
Engineering Heuristics and
Reductions for Weighted
Hypergraph b-Matching

Henrik Reinstädtler

May 3, 2023

3307518

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Referee:
Jun. Prof. Dr. Felix Joos

Co-Supervisor:
Ernestine Großmann

ii

Acknowledgments

I want to thank Prof. Schulz, Jun. Prof. Joos and Ernestine Großmann for supervis-
ing this thesis. Furthermore, I would like to thank the Studienstiftung des Deutschen
Volkes for supporting my studies.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus
fremden Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere
ich, dass die übermittelte elektronische Version in Inhalt und Wortlaut mit der
gedruckten Version meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden,
dass diese elektronische Fassung universitätsintern anhand einer Plagiatssoftware
auf Plagiate überprüft wird.

Heidelberg, May 3, 2023

Henrik Reinstädtler

iii

iv

Abstract

A hypergraph is the generalization of a graph, allowing more than two vertices to be
in an edge. The weighted b-matching problem is to select the maximum weight of
edges, while obeying to a capacity constraint per vertex. In this thesis, we present six
novel exact reductions for this problem and introduce an iterated local search and local
improvement approach. The exact reductions allow us to determine whether edges are
guaranteed to be in the matching or not part of the solution. The iterated local search
provides a framework of finding suitable swaps of edges, while the local improvement
strategy improves the solution by exactly solving subgraphs. In experiments, we show
the effectiveness of our reductions and the potential of applying iterated local search
and the local improvement strategy to solutions obtained by simple weight heuristics.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 3

2 Fundamentals 5
2.1 General Definitions . 5
2.2 Problem Definitions . 6

3 Related Work 11
3.1 Maximum Weighted Independent Set 11
3.2 Graph Matching . 12
3.3 Graph b-Matching . 13
3.4 Hypergraph Matching . 14
3.5 Hypergraph b-Matching . 14

4 Hypergraph b-Matching Reductions 17
4.1 Neighborhood Removal . 17
4.2 Weighted Isolated Edge Removal . 18
4.3 Weighted Edge Folding . 21
4.4 Weighted Twin . 23
4.5 Weighted Domination . 26
4.6 Abundant Vertices Reduction . 28

5 Priority Approaches 31

6 Local Search & Local Improvement 33
6.1 Iterated Local Search . 33
6.2 Local Improvement . 36

vii

Contents

7 Data Structures 39
7.1 Modifiable Hypergraph . 39
7.2 b–Matching . 40

8 Experimental Evaluation 43
8.1 Methodology . 43
8.2 Instances . 44

8.2.1 Graphs . 44
8.2.2 Hypergraphs . 45
8.2.3 Weights . 45

8.3 Reductions and Speedup . 46
8.4 Comparing Priority Functions with bSuitor 53
8.5 Local Search Experiments . 54
8.6 Local Improvement Experiments . 54

9 Discussion 61
9.1 Conclusion . 63
9.2 Future Work . 64

Abstract (German) 65

Bibliography 67

viii

CHAPTER 1
Introduction

1.1 Motivation
Graphs are a powerful modeling tool for formulating and describing real-world prob-
lems and relationships, like social networks [7] and transportation systems [5]. One
of the most prominent and well-studied problems in computer science and algorithm
engineering is the matching problem in graphs. A matching is a subset of edges, that
do not share a vertex. By assigning weights to the edges and asking for the highest
weighted matching, a wide variety of tasks and applications can be described. This
includes job assignment [70] and minimizing transportation costs [46]. Moreover, this
problem can be used as a subtask for approximately solving complex problems like
the metric traveling salesman problem [11]. The matching problem in graphs is in P,
as it can be solved with the blossom algorithm by Edmonds [21].

In order to describe more tasks one can relax the matching constraint by intro-
ducing a capacity to the vertices, allowing them to be in a fixed number of edges
in the matching. Such task is called b-matching and applications include supporting
computer-aided design [41] and semi-supervised learning [45]. Additionally, in recent
years non-linear, sub-modular objective functions became part of the research inter-
est. Sub-modular functions allow modelling interesting real-life problems, like natural
language processing [55] and balancing computations in quantum chemistry [25].

In addition to these changes to the functions describing the problems, a recent focus
in research is the introduction of hypergraphs as a generalization of graphs. Hyper-
graphs allow more than to vertices to be in an edge. Therefore, non 1:1–relationships
like co-authorship in scientific literature [56] or electronic circuit designs [53] can be
described more accurately. The matching problem can be intuitively transferred to
hypergraphs and has a variety of applications like auctioning [13] and ride-sharing [66].
The introduction of more than two vertices in an edge makes the problem more diffi-
cult to solve, as it is now reducible to the maximum weighted independent set problem
and therefore in NP [44].

1

1 Introduction

A natural idea is to transfer the b-matching problem to hypergraphs. A practical
application that motivated our initial interest in this topic is the assignment of stu-
dents to multiple classes while having multiple preferences for time slots. Students
give multiple preferences for classes and time slot combinations while they are only
going to attend one combination. Each class has a capacity constraint given by its
room size or other factors. The edges in this example consist out of one vertex for
the student and for each class they would like to attend in combination a vertex
representing a time slot. This is a classical allocation problem and its solution would
benefit students as they could attend the classes and time slot combinations they
prefer the most.

A key idea for solving similar problems is the introduction of reductions. Therefore,
we develop reductions suitable for the hypergraph b-matching problem. Furthermore,
the problem sizes from real-world applications are going to rapidly grow, calling for
the adaption of efficient heuristics for finding good, approximating solutions even for
the matching problem in graphs.

1.2 Our Contribution

In this thesis we present six novel exact reductions, an iterated local search algorithm,
a local improvement scheme and weight and degree based heuristic approaches for
solving the b-matching problem in hypergraphs.

Our reductions can be categorized in two categories. Firstly, we introduce new
reductions focusing on edges guaranteed to be part of the solution. Secondly, re-
ductions that are postponing the decision and reduce the size of the hypergraph by
modifying it. Lastly, we can exclude certain edges from the solution and further
reduce the problem size. These reductions can help speeding up the exact solving of
the hypergraph b-matching problem via integer linear programs.

Besides these reductions we introduce two improvement techniques for results ob-
tained by simple weight heuristics. The iterated local search algorithm works by
searching two edges that can replace a solution edge, yielding a better result. The
local improvement scheme selects a subset of edges and solves them exactly with the
help of an integer linear program.

These reductions, improvement strategies and heuristics seamlessly work together
and allow us to efficiently reduce problem size and accelerate finding good solutions.
By designing data structures for computing storing the results and implementing all
techniques in C++, we provide a first step towards exactly and heuristically solving
the b-matching problem in hypergraphs more efficiently. The reductions and heuristics
developed here are also applicable to hypergraph matching and graph (b-)matching.

2

1.3 Structure

1.3 Structure
The remainder of this thesis is organized as follows. After defining graphs and hy-
pergraphs, we introduce the problem in Chapter 2. In Chapter 3 we discuss recent
advancements in the field. We explain the six reductions in Chapter 4 and define our
framework for greedy approaches in Chapter 5. We introduce the iterated local search
and a local improvement strategy in Chapter 6. Chapter 7 contains our new data
structures for storing modifiable hypergraphs and b-matching. Finally, we present
our experimental results for our various approaches in Chapter 8 and conclude with
a discussion in Chapter 9.

3

1 Introduction

4

CHAPTER 2
Fundamentals

In this chapter we introduce the fundamental definitions of the discussed problems
and structures of this thesis. We start by introducing graphs and hypergraphs and
summarize our three core problem formulations.

2.1 General Definitions
In the following we define graphs and hypergraphs as basis for our problem definitions.

Graphs. An undirected graph consists of a finite set of vertices V and a set of edges
E where each edge consists of two distinct vertices. We write uv instead of {u, v}.
An edge e is called incident to a vertex v if v ∈ e.

Two vertices u, v are adjacent if uv ∈ E. By N(v) = {u ∈ V | uv ∈ E} we define
the neighborhood of a vertex. Moreover, we define N [v] = N(v) ∪ {v} as the closed
neighborhood of v.

Hypergraphs. A hypergraph H = (V, E) is a generalization of the graph. The
hypergraph H has again a finite vertex set V and an edge set E where E ⊆ P(V). In
the following we also consider multihypergraphs, that is E may be a proper multiset.
Hence, we rather treat the vertices of an edge as a function V : E → P(V). This
allows us to have multiple edges with the same vertices, but different properties as for
example weight. Furthermore, this enables us to describe our modifying reductions
more accurately. An undirected graph is always a valid hypergraph. The terms
incident and adjacent can be directly translated from graphs to hypergraphs: An
edge e is called incident to a vertex v if v ∈ V(e). We define E(v) := {e ∈ E |
v ∈ V(e)} as the edges that are incident to a vertex v. The degree of a vertex v is
|E(v)|. Two vertices u, v are adjacent if at least one edge is incident to both of them.

5

2 Fundamentals

Figure 2.1: Example for a hypergraph and the corresponding line graph. Edges with a
common vertex in the hypergraph are connected in the line graph.

Furthermore, two edges e, f are adjacent if V(e) ∩ V(f) ̸= ∅. We call two edges e, f
linked if they are adjacent via a vertex v and |E(v)| = 2. A set of edges S in H is
independent if for all distinct f, g ∈ S the vertices V(f) and V(g) are disjoint. We
define N (e) := ∪

v∈V(e) E(v) as the closed neighborhood of an edge.
A line graph L(H) is the undirected graph induced by a hypergraph H neighboring

information. In the line graph each edge of H is represented by a vertex and two
vertices e, f of L(H) are adjacent if V(e) ∩ V(f) ̸= ∅, that is

L(H) =
(
E ,

{
(e1, e2) ∈

(
E
2

)
| V(e1) ∩ V(e2) ̸= ∅

})
. (2.1)

In Figure 2.1 an example for a hypergraph and its line graph is shown. The line graph
on the right-hand side, contains all the neighboring information of the edges of the
hypergraph on the left-hand side.

Furthermore, there are special categories of hypergraphs, in particular we are in-
terested in d-partite, d-uniform hypergraphs. A hypergraph is d-uniform if every edge
contains exactly d vertices. A hypergraph is d-partite if the vertices can be partitioned
in d disjoint subsets V1, . . . , Vd and such that for every edge we have |V(e) ∩ Vi| ≤ 1.
An example of a 4-uniform, 4-partite hypergraph is the hypergraph in Figure 2.1.

2.2 Problem Definitions
On graphs and hypergraphs we can assign a positive weight via a mapping c : V → R+

to vertices and to edges w : E → R+ or w : E → R+. We can formulate different
problems using this weight function and the structure of the (hyper)graph.

Maximum Weighted Independent Set. For a graph G = (V, E) with a weight
function c : V → R+, we define c(S) := ∑

v∈S c(v) for all S ⊆ V . A set S ⊂ V is
called independent if there is no edge of G with both vertices in S.

6

2.2 Problem Definitions

1 5

3

4

7

Figure 2.2: The solution for the maximum weight independent set problem illustrated in
red color. The selected vertices are non-adjacent.

3
1 1

1

1

1

1 6

4

33

Figure 2.3: The solution for this matching problem is 9, marked in red.

The maximum weighted independent set (MWIS) problem asks for an independent
set S in G that c(S) is maximal. In Figure 2.2 the red vertices form an independent
set with the maximum combined weight of 9. No other combination of vertices forms
a higher combined weight without being adjacent.

A vertex cover is a subset of vertices C such that every edge consists of at least
one vertex in the set C. The minimum weight vertex cover (MWVC) problem is to
find a vertex cover C with minimal c(C). The MWVC problem is the complementary
problem to the MWIS problem. Thus, the weight of the MWVC is the weight of the
graph without the maximum weighted independent set.

Graph Matching. For a graph G = (V, E) with a weight function w : E → R+,
we define w(M) = ∑

e∈M w(e) for all M ⊆ E. A subset of edges M ⊆ E is called
matching if all edges in M are not sharing any vertex. The maximum weighted
matching (MWM) problem asks to find a matching M with maximal w(M).

In Figure 2.3 an example for this is shown. The red edges do not share a vertex
and have the highest possible combined weight of 9. In a perfect matching every
vertex is adjacent to an edge that is in the matching.

7

2 Fundamentals

3
1 1

1

1

2

1 6

4

33

Figure 2.4: The solution for the (weighted) b-matching problem illustrated in red color.
The total weight is 13 and the capacity at the right node is exhausted.

Graph b–Matching. A relaxation of the maximum weighted matching problem is
the weighted b-matching problem in graphs. Given a Graph G = (V, E) with a
weight function w : E → R+ and a capacity function b : V → N. For M ⊆ E we
define w(M) := ∑

e∈M w(e). A set of edges M in G is called b-matching in G, if M
contains at most b(v) edges incident to v for every v ∈ V . The weighted b-matching
problem asks to find the largest b-matching M ,that is, where w(M) is maximal.

Figure 2.4 shows an example for this. The red edges are the solution for the b-
matching problem with a total weight of 13. Note that two edges incident to the right
vertex are selected. The capacity does not have to be exhausted.

Hypergraph b-Matching. Given a hypergraph H = (V, E) with weight function
w : E → R+ and a capacity function b : V → N. For an edge set M ⊆ E , we define
w(M) = ∑

e∈M w(e). A set of edges M in H is a b-matching in H if M contains at
most b(v) edges containing v for every v ∈ V . Finding the largest b-matching M in
H, that is, where w(M) is maximal, is called the “hypergraph b-matching problem”.

