For each

31

5 Engineering Weighted Connectivity Augmentation Algorithms

minimum cut in the graph G there is a constraint assuring that at least one link increasing
the cut is added to the augmentation as depicted in (5.2).

min
x

∑
l∈L

xlc(l) (5.1)

s.t.
∑
l∈L

cut(l)xl ≥ 1 ∀c ∈ CG

x ∈ {0, 1}|L|
(5.2)

Improvements

A common approach for solving integer linear programs is a branch and bound algorithm.
If the algorithm starts with a good initial solution, non-optimal branches can be discarded
faster. Therefore, using the solution of a heuristic solver as initial solution can speed up
solving the integer linear program.

Another approach used by integer linear program solvers is a presolve step which tries
to eliminate redundant variables and constraints. This optional step applies different re-
duction rules with different computational complexity. Different configurations can lead to
different results in terms of solution time and memory requirements.

Complexity

The number of variables is bounded by
(
n
2

)
− |E| = O(n2) if the graph G′ = (V,E ∪L) is

complete. The number of constraints is bounded by
(
n
2

)
= O(n2) because in a cactus graph

each minimum cut is cutting at most two edges. This occurs if the cactus is a cycle, where
any two edges form a cut while |E| = |V | = n. In case of a cycle and a complete link
set, on average each constraint uses

(∑n−1
i=1 i(n− i)

)
/n = O(n2) variables. In the worst

case, the ILP has therefore O(n2) variables and O(n2) constraints with O(n4) non-zeros
in a matrix representation.

5.3 Heuristic Algorithms

In this section algorithms that do not give an exact solution are covered. These include
greedy heuristics, an algorithm based on minimum spanning trees as well as a local
search algorithm.

5.3.1 Greedy Heuristics

This section introdues greedy strategies that pick one link l ∈ argminl∈L h(l) after the
other with respect to a heuristic h and add it to the augmentation until all minimum cuts
have been increased. Possible heuristics are explained in the following subsections.

32

5.3 Heuristic Algorithms

Weight Heuristic

As the problem aims at minimizing the cost of an augmentation, it is natural to use the
weight of a link as heuristic. An additional constraint is that the link must cover at least
one cut, otherwise it can be left out from the solution. This leads to the heuristic hw : L→
R≥0 ∪ {∞} in (5.3).

hw(l) =

{
c(l) if l covers at least one cut
∞ else

(5.3)

A variation of this heuristic picks an arbitrary uncovered minimum cut c and only considers
links that cover c. This leads to heuristic hc

w : L → R≥0 ∪ {∞} in (5.4). For each link
selection a new cut c ∈ CG is picked arbitrarily resulting in a different heuristic function.

hw,c(l) =

{
c(l) if l covers c
∞ else

(5.4)

Weight-Coverage Heuristic

This heuristic also favors links with small weight, but at the same time the number of links
needed is minimized in order to prevent large solutions. To take this into account, the
number of minimum cuts covered by a link can be used, i.e. the number of cuts where the
link has one endpoint on each side of the cut. This leads to the heuristic hwc : L → R≥0

in (5.5), which computes the cost per augmented minimum cut.

hwc(l) =
c(l)

|{c ∈ CG : cut(c, l) = 1}|
(5.5)

Implementation

A naive implementation computes the set CG of all minimum cuts. Then, the heuristic h,
either hw(l), hc

w(l) or hwc(l), is computed for every link l ∈ L. A link with the lowest
objective is added to the solution and cuts covered by l are removed from CG. This is
repeated until the set of cuts is empty.

A more sophisticated algorithm for the heuristic h being hw or hwc uses the dynamic
cactus data structure. Instead of storing the set of all cuts, a copy of the cactus graph is
kept and updated if a link is added. Recall that the number of cuts that a link l crosses can
be computed by doing a BFS in the cycle graph and computing a sum over the number of
crossed cuts for all edges of the path. This has linear running time.

Iterating over all links in L is also expensive as this can be O(n2) work. To improve
this, one can first observe that by adding links to the graph, because the heuristics hw(l)
and hwc(l) can only increase; c(l) is constant and the set {c ∈ CG : cut(c, l) = 1} can
only shrink by adding links because cuts are only removed from CG. The heuristic value

33

5 Engineering Weighted Connectivity Augmentation Algorithms

computed in a previous iteration can therefore be used as a lower bound. If there is a link
with heuristic value below this bound, it does not need to be checked. To check as few links
as possible in a general case, all links are separated into a constant number of lists where
each list has a fixed lower bound. The lower bound of list i is 1/2i, assuming weights in the
interval [0, 1]. If weights are larger they could be rescaled first. Initially, each link is added
to the last list where the lower bound holds, i.e. a link l is added to list argmini(

1
2i
> h(l)).

In each iteration the algorithm goes over the lists starting from the last one and recomputes
the heuristic h for links l encountered. This is necessary since the heuristic may have
changed due to links added in previous iterations. In case a link does not cover any cut it
is not needed for the solution and is removed from the list. If the heuristic value is larger
than the lower bound of a list with a smaller index, it is moved to the corresponding list.
If a list contains a link that does not need to be moved, the algorithm can stop early after
processing the current list. Following lists can be skipped due to the lower bound being
greater than the best link found and the link with the lowest heuristic value can be added to
the solution.

Complexity

The complexity of the naive implementation is O(n · n2 · n2) = O(n5) because the so-
lution has at most O(n) links, and in each iteration for O(n2) links O(n2) minimum cuts
are checked.

In the dynamic algorithm the whole cactus graph needs to be contracted in the end.
This has complexity O(n3) as described in Section 5.1. Just like the naive algorithm the
dynamic algorithm also has at most O(n) iterations. How far the bounds can decrease the
number of links that need to be checked depends heavily on the cactus structure and link
weights. In a star graph with unit link weights all links that do not have the center vertex
as endpoint have the same heuristic value. In this case the bounds are of very little use and
O(n2) links need to be checked. This results in a total complexity of O(n4). However, if
the cactus graph contains larger cycles, contracting a link changes the heuristic value of all
links crossing the cycle by different amounts. This ensures the use of the bounds, even if
link weights happen to be in such a way, that the heuristic value is the same initially.

5.3.2 Minimum Spanning Tree

The greedy strategies described above worked by adding links to a set until this set is a
valid connectivity augmentation. Another approach starts with a (possibly much larger) set
of links that increases the connectivity when added to the graph, and then removes links
that are not needed. The complete set of links can have O(n2) size and checking if a link
can be removed from a set can also get expensive. So it is of interest to find a smaller initial
solution. An intuitive starting point is a minimum spanning tree mst(GL) of the graph that
has all links as edge set. This is clearly a valid connectivity augmentation because there
is a path between any two vertices and therefore every cut is covered. Call the edges of

34

5.3 Heuristic Algorithms

Algorithm 2 MinimumSpanningTreeAlgorithm

input G = (V,E), L, c : L→ R≥0

output augmentation S ⊆ L
procedure MinimumSpanningTreeAlgorithm(G, L, c)

GL ← (V, L)
LMST ← MST(GL, c)
// while augmentation not minimal
while ∃l ∈ LMST : LMST \ {l} ∈ SG,L do

LMST ← LMST \ arb({argmax{c(l) : l ∈ LMST and LMST \ {l} ∈ SG,L})
return LMST

the minimum spanning tree LMST . Next, links not needed for the augmentation should
be removed from LMST . This is done greedily, removing the heaviest unneeded link first.
Pseudocode is given in Algorithm 2.

