A{]]

Karlsruher Institut fur Technologie

Master thesis

Communication Efficient Algorithms for
Generating Massive Networks

Sebastian Lamm

Date: 10. Januar 2017

Supervisors: Prof. Dr. Peter Sanders
Dr. rer. nat. Christian Schulz
Dr. Darren Strash

Institute of Theoretical Informatics, Algorithmics
Department of Informatics
Karlsruhe Institute of Technology

Abstract

Massive complex systems are prevalent throughout all of our lives, from various biological
systems as the human genome to technological networks such as Facebook or Twitter.
Rapid advances in technology allow us to gather more and more data that is connected to
these systems. Analyzing and extracting this huge amount of information is a crucial task
for a variety of scientific disciplines.

A common abstraction for handling complex systems are networks (graphs) made up of
entities and their relationships. For example, we can represent wireless ad hoc networks in
terms of nodes and their connections with each other. We then identify the nodes as vertices
and their connections as edges between the vertices. This abstraction allows us to develop
algorithms that are independent of the underlying domain.

Designing algorithms for massive networks is a challenging task that requires thorough
analysis and experimental evaluation. A major hurdle for this task is the scarcity of publicly
available large-scale datasets. To approach this issue, we can make use of network genera-
tors [21]]. These generators allow us to produce synthetic instances that exhibit properties
found in many real-world networks.

In this thesis we develop a set of novel graph generators that have a focus on scalabi-
lity. In particular, we cover the classic Erd6s-Rényi model, random geometric graphs and
random hyperbolic graphs. These models represent different real-world systems, from the
aforementioned wireless ad-hoc networks [40] to social networks [44]]. We ensure scalabili-
ty by making use of pseudorandomization via hash functions and redundant computations.
The resulting network generators are communication agnostic, i.e. they require no commu-
nication. This allows us to generate massive instances of up to 243 vertices and 2*7 edges
in less than 22 minutes on 32.768 processors.

In addition to proving theoretical bounds for each generator, we perform an extensive
experimental evaluation. We cover both their sequential performance, as well as scaling
behavior. We are able to show that our algorithms are competitive to state-of-the-art imple-
mentations found in network analysis libraries. Additionally, our generators exhibit near
optimal scaling behavior for large instances. Finally, we show that pseudorandomization
has little to no measurable impact on the quality of our generated instances.

Zusammenfassung

Stetig wachsende komplexe Systeme enormer Grofe lassen sich in jedem Bereich unseres
Lebens finden. Von unterschiedlichen biologischen Systemen wie dem menschlichen Ge-
nom bis hin zu technologischen Netzwerken wie Facebook oder Twitter. Rasche technolo-
gische Fortschritte erlauben es uns, die enormen Datenmengen, die mit diesen Systemen
verbunden sind, zu sammeln. Das Analysieren und Auswerten der resultierenden Menge an
Informationen ist eine bedeutende Aufgabe fiir unterschiedliche wissenschaftliche Gebiete.

Netzwerke, aufgebaut aus (abstrakten) Objekten und deren Beziehungen, sind eine hiu-
fig verwendete Abstraktion, um mit komplexen Systemen umzugehen. So lassen sich bei-
spielsweise drahtlose Ad-Hoc Netze, bestehend aus einzelnen Endgerite und deren Verbin-
dungen, als Netzwerke modellieren. Hierfiir werden die Endgeréte durch Knoten und deren
Verbindungen durch Kanten reprisentieren, die die einzelnen Knoten miteinander verbin-
den. Diese Reprisentation, ermdglicht es uns Algorithmen zu entwickeln, die unabhiingig
von einer spezifischen Doméne sind.

Die Entwicklung von Algorithmen fiir riesige Netzwerke ist eine fordernde Aufgabe, die
eine sorgfiltige theoretische Analyse und experimentelle Evaluation erfordert. Ein bedeu-
tendes Problem zur Bewiltigung dieser Aufgabe ist die mangelhafte Verfiigbarkeit von
hinreichend groen Datensitzen. Um dieses Problem zu 16sen, lassen sich sogenannte
Netzwerkgeneratoren einsetzen [21]. Netzwerkgeneratoren erlauben es uns synthetische
Instanzen von Netzwerken zu erzeugen, die Eigenschaften realer Daten aufweisen.

In dieser Masterarbeit entwickeln wir eine Reihe von Netzwerkgeneratoren, die einen
besonderen Fokus auf Skalierbarkeit legen. Insbesondere behandeln wir das klassische
Erd6s-Rényi Modell, sowie unterschiedliche geometrische Modelle basierend auf Eukli-
discher und hyperbolischer Geometrie. Diese Modelle entsprechen verschiedenen Typen
realer Netzwerke, von drahtlosen Ad-Hoc Netzen bis hin zu sozialen Netzwerken. Die
Skalierbarkeit unserer Generatoren gewihrleisten wir durch die Verwendung von Pseudo-
zufall mittels Hash-Funktionen und redundanten Berechnungen. Die daraus resultierenden
Algorithmen sind kommunikationsagnostisch, d.h. sie sind nicht auf Kommunikation an-
gewiesen. Dies erlaubt es uns, riesige Instanzen mit bis zu 2 Knoten und 2*7 Kanten in
weniger als 22 Minuten auf 32.768 Prozessoren zu erzeugen.

