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Abstract

This thesis presents semi-streaming algorithms designed to find high-quality Maximum
Independent Sets (MIS) without requiring the entire graph to be loaded into memory, ad-
dressing a gap in practical semi-streaming approaches that balance memory efficiency with
solution quality. The MIS problem is a classic NP-hard problem with applications across
various domains, such as computer graphics, map labeling, and information coding. As
modern graphs continue to grow, the necessity for algorithms that do not require space
linear in the graph size becomes increasingly important, motivating the development of
semi-streaming methods that assume the nodes of a graph to fit in memory but not the
edges.

We introduce two semi-streaming algorithmic approaches that are both based on graph
partitioning: block-wise solving and block-wise reductions. Each of the general ap-
proaches is executed in multiple variants. The block-wise solving approach includes the
Base Algorithm, Repartitioning, and Boundary Local Search variants, while the block-
wise reduction approach includes the Basic Reductions and Reductions+VF (Vertex Fold)
variants. All approaches incorporate a preprocessing step, applying simple reductions in a
single stream.

Experimental evaluation on large instances demonstrates that our algorithms generally
produce higher quality solutions than the existing competitor semi-streaming algorithms
developed by Liu et al. on the majority of instances. The Reduction algorithms achieved
the highest solution quality among our methods. The Base Algorithm provided the fastest
running time and lowest memory footprint among the developed approaches.

However, the partitioning-based approach has two notable downsides: first, memory
usage is significantly larger than competitors due to the inherent overhead of partitioning
and loading block-graphs into memory. Second, result quality depends on the quality of the
partitioning, where outliers with extremely large edge-cuts can lead to significantly poor
solution quality.

In an evaluation on smaller instances which allows a comparison with in-memory algo-
rithms, the Reductions algorithm achieves on average a solution quality of 98.8% compared
to ReduMIS.
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CHAPTER

Introduction

We begin by motivating the maximum independent set problem in its general form and the
usage of streaming algorithms. We continue with an overview of our contribution and the
structure of this thesis.

1.1 Motivation

Given a graph G = (V, E), where V is the set of vertices and E is the set of edges,
the Maximum Independent Set (MIS) problem asks for a set / C V' of maximum car-
dinality such that no two vertices in [ are adjacent. The MIS problem is a classic NP-
hard problem [15] with applications in various domains, including computer graphics [32],
map labeling [16, 33]], information coding [6], and indexing for shortest path and distance
queries [13]. In the map labeling problem, the goal is to maximize the number of labels
displayed on a map without any overlaps. Each label is modeled as a vertex, and each
overlap between two labels creates an edge between the corresponding vertices. Finding
a maximum independent set on this graph is equivalent to finding a maximum set of non-
overlapping labels [[16}33].

While finding optimal solutions can be difficult, in practice, high-quality solutions are
often sufficient. Numerous algorithms exist for finding large independent sets [28, 2, 26,
18, 24]], but most require space linear in the graph size. As graphs continue to grow larger,
it is increasingly impractical to store them entirely in memory.

This motivates the development of streaming and semi-streaming algorithms. In prac-
tice, the number of vertices in a graph is often significantly smaller than the number of
edges. Therefore, a reasonable assumption for large graphs is that all vertices fit in mem-
ory, but the complete edge set does not. While streaming algorithms for independent sets
have been studied theoretically [21} 9, (7], there are only few practical implementations. Liu
et al. [30] developed a greedy algorithm and a vertex-swap framework that work in a semi-
streaming model while primarily prioritizing memory efficiency. So far, there is a gap in



1 Introduction

practical semi-streaming algorithms that balance memory efficiency with solution quality.
In this thesis, we introduce semi-streaming algorithms based on graph partitioning that aim
to find high-quality independent sets without loading the entire graph into memory.

1.2 Our Contribution

This thesis presents semi-streaming algorithms for the maximum independent set problem
based on graph partitioning. We develop two general approaches: block-wise solving and
block-wise reductions, each implemented in multiple variants.

The core of the block-wise solving approach is the Base Algorithm, which sequentially
solves blocks of a partitioning. Additionally, we present two extensions: Repartitioning,
which computes a second partitioning and performs additional local search, and Boundary
Local Search, which applies local search specifically to boundary regions between blocks.
The block-wise reductions approach includes two variants: the basic Reductions algorithm
and Reductions+VEFE. Both follow the same general approach but differ in implementation,
with the latter supporting vertex folding reduction rules that alter graph structure in a way
that requires a different handling of cut edges.

All approaches include a preprocessing phase that applies simple reductions during a
single stream over the graph. This reduces graph size before computing the partitioning
and executing the main algorithms.

1.3 Structure

The remainder of this thesis is organized as follows. Chapter [2|introduces the notation and
general concepts relevant to understanding our algorithms. Chapter [3|provides an overview
of related work on independent set algorithms and streaming graph algorithms. Chapter
presents the main contribution of this work: two algorithmic approaches for computing
independent sets in a streaming setting. Chapter [5]evaluates the algorithms, first examining
individual algorithm components to determine optimal configurations, then comparing the
overall algorithm performance. Chapter [6]concludes and outlines the directions for future
work.



CHAPTER

Fundamentals

This section introduces the formal preliminaries and fundamental concepts required to un-
derstand the algorithms presented in this thesis. We begin with general graph notation, then
cover independent sets and relevant solution techniques, graph partitioning, and finally the
computational model used throughout this work.

2.1 General Definitions

Let G = (V, E) be an undirected unweighted graph with |[V| = n nodes and |E| = m
edges. We only consider simple graphs, meaning that they do not contain multi-edges or
self-loops. An edge e = {u, v} is said to be incident to nodes v and v. The nodes u and v
are then called adjacent to each other.

The neighborhood of a vertex v € V is defined as N(v) = {u € V|{u,v} € E}.
The closed neighborhood is N[v] = N(v) U {v}. The degree of a node v € V is de-
rived from the size of the neighborhood, deg(v) = |N(v)|. A graph G’ = (V' E') is
called a subgraph of G = (V,E) if V! C V and E' C E. A subgraph G’ = (V', E')
where E' = {{u,v}[{u,v} € E Au,v € V'} is called induced by V'. Induced subgraphs
are denoted as G[V']. The density d of a graph is the number of edges in the graph divided
by the maximum possible number of edges - (271"11).

While this thesis primarily works with unweighted graphs, we occasionally extend the
model to weighted cases, G = (V, F, c,w), where ¢ : V' — R is a node-weight function,
and w : & — R, is an edge-weight function.

2.2 Independent Sets

A set of nodes I C V is called an independent set (1S) if Vu,v € I : {u,v} ¢ E. AnIS I
is maximal if there is no node v € V' \ [ such that / U {v} is still an independent set. A
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maximum independent set (MIS) is an IS with maximum cardinality. The MIS-problem,
which is finding a maximum independent set, is NP-hard [[15]. In the case of weighted
graphs, the weight of an independent set [ is defined as ¢(I) = >, ., ¢(v). A maximum
weighted independent set (MWIS) is an independent set with maximum total weight.

2.2.1 Local Search

In general, local search is a technique that starts from an initial feasible solution and itera-
tively improves it through local modifications. In the context of independent sets, these are
usually swaps: a node is removed from the independent set, thereby enabling the addition
of one or more nodes that were previously not part of the independent set. Local search
algorithms do not guarantee optimality, but can often find good solutions in practice.

In our algorithms, we mainly apply local search to improve independent sets, using the
Concurrent Hybrid Iterated Local Search (CHILS) algorithm [[18]. CHILS mostly makes
use of simple and thereby fast local search operations. A key feature of CHILS is that
it maintains multiple concurrent solutions, applying local search improvements on each
of them. Then, a "difference-core" instance is computed. The difference-core is a sub-
graph that gets created based on the difference of the concurrent solutions. Local search
is then applied to this difference-core, and the improved partial solution is embedded back
into all concurrent solutions. CHILS alternates between local search on the concurrent
solutions and solving the difference-core in multiple iterations. While CHILS can be con-
figured to run in parallel, we use it only sequentially in this work. It is also worth noting
that CHILS incorporates randomness, for example in the selection of nodes considered for
improvement operations. As a result, CHILS and our algorithms employing it are non-
deterministic.

2.2.2 Kernelization

Another technique that is used in the process of solving the MIS problem is the application
of data reduction rules. Reductions are transformations that simplify a problem instance
into a smaller, equivalent instance. For MIS, reductions simplify the graph by removing
nodes and edges or replacing local structures in the graph with simpler ones, while main-
taining the ability to reconstruct a maximum independent set of the original graph from
a solution on the reduced graph. This reconstruction process is called solution lifting. A
reduced graph is called an irreducible kernel if no more reductions can be applied.

When a reduction preserves the solution optimality, we call it an exact or optimal reduc-
tion. When optimality is not guaranteed, we call it a heuristic reduction.

We use several reduction-based tools in our algorithms. The ReduMIS algorithm from
the Karlsruhe Maximum Independent Sets (KaMIS) project [26] combines exact and
heuristic reductions to fully solve MIS instances. Since it uses heuristic reductions, it
provides no optimality guarantee. We use ReduMIS to solve the MIS problem on smaller
subgraphs that fit in memory entirely.
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The DataReductions Library [[17] implements a collection of reduction techniques. In
our algorithms, we use this library to kernelize subgraphs, and subsequently apply CHILS
to the reduced instances.

ParFastKer [24] is an MIS solver that, among other elements, applies reductions in par-
allel in a shared-memory setting. In order to avoid conflicts when applying reductions in
parallel, it implements a reduction framework that can be applied to a part of the graph
while guaranteeing that no conflicts with nodes outside this part can occur. An example of
a conflict would be two reductions executed in parallel that add nodes to the independent
set that are adjacent to each other. Therefore, no reductions that include boundary nodes in
the IS are applied. However, boundary nodes getting excluded and thereby removed from
the graph is valid. While our algorithms do not run in parallel, we make use of reductions
with this property in order to kernelize subgraphs while not having access to the full graph.

2.3 Graph Partitioning

For k € N.y, a k-partitioning of a graph G = (V| E) is a division of V into k pairwise
disjoint sets V4, V5, . .., Vi such that Ule V; = V. The induced subgraphs G[V;] are called
blocks. A partitioning is called e-balanced if for all blocks V;, |V;| < (1 + ¢€)[ 7] for some
small € > 0. For weighted graphs, where the weight of a block is defined as the sum of the
weights of its nodes, a partitioning is e-balanced if ¢(V;) < (1 + ¢) [%} for all blocks V.

The objective of graph partitioning 1is to minimize the number of
cut edges {{u,v} € E|ueV,,veV;i#j}. The size of the set of cut edges is
also referred to as the edge-cut. For graphs with edge weights, the objective is to minimize
the total weight of cut edges. Nodes that are incident to at least one cut edge are called
boundary nodes. The graph obtained by contracting each block into a single node is called
the quotient graph.

In our algorithms, we use HeiStream [12], a streaming graph partitioning algorithm that
uses a buffered streaming approach. It reads batches of nodes and assigns them to blocks
using the Fennel objective function [34]]. This produces relatively high-quality partitionings
while maintaining low memory usage. HeiStream operates in a single pass over the graph,
though it can be configured to use further passes in order to improve the solution.

2.4 Computational Model

The algorithms in this thesis target the maximum independent set problem for streaming
inputs. The input is provided as a stream of nodes, each accompanied by its adjacency list.
Algorithms may make multiple passes over the input stream.

We assume that the graph is too large to fit entirely in memory. In the classical streaming
model, memory is restricted to O(polylog(n)). We work in the semi-streaming model,
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which allows O(n - polylog(n)) memory but not O(m) memory. Our algorithms also make
use of external memory, placing them in the category of semi-external algorithms.



CHAPTER

Related Work

This section surveys the state-of-the-art in algorithms for the maximum independent set
problem. We begin with in-memory algorithms, including parallel approaches, then discuss
streaming and semi-streaming algorithms that address memory-constrained settings.

