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Abstract
Massive complex systems are prevalent throughout all of our lives, from various biological
systems as the human genome to technological networks such as Facebook or Twitter.
Rapid advances in technology allow us to gather more and more data that is connected to
these systems. Analyzing and extracting this huge amount of information is a crucial task
for a variety of scientific disciplines.

A common abstraction for handling complex systems are networks (graphs) made up of
entities and their relationships. For example, we can represent wireless ad hoc networks in
terms of nodes and their connections with each other. We then identify the nodes as vertices
and their connections as edges between the vertices. This abstraction allows us to develop
algorithms that are independent of the underlying domain.

Designing algorithms for massive networks is a challenging task that requires thorough
analysis and experimental evaluation. A major hurdle for this task is the scarcity of publicly
available large-scale datasets. To approach this issue, we can make use of network genera-
tors [21]. These generators allow us to produce synthetic instances that exhibit properties
found in many real-world networks.

In this thesis we develop a set of novel graph generators that have a focus on scalabi-
lity. In particular, we cover the classic Erdős-Rényi model, random geometric graphs and
random hyperbolic graphs. These models represent different real-world systems, from the
aforementioned wireless ad-hoc networks [40] to social networks [44]. We ensure scalabili-
ty by making use of pseudorandomization via hash functions and redundant computations.
The resulting network generators are communication agnostic, i.e. they require no commu-
nication. This allows us to generate massive instances of up to 243 vertices and 247 edges
in less than 22 minutes on 32.768 processors.

In addition to proving theoretical bounds for each generator, we perform an extensive
experimental evaluation. We cover both their sequential performance, as well as scaling
behavior. We are able to show that our algorithms are competitive to state-of-the-art imple-
mentations found in network analysis libraries. Additionally, our generators exhibit near
optimal scaling behavior for large instances. Finally, we show that pseudorandomization
has little to no measurable impact on the quality of our generated instances.





Zusammenfassung
Stetig wachsende komplexe Systeme enormer Größe lassen sich in jedem Bereich unseres
Lebens finden. Von unterschiedlichen biologischen Systemen wie dem menschlichen Ge-
nom bis hin zu technologischen Netzwerken wie Facebook oder Twitter. Rasche technolo-
gische Fortschritte erlauben es uns, die enormen Datenmengen, die mit diesen Systemen
verbunden sind, zu sammeln. Das Analysieren und Auswerten der resultierenden Menge an
Informationen ist eine bedeutende Aufgabe für unterschiedliche wissenschaftliche Gebiete.

Netzwerke, aufgebaut aus (abstrakten) Objekten und deren Beziehungen, sind eine häu-
fig verwendete Abstraktion, um mit komplexen Systemen umzugehen. So lassen sich bei-
spielsweise drahtlose Ad-Hoc Netze, bestehend aus einzelnen Endgeräte und deren Verbin-
dungen, als Netzwerke modellieren. Hierfür werden die Endgeräte durch Knoten und deren
Verbindungen durch Kanten repräsentieren, die die einzelnen Knoten miteinander verbin-
den. Diese Repräsentation, ermöglicht es uns Algorithmen zu entwickeln, die unabhängig
von einer spezifischen Domäne sind.

Die Entwicklung von Algorithmen für riesige Netzwerke ist eine fordernde Aufgabe, die
eine sorgfältige theoretische Analyse und experimentelle Evaluation erfordert. Ein bedeu-
tendes Problem zur Bewältigung dieser Aufgabe ist die mangelhafte Verfügbarkeit von
hinreichend großen Datensätzen. Um dieses Problem zu lösen, lassen sich sogenannte
Netzwerkgeneratoren einsetzen [21]. Netzwerkgeneratoren erlauben es uns synthetische
Instanzen von Netzwerken zu erzeugen, die Eigenschaften realer Daten aufweisen.

In dieser Masterarbeit entwickeln wir eine Reihe von Netzwerkgeneratoren, die einen
besonderen Fokus auf Skalierbarkeit legen. Insbesondere behandeln wir das klassische
Erdős-Rényi Modell, sowie unterschiedliche geometrische Modelle basierend auf Eukli-
discher und hyperbolischer Geometrie. Diese Modelle entsprechen verschiedenen Typen
realer Netzwerke, von drahtlosen Ad-Hoc Netzen bis hin zu sozialen Netzwerken. Die
Skalierbarkeit unserer Generatoren gewährleisten wir durch die Verwendung von Pseudo-
zufall mittels Hash-Funktionen und redundanten Berechnungen. Die daraus resultierenden
Algorithmen sind kommunikationsagnostisch, d. h. sie sind nicht auf Kommunikation an-
gewiesen. Dies erlaubt es uns, riesige Instanzen mit bis zu 243 Knoten und 247 Kanten in
weniger als 22 Minuten auf 32.768 Prozessoren zu erzeugen.

Zusätzlich zur theoretischen Analyse unserer Generatoren führen wir eine umfangreiche
experimentelle Evaluation durch. Hierfür betrachten wir sowohl die sequentielle Leistungs-
fähigkeit als auch die Skalierbarkeit unserer Algorithmen. Hierdurch sind wir in der Lage,
die Kompetitivität unserer Algorithmen gegenüber State-of-the-Art Implementierungen zu
zeigen. Weiterhin weisen unsere Generatoren beinahe optimale Skalierbarkeit für große
Eingaben auf. Schließlich zeigen wir, dass die Verwendung von Pseudozufall wenig bis
kaum messbare Auswirkungen auf die Qualität der von uns erzeugten Instanzen hat.
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1 Introduction

1.1 Motivation

Emergence describes the process of structures, patterns and properties arising from the in-
teractions of simpler entities in complex systems [31]. This process is prevalent throughout
various disciplines including philosophy, science and art. A popular example of this phe-
nomenon are the complex and diverse symmetrical patterns that arise in snowflakes through
ever changing atmospheric conditions. But not only in non-living, physical systems can we
observe the arising of large and complex entities, but also in our own society [71]. The
World Wide Web is a highly decentralized system that is made up of roughly 45 billion
pages [6] and just as many links that run between them. Even though links between pages
are not created by any central organization, and therefore are subject to a certain degree of
randomness, the resulting network exhibits a very distinct structure. For example, there is
only a small set of pages that have a significantly higher amount of links pointing to them
than the large majority of the web.

Rapid advances in technology as of 2016 have led these systems to expand and grow
with unprecedented scale. The social network website Facebook alone has roughly 1.7 bil-
lion active users, each of which has an average of 350 friends [5]. The patterns and laws
that govern the growth of such massive systems are intriguing for governments, companies
and researchers alike. There are numerous applications that make use of this knowledge,
e.g. information-sharing for law-enforcement [22], analyzing and predicting the spreading
of diseases [57, 9] and structural packet routing strategies [76]. We can develop a mathe-
matical understanding of these complex systems by analyzing them in terms of networks
of related activities. For example, we may identify the Internet as a set of vertices that
represent websites. A website is said to be connected to another if it has a link to that
website. Using this information we can then compute the influence of a certain website
on others. To study these concepts, different mathematical models of networks have been
developed over the last decades [18]. These models focus on different metrics for charac-
terization of complex networks such as their degree distribution or clustering coefficients.
By using randomization and observing these metrics during the growth of a network, we
can analyze their emergent properties [10]. In turn, we can use the observed properties to
make assumptions on the growth of real-world networks and develop new algorithms to
handle them efficiently. For example, vertices in social networks are likely to be connected
by a small number of intermediate vertices (small-world phenomenon). By combining this
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1 Introduction

knowledge with location information we are able to develop new greedy routing algorithms
specifically targeted towards such networks [41].

Algorithms for massive networks are important for extracting meaning from the sheer
amount of data represented by them. Ensuring scalability, both in theory and practice,
is one of our guiding principles for these algorithms. A major hurdle on the way to this
goal is the scarcity of publicly available large-scale datasets to experimentally verify their
scaling behavior in practice. To approach this problem, we can make use of network gener-
ators [21]. Network generators use mathematical models to generate instances that exhibit
many of the same properties that are found in real-world networks, such as social networks.
In theory, some of these generators allow us to generate massive networks that scale up in-
definitely. Tough in practice, many generators are limited to generating moderately sized
instances of up to a few thousand vertices in a reasonable amount of time. These limita-
tions are often attributed to the apparently sequential nature of the mathematical models or
hardware limitations [49, 56, 77].

1.2 Our Results

In this thesis we develop a set of novel network generators that focus on scalability. By
doing so, we are able to generate massive networks that rival the current state-of-the-art.
To be more specific, we are able to generate networks of up to 243 vertices and 247 edges
in less than 22 minutes on 32.768 processors. In contrast, the largest instances commonly
generated for supercomputer benchmarks consist of 242 vertices and 245 edges and come
from a single graph family [4].

The generators we propose use different types of network models, from the classic
Erdős-Rényi model to various geometric models. They all share a common goal of com-
munication efficiency. In particular, they are are communication agnostic. This means
that they require no communication at all, besides knowing their rank and the total num-
ber of processors involved. This is achieved by redundantly computing small parts of the
resulting network. The amount of recomputations is kept at a bare minimum to achieve
a good trade-off between communication efficiency and redundancy. Additionally, since
all of the network models involve random choices, we have to ensure that different pro-
cessors perform the same actions for redundant computations. This is achieved by making
use of pseudorandomization. Pseudorandomness is a commonly used tool for applications
that generate random-like behavior. An example are Monte-Carlo simulations [51] that
are used in different areas such as radiation therapy [61] and VLSI design [39]. However,
pseudorandomness is rarely exploited for communication efficiency in network generators.
Instead, many generators use communication primitives to share vertices and/or edges be-
tween processors [35, 54]. By using pseudorandomization, different processors are able to
come to the same random decisions, while the generated networks still exhibit statistical
randomness.
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1.3 Structure of Thesis

We compare our generators against implementations found in state-of-the-art libraries
(e.g. Boost1 and NetworKit [70]). We consider both their sequential speed as well as scaling
capabilities.

1.3 Structure of Thesis
In Section 2 we introduce the basic mathematical notations and definitions needed for un-
derstanding the concepts presented in this thesis. We also cover the different theoretical
network models that form the basis of our generators. We present recent developments
for these models and the current state-of-the-art in terms of efficiency and scalability in
Section 3. In Section 4 we discuss the distributed sampling algorithm that serves as a
foundation for most of our graph generators. We introduce the generators and perform an
analysis on their running time and scalability in Section 5. In Section 6 we present our
experimental evaluation of these generators and compare them to state-of-the-art imple-
mentations. We take a detailed look at their scalability, both in terms of weak and strong
scaling. Finally, we discuss our findings and present possibilities for future work in this
area in Section 7.

1http://www.boost.org
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2 Fundamentals

2.1 General Definitions

2.1.1 Probability Distributions

A probability distribution describes the relationship between outcomes of a statistical ex-
periment and their probability of occurrence. The set of possible outcomes of such an
experiment is called the sample space. Based on the properties of the sample space, we
can further divide probability distributions into discrete and continuous probability distri-
butions. A discrete probability distribution can be described as the list of probabilities
for the different outcomes. This list is also known as a probability mass function (PMF).
For continuous probability distributions the probability of each individual outcome is 0.
Only events that represent infinitely many outcomes, such as intervals, can have a positive
probability. Therefore, we are not able to describe them using a probability mass function.
Instead, we use a probability density function (PDF), which describes the infinitesimal
probability for any single outcome.

As an example, the simplest probability distribution occurs when all outcomes of an
experiment have an equal outcome. This is called a uniform distribution. We now cover
different probability distributions, both discrete and continuous, that are relevant for our
different network models.

Binomial Distribution. The binomial distribution B(n, p) is a discrete probability dis-
tribution that was introduced by Johann Bernoulli [15]. It describes the number of suc-
cesses in a sequence of n ∈ N independent yes or no experiments. Each of these ex-
periments yields the answer yes with a probability of p ∈ [0, 1]. If a random variable X
follows a binomial distribution with parameters n, p, we denote this as X ∼ B(n, p). The
probability that the sequence of n experiments yields a yes answer k times is given by the
PMF

f(k;n, p) = Pr(X = k) =

(
n

k

)
pk(1− p)n−k. (2.1.1)

Here,
(
n
k

)
= n!

k!(n−k)! (k = 0, 1, 2, . . . , n) is the binomial coefficient. In practice, the bino-
mial distribution is often used to used to model the number of successes in a sample of size
n drawn with replacement from a finite population of size N .
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2 Fundamentals

Multinomial Distribution. The multinomial distribution M(n, p1, . . . , pk) is a gener-
alization of the binomial distribution to experiments that have k ≥ 2 different outcomes.
Each outcome is assigned a probability pi ≥ 0 such that

∑k
i=0 pi = 1. The multinomial

distribution then describes the number of times each outcome is obtained in a sequence of
n ∈ N independent experiments. If a random variable X = (X1, . . . , Xk) follows a multi-
nomial distribution with parameters n, p1, . . . , pi, we denote this as X ∼M(n, p1, . . . , pi).
The probability that the sequence of n experiments yields each individual outcome xi times
is given by the PMF

f(x1, . . . , xk;n, p1, . . . , pk) = Pr(X1 = x1, . . . , Xk = xk) (2.1.2)

=

{
n!

x1!···xk!
px11 · · · pxkk when

∑k
i=1 xi = n

0 otherwise
. (2.1.3)

.

Geometric Distribution. The geometric distribution Geo(p) is a discrete probability
distribution which has two closely related variants. For our purposes it models the proba-
bility of having k ∈ {0, 1, 2, . . .} successive failures before a first success in a number of
independent trials. The probability for a success is given by 0 < p ≤ 1. If a random vari-
able X follows a geometric distribution with parameter p, we denote this as X ∼ Geo(p).
The probability to draw k successive failures before a first success is given by the PMF

f(k; p) = Pr(X = k) = (1− p)kp (2.1.4)

Thus, the sequence of probabilities describes a geometric sequence. These geometric se-
quences were studied 2500 years ago by Euclid in his Elements [34].

In practice, the geometric distribution is commonly used in algorithms for sampling
without replacement [72] to compute skip distances between sampled elements.

Hypergeometric Distribution. The hypergeometric distribution H(N,K, n) is a dis-
crete probability distribution. One of the its first appearances was as a solution to a problem
found in De ratiociniis in ludo aldae [37]. In contrast to the binomial distribution, it de-
scribes the probability of having k successes in n draws, without replacement, from a finite
population of size N . The likelihood of drawing a success is given by the total number
of successes K within the population. If a random variable X follows a hypergeometric
distribution with parameters N,K, n, we denote this as X ∼ H(N,K, n). The probability
that the sequence of n draws yields a success k times is given by the PMF:

f(k;N,K, n) = Pr(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) . (2.1.5)

Note that the hypergeometric distribution can be approximated by a binomial distribution
under certain circumstances. To be more specific, let p = K/N . If N and K are large
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2.1 General Definitions

compared to the sample size n, and p is not close to 0 or 1, thenH(N,K, n) can be approx-
imated by a binomial distribution with parameters n and p. This is useful in practice since
it is often easier to compute binomial random variables than hypergeometric ones due to
the higher number of factorials needed for their computation [68].

Power-law Distribution. A power-law describes a functional relationship between two
quantities where one quantity varies as a power of the other. In turn, power-law distribu-
tions describe distributions whose probability density function (or probability mass func-
tion in the discrete case) follows such a power-law. We say that a random variable X
follows a power-law distribution with parameter γ if

f(k; γ) = Pr(X = k) ∼ k−γ. (2.1.6)

For the case of degree distribution of networks, the parameter γ is typically in the range
2 < γ < 3 [23, 55].

Chernoff Bounds and Union Bound. Chernoff bounds [33] are used to derive expo-
nentially decreasing bounds on tail distribution of sums of independent random variables.
To be more specific, we letX1, . . . , Xn be random indicator variables with Pr[Xi = 1] = pi
and Pr[Xi = 0] = (1− pi). Furthermore, we define X =

∑n
i=0Xi and µ = E[X]. For any

δ ∈ (0, 1], the Chernoff bounds are now defined as

Pr[X < (1− δ)µ] <
( e−δ

(1− δ)(1−δ))
)µ

for the lower tail, and

Pr[X > (1 + δ)µ] <
( eδ

(1 + δ)(1+δ))

)µ
for the upper tail.

In case that the random variables Xi are not independent, we can additionally make use
of the union bound [19]. The union bound for a set of countable events X1, . . . , Xn is
defined as

Pr[X1 ∪ . . . ∪Xn] ≤
n∑
i=1

Pr[Xi].

We can then use Chernoff bounds and the union bound to derive a bound on the number
of balls assigned to a bin in a n balls into m bins scenario. For this purpose, we assume
that each ball is independently assigned to the ith bin with probability Pr[Xi = 1] = pi.
The pi are chosen in such a way that

∑m
i=0 pi = 1 and pi ∈ O(1/m). Thus, the expected

number of balls in the ith bin is O(n/m).

7



2 Fundamentals

Lemma 2.1.1. The number of balls assigned to the ith bin in a n balls intom bins scenario
is O(n/m) with high probability1.

Proof. See Raab and Steger [59].

2.1.2 Graphs

A graph (network) is defined as a pair G = (V,E) of vertices V and edges E. We denote
the set of vertices of a graph G as V (G) = {1, . . . , n}. For a directed (undirected) graph
the set of edges consists of ordered (unordered) pairs E(G) ⊆ V (G) × V (G). We define
n = |V | to be the number of vertices and m = |E| the number of edges. The two vertices
that are part of an edge e = (u, v) are said to be adjacent. For directed graphs the order
of vertices of an edge is important: e = (u, v) is different from e′ = (v, u). An edge
(u, u) ∈ E is called a self-loop. If not mentioned otherwise, we only consider graphs that
contain no self-loops.

A graph that consists of n vertices can have at most
(
n
2

)
= n(n−1)

2
edges, i.e. when all

vertices are pairwise adjacent. We define a graph to be sparse iff m ∈ O(n), and dense iff
m ∈ Θ(n2).

Graphs are often represented by their adjacency matrix A. The adjacency matrix is a
n × n square matrix, whose entry ai,j (i, j ∈ {1, . . . , n}) is one if the edge (i, j) exists ,
and zero otherwise.

A subgraph of a graph G is defined as a pair G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E.
The vertex set V ′ of the subgraph has to include all endpoints of the corresponding edge
set E ′, but may also contain additional vertices.

Node Degree and Degree Distribution

The set of neighbors for any vertex v ∈ V is defined as N(v) = {u ∈ V (G) | (u, v) ∈
E(G)}. For an undirected graph, we define the degree of a vertex v ∈ V as deg(v) =
∆(v) = |N(v)|. In the directed case, we have to separate between the indegree and out-
degree of a vertex. The indegree is defined as ∆−(v) = {u ∈ V (G) | (u, v) ∈ E(G)}.
Analogously, the outdegree is defined as ∆+(v) = {u ∈ V (G) | (v, u) ∈ E(G)}. Fi-
nally, the total degree ∆(v) of a vertex in a directed graph is the sum of its indegree and
outdegree. The maximum degree of G is represented by ∆ or ∆(G) = maxv∈V ∆(v).

