
Engineering Algorithms for
Hypergraph Minimum Cut

Loris Wilwert

October 15, 2025

4165279

Master Thesis
at

Algorithm Engineering Group Heidelberg
Heidelberg University

Supervisor:
Univ.-Prof. PD. Dr. rer. nat. Christian Schulz

Co-Supervisor:
Prof. Dr. Bora Uçar

Co-Supervisor:
M. Sc. Adil Chhabra

ii

Acknowledgments

Firstly, I would like to thank Prof. Dr. Christian Schulz for introducing me to a variety
of fascinating topics within the field of algorithm engineering, and for giving me the great
opportunity to contribute to his area of research. It was a pleasure not only learning from
him but also working with him over the past couple of years. The same goes for Prof.
Dr. Bora Uçar, whose passionate and inventive nature never fails to offer interesting new
perspectives. I would also like to thank Adil Chhabra, who was a great help and support in
every situation and with whom I had many insightful discussions.

I would like to express my deepest gratitude to my parents, who have dedicated parts
of their lives to helping me become the person that I am today. In return, I would like to
dedicate this work to them, as it would not have been possible without their constant care
and love. Likewise, I cannot thank my sister enough, who has always been a source of
joy throughout my entire life and who, together with her partner, supports me in all my
decisions. Finally, I am grateful for the help of all my friends in Luxembourg, Heidelberg
and elsewhere who have been on my side in the various stages of my life up to this point.

Hiermit versichere ich, dass ich die Arbeit selbst verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich aus fremden
Werken Übernommenes als fremd kenntlich gemacht habe. Ferner versichere ich, dass
die übermittelte elektronische Version in Inhalt und Wortlaut mit der gedruckten Version
meiner Arbeit vollständig übereinstimmt. Ich bin einverstanden, dass diese elektronische
Fassung universitätsintern anhand einer Plagiatssoftware auf Plagiate überprüft wird.

Heidelberg, October 15, 2025

Loris Wilwert

iii

iv

Abstract

A central task of many applications such as network reliability, community detection or
VLSI design is to solve the hypergraph minimum cut problem, which aims to separate the
vertices of a hypergraph into two non-empty partitions while minimizing the total weight
of hyperedges crossing the cut. Although many advances were made for graphs in recent
years, extending minimum cut solvers to hypergraphs remains challenging. For this reason,
we introduce several novel algorithms, starting with a Binary Integer Program (BIP) and a
Mixed-Integer Linear Program (MILP) as two simple baselines. We then present HEICUT,
a scalable and fast algorithm for finding a minimum cut in hypergraphs with up to hun-
dreds of millions of hyperedges. HEICUT applies seven provably exact reduction rules that
reduce the size of the hypergraph while still allowing the retrieval of the optimal solution.
These reduction rules consist of novel hypergraph-specific rules as well as generalizations
of already proven rules from graph algorithms. Optionally, HEICUT can apply a heuristic
reduction based on label propagation to shrink complex structures. The reduced instance
is then solved by an exact ordering-based algorithm, for which we propose novel recurrent
rules that search for multiple contractions per iteration. We also outline how the differ-
ent parts of HEICUT can be parallelized, including the first parallel implementation of the
ordering-based solver, to the best of our knowledge. Our extensive evaluation on more
than 500 real-world hypergraphs shows that combining the exact reduction rules with early
stopping already identifies a minimum cut in over 95% of the instances. HEICUT solves
twice as many instances as the next best state-of-the-art algorithm, while being three to
four orders of magnitude faster. Based on these results, we use some of the techniques
of HEICUT to extend and improve the hypercactus algorithm of Chekuri and Xu, which
aims to find all minimum cuts in a hypergraph. We present the first ever implementation of
the hypercactus algorithm, to the best of our knowledge. In the experiments, we manage
to find all minimum cuts in more hypergraphs than a single minimum cut is found by the
current state-of-the-art algorithms.

v

vi

Contents

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 2
1.3 Structure . 4

2 Fundamentals 5
2.1 General Definitions . 5
2.2 Problem Definition . 7

2.2.1 Submodularity . 7
2.2.2 Hypercactus . 9
2.2.3 Related Problems . 10

2.3 Kernelization . 11
2.4 Linear Programs . 11

3 Related Work 13
3.1 Graph Minimum Cut . 13
3.2 Hypergraph Minimum Cut . 15

4 Hypergraph Minimum Cut Algorithms 17
4.1 Binary Integer Program . 18
4.2 Mixed-Integer Linear Program . 19
4.3 HeiCut . 20

4.3.1 Reduction Rules . 20
4.3.2 Label Propagation . 25
4.3.3 Ordering-Based Solver . 26
4.3.4 Pseudocode . 31

4.4 Parallelization . 33
4.4.1 Parallel Kernelization . 33
4.4.2 Parallel Ordering-Based Solver 34

vii

Contents

5 Hypercactus 37
5.1 Algorithm Description . 37
5.2 Kernelization . 39
5.3 Improved Split Oracle . 40
5.4 Pseudocode . 45

6 Experimental Evaluation 49
6.1 Hardware . 49
6.2 Instances . 49
6.3 Methodology . 50
6.4 Experiments . 52

6.4.1 Effectiveness of Exact Reduction Rules 53
6.4.2 Effectiveness of Multiple Contractions 54
6.4.3 Comparison against State-of-the-Art 56
6.4.4 Parallelization . 61
6.4.5 Hypercactus . 63

7 Discussion 65
7.1 Conclusion . 65
7.2 Future Work . 66

A Appendix 69
A.1 Command-Line Arguments . 69
A.2 Pseudocode of TRIMMER . 70
A.3 Further Proofs . 71

Abstract (German) 73

Bibliography 75

viii

CHAPTER 1
Introduction

1.1 Motivation

In today’s increasingly complex world, interactions between more than two entities lie at
the heart of many phenomena that arise in areas such as communication networks, circuit
design, database systems and computational biology. In order to facilitate the analysis,
these systems are typically modeled as so-called hypergraphs, which use hyperedges to
capture the higher-order relationships between vertices. Unlike the edges of traditional
graphs, which model only pairwise dependencies, hyperedges can connect any number of
vertices and represent multi-way interactions. This property makes hypergraphs ideal for
representing group-level dependencies [9].

In this thesis, we tackle the hypergraph minimum cut problem, which aims to separate
the vertices of a hypergraph into two non-empty partitions such that the sum of the weights
of the hyperedges running between the partitions is minimized. This problem, much like
its restricted variant for graphs, is of fundamental algorithmic importance and has been
studied for multiple decades. In particular, solving this problem efficiently can boost the
performance of several other hypergraph algorithms that rely on minimum cuts, covering
fields such as cybersecurity [78], hypergraph expansion [65] and quantum computing [55].
In addition, a well-optimized solver can be of great benefit for applications that currently
rely on graph-based alternatives, including those in clustering [36], network reliability [45],
community detection [11] and VLSI design [3]. In network reliability for example, a min-
imum cut is most likely to disconnect the network when all hyperedges fail with equal
probability. In community detection, the absence of a minimum cut within a region may
indicate the presence of a community. In VLSI design, reducing the number of intercon-
nections between logical blocks is key to reducing the cost of the circuit. Furthermore, a
natural extension of the hypergraph minimum cut problem is to search for all minimum
cuts rather than just one. This is achieved by constructing a so-called hypercactus, i.e., a
compact representation that preserves all minimum cuts of the hypergraph [14, 15]. Im-

1

1 Introduction

plementing a fast algorithm to find such a hypercactus representation would pave the way
for a multitude of hypergraph algorithms in related fields, such as incremental minimum
cuts [34], enumerating all minimum cuts [7] and connectivity augmentation [17, 25].

Although the minimum cut problem can be solved efficiently on graphs, leading to so-
phisticated algorithms [46, 59, 60, 62, 72] as well as scalable solvers such as VIECUT [41],
the hypergraph setting remains more challenging. More specifically, most state-of-the-art
hypergraph algorithms are rigorous theoretical extensions of graph algorithms but they fail
to achieve satisfactory execution times in practice. To address this issue, we present a se-
ries of algorithms that efficiently solve the hypergraph minimum cut problem. In addition,
we propose a number of improvements and extensions that will greatly help to advance the
research in this area.

1.2 Our Contribution

We present the key contributions of our research, highlighting novel insights and concepts.
Our work addresses existing gaps in the literature and improves upon previous techniques.
In particular, we make five key contributions to the hypergraph minimum cut problem:

• We propose several efficient algorithms for finding a minimum cut in a hypergraph.
First, we formulate a Binary Integer Program (BIP) as well as a Mixed-Integer Linear
Program (MILP), which serve as simple baselines and already match the performance
of current state-of-the-art algorithms on most instances. As our main contribution,
we present HEICUT, a lightweight and scalable algorithm that quickly finds a mini-
mum cut in unweighted or weighted hypergraphs with up to hundreds of millions of
hyperedges. HEICUT applies a series of provably exact reduction rules to reduce the
input hypergraph to a smaller kernel without losing information about the optimal
solution. These exact reduction rules consist of novel hypergraph-specific rules as
well as generalizations of already proven rules from graph algorithms. HEICUT also
supports the option of performing a heuristic reduction by identifying and contracting
a clustering via label propagation. After shrinking the hypergraph, HEICUT applies
an existing ordering-based algorithm to find an exact minimum cut in the reduced
hypergraph. In our evaluation, HEICUT solves twice as many instances as the next
best state-of-the-art competitor, while being three to four orders of magnitude faster.
This is because 85% of all instances can be maximally reduced by the exact reduction
rules, eliminating the need to run the underlying ordering-based solver. Combined
with further stopping criteria, HEICUT can already solve 95% of all instances with
the exact reduction rules. Overall, HEICUT achieves near-linear running time on
most instances in practice, even if its asymptotic time complexity is non-linear.

2

1.2 Our Contribution

• We extend the well-known ordering-based algorithm for identifying a minimum cut
in a hypergraph, which was proposed in three main variants [52, 56, 66]. For each
variant, we define novel recurrent contraction rules that allow to search for multiple
contractions per iteration, improving upon the standard single-contraction approach.
When using the ordering-based solver as a standalone algorithm with the ordering of
Mak and Wong [56], searching for multiple contractions per iteration leads to faster
results on 70% of the instances. In HEICUT, the multiple contractions technique
speeds up every single instance that is passed to the ordering-based solver. Besides,
our recurrent rules can be applied to any other algorithm that uses the ordering-based
solver in a subroutine, directly improving its performance in practice.

• We provide a detailed description of how HEICUT can be parallelized. For this,
we show that the exact reduction rules and the label propagation heuristic are embar-
rassingly parallel. In addition, we present the first ever parallel implementation of the
ordering-based solver, to the best of our knowledge. In particular, we use persistent
threads with barriers to perform thread-specific contractions in each iteration. This
new parallel approach benefits any algorithm that uses the ordering-based solver in
a subroutine. The greatest speedup is obtained when combining the parallel execu-
tion with our novel multiple contractions technique, meaning that all threads search
independently for multiple contractions in each iteration.

• To the best of our knowledge, we perform the first extensive comparison between the
state-of-the-art algorithms for the hypergraph minimum cut problem. For this, we
run a series of experiments on more than 500 real-world and synthetic hypergraphs 1.
To ensure maximum transparency, the source code of all implemented algorithms is
publicly available in a repository 2. We also introduce a new dataset of (k, 2)-core
instances, where the minimum cut value is guaranteed to be different from the small-
est weighted vertex degree. These instances are harder to solve as they do not admit
a trivial minimum cut and provide a benchmark for future research.

• We describe how a weaker version of our exact reduction rules can be applied to
the hypercactus algorithm of Chekuri and Xu [14, 15], which aims to find all min-
imum cuts in a hypergraph. Together with several practical improvements to their
split oracle, we manage to propose the first ever implementation of their hypercactus
algorithm, to the best of our knowledge. The experiments show that our implemen-
tation highly benefits from the proposed kernelization. In particular, the hypercactus
representation can be found within less than a second for 67.41% of the unweighted
and all but one weighted medium-sized instances. This means that our proposed hy-
percactus algorithm finds all minimum cuts in more medium-sized hypergraphs than
a single minimum cut is found by the current state-of-the-art algorithms.

1https://doi.org/10.5281/zenodo.17142170
2https://github.com/HeiCut/HeiCut

3

https://doi.org/10.5281/zenodo.17142170
https://github.com/HeiCut/HeiCut

1 Introduction

1.3 Structure

The remainder of this thesis is organized as follows. We start by introducing the general
definitions and notation used throughout this thesis in Chapter 2. This includes the problem
definition as well as descriptions of the concepts of kernelization and linear programming.
We then outline previous work on the minimum cut problem in Chapter 3. In particular,
we describe how the research landscape on graphs has evolved over the years, before ex-
plaining how this work has been extended and optimized for the hypergraph scenario. At
the end of the chapter, we mention recent advances in parallelization and the representation
of all minimum cuts. Afterwards, we propose several algorithms to solve the hypergraph
minimum cut problem efficiently in Chapter 4, starting with the definition of BIP and MILP
formulations that serve as a simple baseline. We then present HEICUT, a lightweight and
scalable algorithm that finds a minimum cut in unweighted or weighted hypergraphs of
arbitrary size. First, we explain the kernelization phase of HEICUT, consisting of provably
exact reduction rules and an optional heuristic reduction that uses clustering contraction
via label propagation. Next, we describe how HEICUT implements an underlying ordering-
based algorithm to solve the kernel and how this can be improved by searching for multiple
contractions. Finally, we outline how the different parts of HEICUT can be parallelized.
Chapter 5 describes how the techniques from HEICUT can be used to extend and improve
the hypercactus algorithm of Chekuri and Xu [14, 15], which aims to find all minimum
cuts in a hypergraph. In addition, we provide a series of improvements that allow us to pro-
pose the first ever implementation of the hypercactus algorithm of Chekuri and Xu, to the
best of our knowledge. In Chapter 6, we perform extensive experiments on more than 500
real-world and synthetic hypergraphs to compare our proposed algorithms to the current
state-of-the-art competitors. Chapter 7 contains the conclusion from our experiments as
well as an outlook to possible approaches and improvements in future work.

4

CHAPTER 2
Fundamentals

This chapter first introduces the general definitions and notation used throughout this thesis.
Afterwards, we define the hypergraph minimum cut problem together with its submodular
properties, followed by an overview of the hypercactus representation and related prob-
lems. Finally, we introduce the notion of kernelization and linear programming.

2.1 General Definitions

Let H = (V,E) be an undirected hypergraph with V being the set of vertices (or nodes)
and E being the multiset of hyperedges (or nets). Note that E is a multiset over P(V) \ ∅
where P(V) := {V ′ : V ′ ⊆ V } represents the power set of V , i.e., each hyperedge consists
of a (non-empty) subset of vertices. Each vertex can only be contained in a hyperedge once,
but multiple hyperedges can contain the same set of vertices. The vertices that compose
a hyperedge e ∈ E are called the pins of e. The size of a hyperedge e ∈ E is defined
as the number of pins in e and denoted by |e|. We define n := |V | as the number of
vertices, m := |E| as the number of hyperedges and p :=

∑
e∈E |e| as the total number

of pins in the hypergraph H . Let c : V → R≥0 denote a vertex-weight function and
let ω : E → R≥0 denote a hyperedge-weight function. We generalize the functions c and ω
to sets, such that c(V ′) :=

∑
v∈V ′ c(v) for V ′ ⊆ V and w(E ′) :=

∑
e∈E′ ω(e) for E ′ ⊆ E.

For unweighted hypergraphs, we assume unit hyperedge weights, i.e., for all e ∈ E we
have ω(e) = 1. A hyperedge e ∈ E is incident to a vertex v ∈ V if v ∈ e. Two vertices u, v
are adjacent if at least one hyperedge is incident to both of them. For a vertex v ∈ V ,
we define I(v) := {e ∈ E : v ∈ e} as the set of incident hyperedges to the vertex v and
generalize it to sets, such that I(V ′) :=

⋃
v∈V ′ I(v). The neighborhood of the vertex v is

defined as N(v) := {u ∈ V \ {v} : I(u)∩I(v) ̸= ∅}. Let d(v) := |I(v)| be the degree of v
and dω(v) := ω(I(v)) be the weighted degree of v. We denote δ := minv∈V {d(v)} as the
minimum (unweighted) degree and ∆ := maxv∈V {d(v)} as the maximum (unweighted)
degree of H . The weighted counterparts are δω and ∆ω. A connected path P between
two vertices u and v in H is a sequence of s pairwise distinct hyperedges (e1, . . . , es)

5

2 Fundamentals

3
4

a

b

c

d

(i): Hypergraph H

3

2

2
2

a

b

c

d

(ii): Clique-expanded graph G̊H

∞

∞
∞

∞

3

−

+

4

−

+

∞

∞
∞

∞

∞
∞

a

b

c

d

(iii): Digraph G⃗H

Figure 2.1: The clique-expanded graph G̊H and digraph G⃗H of an example hypergraph H .

with u ∈ e1 ∧ v ∈ es such that each consecutive pair of hyperedges shares at least one
vertex, i.e., ei ∩ ei+1 ̸= ∅ for all 1 ≤ i < s. The vertex-induced sub-hypergraph of H with
respect to V ′ ⊆ V is defined as H[V ′] := (V ′, {e : e ⊆ V ′ ∧ e ∈ E}).

A contraction of two vertices u, v ∈ V in a hypergraph H consists of creating a new
vertex w such that c(w) = c(u) + c(v) and I(w) = I(u) ∪ I(v), after which u and v are
removed from the vertex set. We denote H / {u, v} as the hypergraph obtained from H
after contracting the vertices u and v. Note that hyperedges incident to both vertices u
and v end up with one pin less after the contraction, i.e., their size is reduced by one. In
the case where merging the two vertices leads to single-pin hyperedges, they are removed.
Similarly, if the contraction produces parallel hyperedges, i.e., hyperedges with the same
set of pins, they are unified to a new hyperedge whose weight is the sum of the weights of
these parallel hyperedges. The concept of contraction is generalized to sets V ′ ⊆ V , such
that c(w) =

∑
v∈V ′ c(v) and I(w) =

⋃
v∈V ′ I(v). The contracted hypergraph is H / V ′.

We call a hypergraph d-uniform if each hyperedge contains exactly d vertices. A graph
is defined as a 2-uniform hypergraph, i.e., it is a special hypergraph where the size of all
hyperedges is exactly two. Note that for a graph, we speak of edges rather than hyperedges
and we denote the graph by G rather than H . A graph is directed if its edges are ordered
pairs instead of 2-element sets, i.e., for all u, v ∈ V the directed edges (u, v) and (v, u) are
not the same. Since some problems are easier to solve on graphs than on hypergraphs, it
can be useful to transform a hypergraph into an appropriate graph representation. We will
briefly outline two of such graph transformations, which are visualized in Figure 2.1.

Clique-expanded graph. We obtain the clique-expanded graph G̊H = (V̊ , E̊) from a
hypergraph H = (V,E) by setting V̊ := V and replacing each hyperedge e ∈ E from H
by a graph clique between the pins of e. In a graph clique, each pair of vertices is connected
by an edge, i.e., E̊ :=

⋃
e∈E {{u, v} : u, v ∈ e ∧ u ̸= v}. Each edge in the graph clique that

replaces e is undirected and obtains the weight ω(e)
|e|−1

.

Digraph. The digraph G⃗H = (V⃗ , E⃗) of a hypergraph H = (V,E) is a directed graph
where V⃗ := V ∪ E+ ∪ E− with E+ := {e+ : e ∈ E} and E− := {e− : e ∈ E}. The edge
set E⃗ is constructed by adding for every hyperedge e ∈ E the directed edge (e−, e+) with
weight c(e). Besides, for every e ∈ E and v ∈ e, we add the two directed edges (v, e−)
and (e+, v) with infinite weights. The original name of the digraph is Lawler network [54].

6

2.2 Problem Definition

2.2 Problem Definition

We define a cut (V1, V2) in a hypergraph H as a bipartition of the vertex set V , i.e.,
it divides V into two disjoint non-empty partitions V1 ∪ V2 = V with V1 ∩ V2 = ∅.
Since V2 = V \ V1, the cut can be fully represented by the set V1, which simplifies the
notation. The value (or capacity) of the cut V1 is denoted by λ[V1] and it is defined as the
sum of the weights of all hyperedges running between the partitions V1 and V \ V1:

λ[V1] :=
∑

e∈E ∧ e∩V1 ̸=∅ ∧ e∩V \V1 ̸=∅

ω(e) (2.1)

The hypergraph minimum cut problem consists of finding a minimum cut, i.e., a valid cut
in the hypergraph H whose value is minimal. Note that the solution to this problem is not
necessarily unique, as there may exist multiple minimum cuts in H . The problem is often
simplified to finding only the value of the minimum cut(s), since the partitions of a specific
minimum cut can often be extracted with minor adjustments. We denote λ(H) (or just λ if
the context is clear) as the minimum cut value of the hypergraph H and define it as:

λ(H) := min
∅≠A⊊V

{λ[A]} (2.2)

For some algorithms, λ̂(H) (or just λ̂) is the smallest upper bound of the minimum cut
value λ(H) found so far. A cut is trivial if one of its partitions contains exactly one vertex.
The minimum trivial cut is the trivial cut that isolates the vertex v ∈ V with the smallest
weighted vertex degree, i.e., dω(v) = δω. Thus, the minimum weighted vertex degree δω
can be used to initialize the upper bound λ̂(H). A split is defined as a non-trivial minimum
cut. For two vertices s, t ∈ V , we define the minimum s-t cut value as the lowest value
of all cuts separating the vertices s and t and refer to it as λ(H, s, t). The notion of trivial
cuts and splits is extended naturally to s-t cuts. The (global) minimum cut value and the
minimum s-t cut value for any s, t ∈ V can be found in polynomial time [54].

2.2.1 Submodularity
The function in Equation 2.1 defines a symmetric submodular function over the ground
set V [66]. More specifically, the following equations hold for all A,B ⊆ V :

λ[A] = λ[V \ A] (2.3)

λ[A ∪B] + λ[A ∩B] ≤ λ[A] + λ[B] (2.4)

Since any symmetric submodular function admits a cut-equivalent tree [31, 29], it can
be shown that there always exists a so-called pendent pair for the hypergraph H [66],
i.e., an ordered pair of vertices (s, t) such that the trivial cut {t} is a minimum s-t cut.
Finding a pendent pair is straightforward, as one can apply a so-called α-ordering on the

7

2 Fundamentals

6

3

21

2
3

4
5

(i): MA ordering (α = 1)

6

3

21

3
4

5
2

(ii): Tight ordering (α = 0)

6

3

21

2
4

5
3

(iii): Queyranne ordering (α = 1
2)

Figure 2.2: The three special cases of the α-ordering on the same hypergraph H . Although the
starting vertex is the same for all of them, each one leads to a different vertex ordering.

vertices (v1, . . . , vn), so that the last two vertices form a pendent pair (vn−1, vn) [15, 66].
More formally, an α-ordering of the vertices must satisfy the following inequality for
all 1 < i < j ≤ n where Vi−1 := (v1, . . . , vi−1) is the respective partial α-ordering:

αdω({vi}, Vi−1)+(1−α)d′ω({vi}, Vi−1) ≥ αdω({vj}, Vi−1)+(1−α)d′ω({vj}, Vi−1) (2.5)

For each v ∈ V , the scalar α ∈ [0, 1] is used to interpolate between the adjacency con-
tribution dω({v}, Vi−1) and the containment contribution d′ω({v}, Vi−1). More generally,
for two disjoint sets A,B ⊆ V , the adjacency contribution dω(A,B) is defined as the total
weight of the hyperedges incident to at least one vertex of both A and B. The contain-
ment contribution d′ω(A,B) has the additional constraint that the hyperedges must be fully
contained within A ∪B:

dω(A,B) :=
∑

e∈I(A)∩I(B)

ω(e) (2.6)

d′ω(A,B) :=
∑

e∈I(A)∩I(B)
∧e⊆A∪B

ω(e) (2.7)

An α-ordering can be computed in O(p+ n log(n)) time for weighted and in O(p) time
for unweighted hypergraphs when using a Fibonacci heap. There exist three special cases
of an α-ordering that are most commonly used. Figure 2.2 provides an example for each of
these three special cases. One advantage of these three cases is that, when the hyperedge
weights are restricted to integer values, the interpolation also yields an integer value for
each vertex, either directly or with minor modifications:

Maximum adjacency (MA) ordering (α = 1) [52]. Selects the vertices based only on
adjacency, i.e., it prioritizes vertices with high connectivity to the already-ordered set.

