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Abstract

- English -

In scientific computing a common problem is to schedule workloads onto processors of
parallel machines, that should have an almost equal amount of load but also the ability to
work close to independently from each other with as little communication as possible. In
theoretical computer science, this problem is described as the NP-complete graph partitioning
problem [1, 2]. In the case the graph to be partitioned does not fit into the main memory
of a machine or is simply evolving online over time, streaming graph partitioning algorithms
are necessary. While multiple algorithmic heuristics were introduced in the past for such
streaming algorithms [3, 4, 5, 6, 7, 8, 9], applicable machine learning based heuristics are still
very recent [10, 11, 12, 13].
In this work, we investigate both conventional machine learning models as well as deep
learning models in their capability to serve as a heuristic in a streaming graph partitioning
algorithm. We especially focus on supervised machine learning techniques based on block
labels computed by Karlsruhe Fast Flow Partitioner (KaFFPa), a sophisticated offline graph
partitioner from Sanders and Schulz [14]. Our novel buffered streaming model supports
both node and edge streams. We incorporate the models into a framework to partition
non-attributed node streams and study different features from statistical, greedy, and heuristic
feature groups. As the streamed graph is enriched with features online, the algorithm is
applicable to any abstract graph without available features from an application domain as, to
the best of our knowledge, the very first approach in machine learning based streaming graph
partitioning literature. Also, we introduce a novel prediction propagation concept to improve
on predictions made inside the streaming buffer. In the end, we are able to outperform our
main competitor GCNSplit [12, 13] by 6.11% to 22.29% measured by the replication factor in
an edge streaming scenario.
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Abstract

- Deutsch -

Im wissenschaftlichen Rechnen besteht ein häufiges Problem darin, Arbeitslasten auf Prozes-
soren paralleler Maschinen aufzuteilen, die nahezu gleiche Last haben sollten, aber auch
die Fähigkeit mit möglichst wenig Kommunikation nahezu unabhängig voneinander zu ar-
beiten. In der theoretischen Informatik wird dieses Problem als NP-vollständiges Graphpar-
titionierungsproblem beschrieben [1, 2]. Wenn der zu partitionierende Graph nicht in den
Hauptspeicher einer Maschine passt oder sich einfach online über die Zeit entwickelt, sind
Algorithmen zur Stream-basierten Partitionierung von Graphen erforderlich. Während in der
Vergangenheit mehrere algorithmische Heuristiken für solche Stream-basierten Algorithmen
vorgestellt wurden [3, 4, 5, 6, 7, 8, 9], sind anwendbare, auf maschinellem Lernen basierende
Heuristiken noch sehr jung [10, 11, 12, 13].
In dieser Arbeit untersuchen wir sowohl konventionelle maschinelle Lernmodelle als auch
Deep Learning Modelle auf ihre Fähigkeit, als Heuristik in einem Stream-basierten Graph-
Partitionierungsalgorithmus zu fungieren. Wir konzentrieren uns insbesondere auf überwachte
maschinelle Lerntechniken, die auf den von KaFFPa errechneten Blockzuweisungen basieren,
einem hochentwickelten Offline-Graphpartitionierer von Sanders und Schulz [14]. Unser neuar-
tiges Puffer-basiertes Streamingmodell unterstützt sowohl Knoten- als auch Kantenströme.
Wir integrieren die Modelle in ein Framework, um nicht-attributierte Knotenströme zu parti-
tionieren und studieren verschiedene Features aus statistischen, gierigen und heuristischen
Featuregruppen. Da der gestreamte Graph online mit Features angereichert wird, ist der Algo-
rithmus auf jeden abstrakten Graphen ohne verfügbare Features aus einer Anwendungsdomäne
anwendbar, was unseres Wissens nach der erste Ansatz in der Literatur Stream-basierter
Partitionierung von Graphen mit Hilfe von maschinellem Lernen ist. Außerdem führen wir ein
neuartiges Konzept zum Propagieren von Vorhersagen ein, um die Vorhersagen innerhalb des
Streaming-Puffers zu verbessern. Am Ende sind wir in der Lage, unseren Hauptkonkurrenten
GCNSplit [12, 13] gemessen am Replikationsfaktor in einem Kantenstrom-Szenario um 6,11%
bis 22,29% zu übertreffen.
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Introduction

CHAPTER 1
Introduction

1.1 Motivation

As a fundamental data structure in computer science, graphs can serve as an abstraction
for many real-world scenarios dealing with entities and their relation to each other. In
many applications, it is necessary to partition such a graph into a fixed number of blocks,
such that all blocks comply with a balance constraint while having as few edges cut
as possible. This ensures an application’s ability to scale in quality, time, or costs by
reducing complexity or enabling parallelization.