3.1 In-Memory Algorithms

Most research on the MIS problem has focused on in-memory algorithms that assume the
entire graph fits in memory.

3.1.1 Exact Algorithms

The MIS problem can be formulated as an integer linear program (ILP) and solved using
generic ILP solvers [23]. This approach yields optimal solutions for small instances but
becomes infeasible as instance size grows.

Branch-and-bound algorithms offer a more commonly used approach to compute ex-
act solutions [35]. The method recursively splits the problem into subproblems (branch-
ing) while using bounds to prune subproblems that cannot improve upon the best solu-
tion found so far (bounding). This achieves optimal solutions for instances with hundreds
of nodes [35]].

Combining branch-and-bound with reduction rules yields the branch-and-reduce ap-
proach [1]. Lamm et al. introduced KaMIS_wB&R [27], an exact and fast solver that
implements this branch-and-reduce approach. Further enhancements, like a more sophis-
ticated selection of determining on which node to branch on next by Langedal et al. [28],
have enabled solving some instances with hundreds of thousands of nodes optimally.
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3.1.2 Heuristic Algorithms

Introducing heuristic elements allows solving larger instances, though without optimality
guarantees. Local search algorithms iteratively improve solutions through local modifi-
cations. The ARW algorithm by Andrade et al. [2] uses iterated local search based on
(1,2)-swaps: removing one node from the independent set and adding two nodes. It per-
forms well on small to medium instances but struggles with solution quality on larger
instances with millions of nodes. Combining local search with reduction rules has proven
effective, as shown by Dahlum et al. in the OnlineMIS algorithm [[10] that combines these
two techniques.

Lamm et al. introduced EvoMIS [25]], an evolutionary algorithm that is based on graph
partitioning in order to split the graph into well-combinable subgraphs and then applies
local search to improve combination operations. Building on this, Lamm et al. also pro-
posed ReduMIS [26], which combines an evolutionary algorithm with branch-and-reduce
techniques. This allows for the efficient computation of large independent sets and is faster
than existing local search algorithms. On smaller graphs, it produces solutions comparable
in quality to those found by exact algorithms, while also being applicable to very large
sparse graphs with billions of edges.

A recent addition by GroBmann et al. is CHILS [18], an iterated local search algo-
rithm that maintains multiple concurrent solutions. When combined with reduction-based
preprocessing, CHILS outperforms the current state-of-the-art on large instances [18].
While primarily designed for weighted independent sets, it is also applicable to the un-
weighted case.

Parallel Algorithms

Further scalability can be achieved through parallel algorithms. A simple parallel algo-
rithm for MIS was introduced by Luby et al. in 1985 [31]. More recent work has focused
on parallel reduction techniques. Hespe et al. [24] present ParFastKer, which makes use
of the locality of many reduction rules to apply them in parallel on different graph regions.
Operating in a shared-memory setting, ParFastKer has similar memory limitations as se-
quential algorithms while achieving comparable results in less time. Borowitz et al. [S]]
propose a distributed memory algorithm, mainly building on parallel reduction techniques,
that solves even larger instances.

3.2 Streaming Algorithms

In-memory algorithms are limited by graph size. Streaming and semi-streaming ap-
proaches address this limitation by processing graphs that do not fit entirely in memory.

So far, streaming algorithms for independent sets have been studied primarily from a
theoretical perspective, with a focus on establishing computational bounds rather than prac-
tical performance.
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Cormode et al. [9] study the vertex-arrival model, where vertices arrive one by one
with all edges to previously arrived vertices, as opposed to the edge-arrival model, where
edges arrive one by one in arbitrary order. They show that a one-pass c-approximation
algorithm for MIS requires Q(’Z—j) space on general vertex streams, even when disregarding
computation time. This shows that the vertex-arrival model is not substantially easier than
the edge-arrival model, where é(’g—j) space is necessary [22]]. Assadi et al. [3] prove
that in the edge-arrival model, any semi-streaming algorithm requires at least 2(log log n)
passes to find a maximal independent set with constant probability. Ye et al. [36] establish
bounds for deterministic single-pass algorithms, proving that such algorithms in the semi-
streaming model can only find independent sets of size O(%) on general graphs with
maximum degree A.

Several theoretical algorithms have been developed with provable guarantees in relation
to the Caro-Weibound A = ) W, a general lower bound for the size of a maximum
independent set. Halldérsson et al. [20, 21] present a randomized one-pass algorithm that
finds an independent set with size at least \ in expectation, using O(n) space. Cormode et
al. [8] provide a one-pass algorithm that (1 4 €)-approximates the Caro-Wei bound with
constant success probability using O(e™2 - d,y, - log n) space.

Chen et al. [[7] develop sublinear-space streaming algorithms for sparse graphs. Their ap-
proach greedily adds a node v to the solution given that v is earlier in a random permutation
than all its neighbors. To avoid storing the permutation explicitly, they use a hash-based
simulation of a random permutation. This achieves the Caro-Wei bound in expectation
while using sublinear memory.

However, these works remain theoretical without practical implementation. Approaches
developed with the goal of practical applicability are the semi-streaming algorithms by Liu
et al. [30], which we discuss next.

Liu et al. [30] propose three semi-streaming algorithms for the MIS problem that mainly
prioritize memory efficiency, a greedy and two swap-based algorithms. The greedy algo-
rithm performs a single pass over the graph, greedily adding nodes to the independent set.
It assumes nodes in the input file are sorted by degree in ascending order. Their swap algo-
rithms perform local search like operations with one-%£ and two-k swaps. Only the state of
each node is kept in memory, while adjacency lists are accessed through full streams over
the graph. Each swap requires three passes over the input. During these three passes, as
many swaps as possible are executed. The algorithm repeats iterations of three-pass swap
operations as long as improvements are found.

While Liu et al.’s algorithms achieve very low memory consumption, there remains a
gap in practical streaming algorithms that balance memory efficiency with solution quality.
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CHAPTER

Main Contribution

The following chapter provides a detailed explanation of the algorithms we developed.
After describing the common basis of preprocessing and partitioning in Section 4.1} we
explain the two general approaches to computing MIS in a streaming setting: block-wise
solving and reducing to a global kernel in Section and Section respectively. Each
approach follows a general idea executed in different configurations with varying trade-offs
in terms of running time, memory consumption, and result quality.

4.1 Preprocessing and Partitioning

Each of our proposed approaches follows the same broad structure, which can be briefly
summarized as follows. First, a preprocessing step identifies nodes that can be trivially
removed from the graph and creates a mapping to a reduced graph that excludes these
nodes. Then, a partitioning is computed on the reduced graph which is then, in an additional
stream, used to copy each block to a separate file. These resulting blocks are then used by
the different algorithms described in the later sections in order to compute an independent
set for the reduced graph. After that, the independent set of the reduced graph is lifted to a
solution for the entire graph. Algorithm|l|shows an overview of this preprocessing element
that is used in the later algorithms and is explained in detail in the following.

4.1.1 Preprocessing

Before partitioning the graph, the algorithm starts by streaming over the graph once to
determine which nodes to remove. The main motivation for this is that nodes with ex-
tremely large degrees can have negative impact on the partitioning quality under balance
constraints, especially in the streaming partitioning setting. At the same time, it is very un-
likely that any maximum independent set includes these nodes. Identifying and removing

11
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Algorithm 1 preprocessAndPartition
Input : Graph G, number of blocks &
Output: Independent Set /, partitioning p, mapping to reduced graph m
Function preprocessAndPartition (G, k) :
I+ 0
I, m < streamReduce (G)
p < heiStream (G, m,k)
extractBlocksAsFiles (G, m,p)
return /,p,m

these nodes beforehand avoids those problems while simultaneously offering the possibil-
ity to apply further simple reduction techniques in order to decrease the size of the graph
and by that speed up any subsequent algorithms.

Reductions that can be applied while streaming over the graph are limited to those that
do not require more information than the immediate neighbors of a node. These reduction
rules are based on the node degree and remove nodes with especially small or large degrees.

Exact reductions. For the small degree nodes, we apply the degree-0 and degree-1
reductions, meaning marking all nodes u with deg(u) < 1 as "to be removed" and adding
them to the IS. For the degree-1 nodes, we also mark their respective neighbor as "to be
removed". While counting the degree of a node, we only consider nodes that have not yet
been marked as removed.

The effectiveness of this largely depends on the node order. While it is possible to keep
track of the node degrees in order to recognize that removing some nodes leads to new
degree-1 nodes that can possibly be reduced, we do not have access to the neighbors of
past nodes and therefore would not be able to apply the reduction. Figure illustrates
an example where the node order impacts the applicability of reductions. Therefore the
resulting subgraph is still potentially degree-1 reducible. Doing multiple streams over the
graph to catch all of these is not worth it because the expected reduction is relatively small
while each stream over the full graph is expensive.

Heuristic reductions. Heuristically removing nodes with large degrees initially aims
at removing nodes whose number of incident edges is large enough such that they cause
problems for the partitioning. In order to compute blocks with similar memory size, we
compute a partitioning on a weighted graph, assigning each node v the weight deg(v) +
1, in order to account for both the node itself and its edges, which is further explained
in Section Due to this weighting, any node u with deg(u) > W makes a
balanced partitioning impossible while also leading to large edge-cuts. Additionally, we
can optionally remove nodes that have significantly more neighbors than the average node.
This is not strictly necessary, but it is generally a sensible heuristic reduction, as these
nodes are unlikely to belong in any optimal IS. This is done in other MIS approaches, like
online-MIS [10]. We know the average node degree to be |—‘1/| Y uey deg(u) = 2P Since

ot . ; \4
we can not compute the standard deviation without performing a full stream over the graph

12
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Figure 4.1: This figure shows two graphs that are identical in structure. The numbers next to the
nodes indicate the order in which the nodes appear in the input stream. The extend
to which the graphs get reduced during the preprocessing reductions varies depending
on this ordering. After a single stream, the first graph gets completely reduced by
multiple applications of the degree-1 reduction. For the second graph, the degree-1
reduction can only be applied once.

beforehand, we define significantly large node degrees as those larger than the average node
degree multiplied by a constant factor. Both of these node removals are heuristic and not
necessarily optimal. Therefore, any independent set computed on the resulting subgraph is
potentially not maximal.

Preprocessing application. The preprocessing step only identifies which nodes should
be removed and creates a mapping to a subgraph excluding these nodes. It does not write
the reduced subgraph into a file, instead the mapping is applied on the fly whenever stream-
ing over the graph. Writing the reduced graph in a new file during a second stream would
be slower in most cases. However, depending on how much the graph got reduced and how
often the subsequent algorithms stream over the graph, there can be some rare cases where
this would be faster.

After the algorithms solving the MIS on the reduced subgraph finish, we need to map the
solution for the subgraph back to the full graph. Furthermore, the degree-0 and degree-1
reductions of the preprocessing not only remove nodes from the graph, but also add them
to the independent set. Therefore, as a final step, we add these to the independent set.

Size of the Reduced Graph

A challenging part of reducing the graph in a streaming setting is keeping track of the
number of edges that remain in the reduced graph. We need to provide this number as an

13
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input for HeiStream, in order to configure input parameters that are required to maintain
balance. We start by explaining the issues that prevent us from obtaining the exact edge
count. Then, we present three different approaches to estimate the number of edges in the
reduced graph.

