Engineering Edge Ratings and Matching
Algorithms for Multilevel Graph Partitioning
Algorithms

Maximilian Schuler
Matriculation number: 1457790

December 7, 2011

Bachelor of Science in Computer Science

at the Institute for Theoretical Computer Science, Algorithmics Il,
Karlsruhe Institute of Technology

Supervisors:
Prof. Dr. rer. nat. Peter Sanders and

Dipl. -Math, Dipl. -Inform. Christian Schulz

Abstract

The graph partitioning problem is one of the most basic and fundamental problems in
theoretical computer science. In fact numerous practical applications exist ranging from
the implementation of a VLSI design [15] to the identification of the function a specific
gene is responsible for [3]. Though it can be shown that the balanced graph partition
problem is NP-complete it can often be satisfactorily approximated in very short amount
of time. Many modern graph partitioning algorithms use a multilevel scheme, which con-
sists of three phases. First a hierarchy of subsequently coarser graphs is built, then the
coarsest graph is partitioned initially and for each finer graph the partition is further
refined. As the coarsening phase is crucial to a good result this work investigates and
aims to improve techniques to be applied in the coarsening phase. The emphasis lies on
the construction of new edge ratings and the analysis and design of a novel approximate
matching algorithm. All findings are evaluated using the multilevel graph partitioner
KaFFPa [25] that constructs a coarser graph by computing an approximate maximum
weight matching and contracting all matched edges, which yields a very fast coarsening
scheme. Our edge ratings together with a new approximate matching algorithm yield
significant speed-ups over the standard settings for the most computational intense con-
figurations of KaFFPa, and significantly improve the quality of the partitions calculated
for social networks.

Acknowledgements

I would like to thank Prof. Dr. Peter Sanders for making this thesis possible and my
supervisor Christian Schulz for his expertise, kindness, and most of all, for his patience.
I am indebted to my friends for their support and encouragement. Among many others,
I thank Leo Kogge, Patrick Spengler, Philip Rochel, Daniel Kucher, and Julian Ott.
Finally I would like to thank my family for their love and continuous believe in me.

Einverstandnisserklarung

Ich erklare hiermit, dass ich die vorliegende Arbeit selbstandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe

Karlsruhe, December 7, 2011

Maximilian Schuler

i

Contents

1. Introduction

2. Fundamentals

2.1. General Definitions L L oo
2.1.1. Graphs
2.1.2. The Graph Partitioning Problem
2.1.3. Subgraphs and Spanning Trees
2.1.4. Matchings
2.1.5. Partition Quality Metrics o oo

3. Related Work
3.1. Multilevel Graph Partitioning Algorithms
3.2. Approximate Maximum Weight Matching Algorithms
3.2.1. Heavy Edge Matching
3.2.2. Global Paths Algorithm
3.3. Additional Parameters of Graphs L.
3.3.1. Degeneracy and Coreness o it
3.3.2. Algebraic Distance

4. Approximate Maximum Weight Matchings
4.1. Optimal Maximum Matching on Forests
4.2. Maximum Spanning Tree Matching

5. Edge Ratings
5.1. Edge Rating Criteria L
5.2. Basic Edge Ratings Lo
5.3. Density Metric Based Edge Ratings
5.4. Multicriteria Edge Ratings

6. Experimental Evaluation
6.1. KaFFPa e
6.2. Experiment Description L
6.2.1. General Methodology
6.2.2. Matching Tests
6.2.3. MSTM Analysis
6.2.4. Environment e
6.2.5. Test Sets
6.3. Matchings
6.3.1. Comparison of Matching Algorithms

1l

[G N)

Neop{<]

Contents

6.3.2. Detailed Evaluation of MSTM
6.4. Edge Ratings L
6.4.1. Middle sized test set
6.4.2. Social Networkso
6.4.3. Additional quality metrics

7. Conclusion

A. InstitutsCluster
B. Extra Tables

C. Zusammenfassung

Bibliography

44

45

54

55

Chapter 1.

Introduction

Our life is frittered away by detail...
simplify, simplify.
- Henry David Thoreau -

The graph partitioning problem is one of the most basic and fundamental problems in the-
oretical computer science. In fact numerous practical applications exist ranging from the
implementation of a VLSI design [15] to the identification of the function a specific gene is
responsible for [3]. Other applications include digital image segmentation [30] or the identifi-
cation of communities within (online) social networks. However, perhaps the most interesting
applications arise from High-Performance-Computing:

Today the most challenging computation tasks are carried out by computer clusters. Such
a computer cluster consists of a heap of interconnected, small and usually cheap computers.
From the user side they act as a single virtual machine that can perform any workload assigned
to it.

A real-life example of such a task is weather forecasting. Satellites and weather stations
permanently scan the earth’s atmosphere, temperature, cloud formations and seas, collecting
terabytes of data per day. This data has to be processed with complex models and thousands
of iterations to produce a useful output such that a meaningful weather forecast can be made
in time.

One of the main challenges in parallel computing is load balancing. The problem here is to
break a large workload down into small chunks and distribute them to each of single machines
equally by minimizing communication overhead. This problem can be formulated as a balanced
Graph Partitioning problem if each vertex corresponds to a computational task and each edge
to a data dependency. Now each block of a partition of the graph corresponds to a machine.
The Graph Partitioning problem is to find a partition of the graph such that as few edges as
possible lie between the blocks while each block should have the same size.

Though it can be shown that the balanced graph partitioning problem is NP-complete, it can
often satisfactorily be solved in very short time. Many modern graph partitioning algorithms
use a multilevel scheme, which consists of three phases. First a hierarchy of subsequently
coarser graphs is built, then the coarsest graph is partitioned initially and for each finer graph
the partition is further refined. The main goal of this work is to find new techniques that can be
applied to improve the coarsening phase of such a graph partitioner. Namely we will investigate
new edge rating functions and a novel approximate matching algorithm. All algorithms are

Chapter 1. Introduction

evaluated using the multilevel graph partitioner KaFFPa [25]. In the coarsening phase - and
this is the approach we will assume throughout this work - it constructs a coarser graph by
computing an approximate maximum weight matching and contracting all matched edges,
which yields a very fast coarsening scheme.

Chapter 2.
Fundamentals

2.1. General Definitions

2.1.1. Graphs

Consider a weighted graph G = (V, E,c,w) where V denotes the set of vertices and E the
set of edges. The number of vertices is denoted by n = |V| and the number of edges by
m = |E|. The edge weight is denoted by w : E — Ry and verter weight ¢ : V' — R>¢. A set
P ={Vi, -, Vi} of disjoint sets is called a partition of V if Ule Vi=V and V;NV; =0 for
all i # j and 4,j € {1,...k}. Then the individual sets V; are called blocks and P[v] gives the
block that contains v. The set of a vertex’s neighbours is denoted by N (v) := {u : {u,v} € E}
or more generally N(U) the set of all neighbours in V' \ U of each v € U. The set of edges
incident to v is written as F/(v). For the degree of a vertex we write dg(v) = d(v) = |[N(v)|. A
vertex with degree 0 is called isolated. Vertices or edges that are non-adjacent to each other
are called independent. The number §(G) := min{d(v) | v € V'} is the minimum degree and
A(G) := max{d(v) | v € V'} the mazimum degree. The number

d(G) = d)/|V]

veV

is the average degree.

2.1.2. The Graph Partitioning Problem

Given a graph G, an integer k > 1 and the inbalance € > 0, the Graph Partitioning problem
is to find a partition P = {V4, ..., Vi } of V such that max; |V;| < (1 + 6)% and the number of

edges between blocks is minimized.

The inbalance e must be allowed, since at least in the case that |V| is prime no exact solution
other than the trivial cases for |P| =1 or |P| = n can be found. In the weighted case

max Z c(v) < (1 _]: 2 Z c(v) + max c(v)
veEV; veV

is used.

Chapter 2. Fundamentals

It can be shown that this graph partitioning problem is NP-complete [10] and that no poly-
nomial time approximation algorithm with finite approximation factor exists unless P = NP,
which can be proven by a reduction from the 3-partition problem [1].

2.1.3. Subgraphs and Spanning Trees

A graph G' = (V' E') is a subgraph of G if V' C V and E' C E, we write G’ C G. A subgraph
G’ is called induced if E’ contains all edges {z,y} € F with z,y € V'. In this work we write
G[V’]. If a subgraph is induced by V' \ {v} for some v € V' we write G — v. More generally, if
a subgraph is induced by V'\ S for some set S C V we write G — S.

If G is connected and m = n — 1 then G is a tree. A cycle free graph is called a forest and
each connected component of a forest is a tree. A forest S = (V,E') C G = (V, E) is called
a spanning forest of G if it has as many components as G and a spanning tree if it is also
connected.

To calculate such a spanning tree one could use Kruskal’s algorithm or Jarnik-Prim (often
Prim’s algorithm). Pseudocode can be found in Algorithm 1 and 2.

Algorithm 1 Kruskal’s algorithm for minimum spanning trees
T+ 0
for all e = {u,v} € E in ascending order of edge weight do
if v and v are in different subtrees of T then
T+ T U{e}
end if
end for

By ordering the edges in descending order, Kruskal’s algorithms will return a maximum span-
ning tree instead of a minimum spanning tree. To find maximum spanning trees with Prim’s
algorithm one has to do the following replacements. The smaller sign is replaced by a greater
sign in the relaxation loop, the maximal entry of the priority queue is taken in each iteration
and instead of decreasing the keys in the priority queue they have to be increased.

For a deeper discussion of both algorithms the reader is referred to [22].

2.1.4. Matchings

A set M of independent edges of a graph G = (V| E) is called a matching. If a vertex is incident
to an edge e € M it is called matched and unmatched otherwise.

While finding any matching is a trivial task, it gets much harder to find a matching that fulfils
a specific property. If all vertices of V' are matched the matching is said to be perfect; note
that such a matching is only possible, if each connected component of G has an even amount
of vertices. A matching is called mazimal if it is not properly contained in another matching.
Intuitively this means that it is not possible to add any extra edge to the matching. A matching
M is said to be mazimum if for any matching M’, |M| > |M’|. Though from these problems
arise interesting N'P-complete problems [10], e.g. the minimum maximal matching, in this

Chapter 2. Fundamentals

Algorithm 2 Jarnik-Prim for minimum spanning trees
d<—<o00,...,00 >
T+ 0
pq < {root} : PriorityQueue
while pg # () do
u < pg.min()
d(u) =1
for all e = {u,v} € E do
if w(e) <d(v) then
d(v) = w(e)
T+ TU{e}
if v € pq then
pq.decreaseKey (v, d(v))
else
pq.insert(v, d(v))
end if
end if
end for
end while

work we focus on the mazimum weight matching. That is the generalization of the maximum
matching problem, where the sum of the weights »_.,,w(e) is to be maximized.

Using Edmond’s algorithm, a maximum weight matching can be calculated in O(y/nm) [12,
6]. While it is good to find the optimal solution in many cases it suffices to get a near
optimal solution. Many approximation algorithms exist that run in near linear time and
guarantee approximation factors of two. Experiments indicate that these simple approximation
algorithms often yield solution with a very low gap to optimality on real world graphs [21]. Such
algorithms can be built upon calculating a maximum weight matching of simple subgraphs like
a path or a tree. An algorithm that calculates an optimal maximum weight matching on paths
and circles using standard dynamic programming is given in [21]. In section 4.1 we give an
algorithm to calculate a maximum weight matching on forests and show how to construct an
approximated algorithm based on matchings of maximum weight spanning trees.

2.1.5. Partition Quality Metrics

In this section we will show different metrics to describe the quality of a partition.

Internal and external Degree

degextern(v) = Z W({’LL, U})

weN (v)\P[v]

degémtern(v) = w({ua U})
u€N(V)\V;

Chapter 2. Fundamentals

V1 — V2

| |

Vg — U4
Vg — Vg —— — Vg — V10
e
V7 — Vg ——— V11 — V12

Figure 2.1.: A small graph with three blocks (red, yellow and green).