The most common example in the context of graph partitioning lies in the domain
of scientific computing when trying to schedule workloads onto processors of parallel
machines, that should have an almost equal amount of load but also the ability to work
close to independently from each other with as little communication as possible [15]. In
Very Large-Scale Integration (VLSI) system design, graph partitioning is used to subdivide
a conglomerate of millions of transistors into smaller, more manageable components while
keeping the number of electrical signals to be exchanged low [16]. More interesting in the
domain of software engineering is query optimization in distributed databases, where data
often queried together shall be assigned to the same shard to reduce query processing
time [17]. Application domains of (hyper)graph partitioning reach even further beyond
up to image segmentation, quantum circuit simulation, complex network analysis tasks,
and more [15, 17].
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Introduction

While having a lot of application domains in practice, the graph partitioning problem
is also interesting from a theoretical computer science point of view. The problem is
NP-complete [1, 2] and the perfectly balanced version of the problem has no finite-factor
approximation algorithm [18], which is why heuristics are often used in practice to
address the problem [15]. The graph partitioning problem can be solved on different
computational models with each of them having its own arguments to be used [17]. If
the graph fits into the main memory and is known in advance, most often sequential
algorithms are used that can be designed to work either completely internal memory or
shared memory parallel. Both of them produce high-quality partitions with the shared
memory version requiring less time, but more computing resources. Besides the sequential
algorithms also distributed memory parallel algorithms exist, that scale well to large
graph instances but typically give lower partitioning quality. They are often used when
trying to partition huge graphs, even on cheap machines, yet these algorithms require
pre-splitting the graph to be partitioned before running the actual graph partitioning
algorithm itself. All of those algorithms can in theory be run inside a memetic framework
to receive even higher quality partitions, in practice this only works for smaller graphs
due to its high running time efforts and resource requirements. The best solution is of
course produced by an exact but long-running combinatorial algorithm, which does not
scale to large graph instances due to its theoretical complexity.

If a graph does not fit into memory or graph partitioning should be performed online,
streaming graph partitioning algorithms are used. They are fast and require little
memory, the quality of the partitions they produce is nevertheless inferior to those of
offline algorithms. Algorithmic approaches to do streaming graph partitioning include the
one-pass streaming approaches Linear Deterministic Greedy (LDG) [3], Fennel [4] and
AKIN [5]. Nishimura and Ugander [6] proposed ReLDG and ReFennel, an adaptation of
the original LDG and Fennel heuristics that can be applied when a graph is streamed
consecutively multiple times. Last but not least, there are buffered streaming graph
partitioning approaches like WStream [8] and HeiStream [9] that do not stream the
graph node by node but use a streaming buffer in between to have a more global view
at hand when doing block assignments. Streaming algorithms have even been used in
offline partitioning scenarios as Jafari et al. [19] showed with a shared memory multilevel
algorithm based on LDG.
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Besides these algorithmic approaches, there are a few ideas to utilize machine learning
techniques for graph partitioning. For offline graph partitioning the most known approach
is the Generalizable Approximate Graph Partitioning Framework (GAP) introduced by
Nazi et al. [10], which inspired other approaches like the one from Gatti et al. [11] that
enriches GAP with spectral graph partitioning theory. For streaming graph partitioning,
there is only one approach using machine learning called GCNSplit from Abbas [12] and
Zwolak et al. [13], which was also inspired by GAP [10]. These machine learning based
approaches have in common to work only with attributed graphs, i.e., with node attributes
from a specific application domain. Furthermore, they are based on unsupervised learning
optimizing custom loss functions. GCNSplit also focuses on edge partitioning only.
The benefits of such models lie in the fact that the long-lasting and intricate process
of designing algorithmic heuristics manually can be replaced by learning partitioning
patterns and correlations from the data.