Zusitzlich zur theoretischen Analyse unserer Generatoren fithren wir eine umfangreiche
experimentelle Evaluation durch. Hierfiir betrachten wir sowohl die sequentielle Leistungs-
fahigkeit als auch die Skalierbarkeit unserer Algorithmen. Hierdurch sind wir in der Lage,
die Kompetitivitit unserer Algorithmen gegeniiber State-of-the-Art Implementierungen zu
zeigen. Weiterhin weisen unsere Generatoren beinahe optimale Skalierbarkeit fiir grof3e
Eingaben auf. SchlieBlich zeigen wir, dass die Verwendung von Pseudozufall wenig bis
kaum messbare Auswirkungen auf die Qualitédt der von uns erzeugten Instanzen hat.

Acknowledgments

I would like to give thanks to everyone who supported and encouraged me during my work
on this thesis. Without all the people that cheered me up after the occasional setbacks, I
wouldn’t have gotten so far.

First of all, I owe special thanks to my supervisors Dr. Christian Schulz, Dr. Darren
Strash and Prof. Dr. Peter Sanders for the chance of doing research on such an interesting
topic and a lot of good advice. Furthermore, I would like to thank the Forschungszentrum
Jiilich for providing us with access to the JUQUEEN supercomputer. Last but not least, I
would like to thank my friends for their support and the time spent together. My sincerest
thanks to all of you!

Hiermit versichere ich, dass ich diese Arbeit selbstindig verfasst und keine anderen,
als die angegebenen Quellen und Hilfsmittel benutzt, die wortlich oder inhaltlich iiber-
nommenen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts
fiir Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils giiltigen Fas-
sung beachtet habe.

Ort, den Datum

Contents

[2.1.1 ~ Probability Distributions|o

[2.1.2 Graphs|

2.2.1 Erdos-RényiModel|.

[2.2.3 Random Hyperbolic Model|.

3 Helated Work

[3.1 Sampling and Random Variables|

[3.1.1 ~ Sampling Without Replacement|

[3.1.2 Sampling Probability Distributions|.

[3.2 Graph Generators| . . .

[3.2.1 Erdos-Rényi1Modell

[3.2.3 Random Hyperbolic Model|.

4 Divide-and-Conquer Sampling|

4.1 Sequential Sampling Alg

orithm|

4.2 Parallel Sampling Algor1

M) . o e e

4.3.1 Sorted Sampling]|
{4.3.2 Load Balancing]

X

[Graph Generators|

.2 Erdos-Rényi Generator]
5.2.1 Directed G(n,m) Generator]
5.2.2 Undirected G(n,m) Generator]
5.2.3 Directed G(n,p) Generator].
5.2.4 Undirected G(n,p) Generator]

[>.4 Random Hyperbolic Generator]
[5.4.1 Sequential Generator] L.

[6 Experimental Evaluation|
[6.1 Implementation| Lo
[6.2 Experimental Setup| oo

[6.2.2 Experiment Design|
[6.3 Running Time Comparison|
[6.3.1 Sampling Without Replacement|
[6.3.2 Erdos-Rény1 Generators|

[6.3.4 Random Hyperbolic Generators|
[6.4 Scaling Behaviory oo
[6.4.1 Sampling Without Replacement|
[6.4.2 Erdos-Rény1 Generators|

B Graph Properties|
[Bibliography|

25
25
25
25
27
30
31
33
33
37
41
41
46

51
51
53
53
53
55
55
56
56
59
60
60
60
63
64
66

69
69
70

71
79
93

1 Introduction

1.1 Motivation

Emergence describes the process of structures, patterns and properties arising from the in-
teractions of simpler entities in complex systems [31]. This process is prevalent throughout
various disciplines including philosophy, science and art. A popular example of this phe-
nomenon are the complex and diverse symmetrical patterns that arise in snowflakes through
ever changing atmospheric conditions. But not only in non-living, physical systems can we
observe the arising of large and complex entities, but also in our own society [71]. The
World Wide Web is a highly decentralized system that is made up of roughly 45 billion
pages [6] and just as many links that run between them. Even though links between pages
are not created by any central organization, and therefore are subject to a certain degree of
randomness, the resulting network exhibits a very distinct structure. For example, there is
only a small set of pages that have a significantly higher amount of links pointing to them
than the large majority of the web.

Rapid advances in technology as of 2016 have led these systems to expand and grow
with unprecedented scale. The social network website Facebook alone has roughly 1.7 bil-
lion active users, each of which has an average of 350 friends [S)]. The patterns and laws
that govern the growth of such massive systems are intriguing for governments, companies
and researchers alike. There are numerous applications that make use of this knowledge,
e.g. information-sharing for law-enforcement [22]], analyzing and predicting the spreading
of diseases [57, 9]] and structural packet routing strategies [[76]. We can develop a mathe-
matical understanding of these complex systems by analyzing them in terms of networks
of related activities. For example, we may identify the Internet as a set of vertices that
represent websites. A website is said to be connected to another if it has a link to that
website. Using this information we can then compute the influence of a certain website
on others. To study these concepts, different mathematical models of networks have been
developed over the last decades [18]. These models focus on different metrics for charac-
terization of complex networks such as their degree distribution or clustering coefficients.
By using randomization and observing these metrics during the growth of a network, we
can analyze their emergent properties [10]. In turn, we can use the observed properties to
make assumptions on the growth of real-world networks and develop new algorithms to
handle them efficiently. For example, vertices in social networks are likely to be connected
by a small number of intermediate vertices (small-world phenomenon). By combining this

1 Introduction

knowledge with location information we are able to develop new greedy routing algorithms
specifically targeted towards such networks [41].