Problem description. The naive way of obtaining the precise number of remaining
edges is counting during another full stream over the graph. However, streaming over the
graph is relatively slow, especially for large input graphs. The alternative is maintaining
an edge count while reducing the graph. The difficulty here lies in removing an edge only
once, regardless of whether one or both adjacent nodes get removed from the graph. In
most cases we can keep track of this by, whenever removing a node, reducing the edge
count of this node to zero and reducing the degree of each neighboring node by one. There
is however a scenario where this does not work. Lets say some node v has degree one
and a neighbor v with v < u. The id of v being smaller than the id of © means that its
neighborhood has been read in the past and will not appear again. We call nodes like v
"post-read removed nodes". As we can not store the neighbors of all nodes, we only know
how many but not which neighbors v has. Therefore, we can not directly reduce the edge
count of the neighbors of v by one. Any attempts at separately accounting for these edges
fail in the case where v has neighbors that are also post-read removed nodes. There is no
way of detecting these cases and avoiding to possibly remove the same edge twice. Figure
illustrates how this creates situations where the knowledge about the reduced graph is
not sufficient to determine the correct edge count. Therefore we need to derive our edge
count in a different way.

Estimation methods. After applying the reductions, the remaining graph contains two
sets of nodes: the set of nodes that are marked as kept A and the set of post-read removed
nodes B. We know the degrees of each of these nodes, which gives us the two key metrics
to derive an edge count for the reduced graph: m, = >, deg(a) andmy, = >, deg(b),
representing the number of edge endpoints incident to kept nodes and the number of edge
endpoints incident to post-read removed nodes respectively.

The edges in this graph can be grouped in three sets: the set of edges connect-
ing nodes within A, F44 = {(u,v)|lu,v € A}, the set of edges connecting nodes
within B, Egp = {(u,v)|u,v € B} and the set of edges connecting nodes between
Aand B, Eap = {(u,v)lu € Ao € B}. By definition, m, =2 |Ea| + |Eap|
and my = 2 |EBB| + |EAB|'

The simplest way to derive an estimate for | £y 4| from this is taking “*. This is an upper

bound to the actual number, as % = |Eaal| + %, meaning the sum of degrees of the
nodes in A divided by two includes every edge between the kept nodes and additionally
edges between a kept node and a post-read removed node.

We can try to obtain a closer value to |E 44| by estimating based on the graph properties
we know. We consider two different variants: a node-based and an edge-based estimation.
For the node-based estimation, we assume that each edge endpoint incident to a node in A
connects to a random node. Given m, edge endpoints and | A|+ | B| total nodes of which | A|
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4.1 Preprocessing and Partitioning

SO"/ “‘Og SO'/' ~*\~Og

(a) Each of the two graphs are shown in the state after applying one preprocessing-reduction
stream. The numbers next to the nodes indicate their order in the input stream. Nodes appear
in three possible states: kept (filled circles), removed (unfilled outlines), and post-read removed
(blue outlines). Edges are shown as kept (solid lines) or removed (dotted lines). In both graphs,
nodes 7, 8 and 9 got removed by the degree-1 reduction rule, turning each of the nodes 0,3 and
6 into post-read removed nodes.

(b) This figure illustrates the information available after the reductions. The exact edge set is
no longer known. Only the node states and their degrees after reduction are retained, with
the latter shown in blue. Note that the degrees still include edges to post-read removed nodes.

When these nodes were removed, their neighbors were no longer accessible, preventing degree
updates for those neighbors.

Figure 4.2: Two slightly different graphs are shown. After applying the reduction process, both
yield identical node states and degree information. At the point when nodes are re-
moved, access to the neighbors of post-read removed nodes is lost. Therefore, the
available information after reduction is insufficient to infer the original edge count:
the first graph contains two remaining edges, while the second has four.

. . Al-1
are kept, we get an estimation of mam

edges.

considering we exclude the possibility of self-

For the edge-based estimation, we assume each edge to be placed randomly in the graph.
For this we assume each endpoint of an edge to connect to a random node, considering the
node degrees. We have % edges of which each has a chance of (—22—)? to be placed

2

Ma+my
with both edge endpoints in A. This results in an estimated edge count of 5——*—.
2:(ma+ms)
Having established these methods for estimating edge counts, we can now proceed to the
partitioning phase, which relies on an accurate edge count to compute a balanced division

of the graph.
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4 Main Contribution

4.1.2 Partitioning

The next step computes a partitioning on the preprocessed graph to create smaller, local
sections of the graph that can be processed separately. The goal is to create blocks that
require a similar amount of memory when loaded.

We use HeiStream [12], a streaming graph partitioner, with slight adaptations. First, we
apply the mapping to the subgraph that was computed during the preprocessing. HeiStream
loads the graph into memory in batches. While reading in these batches, we apply the map-
ping. Nodes and edges that are marked as removed are ignored, and remaining elements
are mapped to their new ids in the reduced graph. The configured batch-size refers to the
reduced graph, where removed nodes and edges are not counted.

These weights indicate how much memory this node requires such that a balanced parti-
tioning corresponds to an equal memory size of each block.

Furthermore, we add weights to the nodes. The goal is to add the weights, such that a
balanced partitioning corresponds to an equal distribution of memory size per block. We
approximate the distribution of the required memory for a graph by setting the total weight
to |V] 4+ 2 - |E| and weighting each node u with deg(u) + 1. Thereby, we assume each
node and incident edge to require the same amount of memory. It would also be possible
to apply other weightings here, that more accurately reflect the actual memory usage of
subsequent algorithms per node and edge. However, the assumption of each node and edge
requiring the same amount of memory is a good approximation for most algorithms and
graph storage formats.

After HeiStream completes, we perform another stream over the graph and store each
block of the just computed partitioning in a separate binary file. During this process, we
read the graph into a buffer while applying the mapping to the subgraph. When the buffer
fills, we flush it to the corresponding binary files. These binary files enable reading each
block in isolation without requiring a full stream to acquire this block.

4.2 Block-Wise Solving

The main idea of the block-wise solving approach is to find an independent set on the
full graph by solving each block independently. In order to be able to treat a block as an
independent subgraph, we remove boundary nodes that could potentially create conflicts
with neighboring blocks. Building on this idea, we implemented three algorithms. Section
4.2 T]introduces the Base Algorithm while sections and[.2.3introduce Repartitioning
and Boundary Local Search, each an extension of the Base Algorithm.

4.2.1 Base Algorithm

After the preprocessing step, we handle the blocks sequentially, completely solving a block
before reading in the next. We start by reading the block from disk and removing nodes
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4.2 Block-Wise Solving

Algorithm 2 Structure of Base Algorithm
Input : Graph GG, number of blocks k
Output: Independent Set /

I + preprocessAndPartition (G,k)

for: < 1tokdo
| I < solveBlock (4,1, false)

return /

Algorithm 3 solveBlock
Input : block number ¢, Independent Set I, boolean uselnitialSolution
Output: Independent Set /
Function solveBlock (4, I, uselnitialSolution) :
(Vi, E;) < loadBlockFromFile (i)
V! <~ removeNodeWithNeighborsInIs (V;, 1)
/* induce subgraph */
G; « GV]]
if uselnitialSolution then
| [ <+ CHILS(G,I)
else

I; <~ runExistingSolver (G})

I+ TUl
return /

that potentially create conflicts. A conflict occurs when two nodes from different blocks
that are connected with a cut edge get added to the independent set. Therefore, first we
remove all nodes that have a neighbor that is already in the independent set. Second, for
boundary nodes not connected to a node in the independent set, we keep the node and re-
move only the incident cut edges. We do not need to remove these nodes, because they are
not adjacent to any node in the current independent set and can thereby not directly create
a conflict. In case this node does get added to the independent set, adjacent nodes from
neighboring blocks will be removed when processing these blocks. This creates an inde-
pendent subgraph that we map into a consecutive id-space and solve using non-streaming
algorithms. Algorithm [2| shows an overview of this overall procedure, using a subroutine
outlined in Algorithm

We consider three algorithms for solving these subgraphs. The first option is Redu-
MIS [26], a reduction-based solver. ReduMIS applies exact and heuristic reduction rules to
fully solve MIS instances, though the solution is not necessarily optimal. The second vari-
ant is CHILS [[18], a fast local search algorithm that alternates between improving multiple
concurrent solutions and solving the difference-core, the parts of the graph where the so-
lutions differ. The third option, R+CHILS, combines the DataReductions [[17] library with
CHILS. The DataReductions library includes fast and exact reduction rules that, unlike
ReduMIS, do not produce a complete solution but reduce the block-graph to a kernel. We
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4 Main Contribution

Block 1 Block 2

Figure 4.3: The figure shows a 2-partitioning on a graph. When being solved, the Base Algorithm
removes all cut edges before solving Block 1. This leaves the red node as a deg-1 node
which means it gets added to the IS. When later solving Block 2, all the blue nodes get
removed because the red node has already been added to the IS and thereby excludes
all its neighbors.

solve this kernel using the local search algorithm CHILS. We then lift this kernel solution
to a full subgraph solution by reconstructing the stored reductions.

After solving each block, we obtain a valid solution for the full graph, though the solution
usually is not optimal, leaving room for improvement especially in parts of the graph that
are close to boundaries between blocks. In the process of making subgraphs independent,
we greedily remove boundary nodes and cut edges and solve the simplified version of these
graphs. This leads to suboptimal decisions, made because of missing context. These sub-
optimal decisions are considered final, and the solving of subsequent neighboring blocks
is based on them. The Base Algorithm does not reconsider these decisions at any point.
Consider Figure 4.3|for an example where this can lead to far from optimal solutions.

The common way to improve an existing solution is local search. The difficulty with
local search in a streaming setting is obtaining a local section of the graph on which local
search can be executed. In the current model, we only have access to the graph within
a single block, making local search across boundaries not possible. In the following we
explain approaches to improve upon solutions found by the Base Algorithm.

4.2.2 Repartitioning

The Repartitioning approach extends the Base Algorithm by repeating the procedure with
a different partitioning, as outlined in Algorithm 4, The general idea is that the blocks
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4.2 Block-Wise Solving

Algorithm 4 Structure of Repartitioning Algorithm
Input : Graph G = (V, E), number of blocks &
Output: Independent Set [

I,p,m < preprocessAndPartition (Gk)

for: < 1to kdo

| [ < solveBlock (i, 1, false)

w < cutEdgeWeighting (p)

G+ (V,E,w)

Prew < heiStream (G',m, k)

extractBlocksAsFiles (G, m, Ppew)

for i < 1to Lk do
| I <+ solveBlock (i,1,true)

return /

resulting from the second partitioning are expected to contain sections of the graph that
were distributed across multiple blocks in the previous partitioning.

After applying the Base Algorithm, we compute a second partitioning with the same k.
To create a partitioning that differs from the first, we assign large edge weights to the
cut edges of the previous partitioning and run a partitioning that optimizes for the weighted
edge-cut. To minimize overhead, we assign the edge weights during the in-memory reading
of graph batches while executing HeiStream, rather than creating a weighted copy of the
graph beforehand. The preprocessing is not repeated, HeiStream is called with the same
map to a subgraph from the initial preprocessing.

Using this new partitioning, we repeat the procedure of the Base Algorithm. We write the
blocks as binary files, handle each block individually and remove boundary nodes to create
independent subgraphs. However, instead of solving subgraphs from scratch, we build
upon the solution from the first iteration and use CHILS to find improvements through local
search. Since the partitioning differs from the first one, the blocks now contain sections of
the graph that were previously spread across multiple blocks, as illustrated in Figure (4.4
Local searching on these sections is expected to lead to the most improvement, because
they were not yet considered as a coherent section by any solver.

This process could theoretically be repeated multiple times, each with new partition-
ings based on additional edge weights. However, the expected improvement decreases
with each iteration. Local search operations work on small, local, graph regions. The
first repartitioning provides the direct benefit of enabling local search on sections that were
previously fragmented across different blocks. As described earlier, these sections are par-
ticularly prone to suboptimal node assignments. Additional repartitioning and local search
iterations do not provide this advantage. Considering that each repartitioning iteration in-
troduces a large 1/0 overhead, more than one repartitioning iteration is unlikely to achieve
good results.