1.2 Contribution

In this thesis, we investigate both conventional machine learning models as well as
deep learning models in their capability to serve as a heuristic in a streaming graph
partitioning algorithm. The models to be evaluated include the conventional classification
models Logistic Regression, Support Vector Machine (SVM), Gradient Boosted Decision
Trees (GBDTs) and the deep learning models GraphSAGE and a custom Partitioner
model that applies an additional densely connected network on top of GraphSAGE. We
especially focus on supervised machine learning techniques based on block labels computed
by KaFFPa, a sophisticated offline graph partitioner from Sanders and Schulz [14]. Our
novel buffered streaming model supports both node and edge streams. We incorporate
the models into a framework to partition non-attributed node streams and study different
features from statistical, greedy, and heuristic feature groups. As the streamed graph is
enriched with features online, the algorithm is applicable to any abstract graph without
available features from an application domain. As far as we know, this is the first attempt
in machine learning based streaming graph partitioning literature at addressing this
use case. By generating features based on Fennel scores, we even combine conventional
approaches to address streaming graph partitioning for feature generation with modern
machine learning methodologies during prediction. Using our newly introduced concept
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of prediction propagation, we are able to add a crucial ingredient when utilizing Fennel
score based features to improve on predictions made inside the streaming buffer.

Almost all of our models are able to outperform the Fennel based baseline algorithm
by partitioning quality in evolving graph streaming scenarios, where nodes are added
over time to the graph. For graphs that originate from the same generative model,
the best performing model based on XGBoost’s implementation of GBDTs [20] is even
able to predict partitions on before totally unseen graphs decently well. Hard balance
constraint heuristics make sure the resulting partitions are balanced every time the graph
is streamed. In the end, we are able to outperform our main competitor GCNSplit by
6.11% to 22.29% measured by the replication factor in an edge streaming scenario.

1.3 Thesis Structure

In the beginning in Chapter 2, all necessary fundamentals for the framework introduced
in this thesis are examined. Starting with the definition of streaming graph partitioning,
conventional algorithmic heuristics to address the problem, and models that are being used
throughout the thesis including Logistic Regression, GBDTs, SVM, and GraphSAGE.

Next, we cover related work in Chapter 3. We give an overview of graph partitioning,
conventional algorithms for streaming graph partitioning, followed by offline, deep learning
based graph partitioning algorithms and a true streaming graph partitioning deep neural
network.

The Chapter 4 introduces the streaming model, the grouping of considered features for
non-attributed graphs, and a new concept called prediction propagation that increases
partitioning quality for buffered streaming settings. Furthermore, the hard balance
heuristics are explained as well as the architectural decisions for each model.

The biggest part of this thesis is formed by the empirical evaluations as given in Chapter 5.
Here the two datasets for training/tuning and evaluation are investigated and the initial
configurations for the upcoming experiments are set. Then we begin an extensive study
of the different features for each model and draw a final feature selection conclusion.
Afterwards, we present preprocessing methods to prepare the feature space for better
prediction capabilities for some models and tune their individual hyperparameters. Ex-
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periments about the streaming configuration include the choice of a balance heuristic,
streaming buffer, streaming step sizes, and the number of prediction propagation rounds.
A short excursion into a Breadth-First Search (BFS) based streaming order vs. a natural
streaming order is also given. After all the tuning is done we explore the generalization
capabilities of each model in evolving graph streaming settings and settings that require
predictions on totally unseen graphs from the same structural group. Based upon these
insights, we compare the different models and make a recommendation on which model
to use for which scenario. For this decision also the running times during training and
prediction are considered. Last but not least, a comparison to two competitor algorithms,
GCNSplit [12, 13] based on a machine learning heuristic, and 2PS-L [21] based on a pure
algorithmic heuristic, is made.

A summary and discussion of this work are given in Chapter 6. Section 6.1 concludes all
novelties and findings, whereas Section 6.2 discloses further interesting areas for future
work.
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CHAPTER 2
Fundamentals

2.1 Streaming Graph Partitioning

First, we introduce the NP-complete [1, 2] graph partitioning problem formally. The
input is a graph G, the number of blocks k the graph should be partitioned into, and an
imbalance parameter ε. The graph G = (V,E, c ∶ V → R≥0, ω ∶ E → R>0) is undirected and
has n nodes in set V , m edges in set E, nonnegative node weights c, and nonnegative
edge weights ω without multi-edges or self-loops. Graph partitioning can be performed
in two variations.

In vertex partitioning we partition G into k ∈ N>1 blocks V = V1 ∪ V2 ∪ ... ∪ Vk such
that ∀i, j ∶ Vi ∩ Vj = ∅ (i ≠ j) and such that the total cut size ∑i<j ω(Eij) with Eij =
{{u, v} ∈ E ∶ u ∈ Vi, v ∈ Vj} is minimized while considering a balance constraint ∑v∈Vi

c(v) ≤
(1 + ε)∑v∈V c(v)

k = Lmax,∀i ∈ {1, ..., k} for some imbalance parameter ε ≥ 0. Note that there
exist also other objective functions for vertex partitioning besides the total cut size like
the maximum communication volume which we will not have a look at in this work.