Tight ordering (α = 0) [56]. Selects the vertices based only on containment, i.e., it
considers only hyperedges that are contained within the growing set.

Queyranne ordering (α = 1
2

) [66]. Balances adjacency and containment equally. Note
that one can multiply both sides of Equation 2.5 by two to eliminate the fractional scalar.

8

2.2 Problem Definition

54

4
a

d

e

f

b
c

g

(i): Hypergraph H

4

x 5

4

4

x

a
b

c

d

e
f

g

(ii): Canonical decomposition Dc
H

4

x
4

4
a

d

e
b

c

(iii): Hypercactus H∗

Figure 2.3: The canonical decomposition Dc
H and the associated hypercactus H∗ of a hyper-

graph H . For H∗, the elements of Dc
H are first transformed and then connected via the

marker vertex x. The vertex mapping is the identity, except for ϕH∗(f) = ϕH∗(g) = b.

2.2.2 Hypercactus

For every hypergraph H = (V,E), there exists a so-called hypercactus H∗ = (V ∗, E∗),
i.e., a compact representation of size O(n) that preserves all minimum cuts of H [17]. A
hypercactus H∗ implicitly defines an (injective) vertex mapping ϕH∗ : V → V ∗, so that
each minimum cut in H corresponds to a minimum cut in H∗ and vice versa. In structural
terms, a hypercactus is defined as a hypergraph in which each block is either a single hy-
peredge or a graph cycle. A block is defined as an inclusion-wise maximal vertex-induced
sub-hypergraph that does not contain a so-called articulation vertex, i.e., a vertex whose
removal would disconnect the hypergraph into at least two separate components [15]. Note
that the hypercactus representation is not necessarily unique for a given hypergraph.

A decomposition DH of a hypergraph H is a set of (contracted) hypergraphs that is ob-
tained by starting at {H} and repeatedly replacing one of the hypergraphs in the set by
its simple refinement. A simple refinement {H1, H2} of a hypergraph H is obtained by
contracting the partitions of a split (V1, V2), i.e., H1 := H / V1 and H2 := H / V2. Note
that both contractions create the same contracted marker vertex x, so that the refinement
can be easily undone by identifying and merging the respective marker vertex x. An ele-
ment in the decomposition is called prime if it does not contain any split. A solid polygon
is a member of the decomposition that only consists of a hyperedge containing all vertices
and a graph cycle where each edge has the same weight. We call a decomposition prime
if it consists only of prime elements and standard if it every element is either prime or a
solid polygon. The canonical decomposition Dc

H is the minimal standard decomposition,
i.e., it is standard and was obtained by refining a non-standard decomposition. The sub-
modularity of the cut function implies that every hypergraph H admits a unique canonical
decomposition [19], which can be used to construct a hypercactus representation [17], as
shown in Figure 2.3. For this, the elements of Dc

H are first transformed and then connected
via the marker vertices.

9

2 Fundamentals

6/6

ts

5/6

8/9

3/3

2/2 0/4

3/3

a

b c

(i): Graph G with a maximum flow f (in blue)

6

ts 1

1

3

2
4

3

a

b c

8

5

(ii): Residual graph Gf

Figure 2.4: The residual graph Gf of an example graph G with a maximum flow f .

2.2.3 Related Problems

The clustering problem is closely related to the minimum cut problem, but there are some
key differences between them. We briefly outline the clustering problem, as we will later
describe how computing a clustering can be used as a heuristic for solving the minimum
cut problem. Finding a clustering in a hypergraph H consists of separating the vertices
into k disjoint clusters V1 ∪ · · · ∪ Vk = V , such that an objective is optimized that ensures
intra-cluster density and inter-cluster sparsity. The parameter k is not given in advance and
the clusters may be of any size. Label propagation is a common clustering algorithm that
was originally proposed for graphs [67] but can also be extended to hypergraphs [39].

A flow network F = (G, f, s, t) consists of a directed, weighted graph G = (V,E) and
a function f : E → R≥0, which assigns to each edge e ∈ E a non-negative flow f(e) that
is upper-bounded by the weight of the edge, i.e., ∀e ∈ E : 0 ≤ f(e) ≤ ω(e). The goal of
the maximum s-t flow problem is to find a feasible flow f that maximizes the value of the
flow val(f), i.e., the total flow starting at the source vertex s ∈ V and ending in the sink
vertex t ∈ V . Note that for a flow to be feasible, it must ensure the flow conservation, i.e.,
each vertex other than the source and the sink must receive as much flow as it gives. By
construction, the flow value is equal to the flow originating from the source and received
at the sink. The max-flow min-cut theorem states that for a flow network F , the maximum
flow value passing from s to t is identical to the minimum s-t cut value [26]. Thus, finding
a minimum s-t cut in any graph is the same as introducing the flow function f and finding
a maximum flow from s to t through this graph. Most algorithms that solve the maximum
flow problem construct the so-called residual graph Gf = (Vf , Ef), which uses the same
vertex set as G, i.e., Vf := V , and whose edge set Ef is constructed by adding each
edge e ∈ E where f(e) < ω(e) with the new weight ωf (e) = ω(e) − f(e). Furthermore,
for each edge e ∈ E where f(e) > 0, we add the reversed edge eref, i.e., the flipped ordered
pair of e, with the new weight ωf (e

ref) = f(e). If the flow f has maximum value, the
residual graph Gf contains enough information to retrieve all minimum s-t cuts of the
original graph G. More specifically, every minimum s-t cut of G is represented by a so-
called closed vertex set containing s but not t in Gf [63]. A closed vertex set C ⊊ Vf is
defined as a set that has no edges leaving the set, i.e., there is no directed edge (u, v) such
that u is included in C but v is excluded from C. Figure 2.4 visualizes a graph G with a
maximum s-t flow f and its associated residual graph Gf .

10

2.3 Kernelization

2.3 Kernelization

For a given problem, kernelization is the concept of preprocessing the input to replace it
with a smaller instance. The solution to this smaller instance is either identical to that of
the original input, or it can easily be transformed into it. The reduced instance is referred
to as the kernel of the input. Intuitively, kernelization is a technique that removes all parts
of an input that are irrelevant to solving the given problem. Since the kernel can most often
be computed in polynomial time, kernelization is commonly used for NP-hard problems
in the context of fixed-parameter tractability. However, it can also improve the efficiency
of polynomial-time algorithms, which is the focus of this thesis. In general, a series of
so-called reduction rules are applied to transform an input instance into its corresponding
kernel. These reduction rules identify specific structures or patterns that can be removed
without losing important information about the solution. For the hypergraph minimum cut
problem, we restrict the reduction rules to the removal of hyperedges and the contraction of
a set of vertices. Note that, for simplicity, we also speak of kernelization and kernel when
applying clustering contraction as a heuristic reduction, even though the exact minimum
cut value of the original hypergraph may be lost.

2.4 Linear Programs

A linear program is a mathematical formulation of an optimization problem, in which a
linear objective function should be maximized or minimized by choosing the appropriate
values of the variables. During the optimization process, the variables must satisfy a series
of linear (in)equalities, referred to as constraints. Linear programs are categorized by the
domain over which the variables are defined. For an Integer Linear Program (ILP), all vari-
ables are restricted to integer values. If only some of the variables are integers, the problem
is called Mixed-Integer Linear Program (MILP). In a Binary Integer Program (BIP), the
variables are required to be binary. Note that the task of solving any problem defined as
an ILP, MILP or BIP is NP-complete [47], meaning that finding the optimal values for
the variables can take exponential time in the worst case. Nonetheless, the ability to use
specialized and scalable solvers for any linear program has proven to be useful in practice.

11

2 Fundamentals

12

CHAPTER 3
Related Work

The field of research for the hypergraph minimum cut problem has a long history, with
researchers studying it for over fifty years. First, we outline the steady improvements that
have been made in solving the minimum cut problem for the graph scenario. Subsequently,
we describe in detail how this work has been extended and optimized for the hypergraph
scenario, including advances in parallelization and the representation of all minimum cuts.

3.1 Graph Minimum Cut

The first graph minimum cut algorithm was proposed by Gomory and Hu [31], who showed
that a (global) minimum cut can be computed from n − 1 minimum s-t cuts. The idea is
that a minimum cut always separates a given vertex s ∈ V from at least one other vertex,
meaning that it can be determined by computing, for each other vertex t ∈ V \ {s}, a
minimum s-t cut, and then selecting one of the cuts with the lowest value. As a result of
the max-flow min-cut theorem of Ford and Fulkerson [26], the same can be achieved by
computing n− 1 maximum s-t flows. Thus, for many decades, the most effective way to
improve the minimum cut computation was to find a better maximum s-t flow algorithm,
such as the push-relabel algorithm by Goldberg and Tarjan [30].

Nagamochi et al. [59, 60] introduce the first algorithm for finding a minimum cut in
a graph without relying on flow computations. Their idea is to repeatedly identify edges
that can safely be contracted without losing information about the minimum cut value.
To achieve this, they define an upper bound λ̂(G) of the minimum cut value, which is
initialized with the minimum weighted vertex degree δω. Furthermore, they exploit the fact
that, for any two vertices s, t ∈ V , a minimum cut either separates s from t or the two
vertices can be safely contracted without altering the minimum cut value:

λ(G) = min{λ(G, s, t), λ(G / {s, t})} ∀s, t ∈ V (3.1)

13

3 Related Work

Importantly, Nagamochi et al. only consider adjacent s and t and they estimate the
minimum s-t cut value with a lower bound. More precisely, they determine, for each
edge e ∈ E with endpoints u, v ∈ V , a lower bound q(e) of the minimum u-v cut value.
Based on Equation 3.1, the edge e can be safely contracted if the lower bound q(e) is larger
or equal to the upper bound λ̂(G). Note that if q(e) = λ̂(G), the contraction may destroy a
minimum cut, but this is accounted for by updating and maintaining λ̂(G). The algorithm
uses at most n− 1 iterations, since at least one edge can be contracted in each iteration. In
practice, fewer iterations are needed, as multiple edges can usually be contracted at once.
The algorithm has an asymptotic time complexity of O(mn + n2 log(n)) and is currently
the fastest known deterministic algorithm.

Stoer and Wagner [72] propose a variant of the algorithm of Nagamochi et al. that is
conceptually simpler and has the same time complexity. In particular, they observe that the
algorithm of Nagamochi et al. implicitly computes a maximum adjacency (MA) ordering
of the vertices. This means that the last two vertices vn−1 and vn in the ordering form a
pendent pair (vn−1, vn) and thus the trivial cut {vn} is a minimum cut that separates vn−1

from vn, i.e., λ(G, vn−1, vn) = dω(vn). By initialization, we have λ̂(G) ≤ dω(vn), meaning
that it is sufficient to contract the last two vertices of the ordering in each iteration, even
if they are not connected by an edge. After each iteration, the minimum weighted vertex
degree is re-computed and λ̂(G) is updated if necessary. The algorithm of Stoer and Wag-
ner performs worse in practice [43], since each iteration identifies exactly one contraction,
while the algorithm of Nagamochi et al. usually contracts multiple edges per iteration.

Matula [58] modifies the algorithm of Nagamochi et al. by setting the initial value of
the upper bound λ̂(G) to (1

2
− ε) · δω, resulting in a (2 + ε)-approximation algorithm with

linear time complexity. The tighter initial value causes more edges to be contracted, but at
the cost of losing the guarantee of obtaining the exact minimum cut value.

Padberg and Rinaldi [62] define a series of exact reduction rules that can be used to
repeatedly contract the input graph into a smaller kernel, so that the original minimum cut
value can still be retrieved. Some of these reduction rules depend on λ̂(G) and can thus
become more effective if the upper bound is further reduced. However, contrary to the
algorithm of Nagamochi et al., there is no guarantee of finding a valid edge contraction.
This means at some point, it may no longer be possible to apply any reduction rule and thus
no further edges can be contracted. In this case, the algorithm computes a maximum s-t
flow in order to identify at least one edge that can be contracted. Chekuri et al. [16] offer a
linear-time implementation of the reduction rules.

Karger and Stein [46] introduce a randomized Monte Carlo algorithm that is based on
random edge contractions. The algorithm runs in O(n2 log(n)) time and finds a minimum
cut with a probability of Θ(log−1(n)). Repeating the algorithm log2(n)-times improves
the success probability to O(n−1). Karger [44] further optimizes the algorithm by using
techniques such as cut sparsification and tree packing.

Henzinger et al. propose VIECUT [41], which is the current state-of-the-art algorithm
for the graph minimum cut problem in both sequential and shared-memory settings. First,
they quickly determine a good initial value for the upper bound λ̂(G) by using a heuristic

14

3.2 Hypergraph Minimum Cut

algorithm [40], which is based on label propagation and the reduction rules of Padberg
and Rinaldi. This initialization is usually much better than simply taking the minimum
weighted vertex degree δω. Then, they return to the initial graph and re-apply the reduction
rules of Padberg and Rinaldi with the improved upper bound λ̂(G) to obtain a small kernel.
Finally, they use an extended and parallelized version of the algorithm of Nagamochi et al.
to determine the exact minimum cut value of the kernel, which can easily be transferred
to the original graph. Building on their previous work and the findings of Nagamochi et
al. [61], Henzinger et al. [42] also propose a fast algorithm for transforming a graph into
its associated cactus representation, which preserves all minimum cuts.

3.2 Hypergraph Minimum Cut

In the hypergraph scenario, finding a minimum cut is more challenging because hyperedges
can represent multi-way relations of any size, making even simple tasks such as traversal
and representation more complex. In 1973, Lawler [54] was the first to prove that the
hypergraph minimum s-t cut problem for any s, t ∈ V can be solved in polynomial time.
This is achieved by transforming the hypergraph into its associated digraph representation
and computing a maximum s-t flow on it. Consequently, a (global) minimum cut of the
hypergraph can also be computed in polynomial time, since it can be derived from n − 1
minimum s-t cuts, which is analogous to the graph scenario.

Queyranne [66] shows that the hypergraph minimum cut function is both symmetric and
submodular. Therefore, any submodular minimization algorithm can be used to compute a
minimum cut in a hypergraph. However, specialized algorithms are preferred in practice,
since direct methods without any additional restrictions always yield invalid solutions [23].
In particular, Queyranne extends the algorithm of Stoer and Wagner to hypergraphs, since
vertex orderings, such as the MA ordering, can be applied to any symmetric submodular
function. Note that the algorithm computes a so-called Queyranne ordering but the idea is
the same as for the MA ordering, i.e., the last two vertices in the ordering form a pendent
pair and can therefore be contracted in each iteration. In fact, a particularity of hypergraphs
is that using a different vertex ordering results in a different algorithm, whereas all vertex
orderings collapse to the same definition on graphs, leading to the same result. Klimmek
and Wagner [52] propose a variant that uses the MA ordering, while Mak and Wong [56]
introduce a variant that computes a so-called tight ordering. Chekuri and Xu [15] prove that
all of these vertex orderings are special cases of a more general α-ordering with α ∈ [0, 1].
This means that there is an infinite number of possible vertex orderings, each resulting in
a different variant of the ordering-based algorithm. All variants require O(np+ n2 log(n))
time for weighted and O(np) time for unweighted hypergraphs.

Chekuri and Xu [14, 15] introduce the idea of first trimming the input hypergraph in a
preprocessing phase, before passing it to one of the variants of the ordering-based algo-
rithm. Trimming is a technique where individual pins are removed from hyperedges with-
out deleting the hyperedges themselves. In particular, they construct a so-called k-trimmed

15

3 Related Work

certificate Hk with O(kn) hyperedges for a given k, where all local connectivities up to k
are preserved, i.e., λ(Hk, s, t) ≥ min{k, λ(H, s, t)} for all s, t ∈ V . The idea is that the
minimum cut value is guaranteed to be preserved if λ(Hk) < k. Therefore, the algorithm
starts at k = 2 and performs multiple iterations, each of which uses the ordering-based
algorithm on the k-trimmed certificate Hk to compute λ(Hk). If λ(Hk) < k, the minimum
cut value is preserved, i.e., λ(H) = λ(Hk), and the algorithm stops. Otherwise, k is dou-
bled and the next iteration starts. To improve the efficiency of the algorithm, Chekuri and
Xu first construct a data structure from which they can quickly retrieve the k-trimmed cer-
tificate Hk for any k. The algorithm only applies to unweighted hypergraphs and has a time
complexity of O(p + λn2). In addition, Chekuri and Xu provide a theoretical description
of how the (2 + ε)-approximation algorithm of Matula can be extended to hypergraphs.

More recently, the hypergraph minimum cut problem has been approached from several
novel perspectives. Walter and Witteveen [77] propose an algorithm that approximates
the minimum cut value using the entropies of quantum states. They show that, in theory,
the entropy function can be used to approximate the hypergraph minimum cut function
with high probability to arbitrary precision. Veldt et al. [75] introduce a series of splitting
functions that impose different penalties on cutting hyperedges based on the way they are
cut. They also demonstrate that, for some of these splitting functions, finding a minimum
cut in the hypergraph becomes NP-hard.

To the best of our knowledge, there exists currently no parallel algorithm that efficiently
solves the hypergraph minimum cut problem. The only existing approach is to naively
transform the hypergraph into its associated digraph representation and perform n− 1 par-
allel s-t flow computations. Gottesbüren et al. [32] have used this approach in the context
of hypergraph partitioning, relying on a parallel version of the push-relabel algorithm [6].
However, they emphasize that this method is not optimal, as the parallelization of s-t flow
computations still remains challenging.

In terms of finding all minimum cuts of a hypergraph, some work has been done for trans-
forming a hypergraph into a hypercactus, i.e., a compact representation of size O(n) that
preserves all minimum cuts of the hypergraph. Cheng [17] shows that every hypergraph
has a hypercactus representation, since it can be derived from the canonical decomposition
of the hypergraph, whose existence and uniqueness has been proven by Cunningham [19].
Based on these results, Chekuri and Xu [14, 15] provide an extensive theoretical descrip-
tion of a hypercactus algorithm, whose time complexity is equivalent to that of computing
a single minimum cut. He et al. [37] propose a randomized Monte Carlo algorithm that
returns a hypercactus with high probability. Their algorithm is almost-linear and has even
been de-randomized in subsequent work [38], although only for the graph scenario.

16

CHAPTER 4
Hypergraph Minimum Cut Algorithms

Although the minimum cut problem can be solved efficiently on graphs, the hypergraph
setting remains more challenging. Most state-of-the-art hypergraph algorithms are rigor-
ous theoretical extensions of graph algorithms but they fail to achieve satisfactory execu-
tion times in practice. To tackle this, we propose several algorithms to solve the hypergraph
minimum cut problem efficiently. We start by formulating a Binary Integer Program (BIP)
in Section 4.1, as this provides us with a simple and straightforward algorithm that can
be used as a baseline for the other algorithms. In Section 4.2 we define a Mixed-Integer
Linear Program (MILP) that, contrary to the BIP formulation, achieves a linear number of
constraints at the cost of a slightly higher number of variables. Our main contribution is
described in Section 4.3, where we present HEICUT, a lightweight and scalable algorithm
that finds a minimum cut in unweighted or weighted hypergraphs with up to hundreds of
millions of hyperedges. More specifically, HEICUT applies a series of exact reduction rules
to aggressively reduce the input hypergraph to a smaller kernel without losing information
about the original minimum cut value. Besides, HEICUT supports the option of perform-
ing a heuristic reduction by identifying and contracting a clustering via label propagation.
Note that, for simplicity, we also speak of kernelization and kernel when applying cluster-
ing contraction as a heuristic reduction, even though the exact minimum cut value of the
original hypergraph may be lost. After the kernelization, HEICUT uses one of the variants
of an existing exact ordering-based algorithm to determine the minimum cut value of the
kernel. For this, we extend the ordering-based algorithm, so that it searches for multiple
contractions per iteration. Section 4.4 outlines the shared-memory parallelization of our
algorithms. In particular, we show that the kernelization phase of HEICUT can be paral-
lelized with very little effort. Besides, we present, to the best of our knowledge, the first
ever parallel implementation of the ordering-based algorithm.

17

4 Hypergraph Minimum Cut Algorithms

4.1 Binary Integer Program

We can obtain a simple algorithm for the hypergraph minimum cut problem by generalizing
the well-known BIP formulation for graphs to the hypergraph scenario. More specifically,
for each vertex v ∈ V , we define a binary variable xv ∈ {0, 1} that indicates to which of
the two partitions the vertex belongs. In addition, we define for each hyperedge e ∈ E
a binary variable ye ∈ {0, 1} that indicates whether the hyperedge is cut, i.e., whether it
runs between the two partitions or not. The formulation has a total of n + m variables.
The hypergraph minimum cut problem consists of minimizing the sum of the weights of
all hyperedges running between the two partitions, which leads to Objective Function 4.1.
In addition, to ensure that the resulting minimum cut is valid, several constraints must
be enforced. Firstly, neither of the two partitions can be empty, i.e., each partition must
contain at least one vertex, as defined in Constraint 4.2 and Constraint 4.3. Secondly,
the vertex variables must be properly linked to the hyperedge variables. This means that
if two adjacent vertices are not in the same partition, each hyperedge that is incident to
both of these vertices must be cut and therefore have a non-zero variable. In other words,
a hyperedge is cut if contains pins that belong to different partitions, as formalized by
Constraint 4.4. Note that even if all of the pins of a hyperedge belong to the same partition,
the constraint does not force the variable of the hyperedge to be zero. However, such
solutions are always sub-optimal, i.e., it is possible to reduce the objective even further by
setting the variable of the hyperedge down to zero without breaking any of the constraints.
The total number of constraints is equal to 2 −m +

∑
e∈E |e|2 and therefore not linear in

the size of the hypergraph, since each hyperedge introduces a constraint for every possible
ordered pair of its pins.

min
∑
e∈E

ω(e) · ye (4.1)

∑
v∈V

xv ≥ 1 (4.2)

∑
v∈V

xv ≤ n− 1 (4.3)

∀e ∈ E : ∀(u, v) ∈ e× e, u ̸= v : ye ≥ xu − xv (4.4)

In practice, it is common to relax the binary restriction on the variables during the com-
putation. This means that the variables can take any floating-point value that lies within
a predefined tolerance around the binary values. For the final solution, the variables are
rounded back to the nearest binary value. Relaxing the BIP formulation generally im-
proves scalability, as solving the exact BIP formulation is computationally expensive. For
a small enough tolerance such as 10−7, it is extremely unlikely that this rounding heuristic
leads to sub-optimal solutions. Nonetheless, for theoretical clarity, we refer to the relaxed
BIP as near-optimal.

18

4.2 Mixed-Integer Linear Program

4.2 Mixed-Integer Linear Program

A disadvantage of the straightforward BIP formulation in Section 4.1 is that it comes with
a non-linear number of constraints, which may lead to inefficient solving times in practice.
This is especially true for hypergraphs with a high average hyperedge size. Fortunately,
we observe that Constraint 4.4 can be simplified further, as it contains information that
is irrelevant for linking the vertex variables to the hyperedge variables. In particular, to
correctly mark a hyperedge as cut, it is irrelevant to know which two incident pins belong
to different partitions. This is because knowing about the existence of such a pair is all
that is necessary. Therefore, one way to reduce the number of constraints is to introduce
additional auxiliary variables. More precisely, we define for each hyperedge e ∈ E the
real variable zmin

e ∈ R, which represents the minimum vertex variable among all pins of e.
Analogously, we define the real variable zmax

e ∈ R to represent the maximum vertex vari-
able among the pins of e. This way, the hyperedge e is cut if and only if its two auxiliary
variables differ, i.e., zmin

e ̸= zmax
e . Note that we do not restrict the auxiliary variables to be

integer or binary, as this would make the formulation too rigid and the new constraints will
indirectly enforce binary values on the auxiliary variables. This means that we formulate
an MILP with n + 3m variables, consisting of the real auxiliary variables zmin

e , zmax
e ∈ R

as well as the binary variables xv ∈ {0, 1} and ye ∈ {0, 1} as defined in Section 4.1. The
objective and the first two constraints are identical to those of the BIP. However, we replace
Constraint 4.4 with the following new constraints:

∀e ∈ E : ∀v ∈ e : zmin
e ≤ xv (4.5)

∀e ∈ E : ∀v ∈ e : zmax
e ≥ xv (4.6)

∀e ∈ E : ye ≥ zmax
e − zmin

e (4.7)

Constraint 4.5 and Constraint 4.6 ensure that the auxiliary variables represent the mini-
mum and maximum vertex variables among the pins of each hyperedge. The identification
of cutting hyperedges is formalized by Constraint 4.7. In total, the MILP formulation con-
sists of 2 + 2p + m constraints. Therefore, compared to the BIP formulation, the MILP
achieves a linear number of constraints at the cost of a slightly higher number of variables.
Similar to the BIP, we make use of the rounding heuristic, i.e., we relax the restriction
on the binary variables of the MILP formulation. When returning the solution, we round
these values to the nearest binary value. The rounding heuristic is useful for solving the
MILP formulation on larger hypergraphs and only leads to sub-optimal solutions in very
rare cases. Thus, we consider the relaxed MILP to be near-optimal in theoretical terms.