The external degree describes how many neighbours a vertex has that lie in a different block.
Likewise the internal degree describes with how many vertices from the same block a vertex is
connected.

degintern(v) = Z w({u, U})
ueN (v)NPv]

In figure 2.1 the internal degree of all vertices equals two, while degeytern(vs) = deg? o (v3) =
2 but deg?“!' (v3) = 0.

extern

Edge Cut. The edge cut, i.e. the number of edges between different blocks, yields a natural
way to describe the quality of a given graph partition as it is the metric to be minimized in
the standard definition of the graph partitioning problem. It is given by

1
EC = 5 Z degeztern(v)
veV

and the edge cut of a specific block is given by

ECl = Z degea}tern(v)-

veV;
We define the maximum edge cut to be from the block with the highest edge cut.
ECh4; = max EC!
(2

Looking at figure 2.1 again, we can see that the edge cut equals six, yet the maximum edge
cut equals five, which is the edge cut of the green block.

Boundary Nodes. A boundary node is a node, that is connected to another block i.e. that
has an external degree greater than zero or an internal degree smaller than its actual degree.

Chapter 2. Fundamentals

The boundary AV; of a block V; is then given by
oV, = {v € Vi | degextern(v) > 0}.

As a measure for the partition quality we will be interested in the mazimum boundary Omaz
and the total boundary Jg.

Omaz = max [0V}].
da = |{v € V' | degextern(v) > 0}

In our example graph in figure 2.1 there exist six boundary nodes, while the maximum boundary
equals three.

Communication Volume. The set C, of foreign blocks a boundary node is connected to
can be written as

Cy = {Vi € P | d.pyern(v) > 0}

extern

Then the communication volume of a block is defined as

comm(V;) := Z c(v)|Cyl.

veV;

The total communication volume is defined as

and the mazimum communication volume is given by

COMMypqy = max comm(V;).
1

The communication volume encodes information about necessary communication between dif-
ferent blocks. The main difference to the edge cut is that if a vertex is connected to two
different vertices lying in the same block, they count only once. In our example graph the
communication volume of the green block is four, which also is the maximum communication
volume while the edge cut of the green block is five. This models the real communication over-
head arising in high performance computing more realistically, since once information about a
vertex has been sent to a block it is known to the whole block, and therefore to all vertices it
contains.

Chapter 3.
Related Work

In this chapter we will present several concepts this work is based on. First, in Section 3.1,
the multilevel graph partitioning scheme is presented and the three phases of such algorithms
are discussed. In Section 3.2 we show different approaches to approximate a maximum weight
matching and in Section 3.3 we present some additional graph parameters, which will prove
useful for the construction of new edge rating functions.

3.1. Multilevel Graph Partitioning Algorithms

Multilevel graph partitioning algorithms are a recent approach to approximating the graph
partitioning problem. Numerous such algorithms have been developed in the past two decades,
many of which provide high performance and good partitions, e.g. Metis [26], Party [8] and
Scotch [24].

The multilevel scheme, is very straightforward. It consists of three phases: coarsening, initial
partitioning and refinement (or uncoarsening). During the coarsening phase the graph is
gradually reduced by some local operation so that a hierarchy of coarser graphs is obtained.
In the initial partitioning phase the coarsest and therefore smallest graph can be partitioned
using any partition algorithm that is able to handle vertex and edge weights. This partition is
then applied in the refinement phase to each larger graph and further refined.

Coarsening phase

The most common local reducing operation edge contract (sometimes edge collapse) is defined
as follows.

Definition Edge Contract. Consider a weighted graph G = (V, E,c,w). Collapsing an
edge {u,v} = e € E into a node w ¢ V as illustrated in Figure 3.1 results in a graph G’
where V' =V \ {u,v} U{w}. For E’ first the set S = Ey(u) U Ep(v) is removed and then set
T ={{w,y} |y € N(u) UN(v)} added. An unweighted multi-graph can now be represented
as a weighted simple graph by encoding multiple edges as one single edge, weighted by the
number of multi-edges. The vertex weight is used to encode how many vertices have already

Chapter 3. Related Work

U3

U1 (%)

U3
V4

Figure 3.1.: The contraction of an edge. Here vertices v; and v, are contracted into
the new vertex vy. Note how the edge weight of the edge {vs,v4} equals
w({v1,v3}) + w({ve,v3}). Vertex weights are not illustrated.

been contracted into this vertex. To be more precise

d(z) = { c(w) +e(v) ifr=uw

c(x) else

defines the vertex weight. Defining edge weights, one must be careful to model multi edges
correctly by adding the weights of edges to a common neighbour together and selecting the
right source for the others:

w{u,y}) + w{v,y}) if{z,y} € T and y € N(u) N N(v)
O {z,y)) = w&z,y%)) if1 {z,y} € T and y € N(2),z € {u,v}
w({z,y else

If a set U of edges must be contracted, this operation is repeatedly applied to each edge in U.

Now that a simple reduction operation is defined, it has to be decided which edges should be
contracted in each step. An intuitive approach is to define a rating, that expresses how much
sense it would make to contract a specific edge.

One simple edge rating metric could be to just use the edge weight, but this rating does
not encode any information about topological properties of the graph or some of the edge’s
neighbours and it is very likely that a graph coarsened in such a way would lead to a bad
partition. We will introduce more sophisticated ratings later, that try to overcome such issues,
that still can be computed in constant time.

Now one radical approach is to only contract one edge at a time, thus producing a hierarchy
of height n [23]. Another approach is to calculate an approximate maximum weight matching

10

Chapter 3. Related Work

of all edges based on these ratings and then contract each edge of the matching. This yields
a very fast reduction scheme, that reduces the size of the graphs geometrically. Throughout
this work we will assume that this second approach is used.

Initial partition phase

The repeated contraction is stopped once the coarsened graph contains only a few vertices,
yet enough to perform a meaningful initial partitioning. To generate the initial partition one
could try to calculate an exact solution, which according to [14] is only practical for graphs of
up to 60 vertices even after applying techniques such as branch and bound.

Another possible approach is recursive graph bisection, which yields an approximate partition
[13]. The idea here is, that one can build an algorithm to calculate a k-partition by recursively
calculating bipartitions of the graph. Now to calculate a bipartition, first two pseudo peripheral
vertices are found, i.e., two vertices that have approximately the greatest distance to each other.
This can be done by starting a breadth first search at one random vertex vg. Then a vertex
01 1s selected with maximal distance to z. Now a second breadth first search is started at v
and a vertex vo with maximal distance to vy is selected. This process can be repeated until
the distance between v; and v; 11 stops increasing. Each vertex is then assigned to that pseudo
peripheral vertex it is closer to. This algorithm is used in many graph partitioners such as
Metis. It should be noted that this process only performs well if the coarsest graph is balanced,
since a vertex with too high weight might make it impossible to fulfill the balancing constraint.

Refinement phase

In order to reduce the cut while maintaining the balancing constraint of each matching being
uncontracted different techniques can be applied.

One of the earliest local improvement methods has been proposed by Kernighan and Lin [17].
Here we will now briefly describe one partition refinement algorithm due to Fiduccia and
Mattheyses [9], that is based on the KL-algorithm and has received a great deal of attention
due to its efficiency. Roughly speaking, the FM-algorithm moves a single vertex along the
current cut to reduce some gain metric, associated with it. A possible gain metric can be
derived from the internal and external degree.

g(U) = dextern(v) - dintern(v)

More precisely, let P be a bisection of the graph. Now the FM algorithm alternatively selects
an unmarked vertex with maximum gain and moves it to the other block until no unmarked
vertex remains. As the algorithm allows an increase in the current cut it needs to keep track
of the best partition found. If an improved partition could be found it is applied to the graph
and this method is repeated until no further improvement can be generated. This algorithm
can also be generalized to handle a k-partition.

11

Chapter 3. Related Work

3.2. Approximate Maximum Weight Matching
Algorithms

In the following sections different approximative algorithms for the maximum weight matching
problem with near linear runtime are given. A simple approach could be to just add the heaviest
possible edge to the matching in a greedy manner and basically such an idea is the origin of
all algorithms presented in this section. We present pseudocode and a short description of the
basic ideas, runtime and quality guarantees. However for a full analysis of these algorithms
the reader is referred to the individual papers.

3.2.1. Heavy Edge Matching

Heavy Edge Matching (HEM) has originally been proposed by Karypis and Kumar [16] and
yields a running time of O(m). We present pseudocode in Algorithm 3.

Algorithm 3 HEM
M+ 0
S0
for all v € V in random order do
if v ¢ S then
for all w € N(v) do
if uw ¢ S then
M «— M U {e}
S+ SuU{u,v}
end if
end for
end if
end for
return M

Karypis and Kumar [16] also present a variant of HEM called Sorted Heavy Edge Matching
(SHEM), where the vertices are visited in ascending order of their degrees with random tie-
breaking. Unfortunately no approximation factor can be given since Karypis and Kumar give
a counterexample to any approximation factor. In practice however, HEM and SHEM find
good matchings.

3.2.2. Global Paths Algorithm

The Global Paths Algorithm (GPA) [21] listed as Algorithm 4 generates a maximal weight set
of circles and paths and then calculates an optimal maximum weight matching on all of them.
An edge is called applicable and inserted into the set if it connects two endpoints of different
paths or if it closes an odd length cycle. An edge is not applicable if it closes an even length
cycle, or if it incidents to the inside of a path. Now for each path and cycle a maximum weight
matching is calculated.

12

Chapter 3. Related Work

Algorithm 4 GPA
M«
E + 0
for all e € E in descending order of weight do
if e is applicable then
E' + E' U{e}
end if
end for
for all path or cycle P in E’' do
M’ + MaxW eight M atching(P)

M« MUJIM
end for
return M
U1 U3 Us Un—2 Un,
c c c c
V2 Uy Vg Un—1

Figure 3.2.: Example graph on which GPA only produces a 2-optimal solution

GPA has a running time of O(sort(m)-+m), which is O(mlogn) in general and an approxima-
tion ratio of % The example in Figure 3.2 shows this bound is tight. For a detailed analysis
see [21].

3.3. Additional Parameters of Graphs

In order to construct edge ratings we need a set of parameters an edge and its vertices can be
associated with. The first and foremost important parameter for the construction of an edge
rating is the edge weight. Other obvious parameters like vertex weights or degrees can also
be incorporated and need no further explanation. Measuring the graph’s density, distance or
connectivity between nodes is a more complicated task, so we will now turn to two possible
definitions that can be used to express this notion.

3.3.1. Degeneracy and Coreness

The k-core of graph G is a maximal subgraph in which each vertex has at least degree k. The
coreness of a vertex is k if it belongs to the k-core but not to the (k + 1)-core. Sometimes the
maximal coreness of a graphs vertices is called its degeneracy. The following two statements
directly follow from the definition of coreness:

13

Chapter 3. Related Work

e §(G) < coreness, < d(v)
e 5o if d(v) = §(G) then coreness, = §(G)

With this in mind we can formulate an algorithm for calculating the coreness of a graphs
vertices, given as Algorithm 5, which has been described in [2]. The algorithm uses a priority
queue that initially holds every vertex with its degree in G '. It subsequently removes vertices
from the priority queue and decreases all their neighbours until the queue is empty.

Algorithm 5 Coreness
pq < 0 : PriorityQueue or BucketQueue
for allv e V do
pq.insert (v, d(v))
end for
k=dq
while pqg # () do
(v,d) + pg.deleteMin(pq)
k = max(k,d)
core(v) =k
for all v € N, do
pq.decrease(u)
end for
end while

Correctness: First we observe that G is a valid §(G) — core and each vertex v with d(v) =
d(G) has coreness §(G) since it cannot contribute to any (dg + k) — core, k > 0. Now we
remove one minimal degree vertex v from G. While all its neighbours decrease in degree we
know for any vertex with degree smaller than that of v that these still have coreness d(v). We
repeat this process until no vertices remain with degree d(v) < dg or no vertices remain at all.
Thus we are either done or we have constructed a correct (§(G) + k) — core and repeat the
process of removing vertices and assigning this new coreness of §(G) + k to them.