In the second variant, edge partitioning, we partition G into k ∈ N>1 blocks E = E1∪E2∪...∪
Ek such that ∀i, j ∶ Ei∩Ej = ∅ (i ≠ j) and such that the replication factor 1

∣V ∣
∑i∈[k] V (Ei)

with V (Ei) = {u ∈ V ∶ ∃{u, v} ∈ Ei ∪ ∃{v, u} ∈ Ei} is minimized while considering a
balance constraint ∑{u,v}∈Ei

ω({u, v}) ≤ (1 + ε)∑{u,v}∈E ω({u,v})

k = Lmax,∀i ∈ {1, ..., k} for
some imbalance parameter ε ≥ 0.

6
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Conventional graph partitioning expects the input graph instance to be available offline
and in memory while streaming graph partitioning describes a setting, where either the
entire graph instance is not known before and evolves online over time by adding more
and more nodes from a stream of nodes, or the entire graph is too huge to be processed
by an internal memory algorithm, which only has O(n) space available, and needs to be
streamed from the disk. In either case not having all global information available for
graph partitioning makes it much harder to compete with the in-memory scenario. Often
a buffer as big as the available internal memory is used during streaming to obtain a more
global view over the nodes or edges to be partitioned and therefore better partitioning
qualities. In the case of a true online algorithm, this buffer might come with the downside
of delayed block assignment decisions for individual nodes or edges depending on the
streaming model.

2.2 Algorithmic Heuristics

Pure algorithmic heuristics for streaming graph partitioning used in this work are LDG
by Stanton and Kliot [3] and Fennel by Tsourakakis et al. [4]. In both heuristics, a node v
is assigned to block idx with the highest score. LDG is defined as

idx = arg max
i∈[k]

{∣Vi ∩N(v)∣ ⋅ (1 − ∣Vi∣
Lmax

)}

whereas Fennel can be formulated as

idx = arg max
i∈[k]

{∣Vi ∩N(v)∣ − αγ∣Vi∣γ−1}

with α and γ chosen as α =
√
k m
n3/2 and γ = 1.5 as evaluated in the original paper. Both

heuristics try to minimize the total cut size while punishing imbalance, but both heuristics
are only suitable for bounded node streams as the number of nodes n needs to be known
in advance. The heuristics differ in the term to punish imbalance, which is a linearly
decreasing multiplicative for LDG and an exponentially growing subtraction term for
Fennel.

7
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2.3 Logistic Regression

The following explanation is based on a machine learning foundations book by Géron [22].
Logistic Regression is the most simple binary classification model and is defined as

p(xi; θ) =
1

1 + e−θT xi

with xi being the feature vector of instance i, θ being the trainable model parameters and
p(xi, θ) being the probability that instance i belongs to the class. It assumes the data
to be linearly separable and learns the model parameters θ by minimizing the negative
log-likelihood function

Loss(xi, yi; θ) = −(yi log(p(xi, θ)) + (1 − yi) log(1 − p(xi, θ))).

When trying to predict multiple categories one can either train the model in a one vs.
rest fashion or use the multinomial Logistic Regression. It replaces the sigmoid function
S(x) = 1

1+e−x with the softmax function to give the probability distribution over all classes
instead of just a single probability value and is defined as

pc(xi; θc) =
e−θ

T
c xi

∑Ci=1 e
−θT

i xi
.

2.4 Gradient Boosted Decision Trees

The following explanation of the decision tree is based on the machine learning foundations
book by Géron [22]. A decision tree is a simple, explainable machine learning model that
can be used both for regression and classification. It tries to split a dataset on every
node into smaller subsets such that the final leaves have low impurity meaning each
subset should best only contain instances of the same class (classification) or continuous
values with small variance (regression). To do this, the Classification and Regression
Tree (CART) algorithm is applied, a greedy algorithm that goes over every feature k
and threshold tk, and picks (k, tk) such that the decrease in impurity is maximized on

8
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the current node. In other words, the goal is to greedily minimize the variance of the
instances in each subset. The final prediction in each leaf is either the class priors for
classification or the average of the target values in case of regression. In classification,
the Gini-Impurity metric Gi = 1 −∑Cc=1 p

2
i,c is often used to measure the impurity score at

node i with pi,c being the class prior of class c within node i. In regression, the mean
squared error is commonly used as a measure of impurity. Note that finding the optimal
CART is NP-complete. Decision trees are parameter-free models, which is why they need
regularization to prevent their natural tendency for overfitting. Such regularization could
mean fixing the tree depth, the minimum and the maximum number of leaves, or the
number of nodes at least needed for a split.