While this approach does achieve the goal of local searching across previous boundaries,
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(a) Graph with the first partitioning. The circle (b) Graph with the second partitioning. The
represents the entire graph, dotted lines indi- grey areas correspond to the boundary re-
cate the boundaries between blocks, and the gions from the initial partitioning. A large
grey areas mark regions surrounding these portion of these now lie within individual
boundaries. blocks.

Figure 4.4: Example illustrating how Repartitioning can improve solutions in the boundary re-
gions of the initial partitioning.

the local search is not focused on these areas. Instead we spend considerable time trying
to improve solutions in other regions of the graph, that were already solved with a strong
solver in the first iteration. This is not entirely ineffective since the assumptions made when
creating independent subgraphs affect the solution of the entire graph. However, areas
closer to cut edges of the first partitioning are where the most improvement is expected.

4.2.3 Boundary Local Search

A different approach to extending the Base Algorithm with local searching is Boundary
Local Search. The main idea is to keep small sections around boundaries in memory after
solving a block. When a neighboring block is processed and sections on both sides of
the boundary are in memory, we perform local search on this area. Algorithm |5| offers an
overview in pseudocode.

In the Boundary Local Search approach, we keep the same overall structure as the Base
Algorithm: the graph gets preprocessed and partitioned, then each block gets read in and
solved separately. After solving a block as described in Section we first collect the
sections around the boundaries that we later want to local search on. We start by finding
all boundary nodes and grouping them by the neighboring blocks they are adjacent to.
For each of these neighboring blocks we start a breadth-first search, initialized with the
boundary nodes adjacent to that block, resulting in a section around the boundary. These
sections only include nodes from the currently loaded block. We keep these sections in
memory until reading their respective neighboring blocks.

When we collect the section on the other side of the boundary and thereby have the entire
area around the boundary available in memory, we map the two sections into a subgraph.
We make this subgraph independent of the rest of the graph using the same approach as
for block-graphs, i.e. by removing all nodes that have an outgoing edge connected to a
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4.2 Block-Wise Solving

Algorithm 5 Structure of Boundary Local Search Algorithm
Input : Graph G, number of blocks k, block ordering o : {1,...,k} — {1,...,k}
Output: Independent Set [

I,m < preprocessAndPartition (G,k)

for o(i) with i < 1 to k do
I + solveBlock (i, I, false)
foreach j € N(i) do
Vboundary < getBoundaryNodes (¢, 7)
section; ; <~ computeSection (Visundary)
/* if block j already visited */
if o(j) < o(i) then
Glocal <— merge(section; ;, section;;)
;ocal + createlIndependentSubgraph (Gicar)
Lipcal < extractISs (I, G, ..,)
I} s < improveIS (Gl . Liocal)
I < update(!, I,.,;)
free(section; j, section;;)

else
| store(section; ;)

return /

node in the independent set. Importantly, we remove these nodes only at this point, not
while initially storing sections. This is necessary because the independent set can change
in the meantime, affecting which nodes should be kept or removed. We then execute local
search on the boundary subgraph, initialized with the current independent set solution.
Afterwards, we remove both sections from memory. Figure visualizes the process of
adding and removing sections.

Unlike Repartitioning, this approach requires no additional streams or I/O operations,
and local search is executed specifically on targeted sections around boundaries. The main
drawback is the memory required to keep the sections in memory until the respective neigh-
boring block is processed. We reduce memory consumption by keeping the first-read side
smaller, since it is stored longer, while the other side can be larger as it is immediately
processed and removed from memory. Another improvement is reading the blocks in a
specific order to reduce the number of sections that are in memory simultaneously.

Scheduling

Scheduling aims to create an ordering in which the blocks are processed such that the
number of sections kept in memory simultaneously is minimized. To find this ordering, we
examine the quotient graph, where each node represents one block and each edge represents
a boundary section that must be stored.

The quality of a node ordering can be evaluated as follows: We initialize a counter-
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(a) The partitioned graph in its initial state. (b) The partitioned graph after the first block is

(c) The partitioned graph after the second block (d) The sections around the boundary between
is solved. The two neighboring sections be- block 1 and 2 got removed from memory.
tween block 1 and 2 are now both in memory. The other sections still remain, until the
They get combined to a subgraph on which a respective neighboring section is read into
local search is executed. memory.

Figure 4.5: This figure visualizes the sections around boundaries that are stored in memory. A
block being marked in grey indicates that it is solved. The green outlines show sections
that are stored in memory.

variable z = 0, that represents the number of sections currently stored in memory. For each
node in the ordering, we increase x for each neighbor that has a later position in the ordering
and decrease it for each neighbor with an earlier position. The increase corresponds to
storing a section when the respective neighboring section is not yet in memory, while the
decrease corresponds to removing an already stored section of the respective neighboring
block. The relevant metric is the maximum value x reaches during evaluation, as this is the
number of sections that must fit in memory simultaneously. The scheduling objective is to
find a node ordering that minimizes this metric. We developed several approaches for this.

Global Greedy. The first is a simple greedy strategy that always picks the node with the
best immediate effect on the counter x. We maintain a score for each node indicating how
it would affect the counter if picked next. Initially, we set each node’s score to its degree.
When adding a node to the ordering, we decrease each neighbor’s score by 2, since picking
that neighbor would now remove the connecting edge instead of adding it. We keep nodes
with their scores in a min-priority queue and always select the node with the lowest score.

Global Greedy with Heuristics. The second idea extends the greedy idea by heuristi-
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4.3 Block-Wise Reductions

cally factoring in the degrees of the neighbors of a node. In the basic greedy approach, a
node that has a small degree itself but with very high-degree neighbors would be picked
relatively early. The sections added to memory in this step will probably only be removed
much later. Generally nodes with small-degree neighbors should be prioritized over nodes
whose neighbors all have large degrees. Based on this idea, different heuristic weightings
can be applied. For example, instead of initializing the scores of a node v with the num-
ber of its neighbors deg(u), we weight each neighbor based on their respective degree,
D v N () 9¢90) \yith dy,y = 2121, When adding a node w to the ordering, we therefore also

davg V]
need to adapt the neighbor’s scores by 2 - de9() “instead of the constant 2 from the simple

Greedy approach. s

Local Crawl. The third approach locally crawls over the graph, similar to a breadth-
first search. We start with a random node and always pick the node that would remove the
most sections currently stored in memory. We maintain a max-priority queue for all nodes,
increasing each neighbor’s priority by one when a node is added to the ordering. Compared
to the greedy approaches, this achieves more localized movement over the graph.

Local Crawl with Relative Scores. This last approach follows the same local-crawling
idea, but uses different priorities. The basic neighborhood crawl only considers how many
currently stored sections would be removed when picking a node while disregarding how
many sections get added. Handling this like in the greedy approach has the drawback of pri-
oritizing small-degree nodes, even when they are widely distributed across the graph, which
can be suboptimal overall. Therefore we score each node by the fraction of neighbors al-
ready processed and maintain them in a max-priority queue. This preserves local-crawling
properties while also accounting for the degrees of the nodes.

We expect scheduling to be most helpful when the quotient graph is relatively sparse.
For dense quotient graphs, node ordering matters less because most sections must be kept
in memory regardless of the processing order. The drawback of every approach except
basic local crawling is that they require knowledge of the quotient graph. Obtaining that
requires additional work, although the overhead can be minimized when integrating this in
a stream that is done anyway, e.g. when stream-copying the blocks in separate files.

4.3 Block-Wise Reductions

The second general approach to solving the MIS in a streaming setting is based on reduc-
tions. In contrast to the block-wise solving approaches that create independent subgraphs
that get solved without considering the rest of the graph, this approach aims at creating a
kernel of the full graph by applying globally optimal reductions on each block. This kernel
can then, depending on its size, either get solved with a non-streaming MIS solver or using
the streaming approach described previously.

This idea is implemented in two variants: a basic algorithm explained in Section
and a more complex version, that supports further reductions in Section4.3.2]
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Algorithm 6 Structure of Basic Reduction Algorithm
Input : Graph G, number of blocks k, memory threshold ¢
Output: Independent Set /

I, m + preprocessAndPartition (G,k)

for i+ 1tok do
G; + loadBlockFromFile (%)

K;, I; < applyReductions (G;)
storeKernel (K, 1)
I+ 1TUI

Kgiobal < mergeKernels (K,..., Ky)

if ‘Kglobal‘ < t then
Iierner < solveInMemory (K gopa)

else
| Ikernet < solveStreaming (Kgppar)

I + liftSolution (I, Iyerner)
return /

4.3.1 Basic Approach

Reduction rules are a well-established technique for solving the MIS problem, but their
applicability in streaming settings is limited. Most reduction rules require access to local
neighborhoods that extend beyond the immediate neighbors of a node. The preprocessing
already applies reductions within the constraints of a single stream, but the selection of
applicable rules remains small. Therefore, we now want to perform reductions on entire
blocks of the graph. The crucial part here is to apply these reductions while considering
the context of the neighboring blocks in order to ensure global optimality. Algorithm [6]
outlines the overall structure of this approach.

When processing a block, the algorithm first reads all nodes stored in the corresponding
binary file. This subgraph then gets extended by creating representative nodes for the
boundary nodes from neighboring blocks. This is possible because the format in which
the blocks are stored includes the cut edges and thereby provides the necessary context of
the surrounding blocks. If multiple internal nodes connect to the same external node, only
a single representative is created. External nodes that have already been removed while
reducing a neighboring block get omitted. Figure 4.6/shows an example of this.

This process results in an extended subgraph consisting of two node sets: the origi-
nal in-block nodes read from the file, and external nodes representing the context of the
neighboring blocks. We want to apply reductions on this graph with additional constraints:
only in-block nodes can be removed, and in-block boundary nodes can only be removed if
they do not get added to the independent set. These constraints only determine whether a
reduction can get applied, they do not change the behavior of the reductions themselves.

In order to apply the reductions we use an adapted version of ParFastKer [24], which was
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4.3 Block-Wise Reductions

V3
Vs
(a) The block-graph G[V}] is read from a binary (b) The block-graph extended with all incident
file. The nodes within the block are referred cut edges.

to as in-block nodes.

(c) Representative nodes for the adjacent nodes from neighboring blocks get added to the graph.
If a neighboring block is already reduced, look up whether any of the cut edges incident to this
neighboring block got removed and skip them accordingly. The resulting graph now consists
of the in-block nodes and additional "external nodes", representing nodes from neighboring
blocks.

Figure 4.6: The process of adding the context from neighboring blocks to a block-graph. The
different blocks are indicated with dotted lines. A section with a grey background
represents a block that has already been reduced. A section with a white background
represents a block that has not been reduced yet.

originally written for parallel reductions in a shared memory setting. While ParFastKer in-
cludes elements that rely on having the full graph in memory, the core approach of applying
local reductions that do not cause conflicts between blocks can be reused here. The result-
ing kernel of a block gets stored in a file. After processing all blocks, a global kernel is
created based on all partial kernels.

This global kernel is then solved using a different independent set solver, depending on
its size. Small global kernels can be solved with an in-memory algorithm. If the remaining
kernel is large, we need to apply a streaming algorithm like one of the block-wise solv-
ing approaches.

The implementation of this approach builds on the assumption that the applied reduction
rules do not add new edges or alter existing ones. Edges can be removed but under no
circumstances redirected to a different node. Moreover, using this set of reduction rules,
edges are only removed when an incident node is removed. This makes it straightforward
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Figure 4.7: Visualization of a V-shape reduction. The nodes z,y and z get folded to a single
node z’.

and memory-efficient to track whether an edge still exists, by just looking up which nodes
have been removed.

4.3.2 Vertex Fold Extension

The base approach of the reductions algorithm builds on the assumption of edges not being
redirected. Removing this constraint allows the usage of further reduction rules, which can
further reduce kernel sizes while remaining optimality. However, this requires substantial
modifications to the algorithm, leading to a new variant of the algorithm that we refer to as
Reductions+VF in the following.