Checking Solutions

An essential part of the minimum spanning tree based algorithm is checking if removing
a link l = (u, v) from a valid solution S ⊆ L is still an augmentation. If this is not the
case, there is still a minimum cut in the graph G′ = (V, (EC ∪ S) \ {l}) that would be
covered by l. Whether such a cut exists can be checked by computing the connectivity
between u and v. In particular, a maximum flow algorithm from u to v in G′ can be
used. This maximum flow execution is efficient, because the graph is very sparse; it is the
union of a cactus graph and a minimum spanning tree which limits the number of edges
to 2n + n = 3n. The cost function for the edges of G′ is altered in the following way:
c : E(G′) → {1, 2} with c(e) = 1 if e is a cycle edge in EC and c(e) = 2 otherwise.
Using these edge weights, any two vertices in the cactus graph are 2-connected, but not
3-connected. A link l = (s, t) can be removed, if the s-t-flow and therefore the minimum
s-t-cut in G′ is larger than 2. The Ford-Fulkerson algorithm can be used to compute a
maximum s-t-flow by finding augmenting paths in the residual graph [14]. The complexity
for integer weights is O(m · f) where the number of edges m comes from a pathfinding
algorithm like a BFS and f is the maximum flow value coming from iterations of finding
paths. Each augmenting path increases the flow by at least one because edge weights are
in {1, 2}. Since the algorithm only needs to determine whether f ≤ 2 or f > 2, it can be
stopped after f ′ ≤ 3 iterations. Therefore, the complexity of the modified algorithm with
early termination is O(m · f ′)

m≤3n
= O(n).

Complexity

A minimum spanning tree can be computed using Kruskal’s algorithm with a complexity
of O(m · logm) [29], or the improved Filter-Kruskal algorithm with complexity O(m +

35

5 Engineering Weighted Connectivity Augmentation Algorithms

n log n log m
n
) [34]. For each of the n − 1 links in the minimum spanning tree the Ford-

Fulkerson algorithm is run having a complexity of O(n). The total complexity is therefore
O(n2) because m < n2 and n log n log m

n
< n2. The constant factors are much higher

for the Ford-Fulkerson algorithm than for Kruskal’s algorithm, such that the additional
complexity of Filter-Kruskal is not crucial in praxis, even though the theoretical complexity
O(m logm) = O(n2 log n) is worse.

5.3.3 Local Search

A non-optimal solution S ⊂ L may be improved by a local search algorithm. To describe
the main concepts, some definitions are introduced first.

Definition 6 (Alternative). Let S be a solution to the WCAP, L the set of links. A subset
R ⊆ L \ S is called an alternative to F ⊆ S, if S ′ = (S \ F) ∪ R also forms a solution.
The objective value of S ′ is c(S ′) = c(S)− c(F) + c(R).

Definition 7 (Potential). Let S be a solution to the WCAP, L the set of links. The potential
cpot of a set P ⊆ L is cpot(P) =

∑
l∈P\S c(l) −

∑
l∈P∩S c(l). Applying the set P to a

solution S results in a new set S ′ = (S ∪P) \ (S ∩P) which is denoted as S ′ = S[P]. The
cost function can be written as c(S ′) = c(S) + cpot(P).

The local search algorithm improves a given solution S by finding cheaper alternatives
R for sets F ⊆ S. To find good replacements, some conditions that P = F ∪R must fulfill
are introduced next.

Lemma 1 (Condition Improvement). If S[P] is a valid solution, P improves S only if P
has a negative potential.

Proof. Because c(S[P]) = c(S) + cpot(P), only sets P with cpot(P) < 0 improve
the solution.

Lemma 2 (Condition Non-triviality). Let C = (V,E) be a cactus graph representing all
minimum cuts of a graph G. Let v ∈ V be no articulation point in C. Then, v is an endpoint
in any connectivity augmentation of C.

Proof. Any vertex that is contained in more than one cycle, counting tree edges as cycles
of size 2, is an articulation point. It disconnects the cycles it is contained in, because any
two cycles share at most one vertex and a cactus graph is a tree of cycles, meaning there
is only one unique path between cycles. Therefore, every vertex v, that is no articulation
point of C, is contained in exactly one cycle. Hence, it has degree 1 if it is incident to a
tree edge or degree 2 if it is incident to cycle edges. In both cases, {v} is a minimum cut
of C. To cover the cut {v}, there must be a link incident to v in any augmentation.

36

5.3 Heuristic Algorithms

Figure 5.4: Difference between optimum solution (black and green links) and optimal solution
(black and red links)

Let u, v ∈ V be two vertices that are no articulation points of C and F = {(u, v)}.
When removing the link (u, v) from S, both u and v must still be covered by either S \ {l}
or R by Lemma 2. If l is the only link in S covering u and v it is therefore necessary that
links incident to u and v need to be added to R. Note that F ∪ R is a path of length 3 in
this case. In another pattern two links l1 = (u, v) and l2 = (w, x) from S can be replaced
by a single link. If S is optimal, i.e. S \ {l} is not an augmentation for all l ∈ S, the new
link l must have an endpoint from l1 and an endpoint from l2. Again, {l1} ∪ {l2} ∪ {l}
is a path of length 3. Figure 5.4 visualizes this by showing an optimal solution S and an
optimum solution OPT in a single graph. Links that are in both solutions are drawn in
black, links in OPT but not S are drawn in green and links in S but not OPT are drawn
in red. The two solutions only differ in two paths of length 3, where links are alternating
from S and L \ S.

This can be generalized to arbitrary path lengths, with the intuition that links in R that
are not at the end of the path cover two vertices at once, one vertex of each neighboring link
from S. This generalization gives rise to alternating paths, using edges alternating from F
and R.

The local search algorithm enumerates alternating paths up to a length limit using a DFS
from each vertex. By Lemma 1 only paths with negative potential can improve the solution
are therefore stored in a list. The number of paths can be further reduced by applying
Lemma 2 to the endpoints of the path. These vertices must not form a trivial minimum cut;

37

5 Engineering Weighted Connectivity Augmentation Algorithms

either they need to be covered by S ′ or the vertices do not need to be covered because they
are articulation points in the cactus graph. However, these are only necessary conditions
and not sufficient, as not every path leads to a valid solution when it is applied to S. This
needs to be checked in addition as described in the next subsection. To maximize the gain
in the objective, paths with the most negative potential are considered first.

The number of paths grows exponentially with the search depth with vertex degrees as
basis. To keep this computable it is useful to reduce the set L of possible links. This is
done by only using links from k minimum spanning trees. For instance, k = 2 minimum
spanning trees lead to the set L′ = mst(L)∪mst(L\mst(L)). This way the average degree
is a small constant.

Checking paths

The algorithm needs to check whether applying a path p to a solution S is still a valid aug-
mentation, i.e. if S[p] ∈ SG,L. Instead of checking all up toO(n2) minimum cuts in a naive
approach, a maximum flow algorithm can be used similar as in the minimum spanning tree
algorithm. The maximum s-t-flow algorithm needs to be executed for each removed edge
e = (s, t) in the updated graph to ensure that the graph is still (k + 1)-connected. Other
vertex pairs do not need to be checked as the connectivity between vertices of removed
edges is ensured to be at least k + 1. The graph S ′ = (V,EG ∪ S) can be constructed in
O(n) time because it has m = O(n) edges. The maximum flow algorithm also runs effi-
ciently as in the minimum spanning tree algorithm because the graph S ′ is very sparse and
the maximum flow value needed is bounded. Using the modified Ford-Fulkerson algorithm
from Section 5.3.2, the maximum s-t-flow computation takes O(n) time because of small
integer weights a constant number of iterations.

