
Heidelberg University

Faculty of Mathematics and Computer Science

Theoretical Computer Science and Discrete

Mathematics

Master's thesis

Motif-free Graph Generation

Name: Dominik Schweisgut

Student number: 4083524

Supervisor: Professor Felix Joos

Co-Supervisor: Professor Christian Schulz

Date of Submission: June 20, 2024

Ich versichere, dass ich diese Master-Arbeit selbstständig verfasst und nur die angegebe-

nen Quellen und Hilfsmittel verwendet habe und die Grundsätze und Empfehlungen

�Verantwortung in der Wissenschaft� der Universität Heidelberg beachtet wurden.

Abgabedatum: June 20, 2024

Acknowledgments

I would like to express my profound gratitude to Professor Felix Joos and Professor

Christian Schulz. They provided me with the opportunity to work on a topic that is not

only of high theoretical interest but also can be explored through practical approaches.

This has been a valuable chance to delve into both �elds.

Professor Felix Joos consistently o�ered deep insights into the theory, which not only

signi�cantly aided my understanding of theoretical concepts but also proved invaluable

for the practical aspects. It was a pleasure to learn from his intuition and profound

understanding of graph theory. I am truly thankful for his patience in discussing my

questions and for the substantial support he provided throughout my thesis.

Furthermore, I am particularly grateful for the opportunities that Professor Christian

Schulz has given me over the recent years. Starting with programming projects and

continuing as a Student Research Assistant, he has imparted extensive insights into the

�eld of Algorithm Engineering. His guidance has revealed new dimensions of my studies,

and he will always remain an inspiration to me. I can always approach him with any

questions, and he is always willing to help.

I also want to extend my thanks to Adil Chhabra, who has always been available to

answer my questions and provided numerous helpful insights on various topics, signi�-

cantly aiding my job and studies.

Lastly, I want to thank my parents for their unwavering support throughout my life.

Their dedication to giving me the best possible life is something I will forever be grateful

for.

iii

Zusammenfassung

Die Theorie von Zufallsgraphen und insbesondere der zufälligen Graphprozesse hat sich

als leistungsfähige Methode für verschiedene Probleme der Graphentheorie erwiesen.

Insbesondere hat Erdös 1947 die Theorie der Zufallsgraphen mit dem Gebiet der Ramsey-

Theorie verbunden. In dieser Arbeit untersuchen wir zwei Arten von zufälligen Graph-

prozessen. Für bestimmte streng 2-balancierte Graphen H untersuchen wir den H-

freien Prozess und den H-Entfernungs Prozess. Insbesondere der Dreiecks-freie Prozess

hat viel Aufmerksamkeit erregt, da er eine neue untere Schranke für die Ramsey-Zahl

R(3, k) liefert. Bei diesem Verfahren werden zufällige Kanten von Kn nacheinander zu

einem leeren Graphen hinzugefügt, solange sie kein Dreieck schlieÿen. Der Dreiecks-

Entfernungs Prozess funktioniert in umgekehrter Weise, wobei man von einem Kn aus-

geht und die Kanten einer zufälligen Kopie eines Dreiecks entfernt, bis keine solche

Kopie mehr übrig ist. In beiden Fällen ist unser Hauptinteresse die Anzahl der Kan-

ten, die der Zufallsgraph nach Abschluss des Prozesses enthält. Allerdings sind die

Ergebnisse für die H-Entfernungs Prozesse nicht so stark wie für die H-freien Prozesse

und für H ∈ {C4, K4} ist bisher nur wenig bekannt. In der Tat ist der Dreiecks-freie

Prozess der einzige Prozess, bei dem die endgültige Anzahl der Kanten bis auf einen

Fehler im konstanten Faktor mit hoher Wahrscheinlichkeit bekannt ist. In dieser Ar-

beit wollen wir einen experimentellen Ansatz zu diesem Thema liefern, indem wir die

oben genannten Graphprozesse simulieren. Nach einer ausführlichen Einführung in die

Theorie stellen wir Algorithmen zur Simulation dieser Prozesse vor und passen Modelle

an die gewonnenen Daten an. Dabei sind wir in der Lage, bekannte Ergebnisse für den

Dreiecks-freien Prozess zu reproduzieren und damit fundierte Hinweise auf äquivalente

Ergebnisse für andere zufällige Graphprozesse zu liefern, die von der Theorie bisher nicht

behandelt werden konnten.

iv

Abstract

The theory of random graphs and in particular random graph processes proved to provide

powerful methods for various problems in graph theory. In particular, Erdös in 1947

connected the theory of random graphs with the �eld of Ramsey theory. In this thesis,

we study two types of random graph processes. For certain strictly 2-balanced graphs

H we study the H-free process and the H-removal process. Especially the triangle-free

process has gained much attention for giving a new lower bound on the Ramsey number

R(3, k). In this process, random edges of Kn are successively added to an empty graph

as long as they do not close a triangle. The triangle-removal process works the other

way round, starting from a Kn and removing the edges of a random copy of a triangle

until there is no such copy left. In both cases, our main interest is in the number of edges

the random graph contains after the process has �nished. However, the results for the

H-removal processes are not as strong as for the H-free processes and for H ∈ {C4, K4}
only little is known so far. In fact, the triangle-free process is the only process where the

�nal number of edges is known up to an error in the constant factor with high probability.

In this work we provide an experimental approach to this topic by simulating the above

mentioned graph processes. After giving an extensive introduction into the theory, we

develop algorithms for the simulation of these processes and �t models to the obtained

data. In doing so, we are able to reproduce known results for the triangle-free process

and thus provide profound indications for equivalent results for other random graph

processes that could not be treated by theory so far.

v

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Objectives . 3

1.3. Structure . 4

2. Prelimnaries 5

2.1. Notation and basic concepts . 5

2.2. Random graphs . 6

2.3. Lower bounds for the H-free process . 7

2.4. Experimental Methodology . 12

3. The Triangle-free Process 13

3.1. Theoretical Results . 13

3.2. Simulation of the Triangle-free Process 24

3.2.1. Experimental Evaluation . 28

4. The Triangle-removal Process 34

4.1. Theoretical Results . 34

4.2. Simulation of the Triangle-removal Process 50

4.2.1. Experimental Evaluation . 57

5. The C4-free Process 63

5.1. Theoretical Results . 63

5.2. Simulation of the C4-free Process . 72

5.2.1. Intuition for the constant . 73

5.2.2. Simulation algorithms . 73

5.2.3. Experimental Evaluation . 76

6. The C4-removal Process 83

6.1. Simulation of the C4-removal process . 84

6.1.1. Experimental Evaluation . 87

vi

Contents

7. The K4-free Process 94

7.1. Theoretical Results . 94

7.2. Simulation of the K4-free process . 99

7.2.1. Intuition for the constant . 102

7.2.2. Experimental Evaluation . 103

8. The K4-removal Process 108

8.1. Simulation of the K4-removal process . 109

8.1.1. Experimental Evaluation . 111

9. Discussion 117

9.1. Conclusion . 117

9.2. Future Work . 117

A. Experiments on the independence number 119

vii

1. Introduction

1.1. Motivation

Ramsey theory is one of the most studied branches of discrete mathematics and was

named after the seminal result of Ramsey [Ramsey, 1987]. In our context, Ramsey

theory concerns the study of edge colourings of complete graphs. In particular, Ramsey's

theorem states that one �nds monochromatic cliques of a given size in such a colouring if

the complete graph is su�ciently large. In particular, for given integers r, s the Ramsey

number R(r, s) is the smallest integer such that any edge colouring in red and blue of a

complete graph on n ≥ R(r, s) vertices contains either a red copy of a Kr or a blue copy

of a Ks. However, determining the Ramsey number in other than trivial cases remains

hard until today. Erdös and Szekeres [Erdös and Szckeres, 1987] in 1935 proved the

bound

R(k, l) ≤
(
k + l − 1

l − 1

)
which implies for example R(3, k) = O(k2). Further, this theory has been a key

motivation for various powerful techniques in graph theory such as the Probabilis-

tic Method [Alon and Spencer, 2016]. In 1961, Erdös applied a deterministic algo-

rithm to the random graph G(n, p) and was able to prove a lower bound of order

k2/(log k)2 [Erdös, 1961]. In 1980, Ajtai et al. [Ajtai et al., 1980],[Ajtai et al., 1981]

proved that R(3, k) = O(k2/ log k) and Shearer [Shearer, 1983] was able to improve

the constant in this term. A complementary lower bound was obtained in 1995 by

Kim [Kim, 1995], where further the so called semi-random method was developed. How-

ever, Bohman [Bohman, 2009] was able to give an alternative proof of Kim's result

using the so called triangle-free process. In particular, Pontiveros, Gri�ths and Mor-

ris [Fiz Pontiveros et al., 2020] were able to follow the process to its asymptotic end

and signi�cantly improved Kim's result to a lower bound for R(3, k) which is within

a factor of 4 + o(1) of Shearer's bound. This result motivates us to further examine

random graph processes. However, random graph processes are today an interesting

research topic for itself and have also produced high quality results for Turán numbers.

The triangle-free process is thereby a special case of the H-free process where we suc-

1

1. Introduction

cessively add random edges of a Kn to an empty graph as long as they do not close

a copy of H. For strictly 2-balanced graphs this was famously examined by Bohman

and Keevash [Bohman and Keevash, 2009] using the di�erential equations method for

this. In general, the theory of random graph processes was introduced by Erdös and

Rényi [Erdös et al., 1960] in 1959. In their work, they also introduced one of the most

famous objects in combinatorics, the Erdös-Rényi random graph. The general idea for

this graph model is to draw randomly edges from the complete graph Kn. This graph

model plays an important role throughout this work. In general, the whole work is ded-

icated to certain random graph processes such as the triangle-free process. A random

graph process is a sequence of graphs (Gi)i∈N0 , where for j ≥ i the graph Gj is obtained

randomly according to some probabiliy distribution which depends on the sequence

(G0, . . . , Gj−1), see [Fiz Pontiveros et al., 2020]. In fact, the probability distribution of-

ten only depends on the graph Gj−1. The theory of random graph processes is not

only important for Ramsey theory. In particular, random graph processes are occurring

more and more frequently in practice to model real-world scenarios. One example for this

is the preferential-attachement model Barabási and Albert [Barabási and Albert, 1999]

which is used for modelling social structures for example. Further, there exists powerful

algorithms to generate the random graphs obtained by this process such as the parallel

algorithm of Schulz and Sanders [Sanders and Schulz, 2016].

In this work, we examine two types of random graph processes. For a given graph

H ∈ {K3, C4, K4}, which is in this work always strictly 2-balanced, we look at the

above mentioned H-free process and the H-removal process. In particular, our goal is

to simulate these processes to gain more insights about them. In the H-removal process

we start from a complete graph on n vertices and in every step we choose one copy

of H uniformly at random and remove its edges. The process ends when there is no

copy of H left. Note that both processes generate an H-free graph. However, we will

see that they are not equivalent. In particular, to the best of our knowledge only the

triangle-free process was followed until its asymptotic end. In fact, Fiz Pontiveros et

al. [Fiz Pontiveros et al., 2020] show that the �nal number of edges is(
1

2
√

2
+ o(1)

)
n3/2(log n)1/2

with high probability. This means that the error is only within the constant factor.

For all other processes under consideration this has not been achieved yet. However,

what is remarkable about the result of Fiz Pontiveros et al. [Fiz Pontiveros et al., 2020]

is that they basically show that the graphs obtained by the triangle-free process closely

resemble the Erdös-Rényi random graph with the same number of edges, except the fact

2

1. Introduction

that the resulting graph of the triangle-free process contains no triangles. This results

in the fact that we can always use this random graph model for our intuition. This

work exploits this intuition in serveral ways and it is used for example for a heuristic

simulation algorithm for the H-removal process. Further, we expect that this intuition is

true for the C4-free process and theK4-free process as well. For this, we use our intuition

to suggest a similarly strong result as this was proven for the triangle-free process and

afterwards we use simulation algorithms which suggest that these results might hold.

We expect that �nal number of edges can be speci�ed up to an error in the constant for

these graph processes as well. For the H-removal process this is even more challenging.

To the best of our knowledge, the strongest result for this kind of process was proved

by Bohman et al. [Bohman et al., 2015] showing that the �nal number of edges is

n3/2+o(1)

with high probability and we see that the error is here even in the exponent. We

simulate this process and examine the results with respect to the possibility of similar

results as for the triangle-free process. Further, for the C4-removal process and the

K4-removal process not even such a bound is known. However, our simulations give

strong evidence that a similar bound holds with the according exponents. To the best

of our knowledge, this is the �rst work to study these graph processes with modern

algorithms to this extent. The only other numerical simulation was done by Gordon et

al. [Gordon et al., 1996] in 1996 for optimal covering designs with a greedy algorithm

from which one can also draw conclusions for the triangle-removal process for example,

see Bohman et al. [Bohman et al., 2015].

1.2. Objectives

The objective of this work is to gain more insights for the H-free process and the H-

removal process for the cases H ∈ {K3, C4, K4}. For this, we start by giving an extensive
introduction to the theoretical results for the process if there are results available. Af-

terwards, we develop simulation algorithms by exploiting several properties of these

processes. As we already mentioned above the goal, is to provide strong indications

for more precise bounds on the �nal number of edges for the processes. In theory it is

hard to follow theses processes until their asymptotic end since one has to keep track of

several properties of the graphs during the process. However, since every process under

consideration becomes stationary at some point, we are able to simulate the process

until the end. By doing so for several numbers of vertices we �rst reproduce the strong

3

1. Introduction

results for the triangle-free process to see how well this approach works. Afterwards,

we apply this to the other processes to make predictions for similar bounds. This is the

main goal of this work. Further, we shortly analyze the time and memory performance

of the algorithms which is only to some extend optimizable since we have to follow the

process until its end for reliable results. However, we see for the H-removal process that

we can even use a heuristic algorithm for the simulation which has signi�cant ben�ts in

terms of time and memory performance.

1.3. Structure

The remainder of this thesis is structured as follows: In Chapter 2 we describe some

fundamental concepts that we use frequently throughout this work. Here we introduce

some basics that we need regarding the theory of random graphs. Further, we devote

a section to the work of Bohman and Keevash [Bohman and Keevash, 2009]. In their

work, they provide results for the H-free process for several choices of H that we will

use in di�erent places in this thesis. Afterwards, we devote every graph process under

consideration one chapter. If there are already sophisticated results known, we give

an extensive introduction to the current state of the theory by giving an overview on

the proofs and the arguments used. Afterwards, we describe the algorithms that we

use for the simulation of the according process. For the H-removal process we even

develop heuristic algorithms for the simulation. Finally, we analyze the obtained data

with respect to the �nal number of edges in the graph. We look at some basic statistical

properties and �t di�erent models to the data. Further, we also shortly analyze the

time and memory performance of our algorithm. In the appendix, we present some

experiments on the independence number for the triangle-free process and the C4-free

process. This is also interesting in theory for this kind of random graph process.

4

2. Prelimnaries

In this chapter, we introduce the basic notations and concepts we need throughout this

thesis. Further, we present the work of Bohman and Keevash [Bohman and Keevash, 2009]

in Section 2.3 since we need their concepts in various chapters. Since there is, to the best

of our knowledge, no other published work trying to gain insights with the simulation

of these graph processes, we give the related theoretical work to the processes in the

corresponding chapters.

2.1. Notation and basic concepts

In this work, we set N := {1, 2, 3, . . . } and N0 := N ∪ {0}. Further, for any k ∈ N we

write [k] := {1, . . . , k}. We use the usual Landau-notation and asymptotic notation is

understood with respect to n if not otherwise stated. For a, b, c ∈ R we write a ∈ (b± c)
for b − c ≤ a ≤ b + c. The notation 0 < a � b means that there exists an increasing

function f(x) such that the arguments that are made with this assumption hold for

0 < a < f(b). By log n we always mean the natural logarithm. In the context of this

thesis, a graph G = (V,E) is a pair of sets where e ∈ E ⊆ V × V and we only look

at simple graphs without self-loops. We refer to the elements of V as vertices and to

the elements of E as edges. Sometimes we also write V (G) instead of V and E(G)

instead of E if we want to emphasize which graph we are looking at. Further, we de�ne

v(G) := |V (G)| and e(G) := E(G). With this notation, we de�ne the edge density of

G to be 2m/n(n − 1). Note that often we have V = [n] and hence v(G) = n. If not

otherwise stated, an edge (u, v) ∈ E is always meant as undirected. Further, for any

v ∈ V we refer to the set of all adjacent vertices to v excluding v itself by N(v). We

write d(v) for the size of the neighbourhood of v. If we want to emphasize the graph, we

also write dG(v) for the degree and NG(v) for the neighbourhood of the vertex v. The

maximum degree of G is denoted by ∆(G) := maxv∈V dG(v) and the minimum degree of

G is denoted by δ(G) := minv∈V dG(v). An independent set S ⊆ V of the graph G is a

subset of the vertices such that there are no two vertices v 6= w ∈ S with (v, w) ∈ E.
The maximum size of an independent set in the graph G is the independence number of

G and is denoted by α(G). We say that a graph H is 2-balanced if it has at least three

5

2. Prelimnaries

vertices, three edges, and if
e(H)− 1

v(H)− 2
≥ e(F)− 1

v(F)− 2
(2.1)

holds for all proper subgraphs F with at least three vertices. We say that H is strictly

2-balanced if the inequality is sharp. Note that every graph H for which we simulate

one of the processes is strictly 2-balanced and in particular complete graphs Kl and

cycles Cl are strictly 2-balanced for l ≥ 3. For k, l ∈ N, the Ramsey number R(k, l) is

the smallest integer such that every red-blue coloring of the edges of a KR(k,l) contains

either a red Kk or a blue Kl. For a sequence of random events (An)n∈N we say that this

sequence happens with high probability if

lim
n→∞

P[An] = 1. (2.2)

Sometimes we also say w.h.p. instead.

2.2. Random graphs

In this section, we introduce some basic concepts in the theory of random graphs. In

the Erdös-Rényi graph model G(n,m) we choose a graph uniformly at random from the

collection of all graphs which have n vertices and m edges. Note that thereby, vertices

are assumed to be labelled and hence a relabeling of the vertices is seen as a distinct

graph. Closely related to that graph model and also named after Erdös and Rényi is the

graph model G(n, p). In this model, every edge e ∈ E(Kn) is added to the graph with

probability p. With this model, a �xed graph F on n vertices and m edges is obtained

with probability

pe(H)(1− p)(
n
2)−e(H). (2.3)

If a graph G is obtained by the random graph model G(n, p), we denote this by

G ∼ G(n, p). Further, for G ∼ G(n, p) we can easily obtain some basic properties. For

example, we have

E[e(G)] =

(
n

2

)
p (2.4)

and for any v ∈ V (G) we have

E[dG(v)] = (n− 1)p. (2.5)

6

2. Prelimnaries

In particular, we have

P[dG(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k. (2.6)

We use similar properties frequently throughout this thesis. In particular, the two models

above are similar. In fact, we can assume that for pn2 →∞ the graphs obtained by the

models G(n, p) and G(n, n2p) have similar properties. Since we are mainly interested in

properties that hold with high probabilty, we use most of the time the G(n, p) model

since it is easier to handle. One of the main concepts that we look at in this thesis are

random graph processes:

De�nition 2.2.1. A random graph process is a sequence of graphs (Gi)i∈N0 where for

every i ∈ N the graph Gi is obtained according to a probability distribution which only

depends on {G0, . . . , Gi−1}.

Remark 2.2.1. Often the probability distribution of Gi only depends on Gi−1.

We give the de�nitions of the speci�c random graph processes in the corresponding

chapters.

2.3. Lower bounds for the H-free process

In this section, we want to present some results from one of the most formative works

in random graph process by Bohman et al. [Bohman and Keevash, 2009]. The main

contribution for us is their proof of a lower bound for the number edges of the �nal

graph in the H-free process for the case when H is strictly 2-balanced. The main

technique for this is the di�erential equations method. In particular, they prove the

following results by showing that certain graph parameters follow di�erential equations

they provide.

Theorem 2.3.1 ([Bohman and Keevash, 2009], Theorem 1.1.). Suppose that H is a

strictly balanced graph with v(H) vertices and e(H) edges. Then for some c > 0 with

high probability we get for the minimum degree δ(GH,n) of the H-free process

δ(GH,n) ≥ cn1− v(H)−2
e(H)−1 (log n)1− 1

e(H)−1 . (2.7)

Note that by Equation 2.7 we get

e(GH,n) =
1

2

∑
v∈V (GH,n)

dGH,n(v) ≥ 1

2
n · δ(GH,n)

2.3.1

≥ c

2
n2− v(H)−2

e(H)−1 (log n)
1

e(H)−1

7

2. Prelimnaries

with high probability and hence we get a lower bound for the number of edges in the

�nal graph of the H-free process. In the chapters regarding the processes for H = K3,

H = C4 and H = K4 we see that this bound is tight up to a constant factor. In

order to give an overview on how this result was proven and to obtain further helpful

results for Chapter 5 and Chapter 7, we �rst have to introduce some concepts used

in [Bohman and Keevash, 2009]. Let (Gi)i∈N0 be a sequence of graphs representing the

H-free process and let Gi = (V (Gi) = [n], Ei) for all i ∈ N0. At step i ∈ N0 of the

process let O(i) be the pairs of open vertices, i.e., every open pair represents an edge

that can be inserted to Gi. For a strictly 2-balanced graph H we write

p = n−
v(H)−2
e(H)−1 . (2.8)

We see the intuition behind this de�niton at a later stage. Now let Γ = (V (Γ), E(Γ))

be any graph and let A ⊆ V (Γ). Then we de�ne

SA,Γ = pe(Γ)−e(Γ[A])nv(Γ)−|A|. (2.9)

De�nition 2.3.1. For any graph Γ = (V (Γ), E(Γ)) and A ⊆ V (Γ) we say that the pair

(A,Γ) is strictly balanced if SA,Γ[B] > SA,Γ for every A (B (V (Γ). We say that the

pair is strictly dense if SA,Γ[B] > 1 for every A (B ⊆ V (Γ).

We want to quickly discribe the intuition behind p and SA,Γ. Intuitively, we would

expect that in the beginning of the process the graph Gi is similar to the Erdös-Renyi

graph G(n, i). This is simply because the fraction of the forbidden edges which can not

be added to the graph is in this phase small compared to the number of open edges.

In particular, Joel Spencer suggested that both graphs should be similar with respect

to small subgraph counts during the initial phase of the process. In particular, this

similarity should at least be given up to the point i when the number of edges in G(n, i)

is roughly equal to the number of copies of H in G(n, i) [Bohman and Keevash, 2009].

Simple calculations in the G(n, i) model show that this is the case when i is roughly pn2

with p as in 2.8. Due to the similarity of the models G(n, i) and G(n, p) for p = i/
(
n
2

)
we give future computations in this model using the G(n, p) model. With this in mind,

we see that SA,Γ is roughly the expected number of labeled extensions to Γ from the

�xed vertex set A and hence we see that this is an important parameter to us. In

particular, one of the main goals is to track extensions of a certain kind. This motivates

the following de�nitions.

De�nition 2.3.2. Let Γ = (V (Γ), E(Γ)) be any graph and let J be a spanning subgraph

of Γ. Further, let A ⊆ V (Γ) be an independent set in Γ and let φ : A −→ [n] be an

8

2. Prelimnaries

injective mapping. Then the extension variable Xφ,J,Γ(i) is de�ned as the number of

injective maps f : V (Γ) −→ [n] ful�lling

I. f(e) ∈ O(i) for every e ∈ E(Γ) \ E(J),

II. f(e) ∈ E(i) for every e ∈ E(J), and

III. f restricts to φ on A.

Now we say that the random variable Xφ,J,Γ(i) is trackable if one of the following con-

ditions holds:

(a) (A,Γ) is strictly dense and Γ does not contain H as a subgraph.

(b) SA,Γ = 1, (A,Γ) is strictly balanced, E(J) (E(Γ), and H is not a subgraph of the

graph Γ′ which is obtained from Γ by adding the edge (u, v) for all u, v ∈ A with

(φ(a), φ(b)) ∈ Ei.

Now we �x some constants and de�ne functions that we need to formulate our next

main theorem. We motivate some of these functions in the corresponding chapters

where they are used, see Chapter 5 and Chapter 7. Let µ, ε,W, V ∈ R be constants

which satisfy

0 < µ� ε� 1

W
� 1

V
� 1

e(H)
.

Further, we de�ne the continous time variable t := t(i) := i/pn2 where p is de�ned

as in 2.8. We can see t as a scaled version of the steps of the process. In the fol-

lowing, the goal is to follow the before de�ne trackable extension variables to time

tmax = µ(log n)1/(e(H)−1). By de�nition of the process and t we have at this time

m = µ(log n)1/(e(H)−1) · pn2 (2.10)

edges in the graph because we add in every step one edge to the graph. Now let T
be the set of all triples (A, J,Γ) where A is an independent set in Γ, J is a spanning

subgraph of Γ, v(Γ), e(Γ) < n and the random variables Xφ,J,Γ(0) are trackable. Now

we de�ne functions

q(t) = e−2e(H)aut(H)−1(2t)e(H)−1

, P (t) = W (te(H)−1 + t), e(t) = eP (t) − 1, se = n
1

2e(H)
−ε.

(2.11)

With this we have everything that we need to state our next main theorem which

describes the evolution of trackable extension variables up to time tmax.

9

2. Prelimnaries

Theorem 2.3.2 ([Bohman and Keevash, 2009], Theorem 1.4.). With high probability,

for every i ≤ m and trackable extension variable Xφ,J,Γ(i) corresponding to a triple in

T , we have
Xφ,J,Γ(i) = (1± e(t)

se
)(xA,J,Γ(t)± 1

se
)SA,J , (2.12)

where

xA,J,Γ(t) = (2t)e(J)q(t)e(Γ)−e(J). (2.13)

Now we give some examples of quantities that are described by Theorem 2.3.2 to see

how it can be used. For this let φ0 be the unique function φ0 : ∅ −→ [n] and for v ∈ [n]

let φv : {a} −→ [n], φ(a) = v. Further, we write e for the graph (V (e) = {a, b}, E(e) =

{(a, b)}) and e for the graph (V (e) = {a, b}, E(e) = ∅), i.e., the edge and the empty

graph on two vertices. Note that the empty set as well as the set consisting only of one

vertex is always an independent set in any graph, as long as it has at least one vertex.

Lemma 2.3.3. Let H ∈ {K3, C4, K4}. Further let φ0 : ∅ −→ [n], J = e, Γ = e as above

and let A = ∅ be an independent set in Γ. Then for i ≤ m the random variable Xφ0,e,e(i)

is a trackable extension variable corresponding to a triple in T and Xφ0,e,e(i) = 2|O(i)|.

Proof. We �rst show that we have a triple in T , i.e., thatXφ0,e,e(0) is trackable. We show

that (a) in De�nition 2.3.2 is ful�lled. First, let B = {a} ⊆ V (e). Then by de�nition, we

have SA,Γ[B] = pn2 > 1 for every possible H. By symmetry, it follows that SA,Γ[{b}] > 1.

Further, we get for B = V (e) that SA,Γ[B] = SA,Γ = pn2 > 1 and hence Xφ0,e,e(0) is

trackable. Since the condition in (a) is independent from the step, we also get that

Xφ0,e,e(i) is trackable. It remains to show that Xφ0,e,e(i) = 2|O(i)|. For this we look at

the maps f : {a, b} −→ [n] which ful�ll points (I)-(III) in De�nition 2.3.2. Condition (I)

simply means that the injective map f corresponds to an open edge, since f can only

map one edge. Since E(e) = ∅ condition (II) is empty and since A = ∅ condition (III) is

also empty. Now note that for every open edge (u, v) ∈ O(i) we get two possible maps

one for each directed version of (u, v). Hence, it follows that Xφ0,e,e(i) = 2|O(i)|.

Other important quantities for us are the degrees of the graph during the H-free

process. This can also be described by trackable extension variables.

Lemma 2.3.4. Let H ∈ {K3, C4, K4} and v ∈ [n]. Further let φv : {a} −→ [n], J = e,

Γ = e as above and let A = {a} be an independent set in Γ. Then for i ≤ m the random

variable Xφv ,e,e(i) is a trackable extension variable corresponding to a triple in T and

Xφv ,e,e(i) = dGi(v).