Vertex Folding. An example for a reduction that changes existing edges is the V-shape
reduction [[19,127]]. Let z be a node with degree two and its two neighbors y and z are non-
adjacent. Then, z, y and z can be replaced with a new node z’ that is adjacent to N(y) \ x
and N(z) \ z. This process of combining vertices is called folding. An example for this
reduction is visualized in Figure

After the remaining subgraph is solved, the solution gets lifted as follows: if 2’ is in
the independent set of the subgraph, y and z get added to the solution. If 2’ is not in
the independent set, x gets added to the solution. In practical implementations of this
reduction, usually no new node gets added to the graph. Nodes y and 2 get removed and
the neighborhood of z gets changed such that it resembles x’. This involves changing
edges that were previously incident to y and 2 to now be incident to . These edges violate
assumptions we rely on, requiring extensive changes to the implementation. Previously,
we relied on the fact that, when reducing a block, the set adjacent cut edges after applying
reductions is a subset of the set of adjacent cut edges before applying the reductions. With
vertex-fold reductions, this assumption is not met anymore.

Algorithm adaptation. Allowing edge redirections requires two main alterations of our
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4.3 Block-Wise Reductions

algorithm. First, the handling of cut edges must be adapted: both how context from neigh-
boring blocks is incorporated during block processing and how partial kernels are stored,
need to account for the possibility of edges that are not present in the original graph. Sec-
ond, after solving the kernel, the full solution needs to be lifted by reversing the transfor-
mations introduced by the reductions. The following paragraphs detail these changes.

We start by explaining the change in the handling of the cut edges. Due to the possibility
of changing cut edges, we now need to explicitly track the current set of cut edges. In
the following, we consider neighboring blocks distinguished in two groups: blocks that
already appeared in the block order and therefore have been reduced, which we call reduced
neighbors and blocks that have not been reduced yet, which we call non-reduced neighbors.

Whenever we finish reducing a block, we keep all cut edges in memory, that are incident
to non-reduced neighbors. When loading a new block in memory and adding the external
context from the neighboring blocks, we handle the cut edges towards reduced neighbors
and non-reduced neighbors differently. The non-reduced neighbors get handled in the same
way as before: we add each target of the cut edges as an external node. However, cut edges
connected to a reduced neighbor might have changed. Therefore we skip all of these cut
edges written in the block file and instead add all cut edges from our in-memory storage
that belong to this block.

Figure visualizes this process. Keeping these cut edges in memory can create issues
for large graphs. In principle, this is the same issue that occurred with the Boundary Local
Search approach. Even though to a lesser extend, because we only need to store the cut
edges and not a section around them as well. Computing a scheduling is again helpful to
reduce the peak amount of memory used.

Furthermore, there are complications when storing the kernel of a block after it has been
reduced. When writing a block-kernel to file, we need to include the cut edges. However,
when writing a kernel of a block, usually not all neighboring blocks have been reduced yet.
Cut edges towards non-reduced blocks might change, once that neighboring block gets
reduced. Without the vertex folding reductions, this is not an issue. The set of cut edges
remaining in the final kernel is a subset of the set of cut edges that is present when writing
a block-kernel. Therefore, we can add all currently remaining cut edges to the block-kernel
file. When combining the block-kernels to a global-kernel in the end, we can check for each
cut edge present in the block-kernel files, whether they have been removed or not. In the
scenario where edges change, we do not have a way of looking up the current state of each
cut edge. Therefore we can only write those cut edges in our block-files that are not going
to change later on. In total, this means, every cut edge is written in one block-kernel file
while it is missing in another. Adding the opposite direction of the edge while combining
the block-kernels to a global-kernel is not trivially possible for large global-kernels that do
not fit in memory. Therefore, we need to store the cut edges in some separate data-structure.
This can either be an in-memory data structure or, in case we assume that not all cut edges
of the kernel fit in memory, a file where we separately store the cut edges while writing the
block-kernels.

The second important addition due to the advanced reduction rules is the solution lifting
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(a) The block-graph G[V}] is read from a binary (b) The block-graph gets extended with all inci-

file. The nodes within the block are referred dent cut edges that connect to a neighboring
to as in-block nodes. block that has not been reduced yet.

(c) The cut edges to the reduced neighboring (d) Representative nodes for the adjacent nodes

blocks got potentially modified in the process from neighboring blocks get added to the
of these reductions. The modified cut edges graph. The resulting graph now consists of
are not necessarily a subset of the original the in-block nodes and additional "external
cut edges but can be entirely different edges. nodes", representing nodes from neighboring
These modified cut edges are read from mem- blocks.

ory and added to the graph.

Figure 4.8: The process of adding the context from neighboring blocks to a block-graph, consid-
ering the possibility that the cut edges got modified. The different blocks are indicated
with dotted lines. A section with a grey background represents a block that has already
been reduced. A section with a white background represents a block that has not been
reduced yet.

after solving the global-kernel. Previously, lifting was not necessary as reductions just re-
moved nodes and edges from the graph and added nodes to the independent set, all of which
can be done immediately. With vertex folding, reductions may replace multiple nodes with
a single representative, and the lifting decision depends on whether this representative ap-
pears in the kernel’s independent set. For example, a fold might replace three nodes a, b, ¢
with one representative such that if the representative is in the kernel solution, nodes a
and b are added to the final independent set, otherwise node c is added. To support this, the
algorithm must store the inversion rules for each fold operation until after an independent
set is computed on the global kernel. Then, these inversion rules are applied in reverse
order of their creation to reconstruct the solution for the original graph.
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CHAPTER

Experimental Evaluation

This section evaluates the algorithms presented in this thesis. We begin by describing
the experimental setup and datasets, then analyze individual algorithm components to de-
termine optimal configurations, and finally evaluate the complete algorithms in terms of
running time, solution quality, and memory consumption.

5.1 Setup

All algorithms are implemented in C++17 and compiled with g++-14 using full optimiza-
tion (-O3 flag). Experiments are run on a single core of a machine with a sixteen-core Intel
Xeon Silver 4216 processor at 2.1 GHz, 100 GB of main memory, 16 MB of L2 cache and
22 MB of L3 cache running Ubuntu 20.04.1.

The graph instances used in our evaluation are shown in Table Graphs are stored
in METIS format with edges sorted per node. The dataset includes social networks, web
graphs, mesh graphs, and road networks collected from various sources [4, 14, [29]. We
categorize the graphs into three sets for evaluation purposes: a tuning set primarily for
parameter studies, a test set of large graphs for algorithm comparisons, and a set of huge
graphs for large-scale experiments.

We compare our algorithms Base Algorithm, Repartitioning, Boundary Local Search,
Reductions and Reductions+VF against state-of-the-art in-memory and semi-streaming al-
gorithms for the maximum independent set problem. The in-memory solver ReduMIS [26]]
is used for comparison on the Test Set, while the semi-streaming vertex-swap algorithms
from Liu et al. [30] are included for both the Test Set and Huge Graphs.

For the visualization of result quality, memory usage and running times of the differ-
ent algorithms, we use performance profiles [[11]. Performance profiles compare multiple
algorithms by evaluating their results on a per-instance basis. For each test instance, the
performance of an algorithm is expressed as a ratio or performance factor 7 relative to
the best result obtained on that instance. The x-axis of the plot shows this factor 7, while
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Table 5.1: Graphs for experiments.

Graph n m Type Graph n m Type
Tuning Set
buddha-sorted 1087716 1631574 Mesh dragonsub-sorted 600 000 900000 Mesh
ecat-sorted 684 496 1026744 Mesh turtle-sorted 267534 401178 Mesh
bay-sorted 321270 800172 Road col-sorted 435 666 1057066 Road
fla-sorted 1070376 2712798 Road ny-sorted 264 346 733846 Road
amazon-2008-sorted 735323 3523472 Social as-skitter-sorted 554930 5797663 Social
citationCiteseer-sorted 268495 1156647 Social cnr-2000-sorted 325557 2738969 Social
coPapersCiteseer-sorted 434102 16036720 Social enron-sorted 69 244 254449 social
loc-gowalla_edges-sorted 196 591 950327 Social web-Google-sorted 356 648 2093324 Social
roadNet-PA 1088092 1541898 Road roadNet-TX 1379917 1921660 Road
Test Set
Bump_2911 2852430 62409240 Mesh Flan_1565 1564794 57920625 Mesh
FullChip 2986999 11817567 Circuit  ca-hollywood-2009 1069 126 56306653 Road
cit-Patents 3774768 16518947 Citations com-lj 3997962 34681189 Social
com-orkut 3072441 117185083  Social com-youtube 1134890 2987624 Social
in-2004 1382908 13591473 Web soc-lastfm 1191805 4519330 Social
Huge Graphs
arabic-2005 22744080 553903073 Web com-friendster 65608366 1806067135 Social
it-2004-sorted 41291594 1027474947 Web nlpkkt240 27993600 373239376 Matrix
orkut 3072441 117185082 Social rgg_n26 67108864 574553645 Artificial
RHG-1b 100000000 1000913106 Artificial RHG-2b 100000000 1999544833 Artificial
sk-2005-sorted 50636154 1810063330 Web twitter-2010 41652230 1202513046 Social
uk-2007-05 105896555 3301876564 Web webbase-2001 118142155 854809761 Web

the y-axis represents the percentage of instances where an algorithm achieves performance
within 7 of the best result. Depending on whether the best value of a target metric is the
largest or the smallest, the x-axis is decreasing or increasing respectively. Each algorithm
appears as a separate line on the plot, producing a non-decreasing curve. Algorithms for
which the respective lines rise quickly and reach higher y-values perform better overall, as
they achieve near-best results on a larger fraction of instances.

5.2 Parameter Study

Before evaluating the complete algorithms, we analyze individual components to gain in-
sights into their behavior and determine optimal configurations. The main elements stud-
ied are preprocessing, edge estimation methods, in-memory MIS algorithms used to solve
block-graphs, also referred to as "block solver", scheduling strategies, and the impact of
block sizes on solution quality and memory consumption.

5.2.1 Preprocessing

Preprocessing is technically optional, but skipping it can negatively impact partitioning
quality as explained in Section We evaluate the reduction achieved by preprocessing
across all graphs.
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Figure 5.1: Remaining size of the graphs after preprocessing. The boxplots illustrate the fraction
of nodes and edges that remain after removal across different graphs. 100% represent
the size of the original graph.

Figure shows the relative size of graphs after preprocessing. The number of nodes
is reduced on average by 27.5%, and the number of edges by 42.44% . Since the size
of a graph is primarily determined by edge count, the overall graph size is reduced on
average by 41.45% . The standard deviations are large: 26.56% for nodes, 33.50% for
edges, and 32.81% overall. This indicates that the effectiveness of the preprocessing varies
considerably by graph type. Some graphs, especially mesh-type instances, are not reduced
at all. Where reductions are successful, relatively more edges than nodes are removed. This
occurs partly because very high-degree nodes are explicitly removed, and partly because
some degree-0 and degree-1 reductions were missed due to the limited scope in which the
reductions can get applied.

Despite these limitations, preprocessing is worthwhile. The cost of one additional stream
is offset by reducing the graph size by over 40% on average, meaning all subsequent algo-
rithm steps operate on substantially smaller graphs.

5.2.2 Edge Estimation Method

We compare the three edge estimation methods introduced in Section 4.1.1} the Upper
Bound 3¢, Node-Based estimation maﬁ, and Edge-Based estimation Z(T—%mb)

The methods are evaluated on three metrics: estimation accuracy relative to
the actual edge count and edge-cut and balance of partitionings computed based
on the respective estimated edge counts. Experiments are run on all graphs
with k € {8,16,32,64,128,256,512}. HeiStream is configured to run with a single pass
and an imbalance of 3%.
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Figure 5.2: Estimation accuracy for the three methods. The y-axis shows estimated edge count
divided by actual edge count. One outlier-instance is excluded for each estimation
method.