Path Caching

The most expensive part of the algorithm is checking whether applying a path p is still a
solution. First, the direction of the path does not matter, so only paths where the ID of the
first vertex is smaller than the ID of the last vertex are considered. Second, if local search
is done iteratively, the same paths with the best potential are checked every time. It is
unlikely that the same path will lead to a valid solution if it was not in a previous iteration.
Storing the set of paths that did not have a negative potential can avoid many expensive
recomputations. To minimize memory overhead, the vertex sequence of a path is hashed
and stored in a set to look up if the check can be skipped.

Early Termination

The set of paths fulfilling the necessary condition in Lemma 2 is checked in the order
of their potential. Therefore, the gain of applying paths decreases with each iteration.
The algorithm can be terminated early as soon as the gain drops below a threshold and

38

5.4 Cactus Graph Generation

the solution only improves by a small factor. If the threshold depends on the weight of
the initial solution, it is independent of the order of the objective. The potential depends
heavily on the link weight distribution, i.e. for unit link weights, the potential is in {0, 1}
and an early termination is therefore not possible.

5.4 Cactus Graph Generation

Graphs where the cactus graph representing all minimum cuts has a complex structure are
rare in real-world graphs like technical or social networks. A graph generator can be used
to generate complex graphs of different sizes and evaluate algorithms for such cases. This
section gives an algorithm that is able to generate graphs with given properties, namely the
number of vertices and the number of cycles.

Generating Cactus Graphs

Given two integers n, c ∈ N, n > c, the goal is to generate a cactus graph C with n vertices
and c cycles. This is done by generating the cycles iteratively. The average number of
vertices per cycle is n/c. To get a larger amount of possible graphs the number of vertices
per cycle is randomly distributed around the average n/c. A Poisson distribution turned out
to yield a higher variety of graphs than a uniform distribution. To ensure that the correct
number of cycles will be achieved, the distribution range is bounded such that, considering
cycles already generated, at least one vertex for every remaining cycle is available. The
first generated cycle is used as the base graph. Each consecutive cycle must additionally
use an existing vertex to connect to the existing graph. This vertex is chosen uniformly
among existing vertices. Figure 5.5 shows an example of a graph generated with n = 100
and c = 20.

Graph with given Cactus Graph

Given a cactus graph C, one might ask how a graph G of which C represents all minimum
cuts could look like. Trivially G could be equal to C. Different graphs could be constructed
by reversing the process of edge contractions during the computation of a cactus graph. In
particular, each vertex of the cactus graph C could be replaced by a dense subgraph. Let
k be the desired connectivity. Then, each vertex can be replaced by an at least (k + 1)-
connected subgraph while each link is replaced by k unweighted links in case of a tree edge
or by k/2 links in case of a cycle edge between corresponding dense subgraphs. However,
for all algorithms considered in this thesis, neither the structure of the original graph nor
the connectivity k matter as they are abstracted in preprocessing steps. Therefore, only the
simplest case of cactus graphs with connectivity k = 2 is considered.

39

5 Engineering Weighted Connectivity Augmentation Algorithms

Figure 5.5: Generated cactus graph with 100 vertices and 20 cycles

40

CHAPTER 6
Experimental Evaluation

The main part of this chapter deals with the experimental evaluation of the algorithms
described and implemented in the previous chapters. First, the methodology and the set
of test instances is described. Then the approximation algorithms and heuristic algorithms
are evaluated and compared in terms of quality, running time and memory consumption.
Also, the impact of local search in the solution of the minimum spanning tree algorithm is
evaluated.

6.1 Methodology

The experiments are run on a personal computer with an AMD Ryzen 5 2600 six core
processor with 12 threads at up to 3.5 GHz and 80 GB of main memory running Linux.
The C++ code is compiled using gcc 13.2.1 with optimization level O3. The memory for
the process is limited to 50 GB and the running time is limited to 3 hours.

By default, every instance is tested using 5 different seeds for edge weights and the
weight of the augmentation, the running time and the maximum memory used is measured.
The geometric mean is calculated when averaging over different seeds or instances such
that every instance has a comparable influence on the result.

Different algorithms are compared using performance profiles [12]. These plots use
the best algorithm as baseline for each instance and relate the other algorithms to this
baseline. A performance profile can use the objective function to compare quality, and
running time and memory consumption to compare resource requirements. The x-axis
shows a parameter τ ≥ 1. On the y-axis the fraction of instances whose objective is at
most τ · best is plotted, in particular #{objective ≤ τ · best}/#instances. For running
time and memory usage, time and memory are used instead of the objective, respectively.
For each algorithm the performance profile contains a monotone increasing, piece-wise
constant function. At τ = 1 the plot shows the fraction of instances where the algorithm is
able to find the best solution / has the fastest running time or lowest memory consumption.

41

6 Experimental Evaluation

Some algorithms are not able to solve every instance due to constraints on memory and
time. In performance profiles this is denoted with ✗ and �, respectively.

6.2 Instances

The algorithms are evaluated using four types of graph instances: cycles or ring graphs,
stars, generated cactus graphs as well as real-world instances. Cycles and stars represent
edge cases of cactus graphs, with O(n2) being the largest amount and O(n) being the
smallest amount of minimum cuts possible. Many real-world graphs have unique or very
few distinct minimum cuts, which leads to very small cactus graphs with only a few ver-
tices. Therefore, instances with non-trivial cactus graphs must be selected carefully. In this
thesis, a subset of connected graphs with non-trivial cactus graph from the 10th DIMACS
Implementation Challenge is used [3]. The instances are listed in Table 6.1 including their
sizes and the sizes of the corresponding cactus graphs. Finally, to be able to test the algo-
rithms on instances that represent more complex cactus graphs and have sizes of interest,
cactus graphs generated by the algorithm described in Section 5.4 are used. Table A1 of
the appendix gives a complete list of all instances used.

6.3 Objective

The objective function being minimized in the weighted connectivity augmentation prob-
lem is the sum of the weights of all links added to the graph. In all following results, the
objective of an algorithm for an instance is therefore the cost of all links in the solution S,
namely

∑
l∈S c(l).

name n m n cactus m cactus description
coAuthorsCiteseer 227 320 814 134 30 322 30 321 Social network
delauney_n20 1 048 576 3 145 686 11 740 11 739 Delauney graph
coPapersCiteseer 434 102 16 036 720 6 372 6 371 Social network
t60k 60 005 89 440 1 136 1 332 Sparse matrix
vibrobox 12 328 165 250 625 624 Sparse matrix
email 1 133 5 451 156 155 Social network
M6 3 501 776 10 501 936 132 131 Simulation
queen8_8 64 728 29 28 Chess moves
jazz 198 2 742 6 5 Social network
karate 34 78 2 1 Social network

Table 6.1: 10th DIMACS Implementation Challenge instances

42

6.4 Evaluation

6.4 Evaluation

In this section the optimal integer linear program, the approximation algorithms from the
literature as well as the heuristic algorithms developed in this thesis are evaluated. Run-
ning time, memory consumption and solution quality are considered in the results where
appropriate.

6.4.1 Integer Linear Program

An important decision for this algorithm is the integer linear program solver. In this thesis
two solvers are evaluated, the Gurobi Optimizer [20] and Google’s OR-Tools [37] using
the SCIP backend [4]. However, it quickly turned out that Gurobi is able to solve larger
instances because of a smaller memory footprint. Experimental results shown in Figure 6.1
depict 30 % less memory usage for cycle graphs. Therefore, the Gurobi Optimizer is used
as solver in all following experiments.