Proof. As in the lemma above, we start be showing that Xφv ,e,e(0) and Xφv ,e,e(i) are

trackable by showing that condition (a) in De�nition 2.3.2 holds. Note that by de�nition

10

2. Prelimnaries

we only have to check the case B = V (e). Hence, we compute SA,Γ[B] = SA,Γ = pn > 0

for every possible H and we see that Xφv ,e,e(0) and Xφv ,e,e(i) are indeed trackable.

It remains to show that Xφv ,e,e(i) = dGi(v). For this, we check again the injective

maps f : {a, b} −→ [n] which ful�ll the conditions (I)-(III) in De�nition 2.3.2. Since

Γ = e = J , condition (I) is empty. Further, condition (II) implies that f corresponds

to an edge in Gi and condition (III) implies that this is happens in a unique way since

it ensures f(a) = v. Together, this implies that every map f ful�lling these conditions

correspond uniquely to an edge which includes v. Hence, we get Xφv ,e,e(i) = dGi(v).

What is remarkable about Theorem 2.3.2 is that proves our intuition that the H-free

process closely resembles the Erdös-Renyi graph G(n, i) during the initial phase of the

algorithm for many graph parameters including small subgraph counts of course with

the exception that there are no copies of H in the produced graph. The two lemmas

above even underline this intuition since we proved that Theorem 2.3.2 can be applied

in these situations. We will see in Chapter 3, Chapter 5 and Chapter 7 that the number

of open edges in the G(n, p) model is roughly what is predicted by Theorem 2.3.2 up to

an error term. Further, in the G(n, p) model the expected degree of a vertex is roughly

np which is also resembled in Theorem 2.3.2. Hence, this theorem forms the basis for

our considerations for the simulation of the H-free processes.

To conclude this section, we want to give a further corollary which directly implies

Theorem 2.3.1. For this, we just have to de�ne the corresponding trackable extension

variable in a similar way as for the degrees of the graph to obtain a trackable extension

variable which describes the set of common neighbors of a set of given size of vertices

and apply Theorem 2.3.2.

Corollary 2.3.4.1 ([Bohman and Keevash, 2009], Corollary 1.5.). With high probabil-

ity, for every d with pdn > 1, set A of d vertices and i ≤ m, the number of common

neighbours of A in Gi is (1 + o(1))(2i/n2)dn.

In particular, using d = 1 and noting that pn > 1 for every H ∈ {K3, C4, K4} we get
for i = m with high probability

dGm(v) = (1 + o(1))(
2mn

n2
) = (4µ+ o(1))(log n)

1
e(H)−1n1− v(H)−2

e(H)−1 (2.14)

and since δ(Gm) ≤ dGm(v) for all v ∈ [n] and the minimum degree of the graph can only

grow during the H-free process there is a constant c > 0 such that

δ(GH,n) ≥ cn1− v(H)−2
e(H)−1 (log n)1− 1

e(H)−1 . (2.15)

11

2. Prelimnaries

2.4. Experimental Methodology

In this section, we want shortly describe our methodology for the simulation of the

processes. All algorithms were implemented using C++ and we compiled it using gcc

9.4.0 with full optimization enabled (-O3 �ag). During the implementation we oriented

us on the KaMIS framework (https://github.com/KarlsruheMIS/KaMIS). All experi-

ments were performed on a machine with two sixteen-core Intel(R) Xeon(R) Silver 4216

processors running at 2.10GHz. The machine has 93GB of main memory, and 16MB

of L2-Cache. The machine runs Ubuntu 20.04.1 LTS and is built on the GNU/Linux

5.4.0-152-generic kernel architecture.

H-free process. For the H-free process where H ∈ {K3, C4, K4} we run the algo-

rithm a total of three times for reliability of the results of the algorithm. For each

repetition we use di�erent random seeds and a di�erent rejection parameter α. Note

that α does not in�uence the solution quality, only time and memory performance. In

particular, the main focus of this work is on solution quality and not on performance

of the algorihtms since our main goal is the prediction of the �nal number of edges.

However, we did not repeat the process for each parameter α mutliple times as well due

to time constraints. In particular, for the performance analysis we are only interested

in how the paramter α in�uences the time and memory consumption and not in the

total numbers and we are con�dent that this can be seen reliably without repeating the

experiments for every α as well. For the statistical results we repeated the experiment

with the same parameter α 200 times. We will see that this as well indicates that not

many repetitions of the process are needed.

H-removal process. For the H-removal process we also repeated the experiments

several times with di�erent random seeds and rejection parameters α. The precise num-

ber of repetitions depends on the process and is based on observations of the simulation

behavior. However, for reliability of the result we run the simulation in every case sev-

eral times. For the heuristic simulation we run the simulation for di�erent input edge

densities and random seeds only once due to time constraints. However, our main inter-

est here is the convergence of the algorithm result which can also be reliably seen in this

way. For the case H = K3, we did nine experiments per number of vertices to emphasize

the convergence behaviour, and for the other cases we did this three times. Since there

are no results known by theory, the evaluation of the reliability of this approach has

to be handled di�erently. However, we provide again 200 repetitions for one number of

vertices and one parameter α to justify our approach.

12

https://github.com/KarlsruheMIS/KaMIS

Figure 3.1.: Simple example for the triangle-free process on four vertices.

3. The Triangle-free Process

In the following section 3.1 we want to present theoretical results regarding the triangle-

free process. Thereby, we will �rst introduce the triangle-free process and give some

intuition for it. Remarkably, we see that the resulting graph is in its properties similar to

a random graph G(n, p) where n is the number of vertices and p is some edge density. Af-

terwards, we present some of the results of Fiz Pontiveros et al. [Fiz Pontiveros et al., 2020]

and give a brief overview of the techniques used for the proof.

3.1. Theoretical Results

The triangle-free process is a special case of a random graph process. Let G0 = ([n], ∅)
be the empty graph without any edges. Then, for any m ∈ N, the graph Gm is obtained

by choosing one edge uniformly at random from E(Kn) \E(Gm−1) which does not close

a triangle in Gm−1. The obtained graph process (Gm)m∈N is called the triangle-free

process. Since e(Kn) < ∞, this graph process becomes stationary at some point. To

be precise, the process ends if there is a ν ∈ N for which every non-edge would close

a triangle in Gν . We will denote such an element in the process as G4,n. The most

interesting question for this process is how many edges the resulting graph contains. We

shortly summerize the most important related work on this topic. After its introduction

in 1990 by Bollobás and Erdös, the question for the order of magnitude of the size of the

resulting graph remained open for nearly 20 years. The motivation for its introduction

was that it might give a good lower bound on R(3, k). One of the �rst sophisticated

results was that with high probability e(G4,n) ≥ cn3/2 form some constant c > 0. This

was a result by Erdös, Suen and Winkler [Erdös et al., 1995]. Bohmann [Bohman, 2009]

13

3. The Triangle-free Process

proved in 2009 that

e(G4,n) = Θ(n3/2
√

log(n))

with high probability as n → ∞. Thereby, he followed the triangle-free process for

a constant fraction of its duration. This approach was later generalized by Bohman

and Keevash [Bohman and Keevash, 2009] using similar techniques in a more general

setting. We have already given an introduction to this work in Section 2.3. Another

more general result was proven by Osthus and Taraz [Osthus and Taraz, 2001]. They

proved for strictly 2-balanced graph H that

e(GH,n) ≥ c · n2−1/m2(H)(log n)1/(e(H)−1), (3.1)

where

m2(H) := max
F⊆H

e(F)− 1

v(F)− 2
. (3.2)

Further, they conjectured that this is within a constant factor of the truth. Finally, in

the work that we present in this section, Fiz Pontiveros et al. [Fiz Pontiveros et al., 2020]

improved Bohman's result by proving

e(Gn,4) =

(
1

2
√

2
+ o(1)

)
n3/2

√
log n (3.3)

with high probability. This is achieved by following the triangle-free process until only

o(n3/2
√

log n) steps of the process are left. This means at most o(n3/2
√

log n) edges

can be added and hence they follow the process until its asymptotic end. In doing so,

they keep track of several parameters of the process, some of which we also introduce

in this section. One interesting oberservation in this process is that the graphs that are

obtained by this process closely resemble graphs obtained by the Erdös-Renyi model.

Morally, we can simply consider the graphs Gm as G(n,m) during the process as long

as we do not come to the point where the process becomes stationary, except that they

do not contain any triangles. This intuition can be seen, for example, from the fact that

the size of the set of forbidden edges during the process is relatively small compared to

the size of the non-edges in general if n is large. We will see that this intuition slightly

changes if we look at other random graph processes like the triangle-removal process in

Chapter 4.

We now formally introduce the triangle-free process. Further, we give an overview

on the techniques used for thes latest results described above. For this, we follow the

work of Fiz Pontiveros et al. [Fiz Pontiveros et al., 2020]. We start by giving the basic

de�nitions needed. In this section, the random graph process that we are interested in

14

3. The Triangle-free Process

is the triangle-free process. We will see that Remark 2.2.1 applies to this process.

De�nition 3.1.1. The random graph process (Gi)i∈N, where G0 = ([n], ∅) and Gi is

obtained from Gi−1 by selecting among all edges e ∈ E(Kn\Gi−1) which would not close

a triangle in Gi−1 one edge uniformly at random and inserting it into Gi−1, is called the

triangle-free process.

Especially with regard to the application to the Ramsey number R(3, k) there are

two properties of G4,n which are of great interest. The �rst question that arises is how

many edges the graph Gn,4 has and the second interesting property is the independence

number of the resulting graph. In this work, we are mainly interested in the size of

e(G4,n) for which Fiz Pontiveros et al. [Fiz Pontiveros et al., 2020] proved the following

result.

Theorem 3.1.1 ([Fiz Pontiveros et al., 2020], Theorem 1.1).

e(G4,n) =

(
1

2
√

2
+ o(1)

)
n3/2

√
log n (3.4)

with high probability as n→∞.

For the rest of this section we give an overview of this proof which contains some

sophisticated techniques as well as a lot of lengthy computations. The basic idea is

to track and control a large number of graph properties in every step until there are

not enough edges in E(Kn \ Gi) left to in�uence the result too much. With respect

to Theorem 3.1.1, this will be precisely the case when there are only o(n3/2
√

log n)

edges left. The method that will be used for this is the so called di�erential equations

method which proved to be useful in other scenarios as well ([Beveridge et al., 2007],

[Bohman, 2009]). The basic idea of this method is to show that a certain graph property

behaves over time like a di�erential equation which can be controlled to some extend.

Nonetheless, we will not see any di�erential equations in this work as we only want to give

an outline of the proof here. We start basic de�nitions used in this work. Throughout

the rest of this section n ∈ N is the number of vertices for the triangle-free process and

i ∈ N is a �xed index resembling a certain step in the process.

De�nition 3.1.2. An edge e ∈ E(Kn \ Gi) is called open if and only if e could be

inserted into Gi without closing a triangle in Gi. If e closes a triangle in Gi the edge is

called closed.

Remark 3.1.1. Obviously, De�nition 3.1.2 de�nes a subdivision of E(Kn) in every step

i ∈ N of the process. Further, an edge e = (v, w) is open if and only if v, w ∈ V (Gi)

have no common neighbor in Gi.

15

3. The Triangle-free Process

The set of all open edges in step i ∈ N of the process is denoted by

O(i) := {e = (v, w) ∈ E(Kn \Gi) : N(v) ∩N(w) = ∅} (3.5)

and we set Q(i) := |O(i)|. Since O(i) is precisely the set of edges which can be added

to Gi in step i + 1, the triangle-free process ends when Q(m) = 0. For the proof

of Theorem 3.1.1 this is the most important graph parameter we have to follow. In

particular, the rate of change of this parameter is important to us. One of the main

results of the work of [Fiz Pontiveros et al., 2020] is that the for all i ≤ (1+o(1))e(G4,n)

the graph Gi closely resembles the Erdös-Renyi graph G(n, i), except that Gi contains

no triangles. Hence, we can use the Erdös-Renyi model for our intuition. Using this

intuition we can prove the following.

Lemma 3.1.2. Let n ∈ N and 0 ≤ i ≤
(
n
2

)
. Further, let G ∼ G(n, p), where p = i/

(
n
2

)
is the edge density of G. Then we have

E[|{open edges in G}|] =

(
n

2

)
(1− p2)n−2 ≈

(
n

2

)
· e−p2n. (3.6)

Proof. In order to compute the expectation value in 3.6, we have to know the probability

of each edge e ∈ E(Kn) to be open in G. Since every edge has probability p to be in

the graph, we have

P[e = (u, v) is open] = P[N(u) ∩N(v) = ∅] = (1− p2)n−2 ≈ (1− p2)n ≈ e−p
2n,

because the probability that the vertices u, v do not share the neighbor w 6= u, v is 1−p2

and this has to hold for all other n − 2 vertices. Using indicator variables 1{e open} for

every edge e ∈ E(Kn) and the linearity of expectation, this yields

E[|{open edges in G}|] =
∑

e∈E[Kn]

E[1{e open}] =

(
n

2

)
P[e = (u, v) is open] ≈

(
n

2

)
e−p

2n.

What is remarkable is that this is close to the truth for the triangle-free process, except

for an error term. Before we state the corresponding theorem we have to introduce some

notation. For the rest of this section let ε > 0 be su�ciently small.

De�nition 3.1.3. For i ∈ N we de�ne the time t of the triangle-free process after i

steps by

i = t · n3/2. (3.7)

16

3. The Triangle-free Process

With this de�nition in mind the goal is to follow the process up to time

t∗ =

(
1

2
√

2
− ε
)√

log n (3.8)

and the according step of the process is then i = t∗ · n3/2. With this notation we can

state the following signi�cant theorem.

Theorem 3.1.3 ([Fiz Pontiveros et al., 2020], Theorem 2.1). With high probability,

Q(i) ∈ e−4t2
(
n

2

)
± e−2t2n7/4(log n)3 (3.9)

for every i ≤ (1
2
√

2
− ε)n3/2

√
log n.

To see that this is actually close to our result in Lemma 3.1.2 we note that the edge

density in G ∼ G(n, i) is p = i/
(
n
2

)
≈ 2i/n2 and hence we get

e−p
2n ≈ e−

4i2

n4
n = e−4t2 , (3.10)

where the last equality follows immediately from De�nition 3.1.3.

Remark 3.1.2. Another fact that is remarkable is that we can see that the absolute

error in Theorem 3.1.3 is decreasing over time. This is because n is �xed throughout

the process and t = m · n3/2 is increasing and hence e−2t2 > 0 is decreasing towards 0.

In particular, we can show that Theorem 3.1.3 implies the lower bound in Theo-

rem 3.1.1.

Lemma 3.1.4. Let ε > 0 be arbitrary. With high probability as n → ∞ we have

Q(i) > 0 for all i ≤ (1
2
√

2
− ε)n3/2

√
log n and hence the lower bound in Theorem 3.1.1

holds.

Proof. First, we note that i ≤ (1
2
√

2
− ε)n3/2

√
log n is equivalent to t ≤ t∗, where t is the

time in step i of the process. Hence, we get

e2t2 ≤ e2t∗
2

= e
2
(

1
2
√

2
−ε

)2
logn

= n
2
(

1
2
√
2
−ε

)2

= n(1
4
−ε
√

2+2ε2) ≤ n(1
4

+2ε2), (3.11)

where the last inequality holds, for n su�ciently large. In particular, we get e2t2 ≤ n
1
4
−ε

for all su�ciently small ε. If we now look at the lower bound in 3.9 we get by Theo-

17

3. The Triangle-free Process

rem 3.1.3 for n large enough

Q(i) ≥ e−4t2
(
n

2

)
− e−2t2n7/4(log n)3

= e−4t2
((

n

2

)
− e2t2n7/4(log n)3

)
.

Since, e−4t2 > 0 it is su�cient to show(
n

2

)
− e2t2n7/4(log n)3 > 0.

But by equation 3.11 we have(
n

2

)
− e2t2n7/4(log n)3 ≥

(
n

2

)
− n(1/4−ε)n7/4(log n)3

=

(
n

2

)
− n(2−ε)(log n)3

=
n2

2
− n(2−ε)(log n3)− n

2

> 0,

for large enough n. Hence, we have Q(i) > 0 with high probability as n → ∞ for

i ≤ (1
2
√

2
−ε)n3/2

√
log n. In particular, ε > 0 could be chosen arbitrarily small and hence

the lower bound in Theorem 3.1.1 follows immediately by the de�nition of t∗ in 3.8.

To give a rough idea on how the random variables Q(i) can be controlled, we give an

overview of the necessary parameters and the idea behind them. In particular, these

parameters are needed to control the rate of change of Q(i).

De�nition 3.1.4. Let i ∈ N. Two open edges e, f ∈ O(i) are called Y-neighbors in Gi

if e and f form two sides of a triangle where the third side of the corresponding triangle

is contained in E(Gi).

De�nition 3.1.5. For every edge e ∈ E(Kn) and i ∈ N we de�ne the random variable

Ye(i) by

Ye(i) := |{f ∈ O(i) : e and f are Y -neighbors in Gi}| (3.12)

for e ∈ O(i). If e ∈ E(Kn) \O(i), we set Ye(i) := Ye(i− 1).

Note that this de�nition makes sense since in step i = 1 we have O(1) = E(Kn).

18

3. The Triangle-free Process

Figure 3.2.: The black edges are contained in the graph Gi. The red edges are in O(i)
and are contained in Ye(i).

Figure 3.3.: The black edge is contained in O(i). The red edges are in O(i) and are
contained in Xe(i).

Further, we de�ne the average number of Y -neighbors of an open edge e ∈ O(i) by

Y (i) :=
1

Q(i)

∑
e∈O(i)

Ye(i). (3.13)

In general, how one can think of these random variables is that Ye(i) simply de�nes

the distribution of the number of closed edges that occur when the edge e ∈ O(i) gets

inserted. An examples is shown in Figure 3.2. Before we give more intuition for these

variables, we introduce another collection of random variables which are related to the

the family {Ye(i) : e ∈ O(i)}.

De�nition 3.1.6. Let i ∈ N. Two open edges e, f ∈ O(i) are called X-neighbors in Gi

if e and f form two sides of a triangle where the third side of the corresponding triangle

is also contained in O(i).

De�nition 3.1.7. For every edge e ∈ E(Kn) and i ∈ N we de�ne the random variable

Xe(i) by

Xe(i) := |{f ∈ O(i) : e and f are X-neighbors in Gi}| (3.14)

for e ∈ O(i). If e ∈ E(Kn) \O(i), we set Xe(i) := Xe(i− 1).

Again, note that this de�nition makes sense since in the beginning of the process every

edge is open. We show an example in Figure 3.3. Further, we are also interested in the

average number of X-neighbors of an open edge e ∈ O(i) for this family of random

19

3. The Triangle-free Process

variables, and hence we de�ne

X(i) :=
1

Q(i)

∑
e∈O(i)

Xe(i). (3.15)

Those will be the basic parameters needed to control the rate of change of Q(i), but

controlling these parameters turns out to be challenging. To give an overview of how

this works, we introduce now the general setting. Let A be any graph parameter and

let G be any graph. In general, we want to determine the rate of change of a parameter

conditioned to the past. This means we de�ne the function ∆A(G) : E[Kn]→ R by

∆A(G)(e) 7→ A(G ∪ {e})− A(G).

To move this setting to our random graph process we set A(i) := A(Gi) and get

E[∆A(i)] = E[A(i+ 1)− A(i)|Gi],

where the expectation is over the uniformly at random chosen edge of Gi in the i-th step

of the process. Since the process is Markovian, all information we need is encoded in the

graph Gi, which is also intuitively clear from the de�nition of the triangle-free process.

With this setting, our goal is to control E[∆Q(i)] and for this we need our family of

random variables {Ye(i) : e ∈ O(i)}. In fact, we get

E[∆Q(i)] = −Y (i)− 1. (3.16)

This is simply the case since the variables Ye(i) determine the distribution of the number

of edges that turn closed if edge e ∈ O(i) is inserted to the graph. We then have to

subtract 1 because the edge that gets inserted into Gi is counted twice. Once because

it is no longer open and once because it is added to Gi. So the key to the proof of

Theorem 3.1.1 is to control the variables Ye(i). For this, we need the random variables

Xe(i). This follows from the fact that one can quickly see the rate of change of the

variable Ye(i) is governed by the equation

E[∆Ye(i)] =
1

Q(m)

− ∑
f∈Ye(i)

Yf (i) +Xe(i)

 . (3.17)

As already mentioned, the intuition for this situation should be G(n, i). This motivates

the following result.

20

3. The Triangle-free Process

Lemma 3.1.5. Let n ∈ N and let 0 ≤ i ≤
(
n
2

)
. Further, let G ∼ G(n, p) be a graph

obtained by the Erdös-Renyi model with edge density p = i/
(
n
2

)
. Then for n large

enough and e ∈ O(i) we have

1. E[Xe(i)] = 2(n− 2)(1− p2)(2n−4) ≈ 2e−8t2n and

2. E[Ye(i)] = 2(n− 2)p(1− p2)(n−2) ≈ 2npe−4t2 ≈ 4te−4t2
√
n.

Proof. We show 1 �rst. Let p be the edge density of G. To compute E[Xe(i)] we have

to look at potential triangles containing the edge e = (v1, v2). For this we have to look

at the other n − 2 vertices as they are the potential third vertex in the triangle. For

every vertex vi 6= v1, v2 we get

P[(v1, vi) and e are X-neighbors] = P[(v1, vi) ∈ O(i)] · P[(vi, v2) ∈ O(i)]

= (1− p2)(n−2)(1− p2)(n−2)

= (1− p2)(2n−4),

(3.18)

where the second equality follows from Lemma 3.1.2. Analogously, we get

P[(v2, vi) and e are X-neighbors] = (1− p2)(2n−4). (3.19)

We de�ne now the random variables Vi for i ∈ {3, . . . , n} by

Vi := |{f ∈ O(m) : f is X-neighbor of e and vi ∈ f}|. (3.20)

With our computations above we get, using indicator random variables,

E[Vi] = P[(v1, vi) and e are X-neighbors] + P[(v2, vi) and e are X-neighbors]

= 2(1− p2)(2n−4)
. (3.21)

Further, by linearity of expectation

E[Xe(i)] =
n∑
i=3

E[Vi] = 2(n− 2)(1− p2)(2n−4) ≈ 2ne−8t2 ,

where the last step follows as in Equation 3.10.

Now we show 2. With the same notation as above we compute

P[(v1, vi) and e are Y -neighbors] = P[(v1, vi) ∈ O(i)] · P[(vi, v2) ∈ E(G)]

= (1− p2)(n−2)p

21

3. The Triangle-free Process

and again we get analogously

P[(v2, vi) and e are Y -neighbors] = (1− p2)(n−2)p.

If we de�ne now for i ∈ {3, . . . , n} the random variable Ui by

Ui := |{f ∈ O(m) : f is Y -neighbor of e and vi ∈ f}|,

we get

E[Ui] = P[(v1, vi) and e are Y -neighbors] + P[(v2, vi) and e are Y -neighbors]

= 2(1− p2)(n−2)p

and hence by linearity of expectation

E[Ye(i)] =
n∑
i=3

E[Ui] = 2(n− 2)p(1− p2)(n−2) ≈ 2npe−4t2 .

In fact, the authors show that this is actually close to the truth. In particular, they

show the following two results.

Theorem 3.1.6 ([Fiz Pontiveros et al., 2020], Theorem 2.4). With high probability

X(i) ∈

(
1± e2t2(log n)3

n1/4
· 2e−8t2n

)

and

Y (i) ∈

(
1± e2t2(log n)3

n1/4

)
· 4te−4t2

√
n

for every ω ·n3/2 < i ≤ (1
2
√

2
− ε)n3/2

√
log n, where ω = ω(n) is a function which goes to

in�nity su�ciently slowly as n→∞.

Again note that the absolute error is descreasing super-exponentially quickly.

Theorem 3.1.7 ([Fiz Pontiveros et al., 2020], Theorem 2.5). With high probability,

Ye(i) ∈ 4te−4t2
√
n± n1/4(log n)3

22

3. The Triangle-free Process

for every open edge e ∈ O(Gi) and every i ≤ ω · n3/2, and

Ye(i) ∈
(

1± e2t2n−1/4(log n)4)
)
· 4te−4t2

√
n

for every open edge e ∈ O(Gi) and every ω · n3/2 < m ≤ (1
2
√

2
− ε)n3/2

√
log n, where

ω = ω(n) is a function as in Theorem 3.1.6.

To show Theorems 3.1.6 and 3.1.7 the authors use Equation 3.17 and count walks

in certain graphs they construct. For this they also use techniques to count graph

structures in the graphs Gi. Further, one of the main obstacles in the proofs is to �nd

good bounds for Var(Ye(i)) and Cov(Xe(i), Ye(i)), since this is needed to control the

rate of change of Xe(i) and Ye(i). Nonetheless, explaining these methods here would be

beyond the goal of this work and can be found in [Fiz Pontiveros et al., 2020], Section 2.

Finally, the authors show the following result.

Theorem 3.1.8 ([Fiz Pontiveros et al., 2020], Theorem 2.12).

∆(G4,n) =

(
1√
2

+ o(1)

)√
n log n and α(G4,n) ≤ (

√
2 + o(1))

√
n log n (3.22)

with high probability as n→∞.

The main idea for the �rst statement is to look at certain sets S and look at the

probability that this set is the neighbourhood of a vertex in the resulting graph Gm∗ ,

and then sum up those probabilities. However, the challenge is to track the number

of open edges inside S. Here there are two cases. In the �rst case the set S has

an intersection with a low number of neighbourhoods from vertices outside S. In the

second case, S has an intersection with a lot of neighborhoods. This second case turns

out to be more challenging. Nonetheless, we can show with this result the following.

Lemma 3.1.9. Theorem 3.1.8 implies the upper bound in Theorem 3.1.1.

Proof. By Theorem 3.1.8 we have

∆(G4,n) =

(
1√
2

+ o(1)

)√
n log n

23

3. The Triangle-free Process

with high probability as n→∞. Hence, we get

e(G4,n) =
1

2

∑
v∈V (G4,n)

dG4,n(v) ≤ 1

2

∑
v∈V (G4,n)

∆(G4,n)

=
1

2

∑
v∈V (G4,n)

(
1√
2

+ o(1)

)√
n log n

=
n

2

(
1√
2

+ o(1)

)√
n log n

=

(
1

2
√

2
+ o(1)

)
n3/2

√
log n

with high probability as n→∞.

3.2. Simulation of the Triangle-free Process

In this section, we present an algorithmic approach to simulate the triangle-free process

for di�erent numbers of vertices. Since the main goal of the algorithmic part of this work

is to get an idea of the main properties of the random graph processes presented here,

the goal for this section is to see how reliable our simulation results are. The triangle-

free process is well suited for this purpose since is the most studied of the random graph

processes presented in this work.

The rest of this section is structured as follows. First, we give an overview on the algo-

rithms and discuss the computational bottle necks. Thereby, we see that the triangle-free

process can be viewed in di�erent ways leading to di�erent algorithms. Afterwards, we

present our simulation results for the �nal number of edges of the �nal graph. Finally,

we discuss how well the experimental results �t the theory presented in Section 3.1.

Algorithms for the Triangle-free Process

In this section, we describe the algorithms used for our simulations. Intuitively, by the

de�nition of the triangle-free process we would have to maintain a data structure for our

graph Gi = (Vi, Ei) which is generated during the process and a data structure for the

open edges O(i), see notation in Section 3.1. Hence, one possible algorithm would be to

start with O(0) := E(Kn) and G0 := ([n], ∅). Then in every step i ≥ 1 we can choose

one edge ei uniformly at random from O(i), set Gi = Gi−1 ∪ {ei} and update the set of

open edges O(i). However, this has the downside that we would have to start with O(n2)

edges in our memory which is a problem if n gets large when we update this set over and

over again. Hence, we look at an alternative description for the triangle-free process.