The special case of b(v) = 1, called matching, can be reformulated as a maximum
weight independent set problem of the corresponding line graph L(H) to a hyper-
graph H. Figure 2.5 shows an example for the matching problem. The solution is
formed by the green and red edges with a total weight of 11. Figure 2.6 shows a
b-matching with individual b values per vertex. In this configuration the blue and
yellow edge form the heaviest b-matching with a weight of 13.

Cardinality Problems. All problems maximized a weight function. If the weight
for all elements is equal the problems are called cardinality problems, because the
cardinality of the set in question is maximized.

Notations. Throughout this thesis we will use the following notations: Let M be
a b-matching in H. Let M(v) be the edges in M that contain v and b(v) − |M(v)|
be the residual capacity. By blocked(e, M) := {v ∈ e | |M(v)| = b(v)} we denote all
vertices of an edge e, where the capacity is exhausted, in other words, we can not

8

2.2 Problem Definitions

5

6

3

10

Figure 2.5: The solution for this weighted matching problem in this hypergraph is 11,
formed by the red(w = 6) and green (w = 5) edge.

5

6

3

10

1 1

1

1

1

1 1

1

1 2

Figure 2.6: The solution for this weighted b-matching problem in this hypergraph is 13,
formed by the yellow (w = 10) and blue edge (w = 3).

9

2 Fundamentals

add further edges to the matching. An edge e with blocked(e, M) = ∅ is called free.
Finally, we define for a finite set X ⊂ R+ nmax(X, k) as the k-th largest value of X
as follows

nmax(X, k) :=


0 if |X| < k

max X if k = 1
nmax(X\{max X}, k − 1) if k > 1

. (2.2)

10

CHAPTER 3
Related Work

In this chapter we discuss recent results for the maximum weighted independent set,
the weighted matching and b-matching in graphs as well as in hypergraph.

3.1 Maximum Weighted Independent Set

In this section we summarize recent results for the maximum weighted independent
set problem. The maximum weighted independent set problem is NP-hard according
to Garey and Johnson [32]. Use cases for this problem span a variety of fields. Identi-
fying maximum weighted independent sets can help dynamically labeling maps [69],
organize long haul vehicle routing [17] and predict structural and functional sites in
proteins [59]. The main focus of recent research in solving this problem are exact
approaches to search the solution space, reductions to prune the search space for this
problem and heuristic methods to improve solutions locally.

Exact Approaches. Branch–and–bound algorithms have dominated the field in re-
cent years. Generally, they work by finding lower or upper bounds of an optimization
problem and using this information to quickly decide, whether a current solution is
feasible or not. For the MWIS setting, Warren and Hicks [71] introduced an ap-
proach based on an upper bound using clique covers. Two advancements of branch–
and–bound algorithms are branch–and–reduce and branch–and–transform paradigm.
Notable contributions to branch–and–reduce for this problem include the framework
devised by Lamm et al. [51]. Branch–and–transform is a novel approach by Gellner
et al. [34] changing the structure of the graph to by pass local optima and by adding
vertices allowing more reductions to be applied.

11

3 Related Work

Reductions. Most of the reductions for the MWIS problem work by adding vertices
to a solution or by ruling them out of being a part of the solution. Lamm et al. [51]
introduce two meta removal strategies, namely Neighbor Removal and Neighborhood
Folding. Neighbor Removal works by out ruling certain vertices outright. Neighborhood
Folding combines vertices and postpones decision to a later point.

Xiao et al. [72] present reductions and an execution rule set to support a branch and
reduce framework. Besides sets of vertices in– or excluded in the MWIS automatically,
they identify alternative and simultaneous sets, which are combination of vertices
either contained mutually exclusive or at the same time.

Heuristic Approaches. There are a wide variety of heuristics used for improving
solutions of the MWIS problem locally. Andrade et al. [1] developed the iterated
local search technique in the cardinality setting. Local search works by finding (1, 2)–
swaps, replacing one vertex with two feasible replacements. By iterative application
and using special datastructures a local optima can be quickly found. Nogueria et
al. [63] expand this work to weighted graphs and add perturbation steps to escape
local optima in their HILS algorithm efficiently. For the complementary MWVC
problem Li et al. [54] introduced the FastWVC heuristic focusing on initial solution
quality. DynWVC1 and DynWVC2 by Cai et al. [8] is based on this work and enhance
it with dynamic selection strategies, yielding different performance across different
types of graphs. Gu et al. [37] use reductions in combination with a tie–breaking
framework to solve the MWIS problem with little loss in optimality, while improving
computation time. Exhaustively reapplying the reductions after a tie-break allows
them to shrink the problem size.

Combinations of reductions, heuristic approaches, like local search and novel ap-
proaches involving graph neural networks are also feasible for the complementary
MWVC problem, shown by recent results by Langedal et al. [52].

3.2 Graph Matching
The graph matching problem is a problem solvable by Edmonds [21] blossom–
algorithm which is polynomial and therefore this problem lies in P . The problem
serves a wide range of applications including minimizing transportation costs [46],
job assignment [70] and as a subroutine in several problems, like the chinese postman
tours [22] or metric traveling salesman [11].

Exact Approaches. Gabow [30] provides the fastest implementation of Edmonds
blossom algorithm with a runtime of O(mn + n2 log n). Gabow and Tarjan [31]
provide an algorithm for the integer–weighted case that runs in O(m

√
n log n log nN)

for a graph with m edges, n vertices and N maximum weight.

12

3.3 Graph b-Matching

Approximating Approaches. There are several approximation algorithms for this
weighted problem. The LD (locally dominant) algorithm by Preis [67] is a linear in
edge number 1/2–approximation algorithm that works by selecting locally dominant
edges. Drake and Hougardy [18] designed a path–growing algorithm (PGA) that
is also linear in time and works by growing paths and selecting heavier matches.
Maue and Sanders [60] provide a global path growing algorithm that prioritizes heavy
edges first. Birn et al. [6] presented the local max algorithm, iteratively adding local
dominant edges and removing neighboring edges, which can be executed in parallel
and is a O(log2 n) time, linear work algorithm. The Suitor algorithm by Manne and
Halappanavar [57] is an improvement over the LD–algorithm and can be executed in
parallel. For the weighted case Duan and Pettie [19] show a linear time approximation
for the matching problem with an approximation guarantee provided for applications
with error tolerance.

In recent years, the dynamic matching problem gained prominence. In the dynamic
setting, the task is to keep the matching property, while the graph is altered. Altering
the graph in the fully dynamic setting includes addition and deletion of edges [39].
Stubbs and Williams developed meta theorems for solving the weighted case and
reducing it in some cases to a cardinality problem. In experimental evaluations this
approach was outperformed by a random–walk based approach by Angriman et al. [3].

3.3 Graph b-Matching

The b-matching problem can be reduced to the simple matching problem according
to Marsh [58] and Gabow [29], but this is infeasible on large graphs according to
Khan et al. [48]. Notable applications include privacy protection through Adaptive
anonymity by Choromanski et al. [10] and semi-supervised learning [45].

Exact Approaches. An overview of exact approaches can be found in Müller-
Hannemann and Schwartz [62]. Most relevant, Grötschel and Holland [36] use the
cutting plane technique and resort if it fails to the Padberg-Rao [64] procedure,
which is a branch and cut approach. Based on belief propagation and assuming
a unique solution exists Huang and Jebara [42] developed an exact algorithm for the
b-matching problem.

Approximating Approaches. Mestre [61] proved that the Greedy algorithm is a
1/2–approximation and generalized the PGA algorithm by Drake and Hougardy [18]
to achieve an O(βm) time half–approximation. The LD algorithm was general-
ized to b–Matching by Georgiadis and Papatriantafilou [35] in a distributed fashion.

13

3 Related Work

Khan et al. [48] introduced an approximation algorithm that can be executed in par-
allel called bSuitor, inspired by the results of Manne and Halappanavar [57] for normal
matching. They report speedups of up 15 times in serial execution over a naive greedy
implementation and scales well for parallel processors.

3.4 Hypergraph Matching

Hypergraph matching is a natural way to describe the process of allocating resources
to machines or auctioning goods [13]. Pavone et al. [66] use an online hypergraph
model to model ride-sharing opportunities in which users are allowed to leave the
matching after a certain time.

The hypergraph matching problem is well studied for special classes of hyper-
graphs, esp. for d-uniform, d-partite hypergraphs. According to Hazan et al. [40] the
maximum d-set packing problem and therefore the matching problem on d-partite,
d-uniform hypergraphs can be poorly approximated within a factor of O(d/ log d).
In general, as proven by Håstad [44] the matching problem in non-uniform hyper-
graphs and the maximum independent set problem are NP-hard and approximatable
in n1−ϵ factor.

There is a polynomial (k + 1 + ϵ)/3-approximation algorithm for k-set packing
and therefore the matching problem in d-uniform, d-partite hypergraphs proposed
by Cygan [12] using local search. Furthermore, Fürer and Yu [28] improved these
results with respect to the run-time. Dufosse et al. [20] introduce several heuristics
to reduce the complexity of the cardinality problem by extending the well-known two
Karp-Sipser [47] rules to hypergraphs. Dufosse et al. [20] present the idea of using
Sinkhorn for normalisation of incident tensors as third selection rule. This idea was
also formulated by Zass and Shashua [73] for normal graphs and as extension to hy-
pergraphs.

Recently, Anneg et al. [2] showed for the non-uniform case an improved optimality
bound for LP-relaxation. These results extend to b-matching.

3.5 Hypergraph b-Matching

The generalized b-matching problem is wellstudied for k-uniform hypergraphs. The
b-matching cardinality problem in hypergraph has also no approximatation scheme
according to El Ouali and Jäger [23], if the degree of vertices is bounded. Similiarly, El
Ouali et al.[24] showed that in k-uniform hypergraphs for the cardinality problem with
2 ≤ b ≤ k/ log k there is no polynomial-time approximation within any ratio smaller
than Ω(k

b log k
). On weighted b-matching for k-uniform hypergraphs Krysta [50] gave

14

3.5 Hypergraph b-Matching

a greedy k + 1 approximation, while Parekh and Pritchard [65] achieve a (k− 1 + 1
k
)

approximation algorithm via linear programming. Koufogiannakis and Young [49]
developed a k-approximation in a distributed fashion for weighted k-uniform hyper-
graphs.

15

3 Related Work

16

CHAPTER 4
Hypergraph b-Matching Reductions

In this chapter we present our results for exact reductions for the hypergraph b-
matching problem. We start with reductions based on local domination in different
scenarios. In these we can directly add edges to the solution. Furthermore, we
present reductions that alter the structure of the hypergraph and postpone decisions
to a point after the exact solution is calculated. Finally, we present reductions that
exclude certain edges from the solution and vertices from the hypergraph.

Setup. In the following, let H = (V, E) be a hypergraph and we define M that is a
subset of an optimal solution for the b-matching problem in H, obtained by applying
exact reductions.

4.1 Neighborhood Removal
The first reduction concerns the domination of a neighborhood and is motivated by
the optimal local solution.

Reduction 1 (Neighborhood Removal). An edge e ∈ E free can be included in M if
e has a higher weight than the total sum of weights of the (b(v) − |M(v)|)-th largest
selectable hyperedge in each of its vertices v:

w(e) ≥
∑

v∈V(e)
nmaxx∈E(v),x ̸=e,x/∈M(w (x) , b(v)− |M(v)|). (4.1)

Proof. The nmax selects the largest weight of an edge that could be part of a matching
instead of e at each vertex of the edge. This sum is the upper bound for the b-matching
in the vertices of e, if e was not considered for the matching. Because the weight of the
edge e is equal or higher than this sum, we can directly include e in the matching.

17

4 Hypergraph b-Matching Reductions

4 22

2

2

2
10

22

1

1

1

Figure 4.1: Example for the neighborhood removal reduction: The red edge dominates the
sum of the (b(v) − |M(v)|)-th largest weights per node, in this case the green
hyperedges. Therefore, it has to be part of a maximum b-matching.

An example for this can be seen in Figure 4.1. Let M = ∅, the red edge is
dominating the sum of the (b(v))-th the heaviest edges per vertex v and is therefore
known to be part of an optimal solution.

A simple algorithm for finding neighborhoods to remove is shown in Algorithm 1.
We iterate over each unmatched edge and calculate the sum of weights it needs to
dominate. If so, we can add it to the matching.

Note, that this bound could further be refined by requiring the weight of e to
dominate the optimal solution weight in its neighborhood. Xiao et al. [72] propose a
similar technique to brute–force solve neighborhoods of up to size 8 in the maximum
weighted independent set setting on normal graphs.

Furthermore, we suggest to not scan all edges, but only those, where we expect a
good chance of finding a domination. Either the edge size or the edge size conditional
on the weight of the edge could be used as criterion. For the instances we tested on,
we propose to apply this reduction only to edges up to size 4.

4.2 Weighted Isolated Edge Removal

The following reduction requires an edge to have an isolating neighborhood. In fact,
we require them to form something similar to a clique in a normal graph. This
reduction is inspired by a proposal by Lamm et al. [51] for the weighted independent
set problem.

18

4.2 Weighted Isolated Edge Removal

Algorithm 1 Algorithm for Finding Neighborhood Removal.
1: procedure NeighborhoodRemoval(H = (V, E), M)
2: for e ∈ E free do
3: wd ← 0
4: for v ∈ V(e) do
5: wd ← wd + nmaxx∈E(v),x ̸=e,x/∈M(w (x) , b(v)− |M(v)|)
6: if wd > w(e) then
7: break
8: end if
9: end for

10: if wd ≤ w(e) then
11: M ←M ∪ {e}
12: end if
13: end for
14: end procedure

Reduction 2 (Weighted Isolated Edge Removal). Suppose e ∈ E free in M with
w(e) ≥ maxf∈N (e) w(f),that is w(e) ≥ w(f) for each f that is adjacent to e. If for all
f, g ∈ N (e) exists a vertex w ∈ V(f)∩V(g) with (residual) capacity b(w)−|M(w)| = 1
then e is part of an optimal solution.