Algorithms for massive networks are important for extracting meaning from the sheer
amount of data represented by them. Ensuring scalability, both in theory and practice,
is one of our guiding principles for these algorithms. A major hurdle on the way to this
goal is the scarcity of publicly available large-scale datasets to experimentally verify their
scaling behavior in practice. To approach this problem, we can make use of network gener-
ators [21]]. Network generators use mathematical models to generate instances that exhibit
many of the same properties that are found in real-world networks, such as social networks.
In theory, some of these generators allow us to generate massive networks that scale up in-
definitely. Tough in practice, many generators are limited to generating moderately sized
instances of up to a few thousand vertices in a reasonable amount of time. These limita-
tions are often attributed to the apparently sequential nature of the mathematical models or
hardware limitations [49, 56, [77]].

1.2 Our Results

In this thesis we develop a set of novel network generators that focus on scalability. By
doing so, we are able to generate massive networks that rival the current state-of-the-art.
To be more specific, we are able to generate networks of up to 2% vertices and 247 edges
in less than 22 minutes on 32.768 processors. In contrast, the largest instances commonly
generated for supercomputer benchmarks consist of 2*? vertices and 2*° edges and come
from a single graph family [4]].

The generators we propose use different types of network models, from the classic
Erd6s-Rényi model to various geometric models. They all share a common goal of com-
munication efficiency. In particular, they are are communication agnostic. This means
that they require no communication at all, besides knowing their rank and the total num-
ber of processors involved. This is achieved by redundantly computing small parts of the
resulting network. The amount of recomputations is kept at a bare minimum to achieve
a good trade-off between communication efficiency and redundancy. Additionally, since
all of the network models involve random choices, we have to ensure that different pro-
cessors perform the same actions for redundant computations. This is achieved by making
use of pseudorandomization. Pseudorandomness is a commonly used tool for applications
that generate random-like behavior. An example are Monte-Carlo simulations [51] that
are used in different areas such as radiation therapy [61]] and VLSI design [39]. However,
pseudorandomness is rarely exploited for communication efficiency in network generators.
Instead, many generators use communication primitives to share vertices and/or edges be-
tween processors [35,54]. By using pseudorandomization, different processors are able to
come to the same random decisions, while the generated networks still exhibit statistical
randomness.

1.3 Structure of Thesis

We compare our generators against implementations found in state-of-the-art libraries
(e.g. Booslﬂ and NetworKit [70]). We consider both their sequential speed as well as scaling
capabilities.

1.3 Structure of Thesis

In Section 2 we introduce the basic mathematical notations and definitions needed for un-
derstanding the concepts presented in this thesis. We also cover the different theoretical
network models that form the basis of our generators. We present recent developments
for these models and the current state-of-the-art in terms of efficiency and scalability in
Section 3. In Section 4 we discuss the distributed sampling algorithm that serves as a
foundation for most of our graph generators. We introduce the generators and perform an
analysis on their running time and scalability in Section 5. In Section 6 we present our
experimental evaluation of these generators and compare them to state-of-the-art imple-
mentations. We take a detailed look at their scalability, both in terms of weak and strong
scaling. Finally, we discuss our findings and present possibilities for future work in this
area in Section 7.

Thttp://www.boost.org

1 Introduction

2 Fundamentals

2.1 General Definitions

2.1.1 Probability Distributions

A probability distribution describes the relationship between outcomes of a statistical ex-
periment and their probability of occurrence. The set of possible outcomes of such an
experiment is called the sample space. Based on the properties of the sample space, we
can further divide probability distributions into discrete and continuous probability distri-
butions. A discrete probability distribution can be described as the list of probabilities
for the different outcomes. This list is also known as a probability mass function (PMF).
For continuous probability distributions the probability of each individual outcome is 0.
Only events that represent infinitely many outcomes, such as intervals, can have a positive
probability. Therefore, we are not able to describe them using a probability mass function.
Instead, we use a probability density function (PDF), which describes the infinitesimal
probability for any single outcome.

As an example, the simplest probability distribution occurs when all outcomes of an
experiment have an equal outcome. This is called a uniform distribution. We now cover
different probability distributions, both discrete and continuous, that are relevant for our
different network models.

Binomial Distribution. The binomial distribution B(n, p) is a discrete probability dis-
tribution that was introduced by Johann Bernoulli [[15]. It describes the number of suc-
cesses in a sequence of n € N independent yes or no experiments. Each of these ex-
periments yields the answer yes with a probability of p € [0, 1]. If a random variable X
follows a binomial distribution with parameters n, p, we denote this as X ~ B(n,p). The
probability that the sequence of n experiments yields a yes answer k times is given by the
PMF

n _
f(ksn,p) =Pr(X =k) = (k)pk(l —p)" " (2.1.1)
Here, () = Wlk)' (k =0,1,2,...,n) is the binomial coefficient. In practice, the bino-

mial distribution is often used to used to model the number of successes in a sample of size
n drawn with replacement from a finite population of size V.