The Gurobi Optimizer allows three modes for presolving a model: skipping the presolve
step entirely, a conservative mode, and an aggressive mode which takes more time than
the conservative mode, but may reduce the model further. Additionally, an initial solution
can be set as the starting point. Figure 6.2 shows the running time of all combinations for
cycle graphs with 50, 100, 150 and 200 vertices, while Figure 6.3 gives the memory con-
sumption thereof. The geometric mean over five different seeds for the link weight random

Figure 6.1: Memory consumption of the ILP solver for cycle graphs with 50, 100, 150 and
200 vertices

43

6 Experimental Evaluation

Figure 6.2: Running time for different presolve configurations and initial solution for cycle graphs
with 50, 100, 150 and 200 vertices

number generator is plotted as well as the variance. One can observe that solving the prob-
lem without a presolve step is consistently much faster than a conservative or aggressive
presolve step. However, the memory consumption is slightly higher without reducing the
model. The running time is acceptable for all solvable instances and the limiting resource
is clearly memory. Therefore, presolving the model leads to more solvable instances. If
instances are small and sufficient memory is available, the presolve step can be skipped to
increase performance.

Setting a good initial solution, in particular the solution of the minimum spanning tree
heuristic, does not have a large impact on running time and memory. However, the memory
requirement tends to be lower when using an initial solution, while the running time is
slightly longer. As well as for the presolve step, more instances can be solved by setting a
good heuristic as initial solution due to memory limits.

Considering the number of integer variables and constraints, the solution time of the
ILP is very short. This suggests that connectivity augmentation models are easy to solve
with respect to their size, i.e. they contain much redundancy. This can be explained by the
fact that a link can cover many cuts, or in terms of an ILP, a single variable can satisfy
many constraints.

44

6.4 Evaluation

Figure 6.3: Memory usage for different presolve configurations and initial solution for cycle
graphs with 50, 100, 150 and 200 vertices

6.4.2 Approximations

As the theoretical complexity already predicted, the (1 + ln 2 + ϵ)-approximation and the
(1.5 + ϵ)-approximation have a long running time and can only solve tiny graphs. The
2-approximation is able to solve larger graphs and will also be compared to the heuristic
algorithms in the next section.

Figure 6.4 gives the running time of the approximation algorithms as well as the ILP with
respect to the graph size in a logarithmic plot. The graphs are cycle graphs with a complete
set of links. For every instance 10 different seeds for uniformly distributed link weights
are used, except for the cycle with 9 vertices due to long runtime. The geometric mean
and the variance is shown in the plot. It is clearly visible that the running time increases
exponentially for the approximation algorithms based on the dynamic program. This is
expected for graphs with fewer than α ≥ 28 vertices as the computational complexity is
exponential in 4min(n, α) + 7. Both, the (1 + ln 2 + ϵ)-approximation and the (1.5 + ϵ)-
approximation are orders of magnitude slower than the optimal integer linear program.
This gives them only theoretical value, because problems where the approximations are
able to compute a solution within reasonable time can be solved to optimality.

The (1.5 + ϵ)-approximation is an order of magnitude faster than the (1 + ln 2 + ϵ)-
approximation. This is due to fewer invocations of the dynamic program, in particular the
(1.5 + ϵ)-approximation requires only one to three invocations for the tiny graphs with a
2-approximation as starting point and no binary search.

45

6 Experimental Evaluation

Figure 6.4: Running time of approximations on cycle graphs by size

The 2-approximation is slightly faster than the ILP, but the difference is negligible and
both can easily solve tiny graphs solvable by the dynamic program based approximations.
Due to the fact that the ILP is much faster than the dynamic program based approximations
and performs similar to the 2-approximation, the approximations have very little relevance
in practical connectivity augmentation algorithms.

Figure 6.5 shows a performance profile of the objective, i.e. the augmentation weight,
for tiny graphs. As the optimal solution was computed by the ILP, the x-axis gives the
approximation ratio. The first observation is that all approximation algorithms only give
solutions within their claimed ratio. Furthermore, the 2-approximation consistently gives
the worst solutions, which means both, the (1 + ln 2 + ϵ)-approximation and the (1.5 + ϵ)-
approximation, can improve this initial solution. This confirms the theoretical value of the
better-than-2 approximations.

6.4.3 Heuristics

In this section an experimental evaluation of the heuristic algorithms as well as the lo-
cal search algorithm developed in this thesis is given. If the graph is small enough, the
results are compared to the optimal solution computed using the ILP and the LP-based
2-approximation.

Figure 6.6 shows a performance profile of the objective for the greedy weight-coverage
heuristic, the minimum spanning tree algorithm and the minimum spanning tree algorithm

46

6.4 Evaluation

Figure 6.5: Performance profile of the approximation algorithms on tiny cycles and stars

with local search as well as the ILP and the LP-based 2-approximation. The plot includes
all four types of graphs, i.e. cycles, stars, real graphs and generated cactus graphs.

The LP-based 2-approximation does not only yield the worst results, but is also the one
to solve the fewest instances. That the ILP is able to solve more instances is due to the
fact that the memory consumption is lower as Figure 6.7 indicates. The reason for higher
memory requirements of the LP is that each undirected link is replaced by two directed
ones and therefore the LP has twice as many variables compared to the ILP, and, even
more important, the graph is reduced to a cycle graph with up to twice as many vertices.

The best results are achieved by the minimum spanning tree algorithm, which can be
slightly improved by local search. However, local search is slower and therefore fewer
graphs can be solved. Figure 6.7 shows that the minimum spanning tree algorithm requires
the least memory as well, but local search and the greedy algorithm do not need signifi-
cantly more memory.

Link Weight Distribution

The algorithms can perform differently based on the distribution of the link weights. To be
able to compare the algorithms in different scenarios, three different distributions are used:

• Unit weights, i.e. each link has weight 1

• A uniform distribution in the interval [0, 1]

47

6 Experimental Evaluation

Figure 6.6: Performance profile for objective of algorithms

Figure 6.7: Performance profile for memory usage of algorithms

• A normal distribution with mean µ = 0.5 and standard deviation σ = 0.5. However,
negative link weights are not allowed. Instead, new link weights are drawn from the
distribution until a non-negative weight occurs.

48

6.4 Evaluation

Performance profile plots of the objective for these three link weight distributions are
shown in Figure 6.6 for a uniform distribution and Figure 6.8 and in Figure 6.9 for unit
weights and a normal distribution. There is almost no difference in the solution quality for
the uniform distribution and the normal distribution. For unit link weights there are two
major differences: the deviation from the optimum solution is much higher, and some algo-
rithms are able to solve fewer instances than for uniform or normal distributed link weights.

The higher discrepancy from the optimum solution can be explained by the higher impact
of non-optimal decisions. Every non-optimal link that is needed for the solution has weight
1, while for the other distribution, there may be a non-optimal link that is only slightly
more expensive.