Proof. Because e and all its adjacent edges contain at least one vertex with residual
capacity 1, we can only select at most one edge in N (e) while excluding all other
edges in this neighborhood. An optimal solution M∗ must contain at least one edge
of N (e) or otherwise e would be free. Given any optimal solution M∗ with f ∈ M∗

for some f ∈ N (e)\{e} then M∗\{f} ∪ {e} is also an optimal solution if w(e) ≥
maxf∈N (e) w(f).

An example for this is shown in Figure 4.2, where the blue edge dominates its
clique neighborhood with a weight of 8. All edges share one common vertex with
capacity 1 and have a lower weight than the blue edge.

In Algorithm 2 we show an algorithm to detect isolated edges. We first collect all
blocking edges on capacity 1 vertices (Nb) and all other edges (Nl). If Nl is a subset
of Nb and e dominates Nb weight–wise, we can directly add e to the matching.

Although this might prune the search space, it might be computational to expen-
sive. Lamm et al. [51] use a similar technique for the maximum weighted independent
set problem, they limit the search to cliques of size two or three. The structure of
most hypergraphs clearly differs from that and hyperedges usually contain more ver-
tices, which makes finding cliques harder. Therefore, we decided to limit our search
in our experiments to hyperedges of size 5 or smaller and check only the candidates
if there are less than 10 of them.

19

4 Hypergraph b-Matching Reductions

1

22
7

8

6

6

Figure 4.2: Example for the Weighted Isolated Edge Removal: All edges form a clique, as
they share a common pin with capacity 1. The blue edge is guaranteed to be
part of the matching, because it has the highest weight in this clique. The
Neighborhood Removal is not applicable, as the blue edge does not dominate
the weight of the sum.

Algorithm 2 Algorithm for Finding Isolated Edges.
1: procedure IsolatedEdgeRemoval(H = (V, E), M)
2: for e ∈ E free do
3: Nb ← ∅
4: Nl ← ∅
5: for v ∈ V(e) do
6: if b(v)− |M(v)| = 1 then
7: Nb ← Nb ∪ E(v)
8: else
9: Nl ← Nl ∪ E(v)

10: end if
11: end for
12: if maxen∈Nb

w(en) ≤ w(e) ∧Nl ⊆ Nb then
13: M ←M ∪ {e}
14: end if
15: end for
16: end procedure

20

4.3 Weighted Edge Folding

4.3 Weighted Edge Folding
The before introduced reductions work by removing vertices respectively edges from
the graph. The following proposal modifies the structure of the hypergraph and
postpones some decisions to a later point.
Reduction 3 (Weighted Edge Folding). Let e ∈ E be a free hyperedge and N =
N (e)\e be the edges adjacent to e. Suppose the following holds:

(i) Each edge in N is linked to e via a vertex with residual capacity b(v)−|M(v)| = 1,

(ii) N is independent, that is the set of vertices for all distinct f, g ∈ N are disjoint,

(iii) e has a higher weight than each combination without one edge alone, but smaller
weight than all together, that is w(e) > w(N)−minf∈N{w(f)} and w(N) > w(e)

then we can “fold” e and N in an altered hypergraph H ′. The altered hypergraph H ′

contains a new edge e′ with w(e′) := w(N)−w(e) and V(e′) = ∪
f∈N V(f) instead of N

and e. Let M ′ be the optimal solution of H ′. The weight of the maximum b-matching
in H is w(M ′) + w(e). If the matching M ′ contains e′ then N is contained in an
optimal solution for H. Otherwise, e is contained in a maximum matching in H.
Proof. We first show, that either e or all edges in N are contained in a maximum
b-matching M∗. Requirement (ii) guarantees that N as a whole could be in M∗.
Assumption (i) allows us only to have either e or any edge of N . Let F ⊂ N be
a part of the exact solution F ⊂ M∗ of the hypergraph H, we show that F = N
or e ∈ M∗. Because of (iii), we know that w(e) > w(N) − minf∈N{w(f)} ≥ w(F).
Therefore, if F were a real subset, we could swap it for e in M∗ and gain a better
result proving the assumption of M∗ optimal wrong. If N is not part of M∗, we
can include e in the matching, because all its adjacent edges N are not part of the
matching.

The vertices of e′ in H ′ correspond to those of N in H. The vertices of e in H are
only contained in e′ in H ′, because N are all its adjacent edges, but do not have any
other edge incident. Therefore, if e′ is not in M ′ the edge e must be in an optimal
solution for H and otherwise N is included in an optimal solution for H.

The formula for the weight is correct, as either e is included in the optimal matching
for H, when e′ is not contained in M ′, or the weight of M ′ contains w(e′) and thus
the optimal solution in H has weight w(M ′) + w(e) = w(M ′\{e′}) + w(e′) + w(e) =
w(M ′\{e′}) + w(N)− w(e) + w(e) = w(M ′\{e′}) + w(N).

Algorithm. We present an algorithm for finding edges with two adjacent edges to
fold in Algorithm 3. Only edges of size 2 are considered, we collect the neighbors on
the two vertices with capacity 1 and check if they are independent. If so, we merge
the independent neighboring edges and replace the neighbors and e by this merged en

with a new weight.

21

4 Hypergraph b-Matching Reductions

1 1

3
4

6

Figure 4.3: Example for the weighted vertex folding reduction: The green edge has exactly
two non-adjacent neighbors (blue), that it dominates one by one, but not in
total. The three edges can be folded and later be decided on.

Algorithm 3 Algorithm For Finding an Edge Folding.
1: procedure EdgeFolding(H = (V, E), M)
2: for e ∈ E , that is free in M ∧ |e| = 2 do
3: candidate← True
4: neighbors← ∅
5: for v ∈ V(e) do
6: if |v| > 2 ∨ b(v) > 1 then
7: candidate← False
8: else
9: neighbors← neighbors ∪ E(v)\{e}

10: end if
11: end for
12: if candidate ∧ neighbors independent then
13: if w(neighbors) > w(e) ∧maxen∈neighbors w(en) ≤ w(e) then
14: V(en)← ∪

e∈neighbors V(e)
15: w(en)← w(neighbors)− w(e) ▷ Assign new weight
16: E ← E\(neighbors ∪ {e}) ∪ {en} ▷ Replace edges
17: end if
18: end if
19: end for
20: end procedure

22

4.4 Weighted Twin

4.4 Weighted Twin
In the following we present a reduction that groups non-adjacent edges with the same,
independent neighborhood together. We can then decide on them, either by applying
the neighborhood removal or the edge folding.

Reduction 4 (Weighted Twin). Suppose e1, e2 ∈ E are non-adjacent and free. Let
Li be the set of edges that are linked with ei via a vertex with residual capacity of
1. Suppose L1 = L2, Li = N (ei)\{ei} and Li independent. If w({e1, e2}) > w(L1)
then e1 and e2 are guaranteed to be in an optimal solution. If w({e1, e2}) > w(L1)−
minn∈L1 w(n) then the Weighted Edge Folding reduction can be applied for a combined
edge of e1 and e2.

Proof. Let H ′ be a modified version of H, replacing e1, e2 for an edge e′ with w(e′) =
w(e1) + w(e2) and V(e′) = V(e1). Since L1 = L2 and all edges in L2 are linked via
a capacity 1 vertex we do not need to include the vertices in V(e2). Any capacity
constraint for an edge in L2 at a vertex in V(e2) is also present at a vertex in V(e1).
If w(e′) > w(L1) e′ is weighing more than all of its neighbors combined, thus we
could always include it instead of a subset of L1, gaining a better solution. If w(e′) >
w(L1)−minn∈L1 w(n) the properties for the weighted edge folding are satisfied, since
the neighbors L1 of e1 are linked via residual capacity 1 vertex (i), L1 is independent
(ii) and the weight inequalities (iii) hold.

An example for this folding twin reduction can be found in Figure 4.4. An al-
gorithm for finding twins is listed in Algorithm 4. The algorithm first identifies all
possible candidates that have only degree 2 vertices. Afterwards, we identify twins
and either apply the neighborhood removal and add them directly to the matching.
If they only dominate their neighborhood except for one edge, we merge the edges
and assign a new weight to the new combined edge.

The scope of this reduction is rather small and computational expensive, because
finding and validating, that two hyperedges have identical linked independent neigh-
bors takes many comparisons. Moreover, the restriction to linked edges, required by
the weighted vertex folding is constraining.

23

4 Hypergraph b-Matching Reductions

Algorithm 4 Algorithm for finding twins
1: procedure TwinReduction(H = (V, E), M)
2: candidates← ∅
3: for e ∈ E , that is free and |e| ≤ 4 do
4: candidate← True
5: neighbors← ∅
6: for v ∈ V(e) do
7: if |v| > 2 ∨ b(v)− |M(v)| > 1 then
8: candidate← False
9: else

10: neighbors← neighbors ∪ v\{e}
11: end if
12: end for
13: if candidate then
14: candidates← candidates ∪ {(e, neighbors)}
15: end if
16: end for
17: for ∃N, e1 ̸= e2 : (e1, N), (e2, N) ∈ candidates do
18: if N is independent then
19: if w({e1, e2}) ≥ w(N) then ▷ Check for weight dominance
20: M ←M ∪ {e1, e2}
21: else
22: if w({e1, e2}) > w(N)−mine∈N w(e) then
23: V(en)← ∪

e∈N V(e)
24: w(en)← w(N)− w({e1, e2}) ▷ Assign new weight
25: E ← (E\(N ∪ {e1, e2})) ∪ {en} ▷ Replace edges
26: end if
27: end if
28: end if
29: end for
30: end procedure

24

4.4 Weighted Twin

1

11

1

10
106

5

9 =20 -11

Figure 4.4: Example for the weighted twin reduction: The blue edges (u, v) are sharing the
same independent linked neighbors via a vertex with residual capacity 1. As
they satisfy the weight constraint for a folding (w({u, v}) > w(N (u)\{u}) −
mine∈N (u)\{u} w(e)), they can be folded, the new edge only contains the outer
vertices of the neighbors and has the new adapted weight 11. If the new edge
is part of the matching M ′ on the modified hypergraph H ′, the independent
neighbors are part of an optimal matching, otherwise the twins are part of an
optimal matching. In any case the new weight of the matching is w(M ′) +
w({u, v}).

25

4 Hypergraph b-Matching Reductions

4.5 Weighted Domination

The original domination proposed by Fomin et al. [26] for the maximum (unweighted)
independent set reasoned, that vertices that have a bigger neighborhood can be re-
placed by the one having fewer neighbors. We extend this idea to edges in a hyper-
graph.

Reduction 5 (Weighted Domination). Let e, f ∈ E be two free edges with w(e) ≥
w(f). Suppose V(e) is a subset of V(f) and there is v ∈ V(e) ⊆ V(f) with residual
capacity of b(v)− |M(v)| = 1. The edge e is always an equally good choice instead of
f , so f can be removed from the hypergraph.

Proof. Since there is one vertex v with b(v)−|M(v)| = 1 in V(e) ⊆ V(f) at most one
of e or f can be in the maximum matching. It directly follows that e is an equal or
better choice, because of its higher or equal weight and its vertices being a subset of
those of f . Therefore, f can be removed from the hypergraph.

An example for this can be seen in Figure 4.5, where the green edge is a subset of the
red edge, but has a higher weight. This reduction does not work on normal, undirected
graphs, because we do not look into graphs with multiple edges and the probability
of having different sized edges through other reductions is very low. Therefore, we
propose to limit the search for edges with different sizes.

In Algorithm 5 we show an implementation in pseudocode for finding a weighted
domination. We iterate over each edge and check if it has a higher weight and strictly
smaller size than its neighboring edges at a vertex with residual capacity of 1. After
collecting all candidates we check, which of these candidates are strict super sets and
remove them. We restrict the algorithm to strict super sets, because otherwise on
normal or d-uniform hypergraphs, we would collect for the highest weighting edge at
a vertex we would collect all other edges as candidates, making this approach unfa-
vorable.

26

4.5 Weighted Domination

15 6

Figure 4.5: Example for the weighted domination reduction: The green edge is a subset
of the red edge, has a higher weight and they share a common vertex with
capacity 1.

Algorithm 5 Finding Super-set Edges, that Have a Smaller Weight.
1: procedure WeightedDomination(H = (V, E), M)
2: for esmall ∈ E do
3: candidates← ∅
4: for v ∈ V(esmall) do ▷ Collect Candidates
5: if b(v)− |M(v)| = 1 then
6: for e ∈ E(v), e ̸= esmall do
7: if |e| > |esmall| ∧ w(e) ≤ w(esmall) then
8: candidates← candidates ∪ {e}
9: end if

10: end for
11: break ▷ Stop collecting candidates
12: end if
13: end for
14: for v ∈ V(esmall) do ▷ Check super-set property
15: candidates← {c ∈ candidates | v ∈ V(c)}
16: end for
17: E ← E\candidates ▷ Remove super sets
18: end for
19: end procedure

27

4 Hypergraph b-Matching Reductions

4.6 Abundant Vertices Reduction
In addition to the reductions inspired by the maximum weighted independent set
problem, we propose the removal of abundant vertices.