19

4 Hypergraph Minimum Cut Algorithms

4.3 HeiCut

Although computing a minimum cut in a hypergraph is a fundamental task, the multi-way
relations of hyperedges introduce greater structural and computational complexity than in
the graph scenario. Directly applying an exact algorithm to large hypergraphs often results
in unsatisfactory memory or execution time performance. Therefore, we present HEICUT,
a lightweight and scalable algorithm that finds a minimum cut in unweighted or weighted
hypergraphs of arbitrary size. In particular, HEICUT tackles the complexity issue from two
angles. Firstly, the algorithm applies kernelization in a preprocessing phase by aggressively
reducing the input hypergraph to a smaller kernel without losing information about the
original minimum cut value. This is achieved through a series of provably exact reduction
rules. HEICUT also supports the option to further reduce the size of the kernel heuristically
by identifying and contracting clusters based on label propagation. Note that, for simplic-
ity, we also speak of kernelization and kernel when applying clustering contraction as a
heuristic reduction, even though the exact minimum cut value of the original hypergraph
may be lost. Secondly, HEICUT refines and extends the work on the exact ordering-based
algorithm by searching for multiple contractions per iteration. Applying this extension on
the kernel allows to quickly determine its associated minimum cut value. Overall HEICUT

can be considered as the hypergraph counterpart of the graph algorithm VIECUT [41], with
which it shares several conceptual similarities.

4.3.1 Reduction Rules

In a preprocessing phase, we iteratively reduce the hypergraph to a smaller kernel before
passing it to the exact ordering-based algorithm. More precisely, we define a set of seven
provably exact reduction rules. Each of these reduction rules identifies specific structures
or patterns within the hypergraph that can be safely removed or contracted without losing
information about the original minimum cut value. This kernelization idea was originally
proposed by Padberg and Rinaldi [62], refined by Chekuri et al. [16] and efficiently imple-
mented by Henzinger et al. [41] for graphs. However, to the best of our knowledge, it was
never transferred to the hypergraph scenario.

In detail, HEICUT maintains an upper bound λ̂(H) of the minimum cut value throughout
the entire kernelization phase. We initialize λ̂(H) with the minimum trivial cut value, i.e.,
the minimum weighted vertex degree δω. At any moment, the upper bound guarantees
that there exists a cut in the hypergraph H with a value of λ̂(H). The core idea of the
algorithm is to assume that the hypergraph admits an even better cut with a value strictly
lower than λ̂(H). Based on this assumption, we repeatedly identify and eliminate any
structure in the hypergraph for which we can ascertain that it never crosses such a better
cut. In other words, if such a better cut does exist, the identified structure will lie entirely
within one of the two partitions and can therefore safely be removed or contracted without
destroying the better cut. If the assumption is incorrect, i.e., there is no cut with a value

20

4.3 HeiCut

strictly lower than λ̂(H), then λ̂(H) is already the minimum cut value and applying the
reduction rules helps to reach this conclusion more quickly. In this case, the kernelization
does not necessarily preserve the minimum cut value, i.e., we may end up with a kernel
whose minimum cut value is greater than that of the input hypergraph. However, since the
upper bound λ̂(H) can only be decreased and is already equal to the minimum cut value,
the algorithm remains correct.

The kernelization phase of HEICUT is composed of multiple rounds. In each round, the
seven reduction rules are applied in a fixed predefined order. After each reduction rule,
the size of the hypergraph is reduced by removing or contracting the identified structures
before applying the next reduction rule. While doing so, we recompute the minimum
vertex degree δω and update the upper bound if δω < λ̂(H). The idea is that updating λ̂(H)
after every reduction rule may make subsequent reduction rules more effective, as some of
them depend heavily on the quality of the upper bound. Note that improving λ̂(H) may
also make some reduction rules applicable that could not be applied before. To further
speed up the performance in practice, HEICUT checks after each reduction rule if it can
terminate early. This is the case if the upper bound has reached its lowest possible value,
i.e., λ̂(H) = 0, or if the hypergraph has been fully reduced, i.e., |E| = 0 or |V | = 1.
The algorithm starts a new round of reduction rules if at least one reduction rule could be
applied in the previous round. If the hypergraph cannot be reduced any further, the kernel
is passed to one of the variants of the exact ordering-based algorithm.

We define two types of reduction rules. On the one hand, the estimate-based reduction
rules make use of the upper bound λ̂(H) to compute a smaller kernel. The effectiveness
of these reduction rules depends heavily on the quality of the upper bound. On the other
hand, the structure-based reduction rules identify and exploit specific structures within
the hypergraph to reduce its size. This type of reduction rule is independent of the upper
bound λ̂(H), meaning that it can be effectively applied at any moment. Additionally, we
distinguish between reduction rules specifically designed for hypergraphs and those that
are taken from the graph scenario without being generalized to hypergraphs. The seven
exact reduction rules are applied in the order in which they are presented. The idea is to
start with reduction rules that have a low computational overhead but a high expected effec-
tiveness. The graph-based reduction rules are applied last, since contractions form earlier
reduction rules may increase the number of hyperedges of size two, thereby improving
their applicability. Each exact reduction rule is illustrated by an example in Figure 4.1 with
the exception of the first one, which is self-evident and does not require an illustration.

Reduction Rule 1 (Singleton). Remove any hyperedge e ∈ E where |e| = 1 or ω(e) = 0.

Proof: If |e| = 1, the hyperedge can never cross any cut and if ω(e) = 0, the hyperedge
does it does not contribute to the cut value. □

Complexity: O(m) when iterating once over all hyperedges and removing the hyperedges
for which the rule is applicable.

21

4 Hypergraph Minimum Cut Algorithms

5

HeavyHyperedge HeavyOverlap

1

5

8

8

5
1

5

NestedSubstructure ImbalancedVertex

ImbalancedTriangle HeavyNeighborhood

λ̂(H) ≤ 8

2

43

λ̂(H) ≤ 9

2

43

5

1

2

1

1

2

1

6 6

5

6

2

4

1

6

3

4
5

21 3

3 1 λ̂(H) ≤ 7 4

Figure 4.1: Example for each reduction rule, excluding Reduction Rule 1, which is self-evident.

Reduction Rule 2 (HeavyHyperedge). Contract any hyperedge e ∈ E for which |e| ≥ 2
and ω(e) ≥ λ̂(H).

Proof: Assume that a hyperedge e with |e| ≥ 2 and ω(e) ≥ λ̂(H) crosses a minimum cut
with value λ(H). Then we must have λ(H) ≥ ω(e) ≥ λ̂(H). However, λ̂(H) is the upper
bound of λ(H), and so it follows that λ(H) = λ̂(H). Thus, any cut that separates the
vertices of e cannot lead to a strictly smaller cut value, and e can be safely contracted
without eliminating the possibility of recovering a minimum cut. □

Complexity: O(n + m) when iterating once over all hyperedges and contracting the
hyperedges for which the rule is applicable.

Reduction Rule 3 (HeavyOverlap). Contract any overlap
⋂s

i=1 ei of s ≥ 2 hyperedges
where |

⋂s
i=1 ei| ≥ 2 and

∑s
i=1 ω(ei) ≥ λ̂(H).

Proof: Assume that an overlap
⋂s

i=1 ei of s ≥ 2 hyperedges is cut by a minimum cut with
value λ(H). Then each hyperedge ei of the overlap contributes with a weight of ω(ei) to

22

4.3 HeiCut

the minimum cut value. It follows that λ(H) ≥
∑s

i=1 ω(ei) ≥ λ̂(H). Similar to the proof
of Reduction Rule 2, it must hold that the minimum cut value is equal to the upper bound
that we have already discovered, i.e., λ(H) = λ̂(H). Therefore, cutting the overlap cannot
lead to a strictly smaller cut value and we can safely contract the overlap. □

Complexity: O(n +
∑

e∈E |e|2) when checking the neighborhood of every vertex v ∈ V

with dω(v) ≥ λ̂(H).

Definition 4.1 (Strictly Nested Substructure)
For a hyperedge e ∈ E, we define a nested substructure of e as a set of s ≥ 1 different
hyperedges {e1, . . . , es} ⊆ E \ {e} such that all hyperedges are contained within e,
i.e., ei ⊆ e for all 1 ≤ i ≤ s. We call it a strictly nested substructure if the hyperedges and
their union are strictly contained in e, i.e., ei ⊊ e for all 1 ≤ i ≤ s and

⋃s
i=1 ei ⊊ e.

Definition 4.2 (Escaping Path)
For a hyperedge e ∈ E, we define an escaping path of e as a connected path P between
two vertices u ∈ e and v ̸∈ e, such that none of the hyperedges in the path P fully contain
the hyperedge e, i.e., every hyperedge e′ ∈ P satisfies e ⊈ e′.

Reduction Rule 4 (NestedSubstructure). Contract any inclusion-wise maximal strictly
nested substructure of a hyperedge e ∈ E for which there exists no escaping path of e that
starts in the substructure.

Proof: Let U =
⋃s

i=1 ei be the union of the hyperedges of an inclusion-wise maximal strictly
nested substructure of e. Suppose there is no escaping path of e that starts in U . Then all
paths from U to V \ U must traverse e or a hyperedge that fully contains e. Now, consider
an arbitrary minimum cut for which at least one hyperedge ei ⊆ U is cut. It follows that
every hyperedge that connects U with V \ U also crosses the cut, since it is either e or a
hyperedge that fully contains e, i.e., it contains all vertices in U . This means that moving U
entirely on one side of the cut does not lead to new cut hyperedges and decreases the cut
value by the weight of the previously cut hyperedges ei. Thus, we can safely contract U . □

Complexity: O(n+m+∆ ·p+
∑

e∈E
∑

e′∈E∧e′⊊e |e′|) as each hyperedge e ∈ E goes over
all its pins and their incident hyperedges to detect strictly nested substructures. Traversals
are performed to verify whether pins can escape through other incident hyperedges.

Reduction Rule 5 (ImbalancedVertex). Contract any hyperedge euv = {u, v} ∈ E for
which dω(u) < 2ω(euv) or dω(v) < 2ω(euv).

Proof: We only apply the reduction rule to hyperedges of size two, which have the same
properties as regular graph edges. The intuition is that the hyperedge euv never crosses a
minimum cut, because shifting either u or v to the other partition would decrease the cut
value. The validity of a single application of the reduction rule has been proven by Padberg
and Rinaldi [62]. When being applied multiple times, the inequalities of the reduction rule
must be strict to avoid erroneous contractions. Otherwise, if two hyperedges euv and evw

23

4 Hypergraph Minimum Cut Algorithms

have equal weight and share a common pin v, both are independently selected for con-
traction. However, this assumes that v can be shifted to opposite sides at the same time,
resulting in invalid contractions that may destroy minimum cuts, as shown in Figure 4.2. □

Complexity: O(n + m) when iterating once over all hyperedges and contracting the
hyperedges for which the rule is applicable.

Reduction Rule 6 (ImbalancedTriangle). Contract any hyperedge euv = {u, v} ∈ E
where there exists a vertex w ∈ V such that euw = {u,w} ∈ E and evw = {v, w} ∈ E
with dω(u) ≤ 2 (ω(euv) + ω(euw)) and dω(v) ≤ 2 (ω(euv) + ω(evw)).

Proof: We only apply the reduction rule to hyperedges of size two, which have the same
properties as regular graph edges. The intuition is that the hyperedge euv never crosses a
minimum cut, because then euw or evw also crosses this minimum cut and shifting either u
or v to the other partition would decrease the cut value. The validity of a single application
of the reduction rule has been proven by Padberg and Rinaldi [62]. When being applied
multiple times, we follow the approach of VIECUT [41], i.e., we enforce the restriction
that each vertex can participate in at most one contraction. □

Complexity: O(n+m) when marking the vertices similar to VIECUT and thus not looking
at all possible triangles.

Reduction Rule 7 (HeavyNeighborhood). Contract any hyperedge euv = {u, v} ∈ E
for which ω(euv) +

∑
w∈U min{ω(euw), ω(evw)} ≥ λ̂(H) with the set U being defined

as U := {w ∈ V : euw = {u,w} ∈ E ∧ evw = {v, w} ∈ E}.

Proof: We only apply the reduction rule to hyperedges of size two, which have the same
properties as regular graph edges. The intuition is that if the hyperedge euv crosses a
minimum cut, then euw or evw also crosses this minimum cut for every w ∈ U , which
means that λ(H) ≥

∑
w∈U min{ω(euw), ω(evw)} ≥ λ̂(H). Thus, similar to the proof of

Reduction Rule 2, we have λ(H) = λ̂(H). The validity of a single application of the
reduction rule has been proven by Padberg and Rinaldi [62]. When being applied multiple
times, we follow the approach of VIECUT [41], i.e., we enforce the restriction that each
vertex can participate in at most one contraction. □

Complexity: O(n+m) when marking the vertices similar to VIECUT and thus not looking
at all possible triangles.

Reduction Rules 2, 3 and 7 are estimate-based, whereas Reduction Rules 1, 4, 5 and 6
are structure-based. Besides, the four graph-based reduction rules taken from VIECUT are
Reduction Rules 2, 5, 6 and 7, which were originally proposed by Padberg and Rinaldi. We
only generalize Reduction Rule 2 to hyperedges of any size. Generalizing the other graph-
based reduction rules to the hypergraph scenario could be future work. Note that, contrary
to the formulation by Padberg and Rinaldi, the inequality in Reduction Rule 5 must be strict
when it is applied to multiple hyperedges at the same time. Otherwise, two hyperedges euv

24

4.3 HeiCut

3 3

5

1

5

5

1

5

vu w

Figure 4.2: Example of a hypergraph H with λ(H) = 4. When using a non-strict inequality in
Reduction Rule 5, we contract the hyperedges euv and evw at the same time. After the
contraction, we have λ(H) = 5 > 4, i.e., the original minimum cuts got destroyed.

and evw with the same weight and incident to a common vertex v will both be contracted,
since they assume that they can shift v so that the respective other hyperedge crosses the
minimum cut. This means that v must be in both partitions at the same time, which is im-
possible and therefore minimum cuts may be destroyed when contracting both hyperedges.
An example of this issue is visualized by Figure 4.2, where we have ω(euv) = ω(evw) = 3.
This problem also occurs in the graph scenario and although the strict inequality was im-
plemented correctly in the code of VIECUT, the associated paper [40] defines the reduction
rule with a non-strict equality. Thus, to the best of our knowledge, we are the first to make
explicitly aware of this important detail. Note that the inequality in Reduction Rule 6 can
remain non-strict, since we ensure that each vertex can only participate in at most one con-
traction. Additionally, the authors of VIECUT mention that its four graph-based reduction
rules only apply if euv is not the only edge incident to the endpoints u and v. This restriction
should prevent contractions that may eliminate minimum cuts. However, we observe that
this restriction is not necessary in practice, since it was shown by Padberg and Rinaldi that
only trivial minimum cuts may not be preserved. As this is already handled by comput-
ing δω and updating λ̂(H) after each reduction rule whenever δω < λ̂(H), this restriction
is not needed in our setting.

4.3.2 Label Propagation
As there is no guarantee that any of the reduction rules in Section 4.3.1 can be applied to
the hypergraph, HEICUT supports the option of performing a heuristic reduction, inspired
by VIECUT. When enabled, the algorithm identifies a clustering of the hypergraph in
each round and contracts the respective dense clusters before applying the reduction rules.
The intuition is that vertices within the same dense cluster are unlikely to be separated
by a minimum cut, as this would lead to a large cut value. Therefore, contracting the
clusters allows to aggressively reduce the size of the hypergraph. As this reduction is only
a heuristic, there is no guarantee of optimality, i.e., it is possible that minimum cuts are
destroyed by the reduction. However, in the graph scenario, the authors of VIECUT show
that the optimal solution is preserved in most cases, even for large and complex instances.

25

4 Hypergraph Minimum Cut Algorithms

Similar to VIECUT, we use label propagation to compute the clustering, which was
originally proposed by Raghavan et al. [67] for graphs but can also be extended to the
hypergraph scenario [39]. In particular, each vertex starts in its own singleton cluster with a
unique label corresponding to its vertex ID. The label propagation algorithm uses multiple
iterations, each of which processes the vertices of the hypergraph in the same random
order. More specifically, each vertex is assigned the label of the cluster to which it has
the strongest connection. Note that ties are broken uniformly at random. Let L be the
current set of labels in the hypergraph and Cl be the set of vertices that currently have the
label l ∈ L, then the vertex v ∈ V is assigned to the following label:

argmax
l∈L

 ∑
e∈I(v)

|e ∩ Cl| ·
ω(e)

|e| − 1

 (4.8)

This approach is known as absorption clustering using pins [12, 39] and is equivalent to
graph-based label propagation on the clique-expanded graph, where each hyperedge e ∈ E
is replaced by a graph clique between the pins of e and each edge of the graph clique
is given the weight ω(e)

|e|−1
. There exist alternative ways of determining the label of each

vertex v ∈ V , but Equation 4.8 is the default hypergraph clustering approach for most
algorithms, such as HMETIS [51], PATOH [12] and MT-KAHYPAR [33]. The approach
runs in O(n+

∑
e∈E |e|2), since each vertex considers the pins of all its incident hyperedges.

Kothapalli et al. [53] show that with high probability the same-label sets Cl converge to
dense clusters after a few iterations.

4.3.3 Ordering-Based Solver
After the kernelization phase, HEICUT determines the exact minimum cut value of the
kernel. This is achieved by using the exact ordering-based algorithm that was originally
proposed for graphs by Nagamochi et al. [59, 60] and simplified by Stoer and Wagner [72].
Queyranne [66] shows that the algorithm can be extended to the hypergraph scenario due to
the submodularity of the cut function. The simple intuition of the algorithm is that, for any
two vertices s, t ∈ V , a minimum cut either separates s from t or the two vertices can be
safely contracted without altering the minimum cut value, as formalized by Equation 3.1.
In other words, the minimum s-t cut value is either identical to the (global) minimum
cut value or not. Therefore, finding a minimum cut of the hypergraph H is equivalent
to repeatedly identifying a minimum s-t cut for any s, t ∈ V , storing the respective cut
value λ(H, s, t) if it is lower than the current upper bound λ̂(H), and always contracting
the vertices s and t. This process results in a sequence of (n− 1) contracted hypergraphs,
each with one fewer vertex, until only one vertex remains and the algorithm terminates.

One way to quickly find a minimum s-t cut for any s, t ∈ V is to determine a so-called
pendent pair (s, t), i.e., an ordered pair for which the trivial cut {t} is a minimum s-t
cut in H . Finding such a pendent pair is straightforward due to the fact that solving the
hypergraph minimum cut problem is equivalent to minimizing a symmetric submodular

26

4.3 HeiCut

function. In particular, it is possible to construct an ordering of the vertices such that
the last two vertices vn−1 and vn in the ordering form a pendent pair (vn−1, vn). This
means that {vn} is a trivial minimum vn−1 -vn cut and both vertices can be contracted after
storing the value of {vn} if it is lower than the current upper bound λ̂(H). Note that the
first vertex in the ordering is chosen at random. Chekuri and Xu [15] prove that tuning
the parameter α ∈ [0, 1] of a more general α-ordering leads to a different vertex ordering
and thus to a different variant of the ordering-based algorithm. However, this property
only applies to hypergraphs, since all α-orderings collapse to the same vertex ordering
on graphs. For more details, we refer to Section 2.2.1. There exist three variants of the
algorithm that are most commonly used. Klimmek and Wagner [52] propose a variant that
uses the maximum adjacency ordering (α = 1), while Mak and Wong [56] compute the
tight ordering (α = 0). Queyranne [66] strikes a balance between the two implementations
by defining a variant that follows the Queyranne ordering (α = 1

2
).

The most time-consuming task of the ordering-based algorithm is recomputing the vertex
ordering in every iteration. In particular, finding an α-ordering requires O(p + n log(n))
time for weighted and O(p) time for unweighted hypergraphs when using a Fibonacci
heap. Therefore, it is natural to ask whether it is possible to improve the performance of
the ordering-based algorithm by reusing the α-ordering from the previous iteration in the
next one. More formally, let (v1, . . . , vn) be an α-ordering of the vertices of a hypergraph H
and let Vi := (v1, . . . , vi) be the respective partial α-ordering. The hypergraph resulting
from the contraction of the vertices vn−1 and vn into a new vertex v∗ is denoted as H / L
with L := {vn−1, vn}. We want to know whether (v1, . . . , vn−2, v

∗) is a valid α-ordering of
the hypergraph H / L. If so, we automatically know that (vn−2, v

∗) forms a pendent pair
and thus {v∗} is a minimum vn−2 -v∗ cut in H / L. This means that we can perform the
next iteration in linear time by storing the value of {v∗} if it is lower than the current upper
bound λ̂(H) and contracting the vertices vn−2 and v∗ directly, without having to recompute
the α-ordering from the ground up.

To further improve the performance of the ordering-based algorithm, we observe that
we can reuse the α-ordering of H even if we cannot construct an α-ordering of H / L
in which v∗ is the last vertex. In particular, although the pendent pair formed by the last
two vertices of an α-ordering is order-sensitive, the contraction of these two vertices is not.
Therefore, if we know that (v1, . . . , vn−3, v

∗, vn−2) is a valid α-ordering of the contracted
hypergraph H / L, we can still perform the next iteration in linear time by contracting the
vertices vn−2 and v∗ directly. The only difference is that, due to the order-sensitivity of the
pendent pair, we must now use {vn−2} and not {v∗} as the trivial minimum vn−2 -v∗ cut.
This leads us to Theorem 4.1.

Theorem 4.1
After performing an iteration of the ordering-based algorithm on H , the next iteration
simplifies to contracting vn−2 and v∗ directly within H / L in linear time if the following
property holds in the original hypergraph H for all 1 ≤ i < n− 3:

αdω(L, Vi) + (1− α)d′ω(L, Vi) = αdω({vn−1}, Vi) + (1− α)d′ω({vn−1}, Vi)

27

4 Hypergraph Minimum Cut Algorithms

Proof of Theorem 4.1 First, we will show that the given property ensures that Vn−3

remains a valid partial α-ordering in H / L after performing the first iteration of the
ordering-based algorithm. For this, we need to construct H / L. Instead of contracting
the vertices vn−1 and vn directly, we can construct H / L in two separate steps, first delet-
ing vn−1 and vn and then adding the new vertex v∗. We observe that, for all 1 ≤ i < n− 3,
the partial α-ordering Vi of the vertices of H still remains a valid partial α-ordering after
removing the vertices vn−1 and vn from H . This is because, by definition, the index of a
vertex in the α-ordering is only affected by the vertices that have already been ordered,
i.e., those with lower indices. Thus, removing the vertices vn−1 and vn does not affect the
partial α-ordering Vi, since they are not present in Vi. It remains to be shown that Vi is
a valid partial α-ordering after the new vertex v∗ has been added to the hypergraph. By
using the given property, we can see that for all 1 ≤ i < n− 3:

αdω(v
∗, Vi) + (1− α)d′ω(v

∗, Vi) = αdω(L, Vi) + (1− α)d′ω(L, Vi)

= αdω({vn−1}, Vi) + (1− α)d′ω({vn−1}, Vi)

≤ αdω({vi+1}, Vi) + (1− α)d′ω({vi+1}, Vi)

In particular, this proves that Vn−3 is a valid partial α-ordering in H / L. As vn−2

and v∗ are the only vertices in H / L that have not yet been ordered, it follows that
either (v1, . . . , vn−2, v

∗) or (v1, . . . , vn−3, v
∗, vn−2) is a valid α-ordering of the vertices

of H / L. In both cases, the last two vertices of the α-ordering are vn−2 and v∗. However,
the trivial minimum vn−2 -v∗ cut is in the first case {v∗} and in the second case {vn−2}. As
every trivial cut is an upper bound of the (global) minimum cut, one way to account for this
is to simply consider both trivial cuts {vn−2} and {v∗} and store min(λ[{vn−2}], λ[{v∗}])
if it is lower than λ̂(H). Thus, the next iteration of the ordering-based algorithm can be
simplified to contracting vn−2 and v∗ directly, without having to recompute the α-ordering
from the ground up. □

From Theorem 4.1, we can conclude that reusing the α-ordering in subsequent iterations
is equivalent to performing multiple contractions in one iteration. In the following, we will
stick to the concept of performing multiple contractions per iteration. Note that we still
need to maintain the lowest trivial cut value found across all contractions and update λ̂(H)
if necessary. This approach is more in line with the graph algorithm by Nagamochi et
al. [59, 60], which also involves searching for multiple contractions in a single iteration.