The difference in solvable instances becomes clear when looking at the geometric mean
of the running time over all tested instances in Figure 6.10. For the uniform distribution and
the normal distribution, the running time is almost the same. For unit link weights, the local
search algorithm is much slower, the minimum spanning tree algorithm is also significantly
slower, and the weight-coverage heuristic and the (I)LP-based algorithms need slightly
more time. The local search algorithm computes far more paths, and all of them need to
be checked for feasibility. There are two reasons for the higher number of paths. First, it is
more likely that an arbitrary path has a positive gain - every path that uses more new links
than links from the initial solution decreases the objective. Second, Kruskal’s algorithm
for computing minimum spanning trees is a poor choice for unit weights. The algorithm
always picks the first link it can add to the tree, which results in a star. With the initial
solution being a star, and the available links being the union of two stars with different
center vertices, many alternating paths exist. This can be improved by randomizing the
link order in Kruskal’s algorithm for computing the minimum spanning trees. The reason
for the weight-coverage heuristic being slower is that the heuristic value is not as well
distributed and therefore, lower bounds for the heuristic are not as useful.

Incomplete Link Set

So far, the cactus graph and the link set yielded a complete graph. Now the performance
of the algorithms for instances with fewer links is evaluated for a uniform link distribution.
Figure 6.11 and Figure 6.12 give the geometric mean of the running time and memory usage
over all tested instances where 25 %, 50 %, 75 % and 100 % of the links are available.

The largest difference is the memory usage of the ILP and the LP-based 2-
Approximation. This is because the number of variables is linearly dependent on the
number of links, as well as the average number of variables in constraints. This also
improves the runtime. The memory consumption of the remaining algorithms does not
change significantly.

The local search algorithm does not benefit from fewer links. The links of two minimum
spanning trees are the only links considered for local search - the total link set is solely
used by the minimum spanning tree algorithm that does not carry weight compared to the
local search. The number of links the weight-coverage heuristic needs to check depends

49

6 Experimental Evaluation

Figure 6.8: Performance profile of the objective for unit link weights

Figure 6.9: Performance profile of the objective for normal link weight distribution

linearly on the link set size. However, the performance difference is not as high as one

50

6.4 Evaluation

Figure 6.10: Geometric mean of running time for different link weight distributions

Figure 6.11: Geometric mean of running time for different sized link sets

could expect, because most links do not need to be checked due to known lower bounds
from previous iterations.

51

6 Experimental Evaluation

Figure 6.12: Geometric mean of memory usage for different sized link sets

Weight and Weight-Coverage Heuristic

Three greedy heuristics are described in Section 5.3.1, the weight heuristic, the alternative
weight heuristic covering a specific cut, and the weight-coverage heuristic. Figure 6.13
shows a performance profile of the objective for all three heuristics. The weight heuristic
always performs worst. Picking an arbitrary cut and only considering links that cover this
cut results in better solutions in all cases. The best results are achieved by the weight-
coverage heuristic in general. However, depending on the random link weights, the alter-
native weight heuristic is able to compute the best result in 17 % of the instances.

Local Search

The result of the local search algorithm on all instances has already been shown in Sec-
tion 6.4.3. In this section the effect of reducing L by only using links of minimum spanning
trees on the objective, and the effect of path caching and early termination on the running
time is evaluated.

In Figure 6.14 the objective of the local search algorithm applied to the solution of the
minimum spanning tree algorithm using links of k ∈ {1, 2, 3, 4, 5}MSTs is shown. Addi-
tionally, the result is compared to the ILP using the same set of links showing the objective

52

6.4 Evaluation

Figure 6.13: Performance profile of the objective for greedy heuristics

if the local search would be able to find all improvements (MST-ILP). Only graphs where
the cactus graph has less than 300 vertices were used such that the ILP solution can always
be computed. The objective for the minimum spanning tree algorithm and the optimal so-
lution using the complete link set are drawn for reference. Using a single MST for local
search does not improve the solution of the minimum spanning tree algorithm, and there is
no benefit of using more than two MSTs. Therefore, using the links of two MSTs is clearly
the best configuration. The ILP shows that an optimum solution may require links from
further MSTs, but most progress can be done using the first two MSTs.

The most important parameter for the local search algorithm is the length of the aug-
menting paths that are considered. Figure 6.15 shows the geometric mean of the objective
of the local search algorithm on the solution of the minimum spanning tree algorithm using
path lengths {1, . . . , 7}. For reference the solution of the minimum spanning tree algorithm
is also plotted. The local search is only able to find improvements for path lengths ≥ 3.
Increasing path lengths from 2 to 3 gives the most gain in solution quality. Path lengths
of 4 and 5 are able to find further small improvements. For longer paths, the difference in
solution quality is negligible. This makes path lengths of 3 and 5 most interesting.

The effect of caching whether applying paths results in a valid augmentation on the
running time is shown in Figure 6.16. The geometric mean over all instances is improved
by a factor of more than two. On larger instances the impact is even bigger because the
algorithm spends a larger fraction of the time in checking paths. However, caching paths is
considerable faster for all instances.

53

6 Experimental Evaluation

Figure 6.14: Objective with link set being restricted to k MSTs for graphs with n < 300

Figure 6.15: Geometric mean of the objective of local search for different path lengths

The last consideration for the local search algorithm is whether it can be terminated early
without losing significant improvements of the solution. This is shown in Figure 6.17 for
three graphs of similar size. In the beginning the local search algorithm needs more time to
find improvements. The main reason is that there are no cached paths yet and every possible
path needs to be checked for feasibility. Then, local search makes continuous progress with

54

6.4 Evaluation

Figure 6.16: Geometric mean of the running time of local search with and without caching paths

declining improvements. Most improvements are done after half of the algorithm runtime.
While skipping the last part does not sacrifice a lot of solution quality, the running time is
only improved by a small constant factor. If local search can be run for the required time to
find good improvements, it can most likely be run until there are no improvements left. If
there is a strict limit on the running time local search can be terminated early, but otherwise
there is only a small benefit in stopping the algorithm.

6.4.4 Comparison against State-of-the-Art

For the algorithms from Watanabe et al. ([44], [45], [46]), neither the instances used in their
experimental evaluation nor source code or binaries for the algorithms are available. To get
an idea of how the algorithms compare, we did an own implementation of their simplest
greedy algorithm, SMC. However, we are unable to reproduce results from [44], where
SMC is able to find the optimum solution for 52.5 % of the instances. On our instances of
the same size SMC is only able to find the optimum solution in 6.7 % of the cases.

Our implementation of SMC is compared against the minimum spanning tree algorithm,
the weight-coverage heuristic, the ILP and the 2-approximation in Figure 6.18. It is able
to solve the same set of instances as the weight-coverage heuristic, but yields worse results
in every case. Only the 2-approximation is outperformed by SMC. The algorithms FSM
and HBD yielded better results than SMC [44], [46], however, we are not able to provide
an implementation in the scope of this thesis. According to results in [46], SMC is able

55

6 Experimental Evaluation

Figure 6.17: Objective over time for local search algorithm with path length 3

Figure 6.18: Performance profile comparing against our implementation of SMC

to compute a solution equal or better than FSM for only 20.18 % of the instances. For
77.54 %, FSM performs up to 10 % better, and in 2.29 % it is more than 10 % better.

To compare the running time of the algorithms, data from [46] is used. The experiments
by Watanabe et al. were run on an Intel Pentium IV at 1.7 GHz and the average running

56

6.4 Evaluation

Figure 6.19: Running time comparison against SMC, FSM and HBD with data from [46]

time for increasing the connectivity by 5 by running the same algorithm 5 times is given.
The running time of a single iteration of the algorithms is assumed to be a fifth of the total
runtime. To get comparable results, the single core performance difference of the more
recent Ryzen 2600 CPU used in our experiments is determined with a factor of 5.5 using
data from UserBenchmark [41]. The running time given by Watanabe et al. is therefore
divided by 27.5.