Boosting is a technique that constructs an ensemble of weak learners that are connected
to an additive meta-model. The weak learners, often decision trees or decision stumps
(decision trees of depth one), are connected sequentially such that one estimator improves
on the previous model or “boosts” the previous model. The weak learners are called weak,
as they could only make poor predictions when being on their own. Gradient boosting is
a subtype of boosting and boosts previous models in the chain by predicting the residual
error of the previous model. Besides gradient boosting there is also AdaBoost, which
improves on previous models by giving wrongly predicted data instances a higher weight
when fitting the next weak learner [22].

To understand the principles of Gradient Boosted Decision Trees (GBDTs) we first want
to explain it in the context of regression before coming to the classification domain. Note
that in regression we try to predict a function with the target values y given a feature
matrix X.

Algorithm 1 Gradient Boosted Decision Trees learning procedure [23]
Let F0(X) = 1

N ∑
N
i=1 yi be the mean of target y across all instances i

for m = 1 . . .M do
Let rm−1 = y − Fm−1(X) be the residual direction vector
Train regression tree ∆m on rm−1, minimizing squared error
Fm(X) = Fm−1(X) + η∆m(X)

return FM

Algorithm 1 shows the gradient boosting approach for M weak learners and a learning
rate of η, which determines the influence of each estimator on the final prediction. The
lower the learning rate η, the more predictors are needed to fit the function, but the
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less the ensemble is likely to overfit. This regularization technique is called shrinkage.
Another regularization technique is subsampling the data before learning a weak classifier
on it. If single estimators are only trained on 60% of the available training data, this
reduced the variance but may increase the bias of the final prediction. The variance-bias
trade-off is a typical problem in machine learning when it comes to regularization [22].

The reason for the name gradient boosting lies in the residual r, which is the negative of
the gradient of the mean squared error loss function, that we try to optimize. Generally,
we can use this gradient boosting approach to optimize any loss function of choice as long
as the weak learners are trained to predict the negative of the loss function’s gradient [23].

Coming from a regression task over to a classification task, the question appears, how to
predict categorical values if gradient boosting seems to be only useful to approximate
functions in a regression context? To answer this question, we look at the binary
classification case, which is still easy to explain. Here GBDTs predict the logarithm of
the odds across the feature space with the odds being defined as P (Y =1)

P (Y =0) . The logarithm
makes the ratio symmetric around zero. While predicting the logarithm of the odds, the
decision trees actually fit the residual probabilities that lie between zero and one. We
can transform the logarithm of the odds anytime back to prediction probabilities using
the following function:

P (Y = 1) = elog(odds)

1 + elog(odds)

This means we get predictions for all data instances in the form of the logarithm of the
odds γ. We then transform these predictions to probabilities using the above formula and
calculate the residuals ri (observed probability - predicted probability) for every data
instance i. Subsequently, we fit the next weak learner to those probability residuals. For
each leaf Ll = {r1, . . . , rn} in model t, we calculate the prediction to be output using the
following formula:

γl,t =
∑i∈Ll

ri

∑i∈Ll
pi,t−1(1 − pi,t−1)

Using the incremental inference formula, we calculate the new prediction up to estima-
tor M as
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γ = γ0 + ηγ1 + ⋅ ⋅ ⋅ + ηγM .

Then the process is repeated until all weak learners are fit. Interestingly, the resid-
ual is the negative gradient of the negative log-likelihood loss function often used for
classification [24].

For a multi-class classification scenario, such a model can always be trained in a one vs.
rest fashion. Different implementations exist for GBDTs with the most common ones
being XGBoost [20], LightGBM [25] and CatBoost [26].

2.5 Support Vector Machine

The Support Vector Machine (SVM) algorithm is a well-known classifier used in super-
vised machine learning. A comprehensive survey on SVM classification was published
by Cervantes et al. [27]. In binary classification problems, where the data can be sepa-
rated linearly, the SVM constructs a decision hyperplane with maximum margin to the
support vectors x+ and x−, which are the data points closest to the decision hyperplane.
Maximizing the margin to the support vectors also means maximizing the generalization
capabilities of the model. For a two-dimensional feature space, this behavior is drawn in
Figure 2.1.