For each variant of the ordering-based algorithm, we now define a recurrent rule that, if
applicable, allows to perform an additional contraction in the current iteration. This means
that, as long as the rule is applicable, we can add another vertex to the contraction of the
current iteration. Before stating the rule, we first set the context. Let U := {vj, . . . , vn} be
the set of all eligible vertices, i.e., the vertices that will be contracted in the current iteration.
Note that vj is the vertex with the lowest index in the α-ordering that will be contracted and
every vertex coming after vj in the α-ordering is also part of U . At the start of each itera-
tion, we set j = n − 1 and U = {vn−1, vn}, since the last two vertices of each α-ordering

28

4.3 HeiCut

form a pendent pair and are therefore always contracted. We observe that vj−1 can only
be added to the set of eligible vertices U if contracting the vertices in U into a new ver-
tex v∗ would preserve the partial α-ordering Vj−2. In other words, either (v1, . . . , vj−1, v

∗)
or (v1, . . . , vj−2, v

∗, vj−1) must be a valid α-ordering of the contracted hypergraph H / U ,
similar to the proof of Theorem 4.1. Otherwise, the vertices vj−1 and v∗ do not necessarily
form a pendent pair and we cannot add vj−1 to the set of eligible vertices U without the
risk of destroying a non-trivial minimum cut.

We start by defining the recurrent contraction rule for the tight ordering in Theorem 4.2.
As the tight ordering relies only on the containment contribution, we only need to ensure
that the containment contribution of v∗ is the same as that of vj for all partial tight orderings
up to Vj−3. Otherwise, Vj−2 may not be preserved, as it is based on all previous partial
orderings. The condition of Theorem 4.2 requires that every hyperedge incident to a vertex
in {vj+1, . . . , vn} is also incident to either vj−2 or vj−1. The intuition is that the containment
contribution of v∗ is larger than that of vj for the partial tight ordering Vj−3 if there is a
hyperedge e ∈ I(U) that is fully covered by U ∪ Vj−3 but not by {vj} ∪ Vj−3 in H . In this
case, we have d′ω(U, Vj−3) = d′ω({vj}, Vj−3) + ω(e). This means that v∗ may be chosen
earlier in the ordering, i.e., the partial tight ordering Vj−2 may not be preserved, as shown in
Figure 4.3. The condition of Theorem 4.2 ensures that this never happens for 1 ≤ i < j−2,
i.e., the partial tight ordering Vj−2 is preserved and the vertex vj−1 can safely be added to U .

Theorem 4.2
Let (v1, . . . , vn) be a tight ordering and U be the set of eligible vertices of an iteration of
the ordering-based algorithm. We can safely add vj−1 to U if the following condition holds:

I({vj+1, . . . , vn}) ⊆ I({vj−2, vj−1})

Proof of Theorem 4.2 For all 1 ≤ i < j−2, we see that neither vj−2 nor vj−1 is included
in U ∪Vi. With the given condition, we conclude that ∀ e ∈ I({vj+1, . . . , vn}) : e ⊈ U ∪Vi.
Since we have α = 0 for the tight ordering, it follows that for all 1 ≤ i < j − 2:

αdω(U, Vi) + (1− α)d′ω(U, Vi) = d′ω(U, Vi)

=
∑

e∈I(U)∩I(Vi)∧e⊆U∪Vi

ω(e)

=
∑

e∈I(vj)∩I(Vi)∧e⊆{vj}∪Vi

ω(e)

= d′ω({vj}, Vi)

= αdω({vj}, Vi) + (1− α)d′ω({vj}, Vi)

This means that, when contracting the vertices vj, . . . , vn into a new vertex v∗, we obtain
a contracted hypergraph for which Theorem 4.1 holds. Note that we need to replace n
with j + 1 and L with U to be able to apply the theorem. It follows that vj−1 can be safely
added to the set of eligible vertices U of the current iteration. □

29

4 Hypergraph Minimum Cut Algorithms

6

3

21

3
4

5
2

6

3

21

4
2

3

(i): Theorem is not satisfied, we cannot add 3 to U

6

3

21

3
4

5
2 6

3

21

3
4

2

(ii): Theorem is satisfied, we can safely add 3 to U

Figure 4.3: Example of Theorem 4.2 with j = 4 and U = {4, 5}. On the left, the theorem is not
satisfied, i.e., the tight ordering changes after contracting U to v∗ and vertex j−1 = 3
cannot be added to U . On the right, it is satisfied, i.e., we can safely add vertex 3 to U .

For the MA ordering, the recurrent contraction rule is defined in Theorem 4.3. Note that
the MA ordering only uses the adjacency contribution. Therefore, when contracting the
vertices of U into a new vertex v∗, it is sufficient to ensure that the adjacency contribution
of v∗ is the same as that of vj for all partial MA orderings up to Vj−3. Otherwise, Vj−2 may
not be preserved, as it is based on all previous partial orderings. For this, the condition of
Theorem 4.3 requires that every hyperedge incident to a vertex in {vj+1, . . . , vn} is either
incident to vj or not incident to any vertex in {v1, . . . , vj−3}. In other words, the condition
guarantees that there is no hyperedge e ∈ I(U) in H that is incident to Vj−3 but not to vj .
In this case, vj−1 can be safely added to the set of eligible vertices U . Otherwise, we
have dω(U, Vj−3) = dω({vj}, Vj−3) + ω(e), meaning that v∗ may be chosen earlier in the
ordering, i.e., the partial MA ordering Vj−2 may not be preserved, as shown in Figure 4.4.

Theorem 4.3
Let (v1, . . . , vn) be a maximum adjacency ordering and U be the set of eligible vertices of
an iteration of the ordering-based algorithm. We can safely add vj−1 to U if the following
condition holds:

I({vj+1, . . . , vn}) ⊆ I(vj) ∪ (E \ I(v1, . . . , vj−3))

Proof of Theorem 4.3 For all 1 ≤ i < j− 2, we see that a hyperedge cannot be included
at the same time in E \ I(v1, . . . , vj−3) and in I(Vi). With the given condition, we conclude
that ∀ e ∈ I({vj+1, . . . , vn}) : e ∈ I(vj)∨e /∈ I(Vi). Since we have α = 1 for the maximum
adjacency ordering, it follows that for all 1 ≤ i < j − 2:

αdω(U, Vi) + (1− α)d′ω(U, Vi) = dω(U, Vi)

=
∑

e∈I(U)∩I(Vi)

ω(e)

=
∑

e∈I(vj)∩I(Vi)

ω(e)

= dω({vj}, Vi)

= αdω({vj}, Vi) + (1− α)d′ω({vj}, Vi)

30

4.3 HeiCut

6

3

21

2
3

4
5

6

3

2
1

3
4

2

(i): Theorem is not satisfied, we cannot add 3 to U

6

3

1

2
3

4
5

6

3

1

2
3

4

(ii): Theorem is satisfied, we can safely add 3 to U

Figure 4.4: Example of Theorem 4.3 with j = 4 and U = {4, 5}. On the left, the theorem is not
satisfied, i.e., the MA ordering changes after contracting U to v∗ and vertex j− 1 = 3
cannot be added to U . On the right, it is satisfied, i.e., we can safely add vertex 3 to U .

Similar to Theorem 4.2, this means that we can apply Theorem 4.1 to the hypergraph
obtained by contracting the vertices vj, . . . , vn into a new vertex v∗. Thus, vj−1 can be
safely added to the contracted vertices of the current iteration. □

For every other α-ordering, i.e., 0 < α < 1, the containment contribution as well as
the adjacency contribution influence the ordering. Therefore, the vertex vj−1 can only be
added to the set of eligible vertices U if both conditions of Theorem 4.2 and Theorem 4.3
are satisfied at the same time. Note that this is much more restrictive, which means that the
tight ordering and the MA ordering are expected to be better suited for applying multiple
contractions per iteration.

4.3.4 Pseudocode
The pseudocode of HEICUT is provided in Algorithm 1. The boolean useLP indicates
whether the algorithm uses label propagation to perform the heuristic reduction in every
round, as described in Section 4.3.2. For each reduction rule, we use a separate union-find
data structure [28] to efficiently keep track of which vertices must be contracted together.
Tarjan [74] showed that, when improving the union-find data structure with techniques
such as path compression and union by rank, each operation runs in almost constant time.
More specifically, an operation uses O(α(n)) amortized time where α(n) is the inverse
Ackermann function [1]. To determine the minimum cut of the kernel, HEICUT uses one
of the variants of the exact ordering-based algorithm, for which we describe the pseudocode
in Algorithm 2. In particular, the multiple contraction approach described in Section 4.3.3
is implemented by the lines 7 to 10. When excluding these lines, we obtain the original
ordering-based algorithm with a single contraction per iteration, as defined in previous
work [15, 52, 56, 66]. For the computation of the α-ordering, we use a priority queue to
store and update the adjacency and containment contribution of each vertex with respect to
the already-ordered vertices. In particular, we use a bucket priority queue if the hypergraph
is unweighted and a binary heap if the hypergraph is weighted.

31

4 Hypergraph Minimum Cut Algorithms

Algorithm 1: HEICUT

Input: Hypergraph H = (V,E), parameter α ∈ [0, 1], boolean useLP
Output: Minimum cut value λ(H)

1 λ̂(H)← δω(H)
2 while first round or reduced in previous round do // Kernelization rounds

3 if useLP then // Optional heuristic

4 H ← LABELPROPAGATION(H)

5 foreach exact reduction rule r do // Fixed order of rules

6 H ← APPLYEXACTREDUCTION(H, r, λ̂(H))
7 if |V | > 1 then
8 λ̂(H)← min(λ̂(H), δω(H)) // Update upper bound

9 if |E| = 0 ∨ |V | = 1 ∨ λ̂(H) = 0 then
10 return λ(H)← λ̂(H) // Stop early

11 λ̂(H)← min(λ̂(H), ORDERINGBASEDSOLVER(H,α)) // Solve kernel

12 return λ(H)← λ̂(H)

Algorithm 2: ORDERINGBASEDSOLVER

Input: Hypergraph H = (V,E), parameter α ∈ [0, 1]
Output: Minimum cut value λ(H)

1 n← |V |
2 while n > 1 do // Stop if one vertex remains

3 (v1, . . . , vn)← COMPUTEORDERING(H,α)

4 λ̂(H)← min(λ̂(H), λ[{vn}]) // Update upper bound

5 U ← {vn−1, vn}
6 j ← n− 1
7 while j ≥ 2 and can add vj−1 to U do // Use Theorem 4.2 and/or 4.3

8 λ̂(H)← min(λ̂(H), λ[U], λ[{vj−1}]) // Update upper bound

9 U ← {vj−1} ∪ U
10 j ← j − 1

11 H ← CONTRACT(H,U) // Contract eligible vertices

12 n← n− |U |+ 1

13 return λ(H)← λ̂(H)

32

4.4 Parallelization

4.4 Parallelization

In this section, we describe how our proposed algorithms can be parallelized in a shared-
memory context. This involves running multiple threads in parallel on the same machine,
with all threads sharing a global memory space. More specifically, we only focus on the
parallelization of HEICUT, given that there already exists extensive work on the shared-
memory parallelization of BIP and MILP solvers [10, 24, 70]. First, we demonstrate that
the kernelization phase of HEICUT, including the exact reduction rules and the label prop-
agation heuristic, is embarrassingly parallel. This means that it can be parallelized with
little effort. Afterwards, we demonstrate that the exact ordering-based algorithm can be
parallelized by computing a different α-ordering for each thread. To the best of our knowl-
edge, this is the first ever parallel implementation of the ordering-based algorithm.

4.4.1 Parallel Kernelization

The kernelization phase of HEICUT is embarrassingly parallel. The reason for this is that
the exact reduction rules and the label propagation heuristic can both be parallelized with
little effort, since almost no dependency or communication between the threads is required.
Note that we will not describe how to parallelize the contraction step, since we use the
method of MT-KAHYPAR [33] for this, which mainly uses easily parallelizable operations.
For more information, we refer to Section 6.3.

We observe that each reduction rule in Section 4.3.1 first identifies all structures in the
hypergraph to which the reduction rule applies before performing the contraction. This
is because all of the identified structures are independent of each other and can thus be
contracted simultaneously before applying the next reduction rule. Therefore, parallelizing
each reduction rule is as simple as identifying the structures simultaneously rather than
sequentially. In other words, instead of looping sequentially over every structure to check
whether it satisfies the reduction rule, the different threads perform this check in parallel.
The only common dependency of the threads is the union-find data structure, which keeps
track of the vertices that must be contracted together. Similar to VIECUT, we avoid race
conditions by using the parallel union-find data structure of Anderson et al. [4]. They pro-
pose a wait-free implementation that replaces critical operations, such as path compression
and rank updates, with compare-and-swap (CAS) instructions.

Some of the graph-based reduction rules are parallelized differently compared to their
original description in VIECUT. In particular, the authors of VIECUT claim that Reduction
Rule 5 can only be parallelized if it is ensured that none of the identified edges share a
common vertex. In other words, there should not exist a vertex v ∈ V for which two
incident edges euv and evw will be contracted by Reduction Rule 5. When contracting the
two edges separately, the contraction of the edge euv merges the vertices u and v into a
new vertex v∗, meaning that the edge evw becomes ev∗w. They argue that the weighted
vertex degree of v∗ differs from that of v, which could invalidate Reduction Rule 5 for

33

4 Hypergraph Minimum Cut Algorithms

the edge ev∗w, even if it could previously be applied to the edge evw. However, we find
this restriction to be unnecessary in our scenario, as the strict inequality mentioned in the
proof of Reduction Rule 5 guarantees that this issue will never arise. For a more detailed
derivation, we refer to Proof A.1. Besides, we allow each vertex to scan a slightly higher
number of triangles for Reduction Rules 6 and 7 by handling marked vertices differently.
In particular, we still mark the vertices and only scan the neighborhood of non-marked
vertices. However, we now allow the neighbors to be already marked if they have not
already scanned their own neighborhood themselves. In the sequential case, this change
would lead to a non-linear time complexity. In the parallel scenario, it is a common practice
to assign each thread a slightly higher workload due to the parallel execution. Note that we
still enforce the restriction that each vertex can only participate in at most one contraction
by using a CAS instruction. This modification of Reduction Rules 6 and 7 is already part
of the parallel implementation of VIECUT, but it has never been explicitly mentioned in
the papers [40, 41] to the best of our knowledge.

The simplest way to parallelize the label propagation heuristic is to determine the next
label for multiple vertices simultaneously, rather than looping over the vertices one by one
in each iteration. As this straightforward approach does not rely on any communication
between the threads, race conditions might occur. This means that a vertex might update
its label so quickly that neighboring vertices use this new label instead of that from the
previous iteration to determine their own new label. However, Staudt and Meyerhenke [71]
show that these race conditions do not affect the quality of the algorithm and even introduce
another source of randomness, which may increase the clustering diversity. Therefore, we
take the same approach as VIECUT and simply ignore the race conditions.

4.4.2 Parallel Ordering-Based Solver
A key observation for parallelizing the ordering-based algorithm is that Equation 3.1 can
be applied to different vertex pairs of the hypergraph H at the same time. This means
that we can compute, in each thread i, the minimum si-ti cut value for a thread-specific
pair si, ti ∈ V . We then store mini{λ(H, si, ti)} if it is lower than the current upper
bound λ̂(H) and contract each pair of vertices before starting the next iteration. As in
the sequential case, the most straightforward way to implement the parallel algorithm is
to make use of α-orderings. In particular, each thread computes its own α-ordering to
obtain a thread-specific pendent pair (vi,n−1, vi,n) where {vi,n} is a minimum vi,n−1 -vi,n
cut. Since each α-ordering starts at a random vertex, it is likely that vi,n is different for
every thread, even if all threads use the same value α. However, there is no guarantee
that the threads will compute different pendent pairs. In the worst case, the performance
will be the same as for the sequential algorithm. Therefore, to increase diversification,
we can assign a different value αi to each thread i. For example, when using a uniform
distribution, we set αi = i−1

N−1
for 1 ≤ i ≤ N . In this case, the first thread uses the

tight ordering, the last thread uses the MA ordering and all other threads use a different
combination of the adjacency and the containment contributions. Nevertheless, in the worst

34

4.4 Parallelization

Thread 1 Thread 2 Thread 3 Thread 4

O
rd

er
in

g
O

rd
er

in
g

Barrier

Barrier

Barrier

C
on

tr
ac

t

Figure 4.5: A timeline diagram for the execution of the ordering-based algorithm with N = 4
threads. For every iteration, two separate barriers ensure that the threads are synchro-
nized before computing the α-ordering or contracting the pendent pair in each thread.

case, the algorithm still performs identically to the sequential implementation. In the best
case, each thread would compute a different pendent pair in each iteration, meaning that the
algorithm would only require ⌈n−1

N
⌉ iterations. To the best of our knowledge, this approach

for parallelizing the ordering-based algorithm has never been suggested in any published
work before. Note that the technique of performing multiple contractions per iteration
as described in Section 4.3.3 also works in the parallel scenario. More specifically, each
thread can independently search for multiple contractions based on its α-ordering, leading
to an even smaller number of iterations.

One way to implement the parallel ordering-based algorithm is to use N persistent
threads. This means that we initialize the threads at the start of the algorithm and only
destroy them after having performed all iterations. The reason for this is that we want to
use the maximum degree of parallelization in each iteration, which is exactly the permit-
ted number N of threads. Since N remains the same for every iteration, re-initializing
the threads in each iteration would only lead to more overhead. In addition, when each
thread updates the current upper bound λ̂(H) based on its pendent pair, we use a CAS
instruction to avoid race conditions. An important aspect of parallelizing the ordering-
based algorithm is that all threads must be synchronized. The reason for this is that all
threads must finish the computation of their α-ordering before any thread can contract its
pendent pair. Otherwise, a contraction could invalidate the α-orderings of other threads,
resulting in incorrect behavior. Similarly, each thread must wait for all the other threads
to have finished contracting their pendent pair before it can compute the next α-ordering.
Both synchronizations are achieved by inserting a barrier, as shown in Figure 4.5. When a
thread reaches a barrier, it waits until all other threads have also reached the barrier. The
first barrier would be positioned after line 10 of Algorithm 2 and the second after line 12.

35

4 Hypergraph Minimum Cut Algorithms

36

CHAPTER 5
Hypercactus

In the previous chapter, we described in detail how to efficiently find a minimum cut in a
hypergraph H . However, in general, a hypergraph can have many cuts of the same value.
Therefore, a natural extension of the hypergraph minimum cut problem is to search for all
minimum cuts in H , rather than just one. More specifically, the goal is to construct a
so-called hypercactus H∗, i.e., a compact representation of size O(n) that preserves all
minimum cuts of H . Chekuri and Xu [14, 15] show that computing a hypercactus H∗ of
the hypergraph H can be achieved in the same time complexity as that for finding a single
minimum cut by using a so-called split oracle. In this chapter, we will provide several
improvements to the algorithm of Chekuri and Xu as well as its first ever implementation,
to the best of our knowledge. For this, we first outline the idea behind the algorithm of
Chekuri and Xu in Section 5.1. Afterwards, we demonstrate in Section 5.2 that we can
improve the hypercactus algorithm by performing kernelization in a preprocessing phase,
similar to HEICUT. In Section 5.3, we describe several modifications to the split oracle of
Chekuri and Xu that facilitate the implementation and improve the performance in practice.
The pseudocode for the hypercactus algorithm, including the suggested improvements, is
provided in Section 5.4.

5.1 Algorithm Description

We briefly outline the hypercactus algorithm of Chekuri and Xu to provide context for
the improvements described in subsequent sections. The algorithm exploits the fact that
each hypergraph H admits a so-called unique canonical decomposition Dc

H [19] that can
be used to construct a hypercactus representation H∗, which is not necessarily unique [17].
For more information, we refer to Section 2.2.2. Chekuri and Xu describe in detail how
the hypercactus H∗ can be constructed from the canonical decomposition Dc

H of H . More
specifically, each element of Dc

H is first transformed according to a fixed scheme, after
which H∗ is built by connecting all of the transformed elements together. As it is com-
putationally intensive to directly compute the canonical decomposition of H , Chekuri and

37

5 Hypercactus

Xu propose to first compute a prime decomposition of H . A prime decomposition is not
necessarily unique and consists only of prime elements that do not contain any split, i.e., no
prime element admits a non-trivial minimum cut. For example, an element with fewer than
four vertices is always prime, since every minimum cut is guaranteed to be trivial. Next, the
prime decomposition is transformed into the canonical decomposition by merging some of
the prime elements. One straightforward way to compute a prime decomposition of H is to
start with the decomposition {H} and repeatedly eliminate a split from an element in the
decomposition. This can be done by using a so-called split oracle in a recursive manner.

Definition 5.1 (Split Oracle)
A split oracle is a function that, given an element Y = (VY , EY) in the decomposition of
the input hypergraph H , outputs either a split in Y or two vertices s, t ∈ VY such that there
is no s-t split with value λ(H) in Y .

In particular, if the split oracle outputs a split for a given element Y in the decomposition,
we replace Y with the two elements obtained by cutting along the split. Otherwise, we
reduce the size of the element by contracting the vertices s and t. Although coming up with
any polynomial-time algorithm for the split oracle is simple, the near-linear time approach
of Chekuri and Xu involves a series of advanced techniques and concepts. The overall idea
of their algorithm is based on the digraph G⃗Y , which we defined in Section 2.1. More
specifically, any minimum s-t cut in Y corresponds to a minimum s-t cut in the associated
digraph G⃗Y and can thus be computed from a maximum s-t flow in G⃗Y [54]. This means
that, for two vertices s, t ∈ VY , there exists an s-t split in Y if we can enumerate at least
three minimum s-t cuts from the maximum s-t flow of G⃗Y . The reason for this is that {s}
and {t} are the only two trivial minimum s-t cuts, which means that the third minimum cut
must be an s-t split in Y . Note that if only one or two minimum s-t cuts can be enumerated,
we must check individually whether they are non-trivial. In the case where no s-t split can
be found or its value is greater than λ(H), the oracle returns s and t, as the two vertices can
safely be contracted. To compute the maximum s-t flow in the digraph G⃗Y , Chekuri and
Xu use an approach that first computes a tight ordering in Y . Afterwards, they construct
a so-called tight graph G′

Y = (V ′, E ′) where V ′ = VY and each hyperedge e ∈ EY is
replaced by an edge e′ ∈ E ′ that connects the last two pins of e in the tight ordering. An
example of a tight graph is given in Figure 5.1. Chekuri and Xu show that the containment
contribution is entirely preserved, i.e., every tight ordering in Y is also a tight ordering
in G′

Y . This means that {vn} is a trivial minimum vn−1 -vn cut in both Y and G′
Y . It

follows that the maximum vn−1 -vn flow value in G′
Y is the same as that in G⃗Y . Therefore,

a maximum vn−1 -vn flow in G′
Y can be easily transformed into a maximum vn−1 -vn flow

in G⃗Y , i.e., we set s = vn−1 and t = vn. The only remaining task is to compute the
maximum vn−1 -vn flow in the tight graph G′

Y , which can be achieved by applying the
algorithm of Arikati and Melhorn [5]. Note that, even though this algorithm requires an
MA ordering as an input, we can substitute a tight ordering because all α-orderings collapse
to the same vertex ordering on graphs.

38

5.2 Kernelization

1

2

3
4

5
3

6

2

2 1

2

3
4

5

36

2

2

Figure 5.1: Example of building a tight graph from a hypergraph based on a specific tight ordering.