In the following evaluation, one instance is excluded. For this graph, the reduced graph
after preprocessing is extremely small compared to the original graph. All three estimation
methods produce highly inaccurate estimates for this instance: while the actual edge count
1s 9795, the Upper Bound lies at 337 145, the Node-Based estimation computes 182 594
and the Edge-Based estimation 131 108 for the edge count. We exclude this instance be-
cause its extreme reduction during preprocessing leads to negligible memory usage and
makes a balanced partitioning irrelevant for this instance. Furthermore, the following eval-
uation is mostly based on the relative comparison between estimated and actual edge count.
While the absolute inaccuracy of the estimations for this instance are not that significant
considering the size of the test instances, the relative error is extremely high, thereby heav-
ily skewing the results and figures.

Figure |5.2| compares estimation accuracy. Node-Based and Edge-Based estimations are
significantly more accurate than the Upper Bound estimation method. Edge-Based esti-
mation is most precise, achieving a mean absolute error of 1.08%, compared to 4.99% for
Node-Based and 14.68% for the Upper Bound.

However, estimation accuracy alone does not determine practical performance. The pur-
pose of the estimations is to use them as input to HeiStream. Therefore, we evaluate the
resulting partitionings in terms of edge-cut and balance, the results of which are shown in
Figure The edge-cuts of the partitionings using the estimations are normalized by the
edge-cut of the partitioning using the actual edge count.

The edge-cut is primarily affected by whether the estimation underestimates or overes-
timates the true value. Underestimation worsens the edge-cut, as valid block assignments
are rejected due to apparent balance violations. Even small underestimations have this ef-
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tioning computed with the actual edge count.

Figure 5.3: Impact of edge estimation methods on partitioning quality.

fect, as visible in Figure[5.3a. Overestimation has less of an impact. The results are similar
to using the precise edge count with relaxed balance constraints, often producing better
edge-cuts than the baseline. The average normalized edge-cuts are 0.9798 for the Upper
Bound estimation method, 1.0006 for Node-Based estimation, and 1.0136 for Edge-Based
estimation.

Balance is affected more continuously, not showing a clear cut-off between underesti-
mation and overestimation. Larger ratios of estimated to actual edge count correlate with
larger imbalances with a correlation factor of 0.23. Underestimation creates balance con-
straints that cannot be fulfilled, so relative estimations below 100% do not yield better
balance. Overestimation naturally leads to larger imbalances. However, in most cases re-
sults are more balanced than strictly enforced: the average balance is 1.0302 for the Upper
Bound estimation method, 1.0256 for Node-Based estimation, and 1.0197 for Edge-Based
estimation.

The evaluation shows that avoiding underestimation has to be prioritized over achieving
more accurate estimation. Even small underestimations have a large impact on the edge-
cut, which directly affects subsequent algorithm performance. Therefore, we use the Upper
Bound “*. Although the resulting partitionings are not perfectly balanced, block sizes
cannot exceed those of a balanced partitioning on the original unreduced graph, which
satisfies our minimum requirements. The evaluation also shows that in practice, balance
remains within reasonable bounds.

5.2.3 Block solver

We compare three in-memory MIS algorithms to solve block-graphs in the context of the
Base Algorithm: CHILS, ReduMIS, and the combination of the DataReduction library and
CHILS, which we refer to as "R+CHILS" in the following. The evaluation runs the Base
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Figure 5.4: Comparison of algorithms solving the MIS on block-graphs.

Algorithm with each solver on each graph from the Tuning Set and Test Set using three
time configurations: fast, medium, and slow.

By evaluating the algorithms in the context of the Base Algorithm, they are tested on
blocks resulting from preprocessed and partitioned graphs. This is relevant, because we
aim at comparing the algorithms in the context of our use-case, not in a general setting.
Preprocessing already applies reductions, thereby potentially lowering the effectiveness of
further reduction-based algorithms. Furthermore, block-graphs resulting from a stream-
ing partitioning can have different properties than general graphs. For example, a block
of a partitioning computed in the streaming setting is rarely one large connected compo-
nent. Instead, it oftentimes consists of multiple connected components, each of which is
disconnected from the others.

Figure shows a comparison of the algorithms. All result quality and memory mea-
surements are normalized using the results of CHILS as the baseline. Results are consistent
across the three time configurations, so we present them aggregated instead of in separate
plots.

All three algorithms produce similar results. ReduMIS and R+CHILS achieve slightly
better solution quality than pure CHILS, with ReduMIS producing results 0.08% better
on average and R+CHILS 0.17% better. Memory usage is also relatively similar: Redu-
MIS uses 2.52% more memory on average, while R+CHILS uses 6.79% more. ReduMIS
exhibits larger outliers, requiring over 300% more memory than CHILS on two instances.

Based on these results, we select R+CHILS due to its good average performance, ac-
ceptable memory consumption, and the lack of extreme outliers in terms of memory.

5.2.4 Scheduling

We compare the scheduling approaches introduced in Section The schedulings are
computed on graphs that have been preprocessed and partitioned with HeiStream. The
tests are run on the groups of graphs categorized as Test Set and Huge Graphs in Table
with k& € {64, 128,256, 512}. For the graphs in the category Huge Graphs, we run addi-
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Figure 5.5: Evaluation of key scheduling metrics.

tional tests with £ = 1024 and k£ = 2048.

The score of a scheduling is determined as explained in Section[4.2.3]and normalized by
the number of edges in the quotient graph.

We compare four approaches: Local Crawl, Local Crawl with Relative Scoring, Global
Greedy, and Global Greedy with Heuristics. We compare these results in relation to No
Scheduling, which refers to the default block order 1, ..., k. The results are visualized in
Figure[5.5a.

All scheduling approaches outperform the baseline of No Scheduling. Local Crawl with
Relative Scoring performs best with an average score of 0.4681, followed closely by Global
Greedy at 0.4701. Local Crawl and Global Greedy with Heuristics score slightly worse at
0.4786 and 0.4804, respectively.

However, all approaches are extremely similar and relatively close to the baseline. This
is primarily due to the quotient graphs of the partitionings being very dense. Figure [5.5b
visualizes the distribution of the density of these quotient graphs in a boxplot. The average
density is 91.76%, with 83.6% of instances having a density of at least 95%. This occurs
due to limitations of partitioning in a streaming setting. HeiStream lacks global context
while assigning nodes to blocks, leading to fragmented blocks. Figure 9 of the HeiStream
paper [12] visualizes this fragmentation and thereby provides an intuition why streaming
partitioning produces dense quotient graphs.

When the quotient graph is very dense, scheduling has minimal impact. In the extreme
case of a complete graph with density 1, all orderings are equivalent. Differences between
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Figure 5.6: Performance profiles of key metrics of the Base Algorithm compared over multiple
runs with different block sizes.

scheduling strategies only emerge for a few graphs or very large k values, which produce
huge quotient graphs that are impractical in application.

Based on these results, we select Local Crawl. While it does not achieve the best scores,
it performs very close to the other approaches and is the only method that does not require
computing the quotient graph beforehand. Given the minimal differences, the computa-
tional savings are prioritized.

Dense quotient graphs are generally an issue for our algorithms that are employing
scheduling. This is primarily a problem for the Boundary Local Search, but also for the
Reductions+VF algorithm, although the scheduling is less relevant for the latter. The orig-
inal aim of scheduling is to optimize the order in which blocks are handled and thereby
keep the amount of information stored in memory low. For very dense quotient graphs,
the block order becomes irrelevant, as the amount of memory required is high in any case.
This becomes increasingly problematic for large k, as the number of edges in the quotient
graph grows quadratically in relation to k for quotient graphs with density close to 1.

5.2.5 Block Size

Since all of our algorithms are partitioning-based, the number of blocks £ is a key param-
eter. Memory consumption and solution quality are both significantly influenced by the
thereby resulting block size.

We evaluate each algorithm across five block size categories: very large, large,
medium, small, and very small. For large graphs taken from the Test Set,
these correspond to k € {8,32,64,128,512}. For Huge Graphs, these correspond
to k € {32,128,256,512,2048}. Note that a larger k relates to a larger number of blocks
which makes each individual block smaller.
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Figure 5.7: Performance profiles of key metrics of the Repartitioning algorithm compared over
multiple runs with different block sizes.

Base Algorithm

As shown in Figure the Base Algorithm shows a clear relationship between block size
and solution quality: larger blocks consistently produce larger independent sets. The largest
block size achieves the best result on every instance, and each block size outperforms all
smaller block sizes across the majority of instances. While 80% of instances remain within
95% of the best solution across all block sizes, a few instances deteriorate significantly
with smaller blocks. Two instances with very small blocks find solutions below 80% of the
optimal size.

This occurs because smaller blocks create more and larger boundaries. The Base Algo-
rithm’s approach of making subgraphs independent through greedy node and edge removals
around boundaries becomes increasingly problematic with larger boundaries.

Memory usage generally decreases with smaller blocks. The more nodes and edges a
block has, the larger is its size in memory. However, all block sizes except very large
blocks produce relatively similar memory consumption. For some instances, very small
blocks actually use more memory than large blocks. In these cases, blocks are small enough
that they no longer dominate memory consumption. Instead, memory is determined by
global O(n) vectors that remain constant across block sizes and by HeiStream’s memory
consumption, which increases for large k. Therefore, the Base Algorithm achieves lowest
memory usage with roughly medium-sized blocks.

Repartitioning

Figure shows the solution size and memory usage of the Base Algorithm across differ-
ent block sizes. The Repartitioning algorithm shows a similar trend of declining solution
quality with smaller blocks, but to a lesser extent than the Base Algorithm. Each block
size achieves results within 1% of the best solution for 60% of instances. A few outliers
with very low solution quality remain for smaller blocks. The effect of more and larger
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Figure 5.8: Performance profiles of key metrics of the Boundary Local Search algorithm compared
over multiple runs with different block sizes.

boundaries on solution quality persists, but is partially mitigated through the further local
search introduced by the Repartitioning algorithm.

Memory usage for small and very small blocks is notably higher than for larger blocks.
This is again due to HeiStream requiring more memory with very large k. When blocks
become small enough, their impact on memory consumption becomes less relevant, and
peak memory usage is mostly dominated by HeiStream. This effect is more amplified
compared to the Base Algorithm because the second partitioning uses edge weights, which
requires additional memory.

Boundary Local Search

The comparison across different block sizes is more limited for Boundary Local Search.
As detailed in the scheduling evaluation (Section [5.2.4), extremely dense quotient graphs
make Boundary Local Search infeasible for larger k, especially on large graphs. Therefore,
this evaluation includes only small graphs and excludes the very small block size category.

Figure shows that solution quality decreases with smaller blocks. Since the algo-
rithm is built on the Base Algorithm, it naturally inherits the trend of worse results with
more blocks and larger boundaries. Boundary Local Search compensates for some of these
disadvantages, but the trend persists. However, results remain relatively similar across
block sizes. Even the worst result achieves a ratio of 0.925 compared to the best.

Memory usage shows the opposite relationship compared to previous algorithms.
Smaller and more numerous blocks lead to higher memory consumption, as more bound-
ary sections must be kept in memory simultaneously. For some graphs, particularly those
heavily reduced during preprocessing, this effect is modest. For other graphs, the relation-
ship is extreme due to dense quotient graphs. For quotient graphs with a density close to 1,
the number of sections stored in memory grows quadratically with k, making the algorithm
impractical for large numbers of blocks, especially on large graphs.
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Figure 5.9: Performance profiles of key metrics of the Reductions algorithm compared over mul-
tiple runs with different block sizes.

Reductions

Figure |5.9| shows that the solution quality of the Reductions algorithm still depends on the
block size but less significantly than the previous algorithms. 80% of instances remain
within 97.5% of the best solution across all block sizes. Except for very small blocks, all
configurations perform well on all instances. Even medium block sizes achieve at least
95% solution quality on every instance.