24

3. The Triangle-free Process

Algorithm 1: Rejection version of the triangle-free process

Data: Empty graph G = (V0 = [n], E0 = ∅)
Result: Resulting graph G4,n of the triangle-free process

1 i ← 0;
2 while (O(i) > 0) do
3 Edge e← randomEdge;
4 if e ∈ E[Gi] || e ∈ C(i) then
5 reject e;

6 else

7 Gi ← Gi ∪ {e};
8 i← i+ 1;

For this, we observe that the de�ning property of this random graph process is that in

every step i every edge in O(i) has the same probability to be chosen. Consequently, if

we choose, in every step i, a candidate edge e ∈ E(Kn) uniformly at random and reject

it if e ∈ Gi−1 or e ∈ C(i) until we �nd a candidate edge ei ∈ E[Kn] with ei ∈ O(i),

every open edge still has the same probability

P[open edge gets chosen] =
|O(i)|(

n
2

)
to get chosen. Consequently, we see that this version of the triangle-free process is

equivalent to the triangle-free process as stated in Section 3.1. Note that of course this

process is only well de�ned if the process has not come to an end. We describe this in

Algorithm 1. Further, note that for an edge e = (u, v) ∈ C(i), inserting this edge would

close a triangle in Gi−1. However, this is precisely the case if N(u) ∩ N(v) 6= ∅. The

problem with this approach is of course that over time the size of the set of open edges

decreases. Hence, the number of edge rejections will increase. Using our intuition the

number of open edges in Gi should behave similar to the number of open edges in the

Erdös-Renyi graph G(n, p) with p ≈ 2i/n2. We expect by Lemma 3.1.2

|O(i)| ≈
(
n

2

)
e−p

2n

and hence

P[open edge gets chosen] =
|O(i)|(

n
2

) ≈ e−p
2n = e−

4i2

n3 . (3.23)

We can see how this behaves in Figure 8.

25

3. The Triangle-free Process

Algorithm 2: List version of the triangle-free process starting at step i ∈ N0

Data: Current graph G = (Vi = [n], Ei), O(i)
Result: Resulting graph G4,n of the triangle-free process

1 Õ(i)← randomShuffle(O(i));

2 for e = (u, v) ∈ Õ(i) do
3 if N(u) ∩N(v) = ∅ then
4 Gi ← Gi ∪ {e};

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

Insertions during the process

P
fo
r
op
en

ed
ge

Evolution of the Probability for an open edge during the process on 5000 vertices

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

·106

In
se
rt
io
n
s
d
u
ri
n
g
th
e
p
ro
ce
ssP

Steps

Hence, we see that this approach gets ine�cient fast, especially for i ≥ n3/2. To resolve

this, we look at the process again di�erently. Assume we are at step i ∈ N in the original

triangle-free process. We look at the set of open edges O(i). Instead of updating this

set, we shu�e the open edges in a uniform order and then iterate over them. We insert

the corresponding candidate edge if at the time when we reach it, it is still open. The

algorithm describing this can be seen in Algorithm 2. Note that using i = 0, Algorithm 2

could also be used as an algorithm for the triangle-free process itself. However, this again

has the downside that we would have to check O(n2) line 3 in Algorithm 2. This gets

more and more ine�cient when the graph grows. Hence, we look at an approach that

combines Algorithm 1 and Algorithm 2. The idea behind this is the following. In the

beginning of the process almost all edges are open and hence choosing an edge uniformly

at random among all edges instead of choosing it among the open edges yields a high

probability that the edge does not get rejected, see Equation 3.23. Hence, we start our

algorithm by applying Algorithm 1 and we de�ne a tuning parameter α which speci�es

when this phase ends. To be precise, α describes how many times we are allowed to

26

3. The Triangle-free Process

Algorithm 3: Triangle-free process using Algorihtm 1 and Algorithm 2

Data: Empty graph G = ([n], ∅), tolerance α
Result: Resulting graph G4,n of the triangle-free process

1 i← 0;
2 steps← 0;
3 openEdges = {};
4 while i ≤ α do

5 Edge e← randomEdge;
6 while e ∈ E(Gsteps) || e ∈ C(steps) do
7 reject e;
8 i← i+ 1;
9 if i > α then

10 break both while loops;

11 if e ∈ O(steps) then
12 Gsteps ← Gsteps ∪ {e};
13 steps← steps+1;
14 i← 0

15 for v ∈ [n] do
16 for u ∈ [n], u > v do
17 if (v, u) 6∈ C(steps) and (v, u) 6∈ E(Gsteps) then
18 openEdges← openEdges ∪ {(v, u)};

19 openEdges← randomShuffle(openEdges);
20 for e ∈ openEdges do

21 if e 6∈ C(steps) then
22 Gsteps ← Gsteps ∪ {e};
23 steps← steps+1;

reject a candidate edge in a row. Afterwards, we switch to Algorithm 2. For this, we

�rst have to build the list with all remaining open edges. For this, we iterate over every

vertex in the graph. Then we look at every possible edge from this vertex and if the

corresponding neighbor is neither already in the graph nor closed, we can add it safely

to the graph. To check the existence of an edge we can use hash maps or just iterate

over the neighborhood. With the simple observation that an edge e = (u, v) is closed if

and only if |N(u)∩N(v)| ≥ 1 we can check whether an edge is closed or not. Note that,

for this criteria, we do not have to compute the whole intersection of the neighborhoods.

We can stop as soon as we found any vertex in the intersection. After we build the list

of all open edges, we shu�e it uniformly at random and check every edge in it. Note

that during this process some of the later edges can become closed and hence we have

to check them again. The pseudocode of this approach is detailed in Algorithm 3.

27

3. The Triangle-free Process

Sample mean 102 920,71
Sample standard deviation 83,92
Relative sample standard deviation 0,08
Sample variance 7 042,10

Table 3.1.: Some statistical results for the triangle-free process on 2 000 vertices with
200 repetitions.

3.2.1. Experimental Evaluation

In this section, we present the results of our simulations for the triangle-free process.

Since we already pointed out the advantages and disadvantages of the di�erent ap-

proaches in the previous section, we only use Algorithm 3 for the simulation of the

triangle-free process with di�erent values for the tuning parameter α which describes

the number of rejections that we tolerate in a row. The probabilistic parts of the simu-

lation are done using pseudo-randomness with di�erent random seeds. The overall goal

in this section is to see how close our experiments are to the theoretical observations

that are presented in Section 3.1. This is important to see how reliable our predicitions

are for the processes where only weaker results are known. The rest of this section is

structured as follows. First, we want to observe some statistical data for the triangle-free

process to see what standard deviation we can expect for the process. This is an impor-

tant parameter in order to interpret the results of the simulations. Afterwards, we look

at the in�uence of the tuning parameter α on running time and maximal memory con-

sumption. Note that since Algorithm 3 is equivalent to the original triangle-free process,

this parameter has no in�uence on the overall result quality of the process. Afterwards,

we apply di�erent models to our results to see how good the results �t Theorem 3.1.1.

This is done using the least squares method and we apply some measures to see how

good the models �t our results.

Statistical results. To evaluate the reliability of our simulation results, we have to

know some statistical properties for the random variable e(G4,n). The reason is simply

that we can not say how precise our results are without knowing which standard devi-

ation we have to expect. Hence, we run 200 repetitions of the triangle-free process on

2 000 vertices with a �xed parameter α and look at di�erent statistical parameters. This

is shown in Table 3.2.1. Note that the relative standard deviation is given in percent.

Hence, we can see that we do not have to expect a large standard deviation. In fact, it is

less than one percent which is a solid base for our evaluation of the simulations. Further,

it shows that we can expect to get reliable results with three repetitions with di�erent

random seeds for the process for every n under consideration. Note that we used every

28

3. The Triangle-free Process

Figure 3.4.: Every repetition of the process simulation on n vertices with a di�erent
random seed and a di�erent value for α.

time a di�erent rejection parameter since the probabilistic behaviour of the process is

not in�uenced by that. Table 3.2.1 is further underlined by Figure 3.4 where we plot

every result of the process as one data point. We can see that the vertical distances

between the data points are very low. Hence, we can also expect that the curve that we

get by the data points does not change much for larger values of n.

In�uence of the parameter α. Now we want look at the in�uence of the tuning

parameter α on the performance of our algorithm. As we already described in the previ-

ous section, we can expect that the rejection phase gets towards the end of the algorithm

ine�cient. This is because of the decreasing size of the number of open edges |O(i)| after
an edge insertion. We show the results for di�erent numbers of rejections in Table 3.2.1.

What we can see is that, as we expected, a larger number of rejections in a row lead to

less memory consumption since the size of the list of still open edges O(α) is smaller if

we exclude more edges via the rejection process. However, we can see that this e�ect

deminishes for a larger number of rejections in a row. This can be attributed to the fact

that as the process progresses, the probability of selecting an open edge by randomly

choosing one edge is reduced. This can be seen in Figure 8. In combination with the

observation that we get a signi�cant time increase for more rejections allowed, we draw

the conclusion that it is useful to apply the rejection parameter in a way such that it

�ts the memory of the used machine but it is not useful in order to optimize the time

performance of the simulation in this case.

Models for the simulation data. Our main goal of the simulation experiments

29

3. The Triangle-free Process

n
α = 500 α = 2 500 α = 5 000

m[KB] t[s] m[KB] t[s] m[KB] t[s]

10 000 26 092 561,16 19 500 1 052,66 18 464 1 715,20
11 000 38 472 711,50 30 784 1 398,17 29 796 1 762,4
12 000 44 016 898,73 34 540 1 612,53 33 164 2 429,35
13 000 48 520 1 097,83 37 052 2 095,62 37 020 3 058,24
14 000 54 900 1 329,51 41 244 2 524,36 39 388 3 667,84
15 000 56 608 1 651,21 47 948 2 671,62 41 684 3 863,99
16 000 61 992 2 003,97 45 976 3 436,29 43 992 4 742,15
17 000 67 428 2 305,36 52 196 3 747,84 48 080 5 199,79
18 000 77 744 2 626,07 62 860 3 607,06 50 504 6 516,96
19 000 80 336 3 113,47 55 992 5 116,96 51 908 6 616,3
20 000 84 768 3 676,14 60 088 5 795,20 55 988 8 804,72

Table 3.2.: In�uence of the rejection parameter α on the maximal memory consumption
and the overall time for the simulation of the triangle-free process on di�erent
numbers of vertices n.

is to see how good our approximation results �t the theory predictions in Section 3.1. In

particular, we want to see how good our data �ts the exponents occuring in the leading

term (
1

2
√

2
+ o(1)

)
n3/2(log n)1/2 (3.24)

of the number of edges for the �nal graph of the triangle-free process. Further, we are

also interested in the prediction for the constant factor. For this, we �t di�erent models

to our data using the non-linear least squares method. For the triangle-free process we

de�ne

a∗ :=
1

2
√

2
, b∗ :=

3

2
, c∗ :=

1

2
. (3.25)

First we look at the model

f1(n) := a · nb · log nc (3.26)

to see which values for the leading term our data predicts. Note that it is possible that

there is a second order term which in�uences our predictions. We handle this in another

model. This �t can be seen in Figure 3.5. The values for the three parameters we want

to predict are

a = 0.49, b = 1.50, c = 0.44. (3.27)

Further, we measure the quality of our models with the standard error of our regression

which is de�ned by

S =

√∑m
i=1(yi − f(xi))2

n− k
, (3.28)

30

3. The Triangle-free Process

Figure 3.5.: Simulation values together with the predicted model for the model f1(n).

where k is the number of parameters in the model, yi are the observed values and

f(xi) the corresponding model values. A lower value for S indicates a better �t of

the model. This value basically just measures how far our data points are from the

regression line. Note that other values, like the coe�cient of determination R2, are not

suitable since we use the non-linear least squares method which is a non-linear regression

method [Spiess and Neumeyer, 2010]. For this model, we get

S = 121,46. (3.29)

We will see how this compares to the other models used. The next model that we use is

f2(n) = a · n3/2(log n)1/2. (3.30)

Given the right exponents in the leading term the hope is to measure the constant well.

For this model we get a standard error of

S = 4 671,47 (3.31)

with the value

a = 0.41. (3.32)

Even though we see that the model �ts the date worse, we can see that we are closer to

the constant factor in 3.25. Further, we can see in Figure 3.6 that the �t is still good.

The last model we want to look at is

31

3. The Triangle-free Process

Figure 3.6.: Simulation values together with the predicted modelfor the model f2(n).

f3(n) := a · n3/2(log n)1/2 + b · n3/2 (3.33)

to take the possibility of a second order term, which in�uences the simulations, into

account. With this model, wie achive a similar �t as for f1(n) with a standard error

S = 165,47 (3.34)

and predicted parameters

a = 0.33, b = 0.24. (3.35)

Hence, we see that the second order term in the triangle-free process might play a role

for the values of n under consideration. However, this model gets close to the values

predicted by Theorem 3.1.1 with respect to the constant factor. Since it also gives us a

good �t of the values, it is also a good candidate for the estimation of the constant factors

in Chapter 5 and Chapter 7. The graph for this model together with the simulated values

can be seen in Figure 3.7.

32

3. The Triangle-free Process

Figure 3.7.: Simulation values together with the predicted model for the model f3(n).

33

4. The Triangle-removal Process

In this chapter, we present the triangle-removal process which is a special case of a ran-

dom graph process. For this process we pursue a similar objective as for the triangle-free

process but we note that there are clear di�erences both in theory and in practice. We

begin by introducing the process itself and present some theoretical results in Section 4.1.

Further, we look at the di�erences in the processes in Section 4.2.1 where we present

the data obtained by our simulation.

4.1. Theoretical Results

In this section, we mainly follow the work of Bohman et al. [Bohman et al., 2015]. For

the triangle-removal process on n ∈ N vertices we de�ne G0 = Kn. Then, for every

i ∈ N, the graph Gi+1 is obtained from the graph Gi by choosing among all triangles in

Gi one triangle uniformly at random and deleting all its edges. The resulting random

graph process (Gi)i∈N is called the triangle-removal process. With the same arguments

as for the triangle-free process it is obvious that this process becomes stationary at some

point, i.e., Gj = Gj+1 for all j ∈ N, j ≥ N for some N ∈ N large enough. Obviously,

this is the case if the process produces a graph which contains no triangle. We call this

graph the resulting graph of the process and denote it by Gτ0 where τ0 is de�ned by

τ0 = min
i∈N0

{i : Gi contains no triangles}.

Alternatively, we also denote this graph by Gr
4,n. An example for this process is shown

in Figure 4.1. The objective for this process is to determine the number of edges of

the resulting graph Gτ0 . Note that it is enough to know the index τ0 as we can simply

compute the number of edges in Gτ0 by

e(Gτ0) =

(
n

2

)
− 3 · τ0.

This is because we delete three edges from the graph in every step. Similarly to the

triangle-free process, the triangle-removal process was also introduced with the motiva-

34

4. The Triangle-removal Process

Figure 4.1.: Simple example for the triangle-removal process on �ve vertices.

tion to determine the Ramsey number R(3, t). In 1990, Bollobás and Erdös conjectured

that e(Gr
4,n) is of order n3/2. This can be found for example in [Bollobás, 1997]. In

their work, they also suggested that a similar intuition as for the triangle-free pro-

cess holds for this process. The obtained graphs should be similar to an Erdös-Rényi

graph with the same edge density. However, the �rst non-trivial result for this pro-

cess was shown by Spencer in 1995 [Spencer, 1995] showing that e(Gr
4,n) = o(n2)

with high probability. This was also shown independently by Rödl and Thoma in

1996 [Rödl and Thoma, 1996]. This was improved successively over the following years.

Grable [Grable, 1997] showed an upper bound for the �nal number of edges of n11/6+o(1)

with high probability. Further, he suggest that similar arguments can be used to

even improve that to a bound of n7/4+o(1) with high probability. In 2011, Bohman et

al. [Bohman et al., 2011] wer even able to go beyond this exponent, showing that the

�nal number of edges can be bounded by n5/3+o(1) with high probability. Finally, in the

work that we present in this section, Bohman et al. [Bohman et al., 2015] are able to

show the conjecture from Bollobás and Erdös, showing that the �nal number of edges

is n3/2+o(1) with high probability.

A natural question that rises is whether the triangle-free process and the triangle-

removal process are equivalent or at least similar in any measurable way. Both processes

generate a triangle-free graph when they get stationary. To make this similarity even

clearer, we can rephrase the triangle-removal process. In a complete graph on n vertices

Kn we have
(
n
3

)
triangles as every triple of vertices forms a triangle. If we now take a

uniform ordering of these triangles, we can iterate over the list of all triangles and check

whether the triangle is in the graph. If this is the case, we delete its edges and look

at the next triangle. Otherwise, we check the next triangle. The resulting process is

equivalent to the triangle-removal process as de�ned above. This observation plays an

important role for our simulation of the triangle-removal process in Section 4.2. Further,

we obtain another similarity to the triangle-free process with this version. In every step,

35

4. The Triangle-removal Process

we have a set of legal triangles corresponding to the triangles that are still in the graph

and a set of illegal triangles. The illegal triangles are the set of triangles which have at

least one of their edges already removed. This is similar to the concept of open edges

for the triangle-free process. This division of the edges is one of the key considerations

for the similarity of the graphs within the triangle-free process and graphs obtained by

the Erdös-Renyi model. As long as the number of illegal edges is low compared to the

number of open edges we get approximately an almost uniform insertion of the edges

for the triangle-free process where the illegal edges are the closed edges. As this is a

helpful insight in terms of the analysis of the process, the hope is that a similar intuiton

holds for the triangle-removal process. However, the relation between legal and illegal

triangles is changing faster and hence the analysis proves to be more di�cult in this

sense [Bohman et al., 2015]. We pick up on this in Section 4.2.1 where we also start the

process from a G(n, p) with di�erent edge densities p ∈ [0, 1].

Intuitively, one could expect the resulting graph Gτ0 to have similar properties as the

Erdös-Renyi graph with the same edge density except the fact that it has no triangles.

To see this, we start with the following lemma.

Lemma 4.1.1. Let n ∈ N, 0 ≤ m ≤
(
n
2

)
. Further, let G ∼ G(n, p), where p = m/

(
n
2

)
.

Then

E[#triangles in G] =

(
n

3

)
p3. (4.1)

Proof. In Kn there are
(
n
3

)
triangles because Kn is complete. Further, the probability for

every possible triangle in G is p3 since we need three edges per triangle. This probability

follows from the de�nition of the Erdös-Renyi model. Additionally, we de�ne for every

triple (u, v, w) with u, v, w ∈ V (G) the random indicator variable

1[(u,v,w) is triangle in G].

Then we get

E[1[(u,v,w) is triangle in G]] = P[(u, v, w)is triangle in G] = p3. (4.2)

Hence, using linearity of expectation, we get

E[#triangles in G] = E[
∑
4∈Kn

14∈G]

=
∑
4∈Kn

E[14∈G]]

=

(
n

3

)
p3,

36

4. The Triangle-removal Process

where the last equality follows from our considerations above and 4.2.

Now assume n ∈ N, m = εn3/2 and G ∼ G(n, p), where G has edge density p =
εn3/2

(n2)
≈ 2εn−1/2. Hence, according to Lemma 4.1.1 G contains in expectation

(
n

3

)
(2εn−1/2)3 ≈ n3

6
(2εn−1/2)3 =

4

3
ε3n3/2

triangles. Thus, deleting all the triangles would delete less than 4ε3n3/2 edges since we

do not have to delete all triangles because they are not necessarily edge disjoint. If ε

is small, this fraction of the edges is negligible and the resulting graph should still be

close to G(n, p) in its properties, except that it contains no triangles. Even though the

results are not as strong as for the triangle-free process, the authors con�rm this idea

and show the following result.

Theorem 4.1.2 ([Bohman et al., 2015], Theorem 1). Let τ0 be the minimum number

of steps it takes the triangle-removal process to terminate. Then with high probability

as n→∞ we get

τ0 =
n2

6
− n3/2+o(1). (4.3)

As we already mentioned before, this result is enough to compute e(Gτ0) and we get

e(Gτ0) =

(
n

2

)
− 3

(
n2

6
− n3/2+o(1)

)
= n3/2+o(1) − n

2
. (4.4)

Hence, we have e(Gτ0) = n3/2+o(1) with high probability as n → ∞. The remainder

of this section is dedicated to providing an overview on the arguments of the proof of

Theorem 4.1.2. Before we give some details, we will shortly mention the overall idea

which is to track a large collection of random variables that are designed to support

the analysis of the process. We will see that it does not su�ce to only track the basic

random variables in this process, and hence a large number of random variables will be

necessary. One main ingredient for this analysis is to show that these variables have

a self-correcting nature. This means that the further the variable deviates from its

trajectory (which has to be determined), the stronger it drifts back towards its mean.

The challenge in doing so is that these random variables are interacting with each other

and hence the control over the error is much harder. This problem is resolved using a

martingale technique [Bohman et al., 2015].

37

4. The Triangle-removal Process

Upper bound

For the upper bound, the authors start by establishing a system of martingales to

track a family of random variables. In the beginning, these variables are the co-degrees

Yu,v := |N(u) ∩N(v)| for every pair of vertices u 6= v ∈ V (Gi). These random variables

are in turn used to control the random variables

Q(i) := #triangles in Gi

for every i ∈ N. How this works can be seen by the fact that

Q(i) :=
1

3

∑
(u,v)∈E(Gi)

Yu,v. (4.5)

Equation 4.5 follows from the observation that we can count every triangle in a graph

by summing over all edges e = (u, v) ∈ E(Gi) and looking at how many triangles

contain the edge e. This number is precisely given by Yu,v. However, every triangle

counted in this way is counted by the two other sides of the triangle as well and hence

we count every triangle three times. Hence, the equation in 4.5 follows. For the co-

degrees, we can already intuitively see why these variables have a self-correcting nature.

Assume we have an edge (u, v) ∈ E(Gi) such that Yu,v is higher than average. Then the

probability that the triangle selected by the process in step i+1 is one that contains the

edge (u, v) is also higher. Hence, the probability that Yu,v shrinks is higher and drives

the random variable back to its mean. The analogous e�ect occurs if Yu,v is less than

average. However, tracking only these variables will not su�ce to follow the process

longer than to the point where the graph has n7/4 edges [Bohman et al., 2015]. We

can see the triangle-removal process as a stochastic Markovian process which gives us a

�ltration which we call (F)i∈N0 . For every random variable X under consideration, let

∆X(i) := X(i + 1) − X(i) be the rate of change in step i 7→ i + 1 of the variable X.

Then by de�nition we have

E[∆Q(i) | Fi] = −
∑
uvw∈Q

(Yu,v + Yv,w + Yu,w − 2)/Q. (4.6)

This can be seen as follows. If we delete a triangle (u, v, w) ∈ Gi from the graph Gi,

we also delete all triangles sitting above the edges (u, v), (u,w) and (v, w). Thereby, we

count the triangle (u, v, w) itself three times and hence the average number of triangles

38

4. The Triangle-removal Process

we delete in this step is ∑
uvw∈Q

(Yu,v + Yv,w + Yu,w − 2)/Q

and the formula in Equation 4.6 follows. We introduce now the following entities

t = t(i) = i/n2, p = p(i, n) = 1− 6i

n2
= 1− 6t⇒ t =

1− p
6

.

Note that with the approximation
(
n
2

)
≈ n2/2, p is roughly the edge density of the graph

Gi since this graph has edge density

p(i) =

(
n
2

)
− 3i(
n
2

) = 1− 3i(
n
2

) ≈ 1− 6i

n2
.

In particular, we have

e(Gi) =

(
n

2

)
− 3i =

(
n

2

)
− 3n2t =

(
n

2

)
− n2(1− p)

2

=
1

2
(n2 − n− n2(1− p)) =

1

2
(n2p− n).

(4.7)

Since e(G ∼ G(n, p)) ≈ n2/2 · p we see that p is in line with the edge density of the

random graph model G(n, p), up to a negligible linear term. This intuition motivates

the following lemma.

Lemma 4.1.3. Let n ∈ N, 0 ≤ m ≤
(
n
2

)
and let p := m

(n2)
. Further, let G ∼ G(n, p)

Then

E[Yu,v] = (n− 2)p2 ≈ np2 (4.8)

for every pair u 6= v ∈ V (G).

Proof. Let u 6= v ∈ V (G) be arbitrarily chosen. Then for every w ∈ V (G) \ {u, v} we
get by the random graph model G(n, p)

P[w ∈ N(u) ∩N(v)] = p2.

Hence, using the according indicator random variables and linearity of expectation yields

E[Yu,v] = E[
∑

w∈V (G)\{u,v}

1w∈N(u)∩N(v)] =
∑

w∈V (G)\{u,v}

P[w ∈ N(u) ∩N(v)]

= (n− 2)p2 ≈ np2.

39

4. The Triangle-removal Process

Now, from our intuition and by lemmas 4.1.1 and 4.1.3 we would expect

Y (i)
u,v ≈ np2 and Q(i) ≈ 1

6
n3p3. (4.9)

Further, note that for the co-degrees Yu,v the evolution is determined by

E[∆Yu,v|Fi] = −
∑

w∈N(u)∩N(v)

Yu,w + Yv,w − 1(u,v)∈E(Gi)

Q
. (4.10)

This can be seen as follows. Obviously, the co-degree of u 6= v can only be a�ected

if a triangle gets deleted where one of the vertices is in N(u) ∩ N(v). Then there are

essentially three cases to look at. The �rst case is that the deleted triangle is of the

form (a, b, c) where, without loss of generality, we have a = u, b = w, c 6= v. In this

case, either c ∈ N(u)∩N(v) or c 6∈ N(u∩N(v)). In the �rst case Yu,v decreases by two

which is caused by a decrease of Yu,w by one and a decrease of Yv,w by one. In the other

case Yu,v decreases by one which is caused by a decrease of Yu,w by one. The next case

is the symmetric case where u and v switch roles and the last cases is where the triangle

(u, v, w) is chosen. There, we also get a decrease of one for Yu,v. Averaging yields exactly

Equation 4.9, where the term 1(u,v)∈E[Gi] has to be subtracted due to double counting

in case the edge (u, v) is in the graph.

In general, we see that the important parameters we have to know are E[∆Q|Fi] and
E[∆Yu,v|Fi]. However, the key point to the work of [Bohman et al., 2015] is that tracking

only these parameters is not enough to follow the process long enough. Using only these

variables the authors in [Bohman et al., 2010] managed to show an upper bound of

O(n7/4(log n)5/4). However, if we reach at some point an edge density of p = n−1/4 we

get problems with the standard deviation, see [Bohman et al., 2015]. Hence, we see that

the main obstacle of the proof is to establish enough parameters to gain a precise upper

bound. This results in the following theorem which is central to us.

Theorem 4.1.4 ([Bohman et al., 2015], Theorem 2.1). De�ne ζ = ζ(p, n) to be

ζ = n−1/2p−1 log n (4.11)

and for some (arbitrarily large) constant κ > 0 let

τ ∗Q = min

{
t :

∣∣∣∣ Q
1
6
n3p3

− 1

∣∣∣∣ ≥ κζ2

}
. (4.12)

40

4. The Triangle-removal Process

Then for every M ≥ 3 with high probability∣∣∣∣Yu,vnp2
− 1

∣∣∣∣ ≤ 33M−1ζ (4.13)

for every u, v ∈ V (G) and all t such that t ≤ τ ∗Q and p(t) ≥ n−1/2+1/M .

This theorem basically means that if we deviate too much in the number of triangles

from what we would expect by our intuition, we can bound the co-degrees and hence

also the remaining triangles. Together with the next result we are able to show the

upper bound in Theorem 4.1.2.

Theorem 4.1.5 ([Bohman et al., 2015] Theorem 2.2). Set Φ(p, n) = p−2/ logn log n and

for some �xed α > 0 let

τ ∗Y = min{t : ∃u, v ∈ V (G) such that |Yu,v − np2| > αn1/2pΦ}. (4.14)

Then with high probability as n → ∞ as long as t ≤ τ ∗Y and p(t) ≥ n−1/2(log n)2 we

have

|Q− n3p3/6| ≤ α2n2pΦ2. (4.15)

This theorem, along with Theorem 4.1.4, enables us to deduce a smaller error for the

remaining triangles from an error of the co-degrees.