5.2 Kernelization

When taking a closer look at Definition 5.1, we observe that the vertices s and t of Y repre-
sent sets of vertices S, T ⊆ V in the input hypergraph H . More specifically, we know that
there is no split in H going through S or T , due to recursive application of the split oracle.
Furthermore, if there is no s-t split with value λ(H) in Y , the vertices s and t are contracted
into a new vertex u and we know that there is no split in H going through U := S ∪ T . This
approach is very similar to the concept of the reduction rules defined in Section 4.3.1, since
there we also identify structures in H for which it is proven that no minimum cut is going
through them. Therefore, it is possible to improve the hypercactus algorithm by perform-
ing kernelization in a preprocessing phase before applying the split oracle to find the prime
decomposition of the kernel. Afterwards, the prime decomposition of the input hyper-
graph H can be easily constructed from that of the kernel by uncontracting the vertices that
were merged together during the kernelization.

An important detail to consider when computing the prime decomposition of the kernel
is that some vertices of the kernel originate from the contraction of multiple vertices in
the input hypergraph H . In other words, we already have contracted vertices even before
applying the split oracle for the first time. The problem with this is that a split in the input
hypergraph might become trivial in the kernel and will thus not be detected by the split
oracle. To solve this issue, we perform an initial scan when starting to compute the prime
decomposition of the kernel before applying the split oracle. In particular, we first identify
the vertices in the kernel that represent multiple vertices in H . For each of these vertices,
we check if isolating it results in a split in H , and if so, we cut the vertex out and put it
into its own decomposition element. Afterwards, we apply the split oracle as usual. This
additional scan ensures that, when uncontracting the vertices that were merged together
during kernelization, we obtain a valid prime decomposition of the input hypergraph H .

As the purpose of a hypercactus is to represent all minimum cuts in H and not only the
minimum cut value λ(H), we need to slightly modify the reduction rules of Section 4.3.1.
In particular, we must weaken the reduction rules to ensure that they do not destroy any
minimum cut. For this, we first enforce a strict inequality in the estimate-based Reduction
Rules 2, 3 and 7, as otherwise we would destroy minimum cuts if λ̂(H) = λ(H). The
strict inequality guarantees that we only contract hyperedges that never cross a cut with

39

5 Hypercactus

a value of λ̂(H) and therefore they never cross a minimum cut. Besides, we also require
strict inequalities for Reduction Rule 6, as otherwise we could destroy a minimum cut
by replacing it with another. In other words, we only want to replace a cut if we find
another one with a strictly lower value. Note that this also applies to Reduction Rule 5
but it already uses a strict inequality due to an issue explained in Figure 4.2. Finally, we
must add a constraint to Reduction Rules 5 and 6 so that the weighted vertex degree of
both endpoints u and v of the contracted hyperedge euv is strictly larger than the current
estimate, i.e., dω(u) > λ̂(H) and dω(v) > λ̂(H). The reason for this is that contracting euv
could destroy a trivial minimum cut if the current estimate is already equal to the minimum
cut value, i.e., λ̂(H) = λ(H). If we have for example dω(u) = λ̂(H) = λ(H), then {u} is
a trivial minimum cut and it would be destroyed when euv satisfies Reduction Rule 5 or 6.
The additional constraint assures that euv is not contracted if one of its endpoints forms
a trivial minimum cut. Note that Reduction Rules 1 and 4 already preserve all minimum
cuts and therefore do not require any modification. Furthermore, we disable the label
propagation heuristic described in Section 4.3.2, as the goal of the kernelization phase is to
preserve all minimum cuts, i.e., every reduction must be exact.

5.3 Improved Split Oracle

In the following, we describe several modifications to the split oracle of Chekuri and Xu
that facilitate the implementation and improve the performance in practice. First of all, an
important aspect of the split oracle is that when it finds two vertices s and t for which there
is no s-t split, we can only contract them if the cut {s, t} isolating the two vertices is not
a split. This is because, after the contraction of s and t, this split would become trivial
and would thus not be detected by the split oracle anymore. Chekuri and Xu handle this
case via backtracking, i.e., they always contract s and t and then uncontract them when
moving up the recursion stack to determine whether {s, t} is a split or not. If it is, they
put s and t into their own decomposition element. However, this approach is likely to be
computationally expensive, as it involves uncontracting the vertices at a later stage. We
propose a much simpler and more efficient approach by performing forward checking, i.e.,
we only contract the vertices if {s, t} is not a split. Otherwise, they are directly put into their
own decomposition element. More formally, we only contract s and t if λ[{s, t}] > λ(H).
Note that computing the value of {s, t} can be achieved by starting with the sum of the
weighted vertex degrees of s and t and properly handling all of the hyperedges that are
incident to both vertices.

The core idea of the algorithm of Chekuri and Xu is to use a maximum s-t flow in the
digraph G⃗Y to determine whether an element Y in the decomposition admits an s-t split,
as outlined in Section 5.1. For this, they rely on the enumeration algorithm of Provan
and Shier [64]. More specifically, they argue that there exists an s-t split in Y if we can
enumerate at least three minimum s-t cuts from the maximum s-t flow of G⃗Y . Although
this approach is theoretically sound, implementing the complex enumeration algorithm of

40

5.3 Improved Split Oracle

Provan and Shier only to stop already at the third iteration introduces unnecessary com-
plexity and goes beyond what is required in practice. In the following, we will describe
an alternative approach that achieves the same goal while relying on simple techniques
that can easily be implemented. Our approach is inspired by the most balanced mini-
mum cuts heuristic of Sanders and Schulz [68], which is based on the work of Picard and
Queyranne [63]. We first compute the residual graph Gf = (Vf , Ef) of the digraph G⃗Y as
described in Section 2.2.3. Picard and Queyranne show that every minimum s-t cut of G⃗Y

is represented by a closed vertex set C containing s but not t in Gf . This leads us to the
following theorem, for which we first introduce the notion of original vertices.

Definition 5.2 (Original Vertex)
For a hypergraph H = (V,E) and its digraph G⃗H = (V⃗ , E⃗) with V⃗ := V ∪ E+ ∪ E−, we
call a vertex v ∈ V⃗ original if it is also included in H , i.e., v ∈ V . For a given set A ⊆ V⃗ ,
we denote o(A) ⊆ A as the subset of original vertices in A.

Theorem 5.1
For a given element Y = (VY , EY) in the decomposition of the input hypergraph H , there
exists an s-t split in Y if the residual graph Gf of the digraph G⃗Y admits a closed vertex
set C that contains s but not t and for which 2 ≤ |o(C)| ≤ VY − 2.

Proof of Theorem 5.1 From Picard and Queyranne [63], we know that (C, V⃗Y \ C) is a
minimum s-t cut in the digraph G⃗Y if and only if C is a closed vertex set that contains s but
not t in the associated residual graph Gf . However, if (C, V⃗Y \ C) is a minimum s-t cut
in G⃗Y , then (o(C), VY \ o(C)) is a minimum s-t cut in Y [54]. If 2 ≤ |o(C)| ≤ VY − 2,
then (o(C), VY \ o(C)) is non-trivial and therefore an s-t split in Y . □

Based on Theorem 5.1, we observe that, instead of enumerating the minimum s-t cuts
in the digraph G⃗Y , we can enumerate the closed vertex sets in the residual graph Gf to
determine the existence of an s-t split in Y . One way to achieve this is to apply the
dynamic programming algorithm of Schrage and Baker [69] to the vertices of Gf . For
this, the residual graph Gf must be acyclic, i.e., it must not contain any cycles. A common
way to achieve this is to contract the so-called strongly connected components of Gf .

Definition 5.3 (Strongly Connected Component)
A strongly connected component (SCC) of a directed graph G is a maximal subgraph
where, for any two vertices u and v in the subgraph, there exists a path from u to v and a
path from v to u within the subgraph. This means that u is reachable from v and vice-versa.

Picard and Queyranne show that an SCC can never partially overlap with a closed vertex
set C, i.e., either all vertices of the SCC are included in C or none of them are [63].
Thus, we can safely contract the strongly connected components of Gf without destroying
any closed vertex set. We use the path-based algorithm [18, 21, 27] to identify the strongly
connected components of Gf in linear time by performing a single depth-first search (DFS).

41

5 Hypercactus

So far, we have demonstrated that we can implement the split oracle by using the enu-
meration algorithm of Schrage and Baker rather than that of Provan and Shier. Although
the former algorithm is easier to implement, it is still unnecessarily complex in our sce-
nario, as we stop the enumeration process after the third iteration anyway. In particular, we
observe that the algorithm of Schrage and Baker can be omitted in most cases by perform-
ing a series of quick checks. This is because we only need to find any s-t split in Y if it
exists, which is a much weaker requirement than enumerating all minimum s-t cuts in Y .
For this, we take a similar approach as Sanders and Schulz [68], i.e., we sort the contracted
SCCs in reversed topological order. This means that all contracted SCCs are sorted such
that, for every directed edge (u, v) in the contracted residual graph, the SCC v comes be-
fore the SCC u in the ordering. In other words, an SCC is preceded in the ordering by all
its successors in the contracted residual graph. Note that a reversed topological ordering
of the SCCs is implicitly computed when identifying the strongly connected components
via DFS. The idea is that each cut in the ordering corresponds to a closed vertex set in
the contracted residual graph, since every edge crossing the cut goes in the same direction.
However, imposing a specific ordering on the SCCs and then separating them with a cut
only preserves some of the closed vertex sets but not all of them. This is the reason why the
most balanced minimum cut algorithm of Sanders and Schulz is heuristic. In our scenario,
this is not an issue, since we will revert to the algorithm of Schrage and Baker if all quick
checks fail. As we are only interested in closed vertex sets that separate s from t, we first
prove in Theorem 5.2 that the SCC of the sink t can always be moved to the last position
of the reversed topological ordering. Afterwards, we show in Theorem 5.3 that every SCC
of the contracted residual graph contains at least one original vertex from Y .

Theorem 5.2
For a given reversed topological ordering of the contracted SCCs, the SCC of the sink t can
safely be moved to the last position without destroying the reversed topological ordering.

Proof of Theorem 5.2 We know that t is the last vertex in the tight ordering of the vertices
of Y . This means that {t} is a minimum s-t cut in Y . It follows that, for all incident
hyperedges e ∈ I(t) in Y , the corresponding edge (e−, e+) is saturated in the digraph G⃗Y .
Therefore, the SCC of the sink t has no incoming edge in the contracted residual graph and
can be moved to the last position without destroying the reversed topological ordering. □

Theorem 5.3
For the residual graph Gf of the digraph G⃗Y , every SCC of Gf contains at least one
original vertex, i.e., there exists at least one vertex v ∈ VY that is part of the SCC.

Proof of Theorem 5.3 We will prove this theorem by contradiction. Assume that there
is an SCC of Gf that does not contain an original vertex. Then it must contain a vertex
from E− ∪ E+, since the SCC cannot be empty. This gives us two cases.
Case 1: The SCC contains a vertex e− ∈ E−. Now e− either receives some flow from a
vertex v ∈ VY or not. If it does, both edges (v, e−) and (e−, v) are present in Gf and there

42

5.3 Improved Split Oracle

is a cycle e− → v → e− in Gf . If it does not, the edge (e−, e +) exists in Gf , i.e., there is
a cycle e− → e+ → v → e− in Gf . Thus, the original vertex v must be part of the SCC.
Case 2: The SCC contains a vertex e+ ∈ E+. Now e+ either gives some flow to a ver-
tex v ∈ VY or not. If it does, both edges (v, e+) and (e+, v) are present in Gf and there is
a cycle e+ → v → e+ in Gf . If it does not, the edge (e−, e +) exists in Gf , i.e., there is a
cycle e+ → v → e− → e+ in Gf . Thus, the original vertex v must be part of the SCC. □

Based on Theorem 5.2, we always move the SCC of the sink t to the last position of
the reversed topological ordering obtained from the DFS. Note that an implicit conclusion
of the theorem is that the SCC of the sink t contains exactly one original vertex, i.e., the
sink t itself. Afterwards, we apply four different quick checks that are applied in the order
in which they are presented. If one of these quick checks is successful, we can output
the result of the split oracle directly and do not need to run the enumeration algorithm
of Schrage and Baker. This significantly speeds up the implementation in practice, as all
quick checks can be applied in constant time. Figure 5.2 gives an illustration for all of the
four different quick checks.

Quick Check 1. If the SCC of the source s contains at least two original vertices and it
does not come just before the SCC of the sink t in the ordering, cutting after the SCC of the
source s in the ordering yields an s-t split in Y .

Proof: Every cut in the ordering corresponds to a closed vertex set C in Gf . Cutting after
the SCC of the source s means that C contains s but not t, i.e., we have a minimum s-t cut
in Y . As the SCC of the source s does not come just before the SCC of the sink t in the
ordering, there are at least two SCCs in the partition of the sink t. With Theorem 5.3, it
follows that the partition of the sink t contains at least two original vertices. Given that the
partition of s contains at least two original vertices, Theorem 5.1 is satisfied and we have
an s-t split in Y . □

Quick Check 2. If the SCC of the source s is not at the first position in the ordering and
it does not come just before the SCC of the sink t in the ordering, cutting after the SCC of
the source s in the ordering yields an s-t split in Y .

Proof: Same proof as for Quick Check 1. The only difference is that we now also apply
Theorem 5.3 to the partition of the source s, i.e., there are at least two SCCs in the partition
of the source s and therefore at least two original vertices. □

Quick Check 3. If there are at least two other SCCs between the SCC of the source s and
the SCC of the sink t in the ordering, cutting after the SCC that follows the SCC of the
source s in the ordering yields an s-t split in Y .

Proof: Same proof as for Quick Check 2. The only difference is that we do not cut directly
after the SCC of the source s but one position later. Thus, there are still at least two SCCs
in each partition, i.e., we can apply Theorem 5.3 to both partitions. □

43

5 Hypercactus

Quick Check 1 Quick Check 2

Quick Check 3 Quick Check 4 (Case 1)

TS

≥ 2 ≥ 1 1

TS

≥ 1 ≥ 1 1≥ 1

TS

≥ 1 ≥ 1 1≥ 1

Quick Check 4 (Case 2) Quick Check 4 (Case 3)

TS

≥ 1 11

TS

≥ 1 1

TS

≥ 1 1≥ 1

Figure 5.2: Illustration for all four quick checks, where S and T represent the respective SCCs of
the source s and the sink t. For each SCC, we indicate the number of original vertices.

Quick Check 4. If there are strictly less than four SCCs in the residual graph Gf , there
does not exist an s-t split in Y .

Proof: There only exist three different cases for the ordering.
Case 1: The ordering has a size of two, i.e., the SCC of the source s is followed by the SCC
of the sink t. As the SCC of the sink t only contains one original vertex, the only possible
cut is trivial, i.e., there is no s-t split in Y .
Case 2: There is a third SCC between the SCC of the source s and the SCC of the sink t.
As Quick Check 1 failed, we know that the SCC of the source s contains only one original
vertex, i.e., the source s itself. Besides, the SCC of the sink t also contains exactly one
original vertex. Both possible cuts in the ordering are trivial, i.e., there is no s-t split in Y .
Case 3: There is a third SCC at the first position in the ordering, i.e., before the SCC of
the source s. To separate s from t, we must cut after the SCC of the source s. However, we
know that the SCC of the sink t contains exactly one original vertex. Therefore, the only
possible cut in the ordering is trivial, i.e., there is no s-t split in Y . □

44

5.4 Pseudocode

If none of the quick checks are successful, we still need to apply the enumeration al-
gorithm of Schrage and Baker. However, we can make significant simplifications to the
algorithm based on insights gained from the quick checks. In particular, we know from
Quick Check 4 that the ordering contains at least four SCCs. Together with Quick Checks 2
and 3, we infer that, if all quick checks failed, the SCC of the source s must come just be-
fore the SCC of the sink t in the ordering. In other words, the SCC of the source s is
at the second-to-last position in the ordering. As we are only interested in closed vertex
sets that contain s but not t, we can ignore most iterations of the algorithm of Schrage
and Baker. More specifically, since the algorithm relies on dynamic programming, the first
closed vertex set C containing s but not t that is considered by the algorithm is the one that
includes every SCC except the SCC of the sink t. We already know that this closed vertex
set represents a trivial minimum s-t cut in Y , since the SCC of the sink t contains only one
original vertex. Afterwards, the algorithm checks if it can remove any SCC from C so that
the result is still a valid closed vertex set containing s but not t. In other words, it searches
for an SCC v ∈ C so that there is no directed edge (u, v) in the contracted residual graph
with u ∈ C \ {v}. Note that v cannot be the SCC of the source s because otherwise the
closed vertex set obtained by removing v from C does not contain s anymore. If any v ∈ C
can be found, we know from Theorem 5.3 that the resulting closed vertex set represents
an s-t split in Y . Otherwise, we can conclude that there is no s-t split in Y . This means
that the algorithm of Schrage and Baker can be simplified to a single pass over the SCCs
in C, which can be implemented in linear time. Overall, we propose a much simpler ap-
proach for determining whether the element Y in the decomposition admits an s-t split
based on a maximum s-t flow in the digraph G⃗Y .

5.4 Pseudocode

To the best of our knowledge, we propose the first implementation of the hypercactus algo-
rithm proposed by Chekuri and Xu. The pseudocode is provided in Algorithms 3, 4 and 5,
which include all improvements described in Sections 5.2 and 5.3. The high-level overview
of the implementation is given by Algorithm 3. More specifically, we first use HEICUT to
compute the minimum cut value of the input hypergraph H . Afterwards, we reduce H to
a smaller kernel by applying the weak definitions of the exact reduction rules in the lines 3
to 7 of Algorithm 3. We store a mapping kH from the vertices of the input hypergraph H
to the vertices of the kernel, which is necessary for uncontracting the vertices later. If the
kernel is disconnected, i.e., λ(H) = 0 and |E| = 0, we can stop and return the kernel itself,
since it is a valid hypercactus representation of H . The LARGEVERTICES method in line 8
identifies the vertices in the kernel that represent multiple vertices in H and adds them to
the queue Q. This queue is necessary to ensure the correctness of the prime decomposition
of the kernel computed in line 9, as described in Section 5.2. We then construct the prime
decomposition of H by using the vertex mapping kH to uncontract the vertices that were
merged together during the kernelization. In line 11, we transform the prime decompo-

45

5 Hypercactus

sition of H into the unique canonical decomposition Dc
H of H by merging some of the

prime elements, as outlined in Section 5.1. Note that we store every decomposition in a
tree to reduce the space usage to O(p), as proposed by Chekuri and Xu. In line 12 we
construct the hypercactus representation H∗ based on the canonical decomposition Dc

H .
More specifically, each element of Dc

H is first transformed according to a fixed scheme,
after which H∗ is built by connecting all of the transformed elements together. For a more
detailed explanation of the different steps, we refer to Section 5.1 and the original papers
of Chekuri and Xu [14, 15].

Algorithm 4, provides a detailed pseudocode of the PRIME method. In the first five lines,
we use the vertex queue Q to check whether isolating one of the vertices in Q leads to a
split in H , as these splits will not be detected by the split oracle. Besides, we improve
the PRIME method so that it does not rely on backtracking and only contracts s and t
if {s, t} is not a split, as described by the lines 12 to 14. The details of the SPLITORACLE

method are provided in Algorithm 5, including the improvements described in Section 5.3.
In particular, we construct the residual graph Gf of the digraph G⃗Y in line 8, after which
we identify the SCCs of Gf and sort them in reversed topological order in line 9. We apply
Theorem 5.2 in line 10, followed by the quick checks in the lines 11 to 18. The remaining
lines implement the single iteration of the algorithm of Schrage and Baker.

46

5.4 Pseudocode

Algorithm 3: HYPERCACTUS

Input: Hypergraph H = (V,E), parameter α ∈ [0, 1]
Output: Hypercactus H∗, vertex mapping ϕH∗ : V → V ∗

1 kH ← idV // Store contraction mapping of kernel

2 λ(H)← HEICUT(H,α, false)
3 while first round or reduced in previous round do // Kernelization rounds

4 foreach exact weak reduction rule r do // Fixed order of rules

5 H, kH ← APPLYEXACTWEAKREDUCTION(H, r, λ(H))

6 if λ(H) = 0 ∧ |E| = 0 then
7 return H, kH // Stop early

8 Q← LARGEVERTICES(H, kH) // Find large vertices of kernel

9 DH ← PRIME(H, λ(H), Q) // Prime decomposition of kernel

10 DH ← UNCONTRACT(DH , kH) // Prime decomposition of input

11 Dc
H ← CANONICAL(DH) // Canonical decomposition of input

12 H∗, ϕH∗ ← BUILDHYPERCACTUS(Dc
H , λ(H))

13 return H∗, ϕH∗

Algorithm 4: PRIME

Input: Element Y = (VY , EY), minimum cut value λ(H), large vertices Q ⊆ VY

Output: Prime decomposition DY

1 while |Q| > 0 do // Check for split by isolating large vertices

2 v ← Remove top element of Q
3 if λ[{v}] = λ(H) then
4 {Y1, Y2} ← REFINE(Y, {v}) // WLOG we have v ∈ VY2

5 return PRIME(Y1, λ(H), Q) ∪ PRIME(Y2, λ(H), {})

6 if |VY | < 4 then
7 return {Y } // Stop early

8 s, t, S ← SPLITORACLE(Y, λ(H)) // Call split oracle on element

9 if split oracle finds split S then
10 {Y1, Y2} ← REFINE(Y, S)
11 return PRIME(Y1, λ(H), {}) ∪ PRIME(Y2, λ(H), {})
12 else if {s, t} is a split then // Check to avoid backtracking

13 {Y1, Y2} ← REFINE(Y, {s, t})
14 return PRIME(Y1, λ(H), {}) ∪ PRIME(Y2, λ(H), {})
15 return PRIME(Y / {s, t}, λ(H), {}) // We can safely contract s and t

47

5 Hypercactus

Algorithm 5: SPLITORACLE

Input: Element Y = (VY , EY), minimum cut value λ(H)
Output: Source s, sink t, optional split S

1 n← |VY |
2 (v1, . . . , vn)← TIGHTORDERING(Y)
3 G′

Y ← TIGHTGRAPH(Y, v1, . . . , vn)
4 s← vn−1 ∧ t← vn
5 f ′ ← MAXFLOW(G′

Y , s, t) // Use Arikati and Melhorn [5]

6 G⃗Y ← DIGRAPH(Y)
7 f ← CONVERT(G⃗Y , f

′) // Convert flow of G′
Y to flow of G⃗Y

8 Gf ← RESIDUALGRAPH(G⃗Y , f)
9 SCC1, . . . ,SCCj ← REVERSEDTOPOLOGICALORDERING(Gf)

10 Move SCC of t to last position // Apply Theorem 5.2

11 if Quick Check 1 or Quick Check 2 applies then
12 S ← Cut after the SCC of s
13 return s, t, S

14 else if Quick Check 3 applies then
15 S ← Cut after the SCC that follows the SCC of s
16 return s, t, S

17 else if Quick Check 4 applies then
18 return s, t, {}
19 C ← All SCCs except the SCC of t
20 if there is an SCC v ∈ C with no predecessor in C and v is not the SCC of s then
21 S ← Separate v and the SCC of t from the rest
22 return s, t, S

23 return s, t, {} // No split could be found

48

CHAPTER 6
Experimental Evaluation

In this chapter, we start by outlining the hardware of the machine on which we run our
experiments in Section 6.1. Afterwards, we describe the instances used for our experiments
in Section 6.2. In Section 6.3, we outline our methodology in detail, including a description
of the state-of-the-art competitors and of the measured metrics. Finally, we perform the
experiments and analyze their results in Section 6.4.

6.1 Hardware

Our experiments are performed on a machine containing an AMD EPYC 7702P CPU
and 996 GB of available RAM. The CPU consists of 64 physical and 128 logical cores,
since each core can handle two threads. The clock speed can reach a minimum of 1.5 GHz
as well as a maximum of 2 GHz. The machine contains an L2-Cache of 64 MiB (0.5 MiB
per thread) and is based on the x86_64 architecture. It runs Ubuntu 20.04.1 LTS
with the Linux kernel version 5.4.0-187-generic.