The performance of the weight-coverage heuristic is comparable to the performance of
the fastest competitor, SMC. The minimum spanning tree algorithm is almost an order of
magnitude faster and local search with search depth 3 can beat the algorithms as well. HBD
and FSM are significantly slower.

57

6 Experimental Evaluation

58

CHAPTER 7
Discussion

7.1 Conclusion

Lately, there has been much work on theoretical approximation algorithms on the weighted
connectivity augmentation problem. However, there have been no implementations of the
algorithms. The first contribution of this thesis is an implementation of the state-of-the-
art approximation algorithm. In praxis, this algorithm performs very bad, and a given
problem can be solved much faster by an optimal ILP. The only work on fast, practical
approximation algorithms is decades old. Therefore, the second contribution of this thesis,
the heuristic algorithms developed, aim at introducing new algorithms after a long time.

The first approach is a greedy strategy that greedily adds links to a solution. The best
heuristic found is the weight-coverage heuristic. This results in a simple yet effective
greedy algorithm that requires a sophisticated data structure to be computed efficiently.
Because of its simplicity it can be used as a baseline for further algorithms.

The minimum spanning tree algorithm is the best heuristic algorithm in terms of both,
solution quality and runtime. In contrast to the greedy approach and algorithms from the
literature, it starts with an MST as feasible solution and then improves it.

The local search algorithm can be applied to a solution computed by any other algorithm
and is able to find small improvements. To the best of our knowledge it is the first algorithm
of this kind in the literature that is usable in praxis. The benefit is that it can be used for as
long as running time is remaining to get the best solution possible.

7.2 Future Work

In this thesis heuristic algorithms that can solve larger graphs than an optimal solver are
proposed. However, the size of graphs that are solvable is still limited and there are real-
world instances that are much larger. These include for instance street networks of coun-
tries and information networks like links in the World Wide Web that cannot be solved

59

7 Discussion

within reasonable time. To compute a solution for such instances faster algorithms that
may sacrifice quality are needed.

The algorithms developed in this thesis are not optimized for unit link weights. They
have a higher running time and may produce worse results because the link weight cannot
be used for prioritization. Specialized algorithms can make more assumptions if all link
weights are known to be equal.

Another way to improve the existing algorithms are reductions before the actual algo-
rithm is executed apart from the cactus graph. The size of the cactus graph can be reduced
by fixing links in the solution. Rules on how to select these links must still be developed
and evaluated. Another approach for reducing the problem size is reducing the set of links.
This can be particularly useful for the ILP as each link corresponds to a variable. Links that
are completely covered by a set of cheaper links cannot be in a solution. Using only the
links of minimum spanning trees as in the local search algorithm is already an aggressive
heuristic approach for reducing the link set, but there may be better heuristics that give a
more useful link set containing more important links.

Parallel algorithms are not covered in this thesis. For a start, parallel algorithms could
speed up the computation considerably. All heuristic algorithms have much independent
work that can be parallelized. The greedy algorithms need to compute the heuristic for
many links, the minimum spanning tree algorithm needs to check if every single link is
required for the solution and the local search algorithm checks a list of paths for feasibil-
ity. But parallel algorithms can also enable larger graphs. A complete link set has size
O(n2), which limits graph sizes possible on a single machine due to main memory. In a
parallel setting the link set can be split among multiple processors, reducing the memory
requirements for a single machine. For these reasons, future work can include designing
parallel algorithms.

Lastly, there are many variations of the connectivity augmentation problem as well as re-
lated problems that are not covered in this thesis but may benefit from similar ideas. These
include the survivable network design problem, which has a target connectivity for every
pair of vertices, or the vertex connectivity augmentation problem considering the vertex
connectivity instead of the edge connectivity. Future work can include generalizations of
the algorithms to solve similar problems.

60

7.2 Future Work

Zusammenfassung

Ein grundlegendes Problem beim Design von rubusten Netzwerken besteht darin, die Kon-
nektivität eines Graphen zu erhöhen. Das Problem der gewichteten Konnektivitätser-
höhung (weighted connectivity augmentation problem, WCAP) ist eine verbreitete Ver-
sion, die Kosten für Kanten berücksichtigt. Gegeben ist eine Menge von Kanten, die
zum Graphen hinzugefügt werden können. Eine Lösung für das WCAP ist eine Teil-
menge dieser Kanten mit minimalem Gewicht, welche die Konnektivität des Graphen
um eins erhöht, wenn sie zum Graphen hinzugefügt wird. In dieser Arbeit wird die er-
ste Implementierung von kürzlich entdeckten Approximationen mit einem Faktor besser
als 2 vorgestellt. Außerdem werden ein optimales ILP und drei heuristische Algorith-
men vorgeschlagen. Diese beinhalten einen Greedy-Algorithmus, der Kantengewichte
und die Anzahl der abgedeckten minimalen Schnitte berücksichtigt, einen auf minimalen
Spannbäumen basierenden Algorithmus und eine lokale Suche, die eine gegebene Lösung
durch Austauschen der Kanten von Pfaden verbessern kann. Eine experimentelle Auswer-
tung zeigt, dass der Algorithmus auf der Grundlage von minimalen Spannbäumen am
schnellsten ist und die besten Lösungen liefert. Dabei ist die lokale Suche immer noch
in der Lage, kleine Verbesserungen bei diesen Lösungen zu finden.

61

Bibliography

[1] Faisal N. Abu-Khzam, Sebastian Lamm, Matthias Mnich, Alexander Noe, Christian
Schulz, and Darren Strash. Recent advances in practical data reduction. In Hannah
Bast, Claudius Korzen, Ulrich Meyer, and Manuel Penschuck, editors, Algorithms for
Big Data - DFG Priority Program 1736, volume 13201 of Lecture Notes in Computer
Science, pages 97–133. Springer, 2022. doi: 10.1007/978-3-031-21534-6_6. URL
https://doi.org/10.1007/978-3-031-21534-6_6.

[2] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter
Weninger. Presolve reductions in mixed integer programming. INFORMS J. Comput.,
32(2):473–506, 2020. doi: 10.1287/IJOC.2018.0857. URL https://doi.org/
10.1287/ijoc.2018.0857.

[3] David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian
Schulz, and Dorothea Wagner. Benchmarking for graph clustering and partitioning.
In Reda Alhajj and Jon G. Rokne, editors, Encyclopedia of Social Network Analy-
sis and Mining, 2nd Edition. Springer, 2018. doi: 10.1007/978-1-4939-7131-2_23.
URL https://doi.org/10.1007/978-1-4939-7131-2_23.

[4] Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath,
Ambros Gleixner, Leona Gottwald, Christoph Graczyk, Katrin Halbig, Alexander
Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco Lübbecke,
Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch,
Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shi-
nano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp
Wellner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0.
Technical report, Optimization Online, December 2021. URL http://www.
optimization-online.org/DB_HTML/2021/12/8728.html.

[5] Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-
approximation barrier for connectivity augmentation: A reduction to steiner tree.
SIAM J. Comput., 52(3):718–739, 2023. doi: 10.1137/21M1421143. URL https:
//doi.org/10.1137/21m1421143.

63

https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1007/978-1-4939-7131-2_23
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.1137/21m1421143
https://doi.org/10.1137/21m1421143

Bibliography

[6] Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between
tree and connectivity augmentation: unified and stronger approaches. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021, pages 370–383. ACM, 2021. doi: 10.1145/3406325.3451086. URL https:
//doi.org/10.1145/3406325.3451086.