Figure 2.1: Linear Support Vector Machine [27]
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Let γ be the margin of the decision hyperplane to the support vectors, w be the normal
of the decision hyperplane, xi be the feature vector of node i and yi ∈ {−1,1} be the
class label of node i. Fixing the support vectors to have a unit distance to the decision
hyperplane means wTx+ + b = 1 and wTx− + b = −1. The margin can then be formulated as

γ = 1
2[(( w

∥w∥
)Tx+) − (( w

∥w∥
)Tx−)]

= 1
2∥w∥

((wTx+) − (wTx−))

= 1
∥w∥

giving us the optimization problem in its primal form as

min
w,b

∥w∥2

s.t. ∶ yi(wTxi + b) ≥ 1 ∀i.

Often the given data cannot be separated linearly. In this case, one could either make
use of a soft margin hyperplane in case there is a linear separation tendency or one
needs to map the data into a higher dimensional feature space using a mapping function
φ(x), in which the data is linearly separable again. As the latter might lead to high
computational costs, one makes use of the kernel trick on the SVM’s dual optimization
problem formulation to learn the decision hyperplane in the higher-dimensional feature
space, without ever having to transform the original data practically.

Using the representer theorem [28], w can always be formulated as a linear combination
of the original features, i.e., w = ∑j αjyjxj. Inserting this into the primal formulation
gives the dual optimization problem formulation:

12
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min
αj
∑
jk

αjαkyjyk(xTj xk)

s.t. ∶ yi(∑
j

αjyj(xTj xi) + b) ≥ 1 ∀i.

In the original constraint yi(∑j αjyj(xTj xi) + b) ≥ 1 the input feature vectors would be
mapped to the higher dimension as yi(∑j αjyj⟨φ(xj), φ(xi)⟩ + b) ≥ 1. The scalar product
⟨φ(xj), φ(xi)⟩ can now be replaced by a kernel function K(xi, xj) that computes the
same result, but is far less computationally expensive than doing it the normal way.
Using this kernel trick, one can learn decision hyperplanes for non-linear separable data
without having to map the data into a higher dimensional space.

Kernel functions need to fulfill specific properties that we will not go into detail about
in this work. Commonly used kernel functions include the polynomial kernel function
K(xi, xj) = (xTi xj+1)p of degree p and the Radial Basis Function (RBF) kernelK(xi, xj) =
e−γ(xi−xj)

2 with γ being the inverse of the radius of influence of support vector i . Which
kernel is considered to be best depends on the actual data and needs to be explored
empirically. Subsequently, the kernel-specific hyperparameters need to be tuned. Also,
regularization is needed to not overfit the data in the theoretical higher dimensional
feature space.

Besides the inherent algorithmic complexity also the choice of data to be used for training
is important. Computing the kernel function for all training data pairs leads to the
kernel matrix and has a quadratic effort. This is why the training data set should not
be chosen too big when utilizing SVMs. Actually, only such data is important that will
form the support vectors and contributes to the formation of the decision hyperplane
during optimization. On the other hand, there are multilevel approaches to train SVMs
faster like the one from Schlag et al. [29]. Furthermore, the training data set should be
balanced as otherwise an unintended bias towards a specific class might be included in
the model.

Last but not least, a decision hyperplane can only differentiate between two classes. In a
multi-class setting, a one vs. one or a one vs. rest competition needs to be performed
increasing training and prediction time.
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In the end, the SVM is still a powerful classifier nowadays and is often used as an
alternative to neural network based approaches that are difficult to engineer as having a
lot more parameters to tune regarding their architecture and the learning algorithm used.
Often neural networks are also sensitive to noise in the data, data normalization, and the
weight initialization of the network itself making the training effort even larger.

2.6 GraphSAGE

While previous transductive approaches to generate low-dimensional node embeddings
like DeepWalk [30] or node2vec [31] do not generalize to unseen nodes during prediction,
GraphSAGE [32] is an inductive node embedding framework that promises to generate
feasible embeddings in a setting of evolving graphs or unseen graphs with identical node
features from a similar application domain. The node embeddings serve as features for
downstream node prediction and graph analysis tasks. They should not just encode
individual node information, but also structural and semantic information about the
local neighborhood of each node. The original high-dimensional node features can be of
application domain-specific nature or conventional node characteristics like the degree
of a node. So instead of learning concrete hard-wired node embeddings as transductive
methods do, GraphSAGE learns a set of aggregator functions that aggregate node features
of a local neighborhood for each node to create corresponding embeddings generically
while also applying dimensionality reduction.