Proof of the upper bound in Theorem 4.1.2. The idea of the proof is to apply the

theorems 4.1.4 and 4.1.5 in tandem as follows. First note that for all p ≥ n−1/2 we get

for Φ = p−2/ logn the bounds

Φ

log n
= p−2/ logn ≤ n−1/2·−2/ logn = n1/ logn = e

and
Φ

log n
≥ 1

since p ≤ 1. So, together we get

1 ≤ Φ

log n
≤ e. (4.16)

Thus, applying Theorem 4.1.5 and Equation 4.15 yield

|Q− n3p3/6| ≤ α2n2pΦ2 ≤ α2n2p(log n)2e2 = C2n2p(log n)2,

41

4. The Triangle-removal Process

where the second inequality follows from Φ ≤ log n · e and C := αe. This means that

we get for the relative error∣∣∣∣ Q

n3p3/6
− 1

∣∣∣∣ ≤ C2n2p(log n)2

n3p3/6
= 6C2n−1p−2(log n)2 = 6C2ζ2, (4.17)

where ζ = n−1/2 log n/p is de�ned as in Theorem 4.1.4. With the notation of Theo-

rem 4.1.4 in mind, this means that we are in the scenario t ≤ τ ∗Q. Hence, we get from

Theorem 4.1.4, for every M ≥ 3 with high probability∣∣∣∣Yu,vnp2
− 1

∣∣∣∣ ≤ 33M−1ζ, (4.18)

where we chose κ = 6C2 > 0. Note that we are still in the situation p(t) ≥ n−1/2+1/M

and p(t) ≥ n−1/2(log n)2 as we start the process with p = 1. Now 4.18 gives us

|Yu,v − np2| ≤ αζnp2 = αn−1/2p−1 log np2n

= αn1/2p log n ≤ αn1/2pΦ,

where the last inequality follows from Φ ≥ log n and α := 33M−1. But this means again

that we are in the situation t ≤ τ ∗Y and hence we get again

|Q− n3p3/6| ≤ α2n2pΦ2

and by the same computations we get∣∣∣∣ Q

n3p3/6
− 1

∣∣∣∣ ≤ C̃ζ2

with C̃ := 6C2 = 6(αe)2. Hence, we showed that we can apply both theorems in

tandem and because of n−1/2+1/M ≥ n−1/2 · (log n)2 for n large enough and M �xed we

can proceed this way as long as p ≥ n−1/2+1/M . But at the point p = n−1/2+1/M we get

42

4. The Triangle-removal Process

by Equation 4.15

Q ≤ 1

6
n3p3 + α2n2pΦ2

=
1

6
n3(n−1/2+1/M)3 + α2n2n−1/2+1/MΦ2

=
1

6
n−3/2+3/M + α2Φ2n3/2+1/M

= n−3/2+3/M

(
1

6
+ α2φ2n−2/M

)
≤ n−3/2+3/M

(
1

6
+ α2e log nn−2/M

)
= n−3/2+3/M

(
1

6
+ o(1)

)
since α2e log nn−2/M → 0 and Φ ≥ e · log n. Further, note that Theorem 4.1.5 guarantees

that the process is still active at that point because if Q = 0 then 4.15 would not hold.

On the other hand we get by 4.7

E(Gi) =
1

2
(n2p− n) =

1

2
(n2n−1/2+1/M − n)

=
1

2
(n3/2+1/M − n) = n3/2+1/M

(
1

2
− n−1/2−1/M

)
= n3/2+1/M

(
1

2
− o(1)

)
since n−1/2−1/M → 0. Hence, we can only get less edges and the process is still active.

As M ≥ 3 can be arbitrarily large by Theorem 4.1.4 this results in an upper bound of

n3/2+o(1) edges for the graph Gτ0 . �

Lower Bound

The goal of this section is to �nish the proof of our main theorem 4.1.2 by providing a

lower bound on the number of edges of the graph Gτ0 with high probability. This turns

out to be achievable by only tracking the co-degrees with asymptotically tight estimates

for a certain time of the process. The main result from which we derive our lower bound

is the following.

Theorem 4.1.6 ([Bohman et al., 2015], Theorem 6.1). Suppose that for some �xed 0 <

ε < 1/6, all co-degrees satisfy Yu,v = (1 + o(1))np2 throughout p ≥ p0 = n−1/2+ε. Then

with high probability the �nal number of edges of the graph Gτ0 is at least n
3/2−6ε−o(1).

For the proof we �rst need a straightforward lemma which we will just cite here. The

interested reader can �nd the proof in [Bohman et al., 2015], Section 6.

43

4. The Triangle-removal Process

Lemma 4.1.7 ([Bohman et al., 2015], Lemma 6.3). Let τc denote the minimal time

where Yu,v > 2(np2 + n1/3) for some u, v ∈ V (G). With high probability, for all t ≤ τc

such that p(t) ≥ n−3/5, the number of triangles satis�es

Q− 1

6
(n3p3 + n2p) ≤ n7/3p2.

Now we have everything that we need to show Theorem 4.1.6. In the following, we

use Q for the set of triangles in the graph, as well as the number of triangles in the

graph in order to make notation easier and hope that this causes not to much confusion

for the reader.

Proof of Theorem 4.1.6: We start by �xing some arbitrary 0 < ε < 1/6 and let i0

be such that p0 = p(i0) = n−1/2+ε. Now assume we condition on the state Fi0 and

assume that up to this point we had Yu,v = (1 + o(1))np2 for all u, v ∈ V (G). Note that

if we delete a triangle from the graph, we also delete every triangle adjacent to it via an

edge. Hence, we introduce some notation for this. Let uvw ∈ Q and let xyz 6= uvw be

another triangle in the graph. We write uvw ∼ xyz if the triangles share an edge. Hence,

if we delete the triangle uvw from the graph we also delete every triangle xyz ∼ uvw.

However, note that this is not an equivalence relation. Further, let

Buvw = |{xyz ∈ Q : xyz ∼ uvw}| = Yu,v + Yu,w + Yv,w − 3.

The subtraction of three comes from the fact that we count the triangle uvw for every

co-degree but we do not want to include the triangle itself to this set, see Figure 4.2.

This de�nition together with our assumption on the co-degrees implies at time i0

Buvw = 3(1 + o(1))np2
0 − 3 = 3n2ε + 3o(1)n2ε − 3 = n2ε+o(1) (4.19)

for all Q triangles. Now we make the following observation. Assume we have a tri-

angle uvw ∈ Q(j − 1) then at the end of round j we have either uvw 6∈ Q(j) or

Buvw(j − 1)−Buvw(j) ≤ 4 and the co-degree of at most two edges of uvw has changed.

To see why this claim is true, we have to consider three cases. The �rst case is that in

step j the triangle selected is either uvw itself or a triangle xyz ∼ uvw. In both cases

we see immediately that uvw 6∈ Q(j). The second case is when the triangle deleted is

vertex disjoint to the triangle uvw. In this case of course none of the co-degrees Yu,v,

Yv,w or Yu,w is a�ected since for this the deleted triangle would have to share at least

one vertex with uvw and hence we get Buvw(j − 1)− Buvw(j) ≤ 4 as claimed. Now we

consider the last case where the deleted triangle xyz and uvw share exactly one vertex.

44

4. The Triangle-removal Process

Figure 4.2.: The set Buvw for a triangle uvw ∈ Q.

For this, consider, without loss of generality, x = u and {y, z} ∩ {v, w} = ∅. In this

case, the only possible triangles that could be a�ected by the deletion of xyz, and hence

could a�ect the co-degrees in the triangle uvw, are yuw, yuv, zuv and zuw. Hence, we

also get in this case Buvw(j − 1) − Buvw(j) ≤ 4 as claimed. Further, we see that the

co-degree of v and w was not a�ected and the overall claim follows.

For the further analysis of the lower bound, we construct a random subset H ⊆ Q(i0).

This works as follows. Let H(i0) := ∅ and we let H grow until the end of the process at

step τ0. We denote the �nal state of H as H∗. To de�ne how H grows we de�ne another

auxiliary set Y with Y(i0) := ∅. Further, we de�ne for a triangle uvw ∈ Q the sets

N1(uvw) := {xyz ∈ Q : xyz ∼ uvw}

and

N2(uvw) := N1(uvw) ∪ {abc ∈ Q : abc ∼ xyz ∈ N1(uvw)}.

Now for j > i0 we process all triangles in Q(j) in a random order. Let uvw be the

current triangle we look at. If uvw 6∈ Y , and for one of the edges, j is the �rst time that

the edges has co-degree one, we add uvw to H and add N2(uvw) to Y . Note that the
sizes of H and Y can never decrease during the whole process. As we already saw in our

claim above, if we delete a triangle xyz such that uvw is still intact afterwards, we can

45

4. The Triangle-removal Process

a�ect triangles incident to at most two edges of uvw. Hence, if j > i0 is the �rst round

at the end of which uvw has some edge with co-degree one and uvw is intact, then at

least one other edge of uvw has co-degree greater than one since we can only a�ect the

co-degree of two of the edges of uvw. This implies that Buvw > 0 when uvw is added to

H. The set H helps us later in the proof to establish a lower bound on the number of

edges in the resulting graph.

Now we consider a time i1 > i0. We already saw in 4.19 that at time i0, for every

triangle uvw ∈ Q, all its co-degrees have size n2ε+o(1) > 1, by our assumption on the

co-degrees. Now assume that uvw ∈ Q(i1) and Buvw = 0. Then, by construction of H,
either uvw ∈ H or necessarily there is a time i0 < j ≤ i1 at which we had uvw ∈ N2(xyz)

for some xyz ∈ H because otherwise there would have been a time when one of the co-

degrees of uvw would have been one and then uvw would have been inserted in H.
Further, note that at time i0 we had

|N2(xyz)| ≤ n4ε+o(1)

by de�nition of N2(xyz) as Buvw = n2ε+o(1) for all uvw ∈ Q(i0). Since all the co-

degrees can only decrease during the process and with the above considerations we get

by de�nition of the evolution of H

|H(i1)| ≥ |{uvw ∈ Q(i1) : Buvw = 0}| · n−4ε−o(1). (4.20)

Now assume that we have i1 such that p1 := p(i1) = 1√
n logn

. At this step we have

e(Gi1) =
1

2
(n2p1 − n) =

1

2

(
n2 1√

n log n
− n

)
= n3/2 log n−1

(
1

2
+ o(1)

)
.

Hence, if the process ends earlier we clearly have at least n3/2−o(1) edges in the �nal

graph as this means we have even more edges than at time i1 and we are done with the

proof in this case.

Now assume otherwise. Note that by our assumptions on the co-degrees we are, for

su�ciently large n and due to ε < 1/6, in a scenario where we can apply Lemma 4.1.7,

46

4. The Triangle-removal Process

i.e., t(i1) < τc. Hence, we get by this lemma

Q(i1) ≤ 1

6
(n3p3

1 + n2p1) + n7/3p21

=
1

6
n3 1

n3/2(log n)3
+

1

6
n2 1√

n log n
+ n7/3 1

n(log n)2

=
1

6
n3/2(log n−3) +

1

6
n3/2(log n)−1 + n4/3(log n)−2

=

(
1

3
+ o(1)

)
e(Gi1).

(4.21)

Now we are left with two cases for the rest of the proof. For the �rst case, assume

#{(u, v) ∈ E(Gi1) : Yu,v = 0} ≥ δe(Gi1) for some arbitrarily small but �xed δ > 0.

Obviously, if an edge is not contained in any triangle, then this edge will survive the

triangle-removal process. Hence, by the assumption that least δe(Gi1) = n3/2−o(1) edges

will be contained in the resulting graph Gτ0 and we are done with the proof in this case.

Now we look at the last case. In particular, assume there are at most o(e(Gi1)) edges

(u, v) with Yu,v = 0. This results in

Q(i1)
4.5
=

1

3

∑
(u,v)∈E[Gi1]

Yu,v ≥
1

3
|{(u, v) ∈ E(Gi1) : Yu,v 6= 0}| ≥

(
1

3
− o(1)

)
e(Gi1).

However, by looking at 4.21 we can see that almost all of the triangles in Q(i1) are

edge disjoint. This can be seen as follows. First, we order the set of triangles in

Q(i1) in an arbitrary order and then we add their edges step by step to the edge set

{(u, v) ∈ E[Gi1] : Yu,v = 0}. At some point, we arrive at the edge set of Gi1 by

construction. Now assume there is some arbitrarily small but �xed δ > 0 such that at

least δQ(i1) triangles share any edges with the triangles preceding them in our ordering.

Then the total number of edges would be at most

3Q(i1)− δQ(i1) + o(e(Gi1)).

However, this would imply

Q(i1) ≥ 1

3− δ
(e(Gi1)− o(e(Gi1)))

which is a contradiction to Equation 4.21. Hence, we can see that we can exclude

o(e(Gi1)) triangles from Q and be left with a set of edge disjoint triangles A with

|A| = (1/3 − o(1))e(Gi1). Note that we can characterize this as Buvw = 0 for every

uvw ∈ A. Note that re-adding the set of excluded triangles can increase the value of

47

4. The Triangle-removal Process

Buvw for at most o(e(Gi1)) triangles since one added triangle can only a�ect at most

three triangles in A. This means that we get

|{uvw ∈ Q(i1) : Buvw = 0}| =
(

1

3
− o(1)

)
e(Gi1) = n3/2−o(1).

Together with Equation 4.20 this implies

|H∗| ≥ |H(i1)| ≥ n3/2−o(1)n−4ε−o(1) = n3/2−4ε−o(1). (4.22)

The lower bound in this case will now be derived by analyzing how many edges among

the triangles in H∗ survive the triangle-removal process. For this we de�ne random

variables Euvw for each triangle uvw ∈ H∗. For their de�nition, we �rst observe that

the triangle-removal process as stated in this section is equivalent to the process where

we look at time i0 at all our triangles Q(i0) and then shu�e the triangles uniformly at

random and iterate over them. In every step, we delete its edges in case the triangle

is still intact. Let σ be the random permutation we just described. Let j > i0 be

the time at which uvw was added to H∗. At the end of round j, by de�nition and

without loss of generaliy, we have then Yu,v = 1. Now let xyz ∈ Q(j) be arbitrary

with xyz ∈ N1(uvw) at the end of round j. By construction and by de�nition of H,
remember that Buvw > 0 so such a triangle xyz exists. Now let Euvw be the event that

our random permutation σ arranges the triangle xyz prior to all triangles in N1(xyz)

including the triangle uvw itself. As we already saw, we have N1(xyz) ≤ n2ε+o(1) by our

assumption on the co-degrees. This means that we have

P[Euvw] ≥ n−2ε−o(1). (4.23)

Further, by de�nition of the event Euvw, the corresponding triangle xyz will be checked

by the triangle-removal process before any other triangle abc ∼ xyz. In particular, this

means that at the time when xyz is examined by the process it will be still be intact

and hence the process will delete its edges {(x, y), (x, z), (y, z)} at that time. But this

means that at the time when the triangle uvw is examined by the process, the triangle

will not be deleted since one of the edges is missing. In particular, the edge (u, v) will

survive the process since Yu,v = 1, see Figure 4.3. Since the triangles in H∗ are edge

disjoint which is ensured by our auxiliary set Y , the �nal graph Gτ0 contains at least∑
uvw∈H∗

1{Euvw}

48

4. The Triangle-removal Process

Figure 4.3.: The situation where we delete the triangle xyz while Yu,v = 1.

edges. Hence, our goal is now to compute this term. Therefore, note that the event Euvw
is only dependent on our random permutation σ and its induced ordering of N1(xyz) ⊆
N2(uvw) for an arbitrary triangle xyz ∈ N1(uvw). By construction of H∗ we exclude all
triangles in N2(uvw) to get added to H∗ at a later point. Thus, we see that

∑
1{Euvw}

stochastically dominates a binomial random variable with parameters n = |H∗| and
p = n−2ε−o(1), see Equation 4.23. Hence, we get by this dominance

E

[∑
uvw∈H∗

1{Euvw}

]
≥ |H| · n−2ε−o(1)

4.22

≥ n3/2−4ε−o(1) · n−2ε−o(1)

= n3/2−6ε−o(1).

Hence, the �nal graph Gτ0 contains with high probability at least n3/2−6ε−o(1) edges also

in this case which concludes the proof. �

We will start our proof of the main result by showing that the assumption in Theo-

rem 4.1.6 holds for the triangle-removal process.

Lemma 4.1.8. Let 0 < ε < 1/6 be arbitrary. Then with high probability all co-degrees

satisfy Yu,v = (1 + o(1))np2 throughout p ≥ p0 = n−1/2+ε.

Proof. Let 0 < ε < 1/6 and p ≥ n−1/2+ε. Further, let M ∈ N be su�ciently large such

that 1/M ≤ ε. As we saw in the proof for the upper bound, we can apply Theorem 4.1.4

and 4.1.5 in tandem as long as p(t) ≥ n−1/2+1/M and since n−1/2+1/M ≤ n−1/2+ε due

to 1/M ≤ ε also as long as p(t) ≥ n−1/2+ε. Hence, the estimate in Equation ?? holds

as long as p(t) ≥ n−1/2+ε. This means that we have for every co-degree Yu,v with high

49

4. The Triangle-removal Process

probability as n→∞ and for ζ = n−1/2p−1 log n the estimate∣∣∣∣Yu,vnp2
− 1

∣∣∣∣ ≤ 33M−1ζ = 33M−1n−1/2p−1 log n

≤ 33M−1 n−1/2

n−1/2nε
log n = 33M−1 log n

nε
n→∞−→ 0.

This means we get Yu,v/np
2− 1 = o(1) and hence Yu,v = np2(1 + o(1)) for all co-degrees

Yu,v with high probability as n→∞ throughout p ≥ n−1/2+ε.

Now the lower bound for Theorem 4.1.2 follows immediately.

Corollary 4.1.8.1. With high probability as n→∞ the number of edges of the graph

Gτ0 is at least n
3/2+o(1).

Proof. By Lemma 4.1.8 for any �xed 0 < ε < 1/6 all co-degrees satisfy Yu,v = (1 +

o(1))np2 throughout p ≥ n−1/2+ε. Hence, we can apply Theorem 4.1.6 and get that the

number of edges of the graph Gτ0 is at least n3/2−6ε−o(1) with high probability. Since ε

can be chosen arbitrarily small, the claim follows.

4.2. Simulation of the Triangle-removal Process

In this section, we want to present our algorithmic approach for the simulation of the

triangle-removal process. This is interesting since the results for the triangle-removal

process and for all the considered removal processes in general are not as precise as

for the triangle-free process, see Section 3.1 and Section 4.1. Hence, it is particularly

interesting to see how the results for the �nal number of edges evolve. We �rst present

the algorithms developed and the motivation behind them. To this end, we also present

algorithms which list all possible triangles in a given graph G. After this, we present

our results for the simulations. This includes models for the results on the �nal number

of vertices, performance results and some statistical properties.

Algorithms for the Triangle-removal Process

In this section, we describe our algorithms that we use for the triangle-removal process.

Naively, we would follow the original description of the process as stated in Section 4.1.

That is, we start with G0 = (V0 = [n], E0 = E(Kn)) and in every step we keep a list of all

triangles in the graph and choose one uniformly at random from it. However, this would

mean that we hold the complete graph on n vertices in the memory and additionally

every triangle that is in the complete graph. This means that at the �rst step we have

50

4. The Triangle-removal Process

O(n3) triangles in the memory which is not e�cient if n gets large. To overcome this

problem, we make a few observations. First, note that choosing a triangle uniformly

at random in every step is equivalent to the following. We look at a �xed step ξ and

build a list of all triangles in Gξ. Then we iterate in a uniform order over this list and

check whether the triangle is still in the graph before removing it in every step. This

is because every triangle has still the same probability to be chosen by the process at a

later time.

Further, choosing one triangle uniformly at random is equivalent to choosing three

vertices uniformly at random in this sense. If the vertices build a triangle, we delete

it and otherwise we choose the next three vertices uniformly at random until we �nd a

triangle. This follows from the fact that for the equivalence of the process, we only have

to make sure that every triangle has the same probability to be chosen. Since every

triangle has the same probability to be chosen in this way, this is guaranteed. Hence,

we can de�ne something similar to the rejection process for the triangle-free process, see

Algorithm 4. We can start by choosing repeatedly three vertices v ∈ [n] uniformly at

random and check whether they build a triangle in the current graph. This is done as

follows. First, we de�ne the three edges that are built by the sampled vertices. Then we

simply check whether the edges are still in the graph using a hash map or searching for it

in the graph data structure. If this is the case, we can delete the triangle from the graph

and otherwise we choose again three vertices until we �nd a triangle, see Algorithm 4.

Note that this is of course only well de�ned if there still exists a triangle in the graph.

For this purpose let

T (i) := {(u, v, w) ∈ Gi : (u, v, w) is triangle in Gi}

be the set of triangles in the graph Gi, i.e., the set of triangles in the graph after the

�rst i− 1 triangle removals. Of course this approach has the advantage that we do not

have to store the triangles that are contained in the graph. However, this approach is

highly ine�cient from a computational point of view. This is simply the case due to the

small probability for a triangle to be chosen. Since we choose the vertices uniformly at

random from [n] in every step we get using our G(n, p) intuition at step i ∈ N0

P[chosen vertices are a triangle in Gi] ≈ p3, (4.24)

where

p =

(
n
2

)
− 3i(
n
2

) ≈ 1− 6i

n2

51

4. The Triangle-removal Process

Algorithm 4: Rejection version of the triangle-removal process

Data: Complete graph G = (V0 = [n], E0 = E[Kn])
Result: Resulting graph Gτ0 of the triangle-removal process

1 i ← 0;
2 while (T (i) > 0) do
3 Vertex v1 ← randomVertex;
4 Vertex v2 ← randomVertex;
5 Vertex v3 ← randomVertex;
6 Edge e1 ← {v1, v2};
7 Edge e2 ← {v1, v3};
8 Edge e3 ← {v2, v3};
9 if v1, v2, v3 build triangle in Gi then

10 delete {e1, e2, e3};
11 i← i+ 1;

12 else

13 reject {e1, e2, e3};

is the edge density in the graph Gi. Hence, we get

P[chosen vertices are a triangle in Gi] ≈
(

1− 6i

n2

)3

. (4.25)

We can see the behaviour of 4.25 in Figure 13.

0 0.2 0.4 0.6 0.8 1

·106

0.5

0.6

0.7

0.8

0.9

1

Triangle deletions

P
fo
r
tr
ia
n
gl
e

Evolution of the probability

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

·106

P
Steps

Hence, this approach is not suitable to simulate the triangle-removal process for a larger

amount of vertices. Using our other observation, we could use a list of all triangles

in Kn and iterate over it in a random order. However, as we already explained, this

52

4. The Triangle-removal Process

approach is not suitable for large n. The idea is now again to combine both approaches to

reduce the amount of triangles we have to store as much as possible without having too

much computational e�ort. Hence, we start our simulation algorithm by �xing a certain

threshold α ∈ N. Then in the beginning of the algorithm we start with our rejection

approach, i.e., Algorithm 4. However, we only do this until we reject a candidate

triangle α times in a row. We call the step at which this happens τα. The parameter

α is consequently a tuning parameter which depends on the size of n. Afterwards, we

look at the current graph Gτα . Our goal is now to make a list of all triangles in Gτα and

afterwards iterate over them in a uniform order. In order to do so, we �rst have to think

about an algorithm which enumerates all triangles in a given graph G. For this we use

the forward algorithm presented by Schank et al. [Schank and Wagner, 2005] since the

experimental data in [Schank and Wagner, 2005] suggests that it is the most suitable

for our purpose since our graphs are still dense in comparison to real world instances

where this kind of algorithm is typically used. Note that this algorithm is a re�nement

of an equivalent algorithm presented by Batagelj et al. [Batagelj and Mrvar, 2001]. The

idea behind this algorithm is to start with the algorithm edge-iterator. Assume we

have an arbitrary graph G = (V,E). Then the algorithm simply iterates over all edges

e = (u, v). In every step, we look at the neighborhoods N(u) and N(v) and introduce

a new triangle (u, v, w) if and only if w ∈ N(u) ∩N(v). Note that if the neighborhoods

are sorted arrays we can compute the intersection in d(u) + d(v) time. Alternatively,

we can use a hash map for this by assigning every vertex in N(u) the value true and

afterwards we iterate over the neighborhood N(v) of v and add the corresponding vertex

to the intersection if and only if the corresponding neighbor has the hash value true.

In this way, we also get an amortized complexity of d(u) + d(v) but we do not have to

sort the neighborhoods. However, we get for this approach a running time of∑
(u,v)∈E

(d(u) + d(v)).

Now we can re�ne this approach for our forward algorithm by using dynamic data

structures. Instead of using the actual neighborhoods we de�ne a dynamic subset

A(v) ⊆ N(v) for all v ∈ V . In general, the idea behind this is to introduce an or-

dering of the vertices which does not interfere with �nding all the triangles in the graph.

This has the advantage that the running time only involves the in-degree of a vertex

and hence the algorithm is faster than the edge-iterator algorithm. The idea is to

still iterate over all edges e = (u, v) ∈ E but now we look at A(u) ∩ A(v) instead of

N(u) ∩N(v) and let A(w) grow during this process for every w ∈ V , see Algorithm 5.

An example execution of this algorithm can be found in Figure 4.4. Note that for the

53

4. The Triangle-removal Process

Algorithm 5: forward algorithm

Data: Arbitrary graph G = (V = [n], E)
Result: List T of all triangles in the graph.

1 T ← {};
2 for v ∈ V do

3 A(v)← {};
4 for v ∈ [n] do
5 for w ∈ N(v) do
6 if v < w then

7 for u ∈ A(v) ∩ A(w) do
8 T ← T ∪ {(v, w, u)};
9 A(w)← A(w) ∪ {v};

Figure 4.4.: On the left is the example graph. On the right from the top to the bottom
we see the edges in the order the algorithm looks at them and the evolution
of our dynamic data structure.

computation of the intersection of our dynamic data structure we can use hash maps

as described above. Further, we see that the forward algorithm lists every triangle in

the graph only once which is crucial for the random aspect in our simulation. For an

analysis of the running time of this algorithm see [Schank and Wagner, 2005]. Now with

the forward algorithm in mind, we can continue our simulation algorithm. Given the

graph Gτα we apply the forward algorithm to obtain a list of all triangles in Gτα which

we call Tτα . Afterwards, we shu�e Tτα uniformly at random and iterate over it to check

whether the corresponding triangle is still in the graph, see Algorithm 6. Note that

in line 23 of Algorithm 6 we do not have to check anymore whether the corresponding

edges are a triangle, we only have to check whether all edges are still contained in the

current graph. Now we want to describe how we build the remaining graph in line 22

of Algorithm 6. First, note that we use a hash map for the deleted edges instead of

searching for the edges in the current graph from the beginning as the graph will be

dense for the �rst steps. Hence, looking for an edge in this graph is ine�cient as we

have d(v) = n for all vertices v ∈ V in the beginning of the process. Consequently, we

only store the value true for the deleted edges and if the value is false for an edge

we already know that it is still in the graph. By complexity arguments for hash maps,

54

4. The Triangle-removal Process

Algorithm 6: Simulation algorithm for the triangle-removal process

Data: Number of vertices n
Result: Resulting graph of the triangle-removal process Gτ0 .

1 T ← {};
2 i ← 0;
3 steps← 0;

4 delEdges :
(

[n]
2

)
→ {true, false};

5 while i ≤ α do

6 Vertex v1 ← randomVertex;
7 Vertex v2 ← randomVertex;
8 Vertex v3 ← randomVertex;
9 Edge e1 ← {v1, v2};
10 Edge e2 ← {v1, v3};
11 Edge e3 ← {v2, v3};
12 if Gsteps[{e1, e2, e3}] 6= K3 then

13 reject {e1, e2, e3};
14 i← i+ 1;
15 if i > α then

16 break;

17 if {e1, e2, e3} builds a triangle in Gsteps then

18 delEdges(e1)← true;
19 delEdges(e2)← true;
20 delEdges(e3)← true;
21 i← 0;

22 Gτα ← build remaining graph;
23 Tτα ← forward(Gτα);
24 Tτα ← randomShuffle(Tτα);
25 for Triangle t = {e1, e2, e3} ∈ Tτα do
26 if delEdges(e1) = delEdges(e2) = delEdges(e3) = false then

27 Gτα ← Gτα − {e1, e2, e3};
28 delEdges(e1)← true;
29 delEdges(e2)← true;
30 delEdges(e3)← true;

this yields an e�ort of O(1) for the amortized complexity to check whether an edge is

in the graph or not. Also, it is possible to build the remaining graph, i.e., the graph

after the �rst triangle deletions using this hash map. This is described in Algorithm 7.

However, note that Algorithm 6 still has the disadvantage that the �rst phase of the

algorithm, i.e., the rejection phase is ine�cient even in the beginning of the triangle-

removal process, see Figure 13. Hence, the question is whether there is another method

to decrease the edge density enough such that the forward algorithm becomes more

55

4. The Triangle-removal Process

Algorithm 7: Build remaining graph after the rejection phase in Algorithm 6

Data: Hash map delEdges : E[Kn]→ {true, false}
Result: Remaining graph Gτα after the rejection phase in Algorithm 6 with

threshold α.
1 Gτα ← (V = [n], E = ∅);
2 for i ∈ [n] do
3 for j ∈ [n] do
4 if i < j ∧ delEdges((i, j)) = false then

5 Gτα ← Gτα ∪ {(i, j)};

e�cient which is the case if we can decrease the number of edges before applying it.