Runtime: Every vertex is added to the queue and removed from it only once. And as each
neighbour of these vertices is processed at most twice (once to grow M and once to decrease or
delete them) at most 2m decrease operations take place. Since the vertices are inserted in the
queue by their degree and are only decreased, a bucket queue with Ag buckets can be applied.
This yields an overall runtime of O(n + m).

3.3.2. Algebraic Distance

Another way to express the density is to measure the distance between vertices. A very
interesting distance measure is the Algebraic Distance proposed by [4]. Though we surely

Tt should be noted that a Bucket Queue must be used in order to achieve linear runtime.

14

Chapter 3. Related Work

cannot go into the full theoretical details of the process of calculating the Algebraic Distance
we will nonetheless describe the basic concepts behind this metric and give the according
algorithm. The graph Laplacian matrix L is defined as

D—-W,

where D is the diagonal matrix with diagonal entries Dy = > .cn(,)w(e) and W is the
weighted adjacency matrix with entries W, ,, = w({u,v}). Here for e ¢ E the weight w(e) =0
is assumed. The algorithm to calculate the algebraic distances of the graph’s edges given as
algorithm 6 is basically the JOR (Jacobi Overrelaxation) method of solving the linear system

Lz =0.

An analogy to this approach is to assign a random amount of liquid to each vertex and distribute
it in each iteration through the graph according to the edge weights. The intuition is that
neighbouring vertices that are close to each other, will happen to have similar potentials.

The iterated version of solving the linear system given above can be written as

2D — ok

where H is the iteration matrix.

Now as the Laplacian can be decomposed into L = D — W, — Wy where Wi, and Wy are strict
lower and upper triangular matrices, the iteration matrix of the Jacobi method is Hjsc =
DY (W, + Wy). If a relaxation parameter 6 is introduced, this becomes

Hjor = (D/6)"Y(1/6 — 1)D + Wy + Wy).

For the analysis of the convergence of the JOR method the normalized Laplacian £ is used

which can be expressed as
D—1/2LD—1/2

Then the JOR method converges for any 6 € (0,2/p(L)), where p(-) is the spectral radius of a
matrix. As discussed in [4], in practice a fixed 6 with value 1/2 is a good choice and it suffices
to only calculate the first three iterations.

Algorithm 6 Algebraic Distance
0 €(0,2/p(L)) : Parameter
z© € R™ : Initial random vector
for all k=1,2,... do
for allu eV do
ﬂtk) = ZveN(u) w({u, U})‘%l(’k_l)/ ZveN(u) w({u, v})
end for
z® (1 =)x*=D + 9z*)
end for

Then the algebraic distance of an edge is given by s,(ik) = |:c1(ﬁ) — mq(ﬁ)\ With R initial random

15

Chapter 3. Related Work

vectors (07 r =1,..., R the extended p-normed algebraic distance is given by

R 1/p

and for p = oo this yields

16

Chapter 4.

Approximate Maximum Weight
Matchings

As mentioned above, in the process of coarsening a graph there exist basically two possible
ways to select edges for contraction. Contracting exactly one edge at a time yields n levels of
coarser graphs, and if one tries to keep the height of the graph hierarchy low, a natural way
is to contract a matching of edges. The latter approach allows to save each graph directly,
as each level of contraction yields a much smaller graph. In this section we will first give an
algorithm that solves this problem on a forest optimally and then introduce an approximate
maximum weight matching algorithm based on this algorithm.

4.1. Optimal Maximum Matching on Forests

Here we give an algorithm that solves the maximum weight matching problem on trees in
linear time by dynamic programming. Pseudocode is given in Algorithm 7. By executing the
algorithm on each connected component of the graph, a maximum matching of a forest can be
calculated.

The dynamic program can be formulated with two functions, that give for each root v of a
subtree of the tree the optimal solution L(-) and the optimal solution I(-) in case v is already
matched with its parent and thus cannot contribute in a matching with one of its children.

()= Y L

c€children(v]

L(v) = argmax > (L(¢) + w({v, c}) +1(c))

c€children(v) ¢’ €children(v],c’#c

Here children[v] gives the set of children of the vertex v. So for a given forest F' = (11, ...,T¢)
in order to give the weight of the maximum weight matching, we have to sum the value of L(-)
of each tree’s root.

Before we examine Algorithm 7 more closely, we give a small example of a matching on a tree
in Figure 4.1 and show how one would calculate the individual sub-solutions. Here the first
number in each vertex corresponds to L(v) and the second number to [(v). First we notice that
for each leaf [(v) = L(v) = 0 as the subtree rooted at a leaf has no edges. For each non-leaf

17

Chapter 4. Approximate Maximum Weight Matchings

10/8
2
3
4]0 3|1 1/0
4 2
1
AR
00 00 10 00 0]0
1
1
0]0 0[0

Figure 4.1.: A simple example of the maximum weight matching calculation on a small
tree. Matched edges are bold red.

vertex, [(v) is simply the sum of all L(-) values of its children. For example the I(-) of the root
is I(root) = 4+ 3+ 1 = 8. To calculate L(v) we evaluate I(v) + w({v,c}) — L(c) + l(c) for
each child ¢ and take the maximum. This term basically adds the gain of a contribution in a
matching with child ¢ to the solution I(-).

Now in Algorithm 7, the first loop calculates the two solutions for each vertex and the second
establishes the final matching. For the first part of the algorithm the invariant holds that for
each node looked at, both solutions of each child have already been calculated. Therefore the
child can be found easily, that gives the optimal solution of the current subtree, in the way
mentioned above by looking at each child once. By adding the matching solution L(v) of v to
the unmatching solution [(p) of its parent p, we can establish the correct unmatching solution
of the parent before processing it. This way [(v) is already calculated when visiting v and only
L(v) must be calculated.

The second part of the algorithm is very straightforward. In a top-down fashion, we look at
each node once more. Since the invariant holds that for each vertex v the matched solution
L(v) is already the optimal solution of the subtree rooted at v, we can greedily evaluate the
matching. Here a vertex is called blocked if it has already contributed in a matching wit its
parent and can therefore be ignored.

As for each vertex all its neighbours are visited once, each edge is visited at most twice. Since
for a tree m = n — 1, the algorithm yields a runtime of O(n + m) = O(n).

4.2. Maximum Spanning Tree Matching

Instead of repeatedly growing paths as in the GPA algorithm, the Maximum Spanning Tree
Matching algorithm (MSTM) calculates a maximum weight spanning tree of the graph and
generates an optimal matching My on this tree, with Algorithm 7. The generated matching

18

Chapter 4. Approximate Maximum Weight Matchings

Algorithm 7 Maximum weight matching on a tree

for all v € T in reverse bfs order do
p = parent|v]
matchedSolution[v] - maximum weight of a matching with a child ¢ of v
save ¢ as a partner of v
unmatchedSolution[p] <— unmatchedSolution[p]+ matchedSolution|v]
end for
for all v € T in bfs order do
if v is not blocked then
match v with previously calculated partner
block partner of v
end if
end for

Algorithm 8 MSTM

M« 0
MO < @
repeat
MST <« Calculate MazximumSpanningTree(Q)
My < MaxWeight M atching(MST)
G+ G- My
M «+ M U M,
until [My| =0o0or G=10
return M

19

Chapter 4. Approximate Maximum Weight Matchings

is then added to the final matching and the method is repeated on G’ = G — My until no
unmatched vertices remain or no edge could be matched in this iteration.

Approximation Ratio. In its simple non-iterative form this algorithm may perform very
bad and as a simple counterexample to any approximation rate the wheel illustrated in Figure
4.2 can be given. Choosing the edge weights of the star inside the wheel to be higher than
those of the cycle around it, we can enforce the maximum spanning tree to be only the star,
which leads to only one edge being matched. If we consider the graph G — M induced by
the still unmatched vertices of this wheel, only a path remains on which another run of the
maximum spanning tree algorithm returns the optimal solution. This gives the idea of iterating
the algorithm and applying it to the remaining graph until either no vertices remain or the
size of the matching stops increasing.

Still the approximation ratio of this algorithm is unknown, but even the worst example known
yet illustrated in 4.3 yields a %-approximation ratio. MSTM could end up with the matching
illustrated since only the heavy edges are taken into account. Then if ¢ denotes the number
of stars without the outer star, MSTM’s solution has weight |Mpstm| = (2 + 1)(1 + €) and
an optimal solution is |Mep| = i(1 4+ €) + % for € > 0 being small and i > 3, and for the

approximation ratio p we get

’Mmstm|_(l+1)(6+€)_l+1 c+e _gz—|—1 c+e
| Mopi| i(c+e€) +cl i ctet§ 3 i c+2e

which yields for large ¢ and ¢ an approximation factor of p = %

It should be noted that this example only gives an upper bound for the approximation ratio
of MSTM.

Runtime. The running time of one iteration is dominated by the time needed to calculate the
spanning tree since an optimal matching of the tree can be calculated in linear time. Though
in practical application the algorithm normally breaks after around three iterations it may
take dramatically more iterations especially on dense graphs. We can find an upper bound of
the iteration number as the maximal degree of the graph.

Lemma 1: MSTM breaks after less than A iterations.

Proof. We will show that in each iteration the maximum degree of the remaining graph induced
by the still unmatched vertices decreases by at least one. Then the lemma follows by induction,
since a graph of maximum degree zero cannot increase the matching any more and therefore
the algorithm breaks at that point.

Consider an unmatched vertex v € V with degree A(G) and G = G — M the subgraph induced
by the unmatched vertices. By definition such a vertex is in ¥V’ but all his neighbours on the
spanning tree contribute to the matching and are therefore not in V. If one neighbour on the
spanning tree existed that would not be adjacent to a matched edge already, it could contribute
in a matching with v, which contradicts the optimality of M on the spanning tree. As each v
has at least one neighbour on the tree, the maximum degree is A(G') < d(v) — 1 = A(G) — 1.
If no such vertex v exists, clearly G’ does not contain any vertex with degree A(G).

20

Chapter 4. Approximate Maximum Weight Matchings

/_Ul\ C

V12 %

e N i

V11 U3

[\

V10 C2 V4

\)

%) Us

Figure 4.2.: Counterexample for any approximation ratio of the non-iterative MSTM.
The thick lines are the maximum spanning tree. This tree’s optimal match-
ing, drawn red, contains only one edges with weight ¢+ ¢, while the optimal
matching of this graph contains c[%| edges with weight ¢ + [Z]|. In the
second iteration of MSTM on this graph (lower figure), only the v;vs-path

remains, so MSTM would find the optimal solution in the second iteration.

21

Chapter 4. Approximate Maximum Weight Matchings

(] U2 U3 (] Vit1 -
C1 Co C;
c+e
¢ Uy U3 o T
Co
(1 Vo V3 V; Vi+1
C1 C2 C;
¢ U2 U3 v; (S
Co

Figure 4.3.: A graph on which MSTM yields only a %—approximation rate. The upper
graph shows a matching MSTM finds. No second iteration can be executed
since after the removal of the matched edges no edges remain. The lower
graph shows the optimal matching, if 7 is chosen to be sufficiently big enough
and € small enough.

22

Chapter 4. Approximate Maximum Weight Matchings

V1 V3 ———— U5 U7
2 \ 4
2 Vo
1 1 3 1
2 3
V9 Uy Ve Ug V10 V12

Figure 4.4.: The Graphs G| for i € {1,2,3}. The maximum spanning tree for each graph
is drawn thicker, its maximum weight matching is drawn red. In each step
only one edge is being matched.