Algorithm 2 GraphSAGE forward propagation [32]
procedure forward(xv,K)

h0
v ← xv, ∀v ∈ V

for k = 1 . . .K do
for v ∈ V do

hk
N(v)
← Aggregatek({hk−1

u , ∀u ∈ N(v)})
hkv ← σ(Wk ⋅Concat(hk−1

v ,hk
N(v)

))

hkv ← hkv/∥hkv∥2, ∀v ∈ V
zv ← hKv , ∀v ∈ V
return zv

Algorithm 2 describes how the node embeddings are generated using the GraphSAGE
framework. Starting from individual node features x, K aggregation rounds are performed
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around the local neighborhood of every node resulting in temporary embedding states
hk in round k, that are then being normalized to a unit length embedding vector. To
calculate the temporary embedding state of a node, the temporary embedding states
of a uniformly sampled fixed-size subset of the node’s neighbors are aggregated by an
k-dependent aggregation function learned during training. The aggregated temporary
embedding states are then concatenated with the node’s current embedding state and
transformed by a dense layer, which results in the node’s new temporary embedding
state. After K rounds, which represent the range of the local neighborhood in hops to be
encoded, the final node embeddings z are all generated.

As an aggregation function different architectures invariant to the order of a node’s
neighborhood were evaluated, among them:

1. Mean aggregator: hkv ← σ(W ⋅Mean({hk−1
v } ∪ {hk−1

u , ∀u ∈ N(v)}))

2. LSTM aggregator

3. Max/Mean pooling aggregator: Aggregatepoolk =Max({σ(Whku + b), ∀u ∈ N(v)})

The mean aggregator applies an element-wise mean over the components of each vector
hk in the direct local neighborhood of a node including the node itself and skips the
neighborhood aggregation step from the base algorithm. LSTMs have more degrees of
freedom and therefore possibly better expressive capabilities. The max/mean pooling
aggregator first transforms each temporary embedding state by a dense layer (whereas
also more complex transformations are possible), and then applies an element-wise max
or mean over the components.

Training is possible both in a supervised or unsupervised manner using stochastic gradient
descent or a mini-batch approach. Standard cross-entropy loss is being used for supervised
training, while for unsupervised training the following negative log-likelihood loss function
is to be minimized:

Loss(zv) = − log(σ(zTv zu)) −Q ⋅Eun∼Pn(u) log(σ(−zTv zun)).

When calculating the loss for the embedding of node v, we sample a close neighbor u
and expect their embeddings z to be similar. Therefore the scalar product zTv zu would
push the log-probability to zero. The same holds for the second term in the loss function,
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where Q negative samples from Pn(u) are drawn whose embeddings should by expectation
deviate stronger from the embedding of node v.

Experiments on a citation graph derived from Thomson Reuters Web of Science Core
Collection and a web graph based on Reddit posts showed that GraphSAGE has a
13.8% (citation graph) and 29.1% (web graph) improvement measured by F1 scores
using unsupervised training over a standard Logistic Regression classifier based on raw
features combined with embeddings produced by DeepWalk [30]. In a supervised setting,
improvements were even higher with 19.7% (citation graph) and 37.2% (web graph). In
both scenarios LSTM- and pooling based aggregators scored best [32].
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CHAPTER 3
Related Work

3.1 Graph Partitioning using Conventional Methods

Approaches to solving the graph partitioning problem that have proven themselves in
practice are based on the multilevel meta-heuristic with the most commonly used model
introduced by Hendrickson and Leland [33]. In a coarsening phase the graph is iteratively
reduced while the global structure of the graph is still maintained on each level of
the multilevel hierarchy. On the coarsest level, the graph is initially partitioned using
an ideally high-quality partitioner. Then the graph gets iteratively uncoarsened while
applying local search algorithms at the block boundaries for the refinement of the initial
partitioning.

Such a multilevel scheme can also be applied inside a memetic framework [34, 35], where
a population of partitions of the graph is evolved over several generations. In each round,
fit individuals are selected and combined to an improved offspring. To ensure diversity in
the population different mutation operators are used on offsprings before individuals are
evicted from the population based on their fitness and their similarity to other individuals.