The idea is now to use a heuristic that is based on our insights from theory, see Sec-

tion 4.1. Even though the results for the triangle-removal process are not as strong as

for the triangle-free process (see Section 3.1), we see nonetheless that a lot of properties

of the graph obtained by this random graph process closely resemble the properties of a

G(n, p) graph with the according edge density p ∈ [0, 1]. However, we can also observe

that the higher p is, the higher the accuracy of this intuition. Hence, the idea is now

to generate a graph G(n, p) and then using the forward algorithm directly on it. We

will see in the next section how this approach behaves for di�erent p. To do so, we

�rst have to look at the generation of a G(n, p) graph. For this we use the algorithms

presented by Funke et al. [Funke et al., 2018]. In this work the authors present dis-

tributed algorithms for various random graph models including the G(n, p) model for

n ∈ N and p ∈ [0, 1]. The advantage of this model is that it can use parallelization

highly e�ciently because the algorithm needs zero communication to generate a G(n, p)

with n and p ∈ [0, 1] arbitrary. For the implementation we use the KaGen repository

(https://github.com/KarlsruheGraphGeneration/KaGen) and use its library to inte-

grate it directly to our algorithm. Hence, we do not have to print the graph and read it

again for the algorithm. Consequently, we arrive at our �rst heuristic algorithm for the

triangle-removal process where we have an input parameter pα which is the edge density

for our generated graph which we generate in the �rst step using KaGen. Afterwards, we

run our forward algorithm on this graph and iterate over the shu�ed list of triangles as

in Algorithm 6, lines 25-30. Note that the goal for the heuristic is not just to generate

large graphs, but also to have precise results which are consequently usable. Hence,

we can not decrease our initial parameter pα arbitrarily. We describe this algorithm in

Algorithm 8. In the next section, we see that for ascending values of pα, Algorithm 8

converges against the results of the original process obtained by Algorithm 6, suggesting

that our intuition is indeed precise as long as pα is not to small. This is also in line

56

https://github.com/KarlsruheGraphGeneration/KaGen

4. The Triangle-removal Process

Algorithm 8: Simulate the triangle-removal process starting from a G(n, p) for
n ∈ N and p ∈ [0, 1].

Data: Number of vertices n ∈ N, initial edge density pα ∈ [0, 1].
Result: Triangle-free graph G4,pα obtained by the triangle-removal process.

1 G(n, pα)← KaGen(n, pα);
2 G4,pα ← G(n, pα);

3 delEdges :
(

[n]
2

)
→ {true, false};

4 Tpα ← forward(G(n, pα));
5 Tpα ← randomShuffle(Tpα);
6 for Triangle t = {e1, e2, e3} ∈ Tpα do
7 if delEdges(e1) = delEdges(e2) = delEdges(e3) = false then

8 G4,pα ← G4,pα − {e1, e2, e3};
9 delEdges(e1)← true;

10 delEdges(e2)← true;
11 delEdges(e3)← true;

with the theoretical �ndings where it turns out that our intuition gets worse the further

the process has progressed. However, this yields the problem that even though we can

choose p relatively small, we have to look at it rather as a small constant. Hence, even

when we start the triangle-removal process from a G(n, p), we still have a lot of triangles

in the graph. To make the problem of memory consumption clear, recall Lemma 4.1.1

for the G(n, p) model giving us

E[#triangles in the graph] =

(
n

3

)
· p3 ≈ n3

6
· p3.

Hence, if we can not decrease p far enough we still have a high memory consumption. An

additional step to resolve this could be to choose an edge according to its co-degree and

afterwards, to choose one vertex in the intersection of the neighbourhoods uniformly

at random. However, due to time limitation we were not able to further follow this

approach.

4.2.1. Experimental Evaluation

In this section, we want to present the simulation results for the triangle-removal process.

Thereby, our main goal is to further investigate the number of edges in the �nal graph

for which we know

e(Gr
4,n) = n3/2+o(1)

57

4. The Triangle-removal Process

Sample mean 10 938,69
Sample standard deviation 79,15
Relative sample standard deviation 0,72
Sample variance 6 265,06

Table 4.1.: Some statistical results for the triangle-removal process on 1 000 vertices with
200 repetitions.

with high probability, see Section 4.1. Hence, a natural question to ask is whether there

is a logarithmic factor involved. Note that

(log n)c = no(1)

for every constant c ∈ R. We examine this question using di�erent models to �t the

data in a similar way as for the triangle-free process. For this we use Algorithm 6.

Further, we give some statistical properties for the simulation results of this algorithm.

Additionally, we shortly look at the time and memory performance of the simulation.

Afterwards, we show that the heuristic algorithm presented in Algorithm 8 converges

against the results for the original process and show that the performance di�erence is

signi�cant with respect to the time for the simulation.

Statistical results. In order to assess the reliability of our results, we have to know

what sample standard deviation we have to expect. For this, we repeat the simulation

of the triangle-removal process on 1 000 vertices 200 times. The results for this can be

seen in Table 4.2.1. What we can see is that similar to the triangle-free process we have

a low sample standard deviation of less than one percent. This builds the basis for our

further analysis of the evolution of e(Gr
4,n). In particular, we can expect reliable results

without too many repetions of the process.

Time and memory performance of Algorithm 6. Now we want to analyze how

the number of rejections in a row inlfuence the performance of the algorithm. Note

that this has no in�uence on the result quality of the simulation. We can see this in

Table 4.2.1. What we can see in this table is that an increased number of rejections that

we allow lead to signi�cantly less memory consumption which is in general much higher

than this was the case for the H-free processes. This is because we do not only have to

maintain a list of open edges but we have to maintain a list of all triangles that are still

in the graph. This is described in more detail in Section 4.2. However, the downside of

an increase of α is that the time consumption increases signi�cantly which is probably

due to the low probability of a random triangle after su�cient triangle deletions. This

58

4. The Triangle-removal Process

n
α = 500 α = 2 500 α = 5 000

t[s] m[KB] t[s] m[KB] t[s] m[KB]

5 000 1 137,63 1 820 892 6 154,02 346 344 12 147,7 246 576
6 000 1 787,67 1 880 612 8 095,95 461 160 17 562,9 337 780
7 000 2 208,13 3 516 668 12 084,1 529 284 23 835,5 481 824
8 000 2 345,37 6 738 948 12 534,9 856 088 32 501,0 551 024
9 000 4 222,61 6 824 220 22 131,1 1 043 516 38 431,1 850 564
10 000 5 172,7 13 383 128 26 599,8 1 547 524 50 777,5 1 010 252
11 000 6 815,29 13 504 708 30 982,0 1 663 988 60 885,9 1 275 648
12 000 6 858,8 26 215 688 32 385,8 2 579 344 - -
13 000 8 619,41 26 409 668 44 511,6 2 713 688 - -
14 000 9 374,36 51 731 964 45 236,7 4 462 612 - -
15 000 11 700,1 51 890 864 57 232,3 4 640 084 - -

Table 4.2.: In�uence of the rejection parameter α on the memory consumption and the
overall time for the simulation of the triangle-removal process on di�erent
numbers of vertices n.

also underlines the motivation for Algorithm 8 to safe the �rst triangle deletions by

generating a G(n, p) for the beginning of the process.

Algorithm 8. Now we want to show how our heuristic algorithm for the triangle-

removal process peforms. For this, we run the algorithm with nine di�erent random

seeds and di�erent input edge densities. The hope is that the results of the algorithm

converge against the real results of Algorithm 6. This behaviour can be seen in Fig-

ure 4.5. What we can see is that the input parameter p has a signi�cant inlfuence. If

we choose this parameter to low we are far from the expected result for the simulation.

However, we can see that an increase of the edge density yields a convergence against

the results of Algorithm 6. This underlines that also for the triangle-removal process

the intuition that the graphs should behave in the beginning like a G(n, p) with the ac-

cording edge density is correct. However, it also indicates that towards the later stages

of the triangle-removal process a more sophisticated analyses is needed. Further, we can

see that this also yields a signi�cant improvement for the time performance. This can be

seen in Table 4.2.1 where one can also see at which edge densities the results converge.

We can see here that we still need a signi�cant amount of main memory for the list of

remaining triangles in the graph. However, we have a signi�cant improvement for the

time performance since we save a lot of work by starting from a G(n, p). Further, this

shows that the rejection process decreases the edge density not fast enough compared

to the time it needs since we also use less memory than for Algorithm 6.

59

4. The Triangle-removal Process

Figure 4.5.: The behaviour of Algorithm 8 for increasing edge densities. From the top
left to the bottom right we show the behaviour for 4 000 vertices to 15 000
vertices in steps of 1 000. On the y-axis we see the results of the process.

Figure 4.6.: Simulation results together with the predicted model for the model f1(n).

Models for the simulation data. Now we want to apply di�erent models for the

simulation data of Algorithm 6. Note that in order to have the most reliable results for

this, we only use the data of the original process. In particular, we are interested to

examine the error term for the �nal number of edges. For this we start with the �rst

model

f1(n) = a · nb · (log n)c.

This model gives us the most parameters of freedom. The �t of this model can be seen

in Figure 4.6. This gives us the values

60

4. The Triangle-removal Process

n ε1 t[s] m[KB] Result ε2 t[s] m[KB] Result

5 000 0,067 2,59 169 204 122 818 0,072 3,10 171 088 123 101
6 000 0,055 2,91 176 592 160 911 0,06 3,60 178 868 161 286
7 000 0,053 4,29 286 132 203 504 0,058 5,28 290 424 203 746
8 000 0,055 7,04 303 192 249 080 0,06 8,85 506 040 248 981
9 000 0,055 10,32 521 732 298 169 0,06 12,96 540 580 297 438
10 000 0,05 11,58 534 732 348 514 0,055 14,27 556 368 349 359
11 000 0,052 16,92 573 608 402 479 0,057 21,80 976 252 402 195
12 000 0,05 20,24 985 292 458 409 0,055 27,14 996 084 459 573
13 000 0,045 20,93 602 916 516 516 0,05 27,07 1 009 400 517 650
14 000 0,045 25,95 1 019 052 578 263 0,05 33,55 1 034 332 579 127
15 000 0,045 32,58 1 043 780 642 034 0,05 43,41 1 859 524 641 958

Table 4.3.: Results for Algorithm 8 for the two largest edge densities.

Figure 4.7.: Simulation results together with the predicted model for the model f2(n).

a = 0.42, b = 1.52, c = −0.18

with a standard error of

S = 168.11

and we can see that this model is a good �t for the data. In particular, we are close to

the main factor n3/2. However, since we already know the main factor n3/2 we apply a

model

f2(n) = a · n3/2(log n)c

where we �x this factor and focus on the error term. This can be seen in Figur 4.7. This

61

4. The Triangle-removal Process

Figure 4.8.: Simulation results together with the predicted model for the model f3(n).

yields the results

a = 0.32, c = 0.04

with a standard error

S = 181.40.

This also yields a good �t of the data and it indicates that there might is no logarith-

mic factor. In particular, this indicates that the triangle-free process and the triangle-

removal process are not equivalent. This is also underlined by the model

f3(n) = a · nb

which yields

a = 0.34, b = 1.50

with an even better standard error of

S = 177.29

underlining the hypothesis that there is no logarithmic factor. In particular, we can

assume that the predictions for f2(n) and f3(n) are more reliable due to a very high

condition number of the covariance matrix for the model f1(n). This can indicate

that the results are less reliable, see https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.curve_fit.html.

62

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

5. The C4-free Process

In this chapter, we present the C4-free process. This process is another special case

of a random graph process. In particular, it is equivalently de�ned as the triangle-free

process but the forbidden subgraph is in this case a C4 instead of a triangle. However,

to the best of our knowledge, the results that are known for this process are not as

strong as for the triangle-free process. We give an introduction to the current state of

the theory in the following section. Afterwards, we present our simulation algorithms

for this process. Finally, we evaluate the simulation data and give suggestions for more

precise results.

5.1. Theoretical Results

In this section, we want to present the latest theoretical results for the C4-free process.

Thereby, we will mainly follow the work of Picollelli [Picollelli, 2010] and Bohman et

al. [Bohman and Keevash, 2009]. Our main interest is the �nal size of the C4-free process

which is the number of edges in the �nal graph. We start with our central de�nitions.

De�nition 5.1.1. The random graph process (Gi)i∈N0 , where G0 = ([n], ∅) and for i ∈ N
the graph Gi is obtained by selecting uniformly at random an edge from E(Kn \Gi−1)

which is neither already contained in Gi−1 nor closes a C4 in Gi−1, is called the C4-free

process on n ∈ N vertices.

Remark 5.1.1. As we already saw for the triangle-free process, this process becomes

stationary at some point τ ∈ N which is precisely the point if every edge in Gτ would

close a C4. We will denote this �nal graph as G�,n.

To the best of our knowledge, there is only little work which is only dedicated to the C4-

free process. However, since C4 is strictly 2-balanced, there are still some results for the

�nal number of edges for this process. Bollobás and Riordan [Bollobás and Riordan, 2000]

examined theH-free process in this case and gave general lower bounds for the �nal num-

ber of edges. Additionally, they gave an upper bound which matched the lower bound

within a logarithmic factor. In particular, they showed that e(G�,n) = Ω(n4/3) and

63

5. The C4-free Process

e(G�,n) = O(n4/3(log n)3) w.h.p. Further, Osthus and Taraz [Osthus and Taraz, 2001]

gave an upper bound ofO(n4/3(log n)) w.h.p. Bohman et al. [Bohman and Keevash, 2009]

provided a new lower bound on the minimum degree of G�,n which gives a new lower

bound of Ω(n4/3(log n)1/3). Further, they conjectured that this is within a constant fac-

tor of the truth. Finally, Picollelli [Picollelli, 2010] was able to match this lower bound

by showing that e(G�,n) = O(n4/3(log n)1/3). Even though the results are not directly

applicable to classical Ramsey theory as this is the case for H = K3, the results of

Bohman et al. [Bohman and Keevash, 2009] provided nonetheless new lower bounds for

the cycle-complete Ramsey numbers R(Cl, Kt) where l ≥ 4 is �xed and t is su�ciently

large. The main result we want to present in this section is the following.

Theorem 5.1.1 ([Picollelli, 2010], Corollary 1.2). With high probability as n→∞ we

get

e(G�,n) = Θ(n4/3(log n)1/3).

As we already saw for the triangle-free process, it turns out that following the intuition

of a G(n,m) is helpful for this process, too. Hence, we start by looking at this model

for our basic parameters we want to follow for this process and introduce some basic

de�nitions.

De�nition 5.1.2. For every step i ∈ N0 of the C4-free process an edge e ∈ E(Kn\Gi−1)

is called open if Gi−1∪{e} contains no C4. The edge is called closed if Gi−1∪{e} contains
a C4.

As we already saw for the triangle-free process, the set of open edges in step i ∈ N of

the process which we denote by O(i) are precisely those edges which can be added to

Gi−1 without closing a C4. The set of closed edges in step i ∈ N0 is denoted by C(i) and

we set Q(i) := |O(i)|. Further, for every i ∈ N0 in the C4-free process we can partition

the set of potential edges E(Kn) into

E(Kn) = O(i) ∪ C(i) ∪ E(Gi)

and obviously this union is disjoint for every i ∈ N0. Obviously, the central parameter

in this section is Q(i) since the process ends precisely if Q(i) = 0. Hence, we start by

looking at this parameter for the Erdös-Renyi model.

Lemma 5.1.2. Let n ∈ N and 0 < i <
(
n
2

)
. Then for G ∼ G(n, p) we have

E[#open edges in G] =

(
n

2

)
(1− p3)(

n−2
2)·2 ≈

(
n

2

)
e−p

3·n2

,

64

5. The C4-free Process

where p := i

(n2)
is the edge density of the graph G ∼ G(n, p).

Proof. We compute for every possible edge

P[e = (u, v) is open] = P[Ae] = (1− p3)(
n−2
2)·2, (5.1)

where Ae is the event that there is no path from u to v of length 3. Obviously, an edge

e = (u, v) is open if and only if there is no path from u to v of length 3. If there is

one, the edge is closed as inserting it would create a C4. The second equality in 5.1 can

be seen as follows. Any path (u, x, y, v) of length 3 has probability p3 to occur in G

and hence probability (1 − p3) of not occurring in G ∼ G(n, p). For every pair x 6= y,

where {x, y} ∩ {u, v} = ∅, we get two possible paths, the path (u, x, y, v) and the path

(u, y, x, v). Hence, there are
(
n−2

2

)
· 2 possible paths of length 3 and we get together

P[Ae] = (1− p3)(
n−2
2)·2. (5.2)

Using indicator variables for the event Ae for every edge e ∈ E(Kn) yields then by

linearity of expectation

E[#open edges in G] = E[
∑

e∈E(Kn)

1{e is open}]

=
∑

e∈E(Kn)

E[1{e is open}]

=
∑

e∈E(Kn)

P[1{e is open}]

=
∑

e∈E(Kn)

P[Ae]

5.1
=

(
n

2

)
(1− p3)(

n−2
2)·2

and hence the �rst statement of the lemma. Using the approximation
(
n
2

)
≈ n2

2
we get(

n

2

)
(1− p3)(

n−2
2)·2 ≈

(
n

2

)
e−p

3 (n−2)2

2
·2 ≈

(
n

2

)
e−p

3n2

and hence also the second statement of the lemma.

With this lemma in mind, we would expect the number of open edges to decay at

a rate of e−p
3n2

. This will be important for the upper bound as well as for the lower

bound in Theorem 5.1.1.

65

5. The C4-free Process

Upper Bound

For the upper bound, we follow the work of Picollelli [Picollelli, 2010]. The main goal

of this section is to show the following theorem.

Theorem 5.1.3 ([Picollelli, 2010], Theorem 1.1). There exists κ > 0 such that we have

∆(G�,n) ≤ κ(n log n)1/3 with high probability.

The overall idea for this theorem is based on the following observation. Assume

we have a �xed vertex v ∈ [n] and a certain step i ≤ τ . Then if there is x 6= y

with {x, y} ∩ {v} = ∅ and {x, y} ∈ NG�,n
(v) but (v, x), (v, y) 6∈ E(Gi), then x and y

do not have a common neighbor in Gi. With this idea, the goal is to show a bound

∆(G�,n) ≤ ∆(Gi) + k = O((n log n)1/3) by showing that every set K consisting of k

vertices contains two vertices x 6= y such that N(x) ∩ N(y) 6= ∅. This will su�ce

to prove Theorem 5.1.3. To achieve this, the authors track a certain type of random

variables which we de�ne below using the di�erential equations method. We introduce

now the necessary random variables and show how they look like in the Erdös-Renyi

model before we show how they can be used to prove Theorem 5.1.3.

De�nition 5.1.3. We say that a set K consisting of k vertices is covered in Gi if there

exists x 6= y ∈ K such that N(x) ∩N(y) 6= ∅. Otherwise, we say that K is uncovered.

Since we would expect, if a covered k-set K has a reasonable size, that the corre-

sponding common neighbour is likely to be in V (Gi) \ K the idea is to look at the

following.

De�nition 5.1.4. Let K ⊆ V (Gi) with |K| = k and 0 ≤ i ≤ µ(log n)1/3n4/3 for a

constant µ� 1/4. Then we de�ne

XK(i) :=

{
((u, v), w) ∈

(
K

2

)
× V \K : (u,w), (w, v) ∈ O(i)

}
and

YK(i) :=

{
((u, v), w) ∈

(
K

2

)
× V \K :

|{(u,w), (v, w) ∩O(i)}| = |{(u,w), (v, w) ∩ E(Gi)}| = 1} .

We call triples in XK(i) open with respect to the set K. Triples in YK(i) are called

partial. Note for the de�nition of YK(i) that E(Gi) ∩ O(i) = ∅. There are some

observations that can be made for the random variables YK(i). Assume ((u, v), w) ∈
YK(i) and without loss of generality (u,w) ∈ O(i) and hence by de�nition (v, w) ∈
E(Gi). If then, in step i + 1, we choose the edge (u,w) then u and v share w as a

66

5. The C4-free Process

common neighbour and hence the set K is covered for every future step j ≥ i + 1.

Hence, intuitively we can think of YK(i) as the set which contains those edges that make

K covered when chosen in step i + 1. Further, XK(i) is then a sort of predecessor of

YK(i) because if ((u, v), w) ∈ XK(i) and we choose, without loss of generality, (u,w)

in step i + 1, then ((u, v), w) ∈ YK(i + 1). We can also observe that if a k-set K is

uncovered, then obviously we have |N(v)∩K| ≤ 1 for all vertices v ∈ [n]. Following our

intuition with the Erdös-Renyi model, we would expect for those random variables the

following.

Lemma 5.1.4. Let n ∈ N and 0 ≤ i ≤
(
n
2

)
. Further, let G ∼ G(n, p), for p := i

(n2)
and

let K ⊆ V (G) be a k-set. Then we have

E[|XK(i)|] =

(
k

2

)
(n− k)(1− p3)(

n−2
2)4

≈ k2

2
ne−2p3n2

(5.3)

and

E[|YK(i)|] = 2

(
k

2

)
(n− k)(1− p3)(

n−2
2)2p

≈ k2npe−p
3n2

.

(5.4)

Proof. We �rst compute E[|XK(i)|]. The number of pairs in K is given by
(
k
2

)
since

|K| = k. Hence, we have

|
(
K

2

)
× (V \K)| =

(
k

2

)
(n− k).

For each element ((u, v), w) ∈ XK(i) the edges (u,w), (v, w) must be open and as we

saw in the proof of Lemma 5.1.2 we have for every edge e ∈ E(Kn)

P[e is open] = (1− p3)(
n−2
2)2 (5.5)

and hence by de�nition of XK(i) we get for every element ((u, v), w) ∈
(
K
2

)
× V \K

P[((u, v), w) ∈ XK(i)] = P[e is open]2 = (1− p3)(
n−2
2)4. (5.6)

Using indicator random variables for every possible element ((u, v), w) ∈
(
K
2

)
× V \K

67

5. The C4-free Process

yields

E[XK(i)] = E[
∑

((u,v),w)∈(K2)×V \K

1{((u,v),w)∈XK(i)}]

=
∑

((u,v),w)∈(K2)×V \K

E[1{((u,v),w)∈XK(i)}]

=
∑

((u,v),w)∈(K2)×V \K

P[((u, v), w) ∈ XK(i)]

5.6
=

(
k

2

)
(n− k)(1− p3)(

n−2
2)4.

Using our usual approximations, we get(
k

2

)
(n− k)(1− p3)(

n−2
2)4 ≈ k2

2
ne−2p3n2

since n dominates k and hence the �rst part of the lemma follows.

Now we compute E[|YK(i)|]. We get with an analogous argumentation as above and by

de�nition of YK(i)

E[|YK(i)|] = 2

(
k

2

)
(n− k)P[e is open]P[e ∈ G]

5.6
= 2

(
k

2

)
(n− k)(1− p3)(

n−2
2)2p,

where the additional factor of two comes from the fact that every element ((u, v), w) ∈(
K
2

)
× V \K represents two possible elements in YK(i). Using the same approximations

as above again, we get

2

(
k

2

)
(n− k)(1− p3)(

n−2
2)2p ≈ k2ne−p

3n2

p.

Now let t := i/n4/3. Then using p ≈ 2i/n2 yields e−p
3n2 ≈ e−8t3 . The main technical

lemma in the work of [Picollelli, 2010] shows that Lemma 5.1.4 is up to an error term

close to the truth for the C4-free process.

Lemma 5.1.5 ([Picollelli, 2010], Lemma 2.3). Let W and ε be a su�ciently constants

such that 0 � ε � 1/W � 1/4. With high probability, for all i, 0 ≤ i ≤ m, and K a

k-set, if K is uncovered in Gi then

|XK(i)| =

(
1± eW (t3+t) − 1

n3ε

)(
e−16t3

2
± 1

n3ε

)
k2

n

68

5. The C4-free Process

and

|YK(i)| =

(
1± eW (t3+t) − 1

n3ε

)(
2te−8t3 ± 1

n3ε

)
k2np

The authors proof this lemma using the di�erential equation technique. For details

see [Picollelli, 2010], Section 3 and 4. For the proof of Theorem 5.1.3 we have to introduce

some notation �rst. We �x constants µ, ε,W such that

0 < µ� ε� 1

V
� 1

4
.

Further, we de�ne p = p∗ := n−2/3, m = µ(log n1/3)n4/3 and tmax = µ(log n)1/3. Further,

we want to choose our constants µ and ε su�ciently small such that

eW (t3+t) − 1 ≤ eW (t3max+tmax) − 1 = nWµ3+W
3
µ − 1

is at most nε and

e8t3 ≤ e8t3max = n8µ3

is at most nε for 0 ≤ t ≤ tmax. For this, we just need to choose µ su�ciently small.

Further, we want to choose ε su�ciently small such that

n1/8−ε � n3ε

and again µ su�ciently small such that

eW (t3+t) − 1

nε
= o(1)

uniformly in 0 ≤ t ≤ tmax which can be achieved with the computations from above by

choosing µ su�ciently small compared to ε. The only missing ingredient are now two

other results from [Bohman and Keevash, 2009] which we summarize here.

Theorem 5.1.6 ([Bohman and Keevash, 2009]). With high probability for 0 ≤ i ≤ m

we have

Q(i) =

(
1± eW (t3+t) − 1

n1/8−ε

)(
e−8t3 ± 1

n1/8−ε

)
n2

2
(5.7)

and

dGi(v) =

(
1± eW (t3+t) − 1

n1/8−ε

)(
2t± 1

n1/8−ε

)
np. (5.8)

The proof of Thorem 5.1.6 follows immediately by applying Theorem 2.3.2 to the

trackable extension variables 2|O(i)| and dGi(v). We have seen the the applicability of

69

5. The C4-free Process

this theorem to these variables in Lemma 2.3.3 and Lemma 2.3.4. Note that Theo-

rem 5.1.6 implies by Equation 5.8

∆(Gi) ≤ 4tmaxnp

with high probability.

Proof of Theorem 5.1.3: Let β > 0 be a �xed constant with

β >
4

µ2
(5.9)

and let k := β(n log n)1/3. We show now that with high probability every k-set K is

covered at step m. For this, let K be any uncovered k-set at step i ≤ m. Note that ei+1

is chosen uniformly at random from O(i). Further, each partial triple in YK(i) contains

an unique open edge. As we already explained these open edges make K covered when

chosen by the process. Hence, we get

P[K is uncovered in step i+1] ≤ 1− |YK(i)|
Q(i)

. (5.10)

Now we look at the process for the steps m/2 ≤ i ≤ m. We want to compute the

probability that some k-set K remains uncovered during all these steps. Since m =

µ(log n)1/3n4/3 and µ is �xed we know that m/2 ≥ n4/3 for n su�ciently large. This

implies that during the steps m/2 ≤ i ≤ m we have t ≥ 1 for n su�ciently large.

Further, remember that by the assumptions on the constants for n su�ciently large and

tmax/2 ≤ t ≤ tmax we have

n1/8−ε ≥ n3ε ,
eW (t3+t) − 1

n3ε
≤ 1

3
and

1

n3ε
≤ e−8t3

2
≤ te−8t3

2
.

With this in mind, we can compute with Lemma 5.1.5 and Theorem 5.1.6

|YK(i)|
Q(i)

5.1.5
=

5.1.6

(
1± eW (t3+t)−1

n3ε

)(
2te−8t3 ± 1

n3ε

)
k2np(

1± eW (t3+t)−1
n1/8−ε

) (
e−8t3 ± 1

n1/8−ε

)
n2

2

≥

(
1− eW (t3+t)−1

n3ε

)(
2te−8t3 − 1

n3ε

)
k2np(

1 + eW (t3+t)−1
n1/8−ε

) (
e−8t3 + 1

n1/8−ε

)
n2

2

= (∗).

(5.11)

This yields using (eW (t3+t)−1)/n3ε ≤ 1/3 for n su�ciently large due to (eW (t3+t)−1) ≤ nε

70

5. The C4-free Process

and 1/n3ε ≤ (te−8t3)/2 that

(∗) =
2
3
· 3

2
te−8t3 · k2np(

1 + eW (t3+t)−1
n1/8−ε

) (
e−8t3 + 1

n1/8−ε

)
n2

2

and this implies with (eW (t3+t) − 1)/n1/8−ε ≤ (eW (t3+t) − 1)/n3ε ≤ 1/3 and 1/n1/8−ε ≤
1/n3ε ≤ e−8t3/2 that

(∗) =
2
3
· 3

2
te−8t3 · k2np

4
3
· 3

2
e−8t3 · n2

2

=
tk2p

n
≥ tmaxk

2p

2n
.