O]

To show that this bound is tight, a family of graphs (see Figure 4.4) with such a high iteration
number ¢ can be constructed like this:

e For i =1 G is just two vertices connected with each other with weight one.

e For i > 2 G; is G;_1 together with two additional vertices connected with each other
with weight 2¢ — 1 and one of them is connected with all vertices of G;_1 with weight
2i — 2

Such a Graph G; has n = 2¢ vertices, m = (%)2 = i? edges and A = n, so the number of
iterations ¢ € ©(n). In each step only one edge is being matched and if ¢ > 1 the resulting

subgraph is G} = G;_1.!

If Kruskal is used to calculate the spanning tree the edges must be sorted only once so Kruskal
yields a running time of O(sort(m) + Am) which becomes a linear runtime for integer edge
weights and O(mlogn + Am) for comparison based sorting. With Jarnik-Prim the algorithm
is then bounded by O(A(nlogn + m)). If the maximum degree is assumed neglectable, the
runtime of MSTM is dominated by the spanning tree calculation and the choice of the appro-
priate spanning tree algorithm is dependent on the density of the graph. As interesting graphs
for graph partitioning are mostly very dense, we opted for the Jarnik-Prim algorithm.

Obviously the behaviour of MSTM is very dependent on the structure of the maximum span-
ning tree as it is more likely to get better matchings on trees with smaller average degree. We
will now introduce a simple tweak to the Jarnik-Prim algorithm that influences the height of
the spanning tree produced. Jarnik-Prim scans all edges in a BFS-like manner and only adds
an edge to the spanning tree if it improves the current weight of the tree. If the > sign inside
the relaxation loop is replaced by a > sign, the resulting spanning tree changes as in Figure
4.5. The left graph shows the result of the standard Jarnik-Prim algorithm: First all edges of
the central vertex are added to the spanning and as they already form a maximum spanning

Note that the average degree d(G) = 277” does not give an upper bound to the iteration number,
since d(G) can be pushed down to nearly two by adding a path with arbitrary length to one of G;’s
vertices.

23

Chapter 4. Approximate Maximum Weight Matchings

/ N\
N /

() Ve

U1

U7

N, A
ZN

V. Ug

Figure 4.5.: The left graph shows the spanning tree calculated by JP. the right graph
shows the result of JP<

tree no further edges are appended. This yields a BFS-tree on which only one edge can be
matched. With the modified relaxation however, the algorithm starts exactly the same. Now
as each edge satisfies the condition from the relaxation loop, edges that are not part of the
BFS-tree and therefore scanned later, participate in the spanning tree. It should be noted that
while This change results in a DFS-tree on which more edges can be matched. As we will show
in the experimental section 6.3.2 this also leads to higher spanning trees on real world graphs
and therefore reduces the number of iterations needed significantly.

24

Chapter 5.

Edge Ratings

In order to design good edge ratings, we first have to discuss the parameters we will use to
express how preferable an edge is for contraction. This section is organized as follows. First
we discuss some criteria that have shown to be of use for construction of good edge ratings.
Then we discuss several edge rating functions and how they implement these criteria.

5.1. Edge Rating Criteria

The first two criteria we introduce are almost necessary for a good edge rating and are imple-
mented in nearly all of our edge rating functions.

Criterion 1: Since it is unlikely that an edge with (locally) very high weight will be con-
tributing to a small cut we would like to prefer edges with (locally) high weight w(e) for
contraction.

Criterion 2: It may be desirable to coarse the graph in a balanced fashion, or in other words
to avoid edges between nodes u, v with already high weight c(u), c¢(v).

Ideally each node in the coarsest graph represents a very dense part of the original graph. Yet
the tactic to achieve such a clustering of the graph depends heavily on the nature of the graph
itself and the metric used to measure density. Therefore we have two seemingly contradicting
criteria considering density of the graph.

Criterion 3: Tt is preferable to contract edges that lie in very the graph’s dense parts.

Criterion 4: 1t is preferable to contract edges that lie in tree-like structures that are only
connected to a single dense part of the graph.

These two criteria demand for global information about the structure of the graph. However,
as we only employ local information to build edge ratings, criterion three leads to edge ratings
contracting edges with low algebraic distance or high coreness of its vertices, yet we could also
argue that criterion four leads to the exact opposite. It seems however, that it is easier to
express criterion three with the algebraic distance and criterion four with coreness values.

25

Chapter 5. Edge Ratings

Criterion 5: Combine ratings in a tuple in decreasing order of the probability that they
assume the same value.

This last criterion is a rather technical one: as we use a component-wise comparison of the such
tuples a high variance in the first component could mean that all the remaining components
are never taken into account.

5.2. Basic Edge Ratings

Weight

Using the edge weight as a rating function is a natural way to implement the first criterion.
Discussing experimental results we will often use this edge rating as a benchmark, looking
at the relative improvement of some parameter over this function. While this rating seems
crude, basically all of our ratings are based on it, in the sense that each rating consists of the
edge rating divided by or multiplied by some value. This rating function has originally been
introduced by [11] and [16].

InnerQuter

The intuition behind this rating function, originally proposed by [19], is that the number of
edges inside a cluster should be higher than the edges going out of the cluster.

w(e)
I(u) 4+ T'(v) —w(e)

inner_outer(e) =

where I'(u) =) ¢ E(u) w(e). On the background of our criteria however, this rating function
implements an edge’s local heaviness of criterion one.

This rating function can be slightly modified. Here the edge weight is divided by the sum of
all the edge weights in the neighbourhood of the edge’s vertices.

w(e)

LocalWeight(e) = T(a) + T (o)

This represents the idea behind criterion one more directly. As an edge lying in a very dense
part of the graph is likely to connect vertices with high degree and similarly high I" value, these
ratings implement criterion four. Though both ratings are not the strongest in our collection
they can be combined with other ratings to form multicriterial edge ratings (tuple edge ratings)
and perform much better than the edge weight alone.

Expansion family

Ratings of the expansion family are inspired by the edge ezpansion or cheeger number h(G) of

a graph G.
h(G) = min 19(S)]
o<|s|<z |5

26

Chapter 5. Edge Ratings

where 0(S) is the edge boundary of S. To rate an edge based on this formula one could end
up with the rating function FxpansionClassic.

w(e)
min{c(u), c(v)}

This rating function has originally been proposed in [19], where it is credited to P. Sanders.
While this function indeed avoids edges between heavy vertices it still allows contraction of an
edge connecting a light vertex with a very heavy vertex. By altering Expansion Classic one
would end up - after some experimental evaluation - with the following ratings:

ExpansionClassic(e = {u,v}) =

w(e)?
Expansion®(e = {u,v}) = C(u()c)(v)
. *2 — L€)2
Expansion™(e) = c(u)e(v)

Expansion*? is the standard rating function of KaFFPa [25], since it yields very good results
on a broad set of graphs while being very easy to compute. The next two expansion variants
have been optimized to perform very good on social networks. The first incorporates the
concept of local heaviness into Expansion*? this function yields another rating:

Local Expansion*?(e) =

with
w(e)
[(u)+T(v)

W, 1=

The second function is based on a reinterpretation of the expansion functions. The min(-)
function in ExpansionClassic can be interpreted as the generalized mean

1
Mp(xh .. 'amn) = (ﬁ Zl’f)l/p
=1

with exponent p = —oo. Based on this idea, one could understand many of the rating functions
of the expansion-family as the edge weight divided by such a mean over the node weights.
Expansion*? for example can be rewritten as (w(e)/Mo(cy, cy))? as for p — 0 the generalized
mean converges towards the geometric mean. This lead us to another Expansion function:

w(e) B 1 1

HarmonicExpansion = 2m = W(e)(m + @)

with M_; being the harmonic mean. Surprisingly this function is one of the best functions for
social networks currently known to us.

All Exzpansion ratings implement criterion one and two in a very direct way and only differ in
how strongly we emphasize the criteria.

27

Chapter 5. Edge Ratings

Punch

Another rating proposed by [5] is quite similar to HarmonicExzpansion but with a different
emphasis on the parameters involved.

Punch(e) = r|i(+)

where r|{ is a random value between a and b. This rating function has been specifically
designed for street networks and similar to the Fxpansion ratings, it implements criterion one
and two.

5.3. Density Metric Based Edge Ratings

We obviously need to minimize the algebraic distance as the intuition behind this metric is
that a low algebraic distance means that the two vertices are close to each other. Such vertices
could also be interpreted as lying in dense parts of the graph, so contracting an edge with low
algebraic distance can be motivated by criterion three.

' B w(e)?
AlgebraicEXP(e) = c(u)c(v)adist(e)
AlgebraicHEX P(e) = a(:ijs(‘f()e) (c(lu) * c(lv))

These rating function are basically Expansion*? and HarmonicExpansion that additionally
prefers vertices with low algebraic distance. As the coreness of a vertex describes how deep it
lies inside of the graph, we can use it to describe a rating function implementing criterion four.

w(e)?

coreness(u)coreness(v)

LowCore(e) =

This rating function is designed for social networks, as here sparse parts of the graph are often
solemnly connected to a single dense part and therefore can be safely contracted and an edge
rating can benefit from implementing criterion four.

Another possible explanation for this rating can be given using the number of common neigh-
bours of the edge’s vertices. Consider an edge deep inside the graph (e.g. in a very dense part
of the graph), then it is typical that the vertices of the edge share many common neighbours,
thus contraction of such an edge will increase edge weights in the coarser graph. So LowCore
also gives a heuristic for avoiding high edge weights. We can also define a rating based on the
number of common neighbours:

w(e)*(IN(u) VN (v)| +1)
c(u)c(v)

In addition to LowCore, the coreness of a vertex can also be used in to build rating functions
implementing criterion three. By multiplying the term HC = max(coreness(u), coreness(v))

ExpansionCommon(e) =

28

Chapter 5. Edge Ratings

to a rating functions of the Fxpansion-family. Furthermore, another idea that can be imple-
mented using the coreness of vertices is to avoid the contraction of edges connecting vertices
that lie in different k-cores. Again this can be achieved by multiplying another rating function
with DC' = 1/(1+ |coreness(u) — coreness(v)|). The intuition is that such edges connect dense
with sparse parts of the graph and are therefore important for the structure of the graph.
In this work we only combine Expansion*? and HarmonicExpansion with DC and HC' as
these two are the most promising candidates. From now on we abbreviate these function as
ExpansionHC or HarmonicDC'

5.4. Multicriteria Edge Ratings

All ratings from the Expansion-family have a very small variance in the first few levels of
contraction, since at the first level all edges and vertices have a weight of one. So it might
be interesting to define another rating function to fall back to, if two edges, that are to be
compared, are rated equally. Or more generally we could use the ratings presented so far and
combine them in a tuple. Now as we allow edge rating functions to be mapping to tuples, we
have to decide how to compare these tuples with each other. We decided to use a component-
wise comparison operator, such that we maximize for each entry of the tuple in order of its
index.

As a simple example, criteria one and two can be implemented as this tuple-version of Expansion

ExpansionTuple(e) = < 1/ mi“:((:)’c(”)))

One could read EzpansionTuple as: contract edges s.t. first min(c(u),c(v)) is minimized
and then w(e) is maximized. Incorporating the vertex degrees instead of vertex weights could
similarly lead to the following rating:

WaLD(e) = (1 /minaii((eg),d(v))) '

All other multicriteria rating functions are a combination of the basic rating functions discussed
above. The first two combine inner_outer with Expansion-ratings. inner_outer has been
chosen to compensate for the lack of variance of Expansion mentioned above.

. *2
EXPzIO = < Ewpansion)
inner_outer

HEXPxIO = (HarmonicExpansion >

inner_outer

Another possible set of rating functions is based on a similar idea. Here however, we minimize
the edge degree instead of using inner_outer, which can also be seen as a simple implementation
of criterion three.

- %2
EXPxLD — (Expansion >

1/ min(d(u),d(v))

29

Chapter 5. Edge Ratings

HEXPxLD = <

HarmonicExpansion >

1/ min(d(u),d(v))

The last multicriteria edge rating combines two density-based metrics. It yields good results
on social networks. Note that ratings, based on the algebraic distance should always be in the
last component as it is very unlikely that two edges correspond to the same algebraic distance.