Reduction 6 (Abundant Vertices). A vertex v ∈ V is abundant, if the remaining
capacity b(v) − |M(v)| is equal or exceeds its degree of free edges, as it does not
constitute a selection problem. The vertex can be removed and edges that become
empty are part of an optimal solution.

Proof. Let m be the number of free edges containing v ∈ V and m ≤ b(v)− |M(v)|,
all the edges incident in v could be selected at v. Thus, we can remove v from the
hypergraph. If there is an edge e ∈ E , only containing v, it is part of an optimal
solution, since it can not be blocked at any other vertex.

Algorithm 6 shows an implementation for this reduction. An example for this can
be seen in Figure 4.6. We apply this removal strategy after every reduction, as it is
not costly.

Algorithm 6 Algorithm for Removing Abundant Vertices from the Hypergraph.
1: procedure Abundant(H = (V, E), M)
2: for v ∈ V do
3: if b(v)− |M(v)| ≥ |{e ∈ E(v) | e free in M}| then
4: for e ∈ E(v) do
5: if |V(e)| = 1 then ▷ Check if edge would be empty.
6: M ←M ∪ {e}
7: end if
8: end for
9: Remove v from V

10: end if
11: end for
12: end procedure

28

4.6 Abundant Vertices Reduction

1

21 1

1 11

2
10

30

3

10

1

21 1

1 1 1

1 1 1

1

2

10

303

10

Figure 4.6: Example for the abundant vertices reduction. The hypergraph is pruned from
all vertices, where no decision is to be made.

29

4 Hypergraph b-Matching Reductions

30

CHAPTER 5
Priority Approaches

In this chapter we discuss a naive approach for computing a matching based on
priority functions. We distinguish between static priority functions and those, which
dynamically update based on previous additions to the matching.

Priority Heuristics for b-Matching
We focus in this section on how to compute a good initial matching based on a priority
function approach. The core idea is to assign each edge a positive priority value and
then adding the highest-valuing edge greedily. The framework for selecting the edges
can be seen in Algorithm 7.

Algorithm 7 A Naive Greedy Algorithm for Finding an Arbitrary b-Matching in a
Hypergraph, Based on a Priority Function h : E → R+.

1: procedure HeuristicMatching(H = (V, E), M)
2: while ∃e ∈ E that is free do
3: e← argmaxe∈E,e freeh(e)
4: M ←M ∪ {e}
5: end while
6: end procedure

We distinguish between two different classes of priority functions. On the one
hand, there are static functions, where the value only depends on the initial structure
of the hypergraph and does not change during execution. On the other hand, we
classify those functions, that require a recalculation conditional on the change to the
hypergraph upon insertion of edges as dynamic functions.

31

5 Priority Approaches

Static Priority Functions. Intuitively, the simplest priority function for the
weighted b-matching is the weight mapping itself. We can scale the weight function
with the capacity at each node of the edge or the smallest capacity:

hstatic,ratio(e) := w(e)
∏

v∈V(e)
b(v) (5.1)

hstatic,min(e) := w(e) min
v∈V(e)

b(v) (5.2)

The core idea behind these two functions is, that we want to select edges, that do
not exhaust the capacity first. Note, that hstatic,ratio(e) prefers bigger edges, as each
vertex of an edge contributes with its capacity, possibly bigger than 1.

Dynamic Priority Functions. We adapt the approach in Section 5.1 by accounting
for only the unmatched part of the edges.

hdynamic(e) := w(e)
∏

v∈V(e)
b(v)− |M(v)| (5.3)

Furthermore, we propose to scale the multipliers by the degree of each vertex. The
intuition is that now only vertices are influencing the product, where a decision is
to be made. The multipliers are between 0 and 1, where a higher capacity leads to
bigger multiplier, but not an exponential growth by edge size.

hdynamic,degree(e) := w(e)
∏

v∈V(e)

b(v)− |M(v)|
|E(v)|

(5.4)

All these approaches are very inflexible and greedy. Thus, they will not lead to
an optimal solution in many cases. We will discuss the experimental differences in
Section 8.4. We will investigate further improvements in the next chapters.

32

CHAPTER 6
Local Search & Local Improvement

In this chapter we present our ideas for improving results of a matching by iterated
local search and local improvement strategy. Iterated local search works by finding
improvements on the neighborhood scale of a problem, while a local improvement
works by solving an exact solution in parts of the hypergraph.

6.1 Iterated Local Search

In this section we describe the algorithm for an iterated local search, which is inspired
by the proposed one by Andrade et al. [1] and improved by Dahlum et al. [14] for
the maximum independent set problem. Their algorithm works by identifying (1, 2)–
swaps, leading to a local optima, perturbation by randomly forcing vertices into the
solution and iterating this multiple times.

A (1, 2)–swap replaces one vertex by two vertices, that are only blocked by this
first vertex. In the weighted case, the weight of these two vertices must be greater
than those of the single vertex. This idea of identifying (1, 2)–swaps and perturba-
tion to escape local optima can be directly transferred to the b-matching problem in
hypergraphs. In the following we describe this adapted algorithm.

Hypergraph Setting. In the setting of hypergraph b-matchings edges instead of
vertices are in focus. An edge is blocking another edge, if it shares vertices of the
edge, where the capacity is exhausted. Therefore, we are searching for two edges in
the adjacent edges, that are blocked by the first edge, but either share no common
vertex or are at a non–blocking vertex.

33

6 Local Search & Local Improvement

(1, 2)-Swaps. In Algorithm 8 the modified (1, 2)-swap is shown. We first collect all
neighboring edges, that satisfy the condition of being only blocked by c. In a second
step we identify a pair of edges, that are not blocked at a common vertex. If we
find such an edge pair we include them in the matching and remove the original edge
from it.

Algorithm 8 (1, 2)-Swaps for Weighted Hypergraph b-Matching
1: procedure OneTwoSwap(H = (V, E), M)
2: for c ∈M do ▷ Every edge in the matching is a candidate
3: l← ∅
4: for p ∈ V(c) do ▷ Go over each vertex of the edge
5: for e ∈ E(p) do ▷ Only add edges to candidate set
6: that have blocked edges that are blocked by c
7: if e /∈M ∧ blocked(e, M) ⊆ blocked(c, M) then
8: l← l ∪ {e}
9: end if

10: end for
11: end for
12: if |l| > 1 then
13: if ∃x, y ∈ l : blocked(y, M\{c} ∪ {y}) ∩ blocked(x, M\{c} ∪ {x}) = ∅

∧ w(x) + w(y) > w(c) then ▷ Do not have
14: a common blocked vertex
15: M ←M \ {c} ∪ {x, y} ▷ Replace c by x and y if applicable
16: M ← maximize(M) ▷ Restore maximal property
17: return true
18: end if
19: end if
20: end for
21: return false
22: end procedure

Perturbation. This algorithm ends up in a local optima, if executed repeatedly.
Therefore, we propose to perturb the solution similarly to Andrade et al. [1]. In
Algorithm 9 this perturbation framework is shown. At a first step, the number of
candidates to be swapped into the solution is generated. With a low probability
of 1

2|M |
, the number is determined by geometric distribution. Otherwise, it is simply

set to 1. Then the candidates are either decided on by random or selected in the
2–neighborhood of one of κ = 4 randomly drawn edges. The distribution and κ are
directly taken from the setting of the maximum weight independent set problem.

34

6.1 Iterated Local Search

Algorithm 9 Perturbation for Weighted Hypergraph b-Matching
1: procedure Perturb(H = (V, E), M)
2: α← random number in [1, 2|M |]

k ← 1
3: if α = 1 then
4: k ← 2
5: while Coin flip is head do k ← k + 1
6: end while
7: end if
8: if k=1 then
9: select x ∈ E \M randomly ▷ Remove all blocking edges

10: M ← (M \ ∪v∈blocked(x,M) E(v)) ∪ {x} ▷ and replace with candidate
11: else
12: select κ = 4 random edges from E \M
13: x← edge that has been added/ in the solution the longest time
14: N2 ←

∪
n∈N (x)N (n) \ N (x) ▷ The 2-neighborhood

15: K ⊂ N2, |K| ≤ k ▷ Select up to k candidates
16: for e ∈ K do
17: M ← (M \ ∪v∈blocked(e,M) E(v)) ∪ {e} ▷ Force e into solution
18: end for
19: end if
20: M ← maximize(M)
21: return M
22: end procedure

Algorithm 10 Iterated local search for weighted hypergraph matching
1: procedure ILS(H = (V, E), M)
2: b←M
3: while not stopping criterion met do
4: M2 ← Perturb(H, M)
5: while OneTwoSwap(H, M2) do
6: end while
7: if w(M2) > w(M) then M ←M2
8: else if uniformRand(0, 1) < 1

(w(b)−w(M2))(w(M)−w(M2)) then M ←M2

9: end if
10: if w(M) > w(b) then b←M
11: end if
12: end while
13: return b
14: end procedure

35

6 Local Search & Local Improvement

Iterated Local Search. The whole process is driven by the iterated local search
shown in Algorithm 10. As long as the stopping criterion (in our case a time con-
straint) is not met, the solution gets perturbed, then improved by (1, 2)–swaps and
finally evaluated. A better solution is always accepted as a new starting point. With
a probability of

1
(w(b)− w(M2))(w(M)− w(M2))

we allow a slightly worse solution to be the starting point of our next iteration. This
allows us, to faster escape a local optima. The further we are away from the optimal
solution and the current starting point, the more unlikely it is, that we will change
our starting point. A new global best is always accepted and stored.

Further Improvements. In order to dramatically shrink the number of iterations
of Algorithm 8, we propose to use the timestamping framework, we later devise in
Section 7.2 for the (1, 2)–swaps and after perturbation.

6.2 Local Improvement
The improvement by the iterated local search presented in the previous section is
limited by finding local optima only through (1, 2)-swaps and perturbation. In this
section we propose to find better solutions by exactly solving parts of the hypergraph,
that are discovered by a breadth-first-search with a limited number of edges.

In Algorithm 11 the breadth–first search on hypergraphs is shown. We collect the
edges in a list that acts as a queue and also store the already visited vertices. The
loop works exactly like a classical breadth–first search, but instead of iterating over
all outgoing edges, the vertices of an edge are visited and their incident edges added
to the queue, if the target size has not been reached.

The local improvement scheme is displayed in Algorithm 12. It has two main
parameters: t the repetition time and k the number of edges in the exactly solved
part of the graph. We start the BFS t times by selecting an edge, that is not part of the
solution. The idea behind this approach is similar to the local search perturbation. By
starting at a non–solution edge we discover a new sub graph. The k collected edges Ee

are then solved by an exact integer linear program that respects the residual capacity
at vertices, where we were not able to collect all edges due to our size constraint n.
At vertices that were not collected completely the capacity is adjusted so that edges
that are part of the solution, but not collected are still forming a valid b-matching
together. In this algorithm we treat the integer linear program as a black box solver
for our sub problem, it can be described by
max

∑
e∈Ee

xe · w(e) s.t. ∀v ∈ V :
∑

e∈Ee(v)
xe ≤ b(v)− |(M\Ee)(v)| xe ∈ {0, 1} ∀e ∈ E .

(6.1)

36

6.2 Local Improvement

Figure 6.1: The blue edge was sampled randomly and for k = 5 the green edges will be
solved exactly.

The maximization term is the sum of the weight of the selected edges, while the
second part restricts the number of selected edges to obey to the residual capacity at
each vertex. The residual capacity allows keeping edges that are not part of Ee, but
in M , in M and produces a valid b-matching.

An illustration of this can be seen in Figure 6.2. The blue edge was randomly
sampled and for a collection of 5 edges, the green sub graph will be solved exactly.

37

6 Local Search & Local Improvement

Algorithm 11 Limited Breadth–First–Search for Hypergraphs
1: procedure BFS(H = (V, E),e,k)
2: visitededge ← [e]
3: visitedvertex ← {}
4: i← 0
5: while |visitededge| < k ∧ i < |visitededge| do
6: i← i + 1
7: c← visitededge[i]
8: for v ∈ V(c) do
9: if v ̸∈ visitedvertex then

10: visitedvertex ← visitedvertex ∪ {v}
11: for d ∈ E(v) do
12: if d ̸∈ visitededge ∧ |visitededge| < k then
13: visitededge ← append(visitededge, d)
14: end if
15: end for
16: end if
17: end for
18: end while
19: return visitededge

20: end procedure

Algorithm 12 Local Improvement Algorithm for Finding Optimal Solutions in Sub-
graph

1: procedure LocalImprovement(M ,H = (V, E), k,t)
2: for i:=1,...,t do
3: e← random(E\M) ▷ Sample starting edge from non–solution edges
4: Ee ← BFS(H, e, k) ▷ Initialize subgraph with k edges around e
5: Me ← ILP (Ee) ▷ Exactly solve subgraph
6: for f ∈ Ee do ▷ Update solution
7: if f ∈Me then
8: M ←M ∪ {f}
9: else

10: M ←M\{f}
11: end if
12: end for
13: end for
14: end procedure

38

CHAPTER 7
Data Structures

In this chapter we develop a data structure to store hypergraphs and b–Matching in
hypergraphs efficiently. The structure of this chapter is as follows: We first introduce
the data structure to store modifiable hypergraphs and then proceed to the structure
holding the matching. Finally, we present the meta information we are storing in our
matching structure in order to save computational time for operations that would
usually require using the hypergraph structure.