6.2 Instances

For our experiments, we use two main datasets provided by Gottesbüren et al. [33].
The MHG dataset consists of 488 medium-sized hypergraphs, ranging from a few hundred
to 13 million hyperedges. The LHG dataset consists of 94 large-sized hypergraphs with
up to 139 million hyperedges. The datasets cover three application domains originating
from four sources, namely the ISPD98 VLSI Circuit Benchmark Suite [2], the DAC 2012
Routability-Driven Placement Contest [76], the SuiteSparse Matrix Collection [20] and
the International SAT Competition 2014 [8]. Besides, to test the algorithms specifically
on hypergraphs where the minimum cut value is not equal to the smallest weighted ver-
tex degree, we construct a new dataset of (k, 2)-core hypergraphs. These instances are
harder to solve as they do not admit a trivial minimum cut and provide a benchmark for

49

6 Experimental Evaluation

future work on the hypergraph minimum cut problem. Inspired by VIECUT, we perform
a (k, 2)-core decomposition on the LHG dataset by repeatedly removing, for each hyper-
graph, all vertices with an unweighted degree less than k as well as all hyperedges with a
size less than two. For each hypergraph H ∈ LHG, we store the (k, 2)-core with the lowest
possible k ≥ 2 where λ(H) < δω. Note that not every hypergraph admits a (k, 2)-core
that satisfies this condition. In total, we obtain a dataset of 44 different (k, 2)-cores. All
hypergraphs from all datasets were originally created in their unweighted version. For
the weighted instances, we assign each vertex and each hyperedge uniformly at random a
weight between 1 and 100. The weighted datasets are all publicly available 1.

6.3 Methodology

Since our main focus lies in finding the exact minimum cut value, we configure HEICUT

to not use the label propagation heuristic of Section 4.3.2. However, to assess the perfor-
mance of our algorithm when no optimality is guaranteed, we also test an inexact variant
named HEICUTLP that uses a single label propagation iteration per kernelization round.
For both variants, we use the tight ordering (α = 0) for the underlying ordering-based
solver, as it incurs the fewest increaseKey operations in the priority queue, making it
particularly efficient in practice. Furthermore, both variants implement the multiple con-
tractions technique described in Section 4.3.3.

To put the performances of HEICUT and HEICUTLP into perspective, we compare them
with four different competitors: RELAXEDBIP, RELAXEDMILP, TIGHT and TRIMMER.
The algorithms RELAXEDBIP and RELAXEDMILP respectively implement the BIP and
the MILP formulations described in Sections 4.1 and 4.2. We refer to both as relaxed, since
they use a rounding heuristic that does not guarantee exact solutions. In particular, both for-
mulations are solved by Gurobi 11.0.3 [35] with IntFeasTol and FeasibilityTol
set to 10−7. The TIGHT competitor is the exact ordering-based algorithm with the tight
ordering but without the multiple contractions, i.e., it is identical to the algorithm proposed
Mak and Wong [56]. However, as the original implementation is not publicly available,
we use our own implementation. The idea is that comparing HEICUT with TIGHT al-
lows us to easily assess the benefits of adding the kernelization phase and the multiple
contractions technique. The TRIMMER competitor is the state-of-the-art exact algorithm
proposed by Chekuri and Xu [14, 15], which only works for unweighted hypergraphs. To
ensure a fair comparison, we also use a tight ordering for the underlying ordering-based
solver of TRIMMER. Since we could not find a public implementation of the algorithm
of Chekuri and Xu, we implement TRIMMER based on the algorithmic description of the
papers. The pseudocode of our implementation is provided in Section A.2 of the appendix.
The code of all implemented algorithms is available in a public repository 2. We describe
the command-line arguments used for all algorithms in Section A.1 of the appendix.

1https://doi.org/10.5281/zenodo.17142170
2https://github.com/HeiCut/HeiCut

50

https://doi.org/10.5281/zenodo.17142170
https://github.com/HeiCut/HeiCut

6.3 Methodology

All algorithms are implemented in C++14 and compiled with g++ version 11.4.0
while using full optimization (-O3). The hypergraph data structure of all algorithms is the
same as that designed for MT-KAHYPAR [33]. One reason for this is that MT-KAHYPAR

comes with a sophisticated hypergraph contraction implementation, which we directly use
in HEICUT and HEICUTLP for both the sequential and the parallel context. We require
the input hypergraph to be in the HMETIS file format [50], which was originally created
for the hypergraph partitioning software of the same name [51]. In addition, all algorithms
support the graph-specific file format METIS [49], which was also originally created for the
graph partitioning software of the same name [48]. When testing the parallel version of our
algorithm as described in Section 4.4 we allow each instance of the experiment to use mul-
tiple threads. For this, we use oneTBB 3, since it is a fast threading library and it is already
integrated in MT-KAHYPAR. To prevent conflicts between instances caused by simulta-
neous multithreading (SMT), we allocate a fixed range of physical cores to each instance.
This means that all logical cores of the same physical core are only used by one instance
at a time. As a pseudorandom number generator (PRNG), we use MT19937, which is the
standard implementation of Mersenne Twister [57]. Note that we assign to each thread its
own PRNG, as Mersenne Twister is not thread safe.

In an experiment, we measure, for every instance, the found cut value, the running time
and the peak memory usage. For the running time, we exclude the I/O time and set for each
instance a limit of two hours. To determine the peak memory usage, we use GNU time
and extract the maximum resident set size, which is given in kilobytes. For the medium
dataset MHG, we use GNU Parallel [73] to run 13 independent instances in parallel on
our machine, where each instance is given a hard virtual memory limit of 100 GB. For the
large dataset LHG and the (k, 2)-core dataset, we only run four instances in parallel with
a virtual memory limit of 300 GB per instance. When testing the parallel versions of our
algorithms, we ensure that we run only as many instances as the machine can accommo-
date. For example, if each instance uses 16 threads, we run only eight instances at a time for
the medium dataset MHG. Instances that exceed the time or memory limit before report-
ing a solution are considered to have failed. However, since we consider RELAXEDBIP
and RELAXEDMILP to be inexact solvers, they are allowed to return the best feasible
solution found so far if time runs out.

For the evaluation of the experiments, we plot most of the results in the form of a so-
called performance profile [22]. This type of plot is widely used to compare different
metrics such as the cut value, the running time or the peak memory usage. Each metric
is visualized in a two-dimensional plot where the y-axis indicates a fraction of all the
instances of an algorithm while the x-axis represents an increasing variable τ starting at
one. The idea is to plot, for every algorithm A, a line indicating the fraction of instances
for which the performance of A is within a factor τ of the best-performing algorithm on
the same instance. More formally, every point (f, τ) on the plotted line of algorithm A
indicates the fraction f of instances of A whose metric is smaller or equal to τ times the

3https://github.com/uxlfoundation/oneTBB

51

https://github.com/uxlfoundation/oneTBB

6 Experimental Evaluation

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

A
lg
or
ith

m
≤
τ
·
Be

st

1 1.05 1.1 1.5 2 101 103 U

τ

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

A
lg
or
ith

m
≤
τ
·
Be

st

1 1.05 1.1 1.5 2 101102 U

τ

F

Figure 6.1: An example of a performance profile, which was taken from [13] and slightly modi-
fied. Four algorithms are plotted in different colors. The algorithm plotted in blue has
the best performance for 40% of the instances. Around 90% of its instances are no
more than 1.1 times worse than the best algorithm on a per-instance level.

metric of the best algorithm for the same instance. In other words, a point (f, τ) indicates
that algorithm A is for a fraction f of its instances never more than τ times worse than
the best algorithm on a per-instance level. An example of a performance plot is given by
Figure 6.1. Performance profiles give a broader view on the results as they accurately depict
comparisons between algorithms, even if some of them are unable to solve an instance.
More specifically, failed instances simply enter into the failed (F) region of the plot.

6.4 Experiments
We run a series of experiments to evaluate the algorithms and improvements proposed in
Chapters 4 and 5. More specifically, we have identified six different key questions that we
aim to answer through our experiments:

• KQ1: How effective are the proposed exact reduction rules in shrinking the hyper-
graphs while preserving the minimum cut value?

• KQ2: How effective is it to search for multiple contractions per iteration in the
ordering-based algorithm?

• KQ3: How does HEICUT compare to the state-of-the-art hypergraph minimum cut
algorithms in terms of solvability, runtime and memory usage?

• KQ4: What is the trade-off between accuracy and efficiency when enabling heuristic
reduction via label propagation?

• KQ5: What are the performance benefits when parallelizing the exact reduction rules
and the ordering-based solver?

• KQ6: What is the speed of the hypercactus algorithm of Chekuri and Xu when using
the proposed improvements?

52

6.4 Experiments

To answer the first key question KQ1, we evaluate the effectiveness of our exact reduc-
tion rules in Section 6.4.1. Afterwards, we address KQ2 in Section 6.4.2 by assessing the
effectiveness of searching for multiple contractions in the ordering-based algorithm. We
tackle KQ3 and KQ4 by comparing HEICUT to all four competitors and to HEICUTLP
over all datasets in Section 6.4.3. We then answer KQ5 in Section 6.4.4 by measuring how
the running time varies when increasing the number of threads for HEICUT. Finally, KQ6
is addressed in Section 6.4.5, where we perform the first ever evaluation of the hypercactus
algorithm of Chekuri and Xu, including our proposed improvements.

6.4.1 Effectiveness of Exact Reduction Rules
We first address KQ1 by evaluating the effectiveness of our exact reduction rules defined
in Section 4.3.1. For this, we measure after each reduction the percentage of remaining
hyperedges relative to the original input. Note that we specifically focus on the exact vari-
ant HEICUT, i.e., we omit the label propagation heuristic of Section 4.3.2. Figure 6.2
visualizes the effectiveness of the reductions of HEICUT on the medium dataset MHG.
More specifically, each line represents a medium-sized hypergraph instance. The line of
a hypergraph instance ends if it cannot be reduced further. We observe that most of the
unweighted and weighted instances of MHG are fully reduced by the exact reduction rules
in fewer than ten reductions. Later reductions yield progress in the remaining harder in-
stances. In particular, 85% of the unweighted and 87% of the weighted hypergraphs are
fully reduced, i.e., |E| = 0 or |V | = 1. For most of the other instances, we detect during
the reductions that λ̂(H) = 0 and already terminate before reducing the hypergraph fully.
Therefore, we call the underlying ordering-based solver only for 7% of the weighted in-
stances and only for a single weighted instance. An even stronger effect can be observed
for the large dataset LHG, where 89% of the unweighted and 87% of the weighted instances
are fully reduced. Surprisingly, all large-sized instances can already be solved during the
kernelization phase and do not call the underlying ordering-based solver, except for a sin-
gle unweighted instance. These results demonstrate the strong practical effectiveness of our
exact reductions on real-world hypergraphs, even without the label propagation heuristic.

To analyze the effectiveness of each individual reduction rule, we measure for each rule
the average time usage over all rounds of all medium-sized instances. In addition, we
measure the average hyperedge reduction for each rule, which is defined as the percentage
of hyperedges contracted by the rule relative to the size before applying the rule. In other
words, if a reduction rule has a hyperedge reduction of 0%, it never contracts any hyperedge
and if it has a hyperedge reduction of 50%, it always halves the number of hyperedges
whenever it is applied. The results for the medium dataset MHG are provided in Table 6.1.
Note that we omit Reduction Rule 1 because it is implicitly implemented and we cannot
measure its performance directly. Besides, Reduction Rules 6 and 7 are evaluated together
because they are implemented within the same loop. We observe that the effectiveness of a
reduction rule correlates with its position in the order, i.e., the first reduction rules are the
most effective. As the time used by the first and last reduction rules is almost the same, we

53

6 Experimental Evaluation

100 101 102 103# of reductions
0

20
40
60
80

100
% of

 rem
ainin

g hy
pere

dges

100 101 102 103# of reductions
0

20
40
60
80

100

% of
 rem

ainin
g hy

pere
dges

200 400 600 800 1000reduction step
10 4
10 1
102

time

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0102030405060708090100

% of
 aver

age
edge

s red
uctio

n

28.80 26.75
5.72 3.85

% of average edges reduction for each rule

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0102030405060708090100

% of
 aver

age
node

s red
uctio

n

25.78 25.46
6.55 2.73

% of average nodes reduction for each rule

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0.00
0.05
0.10
0.15
0.20
0.25

aver
age

time
 usag

e (s)
0.11

0.28

0.02 0.02

average time usage (s) for each rule

(i): Unweighted medium dataset MHG

100 101 102# of reductions
0

20
40
60
80

100

% of
 rem

ainin
g hy

pere
dges

100 101 102# of reductions
0

20
40
60
80

100

% of
 rem

ainin
g hy

pere
dges

20 40 60 80 100 120reduction step
10 4
10 1
102

time

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0102030405060708090100
% of

 aver
age

edge
s red

uctio
n

81.28 88.23

38.95

1.11

% of average edges reduction for each rule

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0102030405060708090100

% of
 aver

age
node

s red
uctio

n

76.49 78.25

30.88
0.67

% of average nodes reduction for each rule

no_heavy_edgesno_heavy_overlapsno_shiftable_2-edgesno_triangle_2-edges
reduction rule

0.0
0.1
0.2
0.3
0.4
0.5
0.6

aver
age

time
 usag

e (s)

0.24

0.63

0.10 0.15

average time usage (s) for each rule

(ii): Weighted medium dataset MHG

Figure 6.2: Remaining size of each medium-sized hypergraph relative to the number of exact re-
ductions performed by HEICUT. Each line shows one hypergraph and ends if the
hypergraph cannot be reduced further. The remaining size is given as a percentage of
the original number of hyperedges.

can conclude that the proposed order of the reduction rules is appropriate. However, we
observe that Reduction Rule 4 is approximately 18 times slower than the second slowest
reduction rule, while contracting only around one percent of the hyperedges. The same can
be observed for the large dataset LHG. An explanation for this is that real-word hypergraphs
do not admit many nested substructures. Therefore, to improve the performance of our
algorithm further, we will not apply Reduction Rule 4 in the following experiments, as it
offers little to no benefit in practice.

Answer to KQ1. The proposed exact reduction rules are highly effective, since at
least 85% of the real-world instances can be maximally reduced, thus providing the
exact minimum cut without the need to run the underlying ordering-based algorithm.
Reduction Rule 4 can be omitted to improve the performance further, since it is the least
effective reduction rule and has the highest average time usage.

6.4.2 Effectiveness of Multiple Contractions

To answer KQ2, we evaluate the effectiveness of performing multiple contractions per it-
eration for the ordering-based algorithm, as described in Section 4.3.3. In particular, as
we only focus on the tight ordering, we are interested in the increase in performance when
applying the recurrent contraction rule defined in Theorem 4.2. For this, we first measure
the effectiveness of the multiple contractions when running the ordering-based solver as a
standalone algorithm. For the unweighted medium-sized instances, the multiple contrac-
tions lead to 7.0% less iterations and a speedup of 1.05 in the geometric mean. Similarly,
we obtain 7.2% less iterations and a speedup of 1.09 for the weighted medium-sized in-

54

6.4 Experiments

Reduction Rule Number Time (s) Hyperedge Reduction (%)

Unweighted medium dataset MHG

HeavyHyperedge 2 0.11 28.80
HeavyOverlap 3 0.28 26.75
NestedSubstructure 4 5.31 1.02
ImbalancedVertex 5 0.04 5.72
ImbalancedTriangle 6

0.02 3.85
HeavyNeighborhood 7

Weighted medium dataset MHG

HeavyHyperedge 2 0.33 83.12
HeavyOverlap 3 0.84 87.56
NestedSubstructure 4 5.89 1.30
ImbalancedVertex 5 0.15 37.25
ImbalancedTriangle 6

0.21 7.98
HeavyNeighborhood 7

Table 6.1: Average time usage and average hyperedge reduction for each reduction rule over all
rounds of all medium-sized instances. Reduction Rules 6 and 7 are evaluated together.

stances. Overall, using the multiple contractions technique is faster for 70% of the instances
in MHG. Note that we cannot report results for the large dataset LHG, as the standalone
ordering-based solver does not finish for any large-sized instance within the given time
limit. In addition, we measure the benefit from performing multiple contractions in the
underlying ordering-based solver of HEICUT to solve the kernels that cannot be reduced
further. For both the medium dataset MHG and the large dataset LHG, we observe that the
minimum cut value of the kernel can be found around 1.35 times faster when performing
multiple contractions per iteration. This means that Theorem 4.2 is much more effective
when being combined with the kernelization phase, making it an important component
of HEICUT. In fact, every kernel of HEICUT that is passed to the underlying ordering-
based solver is solved faster when searching for multiple contractions per iteration.

Answer to KQ2. Searching for multiple contractions per iteration is faster for 70%
of the instances if the ordering-based solver is used as a standalone algorithm. When
using it as an underlying solver for the kernels of HEICUT, the multiple contractions
technique is always faster with an 1.35 speedup in the geometric mean.

55

6 Experimental Evaluation

6.4.3 Comparison against State-of-the-Art

We address KQ3 and KQ4 by comparing HEICUT to the four competitors described in
Section 6.3 and to HEICUTLP, which uses the heuristic reduction via label propagation as
described in Section 4.3.2. For this, we evaluate all algorithms in terms of cut value, run-
ning time and peak memory on three datasets. We first start with the medium dataset MHG,
as it contains a large number of hypergraphs and gives a good overall comparison between
the algorithms. Afterwards, we use the large dataset LHG to asses how the algorithms scale
to hypergraphs with hundreds of millions of hyperedges. Finally, we compare the algo-
rithms on the new (k, 2)-core dataset to see how they perform when the instances do not
admit a trivial minimum cut.

Medium Dataset MHG

Figure 6.3 shows the performance profiles on the unweighted and weighted instances of the
medium dataset MHG. We observe that HEICUT dominates the competition on all instances
by a large margin. In particular, on the unweighted instances, HEICUT solves 98.6% of the
instances, while TRIMMER is the next best exact algorithm with 55.9% of solved instances.
On all instances that TRIMMER solved, HEICUT is much faster. More specifically, HEICUT

is at least 1 000 times faster than TRIMMER on 85% of the instances solved by TRIMMER.
On 95% of those instances, HEICUT is more memory efficient. We also observe that TIGHT

solves 53.9% of the instances and thus performs similar to TRIMMER, meaning the spar-
sification approach used for TRIMMER has no significant benefit in practice. Surprisingly,
our simple BIP and MILP formulations perform slightly better than TIGHT and TRIMMER

on most unweighted instances. In particular, RELAXEDBIP returns the optimal solution
for 55.9% of the instances, while RELAXEDMILP finds the exact minimum cut in 73.1%
of the instances and yields an inexact solution for 10.6% of the instances. This means that
the linear number of constraints in the MILP formulation results in a noticeable increase
in quality. Nevertheless, HEICUT is not only much faster but also more memory efficient
than RELAXEDBIP and RELAXEDMILP on all unweighted instances of MHG. While the
failed instances of TIGHT and TRIMMER most often exceed the time limit, RELAXEDBIP
and RELAXEDMILP mostly fail because they run out of memory.

A similar observation can be made for the weighted instances of MHG. HEICUT solves
all instances, while TIGHT is the second-best exact algorithm with 52.7% solved instances.
On all instances that TIGHT solved, HEICUT is always faster and at least 1 000 times faster
on 95% of those instances. HEICUT is more memory efficient on 60% of those instances.
Note that TRIMMER does not work on weighted hypergraphs. Our relaxed BIP and MILP
formulations have a similar quality than TIGHT. In particular, RELAXEDBIP returns the
optimal solution for 55.9% of the instances, while RELAXEDMILP finds the exact mini-
mum cut in 51.5% of the instances and yields an inexact solution for 44.6% of the instances.
On all weighted instances of MHG, RELAXEDBIP and RELAXEDMILP are dominated
by HEICUT for all metrics.

56

6.4 Experiments

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 105 109F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight Trimmer

(i): Unweighted medium dataset MHG

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight

(ii): Weighted medium dataset MHG

Figure 6.3: Performance profiles of all algorithms on the unweighted and weighted instances of
the medium dataset MHG. Note that TRIMMER only runs on unweighted hypergraphs.

When analyzing the results of HEICUTLP, we observe that HEICUTLP still finds the
exact minimum cut value for approximately 97% of both unweighted and weighted in-
stances of MHG, despite using the label propagation heuristic. This means that the solution
quality of HEICUTLP is almost as good as that of HEICUT. Besides, both use roughly the
same memory. However, HEICUTLP is in general slower than HEICUT. This is because,
although label propagation results in more aggressive contractions, performing the label
propagation itself takes long and dominates the overall running time on most instances.
Nevertheless, HEICUTLP is significantly faster on hard instances. More specifically, there
exist eleven unweighted and one weighted medium-sized instance where the exact reduc-
tion rules of HEICUT have no effect and the hypergraphs must be solved in their original
form by the underlying ordering-based solver. In contrast, the label propagation heuris-
tic of HEICUTLP manages to fully reduce all of these hard instance, so that it can stop
early and the underlying ordering-based algorithm is never called. When taking the geo-
metric mean over all these hard instances, HEICUTLP is approximately 3 000 times faster
than HEICUT, while always finding the exact minimum cut value. Therefore, the label
propagation heuristic proves to be useful in the few cases where the exact reduction rules
have no effect on the input hypergraph.

57

6 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 105 109F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight Trimmer

(i): Unweighted large dataset LHG

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight

(ii): Weighted large dataset LHG

Figure 6.4: Performance profiles of all algorithms on the unweighted and weighted instances of
the large dataset LHG. Note that TRIMMER only runs on unweighted hypergraphs.

Large Dataset LHG

The performance profiles on the unweighted and weighted instances of the large
dataset LHG are given in Figure 6.4. Similar to the medium dataset MHG, we observe
that HEICUT dominates the competition on all instances by a large margin. HEICUT

solves 97.9% of the unweighted instances, while TRIMMER is the next best exact algo-
rithm with only two solved instances. Note that TIGHT does not solve any instance within
the given time limit. This means that both TRIMMER and TIGHT struggle to solve any
large-sized instance in less than two hours, while HEICUT solves nearly all of them by
using only 3.1 seconds in the geometric mean. These results demonstrate the significant
performance gap between HEICUT and the current state-of-the-art algorithms. We also
observe that RELAXEDBIP returns the optimal solution for around 20.4% of the instances,
whereas RELAXEDMILP finds the exact minimum cut in 38.7% of the instances and yields
an inexact solution for 21.5% of the instances. As for the medium dataset MHG, this means
that the linear number of constraints in the MILP formulation results in a noticeable in-
crease in solution quality. Nevertheless, RELAXEDBIP and RELAXEDMILP are outper-

58

6.4 Experiments

formed by HEICUT for each metric. More specifically, HEICUT is at least 1 000 times
faster than RELAXEDMILP on around 40% of the instances for which RELAXEDMILP
returns a solution. On all of those instances, HEICUT uses significantly less memory.
All failed instances of TIGHT and TRIMMER exceed the time limit, while RELAXEDBIP
and RELAXEDMILP mostly fail because they run out of memory.

We obtain similar results for the weighted instances of LHG. In particular HEICUT

solves all weighted large instances, while TIGHT fails to solve any instance within the
constraints. Note that TRIMMER does not work on weighted hypergraphs. RELAXEDBIP
returns the optimal solution for 19.4% of the instances, while RELAXEDMILP finds the
exact minimum cut in 34.4% of the instances and yields an inexact solution for 48.4% of
the instances. On all weighted instances of LHG, HEICUT is at least 1 000 times faster
than RELAXEDMILP on approximately 70% of the instances for which RELAXEDMILP
returns a solution. Besides, HEICUT is more memory efficient than RELAXEDMILP on
all of those instances.

Regarding the label propagation heuristic, we observe that HEICUTLP still manages to
find the exact minimum cut value for approximately 93% of both unweighted and weighted
instances of LHG. In other words, the solution quality of HEICUTLP nearly matches that
of HEICUT. In addition, both algorithms use roughly the same memory. However, we
observe that HEICUTLP is slower than HEICUT on most instances. The reason is the same
as for the medium dataset MHG, i.e., although label propagation results in more aggressive
contractions, performing the label propagation itself takes long and dominates the overall
running time on most instances. Contrary to the medium dataset MHG, there exist fewer
hard large-sized instances on which HEICUTLP outperforms HEICUT. This is because the
exact reduction rules of HEICUT are more effective on the instances of LHG. In particular,
only a single unweighted instance cannot be fully reduced during the kernelization phase.
For this instance, the label propagation heuristic of HEICUTLP manages to fully reduce
the hypergraph, so that it can stop early and the underlying ordering-based algorithm is
not called. Therefore, HEICUTLP is 1.34 times faster than HEICUT on this hard instance.
Nevertheless, we conclude that the label propagation heuristic is less effective on LHG than
on MHG as there are fewer instances for which the exact reduction rules are ineffective.