LOA — < LowCore)

AlgebraicExpansion

30

Chapter 6.
Experimental Evaluation

6.1. KaFFPa

The main practical objective of this work is to improve the edge rating and matching subsys-
tems of KaFFPa (Karlsruhe Fast Flow Partitioner) algorithm described in [25]. In this section
we will give a compact overview of the main configuration settings of KaFFPa.

KaFFPa Strong

The aim of this configuration is to achieve the best known partitions for many standard bench-
marks and as many graphs as possible. It uses GPA as a matching algorithm and Expansion*?
as edge rating in the coarsening phase. As the refinement phase becomes very computational
intense with this setting, we will try to achieve speed-ups by delivering a better coarsening
scheme while not decreasing the quality of the produced partitions.

KaFFPa Eco

The aim of this configuration is to provide a graph partitioner that is as fast as other graph
partitioners like Scotch, yet able to compute partitions of higher quality. It uses a random
matching on the first levels of coarsening and applies GPA once the coarser graphs are small
enough. Just like the strong setting the eco setting uses Expansion*? as standard rating.

6.2. Experiment Description

6.2.1. General Methodology

We are interested in both the quality of the partitions produced by KaFFPa Strong and Eco
and the quality of the coarsening itself. In these tests we exchange the standard matching
algorithms and edge rating used in the different settings of KaFFPa by the ones discussed in
this work. For each setting that arises, we repeat the evaluation with 10 different initial seeds
of the random number generator and for social networks we use 20 repetitions. We report the
arithmetic average of the computed cut size, running time and best cut found. When further

31

Chapter 6. Experimental Evaluation

averaging over multiple instances, we use the geometric mean in order to give every instance
the same influence on the final score.

6.2.2. Matching Tests

Possible quality measures for a matching M can both be the percentage of edges (or nodes)
matched 100|M|/m or the percentage of weight matched 100} .,, w(e)/ > . cpw(e). Since a
matching is being calculated on each level of coarsening we also give the geometric mean of
these values over all levels. Furthermore we report the overall number of levels generated in
the coarsening phase.

6.2.3. MSTM Analysis

In order to get a deeper understanding of the MSTM algorithm we investigate besides the
quality of the matchings produced, the number of iterations and its runtime. Also we are
interested of the influence of the structure of the generated spanning tree on these metrics. We
report the average height, number of leafs and the average degree of the generated spanning
trees.

6.2.4. Environment

All experiments have been done on our InstitutsCluster (IC1), which is a massive hybrid
parallel machine consisting of 206 nodes. One single node has a theoretical peak performance
of 85.5 GFLOPS, so that the whole system yields a performance of 17.57 TFLOPS. Each node
is running Suse Linux Enterprise (SLES) 11 SP 1 and is equipped with two Quad-Core Intel
Xeon X5355 processors with a clock speed of 2.667 GHz and 4 x 250 GB harddrives. The 200
calculation nodes have 16 GB RAM and the six login nodes have 32 GB RAM. Each Quad-
Core processor has 2 x 4 MB L2 Cache, runs the system bus with 1333 MHz and the front side
bus (FSB) with 1066 MHz. All nodes are connected by a InfiniBand 4X DDR Interconnect
with ConnectX Dual Port DDR HCAs with a total throughput rate of 288 x 40 Gb/s. The
InfiniBand is characterized by a very low latency of below 2 microseconds and is ideal for
heavily parallel applications with many collective MPI communication. In the appendix we
give a schematic view of the IC1 in Figure A.1.

6.2.5. Test Sets

In this work we use the same test sets that has already been used to test KaFFPa itself [25].
Nonetheless we will present them here for completeness.

We have two kinds of random graphs: rggX are random geometric graphs with 2% vertices
that represent points in the unit square and edges connect nodes whose euclidean distance is
below 0.55y/Ilnn/n. This threshold ensures that the graph is almost connected. DelaunyX
are delaunay triangulations of 2% random points in the unit square. The graphs from Chris
Walshaw’s benchmark archive all arise from scientific computing and engineering [7]. Graphs

32

Chapter 6. Experimental Evaluation

bel, nld, deu and eur are undirected versions of the road networks of Belgium, the Netherlands,
Germany and Western Europe. afShell9 and afShell10 come from the University of Florida
Sparse Matrix Collection [27]. The social networks coAuthorsCiteseer, coPapersCiteseer and
citationCiteseer come from Cliteseer project of Pennsylvania State University [28], coPapers-
DBLP and coAuthorsDBLP come from DBLP project of University of Trier [18] and ¢nr2000
is a small web crawl of Italian CNR domain. Here vertices represent authors and edges some
kind of relation between authors e.g. if they have at least published one paper together.

For the number of partitions we choose the common values: 2, 4, 8, 16, 32, 64. We allow an
imbalance of 3%, which also is the default for Metis. These values have already been used
in [25, 7, 20] and [29]. Considering social networks we only evaluated the Strong setting of
KaFFPa for k = 2.

6.3. Matchings

6.3.1. Comparison of Matching Algorithms

We will first discuss the performance of the different matching algorithms on the middle sized
test set. In Table 6.3 the average and maximum values suggest that MSTM and GPA both
perform better than every other matching algorithm, while GPA performs slightly better. It
should be noted that the very high maximum values of RandomM ST M and RandomGP A only
arise directly after the randomly matched levels when for the first time the actual matching
algorithm gets applied. This can only be seen when looking at the average levels needed
in the coarsening phase and the initial cut. Since we are not directly interested in a good
general matching algorithm, but rather a good matching algorithm for use in a coarsening
phase, another very important quality measure is the initial cut produced directly after the
coarsening phase. Here too, we can clearly see that the best algorithms are MSTM and GPA,
again GPA is slightly better. We can also see that MSTM is significantly slower than GPA
(often near a factor of two). Matching results on the social networks test set are given in Table
6.4. Here we have a very similar situation as on the middle sized test set, though this time
MSTM yields slightly better results than GPA.

6.3.2. Detailed Evaluation of MSTM

In this section we will turn to a more in detail evaluation of the MSTM algorithm, especially
on how the structure of the produced spanning trees influence the runtime and the number of
iterations needed. In Table 6.5 the two variants of the Jarnik-Prim algorithm, we introduced
earlier are compared to each other. One can see that the influence on some parameters of the
spanning trees can become tremendous, especially the number of leafs decreases by nearly a
factor of five while the average degree drops to an amount one would expect of a DFS-tree. It
must be noted, that the two variants produce exactly the same results if the rating function
used has a very high variance, so that it is unlikely or even impossible that two edges have
the same weight. Surprisingly the average percentages of weight matched does not seem to be
affected too much and even decreases on the first level. Yet MSTM JP- uses up much more
iterations until it converges to similar or even better results than JP>. Despite these results

33

Chapter 6. Experimental Evaluation

graph \ n \ m \) \ A \ € \ max-core
Medium sized instances
Random graphs
Delaunay17 | 131 072 786 352 | 3| 17| 6.0 4
rggl? 131072 | 1457506 | 0| 28| 11.1 14
Delaunayl8 | 262 144 | 1572792 | 3| 21| 6.0 4
rggl8 262144 | 3094566 | 0| 31118 16
Walshaw’s Benchmark Archive
besstk29 13 992 605496 | 4| 70 | 43.3 29
delt 15 606 91756 | 3| 10| 5.9 4
fesphere 16 386 98 304 | 4 6| 6.0 5
cti 16 840 96464 | 3 6| 5.7 4
memplus 17 758 108392 | 1 |573 | 6.1 96
csd 22 499 87716 | 2 41 39 3
fepwt 36 519 289588 | 0| 15| 79 5
besstk32 44609 | 1970092 | 1215 |44.2 69
febody 45 087 327468 | 0| 28| 7.3 6
t60k 60 005 178 880 | 2 31 3.0 2
wing 62 032 243 088 | 2 41 39 3
brack?2 62 631 733118 | 3| 32| 11.7 7
finan512 74 752 522240 | 2| 54| 7.0 6
ferotor 99 617 | 1324862 | 5| 125 13.3 8
Road Networks
bel 463 514 | 1183764 | 0 8| 2.6 3
nld 893041 | 2279080 | O 7| 26 3
University Florida Sparse Matrix Collection (Matrix Models)
afshell) | 504 855 | 17084 020 [19 | 39 | 33.8 | 24

Table 6.1.: Some characteristics of the medium sized test set. Values based on a directed
representation of the undirected graphs, so m and € for the undirected version
are only half the values given here

34

Chapter 6. Experimental Evaluation

graph ‘ n ‘ m ‘ A ‘ delta ‘ € ‘ max-core
Large sized instances

Random graphs

Delaunay20 1048 576 | 6291 372 | 3 23] 6.0 4
rgg20 1048 576 | 13 783 240 | O 36 | 13.1 17
Walshaw’s Benchmark Archive
fetooth 78 136 905182 | 3 39| 11.6 7
598a 110971 | 1483868 | 5 26 | 13.4 8
feocean 143 437 819186 | 1 6| 5.7 4
144 144 649 | 2148 786 | 4 26 | 14.9 9
wave 156 317 | 2118 662 | 3 44 | 13.6 8
ml4b 214 765 | 3358 036 | 4 40 | 15.6 9
auto 448 695 | 6629222 | 4 37 | 14.8 9
Road Networks
deu 4 378 446 | 10 967 174 | 0O 81 2.5 3
eur 18 029 721 | 44 435372 | O 12| 2.5 4
Social Networks
coAuthorsCiteseer 227320 | 1628268 | 1| 1372] 7.2 86
citationCiteseer 268495 | 2313294 | 1| 1318| 8.6 15
coAuthorsDBLP 299 067 | 1955352 | 1 336 | 6.5 114
cnr2000 325 557 | 5477938 | 1| 18236 | 16.8 83
coPapersCiteseer 434102 | 32073440 | 1| 1188 | 73.9 844
coPapersDBLP 540 486 | 30491 458 | 1| 3299 | 56.4 336
University Florida Sparse Matrix Collection (Matrix Models)
afshell10 | 1508065 | 51 164260 | 14 [34 | 34.0 | 19

Table 6.2.: Some characteristics of the large sized test set. Values based on a directed
representation of the undirected graphs

35

Chapter 6. Experimental Evaluation

GPA | HEM | MSTM | RandomGPA | RandomMSTM | SHEM

Expansion™ | levels | 9.95 | 10.05 9.34 10.33 10.39 9.33
avg 33.08 | 27.44 30.68 26.24 25.84 | 24.94

max | 52.57 | 56.00 43.59 55.46 55.51 | 26.90

time 0.52 | 0.10 0.98 0.02 0.04 0.11

init 907 | 1123 974 1204 1228 1114

Weight levels | 12.15 | 11.42 10.13 10.58 11.20 9.35
avg 25.85 | 26.23 23.79 22.48 23.47 | 17.80

max | 48.14 | 43.88 45.22 55.85 57.33 | 35.63

time 0.49 | 0.043 0.99 0.02 0.05 0.05

init 989 | 1235 991 1322 1222 1114

Table 6.3.: Matching test results for the middle sized test

set on KaFFPa with

Expansion*? and Weight. The first line gives the number of levels com-
puted in the coarsening phase, the second line gives the average percentage
of weight matched and the third line gives the maximal percentage. Time is
given as the overall time needed for the coarsening phase in seconds.

GPA | HEM | MSTM | RandomGPA | RandomMSTM | SHEM

Expansion* | levels | 12.56 | 10.75 12.77 9.08 9.23 9.16
avg 19.61 | 19.46 20.77 11.25 10.40 17.34

max | 50.96 | 44.88 51.49 35.09 35.22 41.83

time 9.17 1.32 13.38 0.48 0.56 1.24

init 89266 | 93953 95547 137464 137011 | 143527

Weight levels 8.35 6.30 9.80 7.01 8.77 9.16
avg 12.21 9.63 11.75 8.64 9.58 7.18

max 19.69 | 15.24 23.70 17.34 19.70 15.21

time 6.52 0.50 | 12.90are 0.30 0.51 0.62

init 95103 | 99916 95442 139165 139780 | 141337

Table 6.4.: Matching test results for the social networks set on KaFFPa with
Expansion* and weight.