2 Fundamentals

Multinomial Distribution. The multinomial distribution M (n, py,...,px) is a gener-
alization of the binomial distribution to experiments that have £ > 2 different outcomes.
Each outcome is assigned a probability p; > 0 such that Zf:o p; = 1. The multinomial
distribution then describes the number of times each outcome is obtained in a sequence of
n € N independent experiments. If a random variable X = (X7, ..., X}) follows a multi-
nomial distribution with parameters n, py, . . ., p;, we denote this as X ~ M (n,py, ..., p;).
The probability that the sequence of n experiments yields each individual outcome x; times
is given by the PMF

flz, . s n,pry..oope) = Pr(Xy =, .., Xy = a%) (2.1.2)
n! T T k
0 otherwise

Geometric Distribution. The geometric distribution Geo(p) is a discrete probability
distribution which has two closely related variants. For our purposes it models the proba-
bility of having k£ € {0, 1,2,...} successive failures before a first success in a number of
independent trials. The probability for a success is given by 0 < p < 1. If a random vari-
able X follows a geometric distribution with parameter p, we denote this as X ~ Geo(p).
The probability to draw k successive failures before a first success is given by the PMF

flkip) = Pr(X = k) = (1 —p)*p (2.1.4)

Thus, the sequence of probabilities describes a geometric sequence. These geometric se-
quences were studied 2500 years ago by Euclid in his Elements [34]].

In practice, the geometric distribution is commonly used in algorithms for sampling
without replacement [/2] to compute skip distances between sampled elements.

Hypergeometric Distribution. The hypergeometric distribution H (N, K, n) is a dis-
crete probability distribution. One of the its first appearances was as a solution to a problem
found in De ratiociniis in ludo aldae [37]. In contrast to the binomial distribution, it de-
scribes the probability of having £ successes in n draws, without replacement, from a finite
population of size N. The likelihood of drawing a success is given by the total number
of successes K within the population. If a random variable X follows a hypergeometric
distribution with parameters N, K, n, we denote this as X ~ H (N, K, n). The probability
that the sequence of n draws yields a success k times is given by the PMF:

K\ (N-K
(k) (n—k)
(a)
Note that the hypergeometric distribution can be approximated by a binomial distribution
under certain circumstances. To be more specific, let p = K/N. If N and K are large

fk;N,K,n) =Pr(X =k) = (2.1.5)

2.1 General Definitions

compared to the sample size n, and p is not close to 0 or 1, then H (N, K, n) can be approx-
imated by a binomial distribution with parameters n and p. This is useful in practice since
it is often easier to compute binomial random variables than hypergeometric ones due to
the higher number of factorials needed for their computation [68].

Power-law Distribution. A power-law describes a functional relationship between two
quantities where one quantity varies as a power of the other. In turn, power-law distribu-
tions describe distributions whose probability density function (or probability mass func-
tion in the discrete case) follows such a power-law. We say that a random variable X
follows a power-law distribution with parameter ~ if

flk;y) =Pr(X =k)~ k7. (2.1.6)

For the case of degree distribution of networks, the parameter v is typically in the range
2 <y < 3[23,55].

Chernoff Bounds and Union Bound. Chernoff bounds [33]] are used to derive expo-
nentially decreasing bounds on tail distribution of sums of independent random variables.
To be more specific, we let X7, ..., X,, be random indicator variables with Pr[X; = 1] = p;
and Pr[X; = 0] = (1 — p;). Furthermore, we define X = " , X, and y = E[X]. For any
d € (0, 1], the Chernoff bounds are now defined as

-4

PrX < (1—d)u] < (my

for the lower tail, and

66

Pr[X > (1 +6)u] < <m>“

for the upper tail.

In case that the random variables X; are not independent, we can additionally make use
of the union bound [|19]. The union bound for a set of countable events X;,..., X, is
defined as

Pr(X;U...UX,] <) Pr[X)].
=1

We can then use Chernoff bounds and the union bound to derive a bound on the number
of balls assigned to a bin in a n balls into m bins scenario. For this purpose, we assume
that each ball is independently assigned to the ith bin with probability Pr[X; = 1] = p;.
The p; are chosen in such a way that " ' p; = 1 and p; € O(1/m). Thus, the expected
number of balls in the ith bin is O(n/m).

2 Fundamentals

Lemma 2.1.1. The number of balls assigned to the ith bin in a n balls into m bins scenario
is O(n/m) with high probability[|

Proof. See Raab and Steger [59].

2.1.2 Graphs

A graph (network) is defined as a pair G = (V, E) of vertices V and edges E. We denote
the set of vertices of a graph G as V(G) = {1,...,n}. For a directed (undirected) graph
the set of edges consists of ordered (unordered) pairs E(G) C V(G) x V(G). We define
n = |V] to be the number of vertices and m = | E| the number of edges. The two vertices
that are part of an edge e = (u, v) are said to be adjacent. For directed graphs the order
of vertices of an edge is important: ¢ = (u,v) is different from ¢’ = (v,u). An edge
(u,u) € FE is called a self-loop. If not mentioned otherwise, we only consider graphs that
contain no self-loops.

A graph that consists of n vertices can have at most (;‘) = @ edges, i.e. when all
vertices are pairwise adjacent. We define a graph to be sparse iff m € O(n), and dense iff

m € O(n?).
Graphs are often represented by their adjacency matrix A. The adjacency matrix is a
n X n square matrix, whose entry a; ; (i,j € {1,...,n}) is one if the edge (,j) exists ,

and zero otherwise.

A subgraph of a graph G is defined as a pair G’ = (V' E') with V/ C V and E' C E.
The vertex set V' of the subgraph has to include all endpoints of the corresponding edge
set £, but may also contain additional vertices.