7.1 Modifiable Hypergraph
A hypergraph can be described by a vector of vectors of vertices and a list of lists
of edges that contain a reference to the other list. Because the number of edges and
vertices are fixed in hypergraph partioning, Schlag et al. [68] merge the list of lists
into a big array storing references to start and endpoints in a separate array, making
the structure more cache efficient. Some of our reductions require the hypergraph to
be modifiable in that sense, that we want to merge edges and remove vertices. We
do not need operations of adding edges or vertices. Therefore, we can not rely on the
previous work.

A merge of multiple edges can be described by a repeated merge of two edges.
We describe the merge of two edges by deactivating one edge and inserting the ad-
ditional vertices of the deactivated edge into the remaining edge. Therefore, we will
discuss three operations: deactivating, activating single edges, merging two edges and
unmerging them.

Deactivating and Activating. For each edge and vertex we are storing which ver-
tices or edges are incident to them. Retrieving the size of an edge or degree is a
common operation. Furthermore, we would like to reduce the number of allocations
needed for our operation, as resizing an array is costly. Consequently, we store the

39

7 Data Structures

current size of an edge or number of incident edges for a vertex separately. When
we deactivate an edge, we can simply move its reference in all vertices to the current
size and then reduce the stored size by one. The edge list consisting of the vertices
the edge was incident is deactivated by prefixing the current size of it to negative.
For activating a previously deactivated edge, we swap the edge in the vertex with
the edge at position of the current size plus one and then increase the size by one.
Furthermore, we can flip the sign of the current size of the edge to enable it. Thus,
the number of times, when we have to allocate extra memory is limited.

Merging and Unmerging. We insert the vertices of the deactivated edge into the
remaining edge. Naturally, we have to store the vertices that are newly added to
the edge. Later, we unmerge an edge by removing the additional vertices of the
deactivated edge and activating the edge. Furthermore, we have to check for vertices
that have been deactivated in the meantime and ignore them.

7.2 b–Matching
The core idea of this data structure is to provide quick access to solution, unmatched
and blocked edges. Therefore, we store the ids of the hyperedges in these three
compartments. In order to access the information in which compartment a specific
hyperedge is, we store the position of each hyperedge in a separate array. In Figure 7.1
an example for the first part of the data structure is shown. If we add a hyperedge to
the solution, we must move all neighbors, that are becoming blocked by at least one
vertex of the added edge to the blocked section. This structure also allows to quickly
maximize a matching by simply inserting the first free edge until no edge is left over,
a procedure outlined in Algorithm 13.

Algorithm 13 A naive greedy algorithm for finding an arbitrary b-matching in a
hypergraph.

1: procedure Maximize(M)
2: while ∃e ∈ E that is free do
3: M ←M ∪ {e}
4: end while
5: end procedure

Precomputed Information. This basic structure allows us to implement most of
our algorithms. Nevertheless, there are basic operations that are still costly. In
the following we give an intuition, why we need to store additional information.
This includes information about the number of blocked vertices, matched edges and
blocked edges at vertices and latest change information on the edges.

40

7.2 b–Matching

1

2

solution free blocked
green | blue red yellow | black

21

1 1

1

1

1

2 1

Figure 7.1: Data structure for storing a b-matching. We store the indices of the edges in
three sections. The green edge is part of the solution at this stage. It blocks
the black edge. The yellow edge is not blocked, because the capacity at their
common vertex is 2.

Number of Blocking Vertices. The number of blocking vertices in an edge is a
useful shortcut. Otherwise, checking if an edge is still blocked after the removal of a
neighboring edge requires searching in all its vertices for blocking incident edge. With
this information we only need one pass over the vertices of the edge we are removing
and through updating the information on the incident edges. We can decide if they
have to be moved in the data structure to a different section. For the matched edges
we store, how many vertices they block. This allows us to quickly identify, whether
a blocked edge is only blocked by one edge and could be swapped for it.

41

7 Data Structures

Matched and Blocked Edges at a Vertex. In two separate arrays we store how
many edges are in the matching or blocked at a vertex. This is needed, as we often
access this information, and we do not want to recompute this every time by iteration.
The information, how many edges are not blocked is not that interesting and can be
simply computed from the node degree and the blocked or matching count.

Timestamping Changes in the Neighborhood. As we do not want to iterate over
all edges after a change, we need an additional array storing a “timestamp”. We
update the timestamp every time we add or remove a neighbor to the solution or
(in case of a reduction) change the hypergraph in the neighborhood. This allows to
quickly detect changes during the iteration by simply comparing the timestamp to
the previous one.

42

CHAPTER 8
Experimental Evaluation

In this chapter we are going to discuss the results obtained by our algorithms devised
in Chapter 4 and 6. We implemented them and the data structures defined in Chap-
ter 7 using C++. The KaHyPar library by Schlag et al. [68] influenced our interfaces
of the several classes. In order to solve integer linear programs and obtain exact
results we use Gurobi [38]. For comparison, we are linking the libraries by Khan et
al. [48] for b-matching on normal graphs and the library for d-uniform, d-partite hy-
pergraphs by Dufosse et al. [20] into our benchmark suite. They work with separate
input file types as specified by the respective authors. The structure of this chapter is
as follows, we first introduce the setup for the experiments, our benchmark instances
and then present the results for our experiments.

8.1 Methodology
In this section we describe our methodology for our experiments including the system
we used, how we executed experiments and how we compare them graphically.

System. All of our experiments were carried out either on a 16–core Intel(R)
Xeon(R) Silver 4216 running at 2.10 GHz equipped with 96 GB of RAM. All programs
where compiled with clang++-15 and the following flags: -O3 -march=native.

Execution Policies. For experiments with our heuristics that incorporate random-
ness such as iterated local searches or ILPs solved by Gurobi, we run the experi-
ments 10 times and take the arithmetic mean as result per instance. Deterministic
experiments were only executed once iff the results (size, weight) and not the time
was measured. The experiments were scheduled in parallel up to the numbers of cores
of the machine and the number of cores used by Gurobi was limited to one.

43

8 Experimental Evaluation

Instance Edges Nodes
mouse-gene 14 461 095 45 101
Fault_639 13 987 881 638 802
astro-ph 121 251 16 706
cond-mat-2005 175 693 40 421
gas_sensor 818 224 66 917
Reuters911 148 038 13 332
turon_m 778 531 189 924
kron_g500-logn21* 91 040 932 2 097 152
dielFil.V3real 44 101 598 1 102 824
bone010 35 339 811 986 703

Table 8.1: Instances from the Florida Sparse Matrix Collection by Davis and Hu [15], se-
lected by Khan et al. [48]. Due to its large size we exclude kron_g500-logn21
in some of experiments with Gurobi.

Performance Profiles. For comparison we are using performance profiles as pro-
posed by Dolan and Moré [16]. We plot which fraction of instances is solved by an
algorithm to size of at least τw(Mopt), 0 < τ ≤ 1 and Mopt being the best matching
reported by all heuristics. Thus, having a fraction near 1.0 for a high τ is considered
a good performance, because a high fraction of instances is then solved to near opti-
mum.

Time Performance Profiles. Similarly, we are using these profiles by Dolan and
Moré [16] to compare execution duration of approaches. Here τ is greater than 1,
for each instance the time is marked relative as multiplicative of the minimum time
needed to solve the instance exactly.

8.2 Instances
We test our algorithms on a variety of hypergraph and undirected graph types.

8.2.1 Graphs
The graphs used span a wide variety of purposes. We rely on two types of graphs,
real–world instances and synthetically generated graphs, mimicking social networks.

Florida Sparse Matrix Collection. We use the graphs from the Florida Sparse
Matrix Collection by Davis and Hu [15], as proposed by Khan et al. [48]. The list of
the used instances are shown in Table 8.2.1.

44

8.2 Instances

R–MAT. We use KaGen by Funke et al. [27] to generate a total of 90 instances of
the R-MAT type using the generator by Hübschle-Schneider and Peter Sanders [43].
RMAT graphs have a recursive structure allowing them to mimic social networks
according to Chakrabarti et al. [9]. We generate 30 instances with 216,217 and 218

nodes and resp. 265 860, 2 658 600 and 26 586 000 edges. As parameter set for the
recursive structure of 30 graphs (ten per size) each we chose (0.55, 0.15, 0.15, 0.15),
(0.45, 0.15, 0.25, 0.15) and (0.25, 0.25, 0.25, 0.25), these parameters are those selected
by Khan et al. [48].

8.2.2 Hypergraphs
We focus on three types of hypergraphs: d-uniform, d-partite hypergraphs, hyper-
graphs derived from incident matrices and those derived from neighborhoods of undi-
rected graphs.

d-uniform, d-partite Hypergraphs. As special class of hypergraphs we use d-
uniform, d-partite hypergraphs, proposed by Dufosse et al. [20]. In these hypergraphs
edges contain each one vertices out of d categories and all have the size of d. For d = 6
160 hypergraphs were generated by the planted scheme. The planted hypergraphs by
Dufosse et al. [20] are relatively sparse.

Hypergraphs Derived from Incident Matrices. Hypergraphs can be retrieved from
incident matrices. A non-zero entry at index (x, y) defines a connection between edge
x and vertex y. We collected 354 matrices from the suite sparse collection categories
combinatorial and circuits by Davis and Hu [15]. The instances contain between 6
and 564 480 vertices and 10 to 376 320 hyperedges. In most of the experiments we
focus on 329 instances with up to 20 000 hyperedges and refer to these instances as
Matrix Market collection.

Hypergraphs Derived from Neighborhood Structure of Graphs. Furthermore, we
derived hypergraphs from graphs by their neighborhood structure. For each vertex
in the original graph we generate a hyperedge with its neighbors. We selected the
citation and co-authorship networks, as used by Geisberger et al. [33] and available
via Bader et al. [4]. The transformation is very similar to those derived from incident
matrices: The graph can be represented by the adjacency matrix (with a full diago-
nal), which then can be used as incident matrix for the transformation. We collected
5 instances with between 227, 320 and 540, 486 hypervertices and hyperedges.

8.2.3 Weights
Lastly, we have to define, how we assigned weight to the edges and vertices in our
hypergraph and graph instances.

45

8 Experimental Evaluation

Reduction Constraint Default
Neighborhood Removal edge size 4
Isolated Edge Removal edge size 5
Isolated Edge Removal clique size 10
Weighted Domination edge size 6
Twin Folding edge size 4
All iterations 10

Table 8.2: Overview over the constraints of the reductions.

Edge Weights. We assign each edge a uniformly distributed random weight be-
tween 1 and 100. For some experiments we used uniform edge weights.

Vertex Weights. In our experiments we will test uniform capacities between 1 and
10, where we assign all vertices the same capacity. The implementation is also able
to handle non-uniform capacities.

The remainder of this chapter is organized as follows: We first investigate how our
reductions speed up the black box solver by Gurobi [38] on hypergraphs. Then we
compare our priority functions with bSuitor by Khan et al. [48] on normal graphs. We
compare our iterated local search with Karp–Sipser scaling by Dufosse et al. [20] on d-
uniform, d-partite hypergraphs with uniform edge weight. Finally, we benchmark our
iterated local search with the local improvement scheme we devised in Section 6.2.

8.3 Reductions and Speedup

In this experiment we investigate, how well our reductions can speed up solving
b-matching problems with Gurobi [38] as black–box solver. We apply our search
algorithms for the reductions in the constrained setting up to ten times and pass
the resulting core problem to Gurobi and compare its total run time to the time
it takes to solve the whole (hyper-)graphs without reduction. Furthermore, we test
our reductions with and without constraint, the constraints are listed in Table 8.3.
The runtime of the program with reductions includes the search time to find the
reductions. We set a timeout for the Gurobi computations of 3 600 seconds and test
it on uniform capacities of 1, 3 and 5. Only instances that Gurobi can solve exactly
in this time limit are considered. In the figures the exact solver without reductions is
referred to by ilp_exact, the one with reductions with the constraints by reductions_ilp
and the one without constraints by reductions_unconstrained_ilp.

46

8.3 Reductions and Speedup

6–uniform, 6–partite Hypergraphs. In Figure 8.1 we show a time performance
profile on the planted hypergraphs, generated by the scheme provided by Dufosse et
al. [20]. For the 34 instances that Gurobi can solve with capacity 1 we can report a
geometric mean speed up of roughly 25%. About 20% of the instances are not speed
up by applying the reductions. The 40 instances on capacity 3 are speed up by a
factor of 5.9 and the 80 instances with capacity 5 are speed up by a factor of 5. For
these capacities every instance is speed up by applying reductions. The unconstrained
reduction version is always slower, for capacity 3 and 5 roughly 4 to 5 times for the
slowest instance.

Table 8.3 shows the impact of the reductions on the hypergraph instances. The
higher the capacity the more edges are removed by our reductions. The unconstrained
version sometimes removes more edges and vertices, but most of the time the average
speedup relative to solving it directly is smaller than in the constrained version. For
instances with capacity 5 only a few edges are passed on to Gurobi, explaining the
speedup.

Matrix Market Hypergraphs. The results on the hypergraphs based on incident
structure from the Florida Sparse Matrix collection are shown in Figure 8.2. For
capacity 1 we can report a speed up of about 20%, for capacity 3 the run time only
improves slightly and for capacity 5 we can half the execution time on average for the
restricted reductions. For all capacities there are few instances that do not benefit
from the restricted reductions. The unrestricted reductions take on some, but few
instances over 1000 times the optimal time.

Neighborhood Structure Hypergraphs. In Figure 8.3 the results for the hyper-
graphs based on neighboring structure from citation networks are shown. For the
5 instances of hypergraphs based on the neighborhood structure of graphs we can
report a speed up of nearly factor two for capacity 1, 10% for capacity 3 and 15% for
capacity 5. For capacity 5 only four of the five instances can be solved exactly dur-
ing the time given. The unconstrained version is always slower than the constrained
version of the reductions, but faster than the version without any reductions. The
overall speed up is not that pronounced as in the case of the planted hypergraphs.