36

Chapter 6. Experimental Evaluation

MST ALGO TP TP
Rating Weight | Local Exp** LCA | Weight | Local Exp*? LCA
leafs 7719.01 19036.36 | 24171.07 | 38776.02 31656.98 | 24171.07
height 11848.52 1700.50 564.26 | 9458.74 1455.99 564.26
max. deg 4.45 7.21 7.72 15.57 8.10 7.72
avg. deg 1.21 1.68 1.62 3.07 2.31 1.62
weight # 1 12.88 18.51 14.89 13.42 18.58 14.89
avg. weight 23.79 40.15 33.04 23.67 39.89 33.04
init. cut 991.10 953.16 921.63 989.40 964.04 921.69
iterations 1.95 3.93 3.08 4.21 4.75 3.08
time 1.01 1.15 1.08 1.15 1.18 1.09

Table 6.5.: Different quality metrics of MSTM and the spanning trees produced. In the
first block the spanning tree parameters are listed, namely the number of
leafs, the height of the trees, the average and the maximum degree. The
second block presents the percentage of matched weight on the first level
and averaged over all levels. Also the initial cut that is produced after the
initial partitioning is given. The last block gives the number of iterations
and runtime of MSTM in seconds

JP> only leads to 10 percent faster running times. It could be possible though, that other
constant factors we could not cancel out are responsible for these running times.

6.4. Edge Ratings

6.4.1. Middle sized test set

We first evaluate the impact of different edge ratings on the runtime and the final cut computed
by KaFFPa. If the Eco setting is used Expansion*? is a very strong rating function. Results
of the improvement over using the Weight as rating function are given in Table 6.6. In Table
6.7 the best three rating functions other than Expansion*? are given. Here we can only see
that no edge rating yields any significant improvement over Expansion*? and on the other
hand most of the ratings yield a similar improvement over Weight. Here the most significant
impact of the usage of MSTM as the matching algorithm is an increase of the runtime, while
the average cut increases and a slight improvement on the minimal cuts can be stated. Though
these results may seem disappointing they indicate that the standard Eco setting is already
very well tuned.

In Tables 6.8 and 6.8 cuts and speed-ups for the Strong setting of KaFFPa are given. The most
interesting result surely is the improvement of the average cuts for the Local Expansion and
AlgebraicExpansion rating functions. If we keep in mind that this setting is already designed
to produce the best cuts available, these results clearly state that these rating functions can

37

Chapter 6. Experimental Evaluation

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM
Partitions | avg Cut | min Cut speed-up | avg Cut | min Cut speed-up
2 6.0 3.7 1.030 5.3 4.0 0.876
4 10.1 5.0 1.033 9.5 5.1 0.907
8 6.1 2.9 1.042 5.5 3.0 0.915
16 6.3 5.5 1.051 5.9 54 0.890
32 3.7 3.3 1.025 3.4 3.1 0.887
64 0.7 0.7 0.997 0.5 0.3 0.880
overall 5.4 3.5 1.030 5.0 3.5 0.892

Table 6.6.: Expansion™ on middle sized graphs. Cuts are given as improvements over
the weight rating function, times are given as speed-up factors.

matching rating avg Cut | min Cut | speed-up
ExpHC -0.1 -0.1 0.946
RandomGPA HEXPzIO -0.1 0.1 0.978
Local Expansion -0.2 -0.1 0.99
inner_outer -0.1 0.2 0.877
RandomMSTM | EX PxIO -0.2 0.2 0.875
LCA -0.2 0.0 0.831

Table 6.7.: Top three ratings for the middle sized test suit, calculated by KaFFPa Eco.
Cuts given as improvements over Expansion*? rating function using Ran-
domGPA. Times are given as speedup factors

38

Chapter 6. Experimental Evaluation

KaFFPa Strong with GPA KaFFPa Strong with MSTM
Partitions | avg. Cut | min Cut | speed-up | avg. Cut | min Cut | speed-up
2 0.7 0.1 1.186 0.3 -0.1 1.379
4 1.8 0.5 1.197 1.9 0.3 1.391
8 2.4 1.8 1.206 2.4 2.0 1.370
16 2.3 1.9 1.154 2.1 1.6 1.310
32 1.1 0.5 1.182 0.5 0.4 1.352
64 0.1 -0.1 1.145 -0.2 -0.4 1.263
overall 1.4 0.8 1.178 1.2 0.6 1.343

Table 6.8.: Expansion*® on middle sized graphs

matching | rating avg Cut | min Cut | speed-up
Local Expansion 0.4 0.1 1.04
GPA AlgebraicExpansion 0.4 0.1 0.965
LCA 0.3 0.2 0.953
ExpansionCommon 0.2 0.0 1.051
MSTM AlgebraicExpansion 0.2 0.2 1.081
LCA 0.2 0.0 1.037

Table 6.9.: Top three ratings for the middle sized test suit, calculated by KaFFPa Strong.
Results are given as improvements over Expansion*? using GPA.

significantly improve the performance of KaFFPa. MSTM yields similar results, although the
improvement of the cuts is not as notable.

6.4.2. Social Networks

In this section we will discuss how the picture changes if we look at social networks. As listed in
Table 6.10 Expansion*? already performs much better than the weight rating function and if
MSTM is employed as the matching algorithm we obtain significantly better cuts. As presented
in Table 6.11 though, other rating functions yield even stronger improvements.

Here the multicreteria edge rating H EX Px LD produces 8 percent better cuts than Expansion*?

using GPA and with MSTM AlgebraicH EX P even produces 10 percent smaller cuts and 7

percent smaller minimal cuts than Expansion*?.

The most surprising result is the strong improvement of the partition quality and a slight
speed-up when MSTM is used as the matching algorithm. However, these results could not be
directly deduced from the matching tests, as both matching algorithms produced nearly the
same results.

This image changes radically if we consider the Strong setting of KaFFPa listed in Tables
6.12 and 6.13. Due to the very high runtime of KaFFPa Strong on social networks we only

39

Chapter 6. Experimental Evaluation

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM
Partitions | avg. Cut | min Cut | speed-up | avg. Cut | min Cut speed-up
2 5.8 11.6 0.932 5.9 7.3 0.938
4 6.0 4.8 1.013 13.6 14.3 1.037
8 4.1 1.0 1.059 9.0 5.8 1.053
16 3.7 7.8 0.955 9.4 12.7 0.888
32 11.5 8.8 0.832 6.9 10.7 1.046
64 8.2 13.7 0.973 20.5 154 0.777
overall 6.5 7.9 0.958 10.8 11.0 0.951

Table 6.10.: Expansion* on social networks. Cuts are given as improvements over the
weight rating function

matching rating avg Cut | min Cut | speed-up
HEXPxLD 8.4 5.2 0.843
RandomGPA AlgebraicHEX P 7.9 6.7 0.898
HarmonicExpansion 7.765 4.231 0.864
AlgebraicHEX P 10.2 7.4 0.914
RandomMSTM | LowCore 10.2 7.0 0.936
HEXPzIO 9.8 6.4 0.857

Table 6.11.: Top three ratings for the social networks, calculated by KaFFPa Eco. Cuts

given as relative improvements over the Fxpansion*? rating function using

RandomGPA.

40

Chapter 6. Experimental Evaluation

GPA MSTM
avg Cut | min Cut | speed-up | avg Cut | min Cut | speed-up
6.2 16.5 0.940 16.4 22.3 1.239

culated by KaFFPa Strong and k = 2.

Table 6.12.: The improvement of Expansion*? over weight for the social networks, cal-

matching | rating avg Cut | min Cut | speed-up
ExpHC 0.6 0.3 0.877
GPA HarmonicExpansion -2.2 -1.0 0.996
EXPxIO -4.7 1.3 1.015
Expansion*? 9.6 5.0 1.249
MSTM | Weight 2.4 1.3 1.585
WaxLD 2.0 -3.3 1.44

Table 6.13.: Top three ratings for the social networks, calculated by KaFFPa Strong and
k = 2. Cuts given as relative improvements over the Expansion*? rating
function using GPA.

evaluated the edge ratings for k = 2. One can see that Expansion*? yields strong improvements
over the Weight rating function, especially if MSTM is used as a matching algorithm. If one
considers the improvement of different rating functions over Expansion*? using GPA as a
matching algorithm only ExpHC yields improvements. On the other hand if MSTM is used
with Expansion*?, the results clearly outperform GPA in terms of cut size and runtime. Yet
none of the rating functions that performed well on social networks with the Eco setting
reproduced these results on the Strong setting. However, the major improvements of the Eco
setting only arise with higher k values (as listed in in Table B.7) and as we did not compute
results for the Strong setting on social networks for higher k values, we cannot clearly rule out
that none of the other rating functions could perform well.

6.4.3. Additional quality metrics

In Tables 6.14, 6.15 and 6.16 we list some additional quality metrics for the different experi-
ments even though we did not optimize any of the ratings towards a quality metric other than
the edge cut. Surprisingly nearly all results show that a low edge cut induces a low commu-
nication volume and few boundary nodes. However the multicriteria rating functions using
the Strong setting in Table 6.15 represent one notable exception as here the edge cut does not
reflect the results of the additional metrics.

41

Chapter 6. Experimental Evaluation

matching rating 0c | Omaz | cOmMMmeg | cOmMmunan
ExpHC 0.0 -0.2 -0.1 -0.4
RandomGPA HEXPzIO -0.1| -04 -0.2 -0.4
Local Expansion -0.2 | -0.1 -0.3 -0.2
inner_outer 0.1 -0.2 0.1 -0.2
RandomMSTM | ExzpansionCommon | 0.0 0.0 0.0 -0.3
LowCore -0.1 0.1 -0.2 -0.4

Table 6.14.: Top three ratings for the middle sized test suit, calculated by KaFFPa Eco.
Boundary nodes and communication volume given as improvements over
Expansion*? rating function using RandomGPA

matching | rating Oc | Omax | COMMeG | cOMmMupan
HEXPxLD | 0.3 0.4 0.2 0.7
GPA Lowcore 0.3 0.5 0.3 0.6
EXPxLD 0.1 0.5 0.0 0.7
EXPxLD 0.6 0.6 0.5 0.8
MSTM HEXPxLD | 0.6 0.9 0.5 1.1
WaxLD 0.5 1.0 0.4 1.4
Table 6.15.: Top three ratings for the middle sized test suit, calculated by KaFFPa
Strong.
matching rating Oc | Omaz | COMMG | cOmMMpan
HEXPxLD 3.5 4.6 5.7 7.7
RandomGPA ExpansionTuple | 1.7 | 7.3 1.7 9.2
HEXPxIO 3.3 4.4 5.3 6.5
HEXPxLD 4.4 6.7 6.8 11.5
RandomMSTM | HexpHC 3.9 7.8 6.0 12.6
HEXPxzIO 4.4 6.9 6.9 11.4

Table 6.16.: Top three ratings for social networks, calculated by KaFFPa Eco.

42

Chapter 7.

Conclusion

In this thesis we presented different approaches to improve the coarsening phase of multi-level
graph partitioners and evaluated the findings with KaFFPa. Namely we discussed new edge
ratings based on a few simple construction rules. We showed how to built such ratings using
only local information and well-known local density measures. We also showed how to arrange
basic edge ratings together as tuples.

Furthermore we presented the M ST M-algorithm, a new approximative algorithm for the max-
imum weight matching problem, and showed that together with our improved edge ratings, we
could achieve significant speed-ups for the strongest setting of the graph partitioner used and
considerable improvements in the partition quality of social networks.

43

Appendix A.

InstitutsCluster

Figure A.1.: InstitutsCluster at SCC of University of Karlsruhe
-

- -

|
Production Nodes

P
21 vViLe
Nodes
|

44

Appendix B.