(k, 2)-Core Dataset

We also test the algorithms on the new (k, 2)-core dataset, where each hypergraph has a
minimum cut value that is strictly lower than the smallest weighted vertex degree. These
instances are harder to solve, since they do not admit a trivial minimum cut. The perfor-
mance profiles on the unweighted and weighted instances of the (k, 2)-core dataset are pro-
vided in Figure 6.5. The results show that HEICUT dominates the competition even on the
new (k, 2)-core dataset. HEICUT solves all of the unweighted instances, while TRIMMER

finds the optimal solution for 50% and TIGHT for 47.73% of the unweighted instances.
Furthermore, HEICUT is faster than TRIMMER and TIGHT on approximately 60% of their
respective successfully finished unweighted instances. This means that, on the instances

59

6 Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 105 109F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight Trimmer

(i): Unweighted (k, 2)-core dataset

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

a) Minimum Cut b) Running Time c) Peak Memory

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

1 1.5 2 6 101 103 105F
Ratio

HeiCut HeiCutLP RelaxedBIP RelaxedMILP Tight

(ii): Weighted (k, 2)-core dataset

Figure 6.5: Performance profiles of all algorithms on the unweighted and weighted instances of
the (k, 2)-core dataset. Note that TRIMMER only runs on unweighted hypergraphs.

where TRIMMER and TIGHT finish, the dominance of HEICUT is not as pronounced as for
the medium or large dataset. Nevertheless, TRIMMER and TIGHT fail to find the optimal
solution within two hours for half of the unweighted (k, 2)-core instances, while HEICUT

solves all unweighted instances using only 1.64 seconds in the geometric mean. This
means that HEICUT still outperforms TRIMMER and TIGHT by a large margin. We also
observe that RELAXEDBIP and RELAXEDMILP perform slightly worse than TRIMMER

and TIGHT on the unweighted (k, 2)-core instances. RELAXEDBIP returns the optimal
solution for 37.2% of the instances, while RELAXEDMILP finds the exact minimum cut
in 39.5% of the instances and yields an inexact solution for 55.8% of the instances. HEICUT

is faster and uses less memory than RELAXEDMILP on all unweighted instances.
A similar observation can be made for the weighted (k, 2)-core instances. More specif-

ically, HEICUT solves all weighted instances, while TIGHT finds the optimal solution
for 47.73% of the weighted instances. We observe that HEICUT is faster than TIGHT

on 60% of the instances solved by TIGHT. RELAXEDBIP returns the optimal solution
for 34.9% of the instances, while RELAXEDMILP finds the exact minimum cut in 32.6%
of the instances and yields an inexact solution for 62.7% of the instances. RELAXEDBIP
and RELAXEDMILP are dominated by HEICUT on all weighted (k, 2)-core instances.

60

6.4 Experiments

The results show that HEICUTLP still finds the exact minimum cut value for approx-
imately 80% of both unweighted and weighted (k, 2)−instances. Although HEICUTLP
performs slightly worse in terms of solution quality compared to the medium and large
datasets, it is nearly as fast as HEICUT on the (k, 2)−instances. In particular, HEICUTLP
is faster than HEICUT for around 57% of the unweighted and around 40% of the weighted
instances. Both algorithms have roughly the same memory usage. There are thirteen un-
weighted and seven weighted instances that are not fully reduced by the kernelization phase
of HEICUT. The label propagation heuristic of HEICUTLP manages to fully reduce all of
these hard instance, so that it can stop early and the underlying ordering-based algorithm is
never called. When taking the geometric mean over all these hard instances, HEICUTLP is
approximately five times faster than HEICUT, while finding the exact minimum cut value
in 65% of those instances. Thus, compared to the medium and large datasets, HEICUTLP
can overall compete more with HEICUT in terms of running time, but it is less effective on
the hard instances, as it does not always find the optimal solution.

Answer to KQ3. HEICUT solves twice as many medium-sized instances as the next
best competitor. On the large dataset, HEICUT solves nearly all instances, while all
of the competitors solve almost none of them. HEICUT also dominates its competitors
on the new (k, 2)-core dataset. Overall, HEICUT is three to four orders of magnitude
faster than the current state-of-the-art algorithms.

Answer to KQ4. The label propagation heuristic proves to be effective on specific
medium-sized hypergraphs where no exact reduction rule applies. HEICUTLP greatly
reduces the size of those harder instances, while still finding the exact solution for most
of them. The heuristic is less effective on large and (k, 2)-core hypergraphs.

6.4.4 Parallelization

We answer KQ5 by first assessing how much the exact ordering-based algorithm benefits
from the parallelization described in Section 4.4.2. For this, we run the ordering-based
solver with N = 16 threads on the medium dataset MHG and compare it to the sequential
case. Note that we do not use the large dataset LHG, as the ordering-based algorithm
does not finish for any large-sized instance in the sequential case, which would make the
comparison less insightful. However, testing how many large-sized instances can be solved
with parallelization could be future work. We run two variants of the parallel algorithm. For
the first one, we ensure that each thread i computes a tight ordering at a random start, i.e.,
we set αi = 0 for all 1 ≤ i ≤ N . For the second variant, we enforce more diversification by
using a uniform distribution, i.e., we set αi =

i−1
N−1

for all 1 ≤ i ≤ N . None of the variants
searches for multiple contractions per iteration. The results are provided in Table 6.2. We
observe that both parallel variants lead to more finished runs and a better running time

61

6 Experimental Evaluation

Variant Threads Finished (%) Time (s) Contractions (per Iteration)

Unweighted medium dataset MHG

Tight 1 53.89 439.69 1.00
Tight 16 67.62 105.32 12.29
Uniform 16 59.84 153.22 14.15

Weighted medium dataset MHG

Tight 1 52.66 501.73 1.00
Tight 16 64.55 125.62 9.98
Uniform 16 63.93 167.04 12.33

Table 6.2: Comparison of the sequential case and both parallel variants of the ordering-based
solver on the medium dataset MHG. We report the percentage of finished runs as well
as the geometric mean of time usage and contractions per iteration.

compared to the sequential case. The reason for this is that the parallel execution allows
each thread to find a different ordering, resulting in more than one contraction per iteration.
However, we observe that the tight variant outperforms the uniform variant in terms of
finished runs and time usage, even though it performs less contractions per iteration. This
is because most of the threads of the uniform variant use the adjacency contribution, which
leads to many increaseKey operations in the priority queue during the computation
of the ordering. In contrast, if all threads use the tight ordering, they all rely only on
the containment contribution and can compute the ordering much faster. This means that
even though a single iteration of the uniform variant is more effective, the tight variant can
compute many more iterations, so that it is overall more effective. Thus, for measuring the
performance of the parallel version of HEICUT in the following, we will ensure that each
thread of the underlying ordering-based solver computes a tight ordering.

We want to evaluate the increase in performance obtained from parallelizing HEICUT as
described in Section 4.4, which consists of the parallelization of the exact reduction rules
and of the underlying ordering-based solver. For the latter, we also enable that each thread
searches for multiple contractions per iteration. As the parallelization should have the most
impact on large hypergraphs, we run HEICUT on the large dataset LHG with 1, 2, 4, 8 and 16
threads and take for each run the geometric mean of the running time over all instances.
Figure 6.6 shows the so-called strong scalability plot of HEICUT, which indicates how the
running time varies with increasing number of threads for the same fixed dataset LHG. As
expected, the time usage decreases with the level of parallelization for both the unweighted
and weighted instances. In particular, the running time of the sequential case is roughly
divided by log(N) if we use N threads. This logarithmic relationship means that the per-
formance increases only slowly with the number of threads. One reason for this is that the
sequential version of HEICUT already manages to solve almost all large instances in under

62

6.4 Experiments

20 21 22 23 24# of threads1.0
1.5
2.0
2.5
3.0
3.5
4.0

time
 (s)

20 21 22 23 24# of threads1.01.52.02.53.03.54.0

mem
ory (

s)

20 21 22 23 24# of threads1.01.52.02.53.03.54.0

time
 (s)

20 21 22 23 24# of threads1.01.52.02.53.03.54.0

mem
ory (

s)

(i): Unweighted large dataset LHG

20 21 22 23 24# of threads0.5
1.0
1.5
2.0
2.5
3.0
3.5

time
 (s)

20 21 22 23 24# of threads0.51.01.52.02.53.03.5

mem
ory (

s)

20 21 22 23 24# of threads0.51.01.52.02.53.03.5time
 (s)

20 21 22 23 24# of threads0.51.01.52.02.53.03.5

mem
ory (

s)

(ii): Weighted large dataset LHG

Figure 6.6: Strong scalability plot of HEICUT, which indicates how the running time varies with
increasing number of threads for the same fixed dataset LHG. Note we take for each
parallelization level the geometric mean of the running times over all large instances.

four seconds, which does not leave much room for improvement. Therefore, it would be
more insightful to measure the benefit of parallelizing HEICUT on a harder dataset, which
could be done in future work. Nonetheless, when using N = 16 threads, HEICUT manages
to solve one more unweighted instance compared to the sequential case. This means that
only a single unsolved unweighted instance remains, which will most probably be solved
by increasing the number of threads even further.

Answer to KQ5. The performance of HEICUT can be improved further by paralleliz-
ing the exact reduction rules and the ordering-based solver. However, we obtain only
a logarithmic speedup, since the sequential version already runs in under four seconds
for most large instances. Thus, a harder dataset is needed for a better comparison.

6.4.5 Hypercactus

We tackle KQ6 by performing the first ever evaluation of the hypercactus algorithm of
Chekuri and Xu, which includes the kernelization phase described in Section 5.2 and the
improvements to the split oracle as outlined in Section 5.3. In particular, we test how the
algorithm performs when computing the hypercactus representation of every unweighted
and weighted instance in the medium dataset MHG. The results show that the algorithm
manages to construct the hypercactus representation for 67.41% of the unweighted and
all but one weighted instances of MHG within the given constraints, i.e., two hours time
limit and 100 GB virtual memory limit. The gap in the success rate can be explained
by the fact that the weak reduction rules are less effective on the unweighted instances,
as shown in Table 6.3. More specifically, we observe that, on average, the weak reduc-
tion rules shrink the input hypergraph to a kernel with only around 56 hyperedges for the
weighted instances. In contrast, the average kernel of the unweighted instances has ap-
proximately 26 100 hyperedges. In particular, all but one weighted instances are solved

63

6 Experimental Evaluation

Hypergraph Number of Hyperedges Number of Vertices

Unweighted medium dataset MHG

Input 871 796.25 642 154.85
Kernel 26 094.60 32 186.17
Hypercactus 135.66 9 291.50

Weighted medium dataset MHG

Input 871 796.25 642 154.85
Kernel 55.91 6 216.41
Hypercactus 17.41 6 189.85

Table 6.3: Average number of hyperedges and vertices for the input hypergraph, the weak kernel
and the final hypercactus representation.

within less than three minutes, with a geometric mean of 0.34 seconds. The only unsolved
instance is Trefethen_20000, for which none of the weak reduction rules apply. The
solvable unweighted instances use 0.71 seconds in the geometric mean. This means that
the performance of the hypercactus algorithm is greatly boosted by the novel kerneliza-
tion phase and the algorithm only struggles if the reduction rules are not effective. To put
the performance into perspective, our proposed hypercactus algorithm finds all minimum
cuts in more medium-sized hypergraphs than a single minimum cut is found by the current
state-of-the-art algorithms TRIMMER and TIGHT. For both the unweighted and weighted
instances of MHG, the hypercactus algorithm uses less than one gigabyte of memory, which
demonstrates the effectiveness of the memory-efficient decomposition tree proposed by
Chekuri and Xu. The size distribution of the final hypercactus representations seems to
follow a power law, although a more sophisticated analysis of the hypercactus structure
could be done in future work.

Answer to KQ6. With the proposed improvements, the hypercactus representation can
be constructed for 67.41% of the unweighted and all but one weighted medium-sized
instances within the two hours time limit. The performance is greatly boosted by the
proposed kernelization phase. In comparison, our implementation finds all minimum
cuts in more medium-sized hypergraphs than a single minimum cut is found by current
state-of-the-art algorithms.

64

CHAPTER 7
Discussion

In Section 7.1, we provide a brief summary of the novel techniques described in this thesis
and draw a conclusion based on the performed experiments. Section 7.2 then discusses the
various approaches that could be explored in future work.

7.1 Conclusion

In this work, we present HEICUT, a lightweight and scalable algorithm that quickly finds
a minimum cut in unweighted or weighted hypergraphs with hundreds of millions of hy-
peredges. HEICUT applies seven provably exact reduction rules to aggressively reduce the
input hypergraph to a smaller kernel without losing information about the original mini-
mum cut value. These exact reduction rules consist of novel hypergraph-specific rules as
well as generalizations of already proven rules from graph algorithms. Besides, HEICUT

supports the option of performing a heuristic reduction by identifying and contracting a
clustering via label propagation. After shrinking the hypergraph, HEICUT applies an ex-
isting ordering-based solver to find an exact minimum cut in the reduced hypergraph. For
this, we extend the ordering-based algorithm by defining novel recurrent rules that allow
to search for multiple contractions per iteration. This multiple contractions technique can
also be applied to any other algorithm that uses the ordering-based solver in a subroutine,
directly improving its performance in practice.

We perform extensive experiments on more than 500 real-world and synthetic hyper-
graphs. First, we show that defining and solving simple BIP and MILP formulations of
the hypergraph minimum cut problem is already sufficient to match the performance of
current state-of-the-art algorithms on most instances. This demonstrates the unsatisfac-
tory performance of the state-of-the-art competitors in practice. In addition, we observe
that HEICUT solves twice as many medium-sized instances as the next best competitor.
On the large dataset with up to hundreds of millions of hyperedges, HEICUT solves nearly
all instances, while all of the competitors solve almost none of them. Overall, HEICUT is
three to four orders of magnitude faster than the current state-of-the-art algorithms. More

65

7 Discussion

specifically, HEICUT achieves near-linear running time in practice, even if it has a non-
linear time complexity in theory. This is because 85% of all instances can be maximally
reduced by the exact reduction rules, eliminating the need to run the underlying ordering-
based solver. Combined with further stopping criteria, HEICUT can already solve 95% of
all instances with the exact reduction rules. Nevertheless, the label propagation heuristic
proves to be effective on very specific hypergraphs where the exact reduction rules have no
effect. In particular, the heuristic manages to aggressively reduce the size of those harder
instances, while still finding the optimal solution for most of them. We also introduce a
new dataset of (k, 2)-core instances, where the minimum cut value is guaranteed to be dif-
ferent from the smallest weighted vertex degree. These instances are harder to solve as
they do not admit a trivial minimum cut and provide a benchmark for future research on
the hypergraph minimum cut problem.

We improve the performance of HEICUT further by parallelizing the exact reduction
rules and the ordering-based solver. For the latter, we present the first ever parallel imple-
mentation, to the best of our knowledge. For this, we use persistent threads with barriers to
perform thread-specific contractions in each iteration. Our new parallel approach benefits
any algorithm that uses the ordering-based solver in a subroutine. The greatest speedup is
obtained when combining the parallel execution with the proposed multiple contractions
technique, i.e., all threads search independently for multiple contractions in each iteration.

Finally, we describe how a weaker version of the exact reduction rules can be applied
to the hypercactus algorithm of Chekuri and Xu, which aims to find all minimum cuts
in a hypergraph. Together with several practical improvements to their split oracle, we
manage to propose the first ever implementation of their hypercactus algorithm, to the best
of our knowledge. The experiments show that our implementation highly benefits from
the proposed kernelization. In particular, it finds the hypercactus representation within
less than a second for 67.41% of the unweighted and all but one weighted medium-sized
instances. This means that our proposed hypercactus algorithm finds all minimum cuts in
more medium-sized hypergraphs than a single minimum cut is found by the current state-
of-the-art algorithms. We plan to publish the source code of our hypercactus algorithm in
the same repository that contains the code for HEICUT 1.

7.2 Future Work

We propose a series of novel techniques and implementations that can be built upon in a
variety of ways in future work. First, the kernelization phase of HEICUT can be improved
even further by finding more exact hypergraph-specific reduction rules or generalizing all
remaining graph rules from VIECUT to hyperedges of arbitrary size. In addition, we are
interested in testing both the sequential and the parallel variant HEICUT on even harder
instances to gain a comprehensive understanding of its potential. Next, we are convinced
that the novel technique of performing multiple contractions per iteration in the ordering-

1https://github.com/HeiCut/HeiCut

66

https://github.com/HeiCut/HeiCut

7.2 Future Work

based solver can be optimized even further by extending the proposed theorems. One way
to achieve this is to allow some changes in the adjacency and containment contributions
after the contraction of the eligible vertices, if it can be guaranteed that these changes still
preserve the ordering. Our first ever parallel implementation of the ordering-based solver,
along with the new concept of computing different orderings in each thread, is worthy of a
more thorough analysis. This includes testing it on the larger dataset, to fully measure its
capabilities compared to the sequential case.

Another straightforward possibility is to improve the performance of other hypergraph
algorithms that rely on minimum cuts by replacing the existing minimum cut algorithm
with HEICUT. This covers fields such as cybersecurity [78], hypergraph expansion [65]
and quantum computing [55]. In the same way, our work can be used to extend graph-
based algorithms for clustering [36], network reliability [45], community detection [11]
and VLSI design [3] to the hypergraph scenario. Besides, our novel implementation of the
hypercactus algorithm paves the way for a multitude of hypergraph algorithms in related
fields, such as incremental minimum cuts [34], enumerating all minimum cuts [7] and
connectivity augmentation [17, 25]. Lastly, a more sophisticated structural analysis of the
generated hypercactus representations can provide new useful insights.

67

7 Discussion

68

APPENDIX A
Appendix

A.1 Command-Line Arguments

In the following, we list the command-line arguments used for every tested algorithm. Note
that PATH is only a placeholder and must be replaced with the real path to the hypergraph
of the given instance.

Command of HEICUT:
$./kernelizer PATH --ordering_type=tight --ordering_mode=multi

Command of HEICUTLP:
$./kernelizer PATH --ordering_type=tight --ordering_mode=multi

↪→ --lp_num_iterations=1

Command of RELAXEDBIP:
$./ilp PATH --ilp_mode=BIP

Command of RELAXEDMILP:
$./ilp PATH --ilp_mode=MILP

Command of TIGHT:
$./submodular PATH -ordering_type=tight --ordering_mode=single

Command of TRIMMER:
$./trimmer PATH -ordering_type=tight --ordering_mode=single

69

A Appendix

A.2 Pseudocode of TRIMMER

The TRIMMER algorithm by Chekuri and Xu [14, 15] is a sparsification-based method
for computing the minimum cut in unweighted hypergraphs. It constructs a sequence of
sparsified hypergraphs, known as k-trimmed certificates, each of which preserves all local
connectivities up to a threshold k. These certificates contain only O(kn) hyperedges and
are passed to an exact minimum cut solver. The algorithm iteratively doubles k and com-
putes the minimum cut of each certificate until the cut value of the original hypergraph is
recovered. For more information, we refer to Section 3.2 and to the original papers.

We implement TRIMMER as described by the Chekuri and Xu. To construct a k-trimmed
certificate Hk, the algorithm first computes an MA ordering of the vertices in H , starting
from a random vertex. Next, we define the head of each hyperedge e as its first pin in the
MA ordering and sort the hyperedges by the position of their heads, breaking ties using
their original order. This produces the hyperedge head ordering, with which we compute a
list of backward edges for each vertex v ∈ V . More specifically, the backward edges of v
are constructed by taking all hyperedges containing v but for which v is not the head and
sorting them by the hyperedge head ordering. This allows us to efficiently construct Hk

for any k. The algorithm proceeds in iterations, starting with k = 2. In each iteration,
we construct Hk and compute its minimum cut using the exact ordering-based solver with
the tight ordering [56]. If the computed minimum cut value λ(Hk) is strictly less than k,
then λ(H) = λ(Hk) and the algorithm terminates. Otherwise, k is doubled and the process
continues. A pseudocode of our implementation is provided in Algorithm 6.

Algorithm 6: TRIMMER

Input: Hypergraph H = (V,E)
Output: Minimum cut value λ(H)

1 m← |E|
2 (e1, . . . , em)← HEADORDERING(H) // Based on MA ordering of vertices

3 foreach hyperedge ei in head ordering do
4 foreach pin v ∈ ei where v is not the head of ei do
5 Add e to backward edges of v

6 k ← 2
7 while true do
8 Hk ← BUILDTRIMMEDCERTIFICATE(H, k) // Using backward edges

9 λ(Hk)← ORDERINGBASEDSOLVER(H,α = 0) // Using tight ordering

10 if k > λ(Hk) then
11 return λ(H)← λ(Hk)

12 k ← 2 · k

70

A.3 Further Proofs

A.3 Further Proofs

Proof A.1 (Parallelization of Reduction Rule 5 without the restriction of VIECUT)
Let v ∈ V be a vertex with two hyperedges euv = {u, v} ∈ E and evw = {v, w} ∈ E

that both satisfy Reduction Rule 5. The contraction of the hyperedges is performed in two
steps, i.e., first contracting euv and then evw. After contracting euv, the vertices u and v
are merged into a new vertex v∗, meaning that evw becomes ev∗w. The authors of VIECUT

claim that Reduction Rule 5 may be invalid for ev∗w, even if it was previously satisfied
by evw. We will show that this is not the case in our scenario. First, we observe that the
hyperedge evw must satisfy the reduction rule via the inequality dω(v) < 2ω(evw), as the
other inequality is independent of dω(v), which means that the contraction of euv could
never invalidate the reduction rule for ev∗w. However, this implies that hyperedge euv
satisfies the reduction rule via dω(u) < 2ω(euv). If not, we would have dω(v) < 2ω(euv),
which leads to the following contradiction:

2dω(v) = dω(v) + dω(v)

< 2ω(euv) + 2ω(evw)

= 2 (ω(euv) + ω(evw))

≤ 2dω(v)

Therefore, we have dω(u) < 2ω(euv). Since the weighted vertex degree of v∗ is given
by dω(v

∗) = dω(v) + dω(u) − 2ω(euv), we see that dω(v∗) < dω(v). This leads to the
following chain of inequalities:

dω(v
∗) < dω(v) < 2ω(evw) ≤ 2ω(ev∗w)

Thus, we conclude that if Reduction Rule 5 can be applied to evw, then it can also be
applied to ev∗w after the contraction of euv. More generally, it follows that the reduction
rule can be applied simultaneously to hyperedges that share a common vertex, making the
restriction of VIECUT unnecessary in our scenario.

71

A Appendix

72

Zusammenfassung

Eine zentrale Aufgabe vieler Anwendungen wie Netzwerkzuverlässigkeit, Community-
Identifizierung oder VLSI-Design ist das Lösen des Hypergraph-Minimum-Cut-Problems,
dessen Ziel es ist, die Knoten eines Hypergraphen in zwei nicht leere Partitionen zu
unterteilen, sodass das Gesamtgewicht der geschnittenen Hyperkanten minimiert wird.
Obwohl in den letzten Jahren viele Fortschritte für Graphen erzielt wurden, bleibt die
Erweiterung von Minimum-Cut-Algorithmen auf Hypergraphen eine Herausforderung.
Aus diesem Grund stellen wir mehrere neuartige Algorithmen vor, beginnend mit einem
Binary Integer Program (BIP) und einem Mixed-Integer Linear Program (MILP), die als
einfache Baselines dienen. Anschließend präsentieren wir HEICUT, einen skalierbaren
und schnellen Algorithmus zur Identifizierung eines minimalen Schnitts in Hypergraphen
mit bis zu Hunderten von Millionen Hyperkanten. HEICUT verwendet sieben nachweislich
exakte Reduktionsregeln, die die Größe des Hypergraphen reduzieren und dennoch die Er-
mittlung der optimalen Lösung ermöglichen. Diese Reduktionsregeln bestehen aus neuar-
tigen hypergraphspezifischen Regeln sowie Verallgemeinerungen von bereits bewährten
Regeln aus Graphen-Algorithmen. Optional kann HEICUT eine heuristische Reduktion
auf Basis von Label-Propagation anwenden, um komplexe Strukturen zu verkleinern. Die
reduzierte Instanz wird dann durch einen exakten, ordnungsbasierten Algorithmus gelöst,
für den wir neuartige Regeln vorschlagen, die pro Iteration nach mehreren Kontraktionen
suchen. Wir beschreiben auch, wie die unterschiedlichen Bestandteile von HEICUT par-
allelisiert werden können, inklusive der ersten parallelen Implementierung des ordnungs-
basierten Algorithmus, nach aktuellem Wissensstand. Unsere umfangreiche Auswertung
auf über 500 realen Hypergraphen zeigt, dass die Kombination von exakten Reduktion-
sregeln und vorzeitigem Stoppen bereits in über 95% der Fälle einen minimalen Schnitt
identifizieren kann. HEICUT löst doppelt so viele Instanzen wie der nächstbeste State-
of-the-Art-Algorithmus und ist dabei drei bis vier Größenordnungen schneller. Aufgrund
dieser Resultate verwenden wir einige der Techniken von HEICUT, um den Hypercactus-
Algorithmus von Chekuri und Xu zu erweitern und zu verbessern, der darauf abzielt,
alle minimalen Schnitte in einem Hypergraphen zu finden. Nach aktuellen Wissensstand
präsentieren wir die erste Implementierung des Hypercactus-Algorithmus. In den Exper-
imenten gelingt es uns, alle minimalen Schnitte in mehr Hypergraphen zu finden, als ein
einziger minimaler Schnitt von den aktuellen State-of-the-Art-Algorithmen gefunden wird.