Hence, the probability that some k-set K remains uncovered during m/2 ≤ i ≤ m is by

Equations 5.10 and 5.11 bounded by(
n

k

)
·
(

1− |YK(i)|
Q(i)

)m/2
≤
(
n

k

)(
1− tmaxk

2p

2n

)m/2
≤ nk exp

(
−tmaxk

2pm

4n

)
= nk exp

(
−µ(log n)1/3 · β2(n log n)2/3 · n−2/3 · µn4/3(log n)1/3

4n

)
= nk exp

(
−µ

2β2n1/3(log n)4/3

4

)
= (∗∗).

Further, we have

nk = exp(k log n) = exp(βn1/3(log n)4/3).

Hence, we get

(∗∗) = exp

(
4βn1/3(log n)4/3 − µ2β2n1/3(log n)4/3

4

)
= exp

(
n1/3(log n)4/3 · (4β − µ2β2)

4

)
.

This term is o(1) if and only if

(4β − µ2β2)

4
< 0 ⇐⇒ 4

µ2
< β

which is exactly how we chose β, see 5.9. Hence, we see that with high probability there is

no k-setK that remains uncovered at stepm. Now assume ∆(G�,n) ≥ ∆(Gm)+k+1 and

every k-set K is covered in Gm. Then we �nd a vertex v ∈ [n] and a k-set K ⊆ [n] \ {v}
such that (v, x) ∈ E(G�,n) for all x ∈ K but in Gm we have (v, x) 6∈ Gm for all x ∈ K.

71

5. The C4-free Process

But since K is covered, there is a vertex w ∈ [n] \ {v} and vertices x, y ∈ K such that

w ∈ N(x) ∩ N(y). But this is a contradiction because then G�,n[{v, x, y, w}] would
contain a C4. Consequently, we get

∆(G�,n) ≤ ∆(Gm) + k ≤ 4µ(n log n)1/3 + β(n log n)1/3 = κ(n log n)1/3,

where κ := (4µ+ β). �

Now the upper bound in Theorem 5.1.1 follows immediately with high probability by

the straightforward bound

e(G�,n) =
1

2

∑
v∈V (G�,n)

dG�,n
(v) ≤ n ·∆(G�,n) ≤ κn4/3(log n)1/3.

If we apply now Theorem 2.3.1 for the case H = C4, we get the existence of a constant

C > 0 such that

e(G�,n) ≥ Cn
4
3 (log n)

1
3 . (5.12)

Hence, we also proved Theorem 5.1.1.

5.2. Simulation of the C4-free Process

In this section, we describe our approach for the algorithmic simulation of the C4-free

process. For this, we use similar techniques as in Chapter 3. However, the results for

the C4-free process are not as strong as for the triangle-free process from a theory point

of view. In particular, we have seen in Section 5.1 that we know for the number of edges

in the �nal graph G�,n of the process

e(G�,n) = Θ(n4/3(log n)1/3) (5.13)

with high probability but to the best of our knowledge there is no speci�cation of a

constant as in Section 3.1. However, we can use a similar intuition for the constant as

for the triangle-free process and see whether our simulations can con�rm that. We start

by giving the necessary algorithms for the C4-free process simulation and the intuition for

the constant we want to investigate. Afterwards, we evaluate our simulations regarding

various parameters.

72

5. The C4-free Process

5.2.1. Intuition for the constant

For the intuition of the constant we use again the G(n, p) model. For this, we remember

that we computed in this model the expected number of open edges. In particular, using

t = m/n4/3 and p ≈ 2m/n2, where we want to specify m, we have shown in Lemma 5.1.2

that the expected number of open edges is roughly(
n

2

)
e−8t3 .

Now as we already discribed in Section 2.3, our intuition is particularly precise if we

follow the process up to an edge density where the expected number of copies of a C4

is equal to the amount of open edges and we have seen that this is the case for an edge

density of roughly n−2/3. This means that we follow the process up to the moment when

e−8t3
(
n

2

)
= n4/3.

Solving this equation for m yields by simple calculations and estimates

m =
1

3
√

12
n4/3(log n)1/3.

Hence, we give the following conjecture.

Conjecture 5.2.1. With high probability we have

e(G�,n) =

(
1

3
√

12
+ o(1)

)
n4/3(log n)1/3

for the C4-free process.

5.2.2. Simulation algorithms

Now we want to describe our algorithms we use for simulating the C4-free process.

Thereby, we follow a similar approach as for the triangle-free process in Section 3.2.

Hence, we note again that the C4-free process as stated in Section 5.1 is equivalent to

the process where we choose in every step one edge e ∈ E(Kn) uniformly at random

and reject it if it is already contained in the graph or if it closes a C4. In order to make

this algorithm work we have to specify what it means for an edge e = (u, v) to close a

C4. The idea is to do a modi�ed sort of breadth-�rst search (BFS). This is based on the

observation that an edge (u, v) closes a C4 if and only if there is a path of length 3 from

u to v. A convinient way to compute this is a BFS since we are not dealing with edge

73

5. The C4-free Process

Algorithm 9: Check whether an edge closes a C4 in a graph G

Data: Edge e = (u, v) 6∈ E(G)
Result: true if e closes a C4, false if not

1 cycleFound← false;
2 for x ∈ N(u) do
3 for y ∈ N(x) do
4 if y 6= u and y 6= v then
5 Edge f ← (y, v);
6 if f ∈ E(G) then
7 cycleFound← true;
8 return cycleFound ;

9 return cycleFound ;

weights. For this, we de�ne levels of the BFS where level 0 contains only the source

vertex itself and level i ∈ N contains every vertex which has a shortest path of length

i to the source vertex. For example level 1 corresponds precisely to the neighbourhood

of the source vertex. Now the algorithm to check whether an edge e = (u, v) closes

a C4 does the following. First, the algorithm builds layer 1 starting from u as usual.

Now when building layer 2, it checks for every vertex w whether the edge (w, v) is in the

graph using a hash map for the edges for example. If this is the case, the algorithm exits

the BFS since we found a path of length 3 from u to v which means that the edge (u, v)

would close a C4 when added to the graph. See Algorithm 9 for a detailed description.

If we use now Algorithm 9, we can already introduce our rejcetion approach for the

C4-free process. Thereby, we just adapt Algorithm 1 from Section 3.2 and replace the

condition for an edge to be added to the graph. For this, let O(i) denote the set of open

edges and C(i) the set of closed edges, i.e., the set of edges which would close a C4 in

the graph Gi−1, after the �rst i−1 edge insertions during the C4-free process. With this

notation, we can de�ne Algorithm 10. Note that Algorithm 9 is applied when checking

the condition e ∈ C(i) in line 4 of Algorithm 10 and the condition e ∈ E(Gi) can be

checked using a hash map for the edges. Alternatively, this could also be checked by

searching for one of the vertices in the according neighbourhood. However, we see with

the same arguments as for the triangle-free process that this approach is computationally

not scalable. Using our intuition with the G(n, p) model, we already saw in Section 5.1

in Lemma 5.1.2

|O(i)| ≈
(
n

2

)
e−p

3n2

,

74

5. The C4-free Process

Algorithm 10: Rejection version of the C4-free process

Data: Empty graph G = (V0 = [n], E0 = ∅)
Result: Resulting graph G�,n of the C4-free process

1 i ← 0;
2 while O(i) > 0 do

3 Edge e← randomEdge;
4 if e ∈ E(Gi) || e ∈ C(i) then
5 reject e;

6 else

7 Gi ← Gi ∪ {e};
8 i← i+ 1;

where p ≈ 2i/n2. Consequently, we get

P[open edge gets chosen] =
|O(i)|
n2

≈ 1

2
e−p

3n2 ≈ 1

2
e−

8i3

n4 .

We can see how this probability evolves in Figure 8.

0 0.2 0.4 0.6 0.8 1

·106

0

0.1

0.2

0.3

0.4

0.5

Insertions during the process

P
fo
r
op
en

ed
ge

Evolution of the Probability for an open edge during the process on 5000 vertices

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

·106

In
se
rt
io
n
s
d
u
ri
n
g
th
e
p
ro
ce
ssP

Steps

Hence, we can see that the rejection approach is towards the end of the process not

suitable. To resolve this, we present an analogous approach as for the triangle-free

process. First, we note again that we can build a list of open edges at any step i ∈ N0

using Algorithm 9. For this, we �rst build a list of all edges that are not contained in

the current graph Gi. To do so, we can use a edge hash map and iterate over every

possible edge and check its value. Afterwards, we iterate over this list and add it if

Algorithm 9 returns false. Now we can use an equivalent algorithm to Algorithm 2

75

5. The C4-free Process

Algorithm 11: List version of the C4-free process starting at step i ∈ N0

Data: Current graph G = (Vi = [n], Ei), O(i)
Result: Resulting graph G�,n of the C4-free process

1 Õ(i)← randomShuffle(O(i));

2 for e = (u, v) ∈ Õ(i) do
3 if e closes a C4 then

4 continue;

5 else

6 Gi ← Gi ∪ {e};

which we adapt for the C4-free process. This is shown in Algorithm 11. Note that we

have to check the condition in line 3 of Algorithm 11 in each iteration again because it

can happen that an edge becomes closed during this process since we do not update O(i)

after each iteration. However, with the same arguments as for the triangle-free process

its more e�cient to combine both approaches. Hence, we de�ne now the �nal simulation

algorithm for the C4-free process. The goal is to minimize the amount of open edges

using the rejection process without having too much compuatational e�ort. Hence, we

de�ne again a tuning parameter α ∈ N which speci�es the amount of edge rejections we

allow in a row before switching to the list approach of the process. This is analogously

to the approach in Algorithm 3 for the triangle-free process and the approach is shown

in Algorithm 12.

5.2.3. Experimental Evaluation

In this section, we want to evaluate our simulation results for the C4-free process using

similar techniques as for the triangle-free process. For this, we use only Algorithm 12

with di�erent values for the rejection parameter α ∈ N which speci�es the number of

edge rejections we allow in a row. The main goal of this section is to examine Con-

jecture 5.2.1. Note that for the C4-free process we do not have as sophisticated results

as for the triangle-free process and thus, getting an idea for the constant factor might

be helpful for future research. In the rest of this section, we start by looking at some

statistical properties of the random variable e(G�,n) in order to be able to evaluate the

simulation results properly. Afterwards, we analyze the in�uence of the rejection param-

eter on the performance of the algorithm with regard to time and memory consumption.

Next, we look at di�erent models for our data that we generate using the non-linear

least squares method and evaluate them with respect to precision and Conjecture 5.2.1.

76

5. The C4-free Process

Algorithm 12: C4-free process using Algorihtm 10 and Algorithm 11

Data: Empty graph G = ([n], ∅), tolerance α
Result: Resulting graph G�,n of the C4-free process

1 i← 0;
2 steps← 0;
3 openEdges = {};
4 while i ≤ α do

5 Edge e← randomEdge;
6 if e ∈ E(Gsteps) || e ∈ C(steps) then
7 reject e;
8 i← i+ 1;
9 if i > α then

10 break;

11 if e ∈ O(steps) then
12 Gsteps ← Gsteps ∪ {e};
13 steps← steps+1;
14 i← 0

15 for v ∈ [n] do
16 for u ∈ [n], u < v do
17 if (v, u) 6∈ C(steps) and (v, u) 6∈ E(Gsteps) then
18 openEdges← openEdges ∪ {(v, u)};

19 openEdges← randomShuffle(openEdges);
20 for e ∈ openEdges do

21 if e 6∈ C(steps) then
22 Gsteps ← Gsteps ∪ {e};
23 steps← steps+1;

Sample mean 23 444,87
Sample standard deviation 20,07
Relative sample standard deviation 0,09
Sample variance 402,72

Table 5.1.: Some statistical results for the C4-free process on 2 000 vertices with 200
repetitions.

Statistical results. We can only evaluate our simulation results correctly if we know

which standard deviation we have to expect for the random variable e(G�,n). Hence, we

repeat the C4-free process on 2 000 vertices 200 times with di�erent random seeds and

look at some basic parameters which are shown in Table 5.2.3. We can see again that

we only have a relative sample standard deviation of roughly 0.09% and hence we can

expect that our models �t the data for a larger number of vertices similarly well. To

77

5. The C4-free Process

Figure 5.1.: For each number of vertices we plot three data points representing di�erent
random seeds and di�erent values for the parameter α.

further underline this we give another plot which shows for every number of vertices n

three data points, one for each random seed. Note again that we use for every repeti-

tion of the process a di�erent parameter α since this does not in�uence the outcome of

the algorithm, but only the time and memory performance. This plot can be seen in

Figure 5.1. We can see that also for larger number of vertices the standard deviation

does not seem to increase.

In�uence of the parameter α. Now we want to do a similar analysis of the in-

�uence of the parameter α on the performance of the algorithm, as we did this for the

triangle-free process. Note that the result quality is not in�uenced by this parameter.

The intuition is for this process that the rejection approach gets more ine�cient the

further the process proceeds. However, note that the condition which we have to check

to decide whether an edge is open or not is more complicated than this was the case

for the triangle-free process. Hence, we see that the rejection parameter α even has a

positive impact on the time performance of the algorithm. This behaviour can be seen

in Table 5.2.3. What we can see in this table is that the behaviour is di�erent from the

behaviour of the triangle-free process. Even though we are able to decrease the number

of open edges after the rejection phase signi�cantly with more rejections, we see that

this e�ect is not as big for the maximal memory consumption during the process. This

is maybe due to the slightly di�erent methodology to build the open edge list compared

to the triangle-free process. The reason for this is the more complicated condition for an

edge to be open and hence we want to minimize the number of times we have to check

this condition. However, we can see that the number of rejections can even decrease the

78

5. The C4-free Process

n
α = 500 α = 2 500 α = 5 000

|O(α)| t[s] m[KB] |O(α)| t[s] m[KB] |O(α)| t[s] m[KB]

10 000 712 534 525,51 446 816 181 517 523,87 440 808 70 447 587,02 439 520
11 000 1 244 817 695,31 541 448 289 036 676,89 529 276 81 604 761,64 525 812
12 000 1 332 644 875,78 635 444 196 911 888,04 621 316 101 275 950,16 619 836
13 000 1 111 923 1 078,24 737 408 293 634 1 106,54 725 152 178 886 1 121,88 722 728
14 000 1 506 113 1 345,34 847 324 281 584 1 335,14 834 604 196 349 1 357,47 832 612
15 000 1 611 096 1 634,99 965 040 363 657 1 596,22 952 320 237 017 1 632,85 949 752
16 000 1 905 935 1 968,27 1 052 672 445 052 1 901,33 1 040 536 188 026 1 960,28 1 038 480
17 000 2 054 845 2 318,74 1 184 864 432 518 2 191,4 1 172 788 231 101 2 260,95 1 170 832
18 000 2 854 472 2 774,97 1 341 940 512 779 2 534,19 1 312 992 295 936 2 616,38 1 313 044
19 000 3 451 441 3 204,35 1 490 284 552 508 2 929,94 1 465 808 333 701 2 963,98 1 461 328
20 000 4 080 153 3 767,98 1 646 868 618 769 3 432,23 1 622 164 436 827 3 496,96 1 617 844

Table 5.2.: In�uence of the rejection parameter α on the memory consumption and the
overall time for the simulation of the C4-free process on di�erent numbers
of vertices n. |O(α)| de�nes the number of open edges after the rejection
process.

time for the simulation up to a certain point.

Models for the simulation data. In this part of the section, we want to look at

di�erent models for our simulation of the C4-free process. Remember that we want to

evaluate the results with respect to Conjecture 5.2.1 since the strongest result known

for the �nal number of edges is

e(G�,n) = Θ(n4/3(log n)1/3).

Thus, we de�ne

a∗ =
1

3
√

12
, b∗ =

4

3
, c∗ =

1

3
.

First, we look at the model that tries to predict all three parmeters

f1(n) := a · n4/3 · (log n)1/3

to see how close we are in this case. However, note that we might ignore an in�uence

of a second order term with this model. We can see how this model �ts the data in

Figure 5.2 with the predicted parameters

a = 0.54, b = 1.34, c = 0.23.

The standard error for this �t of the data that we already introduced in Section 3.2.1

79

5. The C4-free Process

Figure 5.2.: Simulation values together with the predicted model f1(n).

gives us

S = 20,77.

Even though this is less than for the triangle-free process, note that this error is an

absolute measure and not relative. Hence, we can not say directly that this model �ts

the data better than this was the case for the triangle-free process. However, we are

mainly interested in a comparison of the models within one process where this measure

suits well. Since we already know the exponents b and c for the C4-free process, we are

mainly interested in the constant factor a. Hence, we look at the next model

f2(n) := a · n4/3(log n)1/3.

Note that this model delivered a reasonable precision for the constant factor a for the

triangle-free process. A non-linear least squares method gives us for this model

a = 0.47

which is reasonable close to our conjecture a∗. Further, we get a standard error of

S = 81.32

for this model which is at least the same order of magnitude of f1(n). Hence, this model

�ts the data also reasonably well which can also be seen in Figure 5.3. The last model

that we look at extends f2(n) by the possibility of the in�uence of a second order term.

80

5. The C4-free Process

Figure 5.3.: Simulation values together with the predicted model f2(n).

This means we look at the model

f3(n) := a · n4/3(log n)1/3 + d · n4/3.

Note that this model delivered also a very good precision for the triangle-free process

regarding the constant factor a as well as the standard error of the regression. For this

model we get the values

a = 0.46, d = 0.025.

This model deliveres a standard error of

S = 34.26

and we see that also for the C4-free process this delivers a similar precision as the model

f1(n) with respect to the �t of the data. Further, the results indicate that the in�uence

of a second order term is much less than this was the case for the triangle-free process.

However, we get even closer to our conjecture a∗ with this model which, together with

the standard error and the corresponding results for the triangle-free process, gives a

strong hint that Conjecture 5.2.1 might be true. Further, note that the precision of the

prediction of a∗ is similar to the precision we achieved for the triangle-free process where

we know the constant factor a∗. The �t of the data for the model f3(n) can be seen in

Figure 5.4.

81

5. The C4-free Process

Figure 5.4.: Simulation values together with the predicted model f3(n).

82

6. The C4-removal Process

In this section, we present our results for the C4-removal process. To the best of our

knowledge, it is not known when the C4-removal process ends. Further, there is not

much theory known for this process at all. Hence, our goal is to give a suggestion for

the �nal number of edges. For this, we �rst give the usual de�nition of the C4-removal

process.

De�nition 6.0.1. Let (Gi)i∈N be the random graph process with G0 = Kn and Gi is

obtained by Gi−1 by selecting one copy of a C4 in Gi−1 uniformly at random and deleting

its edges. Then the random graph process (Gi)i∈N0 is called the C4-removal process on

n vertices.

Note that the process becomes stationary when there is no C4 in the graph left. Let

τ0 := min
j∈N0

{Gj ∈ (Gi)i∈N0 is C4-free}.

Then we denote the graph Gτ0 as the �nal graph G
r
�,n of the process and the goal is to

know how e(Gτ0) looks like. With a view to the triangle-removal process, we conjecture

the following.

Conjecture 6.0.1. With high probability, we have

e(Gr
�,n) = n

4
3

+o(1)

for the number of edges in the �nal graph of the C4-removal process.

The rest of this chapter is dedicated to Conjecture 6.0.1. In Section 6.1, we describe

the algorithms we use for the simulation of the C4-removal process. Thereby, we use

similar techniques as for the triangle-removal process. An integral part of this is the

description of how we list all possible copies of a C4 in a graph. Afterwards, we present

the results of our simulations in Section 6.1.1 and interpret them with respect to Con-

jecture 6.0.1.

83

6. The C4-removal Process

6.1. Simulation of the C4-removal process

In this section, we describe the algorithms for the simulation of the C4-removal process.

Thereby, we follow a similar approach as for the triangle-removal process. For this we

de�ne exact algorithms as well as heuristic algorithms. First of all, we note again that

the C4-removal process as stated in De�nition 6.0.1 is equivalent to choosing four vertices

uniformly at random and if they build a C4, deleting its edges. This is repeated until

there is no C4 left. Further, the original process is also equivalent to building a list of

all cycles on four vertices in a graph and then iterating over it in a random order and

only delete the corresponding cycle if still all of its edges are contained in the graph.

With this in mind, we look at the di�erent algorithms.

Let T (i) be the set of all C4s in the graph Gi. Naively, we would start from a Kn and

list all C4s in a complete graph on n vertices. Afterwards, we can iterate over this list in

a random order and check for every C4 in this list whether its edges are still contained

in the list. However, similar as for the triangle-removal process, this approach is not

suitable since in a complete graph on n vertices we has O(n4) cycles on four vertices in

the graph. This is neither in terms of running time nor in terms of memory suitable

if n gets large. Another naive approach would be a similar algorithm as Algorithm 4.

Thereby, we repeatedly choose four vertices uniformly at random and if they build a C4,

we remove its edges from the graph. Since the C4-removal process becomes stationary

at some point, this process will end after a �nite number of steps as well. However,

note that four pairwise di�erent vertices can build three di�erent cycles on four vertices.

Let v1, v2, v3, v4 ∈ Vi be four pairwise distinct vertices. Then the possible cycles are

(v1, v2, v3, v4), (v1, v2, v4, v3) and (v1, v3, v2, v4). Hence, every time we choose four vertices

uniformly at random we have to choose one of the three possible cycles uniformly at

random as well. This version of the process is described in Algorithm 13. However, using

the same intuition as for the triangle-removal process, we can analyze how Algorithm 13

behaves over time. We de�ne

p = p(i) :=

(
n
2

)
− 4i(
n
2

) ≈ 1− 8i

n2

for the edge density of the graph Gi during the process where we used
(
n
2

)
≈ n2/2. Note

that in every step of the process we delete 4 edges. Using the intuition that Gi should

be similar to G(n, p), we get

P[chosen vertices build a C4] ≈ p4 ≈
(

1− 8i

n2

)4

84

6. The C4-removal Process

Algorithm 13: Rejection version of the C4-removal process

Data: Complete graph G = (V0 = [n], E0 = E[Kn])
Result: Resulting graph Gr

�,n of the C4-removal process

1 i ← 0;
2 while (T (i) > 0) do
3 Vertex v1 ← randomVertex;
4 Vertex v2 ← randomVertex;
5 Vertex v3 ← randomVertex;
6 Vertex v4 ← randomVertex;
7 C(v1, v2, v3, v4)← randomCyclePermutation;
8 if C(v1, v2, v3, v4) is C4 in Gi then

9 delete edges of C(v1, v2, v3, v4);
10 i← i+ 1;

11 else

12 reject C(v1, v2, v3, v4);

and hence we see that this is even worse than for the triangle-removal process. Con-

sequently, Algorithm 13 is not suitable for the simulation of the whole process. Thus,

we want to use a similar approach as for the triangle-removal process but �rst we need

an algorithm which lists all cycles on four vertices in a given graph G once. From a

probabilistic point of view, it is not important to list every C4 only once as long as we

list every C4 the same number of times. However, note that we can expect in a G(n, p)

roughly n4p4/8 cycles on four vertices and hence listing every C4 more than once in

the graph results in too much unnecessary work. Now the listing algorithm works as

follows. We start by iterating over every vertex v ∈ V (G) in the graph. Now we want to

list every C4 starting from v. We store a global vector seenBeginnings which has the

value true in entry w if we already listed all cycles starting from w. This vector will be

important in order to list every C4 only once. The idea for this vector is that if we look

at one vertex, we can list every cycle on four vertices containing this vertex by starting

from this vertex. Hence, if we want to list further cycles, we do not have to look at cycles

containing this vertex. Further, in every iteration, we store a vector forbiddenEndings.

This vector makes sure that we really have cycles and do not use vertices multiple times.

Now we run an algorithm in a BFS fashion to list all cycles on four vertices. First, we

set the seenBeginnings value for v to true. Afterwards, we look at every vertex in

N(v). Those are precisely the possible second vertices for a cycle on four vertices and

we set the forbiddenEndings value for these vertices to true. Since they are second

vertices, they must not appear in the cycle again. Further, we only continue with one of

these vertices if the seenBeginnings value for these vertices is false. Now we look at

85

6. The C4-removal Process

Algorithm 14: c4List : List all cycles on four vertices in a given graph G =
(V,E)

Data: Graph G = (V,E) with n vertices
Result: List of all cycles on four vertices in G

1 T ← ∅;
2 Vector seenBeginnings← (n, false);
3 for v ∈ V do

4 Vector forbiddenEndings← (n, false);
5 seenBeginnings[v]← true;
6 for w ∈ N(v) do
7 if seenBeginnings[w] == false then

8 forbiddenEndings[w]← true;
9 for x ∈ N(w) \ {v} do
10 if seenBeginnings[x] == false then

11 for y ∈ N(x) \ {v, w} do
12 if seenBeginnings[y] == false then

13 Edge e← (v, y);
14 if e ∈ E and forbiddenEndings[y] == false then

15 Cycle c← (v, w, x, y);
16 T ← T ∪ {c};

the neighbourhood of the second vertex except of v itself. Those vertices are precisley

the third possible vertices in a cylce. Again, we check whether they are equal to one of

the �rst two vertices and whether they were already a beginning vertex. If this is not

the case, we can use it as a third vertex of the cycle. Now we look at the neighbourhood

again and if the fourth vertex is pairwise distinct with the �rst three vertices and it is

not a forbidden ending than we found a cycle if the edge between the fourth vertex and

v is contained in the graph. For this, we can use a hash map again or just search for

it in the neighbourhood using our dynamic graph data structure. More details of this

algorithm are shown in Algorithm 14. Now we want to prove that Algorithm 14 indeed

lists all cycles on four vertices only once.

Lemma 6.1.1. Let G = (V,E) be an arbitrary graph on n vertices. Then Algorithm 14

lists every C4 in G exactly once.

Proof. Let C = (v1, v2, v3, v4) be an arbitrary copy of a C4 in G. Assume without loss

of generality that v1 = min{v1, v2, v3, v4}. Now at some point, Algorithm 14 will look at

v1 and the other vertices of the cycle have not been seen yet. Without loss of generality,

let Algorithm 14 view v2 before v4 when it looks at the neighbourhood of v1. Then by

86

6. The C4-removal Process

the algorithm, v4 will not be a forbidden ending for the cycle and neither v2, v3 nor v4

are seen beginnings. Hence, Algorithm 14 will �nd C when exploring v1. Since C was

arbitrary in G it follows that Algorithm 14 �nds all cycles on four vertices in G. What

remains to show is that we do not put the same cycle into the list more then once. With

the same assumptions as above, we �rst assume that we �nd C again while looking at

the cycles starting from v1. However, this would only be possible by viewing v4 �rst

and v2 last by de�nition of the algorithm. But since we viewed v2 before v4, v2 will be

a forbidden ending and hence the cycle (v1, v4, v3, v2) will not be added to the list. Now

we assume that C is added to the list at another time. By de�nition of the algorithm,

this can only be the case if we view one of the vertices v2, v3 or v4. But if we do so,

the algorithm will view v1 at some point as part of C and since v1 is already a seen

beginning, this cycle will not be added to the list. Since those were the only possibilities

for C to get added to the list, the lemma follows.

Now, since we have an Algorithm to list all C4s in the graph, we are able to formulate

our simulation algorihtm for the C4-removal process. The idea for this is similar as for

the triangle-removal process. We simply combine the rejection process as described in

Algorithm 13 and after we have a certain amount of rejections α ∈ N0 in a row. We list

all remaining cycles on four vertices in the current graph and iterate over it in a random

order as described above. Note that α is a tuning parameter which in�uences the time

and the memory consumption of the algorithm. This approach results in Algorithm 15

However, as we already pointed out above, the rejection phase in Algorithm 15 becomes

computationally ine�cient if the edge density of the graph decreases. Thus, the idea

is again to use our intuition for the C4-removal process to get faster to a lower edge

density. This is again done by generting a G(n, p) with only a fraction of the edges

using KaGen as described in Section 4.2. Afterwards, we directly apply Algorithm 14 to

get a list of the C4s in the generated G(n, p) and we proceed as in Algorithm 15. This

heuristic is shown in Algorithm 16.

6.1.1. Experimental Evaluation

In this section, we analyze the simulation results for the C4-removal process using the

same techniques as for the triangle-removal process. As we already saw for the triangle-

removal process, the simulation algorithms switch to a list of all remaining copies of a

C4 at some point. This leads to a high memory consumption if the edge density is not

low enough. This turns out to be an even bigger problem for the C4-removal process.