Extra Tables

45

Appendix B. Extra Tables

Middle sized test set

inner_outer | ExpLocal | AlgHEXP | ExpCommon | ExpHC | HEX PxLD
avg. cut -1.6 -0.2 -0.4 -0.5 -0.1 -0.3
min. cut -1.5 -0.1 0.1 -0.3 -0.1 -0.2
time 0.973 0.99 0.897 0.918 0.946 0.981
avg. cut -0.1 -0.4 -0.6 -0.2 -0.3 -0.5
min. cut 0.2 0.0 -0.1 0.0 -0.2 0.0
time 0.877 0.888 0.834 0.84 0.834 0.9
avg. cut 0.3 0.4 0.3 -0.2 0.0 0.0
min. cut 0.1 0.1 0.1 0.0 -0.1 -0.1
time 1.076 1.04 0.996 1.025 0.982 1.1
avg. cut -0.4 -0.4 0.1 0.2 -0.3 -0.3
min. cut -0.4 -0.3 0.0 0.0 -0.1 -0.4
time 1.139 1.121 1.1 1.051 1.092 1.137

Social networks

inner_outer | ExpLocal | AlgHEXP | ExpCommon | ExpHC | HEX PxLD
avg. cut -2.1 6.9 7.9 -3.6 -0.3 8.4
min. cut -0.1 5.2 6.7 -0.6 0.2 5.2
time 1.07 0.887 0.898 1.011 0.985 0.843
avg. cut 3.9 8.7 10.2 2.6 4.3 9.6
min. cut 5.0 6.7 74 2.7 2.3 7.0
time 0.961 0.903 0.914 0.965 0.951 0.866
avg. cut -4.6 -4.6 -8.5 -10.9 0.6 -7.0
min. cut -13.6 -4.6 -16.0 -21.1 0.3 -11.9
time 1.452 1.338 0.487 1.258 0.877 0.813
avg. cut -9.2 -8.4 -6.2 -11.3 -0.6 -9.6
min. cut -19.6 -3.0 -13.7 -20.4 -0.9 -3.1
time 1.569 1.64 0.803 1.17 0.908 1.348
Table B.1.: A summary of the best rating functions presented. The upper table lists

improvements over Expansion*? on the middle sized testset and the lower
table on the social networks. The first two rows are calculated by KaFFPa
Eco and the last two rows by KaFFPa Strong.

46

Appendix B. Extra Tables

Middle sized test set

Ezpansion | Expansion® | Localweight | ExpDC | HexpDC' | Punch
avg. cut -0.7 -1.3 -1.1 -0.6 -0.7 -0.7
min. cut -0.4 0.0 -1.1 -0.7 -0.6 -0.1
time 1.003 1.004 0.978 0.938 0.944 | 0.913
avg. cut -0.5 -0.5 -0.3 -0.3 -0.3 -0.3
min. cut 0.0 -0.1 0.1 0.1 0.0 0.3
time 0.888 0.893 0.87 0.832 0.842 | 0.839
avg. cut 0.1 0.1 0.3 -0.2 -0.5 0.0
min. cut 0.0 0.1 0.1 -0.3 -0.4 0.0
time 1.095 1.063 1.07 0.922 0.96 | 0.937
avg. cut -0.3 -0.1 -0.4 -0.2 -0.4 0.0
min. cut -0.2 -0.2 -0.5 -0.3 -0.1 -0.1
time 1.22 1.18 1.143 1.04 1.018 1.071

Social networks

Expansion | Expansion® | Localweight | ExpDC' | HexpDC' | Punch
avg. cut 7.3 7.7 -1.9 -4.2 -7.5 -2.9
min. cut 4.6 4.7 0.0 -3.9 -6.1 0.5
time 0.873 0.866 1.063 0.983 0.936 1.002
avg. cut 9.7 9.3 4.3 -1.1 -3.4 5.0
min. cut 8.4 6.4 3.3 -0.8 -3.8 3.9
time 0.906 0.903 0.967 0.978 0.94 | 0.956
avg. cut -8.1 -5.6 -10.7 -11.0 -12.3 -2.2
min. cut -15.8 -17.3 -21.9 -18.3 -19.3 -1.0
time 0.546 0.844 1.444 1.06 0.956 | 0.996
avg. cut -5.3 -7.0 -7.9 -9.6 -15.1 -4.0
min. cut -7.1 4.3 -13.0 -5.8 -16.0 -0.9
time 1.496 1.777 1.526 1.18 1.15 | 0.918

Table B.2.: A summary of several rating functions, that did not yield results good enough
to be listed in one of the top three listings. The upper table lists improve-
ments over Expansion*? on the middle sized testset and the lower table on
the social networks. The first two rows are calculated by KaFFPa Eco and
the last two rows by KaFFPa Strong.

47

Appendix B. Extra Tables

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM

Partitions | avg. Cut ‘ min Cut ‘ speed-up | avg. Cut ‘ min Cut ‘ speed-up
ExpHC inner_outer
2 0.3 0.3 0.887 -0.4 -0.7 0.84
4 -0.1 -0.3 0.954 0.2 0.9 0.904
8 -0.5 0.0 0.944 -0.3 0.8 0.89
16 -0.2 0.0 0.973 -0.3 0.0 0.87
32 -0.2 -0.2 0.979 0.0 -0.2 0.872
64 -0.1 -0.3 0.942 0.1 0.1 0.898
overall -0.1 -0.1 0.946 -0.1 0.2 0.877
HEXPzIO EXPxIO
2 -0.3 0.1 0.952 -0.3 0.4 0.861
4 0.6 1.4 0.985 0.1 1.0 0.897
8 -0.3 -0.6 0.994 -0.5 0.3 0.889
16 -0.3 0.2 0.978 -0.3 -0.3 0.844
32 -0.4 -0.4 0.979 -0.1 -0.5 0.872
64 -0.1 -0.2 0.978 0.0 0.0 0.889
overall -0.1 0.1 0.978 -0.2 0.2 0.875
Local Expansion LCA

2 -0.5 0.0 0.979 -1.0 0.1 0.793
4 0.8 0.5 0.994 0.6 0.5 0.85
8 -0.9 -0.2 1.004 -0.8 -0.2 0.85
16 -0.4 -0.1 0.995 0.0 0.0 0.821
32 -0.1 -0.2 0.983 0.0 -0.1 0.817
64 -0.5 -0.7 0.986 -0.1 -0.1 0.858
overall -0.2 -0.1 0.99 -0.2 0.0 0.831

Table B.3.: Top three ratings for the middle sized test suit, calculated by KaFFPa Eco.
Cuts given as improvements over Expansion*? rating function, times are
given as speed-up factors.

48

Appendix B. Extra Tables

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM

Partitions | Jg ‘ Omaa ‘ commg ‘ COMMpazr | Oc ‘ Omaa ‘ commg ‘ COMMypan
ExpHC mner_outer
2 0.3 0.4 0.3 04| 0.7 1.0 0.7 1.0
4 04| -1.0 -0.4 09 0.1] -0.3 0.1 -0.4
8 0.2 0.3 0.0 -0.2 1-0.2| -2.1 -0.3 -2.4
16 0.1 -0.6 -0.1 -0.6 | -0.1 1.0 -0.1 1.4
32 -0.3 0.2 -0.4 0.2-0.2] -0.5 -0.1 -0.1
64 -0.1 | -0.5 -0.1 -1.6 | 0.1] -0.2 0.1 -0.5
overall 0.0 -0.2 -0.1 0.4 0.1] -0.2 0.1 -0.2
HEXPzIO ExpansionCommon
2 0.1 0.1 0.1 0.1 0.0 0.3 0.0 0.3
4 0.2 1.2 0.1 1.1 0.1 -0.1 0.1 -0.3
8 -0.2 | -0.8 -0.2 -0.71 0.1] -1.5 0.1 -1.9
16 -0.3 | -0.2 -0.3 -0.1 | 0.1 1.7 0.0 1.8
32 04| -1.1 -0.5 -1.7 1 0.0 0.3 0.0 -0.1
64 -0.2 | -1.3 -0.2 -1.1 [-0.3] -0.9 -0.3 -1.9
overall -0.1 | -04 -0.2 -0.4 | 0.0 0.0 0.0 -0.3
Local Expansion LowCore

2 -0.2 0.0 -0.2 0.0 | -0.1 0.1 -0.1 0.1
4 0.6 | -0.5 0.6 -0.51-0.8] -0.2 -0.8 -0.3
8 -1.0 | -1.5 -1.2 -2.0 [-0.2 | -0.7 -0.6 -1.6
16 -0.1 1.2 0.0 2.0 0.1 1.4 0.1 1.1
32 -0.2 0.3 -0.2 0.2 00| -0.1 0.1 -0.5
64 -0.5 | -0.1 -0.5 0.9 0.2 -0.1 0.2 -1.1
overall -0.2 | -0.1 -0.3 -0.2 | -0.1 0.1 -0.2 -0.4

Table B.4.: Top three ratings for the middle sized test suit, calculated by KaFFPa Eco.
Boundary nodes and communication volume given as improvements over
Expansion*? rating function

49

Appendix B. Extra Tables

KaFFPa Strong with GPA KaFFPa Strong with MSTM

Partitions | avg. Cut ‘ min Cut ‘ speed-up | avg. Cut ‘ min Cut ‘ speed-up
Local Expansion ExpansionCommon
2 0.3 -0.2 1.031 0.4 -0.1 1.052
4 1.1 0.1 1.034 0.2 0.2 1.087
8 0.5 -0.1 1.066 0.3 0.1 1.03
16 0.7 0.1 1.044 0.5 -0.2 1.034
32 0.0 0.3 1.03 0.0 0.4 1.05
64 0.1 0.2 1.034 -0.1 -0.1 1.053
overall 0.4 0.1 1.04 0.2 0.0 1.051
AlgebraicExpansion
2 0.1 -0.1 0.903 -0.1 -0.1 1.09
4 0.8 0.1 0.944 0.4 0.6 1.102
8 0.7 0.0 0.944 0.3 0.0 1.072
16 0.7 -0.1 0.967 0.5 0.1 1.072
32 0.2 0.5 1.01 -0.1 0.2 1.079
64 0.2 0.3 1.029 0.2 0.3 1.069
overall 0.4 0.1 0.965 0.2 0.2 1.081
LCA

2 0.4 -0.1 0.87 0.5 0.0 1.032
4 0.1 -0.2 0.916 0.6 0.3 1.049
8 0.4 0.4 0.932 0.1 -0.2 1.032
16 0.6 0.5 0.964 0.1 -0.1 1.025
32 0.1 0.4 1.012 -0.1 0.2 1.054
64 0.2 0.3 1.032 -0.1 0.0 1.03
overall 0.3 0.2 0.953 0.2 0.0 1.037

Table B.5.: Some ratings for the middle sized test suit, calculated by KaFFPa Strong.
Cuts given as relative improvements over the weight rating function, times
are given as speed-up factors.