Node Degree and Degree Distribution

The set of neighbors for any vertex v € V is defined as N(v) = {u € V(G) | (u,v) €
E(G)}. For an undirected graph, we define the degree of a vertex v € V as deg(v) =
A(v) = |N(v)|. In the directed case, we have to separate between the indegree and out-
degree of a vertex. The indegree is defined as A~ (v) = {u € V(G) | (u,v) € E(G)}.
Analogously, the outdegree is defined as A" (v) = {u € V(G) | (v,u) € E(G)}. Fi-
nally, the total degree A(v) of a vertex in a directed graph is the sum of its indegree and
outdegree. The maximum degree of G is represented by A or A(G) = max,ey A(v).

An important property for graphs in theory and practice is the degree distribution P(k).
The degree distribution measures the fraction of nodes in the graph that have a degree of
k. Again, for directed graphs, we have to separate between the inbound degree distribu-
tion P(k;,) and outgoing degree distribution P (ko). Depending on the type of network
model the degree distribution may vary significantly. For example, social networks tend to
have a power-law degree distribution, while random graphs have a binomial degree distri-
bution [53]].

li.e. with probability at least 1 — p~¢ for any constant ¢

2.2 Network Models

Connectivity

A vertex u € V is connected to a vertex v € V iff there exists a path of directed or
undirected edges between the two vertices. In directed graphs, if u is connected to v and
vice versa, they are strongly connected. Note that for an undirected graph connectedness
implies strongly connectedness. A graph is called (strongly) connected iff each pair of
vertices u, v € V' is (strongly) connected. Undirected subgraphs in which any two vertices
are connected to each other and are maximal are called connected components. In the
same way we can define strongly connected components for directed subgraphs. The size
and number of (strongly) connected components is a frequently used characteristic for
analyzing network models.

Clustering Coefficient

Another important metric is the clustering coefficient. The clustering coefficient is a mea-
surement of how much vertices tend to cluster together in the graph. If not mentioned
otherwise, we use the global clustering coefficient which is based on triangles and triplets
of vertices [S3]. A triplet consists of three connected vertices. In turn, triangles are made
of three closed triples, one for each triangle vertex. The global clustering coefficient is
defined by the ratio of triangles to the total number of triplets. To be more specific

_ 3 x #triangles #closed triplets (2.1.7)

#riplets #triplets

Social networks usually have a larger clustering coefficient than random graphs with the
same vertex set [52]].

2.2 Network Models
2.2.1 Erdos-Rényi Model

The Erd6s-Rényi (ER) model is one of the most commonly known models for generating
random graphs. A random graph is obtained by uniformly sampling a graph from the set of
all possible graphs with a set of n vertices. Random graphs created by the ER model can
be both directed or undirected. We now briefly introduce the two closely related variants
of the ER model.

The first version, proposed by Edgar Gilbert [30], is denoted as the G(n, p) model. In
this model we start from a set of n vertices and randomly add edges between them. Each
of these edges is added independently with a probability 0 < p < 1. As a result, all graphs

with n vertices and m edges have an equal probability of p (1 — p))= In particular, for

p = 0.5 each of the 2(3) possible graphs with n vertices is chosen with equal probability.
The expected number of edges for a G(n, p) random graph is (72‘) p. The probability that

2 Fundamentals

a particular vertex v of a graph with n vertices has a certain degree %k follows a binomial
distribution:

Pr[deg(v) = k] = (" . 1>pk(1 — p)nlk, 2.2.1)

The second version, proposed by Paul Erdds and Alfréd Rényi [24], is denoted as the
G(n,m) model. In the G(n, m) model, we chose a graph uniformly at random from the set
of all graph which have n vertices and m edges. This means that for 0 < m < N = (;‘)
G(n,m) has (ﬁ) elements. Each of these elements occurs with an equal probability of
1/(M). The G(n,m) model has very similar properties to the G(n, p) model, but the latter

is often easier to analyze because of the independence of edges.

2.2.2 Random Geometric Model

Random geometric graphs are spatial networks that place n vertices as points in a metric
space using a specified probability distribution [S8]. Two vertices are connected by an edge
iff their distance in the metric space is within a given threshold. Since the distance between
two vertices is a symmetric relationship, we are only interested in undirected graphs.

The metric space, its dimension and the distribution of vertices can vary depending on
the use-case of the model. In this thesis we are looking at random geometric graphs in
the two- and three-dimensional unit square [0, 1)123}, To measure distances between two

vertices p, g, we use the Euclidean distance dist(p, ¢) = \/Zfi%} (pi — ;)%

We use a radius » > 0 in order to add edges. If the distance between two vertices u and
v is less than r, we add an undirected edge {u, v} to the graph. Thus, this model can be
described using the two parameters n and r.

To distribute vertices we sample the position of each vertex uniformly and independently
at random in the unit square. This can be done by generating a set of uniform random
variables on the interval [0, 1) for each vertex. Following the construction algorithm of
vertices and edges, the expected degree of any vertex that does not lie on the border is
nmr? [58].

2.2.3 Random Hyperbolic Model

Random hyperbolic graphs are a different variant of spatial networks proposed by Kri-
oukov et al. [44]. Instead of Euclidean space, which has flat curvature, they generate graphs
using the hyperbolic plane, which has negative curvature. They show how this graph family
naturally develops a power-law degree distribution (with v > 2) and other features of com-
plex real-world networks. These features are controlled by choosing the correct parameters
for the average degree and vertex density. Vertices in this model are generated as points
(¢, 7) in polar coordinates on a disk of radius R in the hyperbolic plane with curvature —(.
This disk will be denoted as Dg.