An important property for graphs in theory and practice is the degree distribution P (k).
The degree distribution measures the fraction of nodes in the graph that have a degree of
k. Again, for directed graphs, we have to separate between the inbound degree distribu-
tion P (kin) and outgoing degree distribution P (kout). Depending on the type of network
model the degree distribution may vary significantly. For example, social networks tend to
have a power-law degree distribution, while random graphs have a binomial degree distri-
bution [53].

1i.e. with probability at least 1− p−c for any constant c
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Connectivity

A vertex u ∈ V is connected to a vertex v ∈ V iff there exists a path of directed or
undirected edges between the two vertices. In directed graphs, if u is connected to v and
vice versa, they are strongly connected. Note that for an undirected graph connectedness
implies strongly connectedness. A graph is called (strongly) connected iff each pair of
vertices u, v ∈ V is (strongly) connected. Undirected subgraphs in which any two vertices
are connected to each other and are maximal are called connected components. In the
same way we can define strongly connected components for directed subgraphs. The size
and number of (strongly) connected components is a frequently used characteristic for
analyzing network models.

Clustering Coefficient

Another important metric is the clustering coefficient. The clustering coefficient is a mea-
surement of how much vertices tend to cluster together in the graph. If not mentioned
otherwise, we use the global clustering coefficient which is based on triangles and triplets
of vertices [53]. A triplet consists of three connected vertices. In turn, triangles are made
of three closed triples, one for each triangle vertex. The global clustering coefficient is
defined by the ratio of triangles to the total number of triplets. To be more specific

C =
3× #triangles

#triplets
=

#closed triplets
#triplets

. (2.1.7)

Social networks usually have a larger clustering coefficient than random graphs with the
same vertex set [52].

2.2 Network Models

2.2.1 Erdős-Rényi Model

The Erdős-Rényi (ER) model is one of the most commonly known models for generating
random graphs. A random graph is obtained by uniformly sampling a graph from the set of
all possible graphs with a set of n vertices. Random graphs created by the ER model can
be both directed or undirected. We now briefly introduce the two closely related variants
of the ER model.

The first version, proposed by Edgar Gilbert [30], is denoted as the G(n, p) model. In
this model we start from a set of n vertices and randomly add edges between them. Each
of these edges is added independently with a probability 0 < p < 1. As a result, all graphs
with n vertices and m edges have an equal probability of pm(1−p)(n2)−m. In particular, for
p = 0.5 each of the 2(n2) possible graphs with n vertices is chosen with equal probability.
The expected number of edges for a G(n, p) random graph is

(
n
2

)
p. The probability that

9
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a particular vertex v of a graph with n vertices has a certain degree k follows a binomial
distribution:

Pr[deg(v) = k] =

(
n− 1

k

)
pk(1− p)n−1−k. (2.2.1)

The second version, proposed by Paul Erdős and Alfréd Rényi [24], is denoted as the
G(n,m) model. In the G(n,m) model, we chose a graph uniformly at random from the set
of all graph which have n vertices and m edges. This means that for 0 ≤ m ≤ N =

(
n
2

)
G(n,m) has

(
N
m

)
elements. Each of these elements occurs with an equal probability of

1/
(
N
m

)
. The G(n,m) model has very similar properties to the G(n, p) model, but the latter

is often easier to analyze because of the independence of edges.

2.2.2 Random Geometric Model

Random geometric graphs are spatial networks that place n vertices as points in a metric
space using a specified probability distribution [58]. Two vertices are connected by an edge
iff their distance in the metric space is within a given threshold. Since the distance between
two vertices is a symmetric relationship, we are only interested in undirected graphs.

The metric space, its dimension and the distribution of vertices can vary depending on
the use-case of the model. In this thesis we are looking at random geometric graphs in
the two- and three-dimensional unit square [0, 1){2,3}. To measure distances between two

vertices p, q, we use the Euclidean distance dist(p, q) =

√∑d∈{2,3}
i=1 (pi − qi)2.

We use a radius r > 0 in order to add edges. If the distance between two vertices u and
v is less than r, we add an undirected edge {u, v} to the graph. Thus, this model can be
described using the two parameters n and r.

To distribute vertices we sample the position of each vertex uniformly and independently
at random in the unit square. This can be done by generating a set of uniform random
variables on the interval [0, 1) for each vertex. Following the construction algorithm of
vertices and edges, the expected degree of any vertex that does not lie on the border is
nπr2 [58].

2.2.3 Random Hyperbolic Model

Random hyperbolic graphs are a different variant of spatial networks proposed by Kri-
oukov et al. [44]. Instead of Euclidean space, which has flat curvature, they generate graphs
using the hyperbolic plane, which has negative curvature. They show how this graph family
naturally develops a power-law degree distribution (with γ ≥ 2) and other features of com-
plex real-world networks. These features are controlled by choosing the correct parameters
for the average degree and vertex density. Vertices in this model are generated as points
(φ, r) in polar coordinates on a disk of radiusR in the hyperbolic plane with curvature−ζ2.
This disk will be denoted as DR.

10
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Figure 2.1: Point distribution on the disk DR for α = 1 and a set of 256 vertices with an average
degree of 5.0. The disk radius R equals 11.91.

To generate points in the hyperbolic plane the angular coordinate φ is chosen uniformly
at random from the interval [0, 2π). The radial coordinate r is drawn using the probability
density function

f(r) = α
sinh(αr)

cosh(αR)− 1
. (2.2.2)

The parameter α controls the growth of the random graph and determines the vertex density.
For the case α = 1 this results in a uniform random distribution on hyperbolic space inDR.
Figure 2.1 shows an example of the vertex distribution on DR for α = 1 and 256 vertices
with an average degree of 5.0. In general, the higher the value of α the more points tend to
be on the border of DR and vice versa. As with the random geometric model, we connect
vertices p, q iff their hyperbolic distance

distH(p, q) = cosh rp cosh rq − sinh rp sinh rq cos |φp − φq| ≤ R. (2.2.3)

There also exists a more general model where edges are added with a probability based
on the hyperbolic distance between two vertices [44]. In this thesis we only focus on the
more deterministic approach.

The neighborhood of a vertex in the deterministic model consists of all the vertices that
are within a hyperbolic disk of radius R around it. The average degree is thus controlled
via this radius. Krioukov et al. [44, 32] showed that for α/ζ > 1

2
the degree distribution

follows a power-law distribution with exponent 2α/ζ + 1.
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3 Related Work

We now present important advances related to the algorithms and generators proposed in
this thesis. We cover various state-of-the-art algorithms for sampling without replacement
from a finite population, as well as sampling from arbitrary probability distributions. We
then highlight recent advances for generators for the graph models presented in the last
section. This includes Erdős-Rényi, random geometric, and random hyperbolic graphs.
Additionally, we cover other models and generators that are relevant for the design of our
algorithms or their comparison.

3.1 Sampling and Random Variables
In this section we discuss the current state-of-the-art sampling algorithms. We first cover
algorithms for generating a (sorted) sample from a fixed population without replacement.
Additionally, we discuss algorithms for generating random variables from the distributions
discussed in the previous section. Both of these topics are important for our distributed
sampling algorithm as well as graph generators. For example, we use hypergeometric
random variables to generate a distribution of edges that are then sampled without re-
placement. The section on sampling without replacement is an adaptation from Sanders et
al. [64] which was written by Peter Sanders and Lorenz Hübschle-Schneider.

3.1.1 Sampling Without Replacement

We first consider the classic problem of sampling n numbers (elements) from a population
{1, . . . , N} without replacement. This is an important ingredient for many algorithms in
data mining or statistics. The restriction that the population consists of integers from 1 to
N is without loss of generality. If we want to sample from a general set M of size N , we
can represent this set by an array of size N and use the array indices as our population. To
further avoid special cases, we assume n ≤ N/2. Otherwise, one can simple generate the
N − n < N/2 elements that are not in the sample and take the remaining elements. We
now discuss the current state-of-the-art of sampling algorithms.

Algorithm S. The algorithm performs a linear scan over the range {1, . . . , N} and gen-
erates a uniformly random deviate for each element to decide whether it is sampled. Be-
cause of the linear scan this becomes increasingly slow for very large N . Nonetheless, this
algorithm is widely used, including the GNU Scientific Library [3].

13
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Algorithm H. This algorithm is a simple and efficient folklore algorithm that is very
fast for small n [25, 43]. The sample is kept in a hash table T which is initially empty.
To produce the next sample element, we generate uniformly random deviates X from the
range {1, . . . , N}. If X ∈ T , the element is rejected as it was already sampled, otherwise
it is inserted. This algorithm has an expected running time O(n).

Algorithm D. Vitter [72] proposed an elegant sequential algorithm for generating a
sorted sample without any additional auxiliary data structures. The sample is created by
essentially generating appropriate random deviates. These deviates specify the number of
positions to skip to the next sample element. Note that the distribution of the random de-
viates changes in each steps. Nonetheless, using a sophisticated technique based on the
rejection method, this can be done in constant expected time. Therefore, the algorithm
runs in expected time O(n).

Algorithm B. Ahrens and Dieter [7] proposed an algorithm based on Bernoulli samples.
Each element of the range {1, . . . , N} is sampled with probability p ≈ n/N . This yields
a sample with n′ ≈ n elements. If this sample is too big (n′ > n) it can be repaired by
removing n′ − n elements uniformly at random. The case n′ < n can be made highly
unlikely by choosing p roughly larger than n/N . On the off chance that n′ is still smaller
than n one can simply restart the sampling process. The Bernoulli sampling itself can be
implemented efficiently by generating geometrically distributed random deviates. These
deviates describe the number of elements to skip in each step. The algorithm is faster
than Algorithm D since generating geometric random deviates requires fewer arithmetic
operations.

3.1.2 Sampling Probability Distributions

We now discuss the state-of-the art considering sampling from the various distributions
presented in the previous section. Most of these approaches are based on the acceptance-
rejection method [60, 75]. The idea behind this method is that the probability mass function
(probability density function) f(x) of the target distribution X , i.e. a binomial distribution,
is approximated by another distribution Y with a probability function g(x). We use this
method if it is difficult to sample from the target distribution directly, i.e. if more simplistic
approaches based on the inverse PMF (PDF) are impossible. Instead of sampling from X
directly, we then sample from Y and accept the sample with probability p(x) = f(x)

k·g(x) . If a
sample is rejected with probability 1−p(x), the process is repeated using a newly generated
sample. This process is repeated until a sample was successfully accepted. The constant k
is chosen such that k ·g(x) ≥ f(x) for all possibilities of x. Acceptance-rejection sampling
works for any distribution in Rm that has a density.

The main advantage of this sampling method over others is that the running time does
not grow depending on the value of x. This is crucial for designing efficient algorithms that
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require sampling from various probability distributions. Nonetheless, the running time of
acceptance-rejection sampling is heavily influenced by the rejection rate. Therefore, one
has to find an approximation function g(x), that is both easy to compute and has a low
rejection rate.

Various improvements can be made to further raise the acceptance rate and therefore
lower the running time of the sampling algorithm. Most of these improvements make use
of sophisticated approximation functions [68, 69].

3.2 Graph Generators

We now discuss the state-of-the-art for the graph generators presented in the last section.
We also highlight additional graph models when they cover relevant aspects for our own
generators or serve as competitors.

3.2.1 Erdős-Rényi Model

Batagelj and Brandes [13] present sequential algorithms for the G(n, p) as well as G(n,m)
model that have an optimal running time. Both of their algorithms are adaptations of dif-
ferent sampling routines.

For theirG(n, p) generator they make use of an adaptation of Algorithm D by Vitter [72].
This means that they use geometric random deviates to skip edges that are not sampled. The
probability of sampling an edge after k tries is (1 − p)k−1p . Therefore, one can assign an
interval Ik ⊆ [0, 1) of length (1 − p)k−1p to each positive integer k. Skip distances are
then sampled by selecting the smallest k for which Ik ends after a random r ∈ [0, 1). Their
algorithm is able to generate a G(n, p) graph in time O(n+m), which is optimal.

This approach would also be feasible for building a G(n,m) generator. The main prob-
lem in this case is that skip distances are not independent of the current algorithm state.
To be more specific, if t − 1 candidate edges have been checked and l of them have been
sampled, the probability of skipping k − 1 edges is

t+k−1∏
i=1

(1− m− l(
n
2

)
− i+ 1

)
m− l(

n
2

)
− t+ k

. (3.2.1)

The resulting algorithm would have an expected running timeO(n+m). However, the time
per edge is not always constant. In turn, they propose two different versions of G(n,m)
generators. The first one is an adaptation of Algorithm H where edges are sampled uni-
formly at random using a hash table. If an edge was already picked, one can simply retry
with a different sample. They then continue to show that their algorithm has an expected
linear running timeO(m). Their second version of theG(n,m) generator is based on a vir-
tual Fisher-Yates shuffle [28] which eliminates the uncertainty in the number of iterations.
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Nobari et al. [54] proposed a data parallel generator for both the directed and undirected
G(n, p) model. Their generators are designed for graphics processing units (GPUs). They
first develop a sequential algorithm that makes use of a geometric distribution to compute
the number of edges to skip between samples, similar to the algorithm of Batagelj and
Brandes [13]. Additionally, they use precomputations to avoid costly evaluations of log-
arithms during the evaluation of the geometric distribution. To adapt their algorithm to a
data parallel setting, they first create random numbers using a parallel pseudorandom num-
ber generator. They then use these random numbers to concurrently compute skip values.
Finally, they compute absolute edge indices by using a parallel prefix sum.

3.2.2 Random Geometric Model

Generating random geometric graphs with n vertices and radius r can be done naively by
comparing all n vertices in Θ(n) time. This bound can be improved if the vertices are
known to be generated uniformly at random [35]. To this end, a tiling (overlay) of the unit
square into squares (cells) is created. Each of these cells has a side length of r. Thus, the
number of cells in each row and column is k = d1

r
e. Each vertex is then associated with

a cell which can be retrieved in constant time. Since the vertices are generated uniformly
at random, each cell contains an expected number of O(n/k2) vertices. Thus, the time
complexity of generating the grid data structure is O(k2 + n).

To find the neighbors of each vertex, we consider each cell C and its neighbors C ′ (side
length of r). We then compute the distance for each pair of vertices in C and C ′ and add
edges accordingly. Since there are k2 cells, this step takes expected time O(n2/k2). In
total, the generator has expected time complexity O(k2 + n + n2/k2) = O(n + m) (see
Lemma 5.3.1).

Holtgrewe and Sanders [35] proposed a distributed memory parallelization of this al-
gorithm. Their algorithm assumes a number of P = p2 processes, each of which owns
a square of k/p × k/p cells. Each of the processes starts by independently generating n

p

vertices. These vertices are then distributed to their owners which are able to sort them by
their cell number. Afterwards, a global index is created for each local vertex, and border
cells are exchanged with neighboring processes. Finally, each processor can generate the
edges for his local vertices independently.

Since they sort local vertices using Quicksort, the expected time complexity for local
computation is O(n/p log(n/p)) Additionally, the expected time needed for communica-
tion is bounded by Tall-to-all(n/p, p)+Tall-to-all(1, p)+4Tpoint-to-point(n/(k ·p)+2). Tall-to-all(l, c)
is the time needed for an all-to-all communication step with messages of length l between
c communication partners. Tpoint-to-point(l) is the time needed for a point-to-point communi-
cation step between two communication partners and messages of length l.
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3.2.3 Random Hyperbolic Model

The naive construction of random hyperbolic graphs takes time Θ(n2). Von Looz et
al. [73, 74] improved this bound to O((n3/2 + m) log n) and O(n log n + m) (empiri-
cal observation) respectively. Bringmann et al. [20] proposed a theoretical algorithm with
an optimal expected linear time complexity that is based on a generalization of random
hyperbolic graphs. We now briefly discuss each of these approaches.

For their first algorithm von Looz et al. [73] relate the hyperbolic space to Euclidean
geometry using the Poincaré disk model. This model uses a n dimensional hypersphere to
represent an n-dimensional hyperbolic space. In particular, one can use the Euclidean unit
disk U1(0) to represent the hyperbolic plane. One important property of this representation
is that hyperbolic circles are mapped onto Euclidean circles. They use this fact to generate
a polar quadtree on the Poincaré disk to answer neighbor queries. The polar quadtree
itself can be generated in time O(n log n). To compute the neighbors for all vertices their
algorithm then needs time O((n3/2 +m) log n).

In contrast to the polar quadtree algorithm, their second approach [74] generates ran-
dom hyperbolic graphs directly in the hyperbolic plane. They do so by partitioning the
hyperbolic plane into concentric ring-shaped slabs. The slabs are chosen in such a way,
that each slab contains an equal expected amount of vertices. One can then use these slabs
to limit the number of distance calculations necessary during the edge insertion. This is
done by computing angular boundaries for neighborhood queries. To find boundary ver-
tices quickly, vertices are stored in sorted order within each slab. The resulting generator
suggest a time complexity of O(n log n+m), but no explicit proof of this bound is given.

The approach by Bringmann et al. [20] uses a generalization of random hyperbolic
graphs called Geometric Inhomogeneous Random Graphs (GIRGs). Their model promises
to make theoretical studies of random hyperbolic graphs easier by ignoring constant fac-
tors while maintaining their qualitative behavior. Additionally, they propose an optimal
sampling algorithm for GIRGS with expected linear time. Their algorithm works by per-
forming a sophisticated partitioning of the underlying space into cells. The geometric data
structure build on this partitioning allows traversing nodes in close proximity in expected
amortized constant time. The first implementation of their algorithm was given by Blä-
sius et al. [16] as part of their embedding algorithm for scale-free graphs in the hyperbolic
plane.

3.2.4 Other Network Models

We now discuss recent advances for network models that are not a main focus of this thesis.
We do so because some of these advances are important for understanding the context and
contribution of this thesis.
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Barabasi-Albert Model

Recently, Sanders and Schulz [65] proposed an algorithm for generating massive scale-
free networks. Their algorithm is based on the popular preferential attachment model by
Barabasi and Albert [12] (BA model). In this model a graph is generated one vertex at
a time and a fixed number of d edges is added to existing vertices. The probability of
a vertex being selected for an edge insertion is proportional to its current degree. This
process naturally results in graphs that exhibit a power-law distribution.

Batagelj and Brandes [13] proposed an optimal sequential algorithm for this model with
time complexity O(n + m). Their algorithm works by generating one edge at a time and
writing them into an edge array E of size 2dn − 1. In this array, edge i is represented
by its corresponding endpoints which are stored at positions 2i and 2i + 1 respectively.
Therefore, E[2i] = bi/dc. The key observation is that we get the same degree distribution
as the original BA model by sampling the target vertex uniformly at random from the
already existing edges [65]. To this end, the second endpoint E[2i+ 1] is set to E[x] where
x is chosen uniformly at random from {0, . . . , 2i}.

Apparently, the main problem for the scalable execution of this algorithm is its inher-
ently sequential nature. Sanders and Schulz [65] solve this issue by making clever use
of pseudo-randomization and edge recomputations. In particular, they use pseudorandom-
ness to reproduce random behavior when generating edges. In a parallel setting this can
be enabled by using hash functions that map array positions to pseudorandom numbers.
This trick allows them to compute edges independently from one another. Thus, their net-
work generator is able to generate scale-free graphs in an embarrassingly parallel fashion.
The concepts of pseudo-randomization and recomputations used in their algorithm will
frequently occur in our own graph generators.