Florida Sparse Matrix Collection Graphs. In Figure 8.4 the comparison between
the restricted version of the reductions and the solving only with Gurobi [38], we omit
the unconstrained version of reductions, since no reduction constraint is applicable
to these graphs. The six out of nine solvable instances roughly take the same time
for the reductions and the direct solving. For capacity 3 there is one instance that
can be solved five times faster.

47

8 Experimental Evaluation

1 1.2 1.4 1.6

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 34 Planted Hypergraphs
(e-weight random(100), capacity 1)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

2 4 6 8
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 40 Planted Hypergraphs
(e-weight random(100), capacity 3)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

2 4 6 8 10
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 80 Planted Hypergraphs
(e-weight random(100), capacity 5)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

Figure 8.1: Impact of the reductions on exactly solvable planted hypergraphs shown in a
time performance profile.

48

8.3 Reductions and Speedup

C
on

st
ra

in
ed

In
st
an

ce
s

#
Ed

ge
s

#
Ve

rt
ic
es

Sp
ee
du

p
#

Ve
rt
ic
es

#
Ed

ge
s

b(
v)

24
00

0
40

00
1

10
35

12
.4
0

14
39

0.
70

1.
04

3
10

17
5.
50

89
57

.4
0

7.
79

5
10

0.
60

88
52

.2
0

8.
08

80
00

1
10

75
08

.2
0

14
32

9.
80

1.
53

3
10

15
60

.2
0

10
65

.8
0

4.
31

5
10

9.
90

5.
60

9.
91

12
00

0
5

10
21

01
.7
0

23
60

.6
0

4.
24

16
00

0
5

10
67

55
.2
0

39
80

.6
0

2.
21

48
00

0
80

00
1

4
69

98
.5
0

28
67

6.
50

1.
17

3
10

34
4.
90

17
85

4.
50

8.
42

5
10

0.
30

17
65

0.
20

9.
16

16
00

0
1

10
15

03
8.
70

28
71

8.
60

1.
55

3
10

30
39

.8
0

20
69

.6
0

4.
51

5
10

18
.3
0

10
.4
0

10
.4
4

24
00

0
5

10
43

46
.1
0

47
85

.5
0

4.
14

32
00

0
5

10
13

55
4.
10

80
14

.9
0

2.
03

U
nc

on
st

ra
in

ed
In
st
an

ce
s

#
Ed

ge
s

#
Ve

rt
ic
es

Sp
ee
du

p
#

Ve
rt
ic
es

#
Ed

ge
s

b(
v)

24
00

0
40

00
1

10
34
98

.6
0

14
36
7.
60

0.
98

3
10

17
2.
00

89
55
.7
0

2.
51

5
10

0.
60

88
52
.2
0

1.
94

80
00

1
10

74
91

.9
0

14
29
4.
80

1.
24

3
10

15
16

.3
0

10
40

.5
0

3.
36

5
10

9.
90

5.
60

4.
93

12
00

0
5

10
20

45
.7
0

23
38
.8
0

3.
60

16
00

0
5

10
67

16
.7
0

39
64
.8
0

1.
91

48
00

0
80

00
1

4
69

62
.5
0

28
61

7.
50

1.
33

3
10

33
8.
80

17
85
1.
90

3.
50

5
10

0.
30

17
65
0.
20

3.
05

16
00

0
1

10
15
00

9.
40

28
66

1.
80

1.
37

3
10

29
64
.6
0

20
28
.9
0

4.
30

5
10

18
.3
0

10
.4
0

7.
70

24
00

0
5

10
42

19
.7
0

47
31
.3
0

3.
81

32
00

0
5

10
13
48

4.
00

79
84
.8
0

1.
83

Ta
bl

e
8.

3:
Im

pa
ct

of
th

e
co

ns
tr

ai
ne

d
an

d
un

co
ns

tr
ai

ne
d

re
du

ct
io

ns
on

th
e

ex
ac

tly
so

lv
ab

le
in

st
an

ce
s’

ed
ge

an
d

ve
rt

ex
co

un
tf

or
6-

un
ifo

rm
,6

-p
ar

tit
e

hy
pe

rg
ra

ph
s.

T
he

av
er

ag
e

ve
rt

ex
co

un
t

in
cl

ud
es

th
e

re
m

ai
ni

ng
ve

rt
ic

es
af

te
r

re
du

ct
io

ns
,w

hi
le

th
e

ed
ge

co
un

t
on

ly
co

nt
ai

ns
un

so
lv

ed
ed

ge
s.

Sp
ee

du
p

is
re

la
tiv

e
to

so
lv

in
g

di
re

ct
ly

.

49

8 Experimental Evaluation

5 10 15
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 257 MatrixMarket Hypergraphs
(e-weight random(100), capacity 1)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

5 10 15
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 239 MatrixMarket Hypergraphs
(e-weight random(100), capacity 3)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

5 10 15

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 271 MatrixMarket Hypergraphs
(e-weight random(100), capacity 5)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

Figure 8.2: Impact of the reductions on exactly solvable matrix market incident hyper-
graphs displayed in a time performance profiles.

50

8.3 Reductions and Speedup

1 1.5 2 2.5
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 5 Dimacs10 Hypergraphs
(e-weight random(100), capacity 1)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

1 1.1 1.2 1.3 1.4 1.5
0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 5 Dimacs10 Hypergraphs
(e-weight random(100), capacity 3)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

1 1.05 1.1 1.15 1.2
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 4 Dimacs10 Hypergraphs
(e-weight random(100), capacity 5)

ilp_exact
reductions_ilp
reductions_unconstrained_ilp

Figure 8.3: Impact of the reductions on exactly solvable dimacs10 hypergraphs shown in a
time performance profile.

51

8 Experimental Evaluation

5 10 15

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 6 MatrixMarket Hypergraphs
(e-weight random(100), capacity 1)

ilp_exact
reductions_ilp

5 10 15

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 6 MatrixMarket Hypergraphs
(e-weight random(100), capacity 3)

ilp_exact
reductions_ilp

5 10 15

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Time Performance Profile on 6 MatrixMarket Hypergraphs
(e-weight random(100), capacity 5)

ilp_exact
reductions_ilp

Figure 8.4: Impact of the reductions on exactly solvable graphs from the Florida Sparse
Matrix Collection.

52

8.4 Comparing Priority Functions with bSuitor

Algorithm Name Type Description
bmindegree_dynamic dynamic greedy descending weight scaled by residual ca-

pacity/degree
bratio_dynamic dynamic greedy descending weight scaled by residual ca-

pacity
bratio_static greedy descending weight scaled by capacity
bmult_static greedy descending weight scaled by minimum ca-

pacity of vertices
default_order greedy default order
bweight greedy descending weight

Table 8.4: Algorithm configuration for priority functions. Dynamic greedy approaches are
recomputed after every insertion.

8.4 Comparing Priority Functions with bSuitor
In this experiment we are comparing our priority functions devised in Section 5
on RMAT graph instances and those graphs from the Florida Sparse Matrix Col-
lection, selected by Khan et al. [48] with the bSuitor implementation provided by
Khan et al. [48]. A summary of the configuration can be found in Table 8.4.

RMAT Instances. The performance profiles are shown in Figure 8.4. On the RMAT
instances the performance of bSuitor is exactly matched by the priority function solely
based on weight (bweight) on all capacities. The priority function based on the edge
weight scaled by the residual capacity divided by the degree (bmindegree_dynamic)
outperforms all other functions on capacity 1, but as the capacity per node grows,
falls behind the weight based functions. For higher capacity the scaling by residual
capacity per node (bratio_dynamic) works very well. The unordered adding of edges
(default_order) trails all other functions.

The difference between the bmindegree_dynamic and bratio_dynamic is only the
division by the node degree. As the capacity grows this scaling seems to be infeasible
and degrade performance. The impact is so strong, that the performance is worse
than the simple weight based functions. The improvement on this type of graph by
scaling the weight with the residual capacity is about 1/20th and reasonable.

Florida Sparse Matrix Collection Instances. In Figure 8.4 the results on the 10
selected instances from the Florida Sparse Matrix Collection are shown. The match-
ing problem (b(v) = 1) the same bmindegree_dynamic dominates the results and as
capacity grows does not fall behind the weight based priority functions. Further-
more, the results match those on the RMAT instances: The bratio_dynamic, scaling

53

8 Experimental Evaluation

by the degree, works very well on higher capacity and on some instances yields a 10%
improvement over the other approaches. In this experiment we solely looked at the
result quality. The bSuitor algorithm by Khan et al. [48] is up to 20 times faster than
our naive greedy implementation.

8.5 Local Search Experiments
In the following section we investigate the quality improvement by our iterated lo-
cal search framework, devised in Section 6.1, and compare it to previous work by
Dufosse et al. [20] on d–uniform, d–partite hypergraphs with uniform weight. The
two approaches kss and ksmd by Dufosse et al. [20] were linked into our programs.
For the Karp–Sipser scaling approach kss we chose 20 iterations. We compare these
two approaches with our approaches, which combine a greedy approach with iterated
local search and reductions.

6-uniform, 6-partite Hypergraphs. The results on planted hypergraphs with uni-
form weight are shown in Figure 8.5. The bratio_dynamic trails all other approaches
due to the uniform weight and reaches on some instances only 50% of the size. The
combination of reductions and iterated local search and iterated local search alone
perform equally good and solve approximately 80% of the instances better than ap-
proaches by Dufosse et al. [20]. The ksmd solves roughly 25% on the same level as
our approaches, reaches the level of our approaches at 0.9 and behaves exactly the
same for lower τ . Some instances are solved better by the kss approach by Dufosse et
al. [20] then the ksmd and our approaches, as seen by the fact, that the kss approach
first reaches 100%.

8.6 Local Improvement Experiments
In this section we compare our iterated local search approach to the local improvement
approach on different capacities. We compare the local improvement with range 100
and 1000 with the iterated local search, both get 15 or 100 seconds of computation
time respectively and run ten repetitions.

6-uniform, 6-partite Hypergraphs. In Figure 8.6 the results for the iterated search
vs local improvement on planted hypergraphs with capacity 1 and 3 are displayed.
On capacity 1 the iterated local search for 100 seconds yields the best results. The
time constrained version for 15 seconds returns on these hypergraphs second, while the
local improvement strategies yield considerably worse results. In contrast, on capacity
3 the local improvement with 1000 edges for 100 seconds run time outperforms all
other techniques.

54

8.6 Local Improvement Experiments

0.60.70.80.91
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
90 RMAT Graphs

(e-weight random(100), capacity 1)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.70.80.91
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
90 RMAT Graphs

(e-weight random(100), capacity 5)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.70.80.91
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
90 RMAT Graphs

(e-weight random(100), capacity 10)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.750.80.850.90.951
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
90 RMAT Graphs

(e-weight random(100), capacity 15)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

Figure 8.5: Performance Profile showing different priority functions on 90 RMAT instances
with different capacities.

55

8 Experimental Evaluation

0.50.60.70.80.91
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
10 Florida Graphs

(e-weight random(100), capacity 1)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.60.70.80.91
0

0.5

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
10 Florida Graphs

(e-weight random(100), capacity 5)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.60.70.80.91

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
10 Florida Graphs

(e-weight random(100), capacity 10)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

0.60.70.80.91

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on
10 Florida Graphs

(e-weight random(100), capacity 15)

bmindegree_dynamic
bmult_static
bratio_dynamic
bratio_static
bsuitor
bweight
default_order

Figure 8.6: Performance Profile showing different priority functions on 10 Florida Sparse
Matrix Collection instances with different capacities.

56

8.6 Local Improvement Experiments

0.50.550.60.650.70.750.80.850.90.951

0

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Size Performance Profile on 160 Planted Hypergraphs
(e-weight uniform, capacity 1)

bratio_dynamic
bratio_dynamic+ils100
ksmd
kss
reductions+bratio_dynamic+ils100

Figure 8.7: Performance Profile showing different approaches by Dufosse et al. [20] com-
pared to our local search approach on 160 6–uniform, 6–partite hypergraph
instances.

57

8 Experimental Evaluation

0.760.780.80.820.840.860.880.90.920.940.960.981

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on 160 Planted Hypergraphs
(e-weight random(100), capacity 1)

reductions+bratio_dynamic+ils100
reductions+bratio_dynamic+ils15
reductions+bratio_dynamic+local_improvement(100)100
reductions+bratio_dynamic+local_improvement(100)15
reductions+bratio_dynamic+local_improvement(1000)100
reductions+bratio_dynamic+local_improvement(1000)15

0.930.940.950.960.970.980.991

0

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on 160 Planted Hypergraphs
(e-weight random(100), capacity 3)

reductions+bratio_dynamic+ils100
reductions+bratio_dynamic+ils15
reductions+bratio_dynamic+local_improvement(100)100
reductions+bratio_dynamic+local_improvement(100)15
reductions+bratio_dynamic+local_improvement(1000)100
reductions+bratio_dynamic+local_improvement(1000)15

Figure 8.8: Performance Profile showing different iterated local search and local improve-
ment strategies on planted (d = 6) instances.

58

8.6 Local Improvement Experiments

Matrix Market Instances. The local improvement strategy failed due to too high
memory consumption while solving the ILP with Gurobi on one of the instances. On
the remaining 328 instances from the Matrix Market, the iterated local search for
100 seconds dominates the local improvement schemes for capacity 1. The local im-
provement scheme with higher distance return better results. The difference between
the one that ran for 100 and 15 seconds is not big. With distance 100 it requires a
τ = 0.75 to solve all instances.