10

2.2 Network Models

¢
135 & o® o © [. © 45
% % °
°
o, ° o o
° ¢ ¢ © ° 08
L) 0®) o @
°
o
ODQ o/ o ° °
4 o @9
0® ° A
° R 10,
o0 8
° °
° 6 o °
®° 4 °
'y °
° 2
180° o° ~%o
L L] o
e o °%
e ° ° o O oo¥
A ° ®
. ® ° .°
Py . © ° 0®
e o ° o oe°
°
0® ° ° ©
o
o, L] P o,
L o o 090\ o 08"
%o °
o e ° 4 DO(:Q
225 ° o ° °° 315
® A
°]
el O o
® % ©, ® 500 o.«o
° E s

Figure 2.1: Point distribution on the disk Dp for « = 1 and a set of 256 vertices with an average
degree of 5.0. The disk radius R equals 11.91.

To generate points in the hyperbolic plane the angular coordinate ¢ is chosen uniformly
at random from the interval [0, 27). The radial coordinate 7 is drawn using the probability
density function (ar)

sinh(ar

Jr) = acosh(aR) -1
The parameter o controls the growth of the random graph and determines the vertex density.
For the case a = 1 this results in a uniform random distribution on hyperbolic space in Dg.
Figure shows an example of the vertex distribution on Dy, for @ = 1 and 256 vertices
with an average degree of 5.0. In general, the higher the value of o the more points tend to
be on the border of Dg and vice versa. As with the random geometric model, we connect
vertices p, q iff their hyperbolic distance

(2.2.2)

disty (p, q) = coshr, coshry — sinhr, sinhr, cos |¢, — ¢, < R. (2.2.3)

There also exists a more general model where edges are added with a probability based
on the hyperbolic distance between two vertices [44]]. In this thesis we only focus on the
more deterministic approach.

The neighborhood of a vertex in the deterministic model consists of all the vertices that
are within a hyperbolic disk of radius 1? around it. The average degree is thus controlled
via this radius. Krioukov et al. [44, 32] showed that for oo/(> % the degree distribution
follows a power-law distribution with exponent 2/ + 1.

11

2 Fundamentals

12

3 Related Work

We now present important advances related to the algorithms and generators proposed in
this thesis. We cover various state-of-the-art algorithms for sampling without replacement
from a finite population, as well as sampling from arbitrary probability distributions. We
then highlight recent advances for generators for the graph models presented in the last
section. This includes Erd6s-Rényi, random geometric, and random hyperbolic graphs.
Additionally, we cover other models and generators that are relevant for the design of our
algorithms or their comparison.

3.1 Sampling and Random Variables

In this section we discuss the current state-of-the-art sampling algorithms. We first cover
algorithms for generating a (sorted) sample from a fixed population without replacement.
Additionally, we discuss algorithms for generating random variables from the distributions
discussed in the previous section. Both of these topics are important for our distributed
sampling algorithm as well as graph generators. For example, we use hypergeometric
random variables to generate a distribution of edges that are then sampled without re-
placement. The section on sampling without replacement is an adaptation from Sanders et
al. [64] which was written by Peter Sanders and Lorenz Hiibschle-Schneider.

3.1.1 Sampling Without Replacement

We first consider the classic problem of sampling n numbers (elements) from a population
{1,..., N} without replacement. This is an important ingredient for many algorithms in
data mining or statistics. The restriction that the population consists of integers from 1 to
N 1is without loss of generality. If we want to sample from a general set M of size N, we
can represent this set by an array of size N and use the array indices as our population. To
further avoid special cases, we assume n. < N/2. Otherwise, one can simple generate the
N —n < N/2 elements that are not in the sample and take the remaining elements. We
now discuss the current state-of-the-art of sampling algorithms.

Algorithm S. The algorithm performs a linear scan over the range {1, ..., N} and gen-
erates a uniformly random deviate for each element to decide whether it is sampled. Be-
cause of the linear scan this becomes increasingly slow for very large V. Nonetheless, this
algorithm is widely used, including the GNU Scientific Library [3].

13

3 Related Work

Algorithm H. This algorithm is a simple and efficient folklore algorithm that is very
fast for small n 25, 43]. The sample is kept in a hash table 7" which is initially empty.
To produce the next sample element, we generate uniformly random deviates X from the
range {1,..., N}. If X € T, the element is rejected as it was already sampled, otherwise
it is inserted. This algorithm has an expected running time O(n).

Algorithm D. Vitter [72]] proposed an elegant sequential algorithm for generating a
sorted sample without any additional auxiliary data structures. The sample is created by
essentially generating appropriate random deviates. These deviates specify the number of
positions to skip to the next sample element. Note that the distribution of the random de-
viates changes in each steps. Nonetheless, using a sophisticated technique based on the
rejection method, this can be done in constant expected time. Therefore, the algorithm
runs in expected time O(n).

Algorithm B. Ahrens and Dieter [7] proposed an algorithm based on Bernoulli samples.
Each element of the range {1, ..., N} is sampled with probability p ~ n/N. This yields
a sample with n’ ~ n elements. If this sample is too big (n’ > n) it can be repaired by
removing 7’ — n elements uniformly at random. The case n’ < n can be made highly
unlikely by choosing p roughly larger than n/N. On the off chance that n' is still smaller
than n one can simply restart the sampling process. The Bernoulli sampling itself can be
implemented efficiently by generating geometrically distributed random deviates. These
deviates describe the number of elements to skip in each step. The algorithm is faster
than Algorithm D since generating geometric random deviates requires fewer arithmetic
operations.