Meyer and Penschuck [50] also proposed two I/O-efficient BA model generators for the
external memory model. Additionally, they extend one of their generators to a massively
parallel setting. Like the previous approach, their work is based upon the sequential algo-
rithm of Batagelj and Brandes [13]. In the external memory model, this algorithm would
produce Ω(m) I/Os with high probability, because of the highly randomized access pattern.
To alleviate this fact, they propose an algorithm called TFP-BA which uses time-forward
processing [11] to delay the generation of edges. Therefore, they use tokens that represent
the creation of an edge and queries to it. The dependencies between these tokens form an
acyclic graph. They then use an external memory priority queue to process the tokens in
the correct order.

Their algorithm needs O(scan(m0) + sort(m)) 1 I/Os and has a time complexity of
O(m0 + m logm) where m0 is the number of edges of a seed graph G0 = (V0, E0). In
order to extend their algorithm for efficient parallelization, they use a custom sorted edge
list and two parallelization schemes based on tree-composition and token-wise parallelism.

1scan(N) = Θ(N/B) is the number of I/Os needed to read/write N contiguous items with block size B.
sort(N) = Θ(N/B) · logM/B(N/B) is the number of I/Os needed to sort N contiguous items with block
size B using a fast internal memory with capacity M .
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Stochastic Kronecker Graphs

Stochastic Kronecker graphs were first proposed in 2005 by Leskovec et al. [46]. They
showed that these graphs match many of the properties found in large real-world networks,
such as scale-free degree distributions or small diameters. The main idea behind this model
is to recursively create self similar graphs using the Kronecker product. Given a n × m
matrix U = [ui,j] and a n′ ×m′ matrix V the Kronecker product is defined as

S = U⊗ V =


u1,1V u1,2V · · · u1,mV
u2,1V u2,2V · · · u2,mV

...
... . . . ...

un,1V un,2V · · · un,mV

 ∈ R(n·n′)×(m·m′) (3.2.2)

This product is then used to successively multiply a seed graph G0 with a corresponding
N0×N0 adjacency matrix to create graphs of increasing size. By using a probability matrix
U instead of the adjacency matrix we get a stochastic Kronecker graph. An entry ui,j of
this probability matrix represents the probability that an edge between the vertices i and j
is present. Fitting the matrix U to correspond to real-world networks can be done in linear
time in the number of edges.

A special case of the stochastic Kronecker graph model is the recursive matrix model
(R-MAT) by Chakrabarti et al. [21]. This model is well known for its usage in the popular
Graph 500 benchmark [4]. To generate a graphGwith n vertices andm edges its adjacency
matrix A is subdivided into four equal sized parts. Edges are then added to the adjacency
matrix by assigning each of the four partitions a probability a, b, c, d respectively. The
probabilities are chosen such that a+ b+ c+ d = 1. If a partition was chosen for an edge,
it is again subdivided recursively using the same probabilities. This step is repeated until a
1 × 1 partition is encountered, in which case we add the corresponding edge to the graph.
Using this procedure, adding a single edge to graph takes time O(log n). Therefore the
time complexity of the generator is O(m log n).

The R-MAT model can be parallelized trivially since an edge can be added independently
of other edges. Therefore, it is commonly used in large scale benchmarks such as the Graph
500 benchmark [4]. This benchmarks uses a variety of different graph sizes ranging from
226 vertices and 230 edges up to 242 vertices and 246 edges. The largest graph instances use
1015 bytes or roughly 1 PB of memory. The concept of subdividing the adjacency matrix
of a graph into partitions is also an important part of our own ER generators.
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4 Divide-and-Conquer Sampling

We now discuss our new divide-and-conquer algorithm for sampling n elements without
replacement from a population of size N . We start by presenting the sequential variant and
then proceed with its parallelization. Additionaly, we highlight some possible extensions
and implementation details. Most of the theory presented in this section is an taken from
Sanders [64] and was developed by Peter Sanders.

4.1 Sequential Sampling Algorithm

The sequential algorithm is based on the observation that the number of samples L up to
an arbitrary splitting position l ∈ {1, . . . , N} follows a hypergeometric distribution. This
distribution is parameterized by the number of samples n, the number of successes l, and
the universe size N . Consequently, the number of samples starting at l+ 1 up to N is given
by n−L. By generating a random deviate from this distribution (L ∼ H(N, l, n)), we can
divide the original sample step into two, one for {1, . . . , l} and one for {l + 1, . . . , N}. In
order to distribute the samples evenly between the two subproblems, we choose l = bN/2c.

Generating a random deviate from the hypergeometric distribution H(N, l, n) can be
done in expected constant time by using one of the acceptance-rejection algorithms pre-
sented in Section 3.1.2 (e.g. [69]). We then continue dividing the sample recursively until
the number of samples is below a threshold n0. Once the number of samples is below n0,
we can use one of the linear time sampling algorithm presented in Section 3.1.1. Since the
recursion tree that is created has size of at most 2n/n0, the overall expected running time
of our algorithm is O(n). The pseudocode for the sequential sampling algorithm is given
in Algorithm 2.

4.2 Parallel Sampling Algorithm

We now consider the parallelization of the sequential sampling algorithm for P processors.
Our goal is to partition the range {1, . . . , N} into P pieces, one for each processor, that
can be computed individually. For this purpose, let Ni denote the last element in the range
associated with processor i, i.e. processor i generates the sample elements that lie in the
range {Ni−1 + 1, . . . , Ni} (N0 = 0). The main idea of the parallelization is to adapt the
sequential sampling algorithm in such a way that the original range {1, . . . , N} is split
into the subranges Ni for each processor i. This can be done by using dlogP e levels of
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recursion. Each processor then follows a single recursive call – the one which contains its
local subrange.

Once each processor is left with its local subrange it can use any of the sequential sam-
pling algorithms (e.g. D or H) to compute its local sample. However, there are some issues
that we have to be aware of. The first issue is that in order to get consistent results we have
to ensure that the hypergeometric random deviates generated by processors that follow the
same path in the recursion tree are the same. Additionally, random deviates generated in
two different subtrees have to be independent of each other. One way to achieve this would
be using true randomness, e.g. by using a hardware random number generator [38]. The
problem with this approach is that it requires communication to distribute the according
random deviates to the processors. Since each recursion level would thus induce commu-
nication, this would limit the scalability of the parallel algorithm. Therefore, we make
use of pseudorandomness. The main benefit of using pseudorandomness is that it exhibits
statistical randomness while being much easier to produce than true randomness. For our
purpose, we use a (high quality) hash function h as source of pseudorandomness. We then
use the result of the hash function as a seed for generating hypergeometric random devi-
ates in each recursion level. In particular, we use h((j, k, t)) to generate the t-th random
deviates in the subproblem for processors {j, . . . , k}. This allows us to achieve the de-
sired effect without any communication. The pseudocode for Algorithm P is presented in
Algorithm 1.

For the local sampling procedure we are still able to use any ordinary generator of pseu-
dorandomness. This way, we might have a better trade-off between speed and quality than
with hashing. Nonetheless, we can seed this generator with h(i) on processor i in order to
break the symmetry between processors.

The second issue is that processors need to know the global sample numbers Nj to
generate the correct hypergeometric random deviates within their current subrange. In the
case of an evenly distributed sampling universe, i.e. each processor has an equally sized
subrange, this is easy. We simply compute Nj = jdn/P e for j < P and set Np = N .
These ranges still hold true, even if the number of processors P does not divide n, in which
case the last processor gets a smaller subrange.

Finally, we obtain the following running time for our parallel algorithm.

Lemma 4.2.1. If maxi(Ni − Ni−1) = O(N/P ) then Algorithm P runs in time O(n/P +
logP ) with high probability1.

Proof. If we only calculate with expectations, each processor generates at most dlogP e
hypergeometric random deviates and O(n/P ) samples. Since the random deviates can be
generated in expected constant time and the local sampling algorithms require expected
linear time, the time complexity of Algorithm P follows easily. Nonetheless, we have to
be careful to rule out rare cases that could lead to a slow down in computation, and thus
in a larger overall execution time. We consider three issues: deviations in the number of

1i.e. with probability at least 1− p−c for any constant c
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samples per processor, deviations in the time needed to generate hypergeometric random
deviates, and deviations in the running time of the local sampling algorithm. We now
briefly discuss each of these issues.

First, we show that the number of samples for each processor is O(n/P ) with high
probability. Since the number of samples per processor has a hypergeometric distribution,
which spreads the elements more evenly than a binomial distribution [63], we can simplify
the analysis. We do so by treating each sample j individually and assigning it to processor
i with probability pi,j = Ni − Ni−1 + 1 = O(1/P ). The total number of samples that
get assigned to processor i is then represented by a random variable Xi with mean µ =
O(n/P ). We can retrieve error bounds on the probability that we are close to µ by using
Chernoff bounds (Lemma 2.1.1). By choosing n = O(P logP ) and n = Ω(P logP ) these
bounds yield O(n/P ) samples per processor with high probability.

The second issue can be analyzed by looking at the structure of acceptance-rejection
methods. As mentioned in Section 3.1.2, they sample from an approximation distribution
and accept the result with a certain probability. The running time of these methods can thus
be bound by a constant times a geometrically distributed random variable. It is easy to see
that the sum of O(logP ) of these random variables is in O(logP ) with high probability.

The third issue depends on the local sampling algorithm that is used. For Algorithm D
and the sequential divide-and-conquer algorithm the running time distribution can be bound
using the same method as for the second issue. When using Algorithm H we have to make
sure that the hash table has a sufficient size in order to get short tails for its running time
distribution. This can be achieved by choosing a size of O(n/P + logP ).

4.3 Generalizations

We now discuss further generalizations for our sequential and distributed sampling rou-
tines. In particular, we are covering sorted sampling and load balancing for heterogeneous
hardware resources.

4.3.1 Sorted Sampling

The sequential sampling algorithm is able to easily generate a sorted sample given a base
case sampling routine that generates samples in sorted order. This is due to the recursion
tree being traversed in-order, i.e. the left subtree is recursively traversed before the right
subtree. This poses no problem if we decide to use Algorithm D as our base case sampling
routine.

Algorithm H can also be adapted to generate samples in sorted order. There are mainly
two different variants to establish sortedness. The first one is to ignore the keys order during
insertion and sort the hash table afterwards. This is done by first performing a condense
operation on the hash table to remove gaps between clusters of elements. The resulting
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condensed hash table of size n (the sample size) can then be sorted using a state-of-the-art
sorting algorithm, e.g.insertion sort.

The second variant is highly implementation specific and requires a hash function that
stores clusters of elements roughly in order. The main idea is to maintain the invariant
that the samples in the hash table are sorted. This can be done by inserting elements at
the correct positions within the clusters. We give a detailed explanation of this scheme in
Section 6.1

4.3.2 Load Balancing
We now consider an execution environment where processors are not equally fast, e.g. when
using heterogeneous hardware resources. Since the version of the sequential sampling al-
gorithm presented previously implicitly assumes equally fast processors, this can lead to
a slow-down in computation time. To solve this issue, we split our sampling population
{1, . . . , N} into P ′ � P jobs or subranges of roughly equal size. We can then assign these
jobs dynamically to the processors by using standard load balancing techniques.

One possibility is to use a centralized master processors that assigns jobs to processors
(workers). Once a processor has finished its jobs he sends a request for an additional job
to the master. This is continued until all jobs have been processed. The main downside of
this approach is the necessary communication between master and workers. The additional
communication effort leads to a running time ofO(n/P +P ) opposed toO(n/P + logP )
(Theorem 4.2.1). A more scalable approach that does not impede the original running time
uses work stealing [27, 17].
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5.1 Overview
In this section we present our novel distributed graph generators. All of these gener-
ators focus on communication-efficiency through redundant computations and pseudo-
randomization. Infact, they are all communication agnostic, i.e. they require no commu-
nication at all. We begin our discussion by presenting the generators for the different
Erdos-Renyi models. This includes directed and undirected versions of the G(n,m) and
G(n, p) models. We then continue with two random geometric models that make use of
Euclidean geometry (RGG) as well as hyperbolic geometry (RHG).

5.2 Erdős-Rényi Generator
We now discuss our generators for the two different Erdős-Rényi models, G(n,m) and
G(n, p), introduced in Section 2.2.1. We begin by presenting our distributed generators
for the directed and undirected G(n,m) model. Afterwards, we discuss how to adapt the
resulting algorithms for the G(n, p) model. All of these algorithms are communication
agnostic, i.e. they do not require any communication between individual processors (PEs).
We also provide theoretical bounds for their running time and scalability.

5.2.1 Directed G(n,m) Generator
Generating a directed graph in the G(n,m) model can be reduced to sampling a graph
from the set of all possible graphs with n vertices and m vertices. One way of doing so is
to sample m edges uniformly at random from all possible M = 2 ·

(
n
2

)
= n(n− 1) directed

edges {1, . . . ,M}. Since we are not interested in graphs with multi-edges, the sampling
has to be performed without replacement. Therefore, our problem reduces to the efficient
sampling of m elements from a population {1, . . . ,M} without replacement. We already
discussed different algorithms that are able to solve this problem in linear time O(m). For
our generator, we use an adaptation of the distributed sampling algorithm presented in the
previous section. For the rest of this section we assume we are given a set of P processors.
In addition to P , each processor also knows its id 0 ≤ i < P . We also assume n is a
multiple of P without loss of generality.

Our algorithm starts by dividing the set of possible edges into P chunks. Each chunk
represents a set of rows of the adjacency matrix of our graph, which we call its range.
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l = dj+k
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Figure 5.1: Recursion for the directed G(n,m) generator for a set of processors {j, . . . , k}. The
chunk for processor i is highlighted. Since the chunk is in the upper half of the adja-
cency matrix, recursion only follow the upper subtree.

We then assign each chunk to its corresponding processor using its id i. Processor i then is
responsible for generating the sample (set of edges) for its chunk. Note, that the distribution
of vertices and edges to each processor is predetermined. Therefore, we let Ni (Mi) denote
the last vertex (edge) in the range of chunk i.

In order to compute the correct sample size for each chunk, we use the same divide-
and-conquer technique as with the distributed sampling algorithm. In each recursion step
of this algorithm, we divide the set of chunks into two equal sized subsets {1, . . . , l} and
{l + 1, . . . , P}. We choose l = bP/2c on each level to ensure evenly divided ranges for
each subtree. Each processor then continues the recursion, following its local chunk based
on its id as seen in Figure 5.1. The recursion is stopped once we are left with a single chunk,
which is then sampled locally using one of the algorithms discussed in Section 3.1.1. Note
that the resulting recursion tree has at most dlogP e levels and size O(P ).

The base case of the recursion consists of sampling m′ elements (edges) from a pop-
ulation of MP = n(n−1)

P
(edges per processor) possible edges without replacement. To

create an edge from a sampled element s ∈ {1, . . . ,MP} we set the source vertex to
vs = b s−1

n−1c. Analogously, we set the target vertex to vt = (s − 1) mod (n − 1). We
additionally increase the target id by one if it is larger or equal to the source id to avoid
self-loops. To be more specific, if we compute the target id as described above, it holds that
vt ∈ {0, . . . , vs, . . . , n− 2}. By increasing its value by one iff vt ≥ vs, we shift its range to
{0, . . . , vs− 1, vs + 1, . . . , n− 1}, which results in the desired edge distribution. Note, that
the resulting edges have ids that are local to a certain processor. In order to get the correct
global vertex ids, we add the offset Ni−1 to both source and target. Thus, we finally insert
the directed edge (vs +Ni−1, vt +Ni−1).

Lemma 5.2.1. The directed G(n,m) generator runs in time O(m+n
P

+ logP ) with high
probability.

Proof. Our algorithm is an adaptation of the distributed sampling algorithm that evenly
divides the set of vertices, and therefore the set of potential edges, between P processors.
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Thus, the population per processor has size O(N/P ) and the running time directly follows
from Theorem 4.2.1.

5.2.2 Undirected G(n,m) Generator

We now discuss how to adapt the divide-and-conquer scheme for undirected G(n,m)
graphs. Again, we want to evenly divide the set of vertices, and their corresponding edges,
via chunks between the different processors. Additionally, we want each processor to gen-
erate all incident edges for its set of vertices. This is a common assumption for processing
massive graphs on distributed systems where graphs are partitioned between computation
nodes [14]. However, there is a major issue if we simply try to use the same approach we
do for the directed case. To be more specific, if there is an undirected edge {i, j}, we have
to make sure that both processors, the one that is assigned i and the one that is assigned
j, sample this edge. Because both processors are assigned different chunks, they follow
different paths in the recursion tree. Since the random variables generated in each subtree
are independent of each other, it is highly unlikely that they both sample the edge {i, j}.
To solve this issue, we only distribute the edges of the lower triangular adjacency matrix
between the processors. However, we still want a processor to sample all the incident edges
for its corresponding set of vertices. We now discuss how to distribute the chunks while
maintaining this invariant. To this end, we introduce a different type of chunks.

We begin by dividing each dimension of the adjacency matrix into P sections of size
n/P . A chunk is then defined as a set of edges that correspond to a n/P × n/P submatrix
of the lower triangular adjacency matrix. Thus, we have a total of P (P+1)

2
chunks that can

be arranged into a triangular P × P matrix as seen in Figure 5.2.

0

P − 1
0 P − 1

Figure 5.2: Example of an adjacency matrix subdivided into a P × P chunk matrix.

To evenly distribute the chunks, processor i < P is assigned the (i+1)th row and column
of this matrix. It therefore is responsible for generating the P chunks {(i, 0), . . . , (i, i)} and
{(i, i), . . . , (P, i)}. This corresponds to the set of vertices {(i− 1) · n/P + 1, . . . , i · n/P}
and all their incident edges. Again, we use Ni to identify the last vertex in the (i + 1)th

27



5 Graph Generators

row (or column) of chunks. By generating rectangular chunks instead of whole rows or
columns, we can make sure that both processor i and processor j ≤ i redundantly generate
chunk (i, j) using the same set of random values. Thus, they both sample the same set of
edges independently from each other.

To generate our new chunks, we again use a divide-and-conquer approach. Our al-
gorithm starts by dividing the P × P chunk matrix into equal sized quadrants, as seen
in Figure 5.3. To do so, we split the rows (and columns) into two equal sized sections
{1, . . . , l} and {l + 1, . . . , P}. We choose l = dP/2e as our splitting value. The quad-
rants are numbered from one to four in counter-clockwise order starting at the upper right
quadrant.

j

k

r = dj+k
2 e

c = dj′+k′

2 e

j′ k′

2 1

3 4

Figure 5.3: Splitting process for the undirected G(n,m) generator for a set of chunk rows
{j, . . . , k} and columns {j′, . . . , k′}. Quadrants are colored individually and are enu-
merated from top right in counter-clockwise order.

We then compute the number of elements of the adjacency matrix within each of the
quadrants. Since we are only concerned with the lower triangular adjacency matrix, there
are two different types of quadrants: triangular and rectangular. The second and fourth
quadrant are triangular matrices with l and P − l rows (and columns) respectively. The
number of edges (without self-loops) in a n′ × n′ triangular submatrix of chunks can be
computed by using the triangular number n′(n′−1)

2
[29]. In contrast, the third quadrant is a

rectangular l × (P − l) matrix. The first quadrant is also a rectangular matrix but never
contains any edges so it can be omitted from further analysis. The number of edges in
n′ ×m′ rectangular submatrix of chunks is given by n′ ·m′.