[7] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via
isolating cuts. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Confer-
ence / Alexandria, VA, USA, January 9 - 12, 2022, pages 3237–3252. SIAM, 2022.
doi: 10.1137/1.9781611977073.127. URL https://doi.org/10.1137/1.
9781611977073.127.

[8] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation
in near-linear time. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pages 137–150. ACM, 2022. doi: 10.1145/3519935.3520038. URL
https://doi.org/10.1145/3519935.3520038.

[9] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022,
Denver, CO, USA, October 31 - November 3, 2022, pages 612–623. IEEE, 2022.
doi: 10.1109/FOCS54457.2022.00064. URL https://doi.org/10.1109/
FOCS54457.2022.00064.

[10] E. Dinic, Alexander Karzanov, and M. Lomonosov. The system of minimum edge
cuts in a graph. In book: Issledovaniya po Diskretnoı̌ Optimizatsii (Engl. title: Studies
in Discrete Optimizations), A.A. Fridman, ed., Nauka, Moscow, 290-306, in Russian,,
01 1976.

[11] Yefim Dinitz. Maintaining the 4-edge-connected components of a graph on-
line. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993,
Natanya, Israel, June 7-9, 1993, Proceedings, pages 88–97. IEEE Computer Society,
1993. doi: 10.1109/ISTCS.1993.253480. URL https://doi.org/10.1109/
ISTCS.1993.253480.

[12] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91(2):201–213, 2002. doi: 10.1007/
S101070100263. URL https://doi.org/10.1007/s101070100263.

[13] Kapali P. Eswaran and Robert Endre Tarjan. Augmentation problems. SIAM J. Com-
put., 5(4):653–665, 1976. doi: 10.1137/0205044. URL https://doi.org/10.
1137/0205044.

64

https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1137/1.9781611977073.127
https://doi.org/10.1137/1.9781611977073.127
https://doi.org/10.1145/3519935.3520038
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/ISTCS.1993.253480
https://doi.org/10.1109/ISTCS.1993.253480
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/0205044
https://doi.org/10.1137/0205044

Bibliography

[14] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399 – 404, 1956. doi: 10.4153/CJM-1956-045-5. URL https:
//doi.org/10.4153/CJM-1956-045-5.

[15] András Frank and Éva Tardos. An application of submodular flows. Linear Algebra
and its Applications, 114-115:329–348, 1989. ISSN 0024-3795. doi: https://doi.org/
10.1016/0024-3795(89)90469-2. URL https://www.sciencedirect.com/
science/article/pii/0024379589904692. Special Issue Dedicated to
Alan J. Hoffman.

[16] Greg N. Frederickson and Joseph F. JáJá. Approximation algorithms for sev-
eral graph augmentation problems. SIAM J. Comput., 10(2):270–283, 1981. doi:
10.1137/0210019. URL https://doi.org/10.1137/0210019.

[17] Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau.
Graph vulnerability and robustness: A survey. IEEE Trans. Knowl. Data Eng., 35(6):
5915–5934, 2023. doi: 10.1109/TKDE.2022.3163672. URL https://doi.org/
10.1109/TKDE.2022.3163672.

[18] Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On
the cycle augmentation problem: Hardness and approximation algorithms. Theory
Comput. Syst., 65(6):985–1008, 2021. doi: 10.1007/S00224-020-10025-6. URL
https://doi.org/10.1007/s00224-020-10025-6.

[19] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs
and an algorithm for the mixed integer problem. In Michael Jünger, Thomas M.
Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard
Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Pro-
gramming 1958-2008 - From the Early Years to the State-of-the-Art, pages 77–103.
Springer, 2010. doi: 10.1007/978-3-540-68279-0_4. URL https://doi.org/
10.1007/978-3-540-68279-0_4.

[20] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL
https://www.gurobi.com.

[21] Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practi-
cal minimum cut algorithms. ACM J. Exp. Algorithmics, 23, 2018. doi: 10.1145/
3274662. URL https://doi.org/10.1145/3274662.

[22] Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory exact min-
imum cuts. In 2019 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 13–22. IEEE,
2019. doi: 10.1109/IPDPS.2019.00013. URL https://doi.org/10.1109/
IPDPS.2019.00013.

65

https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4153/CJM-1956-045-5
https://www.sciencedirect.com/science/article/pii/0024379589904692
https://www.sciencedirect.com/science/article/pii/0024379589904692
https://doi.org/10.1137/0210019
https://doi.org/10.1109/TKDE.2022.3163672
https://doi.org/10.1109/TKDE.2022.3163672
https://doi.org/10.1007/s00224-020-10025-6
https://doi.org/10.1007/978-3-540-68279-0_4
https://doi.org/10.1007/978-3-540-68279-0_4
https://www.gurobi.com
https://doi.org/10.1145/3274662
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1109/IPDPS.2019.00013

Bibliography

[23] Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Find-
ing all global minimum cuts in practice. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs,
pages 59:1–59:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.ESA.2020.59. URL https://doi.org/10.4230/LIPIcs.
ESA.2020.59.

[24] Monika Henzinger, Alexander Noe, and Christian Schulz. Practical fully dynamic
minimum cut algorithms. In Cynthia A. Phillips and Bettina Speckmann, edi-
tors, Proceedings of the Symposium on Algorithm Engineering and Experiments,
ALENEX 2022, Alexandria, VA, USA, January 9-10, 2022, pages 13–26. SIAM,
2022. doi: 10.1137/1.9781611977042.2. URL https://doi.org/10.1137/
1.9781611977042.2.

[25] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Comb., 21(1):39–60, 2001. doi: 10.1007/S004930170004. URL https:
//doi.org/10.1007/s004930170004.

[26] Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph
augmentation. J. Algorithms, 14:214–225, 1993. doi: 10.1006/JAGM.1993.1010.
URL https://doi.org/10.1006/jagm.1993.1010.

[27] Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approximation
for vertex-connectivity network design problems. SIAM J. Comput., 33(3):704–720,
2004. doi: 10.1137/S0097539702416736. URL https://doi.org/10.1137/
S0097539702416736.

[28] Ailsa H. Land and Alison G. Doig. An automatic method for solving discrete
programming problems. In Michael Jünger, Thomas M. Liebling, Denis Nad-
def, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt, Giovanni Ri-
naldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-
2008 - From the Early Years to the State-of-the-Art, pages 105–132. Springer,
2010. doi: 10.1007/978-3-540-68279-0_5. URL https://doi.org/10.
1007/978-3-540-68279-0_5.

[29] Harry R. Lewis. Ideas That Created the Future: Classic Papers of Computer Science.
The MIT Press, 02 2021. ISBN 9780262363174. doi: 10.7551/mitpress/12274.001.
0001. URL https://doi.org/10.7551/mitpress/12274.001.0001.

[30] Toshiya Mashima and Toshimasa Watanabe. Approximation algorithms for the k-
edge-connectivity augmentation problem. In 1995 IEEE International Symposium
on Circuits and Systems, ISCAS 1995, Seattle, Washington, USA, April 30 - May 3,

66

https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.1137/1.9781611977042.2
https://doi.org/10.1137/1.9781611977042.2
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/s004930170004
https://doi.org/10.1006/jagm.1993.1010
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.7551/mitpress/12274.001.0001

Bibliography

1995, pages 155–158. IEEE, 1995. doi: 10.1109/ISCAS.1995.521474. URL https:
//doi.org/10.1109/ISCAS.1995.521474.