Hence, we are able to simulate the original process only up to 3 000 vertices. The reason

for that can be seen in Table 6.1.1. However, due to the low standard deviation for our

87

6. The C4-removal Process

Algorithm 15: Simulation algorithm for the C4-removal process

Data: Number of vertices n
Result: Resulting graph of the C4-removal process Gr

�,n.

1 delEdges :
(

[n]
2

)
→ {true, false};

2 while i ≤ α do

3 Vertex v1 ← randomVertex;
4 Vertex v2 ← randomVertex;
5 Vertex v3 ← randomVertex;
6 Vertex v4 ← randomVertex;
7 C(v1, v2, v3, v4)← randomCyclePermutation;
8 e1, e2, e3, e4 ← edges of C(v1, v2, v3, v4);
9 if delEdges(ei) = true for some i ∈ [4] then
10 reject C(v1, v2, v3, v4);
11 i← i+ 1;
12 if i > α then

13 exit rejection process;

14 else

15 delEdges(e1)← true;
16 delEdges(e2)← true;
17 delEdges(e3)← true;
18 delEdges(e4)← true;
19 i← 0;

20 Gτα ← build remaining graph;
21 Tτα ← c4List(Gτα);
22 Tτα ← randomShuffle(Tτα);
23 for C4 c = (v1, v2, v3, v4) ∈ Tτα do
24 e1, e2, e3, e4 ← edges of C(v1, v2, v3, v4);
25 if e1, e2, e3, e4 ∈ Gτα then

26 Gτα ← Gτα − {e1, e2, e3, e4};

simulations we are con�dent that the results are still reliable.

Statistical results. As usual, we start with some statistical results for the simula-

tion of the random variable e(G�,n). However, since this is the most memory intensive

process, we only do 200 repetitions of the simulation on 500 vertices. This can be seen

in Table 6.1.1. Even though we can see that we have a sample standard deviation of

roughly two percent, we will see that this seems not to be the case if the number of

vertices gets larger and we expect that our results are still similarly reliable as for the

triangle-removal process. This can be seen later in this section, when we look at models

that we apply to our data. In general, we expect the sample standard deviation for a

88

6. The C4-removal Process

Algorithm 16: Simulate the C4-removal process starting from a G(n, p) for
n ∈ N and p ∈ [0, 1].

Data: Number of vertices n ∈ N, initial edge density pα ∈ [0, 1].
Result: C4-free graph G�,pα obtained by the C4-removal process.

1 G(n, pα)← KaGen(n, pα);
2 G�,pα ← G(n, pα);

3 delEdges :
(

[n]
2

)
→ {true, false};

4 Tpα ← c4List(G(n, pα));
5 Tpα ← randomShuffle(Tpα);
6 for C4 c = {e1, e2, e3, e4} ∈ Tpα do
7 if delEdges(e1) = delEdges(e2) = delEdges(e3) = delEdges(e4) = false

then

8 G�,pα ← G�,pα − {e1, e2, e3, e4};
9 delEdges(e1)← true;

10 delEdges(e2)← true;
11 delEdges(e3)← true;
12 delEdges(e4)← true;

Sample mean 1 415,3
Sample standard deviation 27,81
Relative sample standard deviation 1,96
Sample variance 773,30

Table 6.1.: Some statistical results for the C4-removal process on 500 vertices with 200
repetitions.

smaller number of vertices to be larger.

Time and memory performance. In this section, we want to analyze the time

and memory performance of Algorithm 15 and Algorithm 16. Thereby, we vary the

number of rejections we allow in a row α for Algorithm 15, and the initial edge density

p for Algorithm 16. Note that the parameter α only in�uences the time and memory

performance but not the solution quality. We show the behaviour for Algorithm 15 in

Table 6.1.1 and Table 6.1.1. What we can see for the time is that in the beginning a

larger number of rejections even improves the running time. The reason for this is prob-

ably that there are to many copies of a C4 that we have to list. Note that by deleting

the edges of one copy of a C4 we actually destroy every copy of a C4 which contains one

of the deleted edges. However, this e�ect only holds for a smaller number of rejections.

Afterwards, the simulation takes longer which might be due to the low probability for

a random pick of a C4. We described this probability already in the previous section.

89

6. The C4-removal Process

n α = 1 000 α = 5 000 α = 10 000 α = 15 000 α = 20 000

500 24,20 15,30 20,04 29,71 39,70
1 000 778,32 316,33 470,75 520,61 594,68
1 500 - 1 474,29 1 486,65 1 833,48 2 063,1
2 000 - 5 822,38 5 372,23 5 824,4 5 810,88
2 500 - - 10 283,4 10 272,3 10 795,1
3 000 - - - 21 260,9 21 114,1

Table 6.2.: In�uence of the rejection parameter α on the overall time for the simulation
of the C4-removal process on di�erent numbers of vertices n.

n α = 1 000 α = 5 000 α = 10 000 α = 15 000 α = 20 000

500 559 956 150 672 81 080 47 496 46 152
1 000 17 038 176 2 180 696 1 102 328 1 099 460 571 388
1 500 - 16 976 620 8 554 372 4 311 844 4 300 788
2 000 - 67 108 952 17 005 544 16 939 804 17 024 300
2 500 - - 67 602 204 33 991 712 33 926 264
3 000 - - - 67 385 232 67 583 468

Table 6.3.: In�uence of the rejection parameter α on the maximal memory consumption
for the simulation of the C4-removal process on di�erent numbers of vertices
n.

On the other hand, we can see that a larger number of rejections that we allow in a

row signi�cantly reduces the maximal memory consumption that the algorithm uses. In

fact, for a larger number of vertices and a low number of rejections this is even to much

memory for the machine that we used for the simulations. Hence, we analyze now the

behaviour in this regard of Algorithm 16. This can be seen in Table 6.1.1 for the two

largerst edge densities used. We can see in this table that we have signi�cant improve-

ments for the memory and the time consumption. Further, we can see that the increase

in the edge density does not correspond to a larger result. This indicates that we have

a similar convergence behaviour as for the triangle-removal process. We underline this

by the model predictions that we give now.

Models for the simulation data. Now we look at di�erent models with respect

to Conjecture 6.0.1. Further, we compare for one model the predictions that we get by

the original data with the predictions that we get by applying the same model to the

data generated by Algorithm 16. This is used to show the convergence behaviour of

this algorithm since we can not compare this with the results for the real process as we

have done this for the triangle-removal process. With regard to Conjecture 6.0.1, we

90

6. The C4-removal Process

n ε1 t[s] m[KB] Result ε2 t[s] m[KB] Result

5 000 0,02 99,30 553 132 30 009 0,03 468,52 2 134 632 30 078
6 000 0,01 17,72 83 348 38 129 0,015 81,61 284 824 38 355
7 000 0,01 37,34 152 040 46 600 0,015 175,72 551 144 46 739
8 000 0,01 73,36 286 400 56 130 0,015 337,89 1 081 168 56 069
9 000 0,01 131,78 290 356 65 376 0,015 650,39 2 138 340 65 357
10 000 0,01 228,38 571 596 75 658 0,015 1 187,21 2 146 096 75 583
11 000 0,01 382,35 1 085 120 85 441 0,015 1 957,06 4 251 936 85 703
12 000 0,008 258,48 559 736 96 068 0,01 606,82 1 091 080 95 688
13 000 0,008 406,03 563 580 107 213 0,01 962,93 2 147 088 107 546
14 000 0,008 576,44 1 092 652 118 211 0,01 1 523,04 2 154 892 118 464
15 000 0,008 854,57 1 098 412 129 937 0,01 2 166,41 2 161 744 129 829

Table 6.4.: Results for Algorithm 16 for the two largest edge densities.

Figure 6.1.: Simulation results together with the predicted model f1(n).

�rst want to con�rm the main factor n4/3. For this we look at the model

f1(n) = a · nb.

Using the data of the original process this yields

a = 0.38, b = 1.32

with a standard error of

S = 43.91.

Further, we can see that this is a good �t of the data in Figure 6.1. We can see that

91

6. The C4-removal Process

Figure 6.2.: Heuristic simulation results together with the predicted model f1(n).

this con�rms the exponent in Conjecture 6.0.1. Additionally, this is also con�rmed by

the predictions of the same model with the heuristic data. This yields

ah = 0.35, bh = 1.33

with a standard error

S = 191.07

and can be seen in Figure 6.2. This also indicates that our heuristic algorithm is suitable

for the simulation of the C4-free process. Finally, we want to apply the model

f2(n) = a · n4/3 · (log n)c

to examine the possibility of a second factor in the �rst order term. This yields for the

original data

a = 0.40, c = −0.07, S = 44.23.

This indicates that there might be no logarithmic factor for the leading term. This can

be seen in Figure 6.3. Further, this is underlined by the results for the heuristic data

which yields

a = 0.35, c = −0.004, S = 190.93.

In conclusion, we want to mention that even the constant factor a only varies in a

certain range, suggesting the possibility that this can also be determined. However, we

are not able to come up with a profound intuition for this.

92

6. The C4-removal Process

Figure 6.3.: Simulation results together with the predicted model f2(n).

93

7. The K4-free Process

7.1. Theoretical Results

In this section, we want to summarize the theoretical results regarding the K4-free

process following the work of Warnke [Warnke, 2014]. In order to not go beyond the

scope of this work and due to similar arguments, we go into less detail here and only

provide an overview on the arguments. The K4-free process is the random graph process

where we start from G0 = ([n], ∅) and in every step j ∈ N the graph Gj is obtained by

Gj−1 by choosing one open edge uniformly at random. An edge is called open in this

context if its insertion toGj−1 does not close a copy of aK4. Also for this process the �rst

non trivial results where given by Bollobás and Riordan [Bollobás and Riordan, 2000],

and Osthus and Taraz [Osthus and Taraz, 2001]. In both cases, they proved upper

and lower bounds that matched within a logarithmic factor. Further, Bohman and

Keevash [Bohman and Keevash, 2009] provide a lower bound of Ω(n8/5(log n)1/5) which

they conjecture to be tight up to a constant factor. Finally, in the work that we present in

this section of Warnke [Warnke, 2014], they matched this lower bound by giving an upper

bound for the maximal degree of the graph. This proves e(G�,n) = Θ(n8/5(log n)1/5)

with high probability. As well as for the case H = K3 and H = C4 the main goal

of this work is to provide an asymptotic for the number of edges in the �nal graph of

the K4-free process. Hence, the main theorem we want to present in this section is the

following.

Theorem 7.1.1. With high probability as n→∞ we get

e(G�,n) = Θ(n
8
5 (log n)

1
5) (7.1)

for the �nal graph G�,n of the K4-free process.

Due to the similarity of the notation, we adapt the notation from Chapter 5 here.

Note that the lower bound of Theorem 7.1.1 follows again with Theorem 2.3.1 for the

case H = K4. What remains to show is consequently the upper bound in Theorem 7.1.1,

which was done by Lutz [Warnke, 2014]. Their main theorem is the following.

94

7. The K4-free Process

Figure 7.1.: A vertex v with a triangle in its neighbourhood N(v).

Theorem 7.1.2 ([Warnke, 2014], Theorem 1.1.). There exists C > 0 such that with

high probability the maximum degree in the graph generated by the K4-free process is

at most Cn3/5(log n)1/5.

Using again our standard estimate

e(G�,n) ≤ n ·∆(G�,n)

gives us with Theorem 7.1.2 the bound

e(G�,n) ≤ Cn
8
5 (log n)

1
5

with high probability and hence Theorem 7.1.1 follows. Consequently, it remains to

prove Theorem 7.1.2. The main idea of the proof comes from the following observation.

Assume we have a K4 in an graph G. Then this is the case if and only if there exists a

vertex u ∈ V (G) such that G[N(u)] contains a triangle. This can be seen in Figure 7.1.

Hence, by the de�nition of the K4-free process at every step i ∈ N0 we know that there

is no vertex v ∈ Gi such that Gi[N(v)] contains a triangle. The idea of the proof is now

to show that after a certain amount of steps in the K4-free process every set of vertices

that is large enough already contains a triangle. Afterwards, we have to show that we

can apply this to the neighbourhoods of the graph. The trick of this proof is to show

that this is already the case during the time when most of the needed quantities can still

be controlled with the techniques used by Bohman et al. [Bohman and Keevash, 2009]

since the behaviour of the H-free process after this time is in general not well enough

understood except for the triangle-free process. Hence, we start the proof by looking at

the constants and functions we already introduced in Section 2.3 and deduce some results

95

7. The K4-free Process

speci�cally for the K4-free process from Theorem 2.3.2. First, we de�ne p := n−2/5 and

de�ne our continous time variable t := t(i) = i/n8/5. Further, let µ, ε,W be constants

as in Section 2.3. Speci�cally, we have

W ≥ 500, ε ≤ 1

1000
, 2Wµ5 ≤ ε. (7.2)

Note that there is no con�ict with the speci�cations of the constants in Section 2.3.

Further, we de�ne

tmax := µ(log n)1/5 and m := n2ptmax = µn8/5(log n)1/5. (7.3)

Now we specify the functions

q(t) := e−16t5 and f(t) := eW (t5+t) (7.4)

from Section 2.3. For an intuition for q(t) see Section 5.1. The intuition is transferred

analogously for the K4-free process. Further, note that using the constraints for our

constants in Section 2.3 and above we can choose them such that for every 0 ≤ t ≤ tmax

we obtain

1 ≥ q(t) ≥ n−ε/2 and 1 ≤ f(t)q(t)2 ≤ f(t) ≤ nε. (7.5)

For the proof of our main theorem, we have to use Theorem 2.3.2 again as described in

Section 2.3 and can derive the following result.

Theorem 7.1.3 ([Warnke, 2014], Theorem 2.1, [Bohman and Keevash, 2009]). Set se :=

n1/12−ε. Further, let Gj denote the event that for every 0 ≤ i ≤ j, in Gi we have

|O(i)| > 0, and for all distinct vertices u, v ∈ [n] we have

|O(i)| = (1± 3f(t)

se
)q(t)

n2

2
,

|di(u)| ≤ 3nptmax,

|Ni(u) ∩Ni(v)| ≤ (log n)np2.

(7.6)

Then the event Gm holds with high probability in the K4-free process.

Now we also need the main technical result of Warnke [Warnke, 2014] in order to

prove Theorem 7.1.2. For this we �rst need a few more parameters

δ :=
1

7000
, γ := max

{
5√
δµ5/2

, 150

}
, u := γnptmax = γµn3/5(log n)1/5. (7.7)

Thereby, u speci�es the size of the neighborhoods we want to consider.

96

7. The K4-free Process

Theorem 7.1.4 ([Warnke, 2014], Theorem 3.1.). Let Tj denote the event that for all

n8/5 ≤ i ≤ j, in Gi every set U ⊆ [n] of size u contains at least δu3(tp)2q(t) open pairs

in O(i) which would complete a copy of a triangle in U if they were added to Gi. Then

Tm holds with high probability in the K4-free process.

Intuitively, what Theorem 7.1.4 means is that every set U ⊆ [n] which is large enough

contains many open pairs which would close a triangle in U . This of course raises the

probability that a K4 is closed in the next step as we already explained in the beginning

of this section. With this theorem, we have everything to prove our main result. As we

already explained, the main idea of the proof is that every neighbourhood in a K4-free

graph has to be triangle-free. What we show in the following proof is that every subset

of the vertices of size u contains a triangle with high probability. Consequently, we

can bound the size of every neighbourhood by u and obtain an upper bound for the

maximum degree in the �nal graph.

Proof of Theorem 7.1.2. Let U ⊆ [n] be a subset of the vertices for the graph gen-

erated by the K4-free process and let i ≤ m be a step in the process. Let EU,i be the

event that up to step i, the set U is triangle-free. With this let Em be the event that

there exists a subset U ⊆ [n] such that EU,m holds. Furthermore, for i ≤ m we de�ne

the event Hi := Gi ∩ Ti. Note that Hi only depends on the �rst i steps of the process

and that the event Hi+1 implies Hi. Using the de�nitions of the events we can see now

that the theorem follows if we can show

P[Em ∩Hm] = o(1). (7.8)

Intuitively, what equation 7.8 means is that the probability that the process is still

active |O(m)| > 0 and there is a set of size u which contains no triangle is o(1). By

Theorem 7.1.3 and Theorem 7.1.4 we already know that the event Hm holds with high

probabilty and consequently Equation 7.8 implies P[Em] = o(1) which is exactly what

we have to show since this implies that there is with high probability no subset of the

vertices of size u which contains no triangle in step m which again implies our bound

for the maximum degree by applying this statement to the neighbourhood of any vertex

in the graph. For the proof of Equation 7.8 let U ⊆ [n] of size u be �xed as above and

de�ne C := γµ. Further, we de�ne

TU(i) := {(u, v) ∈ O(i) : Gi[U ∪ {(u, v)}] contains a copy of a K3} (7.9)

to be the set of all open pairs, which would close a triangle in U . We start by calcu-

97

7. The K4-free Process

lating the probability in Equation 7.8 for one choice of U and then use an union bound

argument. We get by our explanations above

P[EU,m ∩Hm] = P[EU,n8/5 ∩Hn8/5] ·
∏

n8/5≤i≤m−1

P[EU,i+1 ∩Hi+1|EU,i ∩Hi]

≤
∏

n8/5≤i≤m−1

P[ei+1 6∈ TU(i)|EU,i ∩Hi].
(7.10)

For the inequalities, note that as already explained, the event EU,i ∩Hi only depends on

the �rst i steps of the process. Hence, if we are at this point, the next edge is chosen

uniformly at random from O(i) and of course the event ei+1 6∈ TU(i) given EU,i ∩ Hi is

weaker than EU,i+1 ∩Hi+1 given EU,i ∩Hi. Now note that the event Gi together with our

assumptions implies

q(t) ≥ |O(i)|
n2

(7.11)

for n2p ≤ i ≤ m. If we use now the de�nition of our time variable t, we get now on

Hi = Gi ∩ Ti using n8/5 = n2p that

|TU(i)|
7.1.4

≥ δu3(tp)2q(t) = δu3 i2

n4p2
p2q(t) ≥ δ

u3i2

n6
|O(i)|. (7.12)

Now note that

P[ei+1 is not chosen from TU(i)] = 1− |TU(i)|
|O(i)|

. (7.13)

Hence, we get by Equality 7.10 using the standard inequality 1− x ≤ e−x that

P[EU,m ∩Hm] ≤
∏

n8/5≤i≤m−1

P[ei+1 6∈ TU(i)|EU,i ∩Hi]

≤
∏

n8/5≤i≤m−1

(
1− |TU(i)|

|O(i)|

)

≤
∏

n8/5≤i≤m−1

exp

(
−|TU(i)|
|O(i)|

)

= exp

 ∑
n8/5≤i≤m−1

−|TU(i)|
|O(i)|

≤ exp

−δu3

n6

∑
n8/5≤i≤m−1

i2

≤ exp

(
−δu

3m3

4n6

)
,

(7.14)

98

7. The K4-free Process

where the last inequality follows for n large enough by simple estimates. Now note

that u = γn3/5tmax. Using this and the de�nitions of our parameters, we get using the

inequalities above

P[EU,m ∩Hm] ≤ exp

(
δ

4
· u

3n6p3t3max

n6

)
= exp

(
δ

4
u3p3t3max

)
= exp

(
δγ2

4
n6/5t5maxp

3u

)
= exp

(
δγ2

4
t5maxu

)
= exp

(
δ

4
γ2µ5(log n)u

)
= n−

γ2δµ5

4
u ≤ n−2u,

(7.15)

where the last inequality follows by the choice of γ. Now note that we have
(
n
u

)
possible

subsets U with our constraints. Using the simple inequality
(
n
u

)
< nu, we get by a simple

union bound argument over all possible subsets U that

P[Em ∩Hm] ≤
(
n

u

)
n−2u = o(1), (7.16)

by de�nition of u and hence Equation 7.8 follows. As already explained we can now

apply this result to the neighborhoods of our graph generated by the K4-free process.

If there was a vertex with a degree higher than u, its neighbourhood would contain a

triangle and hence we would have a copy of a K4 in our graph which is a contradiction

to the de�nition of the process. Consequently, we get

∆(G�, n) ≤ Cn3/5(log n)1/5 (7.17)

with high probability and the theorem follows. �

As we already explained, with the proof of Theorem 7.1.2 we already proved Theo-

rem 7.1.1.

7.2. Simulation of the K4-free process

In this section, we present our algorithms for the K4-free process. Thereby, we follow

a similar approach as for the triangle-free process and the C4-free process. Hence,

during the presentation of the algorithms we mainly focus on the key di�erences between

99

7. The K4-free Process

Algorithm 17: Rejection version of the K4-free process

Data: Empty graph G = (V0 = [n], E0 = ∅)
Result: Resulting graph G�,n of the K4-free process

1 i ← 0;
2 while (O(i) > 0) do
3 Edge e← randomEdge;
4 if e ∈ E(Gi) || e ∈ C(i) then
5 reject e;

6 else

7 Gi ← Gi ∪ {e};
8 i← i+ 1;

the processes and describe the algorithm itself only shortly since the idea is the same.

Further, we want to give a conjecture for a more precise statement for the number of

edges in the �nal graph using the same intuition as for the C4-free process. In particular,

the arguments for the equivalence of the algorithm versions of theK4-free process remain

the same. For detailed arguments about this, we refer to Section 3.2. In general, our

main simulation algorithm consists of two phases. We start with a rejection phase for the

K4-free process where we select in every step one edge e ∈ E(Kn) uniformly at random

and reject it if it is already contained in the current graph or is closed, i.e., it would

close a K4 in the graph. Otherwise, we add it to the graph. This algorithm can also be

used as a simulation algorithm for the K4-free process if we repeat that until there is

no open edge left. This can be seen in Algorithm 17, where the notation is analogously

used as in the previous chapters. However, the crucial part of this algorithm is line 4,

i.e., how to determine whether an edge would close a K4 in the graph or not. To check

whether an edge is already contained in the graph, we proceed as for the triangle-free

process and the C4-free process by using a hash map for example. To decide whether

an edge e = (u, v) is closed or not, we �rst observe that the remaining two vertices of

the potential K4 have to be contained in N(u) ∩N(v). Hence, we have to compute the

intersection of the corresponding vertices �rst. Afterwards, we can already exclude that

e closes a K4 if |N(u) ∩ N(v)| < 2 since in this case there are not enough vertices in

the intersection for a potential K4. The scenario when |N(u) ∩ N(v)| ≥ 2 is shown in

Figure 7.2. However, if |N(u) ∩ N(v)| ≥ 2, we still have to check whether there is an

edge between the corresponding two vertices. If we have a pair of vertices in N(u)∩N(v)

which share an edge, we know that the edge (u, v) closes a copy of a K4. This results

in Algorithm 18. However, we know from our theoretical observations that the K4-

free process is particularly in the beginning similar to G(n, p) with the corresponding

100

7. The K4-free Process

Figure 7.2.: If the blue edge is in the graph, the red edge closes a K4.

Algorithm 18: Check whether an edge closes a K4 in a graph G

Data: Edge e = (u, v) 6∈ E(G)
Result: true if e closes a K4, false if not

1 if |N(u) ∩N(v)| < 2 then

2 return false ;

3 else

4 for unordered pair (x, y) ∈ N(u) ∩N(v) do
5 if edges[(x, y)] then
6 return true ;

7 return false ;

edge density p. Hence, we can compute, analagously as for the triangle-free and C4-free

process, that

E[|O(i)|] =

(
n

2

)
(1− p5)(

n−2
2) ≈

(
n

2

)
e−p

5 n2

2

in a G(n, p). Using p ≈ 2i/n2 in the K4-free process we get

P[open edge gets chosen] =
|O(i)|
n2

≈ 1

2
e−p

5n2/2 ≈ 1

2
e−16 i

5

n8 .

101

7. The K4-free Process

This shows that the rejection approach is not suitable if the edge density gets su�ciently

small. Note that we know from Section 7.1 that

e(G�,n) = Θ(n8/5(log n)1/5)

with high probability. Thus we know that the edge density at the end of the process

gets abritrarily small if n gets su�ciently large. Hence, we have to think about other

approaches again and we follow the ideas for the triangle-free and the C4-free process.

This means that after a su�cient amount of rejections in a row in Algorithm 17 we

generate a list of all still open edges in the current graph by checking for every edge

that is not in the graph the condition that we just described. Afterwards, we iterate

over the resulting list of edges in a uniform order and check whether we can add the

according edge to the graph. Note that we have to check upon each insertion whether

the edge is still open since we do not update the list of open edges after every insertion.

This is shown in detail in Algorithm 12 which can be applied analogously to the K4-free

process using Algorithm 18.

7.2.1. Intuition for the constant

Now we want to present a similar conjecture as Conjecture 5.2.1 for the K4-free process.

Using our G(n, p) intuition we have seen that

E[|O(i)|] =

(
n

2

)
(1− p5)(

n−2
2) ≈

(
n

2

)
e−p

5 n2

2 .

Using t = m/n8/5 and p ≈ 2m/n2 we can use now the same intuition as for the C4-free

process. This means we want to follow the process up to an edge density of roughly n−2/5

with the same arguments that we already presented in Section 2.3 and Section 5.2.1.

This means we want to solve

e−16t5
(
n

2

)
= n8/5.

Solving this with some estimates yields

m ≈ 1
5
√

40
n8/5(log n)1/5

and hence we conjecture the following.

102

7. The K4-free Process

Sample mean 62 745,97
Sample standard deviation 61,13
Relative sample standard deviation 0,10
Sample variance 3 736,55

Table 7.1.: Some statistical results for the K4-free process on 1 000 vertices with 200
repetitions.

Conjecture 7.2.1. With high probability we have

e(G�,n) =

(
1

5
√

40
+ o(1)

)
n8/5(log n)1/5

for the K4-free process.

7.2.2. Experimental Evaluation

In this section, we present our results for the simulation of the K4-free process with

the goal to gain information about e(G�,n). Thereby, we proceed in the same way as

for the triangle-free process and the C4-free process. We also only use the combined

algorithm of rejections and and the scanning of an open edge list like it is described in

Algorithm 12. However, we already saw in Algorithm 18 that the condition we have

to check before we can decide whether an edge is open or not is much more compli-

cated than this is the case for the triangle-free process and the C4-free process. Hence,

we could not simulate the K4-free process with the same number of vertices. In fact,

we are only able to simulate this process for up to 5 000 vertices within a reasonable time.

Statistical results. We start with some statistical properties for the K4-free pro-

cess. For this, we repeat the K4-free process on 1000 vertices 200 times. The results

for this are shown in Table 7.2.2. Note that the sample standard deviation is slightly

larger then for the triangle-free process but we also used a smaller number of vertices

due to time reasons and we expect a larger deviation for a smaller number of vertices.

However, we can see in Figure 7.3 that the standard deviation is still very low across all

simulated results which forms a good basis for our further analysis.

In�uence of the parameter α. Now we want to analyze the in�uence of the number

of rejections α we allow in a row during the simulation of the K4-free process. This is

shown in Table 7.2.2. What we can see in this table is that we are able to reduce the

number of open edges that we have to check after the rejection phase signi�cantly by

increasing α. However, in contrast to the C4-free process we are not able to use this

103

7. The K4-free Process

Figure 7.3.: For each number of vertices we plot three data points representing di�erent
random seeds and di�erent values for the parameter α.

advantage with respect to the time performance of the algorithm. This is probably due

to the low probability for an edge to be open during the rejection process in combina-

tion with the much more complex condition that we have to check for every edge under

consideration that we describe in Algorithm 18. Further, we see that we can not use

the lower number of edges after the rejection process for the maximum memory usage

of our algorithm.

Models for the simulation data. In this part of the section, we analyze again

di�erent models for the simulation data which we want to analyze with respect to Con-

jecture 7.2.1. Note that we only know the exponents within the leading term of the �nal

number of edges

e(G�,n) = Θ(n8/5(log n)1/5)

with high probability. Hence, we de�ne again

a∗ =
1

5
√

40
, b∗ =

8

5
, c∗ =

1

5

and we analyze our di�erent models with respect to these parameters. First we look at

the model

f1(n) = a · nb · (log n)c.