We then generate a set of three hypergeometric random deviates to determine the number
of samples (edges) in each quadrant. The first of these deviates is used to determine the
number of samples in the upper half of the adjacency matrix. We then use this first deviate
to compute the number of samples in the second and third quadrant. The fourth quadrant
can be handled by subtracting the random deviate for the third quadrant from the number
of samples in the lower half of the adjacency matrix.
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Figure 5.4: Recursion for the undirected G(n,m) for a set of chunk rows {j, . . . , k} and columns
{j′, . . . , k′}. The chunk row and column for processor i are highlighted. Since the
chunk row is in the upper half of the triangular adjacency matrix, recursion only fol-
lows the second and third quadrant.

To decide which quadrants to handle recursively, each processor then checks if its as-
signed row of chunks is in the upper or lower half of the adjacency matrix. If it is in
the upper half, we can be certain that its column of chunks will be in the left half of the
adjacency matrix. It therefore only has to perform recursion on the second and third quad-
rants as illustrated in Figure 5.4. Additionally, we can be sure that the third quadrant only
contains a column of chunks. Otherwise we follow the subtrees for the third and fourth
quadrant. This time the third quadrant only contains a row of chunks. Again, we stop the
recursion if only a single chunk is remaining. The resulting recursion trees has at most
dlogP e levels and size 4P 2−1

3
.

Depending on the type of chunk we then determine the resulting edges using a local
sampling algorithm. The pseudocode for the undirected G(n,m) generator is provided in
Algorithm 3 and Algorithm 4.

Triangular submatrix. To generate edges for a n′ × n′ triangular submatrix, we first
compute the total number of edges M using its triangular number. To determine the source
vertex of a sampled element s ∈ {1, . . . ,M} we first need to compute the corresponding
row in the adjacency matrix. This can be done by finding the largest number x whose
triangular number x(x+1)

2
is smaller than or equal to s − 1. We can find this number by

computing and rounding the triangular root of s−1, which is defined as
√

8(s−1)+1−1
2

. Thus,

the source vertex of our edge is vs = b
√

8(s−1)+1−1
2

c. Afterwards, we add Ni−1 as an offset
to get the correct global vertex id. The target vertex can then be computed by subtracting
the triangular number of the source vertex from the sample, i.e. vt = (s − 1) − vs(vs+1)

2
.

Again, we add the offset Ni−1.
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Rectangular submatrix. Generating edges in a n′ ×m′ rectangular submatrix is very
similar to sampling edges in the directed case. The source vertex of a sampled element
s ∈ {1, . . . , N} (N = n′ ·m′) is vs = b s−1

n′
c+Ni−1. Analogously, the target vertex can be

computed using vt = (s− 1) mod m′ +Ni−1

Lemma 5.2.2. The undirected G(n,m) generator runs in time O(m+n
P

+ P ) with high
probability1.

Proof. Each processor P has to generate a total of P chunks consisting of a single triangu-
lar submatrix and P − 1 rectangular submatrices. Additionally, each edge {i, j} has to be
generated twice (except when P equals one), once by the processor that is assigned vertex
i, and once by the processor that is assigned vertex j. Thus, we have to sample a total of
2m edges. We first show that the time spent for recursion is linear in P . We then follow
the arguments presented in the proof of Theorem 4.2.1 and show that the time complexity
for sampling the 2m edges is O(m/P ) with high probability.

At every level during the recursion we have to follow the subtrees for two of the four
quadrants. This means that we have to process 2l quadrants at level l. At every level
we only need to split the quadrants and therefore compute three hypergeometric random
deviates. Thus, the time spent at every level only takes expected linear time as shown in
Theorem 4.2.1. Since there are at most dlogP e levels until each processor reaches its P
chunks, the total time spent on recursion is

∑logP
i=0 2i = 2(P − 1) = O(P ) with high

probability.
Following the proof of Theorem 4.2.1, we can use Chernoff bounds (Lemma 2.1.1) to

show that the total number of samples (edges) that is assigned to any processor will be
in O(m/P ) with high probability. In turn, sampling these elements can be performed in
expected linear time with high probability. Thus, the directed G(n,m) generator has a
running time of O(m/P + P ) with high probability.

5.2.3 Directed G(n, p) Generator

We now discuss how to adapt the directed G(n,m) generator for the G(n, p) model. The
main difference with the G(n,m) model is that we do not have to recursively compute
hypergeometric random deviates in order to derive the correct number of edges for each
chunk. Since the distribution of vertices for each individual chunk is predetermined, we
can instead generate a binomial random deviate m′ (e.g. m′ ∼ B(m = n(n− 1), m

P
· p)) to

get the correct sample size. For this purpose, we let Mi denote the last edge in the range of
the ith chunk. Afterwards, we continue to perform the sampling and generation of edges
as seen in the G(n,m) generator.

To seed the binomial random generator we can compute a hash value based on the num-
ber of the given chunk. Since we can omit the recursion and a binomial random deviate
can be generated in expected constant time, the resulting algorithm runs in time O(m/P )

1i.e. with probability at least 1− p−c for any constant c
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with high probability. The pseudocode for the directed G(n, p) generator is presented in
Algorithm 5.

5.2.4 Undirected G(n, p) Generator
As for the directed case, the difference when using the undirected G(n, p) generator lies in
the fact that we do not have to compute hypergeometric random deviates. Instead, we can
skip recursion and directly compute the number of edges to sample by generating binomial
random deviates. Since the distribution of chunks to processors is again predetermined,
we can compute the number of vertices and therefore potential edges within each chunk.
To be more specific, we can compute the position of each chunk within the P × P chunk
matrix, and thus the number of potential edges, by using its triangular root. We then seed
a binomial random generator with the chunk row i and column j to generate the number
of edges m′ (e.g. m′ ∼ B(m, n(n−1)

2P
· p)) and sample edges locally. However, because we

still have to iterate over P chunks for ever processor, the running time of this algorithm is
O(m/P +P ) with high probability as with the G(n,m) generator. The pseudocode for the
undirected G(n, p) generator is presented in Algorithm 6.
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5.3 Random Geometric Generator
We now discuss the generators for the random geometric model (RGG) introduced in Sec-
tion 2.2.2. To be more specific, we provide generators for the two- and three-dimensional
unit square model. We begin by discussing our two dimensional generator as well as its
parallelization. We then adapt the resulting algorithm for the three dimensional case. Ad-
ditionally, we provide proofs on the time complexity and scalability of both generators.

5.3.1 2D Generator
Generating a two dimensional random geometric graph can be done naively in Θ(n2) time.
To do so, we first distribute the set of n vertices uniformly at random in the two dimen-
sional unit square [0, 1)2. The position (x, y) of each vertex is determined by computing
two uniform random variables from the unit interval [0, 1). This can be done using a pseu-
dorandom number generator, e.g. a Mersenne Twister [48]. Afterwards, we compare all
pairs of vertices and check if their distance is smaller than or equal to a given radius r > 0.

We now discuss several improvements to reduce the running time of the naive algorithm.
To reduce the number of comparisons that need to be performed between vertices, we
introduce a two dimensional grid data structure similar to the one used by Holtgrewe et
al. [35]. The grid data structure partitions the unit square into equal sized cells. The
partition is performed in such a way that each individual cell has a side length of at least r.
In particular, we have g = b1/rc grid cells in each row and column, as seen in Figure 5.5a.
Thus, the total number of cells is g2. Cells are numbered from 0 to g2 − 1 row-wise from
top-left to bottom-right. We then store each vertex in the corresponding grid cell, which
we can determine in constant time using simple arithmetic operations. Afterwards, we
compute a prefix sum over the number of vertices in each cell to retrieve the correct global
vertex ids. If we are not interested in consecutive global vertex ids, we can omit this step
and only determine the number of vertices for the local chunk.

Since the vertices are uniformly distributed within the unit square, we have a n balls into
g2 bins situation. The expected number of vertices in each cell therefore is O(nr2). By
using Chernoff bounds (Lemma 2.1.1), we can show that this happens with high probability.
Additionally, we are able to show that by using this grid data structure the number of vertex
comparisons that need to be performed is O(m) with high probability. Figure 5.5b shows
an example for a two dimensional RGG graph with 256 vertices and a radius of 0.1 using
our grid data structure.

Lemma 5.3.1. The number of vertex comparisons for generating a RGG graph using a two
dimensional grid data structure with side length r is O(m) with high probability.

Proof. To compute the edges of our graph, we start by iterating over the individual cells.
Since each cell has a side length of at least r, we only have to perform vertex compari-
son with the vertices stored in neighboring cells. In the two dimensional case, there are
at most eight neighbors (and the cell itself) that we have to consider. Since each cell
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r
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(a) (b)

Figure 5.5: (a) Partitioning of the unit plane into set of cells with radius r. (b) Example of a two
dimensional random geometric graph with 256 vertices and a radius of 0.1. The gray
lines represent our grid data structure.

contains O(nr2) vertices with high probability the number of comparison to perform be-
tween neighboring cells is O((nr2)2). As explained above, there are b1/rc2 cells in total.
We therefore get O( 1

r2
· (nr2)2) = O(n2r2)) vertex comparisons with high probability.

The expected average degree of a vertex outside the border in the RGG model is nπr2,
as presented in Section 2.2.2. Vertices on the border have fewer edges than the ones in
the center. Therefore, we can omit them from our analysis. We then have to generate
n · nπr2 = O(n2r2) = O(m) edges in total. Thus the total expected number of vertex
comparisons is O(m) with high probability.

Using this approach, each undirected edge {i, j} that runs between two different cells,
is generated twice. Thus, we are able to reduce the number of vertex comparisons by a
constant factor if we only compare a cell to cells that have a higher id.

We now discuss how to parallelize our grid approach in a communication agnostic way.
We therefore assume we are given a set of P = p2 processors. In addition to P , each
processor also knows its own id 0 ≤ i < P .

Our goal is to distribute the vertices between processors in such a way that the amount of
recomputations is minimized. To this end, we again use the notion of chunks. In the case
of the two dimensional RGG generator a chunk represents a rectangular section of the unit
square. We then partition the unit square into P disjoint chunks and assign one of them
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to each processor. To be more specific, processor i is assigned the chunk that spans the
rectangle [

(i mod p)/p, (i mod p)/p+
1

p

)
×
[
b i
p
c/p, b i

p
c/p+

1

p

)
.

Each processor is then responsible for generating the vertices in its chunk, as well as all
their incident edges. For this purpose, we again use a divide-and-conquer approach similar
to the undirected G(n,m) generator.

Recursion begins by splitting the chunks {j, . . . , k} and {j′, . . . , k′} in each dimension
into equally-sized subsets. The splitting values are l = b j+k

2
c and l′ = b j′+k′

2
c, respectively.

This results in a partitioning of the underlying space into quadrants. The possibility for each
vertex to be assigned to a individual quadrant is the ratio of the area of the quadrant to the
area of the complete rectangle. To this end, we generate three binomial random deviates
to compute the number of vertices within each of the quadrants. Since we have to assign
global vertex ids to each chunk, each processor then continues recursion for all subtrees.
We repeat this procedure until each processor is left with the complete set of chunks and
knows the correct number of vertices for each of them. Note that the resulting recursion
tree has at most dlogP e levels and size 4P−1

3
.

In the case of non-local chunks, we simply store the number of vertices to compute
a prefix sum for the global vertex ids. For the local chunk of a processor, we generate
the vertices and assigning them to correct grid cells. This can be done using the same
approach as with the sequential version of the algorithm. Additionally, since we want each
processor to generate all incident edges for its local vertices, we have to make sure that the
cells of neighboring chunks that are within the radius of local vertices are also generated.
Because each cell has a side length of at least r and each chunk contains roughly b 1

pr
c2

cells, there are at most 4 · b 1
pr
c + 4 of these cells. Due to the communication agnostic

design of our algorithm, the generation of these cells is done through recomputations. We
therefore repeat the vertex generation process for the eight neighboring chunks, as seen in
Figure 5.6a.

To reduce the memory overhead of our program, each processor only stores the vertices
of cells that are adjacent to its local chunk. The pseudocode for the two dimensional RGG
generator is presented in Algorithm 7. An example of the subgraph that a single processor
generates is given in Figure 5.6b

Lemma 5.3.2. The two dimensional RGG generator has a running time of O(m+n
P

+ P )
with high probability.

Proof. We first show that our divide-and-conquer algorithm assigns each processor n/P
vertices in timeO(P ) with high probability. As stated above, the recursion tree has at most
dlogP e levels and size O(P ). At each level of the recursion we generate three binomial
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Figure 5.6: (a) Unit square and the local chunk (blue) of a processor partitioned into cells including
neighboring cells (red) that are computed redundantly. Each chunk has size 1

p and each
cell has size r. (b) Section of a two dimensional random geometric graph with 256
vertices and a radius of 0.1 that is generated on a single processor. The section consists
of a single chunk and all its surrounding grid cells. Edges are only added if at least
one endpoint is a local vertex.

random deviates, which takes expected constant time. We then use the binomial random
deviates to assign each quadrant its corresponding number of vertices. Since the tree has a
size ofO(P ), we therefore have a running time ofO(P ) with high probability to determine
the number of vertices for each chunk. The result of this process is a uniform distribution
of vertices into chunks. As with the sequential algorithm, we therefore can simplify the
analysis on the number of vertices that is distributed to each chunk to a n balls into P bins
situation. Thus, we have an expected number ofO(n/P ) vertices per processors. Again, by
using Chernoff bounds (Lemma 2.1.1) we can show that this happens with high probability.
Generating these vertices and putting them into the correct grid cell can be done in linear
time in the number of points per chunk.

Generating the vertices for the neighbors of the local chunk can also be done inO(n/P )
time with high probability, since each chunk only has a constant number of neighbors.
Thus, generating and partitioning all vertices necessary for each individual processor has a
time complexity of O(n/P + P ) with high probability.

Following the proof of Lemma 5.3.1, we are able to show that the number of edges that
each processor has to generate is O(n/P · nπr2) with high probability. This is equal to
O(m/P ) edges per processor with high probability. The running time bound for the RGG
generator then follows by combining the time required to generate the vertices as well as
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edges. If we do not require consecutive vertex ids, the running time can be decreased to
O(m+n

P
+ logP ) with high probability.

For a sufficiently large number of vertices and a fixed expected number of edges, the ad-
ditional workload introduced through parallelization is negligible. To see this, we compare
the workload per processor in the sequential and parallel case. In the sequential case, we
only have a single chunk of n vertices. In the parallel case, each processor additionally
recomputes two rows and columns of cells, as well as four single cells, for its neighbors.
This adds up to an additional amount of 4 · nr

p
+4 ·nr2 vertices with high probability. Since

the number of comparisons for each vertex remains the same in both cases, we can use the
amount of additional vertices as a measurement for the additional workload. Therefore,
we divide the number of vertices generated in the parallel case by the number of vertices
generated in the sequential case. This results in a factor of 1 + 4rp+ 4r2p2.

Since we keep the expected number of edges fixed, the radius for an increasing amount
of vertices decreases. To be more specific, the average degree of a vertex outside the border
is nπr2. Thus, the expected number of edges can be bound by m = n2πr2. If we then keep
m fixed, we get limn→∞ r = limn→∞

√
mπ
n

= 0. In turn, limn→∞ 1+4rp+4r2p2 = 1. This
shows that the efficiency of our generator increases depending on the sparsity of the graph.

5.3.2 3D Generator
We now discuss how to generalize our RGG generator from two to three dimensions.
Again, generating a three dimensional random geometric graph can be done naively in
Θ(n2) time by comparing all pairs of vertices. Vertices are connected if their distance is
less or equal to r > 0.

To improve this bound we build a three dimensional grid data structure to partition the
unit cube [0, 1)3. Each dimension of this grid spans g = b1/rc cells, resulting in g3 cells
in total. We assign each cell a triple (x, y, z) representing its grid-coordinate in each di-
mension. We then number the triples from 0 to g3 − 1 by their lexicographic ordering, as
seen in Figure 5.7. Similar to the two dimensional case, we can use a balls into bins argu-
ment to show that the number of vertices in each grid cell is O(nr3) with high probability.
Figure 5.8 shows an example for a three dimensional RGG graph with 256 vertices and a
radius of 0.15 using our grid data structure.

Lemma 5.3.3. The number of vertex comparisons for generating a RGG graph using a
three dimensional grid data structure with side length r is O(m) with high probability.

Proof. By having cells with a side length of r, we can limit the vertex comparison to the
26 neighbors of each cell. Following the balls into bins argument, the expected number
of vertices in each cell is O(nr3) with high probability. Therefore, computing the edges
between a pair of cells takes expected timeO((nr3)2). As there are b1/rc3 cells in total, we
need to perform O(n2r3) vertex comparisons with high probability to compute the edges
between all eligible pairs of cells.
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1

r

x

y

z

(2, 1, 0)(1, 1, 0)

(1, 0, 0)

(0, 1, 0)

(1, 2, 0)

Figure 5.7: Unit cube and the resulting grid data structure with cell size r.

Figure 5.8: Three dimensional random geometric graph with 256 vertices and a radius of 0.15.
The grid data structure is omitted for visual clarity.

By an extension of the two dimensional case, the expected average degree of a vertex
outside the border in the unit cube is 4

3
nπr3. Vertices that lie on the border can be omitted

from the analysis, as they have fewer edges than the ones in the center. This results in an
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expected number of edges of n · 4
3
nπr3 = O(n2r3) = O(m). Therefore, the expected

number of vertex comparisons is linear in m with high probability.

To parallelize this algorithm we extend our divide-and-conquer approach to three di-
mensions. We therefore assume we are given a set of P = p3 processors. Each processor
is assigned an equal sized chunk that spans a cuboid. To be more specific, processor i is
assigned the cuboid that spans

[
(i mod p)/p, (i mod p)/p+

1

p

)
×
[⌊ i
p

⌋
/p,
⌊ i
p

⌋
/p+

1

p

)
×
[⌊ i
p2

⌋
/p,
⌊ i
p2

⌋
/p+

1

p

)
.

Recursion now includes three sets of chunks that equally partition the current cuboid
into octants. The possibility for a vertex to be assigned a individual octant is the ratio of
the area of the octant to the area of the remaining cuboid. We then determine the number
of vertices in each octant, by generating seven binomial random deviates: one for the x-
dimension, two for the y-dimension and four for the z-dimension. By comparing its id i
with the splitting values of the partitioning, each processor then follows the subtree for one
octant. The resulting recursion tree has at most dlogP e levels and size 8P−1

7
.

The base case consists of sampling the vertices using three uniform random deviates
for each vertex. Assigning them to the correct grid cell can be done in constant time
using simple arithmetic. Additionally, we have to redundantly compute the vertices for all
neighboring cells using our divide-and-conquer approach. There are at most 6 · b 1

pr
c2 +12 ·

b 1
pr
c+ 8 of these cells.

Lemma 5.3.4. The three dimensional RGG generator has a running time of O(m+n
P

+ P )
with high probability.

Proof. We can use the same arguments as in the proof of the two dimensional RGG gen-
erator, to show that each processor is assigned O(n/P ) vertices in time O(P ) with high
probability. In turn, we can generate these vertices and assign them to the corresponding
grid cells in time O(n/P ). Thus, the total time spent on generating the local chunk is
O(n/P + P ) with high probability.