[31] Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient
minimum capacity cut algorithm. Math. Program., 67:325–341, 1994. doi: 10.1007/
BF01582226. URL https://doi.org/10.1007/BF01582226.

[32] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for
cactus representations of minimum cuts. Japan Journal of Industrial and Applied
Mathematics, 17:245–264, 04 2012. doi: 10.1007/BF03167346.

[33] Zeev Nutov. Approximation algorithms for connectivity augmentation prob-
lems. In Rahul Santhanam and Daniil Musatov, editors, Computer Science - The-
ory and Applications - 16th International Computer Science Symposium in Rus-
sia, CSR 2021, Sochi, Russia, June 28 - July 2, 2021, Proceedings, volume
12730 of Lecture Notes in Computer Science, pages 321–338. Springer, 2021.
doi: 10.1007/978-3-030-79416-3_19. URL https://doi.org/10.1007/
978-3-030-79416-3_19.

[34] Vitaly Osipov, Peter Sanders, and Johannes Singler. The filter-kruskal minimum
spanning tree algorithm. In Irene Finocchi and John Hershberger, editors, Pro-
ceedings of the Eleventh Workshop on Algorithm Engineering and Experiments,
ALENEX 2009, New York, New York, USA, January 3, 2009, pages 52–61. SIAM,
2009. doi: 10.1137/1.9781611972894.5. URL https://doi.org/10.1137/
1.9781611972894.5.

[35] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolu-
tion of large-scale symmetric traveling salesman problems. SIAM Rev., 33(1):60–100,
1991. doi: 10.1137/1033004. URL https://doi.org/10.1137/1033004.

[36] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich
Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances in scal-
able network generation1. In David A. Bader, editor, Massive Graph Analytics, pages
333–376. Chapman and Hall/CRC, 2022. doi: 10.1201/9781003033707-16. URL
https://doi.org/10.1201/9781003033707-16.

[37] Laurent Perron and Vincent Furnon. OR-Tools, 2023. URL https://
developers.google.com/optimization/.

[38] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer
programming: Learning to cut. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 9367–9376. PMLR, 2020. URL
http://proceedings.mlr.press/v119/tang20a.html.

67

https://doi.org/10.1109/ISCAS.1995.521474
https://doi.org/10.1109/ISCAS.1995.521474
https://doi.org/10.1007/BF01582226
https://doi.org/10.1007/978-3-030-79416-3_19
https://doi.org/10.1007/978-3-030-79416-3_19
https://doi.org/10.1137/1.9781611972894.5
https://doi.org/10.1137/1.9781611972894.5
https://doi.org/10.1137/1033004
https://doi.org/10.1201/9781003033707-16
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://proceedings.mlr.press/v119/tang20a.html

Bibliography

[39] Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree
augmentation. In 62nd IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1–12. IEEE, 2021.
doi: 10.1109/FOCS52979.2021.00010. URL https://doi.org/10.1109/
FOCS52979.2021.00010.

[40] Vera Traub and Rico Zenklusen. A (1.5+ϵ)-approximation algorithm for weighted
connectivity augmentation. In Barna Saha and Rocco A. Servedio, editors, Proceed-
ings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Or-
lando, FL, USA, June 20-23, 2023, pages 1820–1833. ACM, 2023. doi: 10.1145/
3564246.3585122. URL https://doi.org/10.1145/3564246.3585122.

[41] UserBenchmark. UserBenchmark, 2023. URL https://www.
userbenchmark.com/.

[42] Pravin M. Vaidya. Speeding-up linear programming using fast matrix multiplication
(extended abstract). In 30th Annual Symposium on Foundations of Computer Science,
Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages
332–337. IEEE Computer Society, 1989. doi: 10.1109/SFCS.1989.63499. URL
https://doi.org/10.1109/SFCS.1989.63499.

[43] Jan van den Brand. A deterministic linear program solver in current matrix multi-
plication time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-
8, 2020, pages 259–278. SIAM, 2020. doi: 10.1137/1.9781611975994.16. URL
https://doi.org/10.1137/1.9781611975994.16.

[44] Toshimasa Watanabe, Toshiya Mashima, and Satoshi Taoka. The k-edge-connectivity
augmentation problem of weighted graphs. In Toshihide Ibaraki, Yasuyoshi Inagaki,
Kazuo Iwama, Takao Nishizeki, and Masafumi Yamashita, editors, Algorithms and
Computation, pages 31–40, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[45] Toshimasa Watanabe, Toshiya Mashima, and Satoshi Taoka. Approximation algo-
rithms for minimum-cost augmentation to k-edge-connect a multigraph. In 1993
IEEE International Symposium on Circuits and Systems, ISCAS 1993, Chicago, Illi-
nois, USA, May 3-6, 1993, pages 2556–2559. IEEE, 1993.

[46] Toshimasa Watanabe, Satoshi Taoka, and Toshiya Mashima. Maximum weight
matching-based algorithms for k-edge-connectivity augmentation of a graph. In Inter-
national Symposium on Circuits and Systems (ISCAS 2005), 23-26 May 2005, Kobe,
Japan, pages 2231–2234. IEEE, 2005. doi: 10.1109/ISCAS.2005.1465066. URL
https://doi.org/10.1109/ISCAS.2005.1465066.

68

https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1145/3564246.3585122
https://www.userbenchmark.com/
https://www.userbenchmark.com/
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1137/1.9781611975994.16
https://doi.org/10.1109/ISCAS.2005.1465066

Test Instances

10th DIMACS Implementation Challenge n m
queen8 64 728
karate 34 78
jazz 198 2 742
email 1 133 5 451
vibrobox 12 328 165 250
t60k 60 005 89 440
coAuthorsCiteseer 227 320 814 134
coPapersCiteseer 434 102 16 036 720
delauney_n20 1 048 576 3 145 686
M6 3 501 776 10 501 936
Cycles
cycle-50 50 50
cycle-100 100 100
cycle-200 200 200
cycle-500 500 500
cycle-1000 1 000 1 000
cycle-5000 5 000 5 000
Stars
star-200 200 199
star-1000 1 000 999
star-5000 5 000 4 999
Cacti
cactus{01, 02, 03, 04, 05} 100 109
cactus{06, 07, 08, 09, 10} 100 119
cactus{11, 12, 13, 14, 15} 200 279
cactus{16, 17, 18, 19, 20} 1000 1199

Table A1: Complete set of test instances used in the evaluation

69

	Abstract
	Introduction
	Motivation
	Contributions
	Structure

	Fundamentals
	Graph and Partition
	Minimum Cut
	Cactus Graphs
	Weighted Connectivity Augmentation Problem
	Approximation Algorithms

	Related Work
	Minimum Cuts
	Connectivity Augmentation
	Approximations
	Randomized Algorithms
	Experimentally Evaluated Algorithms

	(Integer) Linear Programming

	Approximation Algorithms
	LP-based 2-Approximation
	Relative Greedy (1+2+)-Approximation
	Local Search (1.5+)-Approximation

	Engineering Weighted Connectivity Augmentation Algorithms
	Data Structures
	Integer Linear Program
	Heuristic Algorithms
	Greedy Heuristics
	Minimum Spanning Tree
	Local Search

	Cactus Graph Generation

	Experimental Evaluation
	Methodology
	Instances
	Objective
	Evaluation
	Integer Linear Program
	Approximations
	Heuristics
	Comparison against State-of-the-Art

	Discussion
	Conclusion
	Future Work

	Bibliography
	Test Instances