73

Bibliography

[1] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische
Annalen, 99(1):118–133, 1928.

[2] Charles J. Alpert. The ISPD98 circuit benchmark suite. In Majid Sarrafzadeh, editor,
Proceedings of the 1998 International Symposium on Physical Design, ISPD 1998,
Monterey, CA, USA, April 6-8, 1998, pages 80–85. ACM, 1998. doi: 10.1145/274535.
274546. URL https://doi.org/10.1145/274535.274546.

[3] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning:
a survey. Integr., 19(1-2):1–81, 1995. doi: 10.1016/0167-9260(95)00008-4. URL
https://doi.org/10.1016/0167-9260(95)00008-4.

[4] Richard J. Anderson and Heather Woll. Wait-free parallel algorithms for the union-
find problem. In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New
Orleans, Louisiana, USA, pages 370–380. ACM, 1991. doi: 10.1145/103418.103458.
URL https://doi.org/10.1145/103418.103458.

[5] Srinivasa Rao Arikati and Kurt Mehlhorn. A correctness certificate for the
stoer-wagner min-cut algorithm. Inf. Process. Lett., 70(5):251–254, 1999.
doi: 10.1016/S0020-0190(99)00071-X. URL https://doi.org/10.1016/
S0020-0190(99)00071-X.

[6] Niklas Baumstark, Guy E. Blelloch, and Julian Shun. Efficient implementation of a
synchronous parallel push-relabel algorithm. In Nikhil Bansal and Irene Finocchi,
editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer
Science, pages 106–117. Springer, 2015. doi: 10.1007/978-3-662-48350-3_10. URL
https://doi.org/10.1007/978-3-662-48350-3_10.

[7] Calvin Beideman, Karthekeyan Chandrasekaran, and Weihang Wang. Deterministic
enumeration of all minimum cut-sets and k-cut-sets in hypergraphs for fixed k. Math.
Program., 207(1):329–367, 2024. doi: 10.1007/S10107-023-02013-8. URL https:
//doi.org/10.1007/s10107-023-02013-8.

75

https://doi.org/10.1145/274535.274546
https://doi.org/10.1016/0167-9260(95)00008-4
https://doi.org/10.1145/103418.103458
https://doi.org/10.1016/S0020-0190(99)00071-X
https://doi.org/10.1016/S0020-0190(99)00071-X
https://doi.org/10.1007/978-3-662-48350-3_10
https://doi.org/10.1007/s10107-023-02013-8
https://doi.org/10.1007/s10107-023-02013-8

Bibliography

[8] Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. The sat competition
2014. 2014.

[9] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization
of complex networks. CoRR, abs/1612.08447, 2016. URL http://arxiv.org/
abs/1612.08447.

[10] Rochelle L. Boehning, Ralph M. Butler, and Billy E. Gillett. A parallel inte-
ger linear programming algorithm. European Journal of Operational Research, 34
(3):393–398, 1988. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(88)
90160-9. URL https://www.sciencedirect.com/science/article/
pii/0377221788901609.

[11] Deng Cai, Zheng Shao, Xiaofei He, Xifeng Yan, and Jiawei Han. Mining hid-
den community in heterogeneous social networks. In Jafar Adibi, Marko Grobel-
nik, Dunja Mladenic, and Patrick Pantel, editors, Proceedings of the 3rd interna-
tional workshop on Link discovery, LinkKDD 2005, Chicago, Illinois, USA, August
21-25, 2005, pages 58–65. ACM, 2005. doi: 10.1145/1134271.1134280. URL
https://doi.org/10.1145/1134271.1134280.

[12] Ümit V. Çatalyürek and Cevdet Aykanat. Hypergraph-partitioning-based decompo-
sition for parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Dis-
tributed Syst., 10(7):673–693, 1999. doi: 10.1109/71.780863. URL https:
//doi.org/10.1109/71.780863.

[13] Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, To-
bias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz,
Daniel Seemaier, and Dorothea Wagner. More recent advances in (hyper)graph par-
titioning. ACM Comput. Surv., 55(12):253:1–253:38, 2023. doi: 10.1145/3571808.
URL https://doi.org/10.1145/3571808.

[14] Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In
Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 1085–1100. SIAM, 2017. doi: 10.1137/1.9781611974782.70.
URL https://doi.org/10.1137/1.9781611974782.70.

[15] Chandra Chekuri and Chao Xu. Minimum cuts and sparsification in hypergraphs.
SIAM J. Comput., 47(6):2118–2156, 2018. doi: 10.1137/18M1163865. URL
https://doi.org/10.1137/18M1163865.

[16] Chandra Chekuri, Andrew V. Goldberg, David R. Karger, Matthew S. Levine, and
Clifford Stein. Experimental study of minimum cut algorithms. In Michael E.

76

http://arxiv.org/abs/1612.08447
http://arxiv.org/abs/1612.08447
https://www.sciencedirect.com/science/article/pii/0377221788901609
https://www.sciencedirect.com/science/article/pii/0377221788901609
https://doi.org/10.1145/1134271.1134280
https://doi.org/10.1109/71.780863
https://doi.org/10.1109/71.780863
https://doi.org/10.1145/3571808
https://doi.org/10.1137/1.9781611974782.70
https://doi.org/10.1137/18M1163865

Bibliography

Saks, editor, Proceedings of the Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 5-7 January 1997, New Orleans, Louisiana, USA, pages 324–
333. ACM/SIAM, 1997. URL http://dl.acm.org/citation.cfm?id=
314161.314315.

[17] Eddie Cheng. Edge-augmentation of hypergraphs. Math. Program., 84(3):443–
465, 1999. doi: 10.1007/S101070050032. URL https://doi.org/10.1007/
s101070050032.

[18] Joseph Cheriyan and Kurt Mehlhorn. Algorithms for dense graphs and networks on
the random access computer. Algorithmica, 15(6):521–549, 1996. doi: 10.1007/
BF01940880. URL https://doi.org/10.1007/BF01940880.

[19] William H. Cunningham. Decomposition of submodular functions. Combinatorica,
3(1):53–68, 1983. doi: 10.1007/BF02579341. URL https://doi.org/10.
1007/BF02579341.

[20] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011. doi: 10.1145/2049662.2049663.
URL https://doi.org/10.1145/2049662.2049663.

[21] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. ISBN
013215871X. URL https://www.worldcat.org/oclc/01958445.

[22] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91(2):201–213, 2002. doi: 10.1007/
S101070100263. URL https://doi.org/10.1007/s101070100263.

[23] Shaddin Dughmi. Submodular functions: Extensions, distributions, and algorithms.
A survey. CoRR, abs/0912.0322, 2009. URL http://arxiv.org/abs/0912.
0322.

[24] Jonathan Eckstein. Parallel branch-and-bound algorithms for general mixed integer
programming on the CM-5. SIAM J. Optim., 4(4):794–814, 1994. doi: 10.1137/
0804046. URL https://doi.org/10.1137/0804046.

[25] Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Chris-
tian Schulz. Engineering weighted connectivity augmentation algorithms. In Leo Lib-
erti, editor, 22nd International Symposium on Experimental Algorithms, SEA 2024,
July 23-26, 2024, Vienna, Austria, volume 301 of LIPIcs, pages 11:1–11:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi: 10.4230/LIPICS.SEA.2024.
11. URL https://doi.org/10.4230/LIPIcs.SEA.2024.11.

[26] Lester R. Ford Jr. and Delbert R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics, 8:399–404, 1956. doi: 10.4153/CJM-1956-045-5.
URL https://doi.org/10.4153/CJM-1956-045-5.

77

http://dl.acm.org/citation.cfm?id=314161.314315
http://dl.acm.org/citation.cfm?id=314161.314315
https://doi.org/10.1007/s101070050032
https://doi.org/10.1007/s101070050032
https://doi.org/10.1007/BF01940880
https://doi.org/10.1007/BF02579341
https://doi.org/10.1007/BF02579341
https://doi.org/10.1145/2049662.2049663
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1007/s101070100263
http://arxiv.org/abs/0912.0322
http://arxiv.org/abs/0912.0322
https://doi.org/10.1137/0804046
https://doi.org/10.4230/LIPIcs.SEA.2024.11
https://doi.org/10.4153/CJM-1956-045-5

Bibliography

[27] Harold N. Gabow. Path-based depth-first search for strong and biconnected com-
ponents. Inf. Process. Lett., 74(3-4):107–114, 2000. doi: 10.1016/S0020-0190(00)
00051-X. URL https://doi.org/10.1016/S0020-0190(00)00051-X.

[28] Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm.
Commun. ACM, 7(5):301–303, 1964. doi: 10.1145/364099.364331. URL https:
//doi.org/10.1145/364099.364331.

[29] Michel X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over
families of sets. Comb., 15(4):499–513, 1995. doi: 10.1007/BF01192523. URL
https://doi.org/10.1007/BF01192523.

[30] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-
flow problem. J. ACM, 35(4):921–940, 1988. doi: 10.1145/48014.61051. URL
https://doi.org/10.1145/48014.61051.

[31] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961. ISSN 03684245. URL
http://www.jstor.org/stable/2098881.

[32] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel flow-based hypergraph
partitioning. In Christian Schulz and Bora Uçar, editors, 20th International Sym-
posium on Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Ger-
many, volume 233 of LIPIcs, pages 5:1–5:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi: 10.4230/LIPICS.SEA.2022.5. URL https://doi.org/
10.4230/LIPIcs.SEA.2022.5.

[33] Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag.
Scalable high-quality hypergraph partitioning. ACM Trans. Algorithms, 20(1):9:1–
9:54, 2024. doi: 10.1145/3626527. URL https://doi.org/10.1145/
3626527.

[34] Rahul Raj Gupta and Sushanta Karmakar. Incremental algorithm for minimum
cut and edge connectivity in hypergraph. In Charles J. Colbourn, Roberto
Grossi, and Nadia Pisanti, editors, Combinatorial Algorithms - 30th International
Workshop, IWOCA 2019, Pisa, Italy, July 23-25, 2019, Proceedings, volume
11638 of Lecture Notes in Computer Science, pages 237–250. Springer, 2019.
doi: 10.1007/978-3-030-25005-8_20. URL https://doi.org/10.1007/
978-3-030-25005-8_20.

[35] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2025. URL
https://www.gurobi.com.

78

https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1007/BF01192523
https://doi.org/10.1145/48014.61051
http://www.jstor.org/stable/2098881
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://doi.org/10.1145/3626527
https://doi.org/10.1145/3626527
https://doi.org/10.1007/978-3-030-25005-8_20
https://doi.org/10.1007/978-3-030-25005-8_20
https://www.gurobi.com

Bibliography

[36] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.
Inf. Process. Lett., 76(4-6):175–181, 2000. doi: 10.1016/S0020-0190(00)00142-3.
URL https://doi.org/10.1016/S0020-0190(00)00142-3.

[37] Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representations
in polylogarithmic max-flow via maximal isolating mincuts. In David P. Woodruff,
editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 1465–1502. SIAM,
2024. doi: 10.1137/1.9781611977912.60. URL https://doi.org/10.1137/
1.9781611977912.60.

[38] Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representa-
tion of minimum cuts: Derandomize and speed up. In David P. Woodruff, edi-
tor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA
2024, Alexandria, VA, USA, January 7-10, 2024, pages 1503–1541. SIAM, 2024.
doi: 10.1137/1.9781611977912.61. URL https://doi.org/10.1137/1.
9781611977912.61.

[39] Vitali Henne. Label propagation for hypergraph partitioning. Master’s thesis, 2015.
URL https://doi.org/10.5445/IR/1000063440.

[40] Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practi-
cal minimum cut algorithms. ACM J. Exp. Algorithmics, 23, 2018. doi: 10.1145/
3274662. URL https://doi.org/10.1145/3274662.

[41] Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory exact min-
imum cuts. In 2019 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 13–22. IEEE,
2019. doi: 10.1109/IPDPS.2019.00013. URL https://doi.org/10.1109/
IPDPS.2019.00013.

[42] Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Find-
ing all global minimum cuts in practice. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA
2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs,
pages 59:1–59:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPICS.ESA.2020.59. URL https://doi.org/10.4230/LIPIcs.
ESA.2020.59.

[43] Michael Jünger, Giovanni Rinaldi, and Stefan Thienel. Practical performance of ef-
ficient minimum cut algorithms. Algorithmica, 26(1):172–195, 2000. doi: 10.1007/
S004539910009. URL https://doi.org/10.1007/s004539910009.

79

https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/10.1137/1.9781611977912.60
https://doi.org/10.1137/1.9781611977912.60
https://doi.org/10.1137/1.9781611977912.61
https://doi.org/10.1137/1.9781611977912.61
https://doi.org/10.5445/IR/1000063440
https://doi.org/10.1145/3274662
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://doi.org/10.1007/s004539910009

Bibliography

[44] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.
doi: 10.1145/331605.331608. URL https://doi.org/10.1145/331605.
331608.

[45] David R. Karger. A randomized fully polynomial time approximation scheme
for the all-terminal network reliability problem. SIAM Rev., 43(3):499–522,
2001. doi: 10.1137/S0036144501387141. URL https://doi.org/10.1137/
S0036144501387141.

[46] David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J.
ACM, 43(4):601–640, 1996. doi: 10.1145/234533.234534. URL https://doi.
org/10.1145/234533.234534.

[47] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the
Complexity of Computer Computations, held March 20-22, 1972, at the IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The
IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.
doi: 10.1007/978-1-4684-2001-2_9. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

[48] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.
doi: 10.1137/S1064827595287997. URL https://doi.org/10.1137/
S1064827595287997.

[49] George Karypis and Vipin Kumar. Metis 4.0: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. Army HPC Research Center, Department of Computer Science &
Engineering, University of Minnesota, 38:7–1, 1998.

[50] George Karypis and Vipin Kumar. hMetis 1.5.3: A hypergraph partitioning pack-
age. Army HPC Research Center, Department of Computer Science & Engineering,
University of Minnesota, 2:1–20, 1998.

[51] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large
Scale Integr. Syst., 7(1):69–79, 1999. doi: 10.1109/92.748202. URL https:
//doi.org/10.1109/92.748202.

[52] Regina Klimmek and Frank Wagner. A simple hypergraph min cut algorithm. 1996.

[53] Kishore Kothapalli, Sriram V. Pemmaraju, and Vivek Sardeshmukh. On the
analysis of a label propagation algorithm for community detection. In Davide
Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun

80

https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1145/234533.234534
https://doi.org/10.1145/234533.234534
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/92.748202
https://doi.org/10.1109/92.748202

Bibliography

Sinha, editors, Distributed Computing and Networking, 14th International Con-
ference, ICDCN 2013, Mumbai, India, January 3-6, 2013. Proceedings, volume
7730 of Lecture Notes in Computer Science, pages 255–269. Springer, 2013.
doi: 10.1007/978-3-642-35668-1_18. URL https://doi.org/10.1007/
978-3-642-35668-1_18.

[54] Eugene L. Lawler. Cutsets and partitions of hypergraphs. Networks, 3(3):275–285,
1973. doi: 10.1002/NET.3230030306. URL https://doi.org/10.1002/
net.3230030306.

[55] Chenghua Liu, Minbo Gao, Zhengfeng Ji, and Mingsheng Ying. Quantum speedup
for hypergraph sparsification. CoRR, abs/2505.01763, 2025. doi: 10.48550/ARXIV.
2505.01763. URL https://doi.org/10.48550/arXiv.2505.01763.

[56] Wai-Kei Mak and D. F. Wong. A fast hypergraph min-cut algorithm for circuit par-
titioning. Integr., 30(1):1–11, 2000. doi: 10.1016/S0167-9260(00)00008-0. URL
https://doi.org/10.1016/S0167-9260(00)00008-0.

[57] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8(1):3–30, 1998. doi: 10.1145/272991.272995. URL https:
//doi.org/10.1145/272991.272995.

[58] David W. Matula. A linear time 2+epsilon approximation algorithm for edge
connectivity. In Vijaya Ramachandran, editor, Proceedings of the Fourth An-
nual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, pages 500–504. ACM/SIAM, 1993. URL http://dl.acm.
org/citation.cfm?id=313559.313872.

[59] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multiple
and capacitated graphs. In Tetsuo Asano, Toshihide Ibaraki, Hiroshi Imai, and Takao
Nishizeki, editors, Algorithms, International Symposium SIGAL ’90, Tokyo, Japan,
August 16-18, 1990, Proceedings, volume 450 of Lecture Notes in Computer Science,
pages 12–20. Springer, 1990. doi: 10.1007/3-540-52921-7_51. URL https://
doi.org/10.1007/3-540-52921-7_51.

[60] Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient
minimum capacity cut algorithm. Math. Program., 67:325–341, 1994. doi: 10.1007/
BF01582226. URL https://doi.org/10.1007/BF01582226.

[61] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for
cactus representations of minimum cuts. Japan Journal of Industrial and Applied
Mathematics, 17(2):245, 2000. doi: 10.1007/BF03167346. URL https://doi.
org/10.1007/BF03167346.

81

https://doi.org/10.1007/978-3-642-35668-1_18
https://doi.org/10.1007/978-3-642-35668-1_18
https://doi.org/10.1002/net.3230030306
https://doi.org/10.1002/net.3230030306
https://doi.org/10.48550/arXiv.2505.01763
https://doi.org/10.1016/S0167-9260(00)00008-0
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
http://dl.acm.org/citation.cfm?id=313559.313872
http://dl.acm.org/citation.cfm?id=313559.313872
https://doi.org/10.1007/3-540-52921-7_51
https://doi.org/10.1007/3-540-52921-7_51
https://doi.org/10.1007/BF01582226
https://doi.org/10.1007/BF03167346
https://doi.org/10.1007/BF03167346

Bibliography

[62] Manfred Padberg and Giovanni Rinaldi. An efficient algorithm for the minimum
capacity cut problem. Math. Program., 47:19–36, 1990. doi: 10.1007/BF01580850.
URL https://doi.org/10.1007/BF01580850.

[63] Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts
in a network and applications. Math. Program., 22(1):121, 1982. doi: 10.1007/
BF01581031. URL https://doi.org/10.1007/BF01581031.

[64] J. Scott Provan and Douglas R. Shier. A paradigm for listing (s, t)-cuts in graphs.
Algorithmica, 15(4):351–372, 1996. doi: 10.1007/BF01961544. URL https://
doi.org/10.1007/BF01961544.

[65] Li Pu and Boi Faltings. Hypergraph learning with hyperedge expansion. In Peter A.
Flach, Tijl De Bie, and Nello Cristianini, editors, Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK,
September 24-28, 2012. Proceedings, Part I, volume 7523 of Lecture Notes in Com-
puter Science, pages 410–425. Springer, 2012. doi: 10.1007/978-3-642-33460-3_32.
URL https://doi.org/10.1007/978-3-642-33460-3_32.

[66] Maurice Queyranne. Minimizing symmetric submodular functions. Math. Program.,
82:3–12, 1998. doi: 10.1007/BF01585863. URL https://doi.org/10.1007/
BF01585863.

[67] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algo-
rithm to detect community structures in large-scale networks. Physical Review E, 76
(3), 2007. doi: 10.1103/physreve.76.036106. URL https://link.aps.org/
doi/10.1103/PhysRevE.76.036106.

[68] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning al-
gorithms. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms -
ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September 5-
9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages
469–480. Springer, 2011. doi: 10.1007/978-3-642-23719-5_40. URL https:
//doi.org/10.1007/978-3-642-23719-5_40.

[69] Linus Schrage and Kenneth R. Baker. Dynamic programming solution of sequencing
problems with precedence constraints. Oper. Res., 26(3):444–449, 1978. doi: 10.
1287/OPRE.26.3.444. URL https://doi.org/10.1287/opre.26.3.444.

[70] Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Winkler. Fiberscip -
A shared memory parallelization of SCIP. INFORMS J. Comput., 30(1):11–30,
2018. doi: 10.1287/IJOC.2017.0762. URL https://doi.org/10.1287/
ijoc.2017.0762.

82

https://doi.org/10.1007/BF01580850
https://doi.org/10.1007/BF01581031
https://doi.org/10.1007/BF01961544
https://doi.org/10.1007/BF01961544
https://doi.org/10.1007/978-3-642-33460-3_32
https://doi.org/10.1007/BF01585863
https://doi.org/10.1007/BF01585863
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1287/opre.26.3.444
https://doi.org/10.1287/ijoc.2017.0762
https://doi.org/10.1287/ijoc.2017.0762

Bibliography

[71] Christian Staudt and Henning Meyerhenke. Engineering high-performance com-
munity detection heuristics for massive graphs. In 42nd International Conference
on Parallel Processing, ICPP 2013, Lyon, France, October 1-4, 2013, pages 180–
189. IEEE Computer Society, 2013. doi: 10.1109/ICPP.2013.27. URL https:
//doi.org/10.1109/ICPP.2013.27.

[72] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–
591, 1997. doi: 10.1145/263867.263872. URL https://doi.org/10.1145/
263867.263872.

[73] Ole Tange. GNU parallel: The command-line power tool. login
Usenix Mag., 36(1), 2011. URL https://www.usenix.org/
publications/login/february-2011-volume-36-number-1/
gnu-parallel-command-line-power-tool.

[74] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, 1975. doi: 10.1145/321879.321884. URL https://doi.org/
10.1145/321879.321884.

[75] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Hypergraph cuts with general
splitting functions. SIAM Rev., 64(3):650–685, 2022. doi: 10.1137/20M1321048.
URL https://doi.org/10.1137/20m1321048.

[76] Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang
Wei. The DAC 2012 routability-driven placement contest and benchmark suite. In
Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual
Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7,
2012, pages 774–782. ACM, 2012. doi: 10.1145/2228360.2228500. URL https:
//doi.org/10.1145/2228360.2228500.

[77] Michael Walter and Freek Witteveen. Hypergraph min-cuts from quantum entropies.
Journal of Mathematical Physics, 62(9), 2021. doi: 10.1063/5.0043993. URL
https://doi.org/10.1063/5.0043993.

[78] Yutaro Yamaguchi, Anna Ogawa, Akiko Takeda, and Satoru Iwata. Cyber security
analysis of power networks by hypergraph cut algorithms. IEEE Trans. Smart Grid,
6(5):2189–2199, 2015. doi: 10.1109/TSG.2015.2394791. URL https://doi.
org/10.1109/TSG.2015.2394791.

83

https://doi.org/10.1109/ICPP.2013.27
https://doi.org/10.1109/ICPP.2013.27
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/263867.263872
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://doi.org/10.1137/20m1321048
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1063/5.0043993
https://doi.org/10.1109/TSG.2015.2394791
https://doi.org/10.1109/TSG.2015.2394791

	Abstract
	Introduction
	Motivation
	Our Contribution
	Structure

	Fundamentals
	General Definitions
	Problem Definition
	Submodularity
	Hypercactus
	Related Problems

	Kernelization
	Linear Programs

	Related Work
	Graph Minimum Cut
	Hypergraph Minimum Cut

	Hypergraph Minimum Cut Algorithms
	Binary Integer Program
	Mixed-Integer Linear Program
	HeiCut
	Reduction Rules
	Label Propagation
	Ordering-Based Solver
	Pseudocode

	Parallelization
	Parallel Kernelization
	Parallel Ordering-Based Solver

	Hypercactus
	Algorithm Description
	Kernelization
	Improved Split Oracle
	Pseudocode

	Experimental Evaluation
	Hardware
	Instances
	Methodology
	Experiments
	Effectiveness of Exact Reduction Rules
	Effectiveness of Multiple Contractions
	Comparison against State-of-the-Art
	Parallelization
	Hypercactus

	Discussion
	Conclusion
	Future Work

	Appendix
	Command-Line Arguments
	Pseudocode of Trimmer
	Further Proofs

	Abstract (German)
	Bibliography