Since each chunk only has a constant number of neighbors, the same bound applies
for recomputing the neighboring cells using the divide-and-conquer algorithm. The time
needed for generating the local edges stays the same as for the sequential case. Thus, the
three dimensional RGG generator runs in timeO(m+n

P
+P ) with high probability. If we do

not require consecutive vertex ids, the running time can be decreased to O(m+n
P

+ logP )
with high probability.
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Again, as we increase the number of vertices to a sufficiently large value and keep the
expected number of edges fixed, the additional workload introduced by the parallelization
is negligible. In the sequential case, we only have a single chunk consisting of n vertices.
In the parallel case, each processor additionally recomputes six sides, twelve rows and
columns, as wells as eight single cells, for its neighbors. Therefore, 6 · nr

p2
+12 · nr2

p
+8 ·nr3

additional vertices have to be generated with high probability. Thus, the quotient of the
parallel workload and the sequential workload is 1 + 8 · r3p3 + 12 · r2p2 + 6 · rp. As with
the two dimensional case, we can see that this quotient approaches one if limn→∞ r = 0.
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5.4 Random Hyperbolic Generator

We now present our generator for the random hyperbolic model discussed in Section 2.2.3.
Our generator is designed for the two dimensional native representation. Thus, each vertex
is modeled as a point (φ, r) in polar coordinates on a disk of radius R. We only consider
the deterministic model where vertices are connected iff their hyperbolic distance is less
or equal to the target radius R. We describe two different versions of our algorithm, one
that requires communication and one that is fully communication agnostic. In addition, we
provide proofs for the time complexity of the generators in both the sequential and parallel
case.

5.4.1 Sequential Generator

Our generator assumes we are given the number of vertices n, their average degree k̄, as
well as a power-law exponent γ. We then use γ to compute the growth parameter α = γ−1

2
.

To compute the target radiusR, we use the approximation presented by von Looz et al. [73].
Afterwards, we can naively create a random hyperbolic graph in Θ(n2) by comparing all
pairs of vertices, checking if their distance is less than the target radiusR, and adding edges
accordingly. As with the RGG generator, we can improve this bounded by introducing a
partitioning of the hyperbolic plane [20, 73, 74].

Grid Data Structure. We begin by dividing the hyperbolic plane into b αR
ln(2)
c concentric

annuli, similar to the approach of von Looz et al. [74]. Since R is proportional to ln(n) this
results in O(ln(n)) annuli [44]. We number the annuli from 0 to b αR

ln(2)
c − 1 in increasing

order starting from the innermost annulus. Each annulus is defined by two radii ri and
ri+1, with r0 = 0 and rmax = R. The annulus then contains the area of the hyperbolic plane
between these two radii, i.e. a vertex (φ, r) is contained within annulus i iff ri ≤ r < ri+1.
Therefore, the set of annuli fully partitions the hyperbolic plane. The radial boundaries for
the annuli are chosen in such a way that they are equidistant, e.g. annulus i is assigned the
radii ri = i · b ln(2)

α
c and ri+1 = (i+ 1) · b ln(2)

α
c.

To determine the number of vertices in each annulus, we compute a multinomial random
deviate with b αR

ln(2)
c outcomes. To compute a multinomial random deviate for k outcomes,

we can compute k − 1 dependent binomial random deviates. As for the other generators,
we use pseudorandomization based on a hash functions to seed the multinomial random
generator. The probability that an individual vertex is assigned to annulus i is given by

pi =

∫ ri+1

ri

f(r)dr =
cosh(α · ri+1)− cosh(α · ri)

cosh(R)− 1
. (5.4.1)

As discussed in Section 2.2.3, f(r) is the probability density function for the radial coordi-
nate of a vertex. By computing the integral of f(r) over the interval [ri, ri+1], we thus get
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(a) (b)

Figure 5.9: Partitioning of the hyperbolic plane into set of equidistant annuli (a) as well as cells (b).
The number of vertices is n = 512 with an average degree of k̄ = 4 and a power-law
exponent of γ = 2.6. The expected number of vertices per cell for (b) is set to 24.

the probability that a vertex is assigned to annulus i. Because the vertices are distributed
multinomially, the expected value for the number of vertices in annulus i is n · pi.

To actually compute the vertices within an annulus i, we need to generate two uniform
random variates for each vertex (φv, rv). This is done using a Mersenne Twister (e.g. [48])
that is initialized with the hash value of the annulus id. We use the first variate to draw φv
uniformly at random from the interval [0, 2π). The second variate is used to draw rv with
probability density f(r) from the interval [ri, ri+1]. Figure 5.9a shows an example of the
resulting partitioning and vertex distribution.

We then continue to further partition each annulus into a set of angular cells. Each
cell within an annulus occupies an equal portion of the hyperbolic plane and is defined by
two angular boundaries φj and φj+1 with φ0 = 0 and φmax = 2π. The number of cells
is chosen in such a way that each cell contains an expected constant number of vertices
k with high probability. Thus, we let number of cells in annulus i be d i·pi

k
e. In turn,

φj = j · 2π/d i·pi
k
e. Cells are numbered from 0 to d i·pi

k
e − 1 by increasing order of their

smaller angular boundary. During the computation of the vertices within an annulus, we
then assign each vertex v to its respective grid cell j =

⌊
φv/d i·pik e

⌋
. Figure 5.9b shows

the resulting partitioning of vertices in the hyperbolic plane into cells and annuli. In order
to ensure we have the correct vertex ids when processing cells of our grid data structure,
we make use of two prefix sums. One prefix sum is computed over the number of vertices
within each annulus, and a second one is computed over the vertices in each cell. Thus, we
are able to assign a set of global vertex ids to each cell.
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Edge Generation. We now describe how we use our partitioning to efficiently reduce
the number of vertex comparisons. For this purpose, we begin by iterating over the annuli
in increasing order, starting from the innermost annulus. Within each annulus, we further
iterate over the cells by increasing angular coordinate. We then perform a search query for
each vertex in the corresponding cell to gather its incident edges.

The query begins by determining how far the angular coordinate of a potential neighbor
u = (φu, ru) is allowed to deviate from the angular coordinate of our query vertex v =
(φv, ru). If we assume that u lies in annulus i with radial boundaries ri and ri+1, we can
use the distance inequality

cosh(R) ≥ cosh(rv) cosh(ri)− sinh(rv) sinh(ri) cos(|φu − φv|)⇔ (5.4.2)

|φu − φv| ≤ cos−1
(cosh(rv) cosh(ri)− cosh(R)

sinh(rv) sinh(ri)

)
(5.4.3)

to determine this deviation. We then gather the set of cells that lie within the resulting
boundary coordinates. To do so, we start from the cell that intersects the angular coordinate
of our query vertex and then continue in both angular directions until we find a cell that lies
outside the boundary. For each cell that we encounter, we iterate over the corresponding
vertices and perform distance comparisons with our query vertex. Respectively, we add an
edge between v and u iff distH(v, u) ≤ R. We then continue this process with the next
annulus, until all annuli have been processed.

Note that we only have to perform queries in one radial direction to gather all edges,
since edges can be found from both direction. Therefore, we only consider annuli that have
an equal or larger radial boundary than our starting annulus.

To avoid duplicate edges within an annulus, we skip cells in the same annulus that have
a higher id than the current one. Additionally, if two vertices are within the same cell, we
only add an edge if the angular coordinate of the first vertex is smaller than that of the
second vertex. If they have the same angular coordinate, we only add an edge if the radial
coordinate of the first vertex is smaller than that of the second vertex. The pseudocode for
the sequential RHG generator is given in Algorithm 8.

Lemma 5.4.1. The expected time complexity of the sequential RHG generator for n vertices
with an average degree of k̄ and a power-law exponent γ > 2 is O(n+m).

Proof. We begin by giving a bound on the number of vertex comparisons that we have to
perform. For each vertex we have to perform a single query outwards through all annuli
with a larger radius. Within each annulus we step through the set of cells that lie within
the target radius of our query vertex. We now show that the time required for each query
vertex with radius r is linear in the average degree

k̄(r) = n
( 2

π
ξe−ζr/2 − (

2

π
− 1)e−αr

)
for a vertex with radius r and ξ = (α/ζ)/(α/ζ − 1/2)) [44]. Note that we can assume
that ζ = 1 while retaining all degrees of freedom [74]. Additionally, since we assume that
γ > 2 and therefore α > 1/2, the average degree is equal to k̄(r) = n · 2

π
· ξ · e−r/2 [44].
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We first compute the expected number of vertices in annulus i, i.e. the number of vertices
with a radius ri ≤ r < ri+1. Note that the total number of annuli is αR

ln(2)
and annulus i

is bounded by the radius ri = i · ln(2)
α

. The probability that a vertex v has radius rv ≤ r

is given by f(r) = α sinh(αr)
cosh(αR)−1 ≈ αeα(r−R) [44]. We then get the probability of a vertex

being assigned to annulus i by

∫ ri+1

ri

f(r)dr ≈
∫ ri+1

ri

αeα(r−R)dr =
eαri+1 − eαri

eαR
.

Therefore, the expected number of vertices in annulus i is ni = n · eαri+1−eαri
eαR

. In particular,
the number of vertices in the innermost annulus is n0 = n

eαR
. If we now compute the ratio

of the expected number of vertices in annulus i + 1 and annulus i, we get a growth factor
for the number of vertices in each annulus:

ni+1

ni
=

eαri+2 − eαri+1

eαri+1 − eαri
ri=i· ln(2)α=

eαri+2 − eαri+1

eαri+1 − eαri

=
e(i+1) ln(2)

ei ln(2)

= 2.

As a result, the expected number of vertices in annulus i can be written as ni = n0 · 2i.

Next, we bound the number of vertices that we have to examine during a query for a
vertex with radius r. As mentioned previously, we compute two boundary angles for each
annulus i to determine the set of cells that we have to look at. We do so by using the distance
inequality (5.4.2). For large r, ri, and R we can approximate the difference between the
angles of our vertex and annulus with 2e(R−ri−r)/2 [44]. In order to compute the number
of points that we examine for each annulus, we then multiply this approximation by two
(one boundary for each direction) and divide it by 2π. This gives us the probability that a
point in annulus i is within our query. We then multiply it by the expected number of points
ni = n0 · 2i in annulus i. In turn, this gives us the expected number of points that we have
to examine in annulus i. The additional number of points that we have to check due to our
grid data structure is constant, since each cell only contains a constant number of points.
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To determine the total number of points that we process for a vertex with radius r, we
then sum up the expected number of points over all annuli.

αR
ln(2)∑
i=0

n0 · 2i ·
2(2e(R−r−ri)/2)

2π
= n0 ·

2

π
·
αR
ln(2)∑
i=0

2i · e(R−r−ri)/2

= n0 ·
2

π
· 1

21/(2α) − 2
· e−r/2 · (21/(2α)eR/2 − 2eαR)

= n · 2

π
· 1

21/(2α) − 2
· e−r/2−αR · (21/(2α)eR/2 − 2eαR)

= n · 2

π
· 1

21/(2α) − 2
· (21/(2α)e−r/2−αR+R/2 − 2e−r/2)

Since we assume that γ > 2 and therefore α > 1/2 this equation can be approximated
by

αR
ln(2)∑
i=0

n0 · 2i ·
2(2e(R−r−ri)/2)

2π
≈ n · 2

π
· 2

2− 21/(2α)
· e−r/2.

Therefore, the number of vertices that we examine for each query only differs by a constant
factor from the average degree k̄(r) = n · 2

π
· ξ · e−r/2 presented by Krioukov et al. [44]. In

turn, the total amount of vertex comparisons that we perform over all vertices is in O(m).
Next, we show that the expected time needed to step through the set of annuli for all

vertices is bounded by O(n). For each vertex in annulus i that we process, we perform
an outward search and therefore step through the remaining αR

ln(2)
− i annuli ( αR

ln(2)
total

annuli). Thus, the number of annuli that we have to process for all vertices in annulus i
is n0 · 2i · ( αR

ln(2)
− i). We can then bound the total number of annuli that we process by a

summation over all annuli.

αR
ln(2)∑
i=0

n0 · 2i · (
αR

ln(2)
− i) = n0 ·

( αR
ln(2)∑
i=0

2i · αR
ln(2)

−
αR
ln(2)∑
i=0

2i · i
)

= n0 ·
(αR(2eαR − 1)

ln(2)
− (eαR(

2αR

ln(2)
− 2) + 2)

)
= n0 ·

(
2eαR − αR

ln(2)
− 2
)

= 2n− 2n

eαR
− αnR

ln(2)eαR
= O(n)

The last equation holds true since R is proportional to lnn.
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5.4.2 Parallel Generator

To parallelize the sequential approach, we begin by evenly subdividing the hyperbolic plane
into P angular intervals. Processor 0 ≤ i < P is then assigned the angular interval [i ·
2π
P
, (i + 1) · 2π

P
). For this purpose, we introduce an additional subdivision step to our grid

data structure. We now discuss how each processor generates this new grid data structure.
As with the sequential approach, each processor starts be computing the number of ver-

tices in each annulus using a multinomial random variate. We then use a recursive algo-
rithm to subdivide each annulus into P chunks that represent the angular intervals for the
corresponding processors. At each level of the recursion, we maintain the set of remaining
chunks {j, . . . , k}, as well as the number of vertices n′. Recursion begins by splitting the
chunks {j, . . . , k} into equally-sized subsets {j, . . . , l} and {l + 1, . . . , k}. We choose a
splitting value of l = b j+k

2
c. The two resulting sets then correspond to the angular intervals

[j · 2π
P
, l · 2π

P
) and [(l + 1) · 2π

P
, k · 2π

P
).

To determine the number of vertices within each set of chunks, we generate a binomial
random deviate (e.g.x ∼ B(n′, l−j

k−j )). Each processor then continues recursion for both
subtrees until we are left with a single chunk. At this point, each processor is able to
generate the vertices within its own local chunk as with the sequential approach. This
includes generating a set of cells depending on the expected number of vertices within
its current chunk and annulus. For the remaining non-local chunks we only store their
respective number of vertices. We do so, because the vertices within these chunks are only
generated on demand during the edge generation process. Figure 5.10 shows an example
of the resulting partitioning of the hyperbolic plane into annuli, chunks and cells.

Note that the resulting recursion tree within a single annulus has a size of at most 2P −1
and a height of dlogP e. As with the sequential algorithm, we use a prefix sum over the
number of vertices in each chunk to determine global vertex ids.

Lemma 5.4.2. Generating the grid data structure for a set of P processors takes time
O(P log n+ n

P
) and assigns each processor O( n

P
) vertices with high probability.

Proof. Chunks are chosen in such a way that they assign each processor i an equal angular
interval of the hyperbolic plane [i · 2π

P
, (i + 1) · 2π

P
). The number of vertices per chunk in

an annulus is generated through a set of binomial random variates. This result in a uniform
distribution of the vertices in the interval [0, 2π] with respect to their angular coordinate.
Thus, each processor is assigned O( n

P
) vertices with high probability (Lemma 2.1.1).

The time spent during the chunk creation per annulus is O(P ) with high probability,
since the size of the recursion tree is at most 2P − 1 and we only spent expected constant
time per level for generating the binomial random deviate. We have to repeat this recursion
for each of the O(lnn) annuli. Thus, the total time spent for the recursion over all annuli
is O(P lnn) = O(P log n).

As stated above, the chunk for each processor contains O( n
P

) vertices with high proba-
bility. We can generate these vertices and distribute them to their respective grid cells in
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Figure 5.10: Partitioning of the hyperbolic plane into set of equidistant annuli and chunks. Each
chunk is distributed to one processor and further subdivided into cells. The number
of vertices is n = 512 with an average degree of k̄ = 4 and a power-law exponent of
γ = 2.6. The expected number of vertices per cell for is set to 24. The local vertices
for each processor are highlighted in different colors.

linear time. The running time bound then follows by combining the time spent on vertex
creation as well as recursion.

After generating the grid data structure, each processor is responsible for gathering all
incident edges for its local set of vertices. We now present two different approaches for
adapting the search queries used in the sequential algorithm for parallelization.

Communication Agnostic Approach. Our first approach generates all incident edges
of a vertex without the need of communication. To do so, we need to recompute all non-
local vertices that lie within the hyperbolic circle (of radius R) of any of our local vertices.
To find these vertices, we perform two searches for each vertex, one outwards (as with the
sequential algorithm) and one inwards.

Each of the searches behaves similarly to the sequential search, with the addition that
any non-local chunks that we step through during the search are recomputed. To be more
specific, if we examine a non-local cell during any of the angular searches that we perform
within in an annulus, we redundantly generate the vertices for its whole chunk. These
vertices are then assigned their respective cells and stored for future searches. An example
of this process is presented in Figure 5.11a.

One issue with this approach is that the innermost annuli, which contain only a small
number of vertices with high probability, are divided into P chunks. Since the innermost
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(a) (b)

Figure 5.11: Example of search queries for the parallel RHG generator. The query vertex and its
hyperbolic circle is highlighted in green. (a) The communication agnostic approach
performs queries in both directions, inward and outward. (b) The communication ef-
ficient variant only performs a outward search. In this case, the highlighted edge has
to be received from a different processor during the all-to-all step. In both variants,
the detected cells are highlighted in blue.

annuli are almost always contained within the search radius for any given vertex, we have
to iterate over P chunks for each of these levels. This severely impacts the running time for
each individual search for a large number of processors. To alleviate this, we use a threshold
on the number of annuli that are computed sequentially. In particular, if the number of cells
in an annuli is below a given threshold, we store the whole set of vertices for this annuli
within each individual chunk. Therefore, when performing an inward search, we only have
to process one chunk instead of P , and perform comparisons with all its vertices. The
pseudocode for the communication agnostic RHG generator is given in Algorithm 9.

Although we provide no proof for the running time of our parallel generator, our experi-
mental analysis in Section 6.4.4 suggest an expected running time of O(n+m

P
+ P log n).

Communication Based Approach. Our second approach only performs the outward
search for each vertex as with the sequential algorithm. Again, we recompute any chunks
that are detected during a search and store the resulting vertices for further iterations. The
main problem with only performing an outward search for a vertex v = (φv, rv) in annulus
i > 0 is that we do not generate incident edges for its non-local neighbors that are within
an annulus j < i. To fix this issue, we store the set of edges that run from local vertices to
non-local vertices within an annulus with a smaller radial boundary. In addition to the edge
itself, we also store the target processor for the non-local endpoint. We then distribute the
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edges to their respective processors by using an all-to-all communication step. This all-to-
all communication step can severly limit the scaling capabilities, especially for a very large
number of processors. An example of the set of edges that need to be distributed to other
processors is given in Figure 5.11b.
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6 Experimental Evaluation

We now present the experimental evaluation of our sampling algorithm as well as graph
generators. For each algorithm, we perform a sequential running time comparison to exist-
ing state-of-the-art implementations. We then continue to examine their strong and weak
scaling behavior. Additionally, we show that pseudorandomization does not impede the
quality of our generated graphs when examining common graph properties, e.g. degree
distributions or clustering coefficients. The descriptions and experimental results for the
sampling algorithms are extracts from Sanders et al. [64] which were developed as part of
this thesis.