3.1.2 Sampling Probability Distributions

We now discuss the state-of-the art considering sampling from the various distributions
presented in the previous section. Most of these approaches are based on the acceptance-
rejection method 60, [75]]. The idea behind this method is that the probability mass function
(probability density function) f(x) of the target distribution X, i.e. a binomial distribution,
is approximated by another distribution Y with a probability function g(x). We use this
method if it is difficult to sample from the target distribution directly, i.e. if more simplistic
approaches based on the inverse PMF (PDF) are impossible. Instead of sampling from X
directly, we then sample from Y and accept the sample with probability p(x) = kféfa):) Ifa
sample is rejected with probability 1 —p(z), the process is repeated using a newly generated
sample. This process is repeated until a sample was successfully accepted. The constant &
is chosen such that k- g(z) > f(x) for all possibilities of . Acceptance-rejection sampling
works for any distribution in R™ that has a density.

The main advantage of this sampling method over others is that the running time does
not grow depending on the value of . This is crucial for designing efficient algorithms that

14

3.2 Graph Generators

require sampling from various probability distributions. Nonetheless, the running time of
acceptance-rejection sampling is heavily influenced by the rejection rate. Therefore, one
has to find an approximation function g(x), that is both easy to compute and has a low
rejection rate.

Various improvements can be made to further raise the acceptance rate and therefore
lower the running time of the sampling algorithm. Most of these improvements make use
of sophisticated approximation functions [68} 69].

3.2 Graph Generators

We now discuss the state-of-the-art for the graph generators presented in the last section.
We also highlight additional graph models when they cover relevant aspects for our own
generators or serve as competitors.

3.2.1 Erdos-Rényi Model

Batagelj and Brandes [13] present sequential algorithms for the G(n, p) as well as G(n, m)
model that have an optimal running time. Both of their algorithms are adaptations of dif-
ferent sampling routines.

For their G(n, p) generator they make use of an adaptation of Algorithm D by Vitter [72]].
This means that they use geometric random deviates to skip edges that are not sampled. The
probability of sampling an edge after tries is (1 — p)*~!p . Therefore, one can assign an
interval 7, C [0, 1) of length (1 — p)*~1p to each positive integer k. Skip distances are
then sampled by selecting the smallest & for which I, ends after a random r € [0, 1). Their
algorithm is able to generate a G(n, p) graph in time O(n + m), which is optimal.

This approach would also be feasible for building a G(n, m) generator. The main prob-
lem in this case is that skip distances are not independent of the current algorithm state.
To be more specific, if ¢ — 1 candidate edges have been checked and [of them have been
sampled, the probability of skipping k£ — 1 edges is

t+k—1 1 —
[[0-m—= .
B)—i+17(5) —t+k

i=1

(3.2.1)

The resulting algorithm would have an expected running time O(n+m). However, the time
per edge is not always constant. In turn, they propose two different versions of G(n, m)
generators. The first one is an adaptation of Algorithm H where edges are sampled uni-
formly at random using a hash table. If an edge was already picked, one can simply retry
with a different sample. They then continue to show that their algorithm has an expected
linear running time O(m). Their second version of the G(n, m) generator is based on a vir-
tual Fisher-Yates shuffle [28]] which eliminates the uncertainty in the number of iterations.

15

3 Related Work

Nobari et al. [54] proposed a data parallel generator for both the directed and undirected
G(n, p) model. Their generators are designed for graphics processing units (GPUs). They
first develop a sequential algorithm that makes use of a geometric distribution to compute
the number of edges to skip between samples, similar to the algorithm of Batagelj and
Brandes [[13]]. Additionally, they use precomputations to avoid costly evaluations of log-
arithms during the evaluation of the geometric distribution. To adapt their algorithm to a
data parallel setting, they first create random numbers using a parallel pseudorandom num-
ber generator. They then use these random numbers to concurrently compute skip values.
Finally, they compute absolute edge indices by using a parallel prefix sum.

3.2.2 Random Geometric Model

Generating random geometric graphs with n vertices and radius 7 can be done naively by
comparing all n vertices in ©(n) time. This bound can be improved if the vertices are
known to be generated uniformly at random [35]. To this end, a tiling (overlay) of the unit
square into squares (cells) is created. Each of these cells has a side length of . Thus, the
number of cells in each row and column is k£ = [ﬂ Each vertex is then associated with
a cell which can be retrieved in constant time. Since the vertices are generated uniformly
at random, each cell contains an expected number of O(n/k?) vertices. Thus, the time
complexity of generating the grid data structure is O(k* + n).

To find the neighbors of each vertex, we consider each cell C' and its neighbors C”’ (side
length of). We then compute the distance for each pair of vertices in C' and C” and add
edges accordingly. Since there are k? cells, this step takes expected time O(n?/k?). In
total, the generator has expected time complexity O(k* + n + n?/k?) = O(n + m) (see

Lemma[5.3.7).

Holtgrewe and Sanders [35] proposed a distributed memory parallelization of this al-
gorithm. Their algorithm assumes a number of P = p? processes, each of which owns
a square of k/p x k/p cells. Each of the processes starts by independently generating %
vertices. These vertices are then distributed to their owners which are able to sort them by
their cell number. Afterwards, a global index is created for each local vertex, and border
cells are exchanged with neighboring processes. Finally, each processor can generate the
edges for his local vertices independently.