In contrast to the Base Algorithm and Repartitioning, the Reductions algorithm does not
create entirely independent subgraphs, which was the primary cause of quality degradation
with increasing k. More and larger boundaries do impact the effectiveness of reductions, as
reductions rules cannot be applied across boundaries, resulting in larger kernels. Finding
an independent set on a larger kernel produces worse results compared to applying more
exact reductions and solving a smaller kernel. Additionally, large kernels are solved using
the Base Algorithm, which inherits that algorithm’s dependency on block size.

Memory usage shows a clear trend of decreasing consumption with smaller blocks. Ex-
cept for very large blocks and a few outliers, all runs have at most a factor of 1.3 difference
in memory usage. The block size directly impacts memory consumption, as larger blocks
require more memory to load. However, there is also a dependency on the boundary size.
The reductions algorithm extends the in-memory block representation with context from
boundaries. Smaller blocks create larger boundaries, which partially offsets the memory
savings from smaller blocks.

Reductions + VF

Figure shows that the impact of block size on solution quality is similar to the reduc-
tions algorithm without vertex folding. Solution size decreases with smaller blocks, but
this effect is minimal for most instances. A few outliers show significant block size depen-
dency. These are instances where reductions are less effective and large kernels remain.
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Figure 5.10: Performance profiles of key metrics of the Reductions+VF algorithm compared over
multiple runs with different block sizes.

For these cases, total solution size is primarily determined by the solution computed on the
kernel using the Base Algorithm, which has stronger dependency on k.

The impact on memory usage, however, differs from the reductions algorithm with-
out vertex folding. The basic reductions algorithm shows decreasing memory usage with
smaller blocks. While this trend remains for block sizes medium to very large, the ver-
tex folding variant shows increased memory usage for small and very small blocks on a
large portion of instances. Medium and large blocks are most memory efficient across the
majority of instances.

This occurs because the algorithm with vertex folding requires to partially store cut edges
in memory, as detailed in Section[4.3.2] More blocks create larger cuts and thereby increase
memory overhead.

5.3 Algorithm Comparison

After examining individual components and properties of the algorithms, we now compare
our algorithms against each other and against the state of the art. The evaluation is separated
into two parts based on graph size.

First, we evaluate on graphs from the "Test Set" category (Table[5.1I). These graphs are
small enough that ReduMIS can still be used, which allows us to compare our streaming
algorithms with an in-memory algorithm. We also compare against results from Liu et al.’s
algorithms: 1-* swap and 2-* swap. Note that the original paper uses the names 1-k swap
and 2-k swap which we denote differently here in order to avoid confusion with the number
of blocks k. For each instance, we run ReduMIS with a time limit of 3600 seconds and
configure our algorithms to use large block sizes with & = 8. We evaluate three metrics:
solution size, memory usage, and running time.

Second, we evaluate on graphs from the "Huge Graphs" category. ReduMIS is not viable
for these instances, so we compare only our algorithms against each other and against Liu
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Figure 5.11: Comparison of algorithm performance on Test Set graphs. For each metric solution
size, memory usage and running time, the results of the algorithms are displayed in
performance profiles.

et al.’s algorithms. For these graphs, we run our algorithms twice with different block
sizes: k = 32 (large blocks) and & = 512 (small blocks). Again, we evaluate solution size,
memory usage, and running time.

Test Set Graphs

The Test Set contains graphs with millions of nodes and tens of millions of edges, ranging
up to 117 million edges for the largest instance.

Solution size. Figure [5.11a shows a performance profile of the solution quality of the
different algorithms. As expected, ReduMIS establishes the baseline. Streaming algo-
rithms are designed to compensate for streaming constraints and allow the usage for larger
instances but provide no inherent advantage over in-memory algorithms in terms of solu-
tion quality.

The Base Algorithm performs comparatively worst, achieving results close to ReduMIS
on only three instances. However, every instance reaches at least 80% of ReduMIS quality.
Repartitioning significantly improves upon the Base Algorithm on most instances. While
overall performance remains modest with only three instances exceeding 99% quality, there
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are no extreme outliers. Nine instances achieve ratios greater than 0.975, with the worst
result being a ratio of 0.931. Boundary Local Search achieves performance very similar to
Repartitioning, although slightly worse overall. Seven instances achieve ratios greater than
0.975 with the worst result at 0.921.

The Reduction algorithms perform best, both with and without vertex folding. Most in-
stances achieve very good results with ratios of at least 0.99968 for eight instances. The
remaining three instances perform less well, particularly one outlier with a ratio of approx-
imately 0.915. On average, the Reduction algorithm achieves a ratio of 98.8% across all
instances. The performance of these algorithms mostly depends on the effectiveness of
the reductions during preprocessing and block-wise reducing. For the eight well-reducible
instances, the remaining kernel averaged 3.1% of the original graph size for reductions
and 2.4% for reductions with vertex folding. For the other three instances, the average
remaining graph size was 46.7%, with a remaining size of even 79.1% for the instance
with the worst solution quality. Vertex folding also did not prove to be effective on these
instances. The remaining graph size did not significantly differ between the two variants of
the Reductions algorithm.

Liu et al’s algorithms show mixed performance. The 1-* swap algorithm performs
mediocre, with most results better than 0.975. The 2-* swap algorithm performs signif-
icantly better than 1-* swap. The results for both of these algorithms include one severe
outlier with solution quality below 80%. This result occurs for both on the same graph,
Bump_2911, which is a mesh-type instance. This is unexpected, considering that the 1-*
swap and 2-* swap algorithms are local search algorithms, while their results are evaluated
in comparison to mostly reduction based approaches. Usually, reduction-based algorithms
perform worse on mesh-type instances, as these are oftentimes not well-reducible. Apart
from this outlier instance, the 2-* swap algorithm achieves results greater than 0.974 on ev-
ery instance and is only consistently outperformed by the reduction approaches, achieving
better results than all block-wise solving approaches on most instances.

Memory usage. Figure shows a performance profile of the memory consump-
tion across the different algorithms. Liu et al.’s algorithms use by far the lowest amount
of memory, as they are not storing any parts of the graph in memory at any point. Redu-
MIS, as a solver that loads the entire graph in memory, naturally uses the most memory.
Our algorithms fall between these results, which is to be expected for partitioning-based
approaches.

Our algorithms show relatively similar memory usage. On some instances, HeiStream
and O(n) vectors dominate memory consumption, for example on graphs where prepro-
cessing is highly effective. In these cases, the differences between the algorithms become
negligible and the memory usage is similar across all algorithms. Generally, the Base Al-
gorithm and Repartitioning show the lowest memory usage among our approaches, with
Repartitioning requiring slightly more. Both Reduction algorithms require slightly more
memory, with vertex folding adding minimal overhead. This overhead is surprisingly small
considering the implementation differences. Boundary Local Search requires the most
memory, exceeding all other approaches on every instance except one.
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Running time. Figure[5.11c shows the running time across algorithms. Liu et al.’s swap
algorithms are generally the fastest. While they require multiple read streams, they include
minimal time overhead beyond this.

Partitioning-based algorithms are generally slower. They also require multiple read
streams, but additionally include significant overhead due to writing blocks to binary files.

Two instances show very fast performance for the Base Algorithm and Reduction al-
gorithms due to highly effective preprocessing. The Base Algorithm and Reduction al-
gorithms show similar overall performance, but excel on different instances. Reduction
algorithms are fast when graphs are well-reducible. When the remaining kernel is large,
substantial time is required to solve it, even after already spending considerable time on
reductions. The running time of the Base Algorithm is less dependent on specific graph
properties.

Repartitioning and Boundary Local Search are generally slow, being the slowest on ev-
ery instance except a few ReduMIS instances. They are slower by a significant margin.
Repartitioning and Boundary Local Search are extensions of the Base Algorithm, thereby
also extending its running time.

ReduMIS shows highly variable running times. It is very fast on a few well-reducible
graphs but much slower on others where it continues attempting to improve the solution.
The running times are here limited by the configured time limit of one hour.

Huge Graphs

ReduMIS is excluded from this evaluation as these graphs are too large for in-memory
processing. The graphs contain tens of millions of nodes with edge counts ranging from
hundreds of millions to 3.3 billion.

We present results for two block size configurations: large blocks resulting from a parti-
tioning with £ = 32 and small blocks resulting from a partitioning with £ = 512. For each
of the two block sizes, we present the metrics solution size, memory usage and running
time, each in a performance profile. Liu et al.’s 1-* swap and 2-* swap algorithms do not
depend on block size and appear identically in both groups of plots.

Boundary Local Search is excluded from the small block size evaluation. With £ = 512,
it exceeded available memory on every instance. The large number of blocks combined
with dense quotient graphs (see Section [5.2.4) creates a huge number of sections that must
be kept in memory simultaneously. The huge graphs also produce large boundaries, making
section storage infeasible.

Before examining individual algorithms, we highlight two outlier instances: nlpkkt240
and orkut. Both graphs have highly homogeneous node degrees with almost no degree-
0 or degree-1 nodes and few very high-degree nodes, making preprocessing ineffective.
Furthermore, the partitioning results are poor. For large blocks, k£ = 32, the edge-cut
for orkut exceeds 67 million edges which are 57.4% of the total number of edges of the
original graph. For nlpkkt240, the edge-cut exceeds 270 million, which is 74.5% of the
total number of edges. For small blocks, k& = 512, the same issue occurs to an even larger
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Figure 5.12: Comparison of algorithms on the Huge Graphs set. For each metric solution size,
memory usage and running time, the results of the algorithms are displayed in per-
formance profiles. The algorithms are compared in two settings: with a large block

size and a small block size.

extend. The orkut edge-cut reaches approximately 90 million or 77.4% of total edges,
while nlpkkt240’s edge-cut exceeds 330 million or 88.9% of edges.

Large boundaries are problematic for all our algorithms. Block-wise solving approaches

perform greedy, suboptimal node selection for boundary vertices. Block-wise reduction
approaches are constrained because no reductions can be applied that would add boundary

vertices to the independent set.
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The results of this evaluation are shown in Figure This figure contains a perfor-
mance profile for large block sizes and for small block sizes for each of the two block size
configurations.

Solution size. The Base Algorithm achieves decent results with large blocks on most in-
stances, reaching at least 99% quality on 9 of 12 instances. With smaller blocks, results are
slightly worse but comparable, maintaining 99% quality on 8 of 12 instances. Performance
is especially poor on the two outlier instances: 89.9% on orkut and 74.3% on nlpkkt240
with large blocks. With small blocks, results deteriorate further to 87.5% for orkut and
62.9% for nlpkkt240.

Repartitioning shows a similar curve but achieves better results than the Base Algorithm
on every instance. It reaches extremely high ratios on the majority of instances: at least
0.9997 for 8 instances. The performance on the two outlier instances is similar to the Base
Algorithm with no significant improvement: 0.749 and 0.636 for nlpkkt240 with large and
small blocks, respectively.

Boundary Local Search produces generally good results, achieving at least 99% quality
on ten instances. It performs minimally worse than Repartitioning on most instances but
shows significantly better results than the Base Algorithm and Repartitioning on the two
outlier instances, though performance remains noticeably poor with a ratio of only 80.3%
for the nlpkkt240 graph.

The Reduction algorithms produce nearly identical results with and without vertex fold-
ing. They achieve very good results on all instances except orkut, reaching at least 99%
quality on 9 of 12 instances for both variants. Interestingly, performance on nlpkkt240 is
good, partially due to applied reductions but also because the global kernel construction
changes node order. Blocks are written sequentially, so when the kernel is solved, the new
partitioning operates on a graph with nodes grouped by blocks from the first partitioning.
This produces a far better edge-cut when partitioning the kernel, leading to an overall good
solution.