6.1 Implementation

We implemented our sampling algorithms as well as graph generators in C++1. We use
Spooky Hash2 as a hash function for pseudorandomization. The generated hash values
are then used for initializing a Mersenne Twister [48] pseudorandom number generator for
uniform deviates. Non-uniform random deviates are generated using the stocc library3,
which also uses a Mersenne Twister internally. If the size of our inputs (e.g. the number of
vertices) exceeds 264 bit, we use the multiple-precision floating points library GMP4 and a
reimplementation of the code from the stocc library. We now cover some implementa-
tion specifics for the individual algorithms that we use in our evaluation. If not mentioned
otherwise, we compiled all algorithms and libraries using g++ version 6.2 using optimiza-
tion level fast and -march=native. For the parallel versions of our algorithms, we
use the MPI implementation MPICH 1.55 compiled with g++ version 4.9.3. The Python
interface for our competitors is run with Python version 3.5.2.

Sampling Algorithms. We implemented Algorithm D in C++ from the descriptions
in Vitter [72].

Algorithm H uses hashing with linear probing [42]. We can use a very simple and
efficient hash function, such as extracting the most significant log n + O(1) bits from the
key, since the elements inserted in the table are uniform random deviates. To further speed

1https://github.com/sebalamm/GraphGen
2http://www.burtleburtle.net/bob/hash/spooky.html
3http://www.agner.org/random/
4http://www.mpfr.org
5http://www.mpich.org
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up table accesses, we choose a power of two as the table size. Depending on the desired
output, sorted or unsorted, we use a different algorithm to obtain table entries and empty
them. In the unsorted case, we use a stack to store the position of inserted elements. This
way, we are able to empty the table without considering empty table entries. If we want to
output table entries in sorted order, we are not able to use a stack, and instead scan the table
at the end. Additionally, we allocate an additional set of n table entries to the right in order
to avoid wrapping around the table during probing. Otherwise, the wrapping procedure is
able to destroy the global sorted order between clusters of elements.

Our sequential divide-and-conquer algorithm uses Algorithm H as its base case sampler
during recursion. We choose Algorithm H over Algorithm D because the former is faster
for small subproblems, where the hash table fits completely into the cache [64]. Since we
are able to freely choose the base case size for the divide-and-conquer algorithm (e.g. for
n0 = 29), this is always the case.

The parallel sampling algorithm uses the divide-and-conquer algorithm with parameters
n0 = 28 and m = 211 as its local subroutine.

Erdős-Rényi Generators. For the evaluation of our G(n,m) generator, we compare
it with implementations found in the Boost6 and NetworkX7 [66] libraries. NetworkX is
a Python library that we use for validating the properties of our generated graphs. Their
G(n,m) graph generator is inspired by the selection sampling algorithm (Algorithm S) by
Knuth [43]. The Boost implementation serves as a baseline for the sequential running time
of our directed and undirected graph generators. They use a sampling procedure similar to
Algorithm D, that only samples the edges that are actually present in the resulting graph.

In the case of the G(n, p) model, we use the C++ implementation (and Python inter-
face) of the NetworKit library8 [70]. We use them both for running time comparisons and
property validation. Their algorithm is an implementation of the random network gener-
ator proposed by Batagelj and Brandes [13]. During preliminary experiments, the Boost
implementation had a very high running time for the G(n, p) model even for moderately
sized instances and thus is omitted from the comparison.

Our own generators for both theG(n,m) andG(n, p) model use our divide-and-conquer
sampling algorithms with parameters n0 = 29 andm = 212 as their local sampling routines.

Random Geometric Generators. Implementations of RGG generators are provided
by the NetworkX library, as well as Holtgrewe et al. [35]. NetworkX uses a Python imple-
mentation of the naive Θ(n2) algorithm that compares all pairs of points and adds edges
iff their distance is less than the radius r. Their algorithm works for any arbitrary dimen-
sion d. The algorithm by Holtgrewe et al. [35] described in Section 3.2.2 is implemented

6http://www.boost.org/doc/libs/1_62_0/libs/graph/doc/erdos_renyi_
generator.html

7https://networkx.readthedocs.io/en/stable/reference/generators.html
8https://networkit.iti.kit.edu/api/generators.html
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using MPI and serves as our competitor for the running time comparison. Due to the slow
running time of the RGG generator of NetworkX, we additionally use this algorithm for
our property validation. It is also noteworthy that their implementation only features a two
dimensional generator. Both Boost and NetworKit do not provide any RGG generators.

Random Hyperbolic Generators. For the running time comparison and validation of
our hyperbolic generator, we again use the NetworKit library. Their hyperbolic generator
features two different algorithms depending on the temperature of the statistical model.
Since we are only interested in the case where the temperature T = 0, we compare our
generator with their implementation of von Looz et al. [74].

For our own generator, we performed preliminary experiments to determine a good value
for the expected number of points within each cell. Our experiments indicate that our
algorithm is faster if we choose a relatively small number of points per cell, e.g. 24.

6.2 Experimental Setup

We now present our experimental setup including the specifications of our test hardware,
as well as the design of our sequential and parallel experiments.

6.2.1 Environment

We conduct our experiments on two different types of machines. The sequential compar-
isons and property analyses are performed on a single core of a dual-socket Intel Xeon
E4-2670 v3 system with 128 GB of DDR4-2133 memory, running Ubuntu 14.04 with ker-
nel version 3.13.0-91-generic. For the scaling experiments we use the IBM Blue Gene/Q
machine JUQUEEN. The JUQUEEN consists of 28 racks and 28,672 nodes which are con-
nected via a 5D torus with 40 GBps and 2.5µsec latency. Each computation node of the
JUQUEEN has 16 cores of an IBM PowerPC A2 system with 1.6 GHz, as well as 16 GB
of DDR3-SDRAM. Each node runs the CNK (Compute Node Kernel) operating system
which is a lightweight proprietary kernel. We use the maximum number of cores per node
for our scaling experiments.

6.2.2 Experiment Design

We begin by performing a comparison of state-of-the-art implementations with our algo-
rithms in terms of sequential running time. To account for the randomness during the
generation process we are mainly interested in the time per generated sample/edge. Ad-
ditionally, we provide the corresponding number of vertices and/or edges to compute the
total running time. If not mentioned otherwise, we average the resulting running times over
ten iterations with different seeds for varying input sizes. We then compare the reported
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running times with our theoretical results presented in the previous section. For this set of
experiments we use an edge list as the output format for all our generators.

Afterwards, we examine the scaling behavior of our algorithms. To this end, we measure
both their strong and weak scaling behavior. Strong scaling is a measurement of how the
running time varies with the number of processors for a fixed problem size. To be more
specific, if the amount of time needed one a single processor is t1, and the amount of time
needed on P processors it tP , then the strong scaling efficiency is given as

sstrong =
t1

P · tP
.

Weak scaling is a measurement of how the running time varies with the number of pro-
cessors for a fixed problem size per processor. If the amount of time needed one a single
processor is t1, and the amount of time needed on P processors is tP , then the weak scaling
efficiency is given as

sweak =
t1
tP
.

Again, we average our results over ten iterations with different seeds. Additionally, we
compare the experimental results with our theoretical running times. Since the memory
restrictions of the JUQUEEN do not allow us to store a complete edge list for the local
subgraph of each processor, we only store the degree distribution for a fixed amount of k
nodes on each processor.

Finally, we validate the correctness of our generated graphs and measure the impact of
pseudorandomization on the generation process, by performing an analysis of various graph
properties. For this purpose, we compare the degree distribution, clustering coefficient, as
well as the size of connected components of the graphs generated by our algorithm with
the implementations presented in Section 6.1. Each property is averaged over a set of 100
iterations with different seeds for graphs of varying sizes.
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6.3 Running Time Comparison
We now compare the running time of our divide-and-conquer sampling algorithm, as well
as graph generators, to existing state-of-the-art implementations. If not mentioned other-
wise, we are only concerned with the sequential running times of each algorithm. The
experimental results for the sequential sampling algorithm are extracts from Sanders et
al. [64] which were developed as part of this thesis.

6.3.1 Sampling Without Replacement
We begin by comparing the performance of our divide-and-conquer sampling algorithm
(Algorithm R) to Algorithm D and H. Since Algorithm D returns samples in sorted order,
we additionally test a variant of Algorithm R that also returns samples in sorted order
(Algorithm SR). We use a population size ofN = 250 and an increasing amount of samples
n. The number of iterations for each n is set to 230/n. This way the workload stays the
same for each value of n. Figure 6.1 shows the performance for each algorithm.
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Figure 6.1: Running time per sample for the sequential algorithms H, D, R. The bars show the
standard deviation. The number of repetitions for each algorithm is 230/n. For Algo-
rithm R, we use n0 = 210. SR is Algorithm AR with sorted output.

Algorithm H is very fast for small n, but starts to degrade as the size for the hash ta-
ble exceeds the cache size. Our divide-and-conquer algorithm (Algorithm R) has a similar
performance for small n but the time needed for each sample remains constant for grow-
ing n. If we compare it to Algorithm H for large n, we can see that it is up to 5 times

55



6 Experimental Evaluation

faster. Algorithm D is the slowest of the four algorithms tested, but its time per sample is
still independent of n for growing sample sizes. Compared to Algorithm R it is up to 7
times slower for large n. The variant of Algorithm R that returns samples in sorted order
(Algorithm SR) is still 3.4 times faster than Algorithm D and the time per sample remains
constant for growing n.

6.3.2 Erdős-Rényi Generators
We now compare the performance of our Erdős-Rényi generators to existing implemen-
tations found in the Boost and NetworKit libraries. Note that when executed on a single
processor, our generators are equivalent to a variant of sampling without replacement. This
is because no recursion has to be performed in order to distribute the workload in the se-
quential case. As pointed out above, both the G(n,m) and G(n, p) generators use the
sequential divide-and-conquer algorithm with n0 = 29 for their base case.

We evaluate the performance of each generator for different numbers of vertices n and a
growing (expected) number of edges m. To be more specific, we set the number of vertices
from 218 to 224 and the (expected) number of edges from 216 to 228. We compute the edge
probability from the expected number of edges as p = m

n(n−1) and p = m
n(n−1)/2 for the

directed and undirected case respectively. Figure 6.2 shows the results of our experiments
for the smallest and largest set of vertices.

First, we note that all of the Erdős-Rényi generators have a linear increase in running
time (constant time per edge) with increasing m. However, both the Boost and NetworKit
implementation also have an increasing time per edge for growing numbers of vertices n.
Especially for small m and large n, the running time of our competitors is dominated by
the number of vertices. In contrast, the running time of our generator is independent of
n. Since we use a simple edge list as our output format this is not surprising. All in all,
the results are consistent with the optimal theoretical running time of O(n+m) with high
probability for all competitors.

We now take a detailed look at the performance of each generator. For the directed
G(n,m) model, our generator is roughly 10 times faster than Boost for the largest value of
m = 228. If we compare the directed G(n, p) generators, we can see that KaGen is up to
4 times faster than the NetworKit generator for larger inputs. In the undirected case, the
running time of Boost increases slightly compared to its directed generator. In turn, our
G(n,m) generator is roughly 21 times faster than Boost and has an equally lower time per
edge. For the undirectedG(n, p) generator NetworKit is roughly 3.7 times faster compared
to its directed counterpart for large n. However, our algorithm is still more than 9 times
faster for large values of m.

6.3.3 Random Geometric Generators
In this section we evaluate the performance of our two random geometric graph generators.
In particular, we compare them to the implementation of Holtgrewe et al. [35, 36]. Since
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Figure 6.2: Time per edge for the Erdős-Rényi generators for 218 and 224 vertices and 216 to 228

(expected) edges. For the G(n, p) generators the edge probability is set to p = m
n(n−1)

(directed) and p = m
n(n−1)/2 (undirected) respectively.

both competitors are nearly identical for the sequential case, we are mainly interested in
their parallel running time behavior. For this purpose, we compare them in terms of their
parallel running time for instances of growing sizes. For the sequential case, we only
examine our own generators.

The results for the sequential experiments are presented in Figure 6.3. We test our gen-

erators for growing numbers of vertices from 216 to 226. The radius is set to r = 0.55
√

lnn
n

for the two dimensional case, and r = 0.55 3

√
lnn
n

for the three dimensional case. We first
notice that both generators have a constant time per edge, and thus linear running time in-
crease with a growing number of vertices. To be more specific, the time per edge for both
generators quickly reduces, but remains roughly constant for larger n. The theory for our
generators suggests a running time of O(n log n) with high probability when choosing a

radius of r ∈ O(
√

lnn
n

). Thus, experiments with even more nodes and/or different radii
might be required to validate this bound.

Next, we compare our algorithms to the implementation of Holtgrewe et al. in terms
of their parallel running time. It should be noted that Holtgrewe et al. only support two
dimensional random geometric graphs. Thus, the three dimensional generator is excluded
from our evaluation. Figure 6.4 shows the running time of both competitors for a growing

57



6 Experimental Evaluation

216 218 220 222 224 226

Number of edges m

80

85

90

95

100

105

110

115

120

125

T
im

e
 p

e
r 

e
d
g
e
 (

n
s)

2D RGG(n, r)

216 218 220 222 224 226

Number of nodes n

240

260

280

300

320

340

360

380

T
im

e
 p

e
r 

e
d
g
e
 (

n
s)

3D RGG(n, r)

KaGen(n, r)

Figure 6.3: Time per edge for the random geometric graph generators for 216 to 226 vertices. The
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√
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n (3D) respectively.

number of P = p2 processors. The input size per processor is set to n0 = n/P and
varies from 216 to 220. To maintain an equal workload per processor the radius is set to
r = 0.55

√
lnn0

n0
/
√
P .

We are able to see that the running time for both generators behaves very similarly.
Nonetheless, our algorithms is roughly a factor of 2 faster than our competitor. Addition-
ally, we notice a slightly increasing gap between the two algorithms for n0 = 220 vertices.
This can be attributed to the increased communication effort to exchange vertices during
the algorithm of Holtgrewe et al. [35]. In contrast, our algorithm maintains a a roughly
constant running time even for a larger number of processors.
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Figure 6.4: Running time for the two dimensional random geometric graph generators for and
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per processor.
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6.3.4 Random Hyperbolic Generators

We now examine the performance of our random hyperbolic generator and compare it to the
implementation given in the NetworKit library. The NetworKit implementation, which is
capable of multi-threaded execution, only uses a single thread to ensure a fair comparison.
We test both generators for numbers of vertices from 218 to 224 and average degrees from
4 to 256. These are average degrees found in various real-world networks [73]. Figure 6.5
shows the results of our experiments in terms of time per edge for two common values of
the power-law exponent γ [23, 55].

We can see that the NetworKit generator is superior to our implementation for small
average degrees, independent of the power-law exponent. For the smallest average degree
of 4, NetworKit is up to 3.5 times faster than our generator. However, for larger average
degrees the speedup of NetworKit diminishes. Starting at an average degree of 32 our
algorithm becomes faster than NetworKit. For the largest input sizes that we test, our
algorithm is roughly 1.4 times faster than our competitor.

Concerning the asymptotic behavior of both algorithms, NetworKit seems to exhibit
a steeper increase in running time for growing average degrees than our own generator.
This behavior is expected, as NetworKit has an experimentally observed running time of
O(n log n+m) [74].

Our own generator has a roughly constant time per edge (linear running time) for large n
and growing averages degrees. This is in line with the expected theoretical running time of
O(n+m) given in Lemma 5.4.1. The slight increase in running time for a growing number
of edges can most likely be attributed to lower-order terms.
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Figure 6.5: Time per edge for the random hyperbolic graph generators for 218 and 224 vertices
and average degrees between 4 and 256. The power-law exponent γ is fixed to 3.0
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single thread.
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6.4 Scaling Behavior

In this section we discuss the scaling behavior of our communication agnostic sampling
routine and graph generators. We analyze both their weak and strong scaling behavior.
We then compare the experimental results with our theoretical findings. Each experiment
uses the full 16 cores available for each computation node of the JUQUEEN. Note that the
performance of a single core of a computation node is an order of magnitude lower than
the Intel CPUs used for the sequential experiments [64]. We can partially attribute this to
the lower clock frequency and lower number of transistors used. Our algorithms also use a
SIMD-oriented Mersenne Twister, which contains optimizations that make use of the SSE
2 units of Intel CPUs. Similar optimizations for the QPX instructions of Blue Gene/Q are
not available. Additionally, there is a lack of autovectorization for Blue Gene/Q in g++.
The experimental results for the parallel sampling algorithm are extracts from Sanders et
al. [64] which were developed as part of this thesis.

6.4.1 Sampling Without Replacement

We begin by examining the performance of our parallel sampling algorithm (Algorithm P).
Figure 6.6 shows the weak scaling behavior of our algorithm, i.e. we keep the local input
size n/p per processor constant while increasing the number of total processors. We then
use different values for the ratio n/P and set the number of iterations to 230 · P/n to keep
the same amount workload for increasing P . We can see that our parallel algorithm scales
almost perfectly for sufficiently large values of n/P . Only for the smallest local input size
of n/P = 4096, we see a linear increase in running time with an exponential increase in
P . Thus, for smaller inputs, the recursion step of our algorithm has a significant impact
on the running time. All of these results are in line with the asymptotic running time of
O(n/P + logP ) presented in Section 4.2.

6.4.2 Erdős-Rényi Generators

We now discuss the strong and weak scaling behavior of our Erdős-Rényi generators. For
the weak scaling experiments each processor is assigned an equal number of n/P nodes
and m/P edges to sample. For the strong scaling experiments we have a constant number
of n nodes and m edges that are distributed over all processors. We set n/P = (m/P )/24

for weak scaling experiments and n = m/24 for strong scaling experiments. The number
of edges to sample per processor (over all processors) ranges from 220 up to 228. The edge
probability for the G(n, p) generators is computed by dividing the expected number of
edges by the number of possible edges, as with the sequential experiments. We additionally
tested the capabilities of our algorithms by generating directed Erdős-Rényi graphs with 247

edges and 243 vertices on 32.768 cores. We were able to generate these instances in less
than 22 minutes.

60



6.4 Scaling Behavior

20 21 22 23 24 25 26 27 28 29 210 211

Number of PEs P

120

140

160

180

200

220

240

260

280
R

u
n
n
in

g
 t

im
e
 /

 (
n
/P

) 
(n

s)

Weak scaling parallel sampling

n/P= 212

n/P= 216

n/P= 220

Figure 6.6: Running time for generating n samples on P processors for different values of n/P
using Algorithm P with Algorithm R as local sampler, using n0 = 28.

G(n,m) generators. The results for theG(n,m) generators are presented in Figure 6.7.
We first discuss the scaling behavior of our directed generator. Since the directed Erdős-
Rényi generators are an adaptation of the parallel sampling algorithm, they behave very
similarly to it. We can see that our algorithm has an almost perfect strong and weak scaling
behavior. Only for the smallest input sizes and more than 210 processors, the logarith-
mic term of our running time becomes noticeable in the strong scaling results. Nonethe-
less, this is consistent with the asymptotic running time O(n+m

P
+ logP ) that we give in

Lemma 5.2.1.