On capacity 3 the difference is not that pronounced (overall τ of 0.85), but the
iterated local search trails all local improvement strategies. The longer the distance
the better the results for the local improvement scheme are.

59

8 Experimental Evaluation

0.80.820.840.860.880.90.920.940.960.981
0.5

0.6

0.7

0.8

0.9

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on 328 MatrixMarket Hypergraphs
(e-weight random(100), capacity 1)

reductions+bratio_dynamic+ils100
reductions+bratio_dynamic+ils15
reductions+bratio_dynamic+local_improvement(100)100
reductions+bratio_dynamic+local_improvement(100)15
reductions+bratio_dynamic+local_improvement(1000)100
reductions+bratio_dynamic+local_improvement(1000)15

0.80.820.840.860.880.90.920.940.960.981

0.2

0.4

0.6

0.8

1

Tau

Fr
ac
tio

n
of

pr
ob

le
m
s

Weight Performance Profile on 328 MatrixMarket Hypergraphs
(e-weight random(100), capacity 3)

reductions+bratio_dynamic+ils100
reductions+bratio_dynamic+ils15
reductions+bratio_dynamic+local_improvement(100)100
reductions+bratio_dynamic+local_improvement(100)15
reductions+bratio_dynamic+local_improvement(1000)100
reductions+bratio_dynamic+local_improvement(1000)15

Figure 8.9: Performance Profile showing different iterated local search and local improve-
ment strategies on matrix market instances.

60

CHAPTER 9
Discussion

In the following we discuss the results obtained from our experiments. We start
with the exact reductions on hypergraphs, cover the results on graph b-matching,
hypergraph matching and examine the results on our local improvement and iterated
local search approach. Afterwards, we conclude and give an outlook over possible
future work in the field.

Exact Reductions on Hypergraphs and Graphs. We engineered several data reduc-
tions for the problem such as the Neighborhood Removal and the Weighted Isolated
Edge Removal identifying solution edges. The Weighted Twin and Edge Folding re-
ductions alter the graph and postpone decisions, while the Weighted Domination and
Abundant Vertices reduction exclude non-solution edges and prune vertices. The
residual problem is solved as integer linear program exactly with Gurobi [38]. The
experiments show that we can speed up a black box solver like Gurobi with our
reductions in comparison to just solve them directly. The planted hypergraphs by
Dufosse et al. [20] are more prone to our reductions than the other types of hyper-
graphs. On the planted hypergraphs, the higher the capacity the more pronounced
the speedup is. However, for the other hypergraph classes the speedup is higher for
capacity 1 than for the higher capacities. Nevertheless, we can report a significant
speed up over all classes of hypergraphs. However, on a few instances it takes more
time to search for the reductions than to simply solve the whole b-matching prob-
lem directly, even with the constrained version of our reductions. By restricting the
search space and the number of passes we achieve a good balance between speed
up and reducing the problem eagerly. For undirected graphs, like those selected by
Khan et al. [48], the speedup in the current implementation is not that pronounced.
Furthermore, the problem sizes are different from those of the incident hypergraphs
which contain far fewer edges. In our experiments we used static numbers for the size
restrictions, number of search iterations and all reductions at once, which is definitely
worth further investigations.

61

9 Discussion

Graph b-Matching Problem. We developed weight and (residual) capacity based
heuristics for greedily computing initial solutions for the matching problem. These
heuristics are dynamically, because they rely on updates after the insertion of an
edge to the matching. In the case of graph b-matching, our priority approaches yield
better results on the RMAT and matrix based instances than the simply weight
based bSuitor greedy approaches, implemented by Khan et al. [48]. Nevertheless,
our results confirm, that the implementation by Khan et al. [48] is very efficient and
fast for obtaining approximating solutions. It might be worth considering to use
similar techniques, like those bidding structures, to find a good initial matching in
hypergraphs. These solutions could be then improved by either iterated local search
or the local improvement scheme.

Hypergraph Matching Problem. The results from the initial computed solutions
can be improved by the iterated local search that we developed in Chapter 6. On
d-uniform, d-partite hypergraphs our iterated local search can boost the solution
quality drastically and outperform the results of Karp–Sipser–Scaling by Dufosse et
al. [20] except for a few instances for the simple cardinality matching problem in hy-
pergraphs. Since the approaches by Dufosse et al. [20] only work on uniform weighted
hypergraphs our reductions are not feasible on these instances. It might be worth
considering using the Karp–Sipser–Scaling solution as base for our improvements via
iterated local search on uniform edge weight instances, guaranteeing an equal or bet-
ter result than the simple Karp–Sipser–Scaling for all instances alone.

Local Improvement and Iterated Local Search. In Chapter 4 we also developed an
improvement scheme which solves sub graphs exactly using an integer linear program.
This technique is very similar to the iterated local search, as both techniques try
to find local improvements. Our iterated local search approach yields good results
compared to the local improvement strategy via an ILP for small capacities. The
higher the number of edges considered in the local improvement scheme is, the better
solution quality we can achieve. In some instances of the matrix market this setting
implied that we almost solved the whole or half hypergraph, which is unfeasible with
data of real-world size. Additionally, we could not estimate the memory consumption
of Gurobi [38] on those instances beforehand, whereas the memory consumption for
the iterated local search is bounded.

The use of Gurobi [38] as black box solver for these sub problems and for exactly
solving instances should be further discussed. The black box characteristic of this
solver makes it hard to understand, how our reductions reduce the execution time.
Furthermore, the memory consumption of Gurobi can not be derived only by the size
of the problem and is sometimes very high, causing the program to fail and requiring
a rerun with fewer concurrent processes.

62

9.1 Conclusion

9.1 Conclusion

In this thesis we presented six novel exact reduction for the b-matching problem in
hypergraphs, heuristics for computing a good initial matching and strategies to im-
prove the quality of the matching by either iterated local search or a local improvement
scheme. Furthermore, we presented an efficient data structure to store b-matching
and modifiable hypergraphs, as some of our reductions change the shape of our hy-
pergraphs. In experiments we showed the competitiveness of these approaches in
comparison with recent results by Dufosse et al. [20] and Khan et al. [48].

The first two reductions, Neighborhood Removal and Weighted Isolated Edge Re-
moval, identify edges with high weight and dominating their neighborhood weight
wise, allowing us to determine that they are part of the solution. The Weighted Edge
Folding reduction combines three or more edges to an edge and postpones the decision
to a later point. The Weighted Twin reduction searches for edges that have common
neighbors and either applies a variant of the Neighborhood Removal or the Weighted
Edge Folding reduction, depending on the weight configuration of the common neigh-
borhood. The Weighted Domination reduction finds edges that are guaranteed to be
not part of the solution, as they are weight dominated by an edge formed by a subset
of vertices. Our last reduction, the Abundant Vertices Reduction removes all vertices,
that do not constitute a decision problem and adds vanishing edges to the solution.

The initial solutions we have obtained from weight heuristics can be improved by
an iterated local search or a local improvement strategy. The iterated local search
works by identifying edges that can be swapped for a solution edge, increasing the
weight of the b-matching leading towards a local optima. By applying perturbation
we can escape those local optima. The local improvement scheme solves sub problems
exactly and improves the solution quality.

We presented two data structures for modifiable hypergraphs and b-matching. Our
timestamping framework for edges allows us to quickly skip edges and vertices that
have not been changed since the last scan.

We implemented our reductions, iterated local search and local improvement strat-
egy in C++ and thoroughly tested them in our experiments. The experiments show
that all classes of hypergraphs benefit from the reductions, when they are solved ex-
actly with Gurobi [38]. The static size constrains for the several reductions balance
the speedup and reduction impact. Our initial solutions for the graph b-matching
problem outperform those by Khan et al. [48]. For the matching problem in hyper-
graphs we can report that our iterated local search outperforms the Karp–Sipser–
Scaling approaches by Dufosse et al. [20]. The iterated local search is very effective
on low b values, as finding swaps is easier. For higher capacities finding swaps via
local improvement strategies is more viable.

63

9 Discussion

9.2 Future Work
In this thesis we focused on the development of novel reductions for the hypergraph
b-matching problem. It would be interesting to look into exactly solving the problem
using a branch and reduce framework utilizing our novel reductions. Furthermore,
we restricted our reductions by forcing neighboring edges to be adjacent via degree-2
vertices, it might be worth investigating, how we could relax the conditions of our
reductions and broaden their applicability. Additionally, we could investigate, how
ordering the entries for edges and vertices in memory could help reduce algorithmic
complexity, when searching for subsets or merging edges.

Furthermore, the rise of parallel computing architectures calls for the adaptation
of parallelism in our reductions search and iterated local search framework. Examples
for good parallel implementation ideas for finding an initial matching for graphs are
shown in the work of Khan et al. [48], maybe it is possible to transfer those to the
b-matching problem in hypergraphs.

On the modelling side, the weight function could be made submodular to have a
similar problem to those described by Ferdous et al. [25] for normal graph b-matching.
Finally, it might be interesting to turn our attention to dynamic or online hypergraph
b-matching problems. In this problem the hypergraph is not known in advance or
gets modified after during the process by edge insertions and deletions. The match-
ing needs to be updated after every update in the hypergraph and keeping quality
guarantees would be very challenging.

64

9.2 Future Work

Zusammenfassung

Ein Hypergraph ist eine Generalisierung eines Graphens, in dem mehr als zwei Knoten
in einer Kante sein können. Für das gewichtete b-Matching Problem gilt es die höch-
ste Summe von gewichteten Kanten auszuwählen, während für jeden Knoten eine
Maximalanzahl an Kanten ausgewählt sein darf. In dieser Arbeit präsentieren wir
sechs neue, exakte Reduktionen für dieses Problem und eine iterierte lokale Suche,
sowie ein lokales Verbesserungsschemata. Die exakten Reduktionen erlauben uns zu
entscheiden, ob Kanten im Matching enthalten sind oder gar nicht Teil der Lösung
sein können. Die iterierte lokale Suche funktioniert über das Finden von möglichen
verbesserenden Wechseln von zwei Kanten für eine Lösungskante, während das lokale
Verbesserungsschemata einen Teilgraphen exakt löst. In Experimenten zeigen wir die
Effektivität unserer Reduktionen und das Potential der iterierten lokalen Suche und
des lokalen Verbesserungsschemata zur Verbesserung von Lösungen, die wir durch
einfache gewichtsbasierte Heuristiken erhalten.

65

Bibliography

[1] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck.
Fast local search for the maximum independent set problem. J. Heuristics, 18
(4):525–547, 2012. doi: 10.1007/s10732-012-9196-4. URL https://doi.org/
10.1007/s10732-012-9196-4.

[2] Georg Anegg, Haris Angelidakis, and Rico Zenklusen. Simpler and Stronger
Approaches for Non-Uniform Hypergraph Matching and the Füredi, Kahn, and
Seymour Conjecture, pages 196–203. doi: 10.1137/1.9781611976472.22. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611976472.22.

[3] Eugenio Angriman, Henning Meyerhenke, Christian Schulz, and Bora Uçar.
Fully-dynamic weighted matching approximation in practice. In SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21), pages
32–44. SIAM, 2021.

[4] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner.
Benchmarking for graph clustering and partitioning. In Encyclopedia of Social
Network Analysis and Mining, pages 73–82. Springer, 2014.

[5] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route
planning in transportation networks. Algorithm engineering: Selected results and
surveys, pages 19–80, 2016.

[6] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchi-
nava. Efficient parallel and external matching. In Felix Wolf, Bernd Mohr,
and Dieter an Mey, editors, Euro-Par 2013 Parallel Processing - 19th In-
ternational Conference, Aachen, Germany, August 26-30, 2013. Proceedings,
volume 8097 of Lecture Notes in Computer Science, pages 659–670. Springer,
2013. doi: 10.1007/978-3-642-40047-6_66. URL https://doi.org/10.1007/
978-3-642-40047-6_66.

[7] Ulrik Brandes, Linton C. Freeman, and Dorothea Wagner. Social networks. In
Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization, pages
805–839. Chapman and Hall/CRC, 2013.

67

https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
https://epubs.siam.org/doi/abs/10.1137/1.9781611976472.22
https://doi.org/10.1007/978-3-642-40047-6_66
https://doi.org/10.1007/978-3-642-40047-6_66

Bibliography

[8] Shaowei Cai, Wenying Hou, Jinkun Lin, and Yuanjie Li. Improving local search
for minimum weight vertex cover by dynamic strategies. In IJCAI, pages 1412–
1418, 2018.

[9] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recur-
sive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 442–446. SIAM, 2004.

[10] Krzysztof M Choromanski, Tony Jebara, and Kui Tang. Adaptive anonymity
via b-matching. Advances in Neural Information Processing Systems, 26, 2013.

[11] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Man-
agement Sciences Research Group, 1976.

[12] Marek Cygan. Improved approximation for 3-dimensional matching via bounded
pathwidth local search. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 509–518. IEEE, 2013.

[13] Marek Cygan, Fabrizio Grandoni, and Monaldo Mastrolilli. How to sell hyper-
edges: The hypermatching assignment problem. In Proceedings of the twenty-
fourth annual ACM-SIAM symposium on Discrete algorithms, pages 342–351.
SIAM, 2013.

[14] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren
Strash, and Renato F Werneck. Accelerating local search for the maximum
independent set problem. In Experimental Algorithms: 15th International Sym-
posium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings 15, pages
118–133. Springer, 2016.