Reduction effectiveness is consistent across configurations. Without vertex folding, the
remaining kernel averages 22.8% of the original graph size. This reduction in size is pri-
marily due to edge removal as 88.1% of nodes remain in the kernel on average. With vertex
folding, the kernel size is 22.6% with slightly fewer nodes, 86.8% on average. For smaller
block sizes, reductions achieve similar success: 23.9% remaining kernel size without ver-
tex folding, 23.8% with it. Solution quality is therefore very similar for large and small
blocks, achieving at least 99% quality on 8 of 12 instances even with small blocks.

Liu et al.’s swap algorithms produce generally good results on all instances with no
extreme outliers. The worst results are ratios of 0.934 for 1-* swap and 0.94 for 2-* swap.
Excluding these, all results reach at least 0.97 quality for 1-* swap and 0.98 for 2-* swap.
However, a gap remains between the best found solutions and swap solutions for most
instances. The 1-* swap achieves 99% or higher quality on only 2 instances, while 2-* swap
reaches this on 5 instances. These results are consistent when comparing with partitioning-
based algorithms using either large or small blocks.

Memory usage. Liu et al.’s algorithms use by far the least memory, due to not storing
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parts of the graph in memory. Partitioning-based approaches cannot realistically achieve
comparable memory usage.

Among our algorithms, the Base Algorithm consistently uses the least memory for both
large and small blocks, as expected. Repartitioning uses slightly more, which is also ex-
pected. The Reduction algorithm requires slightly more memory than the Base Algorithm,
especially on instances with large edge-cuts. Reductions with vertex folding use signifi-
cantly more memory than without, especially on instances with large edge-cuts, due to the
need to store portions of cut edges. This effect is amplified for smaller block sizes, which
lead to larger boundaries. The Boundary Local Search has the largest memory usage of all
compared algorithms. For large blocks, the approach has the largest memory usage on most
instance. Moreover, there are a few instances where the difference to the other approaches
is very significant. This is again more apparent for the instances with large edge-cuts and
those with dense quotient graphs. Each experiment with the Boundary Local Search on
small block size needed to be terminated because the available memory was exceeded.

Memory usage is generally similar for large and small blocks. As detailed in the previous
section, the dependency of memory usage on block size exists but is less prominent than
expected. Memory consumption appears dominated by O(n) vectors, indicating room for
improvement.

In terms of absolute numbers, 1-* swap remains in the hundreds of megabytes. The 2-*
swap requires approximately 2.5-3 times more memory, reaching up to 1.5 GB for large
instances. Our algorithms use multiples of this. For large blocks, the Base Algorithm peaks
at 6.2 GB, Repartitioning at 6.9 GB, and the Reductions algorithm at 7.3 GB. While Reduc-
tions+VF and Boundary Local Search show comparable memory usage on most instances,
on some instances Reductions+VF reaches up to 12 GB and Boundary Local Search esca-
lates to 58.2 GB of memory usage on one instance.

With smaller blocks, the Base Algorithm uses at most 4.7 GB and Reductions 5.1 GB.
Reductions+VF uses slightly less memory overall but still reaches 11.8 GB in extreme
cases. Repartitioning uses more memory compared to large blocks, reaching 7.8 GB.
Boundary Local Search is infeasible on these graphs with large numbers of blocks.

Running time. On most instances, Liu et al.’s 1-* swap and 2-* swap are the fastest algo-
rithms. Among our algorithms, the Base Algorithm is fastest. Repartitioning and Boundary
Local Search are naturally slower on all instances compared to the Base Algorithm.

The reduction-based algorithms show diverse running times. On well-reducible graphs,
they can be relatively fast, though still slightly slower than the Base Algorithm. On less
reducible graphs, running time can increase substantially, making them the slowest algo-
rithms.

Running time is generally consistent across different block sizes. The outlier in-
stances nlpkkt240 and orkut become apparent again: these are the instances where most
partitioning-based algorithms perform slowest compared to the non-partitioning-based 1-*
swap and 2-* swap.

Summary. In total, all of our algorithms produce higher quality solutions than the com-
petitor algorithms on the majority of instances. However, when our algorithms perform
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worse, the gap can be substantial. These poor results are confined to two instances where
the computed partitioning has an extremely large edge-cut. As all of our approaches are
partitioning-based, this directly impacts the result of all of our algorithms. Adjusting parti-
tioning configuration, such as using larger batch sizes or more passes, could help for these
instances.

The memory usage of all our algorithms is significantly larger than the competitor al-
gorithms. While this is partially inherent to the approach, partitioning and loading blocks
into memory requires more memory, there is room for improvement in terms of memory
efficiency. Still, except for Boundary Local Search and some instances of Reductions+VF,
memory usage remains within reasonable bounds.

Among our algorithms, the Base Algorithm is fastest with the lowest memory require-
ments but produces the worst results. Repartitioning produces very good results but re-
quires substantially more running time. The Reduction algorithms achieve the highest
solution quality. Compared to the simple Reductions algorithm, Reductions+VF offers no
significant improvement in solution size while using considerably more memory on some
instances. Boundary Local Search produces good solutions but has large memory require-
ments, especially due to large boundaries and dense quotient graphs, making it impractical
for large numbers of blocks.
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CHAPTER

Discussion

This chapter summarizes the contributions and findings of this thesis and outlines directions
for future work. We begin with a conclusion reviewing the developed algorithms and their
evaluation results, then discuss potential improvements and extensions.

6.1 Conclusion

In this thesis, we studied the MIS problem for very large graph instances. We developed
multiple approaches based on partitioning a graph and processing individual blocks.

The Base Algorithm provides a simple approach that sequentially solves blocks of a par-
titioning. We presented two extensions of the Base Algorithm: Repartitioning and Bound-
ary Local Search. Each of these is improving specific parts of the solution through local
search. The Reductions algorithm applies reduction rules block-wise while considering
context from neighboring blocks. Reductions+VF adapts this approach to enable addi-
tional reduction rules.

The experimental evaluation demonstrated that our algorithms generally produce higher
quality solutions than the competitor algorithms on the majority of instances. However, on
instances where the edge-cut of the computed partitioning is large, the solution quality of
all of our algorithms decreases significantly.

Our algorithms use overall significantly more memory than the algorithms developed
by Liu et al., which achieve very low memory consumption. This is partially inherent to
our partitioning-based approach but also indicates the need for optimization in terms of
memory efficiency. However, the memory usage of our algorithms remains within reason-
able bounds, with the exception of the Boundary Local Search algorithm that can become
infeasible for large graphs, especially for a larger number of blocks.

Among our developed algorithms, the Reduction algorithms, both with and without ver-
tex folding, achieve the highest solution quality. The Base Algorithm produces the lowest
quality results among our approaches but is also the fastest and requires the lowest memory.
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Repartitioning and Boundary Local Search achieve good results but require substantially
more running time.

6.2 Future Work

The algorithms presented in this thesis offer several directions for further improvement and
extension.

Memory Optimization. Mainly, the algorithms can be improved in terms of memory
consumption. There are multiple potential optimizations where the current implementation
favors flexibility over efficiency:

Different libraries used in our algorithms employ different graph formats. DataReduc-
tions, CHILS, and ParFastKer each use their own representation. Our algorithms maintain
an internal graph format for core operations, then convert to the respective library formats
when needed. This conversion overhead can be eliminated by using the target format from
the beginning. For example, once a block solver is selected for the Base Algorithm, blocks
can be read directly into that solver’s format. Operations like creating independent sub-
graphs would need to be adapted to work with the specific format, but this would reduce
both memory consumption and running time.

Avoidable allocation of new memory when transforming a graph also occurs during
subgraph creation. When creating reduced subgraphs, for instance, after removing bound-
ary nodes with neighbors in the independent set, a new graph is allocated. Instead, these
subgraphs could be constructed in place, overwriting the pre-reduced graph and reusing
existing memory.

Furthermore, the O(n) vectors used throughout the algorithms can be optimized. For
example, storing the independent set as a boolean array instead of integers would reduce
memory usage. Additionally, for some algorithms, the vector storing the partitioning is
only relevant within a limited scope and could be removed or reused for the independent
set representation after that scope.

A modification to HeiStream could also improve memory efficiency. Currently,
HeiStream’s batch size depends only on the node count. Basing the batch size on both
node and edge count would improve the predictability of memory consumption, allow-
ing larger batch sizes to be configured safely while accounting for less variance in actual
memory usage.

Extended Reduction Rules. Apart from memory optimizations, the results of the re-
ductions algorithms could be improved by extending with additional reduction rules. The
current implementation uses only a subset of available reduction techniques. Incorporat-
ing more sophisticated reduction rules could further decrease kernel sizes, while possibly
negatively impacting the running time.

Weighted Independent Sets. This work focuses exclusively on independent sets on
unweighted graphs. Extending the algorithms to handle the weighted case remains an open
direction for future research.
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Abstract (German)

Diese Arbeit stellt Semi-Streaming-Algorithmen vor, die entwickelt wurden, um hochwer-
tige Losungen fiir das Maximum Independent Set (MIS) Problem zu finden, ohne dass der
gesamte Graph in den Speicher geladen werden muss. Damit wird eine Liicke im Bereich
der Semi-Streaming-MIS Algorithmen geschlossen, die einen praktisch sinnvollen Kom-
promiss zwischen Speichereffizienz und Losungsqualitét darstellen. Das MIS-Problem ist
ein klassisches NP-schweres Problem mit Anwendungen in verschiedenen Bereichen, wie
z.B. Computergrafik, Map-Labeling (Kartenbeschriftung) und Informationskodierung. Da
moderne Graphen immer groer werden, wird der Bedarf an Algorithmen, deren Speicher-
nutzung weniger als linear zur Graphengrof3e liegt, zunehmend relevant. Dies motiviert die
Entwicklung von Semi-Streaming-Methoden, die davon ausgehen, dass die Knoten eines
Graphs in den Speicher passen, die Kanten jedoch nicht.

Wir fithren Semi-Streaming-Algorithmen ein, die auf Graphpartitionierung beruhen.
Diese beruhen auf zwei grundsitzlichen Ansitzen entweder den Graph blockweise zu
16sen oder den Graphen blockweise zu reduzieren. Basierend auf dem blockweise-10sen
Ansatz haben wir die Varianten "Base Algorithm", "Repartitioning" und "Boundary Lo-
cal Search" implementiert, wihrend der blockweise Reduktionsansatz die Varianten "Basic
Reductions" und "Reductions+VF" (Vertex Fold) umfasst. Alle Ansitze beinhalten einen
Vorverarbeitungsschritt, bei dem einfache Reduktionen wéhrend eines einzigen Streams
angewendet werden.

Experimentelle Auswertungen anhand groBer Instanzen zeigen, dass unsere Algorith-
men fiir die meisten Instanzen qualitativ hochwertigere Losungen liefern als die bestehen-
den Semi-Streaming-Algorithmen von Liu et al. . Die Reduktionsalgorithmen erzielten
unter unseren Methoden die hochste Losungsqualitit. Der "Base Algorithm" bot unter den
entwickelten Ansitzen die schnellste Laufzeit und den geringsten Speicherbedarf.

Der partitionierungsbasierte Ansatz hat jedoch zwei nennenswerte Nachteile: Erstens
ist der Speicherverbrauch deutlich hoher als bei den verglichenen Algorithmen. Zweitens
hingt die Qualitét der Ergebnisse von der Qualitit der Partitionierung ab, wobei Ausreil3er
mit extrem grofen Edge-Cut (deutsch: Kantenschnitten) zu einer deutlich schlechteren
Losungsqualitit fithren konnen.

Bei einer Bewertung Kkleinerer Instanzen, die einen Vergleich mit In-Memory-
Algorithmen ermdéglicht, erreicht der Reduktionsalgorithmus im Durchschnitt eine Lo-
sungsqualitidt von 98,8% im Vergleich zu ReduMIS.
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