Next, we examine the scaling behavior of our undirected G(n,m) generator. If we look
at its weak scaling behavior, we can see that for a growing number of processors the run-
ning time starts to increase and then remains constant up until larger numbers of processor.
This is due to the fact that as the number of processors/chunks increases the number of
redundantly generated edges also increases up to twice the number of sequentially sampled
edges. Afterwards, the running time stays constant for larger values of m/P . For smaller
values ofm/P we see an exponential increase in running time with an exponential increase
in P . We can attribute this to the linear time in the number of processors needed to locate
the correct chunks for each processor. The same effects occurs for the strong scaling exper-
iments. Thus, we can experimentally validate the asymptotic running time ofO(n+m

P
+P )

given in Lemma 5.2.2.
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Figure 6.7: Running time for generating m edges and n = m/24 vertices on P processors using
the G(n,m) generators. For the weak scaling experiments, m is the number of edges
per processor.

G(n, p) generators. The scaling behavior for the G(n, p) generators is given in Fig-
ure 6.8. As we mentioned in Section 5.2, these generators are simplifications of the
G(n,m) generators. To be more specific, the directed G(n, p) generator works in the
same way as the G(n,m) generator but without the additional recursion overhead, since
the chunk distribution can be computed directly. The undirected G(n, p) generator has the
same asymptotic running time as the undirectedG(n,m) generator, but locating the correct
chunks for each processor is faster. This is because we do not have to compute several hy-
pergeometric random deviates. Thus, both generators have a very similar scaling behavior
to their G(n,m) counterparts.

We can see that even for the smallest input sizes that we tested, our directed generator
has an almost perfect weak and strong scaling behavior. In Section 5.2.3 we stated that
the running time of the directed G(n, p) generator is O(m+n

P
) with high probability for

an expected number of m edges. Therefore, we are able to validate this bound with our
experiments.

Compared to the undirectedG(n,m) generator, the running time of the undirectedG(n, p)
generator is roughly 10% lower. The strong scaling behavior is once again dominated by
the additive O(P ) term for growing numbers of processor, especially for smaller input
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Figure 6.8: Running time for generating an expected number of m edges and n = m/24 vertices
on P processors using the G(n, p) generators. For the weak scaling experiments, m is
the number of edges per processor.

sizes. Nonetheless, all results are consistent with the theoretical running times given in
Section 5.2.4.

6.4.3 Random Geometric Generators

We now discuss the results of our scaling experiments for the two and three dimensional
random geometric generators presented in Figure 6.9. For the weak scaling experiments
each processor is assigned an equal number of n/P nodes. For the strong scaling experi-
ments we have a constant number of n nodes that are distributed over all processors. The
number of processors P is set to a square (cubic) number p2 (p3) as explained in Sec-
tion 5.3.1 (Section 5.3.2).

In the two dimensional case, the number of nodes per processor (over all processors) is

218 to 224. The radius r is set to 0.55
√

lnn/P
n/P

/
√
P (weak scaling) and 0.55

√
lnn
n

(strong
scaling) respectively.

For the three dimensional generator, the number of nodes per processor (over all proces-

sors) is 216 to 220. Analogously, we set r to 0.55 3

√
lnn/P
n/P

/ 3
√
P (weak scaling) and 0.55 3

√
lnn
n

(strong scaling).
We first consider the weak scaling behavior for the two dimensional generator. We see

that the running time for all input sizes quickly increases over one, four and nine proces-
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6 Experimental Evaluation

sors. It then remains constant until a large number of processors is reached. This is due to
the fact that the number of neighbors that we have to generate redundantly increases from
zero for one processor up to eight neighbors for more than four processors. The increase in
running time can be bound by computing the additional amount of vertices created through
redundant computations (end of Section 5.3.1) and then multiplying it by the average de-
gree nπr2. This bound yields roughly twice the running time needed for the sequential
computation, which is consistent with the experimental results. We are also able to see this
effect for the strong scaling experiments.

We also notice that for the smallest input size and very large numbers of processors
there is a exponential increase in running time with an exponentially increasing number
of processors. This is attributed to the linear time O(P ) needed to determine the correct
number of vertices for each chunk and compute the corresponding prefix sum. The effect
becomes more noticeable for the strong scaling experiments, since the number of nodes per
processor is steadily decreasing.

Next, we examine the scaling experiments for the three dimensional generator. Again,
we are able to observe both of the effects mentioned above. Therefore, the scaling behav-
ior of both random geometric generators is in line with the theoretical running times of
O(m+n

P
+ P ) given in Lemma 5.3.2 and Lemma 5.3.4.

6.4.4 Random Hyperbolic Generators
Lastly, we present the results of our scaling experiments for the random hyperbolic genera-
tors. For the weak scaling experiments each processor is again assigned an equal number of
n/P nodes. For the strong scaling experiments we have a constant number of n nodes that
are distributed over all processors. The number of nodes per processor (over all processors)
is 216 to 220. The power-law exponent γ is fixed to 3.0.

Figure 6.10 shows the scaling behavior of the RHG generator with an average degree
of k̄ = 4. Looking at the weak scaling behavior, we are able to see that there is a slight
increase in running time, especially for a small number of processors. Afterwards, the
running time remains roughly constant until a large number of processors is reached. We
can attribute this behavior to the redundant computations that are introduced through par-
allelization, similar to the RGG generators. Since each chunk contains a constant expected
number of points, this additional workload remains roughly constant for larger numbers of
processors. In the strong scaling experiments, where the number of points in each chunk is
steadily decreasing, this effect is less noticeable.

Once our generator reaches a larger number of processors, we see an exponential in-
crease in running time with an exponential increase in the number of processors. This
especially holds true for the smallest inputs. If we take a look at the strong scaling ex-
periments, we also see that there is a difference of roughly 2 − 3 seconds between the
individual runs. We attribute this behavior to the time O(P log n) necessary to build the
grid data structure as presented in Lemma 5.4.2. Overall, the scaling behavior of our ran-
dom hyperbolic generator indicates a running time of O(m+n

P
+ P log n).
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6.4 Scaling Behavior
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Figure 6.9: Running time for generating a graph with n vertices on P processors using the
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Figure 6.10: Running time for generating a graph with n vertices, average degree k̄ = 4 and γ =
3.0 on P processors using the RHG generator. For the weak scaling experiments, n
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6 Experimental Evaluation

6.5 Pseudorandomization

We now cover the impact of pseudorandomization on our generators and the resulting out-
put graphs. For this purpose, we first discuss the quality of the pseudorandom number
generators (PRNG) used for our graph generators. Afterwards, we compare the graphs
produced by our generators with state-of-the-art implementations. In particular, we ex-
amine their degree distributions, clustering coefficients, as well as the size of their largest
connected component.

Quality of PRNGs. As mentioned in Section 6.1, we use Spooky Hash as a source
for our pseudorandom number generators. Spooky Hash is a 128-bit noncryptographic
hash function proposed by Bob Jenkins9 that is able to produce 128-bit, 64-bit and 32-
bit hash values. Short keys are hashed in about 1 byte per cycle, whereas long keys are
processed in 3 bytes per cycle. Additionally, there is a 30 cycle startup overhead. Even
though Spooky Hash is noncryptographic, it achieves avalanche [26] for 1-bit and 2-bit
inputs. When hashing roughly 42 million unique keys, the fraction of keys hashed without
collision is 1.0 [1]. Additionally, Spooky Hash shows good behavior when analyzing the
random uniformity of the hash values using a chi-squared test that places the hash values
into a set of one million bins [2].

Our pseudorandom number generator is a double precision floating point SIMD-oriented
Mersenne Twister (dSFMT) by Matsumoto et al. [62]. This generator is more than twice
as fast as the original Mersenne Twister proposed by Matsumoto et al. [48]. Additionally,
it provides a better equidistribution than the original implementation. It supports periods
from 2521−1 to 2216091−1. For our experiments we use a period of 219337−1. The dSFMT
passes both the DIEHARD tests [47] and TestU01 tests [45]. Thus, it exhibits very good
statistical properties.

Graph Properties. We now briefly discuss the results of our property evaluation. More
detailed results are presented in Appendix B. All graph properties were evaluated using the
NetworKit [70] library.

For the directed and undirected Erdős-Rényi generators, we tested graph sizes of 212 to
218 vertices and 214 to 220 (expected) edges. Again, the edge probability for the G(n, p)
generators is computed by dividing the expected number of edges by the total number of
edges possible. Due to hardware limitations, we could only examine the size of the strongly
connected components of the directed generators for instances of up to 216 vertices.

The properties of the RGG generators were examined on instances of 214 to 218 vertices
for radii varying from 0.001 to 0.01. Finally, we evaluated our RHG generator for instances
of 214 to 218 vertices with average degrees between 4 and 128 as well as different values
of γ ∈ (2, 7]. If not mentioned otherwise, all results are averaged over 100 iterations with
different seeds.

9http://www.burtleburtle.net/bob/hash/spooky.html
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6.5 Pseudorandomization

Figure 6.11 and Figure 6.12 show the degree distributions, clustering coefficients and the
size of the largest connected components for different graph generators. We can see that
our undirected G(n,m) generators are able to nearly exactly match the properties of its
competitor. This includes the clustering coefficients, connected component sizes, as well
as degree distributions. Due to their similar behavior, the same holds true for the properties
of the G(n, p) generators shown in Appendix B.

For the RGG and RHG generators, there are some minor differences of the clustering
coefficients, especially for smaller instances. However, since the standard deviation for
these instances is fairly large, more iterations might be required to obtain conclusive re-
sults. Nonetheless, when examining the size of the largest components for both generators,
they both behave very similarly. The same holds true for the degree distributions of both
generators which are given in Appendix B.2 and Appendix B.3.

Overall, our results indicate that pseudorandomization does not significantly impede the
quality of our generated instances. However, in order to properly validate these results,
more thorough tests, i.e. an analysis of the variance of our results, are required. We leave
this analysis as a possible topic for future work.
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Figure 6.11: Degree distributions for the G(n,m) and RHG graph generators. The distributions
for the Erdős-Rényi model follow a binomial distribution. For the RHG model they
follow a power-law distribution.
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dard deviations for different graph generators and instances of varying sizes.
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7 Discussion

We now give a short conclusion of the work presented in this thesis. Additionally, we
highlight some interesting areas for future work.

7.1 Conclusion

In this thesis we developed scalable graph generators for a set of commonly used network
models. Our work includes the classic Erdős-Rényi model, in both theG(n,m) andG(n, p)
variants, as well as random geometric graphs and random hyperbolic graphs. As part of
our thesis we also developed an efficient divide-and-conquer sampling algorithm.

All of our graph generators share a common goal of communication efficiency through
redundant computations and pseudorandomization. Since all our generators require no
communication at all, we call them communication agnostic.

Most of our algorithms make use of a combination of divide-and-conquer schemes and
grid data structures to narrow down their local sampling space. We then redundantly com-
pute parts of the network that are within the neighborhood of local vertices. These compu-
tations are made possible through the use of pseudorandomization via hash functions. The
resulting algorithms are often embarrassingly parallel. Additionally, we provided theoreti-
cal running times for our algorithms in both the sequential and parallel case.

We then compared our graph generators to existing state-of-the-art implementations.
This includes the graph generators found in the Boost, NetworkX and NetworKit libraries.
Our experimental evaluation indicates that our generators are often able to outperform their
competitors. To be more specific, our Erdős-Rényi generators are up to 20 times faster than
state-of-the-art implementations found in Boost and NetworKit. Our random geometric
generators are up to 4.5 faster than an algorithm of Holtgrewe et al. [35, 36]. Finally,
our random hyperbolic generator is competitive with an existing implementation of von
Looz et al. [74]. However, in contrast to its competitor, our algorithm has an expected
linear running time.

We were also able to experimentally verify our theoretical bounds on the scalability of
our generators. All of our generators exhibit very good weak and strong scaling, especially
for larger instances. Only for a significantly large number of processor, we were able to
see an at most linear increase in running time over all generators. Therefore, we are able to
generate instances graph instances with up to 243 vertices and 247 vertices in less than 22
minutes on 32.768 processors. This is competitive to the size of graph instances found in
common supercomputer benchmarks such as the Graph 500 benchmark [4].

69



7 Discussion

Finally, we examined the effects of pseudorandomization on the quality of our generated
graphs. We did so using common graph properties such as the degree distribution, cluster-
ing coefficients and connected component sizes. Our evaluation of these properties shows
that pseudorandomization has little to no effect on the quality of our graphs, compared to
existing implementations.

7.2 Future Work
Even tough we provided theoretical bounds for the expected running time of our hyperbolic
random graph generator, it would be interesting to perform a more thorough analysis of
this generator. Especially for the the parallel setting, we are still missing some important
theoretical results. It would also be beneficial to perform a more extensive evaluation of
this generator for different parameter combinations. This would allow us to better validate
the theoretical results presented in this thesis.

Another interesting possibility would be to expand our communication agnostic graph
generation paradigm to other network models. This includes community driven models
such as the Block Two-level Erdős-Rényi model [67], or structure-driven models such as
the Chung-Lu model [8].

Finally, we would like to expand our algorithms to different parallel computation archi-
tectures. This includes efficient implementations of our graph generators for shared mem-
ory systems and GPUs. As a result, we would be able to provide efficient graph generators
for a variety of different application.
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A Pseudocode

Algorithm 1: Distributed algorithm for sampling n′ elements on processors {j, . . . , k}
(j..k) where i ∈ {j, . . . , k} is the PE executing the function. The initial call on proces-
sor i is sampleP(n, 1..p, i, h).

1 Function sampleP(n′, j..k, i, h)
2 if k − j = 1 then
3 use h(i) to seed the local pseudorandom number generator
4 M := sampleLocally(n′, Ni −Ni−1 + 1) // e.g. using algorithms H, D
5 return {Ni−1 + x : x ∈M}
6 m:= b j+k

2
c // middle processor number

7 x:= hyperGeometricDeviate(n′, Nm −Nj + 1, Nk −Nj + 1, j..k, h)
8 if i ≤ m then
9 return sampleP(x, j..m, i, h)

10 else
11 return sampleP(n′ − x,m+ 1..k, i, h)

Algorithm 2: Algorithm for (sequential) divide-and-conquer sampling of n elements
without replacement from a population of N elements.

1 Function sampleR(n,N)
2 if n < n0 then
3 return sampleBase(n,N) // e.g. using algorithms H, D

4 x:= hyperGeometricDeviate(n, bN/2c , N)
5 A:= sampleR(x, bN/2c)
6 B:= sampleR(n− x,N − bN/2c)
7 return A ∪ {x+ bN/2c : x ∈ B}
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A Pseudocode

Algorithm 3: Triangle case for the undirected G(n,m) generator. m′ is the number of
edges that remain to be sampled. j..k is shorthand for the set of processors {j, . . . , k}
responsible for the current set of rows. Likewise, j′..k′ is the set of processors remain-
ing for the set of columns. i is the processor ID and h is a given hash function.

1 Function generateTriangle(m′, j..k, j′..k′, i, h)
2 if (k − j) = 1 ∧ (k′ − j′) = 1 then
3 use h(j, j′) to seed the local pseudorandom number generator

4 M := sampleLocally(m ′,
(Nj−Nj−1+1 )∗(Nj ′−Nj ′−1 )

2
, h)

5 forall x ∈M do

6 vs:=
√

8(x−1)+1−1
2

7 vt:= (x− 1)− vs(vs+1)
2

8 add {vs +Nj−1, vt +Nj′−1}
9 return

10 r:= bk+j
2
c, c:= bk′+j′

2
c

11 m:= (Nj−Nk+1)∗(Nj−Nk)
2

// number of edges in each quadrant

12 m2:= (Nj−Nr+1)∗(Nj′−Nc)
2

13 m3:= (Nr+1 −Nk + 1) ∗ (Nj′ −Nc + 1)

14 m4:= (Nr+1−Nk+1)∗(Nc+1−Nk′ )
2

// compute number of samples in each quadrant
15 x2 = generateHypergeometric(m ′,m2 ,m, j ..k , j

′..k ′, h)
16 x3 = generateHypergeometric(m ′ − x2 ,m3 ,m3 + m4 , j ..k , j

′..k ′, h)
17 if i < r then
18 generateTriangle(x2 , j ..r , j

′..c, i , h)
19 generateRectangle(x3 , r + 1 ..k , j ′..c, i , h)

20 else
21 generateRectangle(x3 , r + 1 ..k , j ′..c, i , h)
22 generateTriangle(m ′ − x2 − x3 , r + 1 ..k , c + 1 ..k ′, i , h)
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Algorithm 4: Rectangle case for the undirectedG(n,m) generator. m′ is the number of
edge that remain to be sampled. j..k is shorthand for the set of processors {j, . . . , k} re-
sponsible for the current set of rows. Likewise, j′..k′ is the set of processors remaining
for the set of columns. i is the processor ID and h is a given hash function.

1 Function generateRectangle(m′, j..k, j′..k′, i, h)
2 if (k − j) = 1 ∧ (k′ − j′) = 1 then
3 use h(j, j′) to seed the local pseudorandom number generator

4 M := sampleLocally(m ′,
(Nj−Nj−1+1 )∗(Nj ′−Nj ′−1 )

2
, h)

5 forall x ∈M do
6 vs:= bx−1Nj

c
7 vt:= := (x− 1) mod Nj′

8 add {vs +Nj−1, vt +Nj′−1}
9 return

10 r:= bk+j
2
c, c:= bk′+j′

2
c

11 m:= (Nj−Nk+1)∗(Nj−Nk)
2

// number of edges in each quadrant
12 m1:= (Nj −Nr + 1) ∗ (Nc+1 −Nk′ + 1)
13 m2:= (Nj −Nr + 1) ∗ (Nj′ −Nc + 1)
14 m3:= (Nr+1 −Nk + 1) ∗ (Nj′ −Nc + 1)
15 m4:= (Nr+1 −Nk + 1) ∗ (Nc+1 −Nk′ + 1)

// compute number of samples in each quadrant
16 x = generateHypergeometric(m ′,m1 + m2 ,m, j ..k , j

′..k ′, h)
17 x2 = generateHypergeometric(x ,m2 ,m1 + m2 , j ..k , j

′..k ′, h)
18 x3 = generateHypergeometric(m ′ − x − x2 ,m3 ,m3 + m4 , j ..k , j

′..k ′, h)
19 if i > j then // only row of chunks remaining
20 if i < r then
21 generateRectangle(x2 , r + 1 ..k , j ′..c, i , h)
22 generateRectangle(x − x2 , j ..r , j

′..c, i , h)

23 else
24 generateRectangle(x3 , r + 1 ..k , j ′..c, i , h)
25 generateRectangle(m ′ − x − x3 , r + 1 ..k , c + 1 ..k ′, i , h)

26 else // only column of chunks remaining
27 if i < c then
28 generateRectangle(x2 , r + 1 ..k , j ′..c, i , h)
29 generateRectangle(x3 , r + 1 ..k , j ′..c, i , h)

30 else
31 generateRectangle(x − x2 , j ..r , j

′..c, i , h)
32 generateRectangle(m ′ − x − x3 , r + 1 ..k , c + 1 ..k ′, i , h)
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A Pseudocode

Algorithm 5: Directed G(n, p) generator. We use pm as the probability for any indi-
vidual edge to avoid ambiguity. i is the processor ID and h is a given hash function.