Since they sort local vertices using Quicksort, the expected time complexity for local
computation is O(n/plog(n/p)) Additionally, the expected time needed for communica-
tion is bounded by Tall-to-all (n/P, p) +Tall-to-all (1> p) +4Tp0int—t0—p0im(n/(k p) +2) . Tall—to—all (l7 C)
is the time needed for an all-to-all communication step with messages of length [between
c communication partners. Tjoint-to-point (!) is the time needed for a point-to-point communi-
cation step between two communication partners and messages of length /.

16

3.2 Graph Generators

3.2.3 Random Hyperbolic Model

The naive construction of random hyperbolic graphs takes time ©(n?). Von Looz et
al. [73} [74] improved this bound to O((n*? + m)logn) and O(nlogn + m) (empiri-
cal observation) respectively. Bringmann et al. [20] proposed a theoretical algorithm with
an optimal expected linear time complexity that is based on a generalization of random
hyperbolic graphs. We now briefly discuss each of these approaches.

For their first algorithm von Looz et al. [[73] relate the hyperbolic space to Euclidean
geometry using the Poincaré disk model. This model uses a n dimensional hypersphere to
represent an n-dimensional hyperbolic space. In particular, one can use the Euclidean unit
disk U1 (0) to represent the hyperbolic plane. One important property of this representation
is that hyperbolic circles are mapped onto Euclidean circles. They use this fact to generate
a polar quadtree on the Poincaré disk to answer neighbor queries. The polar quadtree
itself can be generated in time O(n logn). To compute the neighbors for all vertices their
algorithm then needs time O((n*? + m)logn).

In contrast to the polar quadtree algorithm, their second approach [74] generates ran-
dom hyperbolic graphs directly in the hyperbolic plane. They do so by partitioning the
hyperbolic plane into concentric ring-shaped slabs. The slabs are chosen in such a way,
that each slab contains an equal expected amount of vertices. One can then use these slabs
to limit the number of distance calculations necessary during the edge insertion. This is
done by computing angular boundaries for neighborhood queries. To find boundary ver-
tices quickly, vertices are stored in sorted order within each slab. The resulting generator
suggest a time complexity of O(n logn + m), but no explicit proof of this bound is given.

The approach by Bringmann et al. [20] uses a generalization of random hyperbolic
graphs called Geometric Inhomogeneous Random Graphs (GIRGs). Their model promises
to make theoretical studies of random hyperbolic graphs easier by ignoring constant fac-
tors while maintaining their qualitative behavior. Additionally, they propose an optimal
sampling algorithm for GIRGS with expected linear time. Their algorithm works by per-
forming a sophisticated partitioning of the underlying space into cells. The geometric data
structure build on this partitioning allows traversing nodes in close proximity in expected
amortized constant time. The first implementation of their algorithm was given by Bli-
sius et al. [[16] as part of their embedding algorithm for scale-free graphs in the hyperbolic
plane.

3.2.4 Other Network Models

We now discuss recent advances for network models that are not a main focus of this thesis.
We do so because some of these advances are important for understanding the context and
contribution of this thesis.

17

3 Related Work

Barabasi-Albert Model

Recently, Sanders and Schulz [65] proposed an algorithm for generating massive scale-
free networks. Their algorithm is based on the popular preferential attachment model by
Barabasi and Albert [12] (BA model). In this model a graph is generated one vertex at
a time and a fixed number of d edges is added to existing vertices. The probability of
a vertex being selected for an edge insertion is proportional to its current degree. This
process naturally results in graphs that exhibit a power-law distribution.

Batagelj and Brandes [13] proposed an optimal sequential algorithm for this model with
time complexity O(n + m). Their algorithm works by generating one edge at a time and
writing them into an edge array £ of size 2dn — 1. In this array, edge ¢ is represented
by its corresponding endpoints which are stored at positions 2¢ and 2¢ 4+ 1 respectively.
Therefore, E[2i] = |i/d]|. The key observation is that we get the same degree distribution
as the original BA model by sampling the target vertex uniformly at random from the
already existing edges [65]. To this end, the second endpoint E£[2i + 1] is set to £[x] where
x is chosen uniformly at random from {0, ..., 2i}.

Apparently, the main problem for the scalable execution of this algorithm is its inher-
ently sequential nature. Sanders and Schulz [65] solve this issue by making clever use
of pseudo-randomization and edge recomputations. In particular, they use pseudorandom-
ness to reproduce random behavior when generating edges. In a parallel setting this can
be enabled by using hash functions that map array positions to pseudorandom numbers.
This trick allows them to compute edges independently from one another. Thus, their net-
work generator is able to generate scale-free graphs in an embarrassingly parallel fashion.
The concepts of pseudo-randomization and recomputations used in their algorithm will
frequently occur in our own graph generators.

Meyer and Penschuck [50] also proposed two I/O-efficient BA model generators for the
external memory model. Additionally, they extend one of their generators to a massively
parallel setting. Like the previous approach, their work is based upon the sequential algo-
rithm of Batagelj and Brandes [13]]. In the external memory model, this algorithm would
produce €2(m) I/Os with high probability, because of the highly randomized access pattern.
To alleviate this fact, they propose an algorithm called 7FP-BA which uses time-forward
processing [[11] to delay the generation of edges. Therefore, they use tokens that represent
the crea