[15] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix col-
lection. ACM Trans. Math. Softw., 38(1), dec 2011. ISSN 0098-3500. doi:
10.1145/2049662.2049663. URL https://doi.org/10.1145/2049662.2049663.

[16] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software
with performance profiles. Mathematical Programming, 91(2):201–213, 2002. doi:
10.1007/s101070100263. URL https://doi.org/10.1007/s101070100263.

[17] Yuanyuan Dong, Andrew V Goldberg, Alexander Noe, Nikos Parotsidis, Mauri-
cio GC Resende, and Quico Spaen. A local search algorithm for large maximum
weight independent set problems. In 30th Annual European Symposium on Al-
gorithms (ESA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[18] Doratha E Drake and Stefan Hougardy. A simple approximation algorithm for
the weighted matching problem. Information Processing Letters, 85(4):211–213,
2003.

68

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263

Bibliography

[19] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight
matching. J. ACM, 61(1), jan 2014. ISSN 0004-5411. doi: 10.1145/2529989.
URL https://doi.org/10.1145/2529989.

[20] Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Uçar. Effective
heuristics for matchings in hypergraphs. In International Symposium on Exper-
imental Algorithms, pages 248–264. Springer, 2019.

[21] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:
449–467, 1965. doi: 10.4153/CJM-1965-045-4.

[22] Jack Edmonds and Ellis L Johnson. Matching, euler tours and the chinese
postman. Mathematical programming, 5:88–124, 1973.

[23] Mourad El Ouali and Gerold Jäger. The b-matching problem in hypergraphs:
Hardness and approximability. In Guohui Lin, editor, Combinatorial Optimiza-
tion and Applications, pages 200–211, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg. ISBN 978-3-642-31770-5.

[24] Mourad El Ouali, Antje Fretwurst, and Anand Srivastav. Inapproximability of
b-matching in k-uniform hypergraphs. In Naoki Katoh and Amit Kumar, editors,
WALCOM: Algorithms and Computation, pages 57–69, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. ISBN 978-3-642-19094-0.

[25] S M Ferdous, Alex Pothen, Arif Khan, Ajay Panyala, and Mahantesh Ha-
lappanavar. A Parallel Approximation Algorithm for Maximizing Submodu-
lar b-Matching, pages 45–56. doi: 10.1137/1.9781611976830.5. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611976830.5.

[26] Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer
approach for the analysis of exact algorithms. Journal of the ACM (JACM), 56
(5):1–32, 2009.

[27] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash,
and Moritz von Looz. Communication-free massively distributed graph genera-
tion. In 2018 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2018, Vancouver, BC, Canada, May 21 – May 25, 2018, 2018.

[28] Martin Fürer and Huiwen Yu. Approximating the k-set packing problem by
local improvements. In Combinatorial Optimization - Third International Sym-
posium, ISCO 2014, Revised Selected Papers, Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pages 408–420, Germany, 2014. Springer Verlag. ISBN
9783319091730. doi: 10.1007/978-3-319-09174-7_35. 3rd International Sympo-
sium on Combinatorial Optimization, ISCO 2014 ; Conference date: 05-03-2014
Through 07-03-2014.

69

https://doi.org/10.1145/2529989
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611976830.5

Bibliography

[29] Harold N Gabow. An efficient reduction technique for degree-constrained sub-
graph and bidirected network flow problems. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 448–456, 1983.

[30] Harold N Gabow. Data structures for weighted matching and nearest common
ancestors with linking. In Proceedings of the first annual ACM-SIAM symposium
on Discrete algorithms, pages 434–443, 1990.

[31] Harold N Gabow and Robert E Tarjan. Faster scaling algorithms for general
graph matching problems. Journal of the ACM (JACM), 38(4):815–853, 1991.

[32] Michael R Garey and David S Johnson. Computers and intractability, volume
174. freeman San Francisco, 1979.

[33] Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approxima-
tion of betweenness centrality. In 2008 Proceedings of the Tenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 90–100. SIAM, 2008.

[34] Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and
Bogdán Zaválnij. Boosting data reduction for the maximum weight indepen-
dent set problem using increasing transformations. In 2021 Proceedings of the
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 128–
142. SIAM, 2021.

[35] Giorgos Georgiadis and Marina Papatriantafilou. Overlays with preferences:
Distributed, adaptive approximation algorithms for matching with preference
lists. Algorithms, 6(4):824–856, 2013.

[36] Martin Grötschel and Olaf Holland. Solving matching problems with linear
programming. Mathematical Programming, 33:243–259, 1985.

[37] Jiewei Gu, Weiguo Zheng, Yuzheng Cai, and Peng Peng. Towards computing a
near-maximum weighted independent set on massive graphs. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 467–477, 2021.

[38] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL
https://www.gurobi.com.

[39] Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Recent advances
in fully dynamic graph algorithms, 2021. URL https://arxiv.org/abs/2102.
11169.

[40] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approxi-
mating k-set packing. computational complexity, 15(1):20–39, 2006. doi: 10.1007/
s00037-006-0205-6. URL https://doi.org/10.1007/s00037-006-0205-6.

70

https://www.gurobi.com
https://arxiv.org/abs/2102.11169
https://arxiv.org/abs/2102.11169
https://doi.org/10.1007/s00037-006-0205-6

Bibliography

[41] Rolf H Höhring, Matthias Müller-Hannemann, and Karsten Wiehe. Mesh re-
finement via bidirected flows: Modeling, complexity, and computational results.
Journal of the ACM (JACM), 44(3):395–426, 1997.

[42] Bert Huang and Tony Jebara. Fast b-matching via sufficient selection belief
propagation. In Proceedings of the Fourteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 361–369. JMLRWorkshop and Conference
Proceedings, 2011.

[43] Lorenz Hübschle-Schneider and Peter Sanders. Linear work generation of R-MAT
graphs. Network Science, 8(4):543 – 550, 2020.

[44] Johan Håstad. Clique is hard to approximate within n1−ϵ. Acta Mathematica,
182(1):105 – 142, 1999. doi: 10.1007/BF02392825. URL https://doi.org/10.
1007/BF02392825.

[45] Tony Jebara, Jun Wang, and Shih-Fu Chang. Graph construction and b-
matching for semi-supervised learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, page 441–448, New York,
NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161.
doi: 10.1145/1553374.1553432. URL https://doi.org/10.1145/1553374.
1553432.

[46] Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk.
USSR (NS), volume 37, pages 199–201, 1942.

[47] Richard M Karp and Michael Sipser. Maximum matching in sparse random
graphs. In 22nd Annual Symposium on Foundations of Computer Science (sfcs
1981), pages 364–375. IEEE, 1981.

[48] Arif Khan, Alex Pothen, Md. Mostofa Ali Patwary, Nadathur Rajagopalan
Satish, Narayanan Sundaram, Fredrik Manne, Mahantesh Halappanavar, and
Pradeep Dubey. Efficient approximation algorithms for weighted b-matching.
SIAM Journal on Scientific Computing, 38(5):S593–S619, 2016. doi: 10.1137/
15M1026304. URL https://doi.org/10.1137/15M1026304.

[49] Christos Koufogiannakis and Neal E Young. Distributed fractional packing and
maximum weighted b-matching via tail-recursive duality. In Distributed Com-
puting: 23rd International Symposium, DISC 2009, Elche, Spain, September
23-25, 2009. Proceedings 23, pages 221–238. Springer, 2009.

[50] Piotr Krysta. Greedy approximation via duality for packing, combinatorial auc-
tions and routing. In Mathematical Foundations of Computer Science 2005: 30th
International Symposium, MFCS 2005, Gdansk, Poland, August 29–September
2, 2005. Proceedings 30, pages 615–627. Springer, 2005.

71

https://doi.org/10.1007/BF02392825
https://doi.org/10.1007/BF02392825
https://doi.org/10.1145/1553374.1553432
https://doi.org/10.1145/1553374.1553432
https://doi.org/10.1137/15M1026304

Bibliography

[51] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo
Zhang. Exactly solving the maximum weight independent set problem on large
real-world graphs. In 2019 Proceedings of the Twenty-First Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 144–158. SIAM, 2019.

[52] Kenneth Langedal, Johannes Langguth, Fredrik Manne, and Daniel Thilo
Schroeder. Efficient minimum weight vertex cover heuristics using graph neural
networks. In 20th International Symposium on Experimental Algorithms (SEA
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[53] Eugene L Lawler. Cutsets and partitions of hypergraphs. Networks, 3(3):275–
285, 1973.

[54] Ruizhi Li, Shuli Hu, Haochen Zhang, and Minghao Yin. An efficient local search
framework for the minimum weighted vertex cover problem. Information Sci-
ences, 372:428–445, 2016.

[55] Hui Lin and Jeff Bilmes. Word alignment via submodular maximization over
matroids. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, pages 170–175, 2011.

[56] Rodica Ioana Lung, Noémi Gaskó, and Mihai Alexandru Suciu. A hyper-
graph model for representing scientific output. Scientometrics, 117(3):1361–
1379, 2018. doi: 10.1007/s11192-018-2908-2. URL https://doi.org/10.1007/
s11192-018-2908-2.

[57] Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded
matching algorithms. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 519–528. IEEE, 2014.

[58] ALFRED BURTON MARSH III. Matching algorithms. The Johns Hopkins
University, 1979.

[59] Franco Mascia, Elisa Cilia, Mauro Brunato, and Andrea Passerini. Predict-
ing structural and functional sites in proteins by searching for maximum-weight
cliques. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 24, pages 1274–1279, 2010.

[60] Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted
matching. In WEA, volume 7, pages 242–255. Springer, 2007.

[61] Julián Mestre. Greedy in approximation algorithms. In Algorithms–ESA 2006:
14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006.
Proceedings 14, pages 528–539. Springer, 2006.

72

https://doi.org/10.1007/s11192-018-2908-2
https://doi.org/10.1007/s11192-018-2908-2

Bibliography

[62] Matthias Müller-Hannemann and Alexander Schwartz. Implementing weighted
b-matching algorithms: insights from a computational study. Journal of Exper-
imental Algorithmics (JEA), 5:8–es, 2000.

[63] Bruno Nogueira, Rian G. S. Pinheiro, and Anand Subramanian. A hybrid iter-
ated local search heuristic for the maximum weight independent set problem. Op-
timization Letters, 12(3):567–583, 2018. doi: 10.1007/s11590-017-1128-7. URL
https://doi.org/10.1007/s11590-017-1128-7.

[64] Manfred W Padberg and M Ram Rao. Odd minimum cut-sets and b-matchings.
Mathematics of Operations Research, 7(1):67–80, 1982.

[65] Ojas Parekh and David Pritchard. Generalized hypergraph matching via it-
erated packing and local ratio. In Approximation and Online Algorithms: 12th
International Workshop, WAOA 2014, Wrocław, Poland, September 11-12, 2014,
Revised Selected Papers, pages 207–223. Springer, 2015.

[66] Marco Pavone, Amin Saberi, Maximilian Schiffer, and Matt Wu Tsao. Online
hypergraph matching with delays. Operations Research, 70(4):2194–2212, 2022.

[67] Robert Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In STACS 99: 16th Annual Symposium on Theoret-
ical Aspects of Computer Science Trier, Germany, March 4–6, 1999 Proceedings
16, pages 259–269. Springer, 1999.

[68] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Chris-
tian Schulz, and Peter Sanders. High-quality hypergraph partitioning. ACM J.
Exp. Algorithmics, mar 2022. doi: 10.1145/3529090. URL https://doi.org/
10.1145/3529090.

[69] TW Strijk, AM Verweij, KI Aardal, et al. Algorithms for maximum independent
set applied to map labelling. 2000.

[70] Robert L Thorndike. The problem of classification of personnel. Psychometrika,
15(3):215–235, 1950.

[71] Jeffrey S Warren and Illya V Hicks. Combinatorial branch-and-bound for the
maximum weight independent set problem. Relatório Técnico, Texas A&M Uni-
versity, Citeseer, 9:17, 2006.

[72] Mingyu Xiao, Sen Huang, Yi Zhou, and Bolin Ding. Efficient reductions and
a fast algorithm of maximum weighted independent set. In Proceedings of the
Web Conference 2021, WWW ’21, pages 3930–3940, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450383127. doi: 10.1145/
3442381.3450130. URL https://doi.org/10.1145/3442381.3450130.

73

https://doi.org/10.1007/s11590-017-1128-7
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3529090
https://doi.org/10.1145/3442381.3450130

Bibliography

[73] Ron Zass and Amnon Shashua. Probabilistic graph and hypergraph matching.
In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages
1–8, June 2008. doi: 10.1109/CVPR.2008.4587500.

74

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	General Definitions
	Problem Definitions

	Related Work
	Maximum Weighted Independent Set
	Graph Matching
	Graph b-Matching
	Hypergraph Matching
	Hypergraph b-Matching

	Hypergraph b-Matching Reductions
	Neighborhood Removal
	Weighted Isolated Edge Removal
	Weighted Edge Folding
	Weighted Twin
	Weighted Domination
	Abundant Vertices Reduction

	Priority Approaches
	Local Search & Local Improvement
	Iterated Local Search
	Local Improvement

	Data Structures
	Modifiable Hypergraph
	b–Matching

	Experimental Evaluation
	Methodology
	Instances
	Graphs
	Hypergraphs
	Weights

	Reductions and Speedup
	Comparing Priority Functions with bSuitor
	Local Search Experiments
	Local Improvement Experiments

	Discussion
	Conclusion
	Future Work

	Abstract (German)
	Bibliography