This can be seen in Figure 7.4. For this model we get the values

a = 0.69, b = 1.56, c = 0.32

104

7. The K4-free Process

n
α = 500 α = 2 500 α = 5 000

|O(α)| t[s] m[KB] |O(α)| t[s] m[KB] |O(α)| t[s] m[KB]

500 1 245 12,97 20 518 292 20,67 12 660 96 27,17 12 744
1 000 7 284 229,389 35 048 923 426,317 35 388 414 518,218 35 016
1 500 15 145 870,237 71 240 2 799 1 382,27 70 852 1 631 1 678,68 70 912
2 000 37 805 2 797,19 124 996 5 250 4 606,77 124 276 2 509 5 634,32 124 440
2 500 68 609 3 968,31 215 560 9 386 6 317,16 215 452 4 375 8 071,21 215 764
3 000 71 337 9 219,0 267 372 11 226 14 602,1 266 528 5 202 18 127,2 266 376
3 500 98 391 15 779,1 430 576 21 781 22 048,5 430 392 6 399 31 428,0 430 648
4 000 144 872 31 202,7 485 832 25 407 44 659,5 484 364 11 794 56 451,3 484 144
4 500 150 967 40 665,0 586 456 - - - - - -
5 000 243 135 45 685,7 871 256 - - - - - -

Table 7.2.: In�uence of the rejection parameter α on the memory consumption and the
overall time for the simulation of the K4-free process on di�erent numbers of
vertices n. |O(α)| is the number of open edges after the rejection process.

Figure 7.4.: Simulation values together with the predicted model f1(n).

and a standard error of

S = 69.46.

For this model, we see that we only get close to the prediction (a∗, b∗, c∗) for the param-

eter b. This can be due to e�ects of a second order term for example. However, since

we already know the exponents b∗ and c∗ from the theory, we are mainly interested in

the model value for a∗. This means we look at the model

f2(n) = a · n8/5(log n)1/5

ignoring the possibility of a second order term for the moment. This is shown in Fig-

ure 7.5. The result for this model is

105

7. The K4-free Process

Figure 7.5.: Simulation values together with the predicted model f2(n).

a = 0.66

with an standard error of the regression of

S = 2767.04

which is much worse as for the model f1(n). In particular, we are also not within a

reasonable range of our prediction a∗. To see whether this based on the in�uence of a

second order term, we �nally look at the model

f3(n) = a · n8/5(log n)1/5 + d · n8/5

since this also provided a good �t for the triangle-free process and the C4-free process.

This can be seen in Figure 7.6. For this model we get the result

a = 0.07, b = 0.89

with a standard error of

S = 164.54

which is much better than for the model f2(n). This indicates that there is indeed a

signi�cant in�uence of a second order term which makes obviously the prediction for

the constant factor a∗ hard. In particular, even though this model gives us a good �t

of the data we are far of from our prediction for the constant factor. However, due to

the good �t of the data we do not believe that this is caused by the less data points but

106

7. The K4-free Process

Figure 7.6.: Simulation values together with the predicted model f3(n).

rather by a signi�cant in�uence of a second order term.

107

8. The K4-removal Process

In this chapter, we present our results for the K4-removal process. Similar as for the C4-

removal process to the best of our knowledge it is not known when the K4-removal pro-

cess ends in terms of the number of edges in the �nal graph. Tian et al. [Tian et al., 2022]

showed that with high probability the number of edges in the �nal graph is bounded

by n19/20+o(1). However, our experiments indicate that this bound is might not tight.

We present this in detail in Section 8.1.1. We start with the usual de�nition of the

K4-removal process.

De�nition 8.0.1. Let (Gi)i∈N0 be the random graph process with G0 = Kn and Gi

is obtained by Gi−1 by selecting one copy of a K4 in Gi−1 uniformly at random and

deleting its edges. The obtained random graph process is called the K4-removal process.

Note again that this process becomes stationary in step

τ0 := min
j∈N0

{Gj ∈ (Gi)i∈N0 is K4-free}

since E(Kn) < ∞. We denote the graph Gτ0 as Gr
�,n and refer to it as the �nal graph

of the K4-removal process. Similar as for the C4-removal process, we conjecture the

following.

Conjecture 8.0.1. With high probability, we have

e(Gr
�,n) = n8/5+o(1)

for the number of edges in the �nal graph of the K4-removal process.

The rest of this chapter is concerned with Conjecture 8.0.1. In Section 8.1, we present

our algorithms for the simulation of the K4-removal process. Thereby, we use similar

techniques as for the triangle-removal and C4-removal process and hence only describe

the main ideas and the key di�erences. In Section 8.1.1, we present the results of the

simulation algorithms and we interpret them with resprect to Conjecture 8.0.1.

108

8. The K4-removal Process

8.1. Simulation of the K4-removal process

In this section, we present our simulation algorithms for the K4-removal process. The

overall idea is here the same as for the other removal processes in this work. Hence, we

will focus on the main di�erences in this section and for more details of the algorithms

themself we refer to Section 4.2 and Section 6.1. Further, we also use the notation used

in those sections. First,we have to analyze the behaviour of the rejection approach for

the K4-removal process. In order to do so, we use again our intuition that the graphs

should be similar to G(n, p) graphs with a corresponding edge density. This is con�rmed

by our experiments in Section 8.1.1. By de�nition of the K4-removal process, the edge

density of the graph Gi is given by

p = p(i) :=

(
n
2

)
− 6i(
n
2

) ≈ 1− 12i

n2
(8.1)

since we delete in every step of the process six edges and we start from a complete

graph on n vertices. In our rejection process, we choose in every step four vertices

uniformly at random and check whether they build a K4 in the current graph. As we

already explained, in the previous sections this is an equivalent approach to simulate

the process. Using our G(n, p) intuition this results in

P[chosen vertices build a K4] ≈ p6 ≈
(

1− 12i

n2

)6

.

However, we see here again that this approach becomes computationally ine�cent fast.

In particular, even faster than for the rest of the processes since more edges have to be

in the graph. This behaviour can also be seen in Section 8.1.1. Hence, we now want

to present the algorithm k4List which lists all copies of a K4 in an arbitratry graph

G = (V,E) exactly once. If we have such a list, we can iterate over it a random order

and delete its edges if it is still in the current graph. For details on this, see Section 4.2

for example. Now we present the algorithm k4List. First, we have to think about how

we can achieve that our algorithm lists every copy of a K4 exactly once. For this let

v4
1 := {v1, . . . , v4} ⊆ V (G) represent a K4 in the graph G. Then we can �nd an unique

ordering of the vertices such that

v1 < v2 < v3 < v4. (8.2)

The idea is now to iterate over every vertex of the graph G and for each v ∈ V we list

exactly those copies of a K4 including v, where v has the role v1 in Equation 8.2. Since

109

8. The K4-removal Process

Algorithm 19: k4List : List all complete graphs on four vertices in a given
graph G = (V,E)

Data: Graph G = (V,E) with n vertices
Result: List of all complete graphs on four vertices in G

1 T ← ∅;
2 adjList> ← (n, ∅);
3 for v ∈ V do

4 for w ∈ N(v) do
5 if w > v then
6 adjList>[v]← adjList>[v] ∪ {w};

7 for v ∈ V do

8 for w ∈ adjList>[v] do
9 for x ∈ adjList>[w] do
10 if (v, x) ∈ E then

11 for y ∈ adjList>[x] do
12 if (v, y) ∈ E then

13 Edge e← (w, y);
14 if e ∈ E then

15 K4 k ← (v, w, x, y);
16 T ← T ∪ {k};

this ordering is unique for every copy of a K4 in the graph, this guarantees that we

list every K4 only once. In order to use this observation, we introduce a data structure

adjList> which stores for every vertex v ∈ V a list of all neighbours w of v with w > v.

Since we list no K4 starting at v wich contains a smaller vertex, this is all information

that we need. Now the algorithm works as follows. For every vertex v ∈ V it looks at

every path (v, w, x, y) of length three with v < w < x < y using adjList>. This can

simply be done by iterating over the according lists. Note that we do not even have

to check whether the vertices are actually greater because the data structure takes care

of this by de�nition. But we only further look at the path if in every step the edge to

vertex v is present. Afterwards, we check the missing edge for a K4, namely (w, y). If

this edge is present, we found a K4. This is shown in Algorithm 19.

Lemma 8.1.1. Let G = (V,E) be an arbitrary graph on n vertices. Then Algorithm 19

lists every K4 in G exactly once.

Proof. Let v4
1 ⊆ G be an arbitrary copy of a K4. Without loss of generality let

110

8. The K4-removal Process

v1 < v2 < v3 < v4. Hence, we have

v2, v3, v4 ∈ adjList>[v1], v3, v4 ∈ adjList>[v2], v4 ∈ adjList>[v3].

Further, we have (v1, v2), (v1, v3), (v1, v4) ∈ E and thus Algorithm 19 reaches line 13

with v1, v2, v3, v4 under consideration. But since we also have (v2, v4) ∈ E we �nd v4
1

when we explore the vertex v1. Since the K4 was arbitrary, it follows that we �nd every

copy of a K4 at least once. Now we have to show that we do not list any K4 twice.

With the notation above, assume we �nd v4
1 again while looking at the K4s starting

from v1. But this means that we have another ordering in our path and hence there

is i! = j ∈ {2, 3, 4} such that vi ≥ vj but vi comes before vj in the path. But this is

a contradiction since vj 6∈ adjList>[vi] and hence this path can not be found. Now

assume that we �nd v4
1 starting from vi with i ∈ {2, 3, 4}. Note that we can �nd a K4

only when we start from one of the vertices which are part of the corresponding K4.

But by de�nition of the algorithm, we can only �nd a K4 if we �nd a path of length

three with four ascending vertices. But since v1 < vi this can not be the case for v4
1 and

hence we also do not list v4
1 when we examine another vertex than v1 and the lemma

follows.

With the correctness of the algorithm k4List we can now de�ne analogous algorithms

to Algorithm 15 and Algorithm 16 by just transferring the algorithms to the situation

of a K4 and using the algorithm k4List instead of c4List and the explained ideas.

8.1.1. Experimental Evaluation

In this section, we present the results of our simulation for the last process. Thereby,

we can observe a similar behaviour as for the C4-removal process regarding running

time and maximal memory consumption for the simulation of the original process. In

addition, we �nd evidence that suggests that Conjecture 8.0.1 is true. The rest of this

section is structured as follows. As usual, we start with some statistical results for the

simulation of the original data in order to assess the reliabilty of our simulation results.

Afterwards, we compare the performance of the original version of the K4-removal pro-

cess with the heuristic algorithm that we described in the previous section. Finally,

we apply di�erent models to our data to analyze Conjecture 8.0.1 and to evaluate the

quality of the heuristic algorithm.

Statistical results. For the statistical results for the simulation of the random variable

e(Gr
�,n) we get similar results as for all the other processes. This can be seen in Ta-

111

8. The K4-removal Process

Sample mean 29 568,06
Sample standard deviation 131,91
Relative sample standard deviation 0,45
Sample variance 17 400,84

Table 8.1.: Some statistical results for the K4-removal process on 1 000 vertices with 200
repetitions.

n α = 10 000 α = 15 000 α = 20 000 α = 100 000 α = 150 000 α = 200 000

500 47 132 47 156 30 276 16 196 15 872 15 988
1 000 565 488 565 700 302 908 105 528 72 772 72 856
1 500 4 276 736 2 179 408 1 130 924 344 092 343 860 212 584
2 000 8 538 588 8 538 356 4 342 396 1 193 424 1 193 204 1 193 220
2 500 33 801 752 17 023 780 17 023 636 4 438 192 2 337 064 -
3 000 67 424 552 33 869 676 33 554 480 - - -

Table 8.2.: In�uence of the rejection parameter α on the maximal memory consumption
for the simulation of the K4-removal process on di�erent numbers of vertices
n.

ble 8.1.1 where we simulated the process on 1 000 vertices 200 times. Even though the

standard deviation is larger than for the K4-free process, it is with a sample standard

deviation of less than one percent still very low. This means that we get a reliable basis

for our data and this gives our data more validity. We will also see this property when

we �t di�erent models to our data.

Performance of the algorithms. For the simulation algorithm, we can observe a

similar behaviour as for the C4-removal process. This is shown in Table 8.1.1 and Ta-

ble 8.1.1 where we look at the time and memory performance of the original simulation

algorithm as described in the previous section for di�erent random seeds and rejection

parameters α. Note again that the solution quality is not in�uenced by this choice.

The main di�erence in comparison to the C4-removal process, which is also re�ected

in the results, is that we expect fewer copies of a K4 in a G(n, p) than copies of a C4.

This results in less memory consumption and even less running time for the simulation

running with similar parameters like α = 15 000. This is even though the listing of all

copies of a K4 seems more complicated than listing all copies of a C4. However, we

see that this behaviour is limited. For a signi�cant increase of the rejection parameter

we can not e�ciently lower the memory consumption. This is probably due to the low

probability for a random copy of a K4. We have already analyzed this in the previous

section. However, this leads to a signi�cant increase in running time. In particular, at

some point we are not able to simulate the process with more vertices since this either

112

8. The K4-removal Process

n α = 10 000 α = 15 000 α = 20 000 α = 100 000 α = 150 000 α = 200 000

500 14,98 12,96 20,22 68,85 82,33 96,55
1 000 283,32 280,55 370,65 1 373,06 1 497,36 1 912,75
1 500 1 107,07 1 198,6 1 374,52 4 220,94 4 709,29 6 729,0
2 000 3 855,8 4 042,0 4 789,0 11 456,3 14 700,1 15 352,3
2 500 8 533,34 7 769,69 7 703,37 16 658,5 25 334,2 -
3 000 20 658,4 16 919,8 16 522,0 - - -

Table 8.3.: In�uence of the rejection parameter α on the overall time for the simulation
of the K4-removal process on di�erent numbers of vertices n.

n ε1 t[s] m[KB] Result ε2 t[s] m[KB] Result

500 0,52 39,86 1 062 244 9 909 0,54 47,93 1 060 888 9 778
1 000 0,32 94,38 1 065 228 29 631 0,34 128,35 1 066 024 29 420
1 500 0,30 493,09 4 218 844 56 298 0,32 685,35 4 219 588 56 302
2 000 0,27 1 194,32 4 231 044 89 068 0,29 1 717,87 8 427 232 88 766
2 500 0,22 1 289,77 4 238 384 126 843 0,24 1 995,04 8 435 620 126 774
3 000 0,22 3 157,26 8 446 948 169 487 0,24 4 902,85 16 838 544 169 446
3 500 0,17 1 860,36 4 256 056 216 099 0,19 3 274,0 8 455 080 215 914
4 000 0,17 3 627,66 4 270 448 267 567 0,19 6 338,48 8 470 808 267 773
4 500 0,16 4 810,98 8 476 536 321 635 0,17 6 523,77 8 480 092 322 760
5 000 0,16 8 118,02 8 492 248 380 794 0,17 11 011,8 16 885 060 382 010
6 000 0,12 4 792,35 4 308 584 509 017 0,15 14 423,9 16 910 228 508 918
7 000 0,12 10 167,9 8 535 224 649 806 0,15 29 332,2 33 749 736 650 437

Table 8.4.: Results for the heuristic simulation of the K4-removal process for the two
largest edge densities.

uses to much memory or takes to much time. However, we can conclude that a careful

choice of this tuning parameter leads to a better performance of the overall algorithm.

To overcome this problem, we look again at the heuristic approach to simulating the

process, where we replace the rejection phase of the simulation with the generation of a

G(n, p) where p is suitably chosen. This is shown in Table 8.1.1. However, we encounter

the problem that this approach does not work as well as for the C4-removal process.

What we could observe during the experiments is that we have to orientate ourselfs on

a similar value for p as we describe in Section 2.3. This value is for the C4-removal

process simply lower than for the K4-removal process. Hence, we can see that we need

signi�cantly more maximal memory consumption than for a similar number of vertices

for the C4-removal process until the results of the process converge. However, we are

still able to simulate the process with a larger number of vertices and convergent results.

This is further underlined when we look at the models for our data.

113

8. The K4-removal Process

Figure 8.1.: Simulation results together with the predicted model f1(n).

Models for the simulation data. Finally, we want to examine the simulation data

by �tting di�erent models to it to analyze Conjecture 8.0.1. For this, we will use the

original data as well as the data we obtain from the heuristic algorithm. First, we look

at the model

f1(n) := a · nb (8.3)

to get an idea for the main factor in the leading term of e(Gr
�,n). For the original data,

we get for this model

a = 0.51, b = 1.59, S = 80.00, (8.4)

where S is the standard error of the regression. That this model �ts the data well can

also be seen in Figure 8.1. Furthermore, we can see that the predicted exponent is close

the exponent we suggested in Conjecture 8.0.1. If we apply this model to our heuristic

data, we can see that we get similar results

ah = 0.51, b = 1.59, S = 191.91. (8.5)

Even though the standard error is larger, we can see that this is a good �t of the data

in Figure 8.2. Further, this indicates that the heuristic approach is suitable for the

simulation of the K4-removal process since we already saw that in addition the results

seem to converge. Finally, we want to examine the data with respect to the possibility

of a logarithmic factor in the leading term of e(Gr
�,n). For this, we look at the model

f2(n) = a · n8/5 · (log n)c (8.6)

114

8. The K4-removal Process

Figure 8.2.: Heuristic simulation results together with the predicted model f1(n).

Figure 8.3.: Simulation results together with the predicted model f2(n).

assuming that we are already sure about the exponent 8/5. This yields for the original

data

a = 0.56, c = −0.09, S = 89.79. (8.7)

This can be seen in Figure 8.3 and we see that this model �ts the data similarly well as

the model f1(n). For the heuristic data, we get for this model the values

a = 0.57, c = −0.10, S = 203.93. (8.8)

In conclusion, we can say that the heuristic approach is suitable for simulating the

K4-removal process and has signi�cant advantages in terms of time and memory. Fur-

thermore, we �nd evidence that con�rms Conjecture 8.0.1. In addition, the data suggest

115

8. The K4-removal Process

that there may not even be a logarithmic factor in the leading term of e(Gr
�,n). Finally,

the results give a strong indication that the bound that was shown in [Tian et al., 2022]

is not sharp.

116

9. Discussion

9.1. Conclusion

In this work, we gave an extensive introduction to the theory of several random graph

processes. Additionally, we developed simulation algorithms for the H-free process and

theH-removal process, whereH ∈ {K3, C4, K4}, to simulate the �nal number of edges in
the generated graph. For every process we cover in this work, we gave an algorithm which

represents the original process using pseudo-randomness. Further, we gave heuristic

algorithms for the H-removal process in all three cases which proved to be suitable for

simulating these processes. Furthermore, they had signi�cant advantages compared to

the original processes regarding time and memory usage. Further, our data was able to

con�rm results for the triangle-free process that are already known from theory. This

gives a strong indication that our predicted results for the C4-free process might be true.

For the K4-free process the data did not provide similar results, as the simulation of

this process was harder. For the triangle-removal process, we were able to con�rm the

exponent of 3/2 that we already knew from theory and our data suggests that there

might not be a logarithmic factor. This gives also a strong indication that the triangle-

free and the triangle-removal process are not equivalent in any sense. For the case of

H = C4 and H = K4, where no sharp bounds are know to the best of our knowledge, we

gave strong indications for the �nal number of edges which are based on the precision

of our predictions for the triangle-removal process and the low standard deviation in

our simulations. In particular, for H = K4 our results gave a strong indication that

the bound in [Tian et al., 2022] is not sharp. In conclusion, we hope that these results

con�rm intuitions of researches in this �eld. Further, to the best of our knowledge

this is the �rst work that handles these type of random graph processes with numerical

simulations and we hope that this provides a value for theoreticians in this �eld.

9.2. Future Work

For the future, we want to further improve our simulation algorithms. Especially for the

H-removal process, often the memory consumption of our approach was a bottleneck.

117

9. Discussion

Since our heuristic proved to be suitable for the simulation of this process, we think that

we can further re�ne this approach to reduce running time and memory consumption.

Additionally, we would like to measure even more properties during the process to

provide researchers maybe with an intuition for other parameters that need to be tracked

for a proof. Moreover, we also would like to analyze the processes with even more

sophisticated statistical techniques to give more reliable results. Further, we would like

to apply this technique to other random graph processes as well.

118

A. Experiments on the

independence number

Here we give some experiments on the the size of an independent set in graphs obtained

by the triangle-free process (see Table A) and graphs obtained by the C4-free process (see

Table A). The results have been computed using the KaMIS repository (see https://

github.com/KarlsruheMIS/KaMIS) with the redumis solver [Lamm et al., 2017]. Note

that the results are not exact. Further, we give in the tables the leading term of

the bounds shown by theory. For the triangle-free case this bound can be found

in [Fiz Pontiveros et al., 2020], Theorem 2.12 and for the C4-free case this is given

in [Picollelli, 2010], Corollary 1.3. We repeated the experiments twice using di�erent

random seeds.

Vertices Solution Size
√

2 ·
√
n log n

100 24 30
500 65 79

1 000 96 118
1 500 120 148
2 000 140 174
2 500 158 198
3 000 173 219
3 500 188 239
4 000 201 258
4 500 216 275
5 000 230 292
5 500 241 308
6 000 251 323
6 500 263 338
7 000 272 352

Table A.1.: Experiments on the size of an independent set in graphs obtained by the
triangle-free process.

119

https://github.com/KarlsruheMIS/KaMIS
https://github.com/KarlsruheMIS/KaMIS

A. Experiments on the independence number

Vertices Solution Size (n · log(n))2/3

100 31 60
500 113 213

1 000 199 363
1 500 272 494
2 000 340 614
2 500 401 726
3 000 467 832
3 500 520 934
4 000 576 1 032
4 500 633 1 127
5 000 685 1 219
5 500 736 1 309
6 000 786 1 397
6 500 834 1 482
7 000 885 1 566

Table A.2.: Experiments on the size of an independent set in graphs obtained by the
C4-free process.

120

Bibliography

[Ajtai et al., 1980] Ajtai, M., Komlós, J., and Szemerédi, E. (1980). A note on ramsey

numbers. Journal of Combinatorial Theory, Series A, 29(3):354�360.

[Ajtai et al., 1981] Ajtai, M., Komlós, J., and Szemerédi, E. (1981). A dense in�nite

sidon sequence. European Journal of Combinatorics, 2(1):1�11.

[Alon and Spencer, 2016] Alon, N. and Spencer, J. H. (2016). The Probabilistic Method.

Wiley Publishing, 4th edition.

[Barabási and Albert, 1999] Barabási, A.-L. and Albert, R. (1999). Emergence of scal-

ing in random networks. Science, 286(5439):509�512.

[Batagelj and Mrvar, 2001] Batagelj, V. and Mrvar, A. (2001). A subquadratic triad

census algorithm for large sparse networks with small maximum degree. Soc. Net-

works, 23(3):237�243.

[Beveridge et al., 2007] Beveridge, A., Bohman, T., Frieze, A., and Pikhurko, O. (2007).

Product rule wins a competitive game. Proceedings of The American Mathematical

Society - PROC AMER MATH SOC, 135:3061�3072.

[Bohman, 2009] Bohman, T. (2009). The triangle-free process. Advances in Mathemat-

ics, 221(5):1653�1677.

[Bohman et al., 2010] Bohman, T., Frieze, A., and Lubetzky, E. (2010). A note on the

random greedy triangle-packing algorithm. arXiv preprint arXiv:1004.2418.

[Bohman et al., 2015] Bohman, T., Frieze, A., and Lubetzky, E. (2015). Random trian-

gle removal. Advances in Mathematics, 280:379�438.

[Bohman et al., 2011] Bohman, T., Frieze, A. M., and Lubetzky, E. (2011). Random

greedy triangle-packing beyond the 7/4 barrier. CoRR, abs/1108.1781.

[Bohman and Keevash, 2009] Bohman, T. and Keevash, P. (2009). The early evolution

of the h-free process. Inventiones Mathematicae, 181.

121

Bibliography

[Bollobás, 1997] Bollobás, B. (1997). Paul Erd®s � Life and Work, pages 1�41. Springer

Berlin Heidelberg, Berlin, Heidelberg.

[Bollobás and Riordan, 2000] Bollobás, B. and Riordan, O. (2000). Constrained graph

processes. Electron. J. Comb., 7.

[Erdös, 1961] Erdös, P. (1961). Graph theory and probability, ii. Canadian Journal of

Mathematics, 13.

[Erdös et al., 1960] Erdös, P., Rényi, A., et al. (1960). On the evolution of random

graphs. Publ. math. inst. hung. acad. sci, 5(1):17�60.

[Erdös et al., 1995] Erdös, P., Suen, S., and Winkler, P. (1995). On the size of a random

maximal graph. Random Struct. Algorithms, 6:309�318.

[Erdös and Szckeres, 1987] Erdös, P. and Szckeres, G. (1987). A Combinatorial Problem

in Geometry, pages 49�56. Birkhäuser Boston, Boston, MA.

[Fiz Pontiveros et al., 2020] Fiz Pontiveros, G., Gri�ths, S., and Morris, R. (2020).

The triangle-free process and the ramsey number r(3, k). Memoirs of the American

Mathematical Society, 263.

[Funke et al., 2018] Funke, D., Lamm, S., Sanders, P., Schulz, C., Strash, D., and von

Looz, M. (2018). Communication-free massively distributed graph generation. In 2018

IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018,

Vancouver, BC, Canada, May 21 � May 25, 2018.

[Gordon et al., 1996] Gordon, D. M., Patashnik, O., Kuperberg, G., and Spencer, J. H.

(1996). Asymptotically optimal covering designs. Journal of Combinatorial Theory,

Series A, 75(2):270�280.

[Grable, 1997] Grable, D. A. (1997). On random greedy triangle packing. the electronic

journal of combinatorics, pages R11�R11.

[Kim, 1995] Kim, J. H. (1995). The ramsey number r(3, t) has order of magnitude

t2/log t. Random Struct. Algorithms, 7:173�208.

[Lamm et al., 2017] Lamm, S., Sanders, P., Schulz, C., Strash, D., and Werneck, R. F.

(2017). Finding near-optimal independent sets at scale. J. Heuristics, 23(4):207�229.

[Osthus and Taraz, 2001] Osthus, D. and Taraz, A. (2001). Random maximal h-free

graphs. Random Struct. Algorithms, 18:61�82.

122

Bibliography

[Picollelli, 2010] Picollelli, M. (2010). The �nal size of the c4-free process. Combinatorics

Probability and Computing, 20.

[Ramsey, 1987] Ramsey, F. P. (1987). On a Problem of Formal Logic, pages 1�24.

Birkhäuser Boston, Boston, MA.

[Rödl and Thoma, 1996] Rödl, V. and Thoma, L. (1996). Asymptotic packing and the

random greedy algorithm. Random Struct. Algorithms, 8:161�177.

[Sanders and Schulz, 2016] Sanders, P. and Schulz, C. (2016). Scalable generation of

scale free graphs. Inf. Process. Lett., 116(7):489�491.

[Schank and Wagner, 2005] Schank, T. and Wagner, D. (2005). Finding, counting and

listing all triangles in large graphs, an experimental study. In Nikoletseas, S. E., edi-

tor, Experimental and E�cient Algorithms, 4th InternationalWorkshop, WEA 2005,

Santorini Island, Greece, May 10-13, 2005, Proceedings, volume 3503 of Lecture Notes

in Computer Science, pages 606�609. Springer.

[Shearer, 1983] Shearer, J. B. (1983). A note on the independence number of triangle-

free graphs. Discrete Mathematics, 46(1):83�87.

[Spencer, 1995] Spencer, J. H. (1995). Asymptotic packing via a branching process.

Random Struct. Algorithms, 7:167�172.

[Spiess and Neumeyer, 2010] Spiess, A. N. and Neumeyer, N. (2010). An evaluation of

r2 as an inadequate measure for nonlinear models in pharmacological and biochemical

research: a monte carlo approach. BMC Pharmacology, 10:6.

[Tian et al., 2022] Tian, F., Liu, Z.-L., and Pan, X.-F. (2022). Random kk-removal

algorithm.

[Warnke, 2014] Warnke, L. (2014). When does the k4-free process stop? Random

Structures & Algorithms, 44(3):355�397.

123

	Introduction
	Motivation
	Objectives
	Structure

	Prelimnaries
	Notation and basic concepts
	Random graphs
	Lower bounds for the H-free process
	Experimental Methodology

	The Triangle-free Process
	Theoretical Results
	Simulation of the Triangle-free Process
	Experimental Evaluation

	The Triangle-removal Process
	Theoretical Results
	Simulation of the Triangle-removal Process
	Experimental Evaluation

	The C4-free Process
	Theoretical Results
	Simulation of the C4-free Process
	Intuition for the constant
	Simulation algorithms
	Experimental Evaluation

	The C4-removal Process
	Simulation of the C4-removal process
	Experimental Evaluation

	The K4-free Process
	Theoretical Results
	Simulation of the K4-free process
	Intuition for the constant
	Experimental Evaluation

	The K4-removal Process
	Simulation of the K4-removal process
	Experimental Evaluation

	Discussion
	Conclusion
	Future Work

	Experiments on the independence number