20

Appendix B. Extra Tables

KaFFPa Strong with GPA KaFFPa Strong with MSTM
Partitions | 0Jg ‘ Omaz ‘ commg ‘ COMMaz | Oc ‘ Omaa ‘ commg ‘ COMMypar
HEXPxLD EXPxLD
2 0.6 0.8 0.6 0.8 0.7 0.7 0.7 0.7
4 0.4 1.7 0.5 1.7 |1 0.6 1.0 0.6 1.0
8 0.3 0.0 0.2 0212 0.4 1.1 0.2
16 0.6 0.0 0.5 0.7 1 0.8 0.8 0.8 0.6
32 -0.2 0.3 -0.3 0.21]0.1 0.6 0.0 1.1
64 0.1] -0.1 -0.1 1.3]04 0.2 0.2 1.3
overall 0.3 0.4 0.2 0.710.6 0.6 0.5 0.8
Lowcore HEXPxLD
2 0.1 0.3 0.1 0.3 0.1 0.6 0.1 0.6
4 1.1 0.9 1.0 09104 1.8 0.4 1.7
8 -0.1| -1.3 -0.2 -1.4 116 1.2 1.5 1.1
16 0.3 0.1 0.3 0.0 | 0.8 0.5 0.7 0.9
32 0.2 1.3 0.0 2.110.2 0.7 0.0 1.2
64 0.1 1.5 0.1 1.710.2 0.4 0.0 14
overall 0.3 0.5 0.3 0.6 | 0.6 0.9 0.5 1.1
EXPxLD WaxLD
2 0.2 0.3 0.2 0.31]0.2 0.4 0.2 0.4
4 -0.4 1.1 -0.4 1.1] 0.1 0.7 0.1 0.7
8 05| -04 0.4 -0.6 | 1.3 1.8 1.2 1.5
16 0.4 1.2 0.3 1.3 0.6 0.9 0.7 1.0
32 0.0 0.7 -0.1 09104 1.6 0.2 2.6
64 0.1 0.3 -0.1 1.3104 0.5 0.1 2.2
overall 0.1 0.5 0.0 0.710.5 1.0 0.4 14

Table B.6.: Top three ratings for the middle sized test suit, calculated by KaFFPa
Strong. Boundary nodes and communication volume given as improvements
over Expansion*? rating function

51

Appendix B. Extra Tables

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM

Partitions | avg. Cut ‘ min Cut ‘ speed-up | avg. Cut ‘ min Cut ‘ speed-up
HEXPxLD AlgebraicHEX P
2 4.5 1.4 0.859 5.8 7.6 0.971
4 14.0 114 0.823 17.5 13.8 0.944
8 0.9 3.3 0.92 7.5 8.3 0.997
16 174 7.6 0.827 16.8 10.5 0.87
32 8.0 2.8 0.82 8.5 3.1 0.88
64 6.2 4.9 0.811 5.8 1.5 0.834
overall 8.4 5.2 0.843 10.2 7.4 0.914
AlgebraicHEX P LowCore
2 5.2 4.0 0.918 3.3 3.9 1.028
4 10.3 8.4 0.94 15.1 10.8 0.959
8 6.8 2.2 0.823 6.2 1.5 0.852
16 14.8 8.5 0.865 18.6 9.8 0.907
32 7.1 12.2 0.846 9.5 9.2 0.886
64 3.4 5.2 1.014 9.1 6.9 0.998
overall 7.9 6.7 0.898 10.2 7.0 0.936
HarmonicEX P HEXPxIO

2 4.5 1.6 0.884 6.7 6.0 0.902
4 11.5 7.5 0.832 17.5 11.7 0.817
8 1.8 24 0.972 7.4 7.6 0.933
16 15.7 7.4 0.861 16.0 6.7 0.87
32 8.1 2.8 0.841 7.2 6.3 0.822
64 5.6 3.9 0.807 4.8 0.2 0.807
overall 7.765 4.231 0.864 9.8 6.4 0.857

Table B.7.: Top three ratings for the social networks, calculated by KaFFPa Eco. Cuts
given as relative improvements over the weight rating function, times are
given as speed-up factors.

52

Appendix B. Extra Tables

KaFFPa Eco with RandomGPA | KaFFPa Eco with RandomMSTM

Partitions | Jg ‘ Omaa ‘ commg ‘ COMMnaz | Oa ‘ Omaa ‘ commg ‘ COMMypan
HEXPxLD
2 2.5 3.7 2.5 3.7 3.8 5.6 3.8 5.6
4 7.8 6.0 11.3 10.9 | 9.3 8.1 13.4 13.7
8 0.8 6.5 1.0 10.7 | 2.8 9.6 4.8 18.4
16 5.3 8.7 7.4 10.7 | 6.0 | 10.5 8.6 15.2
32 3.0 3.9 6.9 7.4 125 5.2 5.9 10.5
64 1.9 | -0.7 5.3 3.0(1.9 1.6 4.4 6.3
overall 3.5 4.6 5.7 7.7 4.4 6.7 6.8 11.5
ExpansionTuple HexpHC
2 70| 114 7.0 11.4 | 4.0 5.9 4.0 5.9
4 4.3 7.8 6.1 11.0 | 9.6 9.4 13.6 14.8
8 -1.6 8.5 -2.2 13.6 { 2.9 | 12.9 5.0 21.7
16 1.5 8.9 0.1 95|45 | 11.6 6.8 17.2
32 -0.7 5.5 -0.5 76| 1.3 4.2 3.9 9.7
64 -0.4 1.8 0.3 25|13 3.1 3.4 7.2
overall 1.7 7.3 1.7 9.2 139 7.8 6.0 12.6
HEXPzIO

2 2.5 3.4 2.5 3.4 |44 6.4 4.4 6.4
4 7.2 4.8 10.4 9.11]9.5 8.9 13.8 14.9
8 0.8 6.3 1.0 9.5 1] 3.1 9.1 5.3 17.7
16 4.6 8.9 6.5 9.0 52| 114 7.8 17.1
32 2.6 3.2 6.6 6.0 | 2.6 4.4 6.0 9.7
64 1.9 | -0.1 4.9 20| 1.5 1.3 4.0 3.5
overall 3.3 4.4 5.3 6.5 | 4.4 6.9 6.9 11.4

Table B.8.: Top three ratings for social networks, calculated by KaFFPa Eco. Boundary
nodes and communication volume given as improvements over Expansion*?
rating function

93

Appendix C.

Zusammenfassung

Das Graphpartitionsproblem ist eines der klassischsten und grundlegensten Probleme der
theoretischen Informatik. Tatséchlich gibt es eine Vielzahl von praktischen Anwendungen
dieses Problems die von VLSI Design [15] bis hin zu dem Auffinden der Funktion eines
bestimmten Gens reichen [3]. Obwohl gezeigt werden kann dass das balancierte Graph-
partitionsproblem NP-vollstdndig ist, kann es oft mit zufridenstellender Genauigkeit in sehr
kurzer Zeit angendhert werden. Viele modernen Graphpartitionierungsalgorithmen verwen-
den ein Mehrlevelverfahren, das aus drei Phasen besteht: Zunichst wird eine Hierarchie
von Schrittweifle groberen Graphen erstellt, worauthin der grébste Graph initial partition-
iert wird und zuletzt wird fiir jeden feineren Graphen die Partitionierung verbessert. Da die
Vergroberungsphase essentiell fiir ein gutes Ergebnis ist, liegt das Ziel dieser Arbeit darin neue
Techniken zu finden und bestehende zu verbessern, die in der Vergroberungsphase eingesetzt
werden konnen. Hierbei liegt das Hauptaugenmerk auf der Konstruktion neuer Kantenbewer-
tungsfunktionen und der Analyse und dem Entwurf eines neuen approximativen Paarungsal-
gorithmuses. Alle Ergebnisse werden mithilfe des Mehrlevel-Graphpartitionierers KaFFPa
[25] ausgewertet, der einen groberen Graphen konstruiert indem er eine Paarung maximalen
Gewichts bestimmt und alle gepaarten Kanten kontrahiert. Dies ergibt ein sehr schnelles
Vergroberungsverfahren. Unsere Kantenbewertungsfunktionen fithren zusammen mit einem
neuen Paarungsalgorithmus zu signifikanten Verbesserungen der Laufzeit der recheninten-
sivsten Konfigurationen des Partitionierers und zu signifikanten Verbesserungen der Parti-
tionsqualitat auf Sozialen Netzen.

o4

Bibliography

1]

Konstantin Andreev and Harald Réacke. Balanced graph partitioning. Theory Comput.
Syst., 39(6):929-939, 2006.

Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores decomposition of
networks. CoRR, ¢s.DS/0310049, 2003.

Amir Ben-Dor and Zohar Yakhini. Clustering gene expression patterns. In RECOMB,
pages 33-42, 1999.

Jie Chen and Ilya Safro. Algebraic distance on graphs.

Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato Fonseca F. Werneck.
Graph partitioning with natural cuts. In IPDPS, pages 1135-1146, 2011.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467,
1965.

Chris Walshaw et al. The graph partitioning archive website.
http://staffweb.cms.gre.ac.uk/ wc06/partition/.

R. Preis et al. Party partitioning library website.
http:/ /wwwes.uni-paderborn.de/fachbereich/AG /monien/RESEARCH/PART /party.html.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th Design Automation Conference, DAC 82, pages
175-181, New York, NY, USA, 1982. ACM.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

Bruce Hendrickson and Robert W. Leland. A multi-level algorithm for partitioning graphs.
In SC; 1995.

John E. Hopcroft and Richard M. Karp. An n°/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2:225-231, 1973.

Horst D. Simon I, Horst D. Simon, and Horst D. Simon. Partitioning of unstructured
problems for parallel processing, 1991.

Stefan E. Karisch, Franz Rendl, and Jens Clausen. Solving graph bisection problems with
semidefinite programming. Technical report, INFORMS Journal on Computing, 1997.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hyper-
graph partitioning: application in vlsi domain. In Proceedings of the 34th annual Design
Automation Conference, DAC 97, pages 526-529, New York, NY, USA, 1997. ACM.

George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In Proc. 24th
Intern. Conf. Par. Proc., I1I, pages 113-122. CRC Press, 1995.

95

[17]
[18]
[19]

[20]

[21]

[22]

Bibliography

B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell system technical journal, 49(1):291-307, 1970.

Michael Ley. The dblp project.
http: //www.informatik.uni-trier.de/ ley/db/.

Holtgrewe M and Sanders P. A scalable coarsening phase for a multi-level graph parti-
tioning algorithm. Diploma Thesis, 2009.

Holtgrewe M, Sanders P, and Schulz C. Engineering a scalable high quality graph par-
titioner. Parallel and Distributed Processing (IPDPS), 2010 IEEE International Sympo-
sium, pages 1-12, 2010.

Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted matching,
2007.

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer, 2008.

Vitaly Osipov and Peter Sanders. n-level graph partitioning. In ESA (1), pages 278-289,
2010.

F. Pellegrini. Scotch website http://www.labri.fr/pelegrini/scotch.

Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algorithms.
In ESA, pages 469-480, 2011.

Kirk Schloegel, George Karypis, Vipin Kumar, J. Dongarra, I. Foster, G. Fox, K. Kennedy,
A. White, and Morgan Kaufmann. Graph partitioning for high performance scientific
simulations, 2000.

Yifan Hu Tim Davis. The university of florida sparse matrix collection website.
http: //www. cise.ufl. edu/research/sparse/matrices/.

The Pennsylvania State University. Citeseer project.
http://citeseerx.ist.psu.edu/.

Chris Walshaw and Mark Cross. Jostle: parallel multilevel graph-partitioning software -
an overview, 2007.

C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Trans. Comput., 20:68-86, January 1971.

26

	Introduction
	Fundamentals
	General Definitions
	Graphs
	The Graph Partitioning Problem
	Subgraphs and Spanning Trees
	Matchings
	Partition Quality Metrics

	Related Work
	Multilevel Graph Partitioning Algorithms
	Approximate Maximum Weight Matching Algorithms
	Heavy Edge Matching
	Global Paths Algorithm

	Additional Parameters of Graphs
	Degeneracy and Coreness
	Algebraic Distance

	Approximate Maximum Weight Matchings
	Optimal Maximum Matching on Forests
	Maximum Spanning Tree Matching

	Edge Ratings
	Edge Rating Criteria
	Basic Edge Ratings
	Density Metric Based Edge Ratings
	Multicriteria Edge Ratings

	Experimental Evaluation
	KaFFPa
	Experiment Description
	General Methodology
	Matching Tests
	MSTM Analysis
	Environment
	Test Sets

	Matchings
	Comparison of Matching Algorithms
	Detailed Evaluation of MSTM

	Edge Ratings
	Middle sized test set
	Social Networks
	Additional quality metrics

	Conclusion
	InstitutsCluster
	Extra Tables
	Zusammenfassung
	Bibliography