1 Function generateGnpDirected(pm, i, h)
2 use h(i) to seed the local pseudorandom number generator
3 m′:= binomialDeviate(Mi −Mi−1 + 1, pm)
4 M := sampleLocally(m′,Mi −Mi−1 + 1) // e.g. using algorithms H, D, or R
5 forall x ∈M do
6 vs:= bx−1Mi

c
7 vt:= := (x− 1) mod (n− 1) // n is the total number of nodes
8 add (vs +Ni−1, vt +Ni−1)

Algorithm 6: Undirected G(n, p) generator. We use pm as the probability for any
individual edge to avoid ambiguity. Processor i generates the rectangle chunks
{(i, 0), . . . , (i, i − 1)} and {(i + 1, i), . . . , (p, i)}, as well as the triangle chunk (i, i). i
is the processor ID and h is a given hash function.

1 Function generateTriangle(pm, i, j, h)
2 use h(i, j) to seed the local pseudorandom number generator
3 Mi,j:=

(Ni−Ni−1+1)∗(Nj−Nj−1)

2

4 m′:= binomialDeviate(Mi,j, pm)
5 M := sampleLocally(m ′,Mi ,j , h)
6 forall x ∈M do

7 vs:=
√

8(x−1)+1−1
2

8 vt:= := (x− 1)− vs(vs+1)
2

9 add {vs +Ni−1, vt +Nj−1}

10

11 Function generateRectangle(pm, i, j, h)
12 use h(i, j) to seed the local pseudorandom number generator
13 Mi,j:= (Ni −Ni−1 + 1) ∗ (Nj −Nj−1 + 1)
14 m′:= binomialDeviate(Mi,j, pm)
15 M := sampleLocally(m ′,Mi ,j , h)
16 forall x ∈M do
17 vs:= bx−1Ni

c
18 vt:= := (x− 1) mod Nj

19 add {vs +Ni−1, vt +Nj−1}
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Algorithm 7: Two dimensional random geometric generator. n′ is the number of
vertices remaining for the current level. j..k is shorthand for the set of processors
{j, . . . , k} responsible for the y-dimension. Likewise, j′..k′ is the set of processors
handling the x-dimension. i is the processor ID and h is a given hash function.

1 Function generate2dRgg(n′, r, j..k, j′..k′, i, h)
2 if (k − j) = 1 ∧ (k′ − j′) = 1 then
3 use h(i) to seed the local pseudorandom number generator
4 V := sampleVertices(n ′, b i

p
c, i mod p, h)

5 forall v ∈ V do
6 gridx = bvx

r
c, gridy = bvy

r
c

7 add v to grid [gridx ][gridy ]

8 if i is local chunk then
9 generateEdges(i , r) // generate intra-chunk edges

10 N := gatherNeighbors(i)
11 forall i′ ∈ N do
12 generate2dRgg(n, r , 1 ..p, 1 ..p, i ′, h)
13 generateEdges(i , i ′, r) // generate inter-chunk edges

14 return

15 h:= bk+j
2
c, v:= bk′+j′

2
c

// compute number of vertices in each quadrant
16 y = binomialDeviate(n ′, h

k+j
, j ..k , j ′..k ′, h)

17 x1 = binomialDeviate(y , v
k ′+j ′

, j ..k , j ′..k ′, h)

18 x2 = binomialDeviate(n ′ − y , v
k ′+j ′

, j ..k , j ′..k ′, h)

19 if b i
p
c < h ∧ (i mod p) ≥ v then

20 generate2dRgg(y − x1 , j ..h, v + 1 ..k ′, i , h) // first quadrant

21 else if b i
p
c < h ∧ (i mod p) < v then

22 generate2dRgg(x1 , j ..h, j
′..v , i , h) // second quadrant

23 else if b i
p
c ≥ h ∧ (i mod p) ≥ v then

24 generate2dRgg(x2 , h + 1 ..k , j ′..v , i , h) // third quadrant

25 else
26 generate2dRgg(n ′ − y − x2 , h + 1 ..k , v + 1 ..k ′, i , h) // fourth quadrant
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A Pseudocode

Algorithm 8: Sequential random hyperbolic generator. n is the number of vertices. γ is
the power-law exponent of the resulting degree distribution, and k̄ is the average degree
of a node. Additionally, we are given a hash function h to seed the pseudorandom
number generators.

1 Function generateHyp(n, γ, k̄, h)
2 α:= γ−1

2

3 R:= getTargetRadius(n, k̄, α)
4 A:= generateAnnuli(n,R, h) // generate log n ordered annuli
5 forall a ∈ A do
6 na:= pointsInAnnulus(a)
7 Ca:= generatePoints(na, h) // generate cells for annulus

8 forall a ∈ A do
9 forall c ∈ Ca do

10 forall v ∈ c do // iterate over vertices in cell
11 generateOutwardEdges(v, a, c, R)

12

13 Function generatePoints(n, h)
14 Ca:= {c0, . . . , cmax} // expected constant number of points per cell
15 φg = 2π/|Ca|
16 use h(a) to seed the local pseudorandom number generator
17 for v ∈ 0..na do // iterate over vertices in annulus
18 draw φv uniformly from [0, 2π)
19 draw rv with density f(r) = α sinh(αR)/(cosh(αR)− 1)
20 insert (φv, rv) in suitable cell ci = bφv/φgc;
21 return Ca
22

23 Function generateOutwardEdges(v, a, c, R)
24 φg = 2π/|Ca|
25 start := bφv/φgc // compute starting cell
26 minφ,maxφ:= getMinMaxPhi(v, a, R) // compute boundaries
27 generateEdges(v, Ca, R) // generate edges from v to points in Ca
28 if startφ < maxφ then
29 continue with next cell that has a larger angular boundary
30 stop when out of boundary

31 if startφ > minφ then
32 continue with next cell that has a smaller angular boundary
33 stop when out of boundary

34 if a < |A| then
35 generateOutwardEdges(v, a+ 1, c, R)
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Algorithm 9: Parallel random hyperbolic generator. n is the number of vertices. γ is
the power-law exponent of the resulting degree distribution, and k̄ is the average degree
of a node. i is the processor ID. Additionally, we are given a hash function h to seed
the pseudorandom number generators. Point generation and edge searches are similar
to the sequential case.

1 Function generateHypParallel(n, γ, k̄, i, h)
2 α:= γ−1

2

3 R:= getTargetRadius(n, k̄, α)
4 A:= generateAnnuli(n,R, h) // generate log n ordered annuli
5 forall a ∈ A do
6 na:= pointsInAnnulus(a)
7 Ka:= generateChunks(na, a, 1..p, i) // generate chunks for annulus
8 forall k ∈ Ka do
9 if k is local chunk of i then

10 Ca,k:= generatePoints(n, a, k, h) // generate cells for local chunk

11 forall a ∈ A do
12 forall k ∈ Ka do
13 if k is local chunk of i then
14 forall c ∈ Ca,k do
15 forall v ∈ c do // iterate over vertices in cell
16 generateInwardEdges(v, a, k, c, R)
17 generateOutwardEdges(v, a, k, c, R)

18

19 Function generateChunks(n′, a, j..k, h)
20 if (k-j = 1) then
21 setPointsInChunk(Ca,k, n

′)
22 return Ca,k
23 m:= b j+k

2
c // middle processor number

24 x:= binomialDeviate(n′, m
k−j , j..k, h)

25 return generateChunks(x, j..m, i, h) ∪ generateChunks(n′ − x,m+ 1..k, i, h)
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A Pseudocode
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B Graph Properties

B.1 Erdos-Renyi Generators

B.1.1 Directed G(n,m)
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Figure B.1: Size of largest connected component and standard deviation for the directed G(n,m)
generators. All results are averaged over 100 iterations.
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Figure B.2: Clustering coefficients and standard deviation for the directed G(n,m) generators.
All results are averaged over 100 iterations.

79



B Graph Properties
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Figure B.3: Degree distribution for the directed G(n,m) generators for n = 212. All results are
averaged over 100 iterations.
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B.1 Erdos-Renyi Generators

B.1.2 Undirected G(n,m)
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Figure B.4: Size of largest connected component and standard deviation for the undirected
G(n,m) generators. All results are averaged over 100 iterations.
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Figure B.5: Clustering coefficients and standard deviation for the undirected G(n,m) generators.
All results are averaged over 100 iterations.

81



B Graph Properties
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Figure B.6: Degree distribution for the undirectedG(n,m) generators for n = 212. All results are
averaged over 100 iterations.
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B.1 Erdos-Renyi Generators

B.1.3 Directed G(n, p)
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Figure B.7: Size of largest connected component and standard deviation for the directed G(n, p)
generators. The NetworKit generator always produces a largest component of size 0.
All results are averaged over 100 iterations.
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Figure B.8: Clustering coefficients and standard deviation for the directed G(n, p) generators. All
results are averaged over 100 iterations.
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B Graph Properties
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Figure B.9: Degree distribution for the directed G(n, p) generators for n = 212. The NetworKit
generator exhibits a different binomial degree distribution than expected in theory. All
results are averaged over 100 iterations.

84



B.1 Erdos-Renyi Generators

B.1.4 Undirected G(n, p)

214 215 216 217 218 219 220

Number of expected edges m

0

50000

100000

150000

200000

250000

300000

S
iz

e
 o

f 
la

rg
e
st

 c
o
m

p
o
n
e
n
t

Undirected G(n, p)

KaGen(212, p)

NetworKit(212, p)

NetworkX(212, p)

KaGen(214, p)

NetworKit(214, p)

NetworkX(214, p)

KaGen(216, p)

NetworKit(216, p)

NetworkX(216, p)

KaGen(218, p)

NetworKit(218, p)

NetworkX(218, p)

Figure B.10: Size of largest connected component and standard deviation for the undirected
G(n, p) generators. All results are averaged over 100 iterations.
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Figure B.11: Clustering coefficients and standard deviation for the undirected G(n, p) generators.
All results are averaged over 100 iterations.
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Figure B.12: Degree distribution for the undirected G(n, p) generators for n = 212. All results
are averaged over 100 iterations.
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B.2 Random Geometric Generators

B.2 Random Geometric Generators

B.2.1 2D RGG
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Figure B.13: Size of largest connected component and standard deviation for the 2D RGG gener-
ators. All results are averaged over 100 iterations.
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Figure B.14: Clustering coefficients and standard deviation for the 2D RGG generators. All results
are averaged over 100 iterations.
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Figure B.15: Degree distribution for the 2D RGG generators for n = 218. All results are averaged
over 100 iterations.
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B.2 Random Geometric Generators

B.2.2 3D RGG
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Figure B.16: Size of largest connected component and standard deviation for the 3D RGG gener-
ator. All results are averaged over 100 iterations.
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Figure B.17: Clustering coefficients and standard deviation for the 3D RGG generator. All results
are averaged over 100 iterations.
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Figure B.18: Degree distribution for the 3D RGG generator for n = 218. All results are averaged
over 100 iterations.
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B.3 Random Hyperbolic Generators

B.3 Random Hyperbolic Generators
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Figure B.19: Size of largest connected component and standard deviation for the RHG generators
and n = 218. All results are averaged over 100 iterations.
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Figure B.20: Clustering coefficients and standard deviation for the RHG generators and n = 218.
All results are averaged over 100 iterations.
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Figure B.21: Degree distribution for the RHG generators for n = 218. All results are averaged
over 100 iterations.
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[24] P. Erdős and A. Rényi. On Random Graphs I. Publicationes Mathematicae (Debre-
cen), 6:290–297, 1959 1959.

[25] C. Fan, M. E. Muller, and I. Rezucha. Development of sampling plans by using
sequential (item by item) selection techniques and digital computers. Journal of the
American Statistical Association, 57(298):387–402, 1962.

94



Bibliography

[26] H. Feistel. Cryptography and computer privacy. Scientific American, 228:15–23,
1973.

[27] R. A. Finkel and U. Manber. DIB - A distributed implementation of backtracking.
ACM Trans. Program. Lang. Syst., 9(2):235–256, 1987.

[28] R. A. S. Fisher and F. Yates. Statistical tables for biological, agricultural, and med-
ical research. Edinburgh Oliver and Boyd, 6th ed., rev. and enlarged edition, 1963.
Bibliography: p. 41-43.

[29] A. S. Garge and S. A. Shirali. Triangular numbers. Resonance, 17(7):672–681, 2012.

[30] E. N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, 12 1959.

[31] J. Goldstein. Emergence as a construct: History and issues. Emergence, 1(1):49–72,
1999.

[32] L. Gugelmann, K. Panagiotou, and U. Peter. Random hyperbolic graphs: Degree
sequence and clustering. In Automata, Languages, and Programming - 39th Interna-
tional Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II,
volume 7392 of Lecture Notes in Computer Science, pages 573–585. Springer, 2012.

[33] T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Inf. Process. Lett.,
33(6):305–308, 1990.

[34] T. L. Heath et al. The thirteen books of Euclid’s Elements. Courier Corporation, 1956.

[35] M. Holtgrewe. A scalable coarsening phase for a multi-level graph partitioning al-
gorithm. PhD thesis, University of Karlsruhe, 2009.

[36] M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a scalable high quality graph
partitioner. In 24th IEEE International Symposium on Parallel and Distributed Pro-
cessing, IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010 - Conference Pro-
ceedings, pages 1–12. IEEE, 2010.

[37] C. Huygens. De ratiociniis in ludo aleae. Ex officinia J. Elsevirii, 1657.

[38] Intel. Intel digital random number generator (DRNG): Software im-
plementation guide. https://software.intel.com/en-us/
articles/intel-digital-random-number-generator-drng-
software-implementation-guide, 2012.

[39] C. Jacoboni and L. Reggiani. The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials. Rev. Mod. Phys.,
55:645–705, Jul 1983.

95

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-
software-implementation-guide


Bibliography

[40] X. Jia. Wireless networks and random geometric graphs. In 7th International Sympo-
sium on Parallel Architectures, Algorithms, and Networks (I-SPAN 2004), 10-12 May
2004, Hong Kong, SAR, China, pages 575–580. IEEE Computer Society, 2004.

[41] J. M. Kleinberg. The small-world phenomenon: An algorithmic perspective. In
F. F. Yao and E. M. Luks, editors, Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages
163–170. ACM, 2000.

[42] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

[43] D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms, 2nd Edition. Addison-Wesley, 1981.

[44] D. V. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic
geometry of complex networks. CoRR, abs/1006.5169, 2010.

[45] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random
number generators. ACM Trans. Math. Softw., 33(4):22:1–22:40, Aug. 2007.

[46] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos. Realistic, Mathematically
Tractable Graph Generation and Evolution, Using Kronecker Multiplication, pages
133–145. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[47] G. Marsaglia. DIEHARD: A battery of tests of randomness. 1996.

[48] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul., 8(1):3–30, 1998.

[49] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An approach to univer-
sal topology generation. In Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2001. Proceedings. Ninth International Symposium on,
pages 346–353. IEEE, 2001.

[50] U. Meyer and M. Penschuck. Generating massive scale-free networks under resource
constraints. pages 39–52, 2016.

[51] C. Z. Mooney. Monte Carlo simulation, volume 116. Sage Publications, 1997.

[52] M. Newman. Random graphs as models of networks. eprint arXiv:cond-
mat/0202208, Feb. 2002.

[53] M. Newman, A.-L. Barabasi, and D. J. Watts. The Structure and Dynamics of Net-
works: (Princeton Studies in Complexity). Princeton University Press, Princeton, NJ,
USA, 2006.

96



Bibliography

[54] S. Nobari, X. Lu, P. Karras, and S. Bressan. Fast random graph generation. In EDBT
2011, 14th International Conference on Extending Database Technology, Uppsala,
Sweden, March 21-24, 2011, Proceedings, pages 331–342. ACM, 2011.

[55] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A.-L. Barabási. Structure and tie strengths in mobile communication networks.
Proceedings of the National Academy os Sciences (USA), 104(7332), 2007.

[56] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The Jung (Java universal net-
work/graph) framework. University of California, Irvine, California, 2003.

[57] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks.
Phys. Rev. Lett., 86:3200–3203, Apr 2001.

[58] M. Penrose. Random geometric graphs. Number 5. Oxford University Press, 2003.

[59] M. Raab and A. Steger. "balls into bins" - A simple and tight analysis. In Random-
ization and Approximation Techniques in Computer Science, Second International
Workshop, RANDOM’98, Barcelona, Spain, October 8-10, 1998, Proceedings, vol-
ume 1518 of Lecture Notes in Computer Science, pages 159–170. Springer, 1998.

[60] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

[61] D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. We, and T. R. Mackie.
BEAM: A Monte Carlo code to simulate radiotherapy treatment units. Medical
Physics, 22(5):503–524, 1995.

[62] M. Saito and M. Matsumoto. A PRNG Specialized in Double Precision Floating Point
Numbers Using an Affine Transition, pages 589–602. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[63] P. Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche. PhD thesis, Uni-
versity of Karlsruhe, 1996.

[64] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade, and C. Dachsbacher. Ef-
ficient random sampling - Parallel, vectorized, cache-efficient, and online. CoRR,
abs/1610.05141, 2016.

[65] P. Sanders and C. Schulz. Scalable generation of scale-free graphs. Inf. Process. Lett.,
116(7):489–491, 2016.

[66] D. A. Schult. Exploring network structure, dynamics, and function using NetworkX.
In In Proceedings of the 7th Python in Science Conference (SciPy), pages 11–15,
2008.

97



Bibliography

[67] C. Seshadhri, T. G. Kolda, and A. Pinar. Community structure and scale-free collec-
tions of Erdös-Rényi graphs. CoRR, abs/1112.3644, 2011.

[68] E. Stadlober. Ratio of uniforms as a convenient method for sampling from classical
discrete distributions. pages 484–489, 1989.

[69] E. Stadlober and H. Zechner. The Patchwork rejection technique for sampling from
unimodal distributions. ACM Trans. Model. Comput. Simul., 9(1):59–80, 1999.

[70] C. Staudt, A. Sazonovs, and H. Meyerhenke. NetworKit: An interactive tool suite for
high-performance network analysis. CoRR, abs/1403.3005, 2014.

[71] S. Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.

[72] J. S. Vitter. An efficient algorithm for sequential random sampling. ACM Trans. Math.
Softw., 13(1):58–67, 1987.

[73] M. von Looz, H. Meyerhenke, and R. Prutkin. Generating random hyperbolic graphs
in subquadratic time. In Algorithms and Computation - 26th International Sympo-
sium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, volume 9472
of Lecture Notes in Computer Science, pages 467–478. Springer, 2015.

[74] M. von Looz, M. S. Özdayi, S. Laue, and H. Meyerhenke. Generating massive com-
plex networks with hyperbolic geometry faster in practice. pages 1–6, 2016.

[75] J. Von Neumann. 13. Various techniques used in connection with random digits.
1951.

[76] W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, and T. Zhou. Traffic dynamics based
on local routing protocol on a scale-free network. Phys. Rev. E, 73:026111, Feb 2006.

[77] E. Zegura. GT-ITM: Georgia Tech internetwork topology models (software). Georgia
Tech,” http://www. cc. gatech. edu/fac/Ellen. Zegura/gt-itm/gt-itm/tar. gz, 1996.

98


	Abstract
	Introduction
	Fundamentals
	Related Work
	Divide-and-Conquer Sampling
	Graph Generators
	Experimental Evaluation
	Discussion
	Pseudocode
	Graph Properties
	Bibliography