Furthermore, graph partitioning algorithms can be parallelized to either shared memory
parallel or distributed memory parallel algorithms [17]. Shared memory parallel algorithms
can produce partitions of the same quality as their sequential counterparts but faster
while requiring more resources. Distributed memory algorithms on the other hand scale
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well to large graphs but often produce partitions with worse quality as each processor
has only a limited, local view of the entire graph.

As conventional graph partitioning algorithms are not the focus of this work, we refer
the reader to [15, 17, 36] for more detailed information. Conventional graph partitioning
algorithms require the graphs to fit into the available internal memory and to be known
in advance. If this is not the case, streaming graph partitioning algorithms are necessary,
which shall be given an overview in the following section.

3.2 Streaming Graph Partitioning using Conventional
Methods

An interesting survey by Çatalyürek et al. [17], an update of the previous survey by
Buluç et al. [15], subdivides the space of known vertex streaming graph partitioning
algorithms into one-pass streaming, restreaming, and buffered streaming algorithms,
which we want to have a look at in the following. Further studies include the one from
Abbas et al. [37], which compares different one-pass streaming algorithms for vertex
partitioning and edge partitioning by offline as well as application-specific metrics, and
Pacaci and Özsu [38], which also evaluates vertex partitioning and edge partitioning
algorithms in the field of offline graph analytics and online graph query workloads.

The group of one-pass streaming models contains the algorithmic heuristics LDG [3] and
Fennel [4], that are introduced in Section 2.2. In the experiments of Tsourakakis et al.,
the reported total cut sizes for Fennel are lower compared to those of LDG. Again, both
of the heuristics are not suitable for unbounded streams of nodes as they depend on the
number of nodes (and the number of edges for Fennel). A further improvement compared
to Fennel is achieved by Zhang et al. and their streaming graph partitioning algorithm
AKIN [5], which mainly works for edge streams. The core idea is to assign an edge and
both of its endpoints to the block maximizing

Hi(u, v) = α ⋅ simi(u, v) − β ⋅ pnl(i)
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with simi(u, v) being the Jaccard similarity [39] of the neighbors’ block assignments
evaluated by block i and pnl(i) being a load penalty expressed by the percentage of
allowed nodes already assigned to block i. To calculate the Jaccard similarity score
only a limited number of neighbors for each node is used containing only the highest
degree neighbors. This way the block assignments of structurally important nodes like
hubs are stressed and less important nodes by degree are neglected. As being used for
edge streams, nodes might switch blocks throughout the streaming process. Zhang et al.
report a reduction in the edge-cut ratio of up to 20% compared to Fennel, while still
producing well-balanced partitions.

Restreaming algorithms include ReLDG and ReFennel introduced by Nishimura and
Ugander [6], that run the same heuristics as in the one-pass models over multiple
stream runs to improve the partitioning quality. This has the benefit that future nodes,
that were not yet streamed, already have a proposed block assigned after the first
streaming run that the heuristics can make use of. Furthermore, ReFennel continuously
increases the importance of the balance penalty over the stream runs to achieve balance.
Awadelkarim and Ugander [7] build upon ReLDG and evaluate the algorithm with
different static (based on a graph’s structure) and dynamic (updated between different
stream runs) streaming node orders. Their best-performing node order called ambivalence
is based on a node’s gain inspired by balanced label propagation and places nodes having
more ambivalent block assignment decisions at the end of the stream.

Patwary et al. [8] introduce a very simple, but yet effective sliding-window based streaming
partitioning algorithm called WStream that is able to beat LDG measured by edge-cut
ratio on the selected graph instances using a greedy partitioning strategy. Far more
sophisticated is the approach from Faraj and Schulz [9] that uses a multilevel algorithm on
a constructed graph based on a streamed batch of nodes and their connections to existing
blocks and optionally future nodes. It uses a size-constraint label propagation coarsening
technique, initial partitioning based on a weight-considering Fennel heuristic, and again
a size-constraint label propagation local search algorithm for uncoarsening, which uses
the weight-adapted Fennel function instead of the normal greedy rule. This algorithm
called HeiStream only takes linear partitioning time and promises to outperform Fennel
for 75.9% on average for small buffer sizes.

Besides the three considered groups of streaming graph partitioning algorithms, multiple
instances of such algorithms can also run simultaneously. Sharing the states between
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the partitioners can impose a conflict between partitioning quality and communication
overhead. Khamoushi introduces a scalable streaming graph partitioning algorithm
for such scenarios [40] based on a buffered streaming model and a novel shared-state
mechanism. The author reports an average 23% decrease in partitioning time, while
at the same time having 15% less communication load with only 5% bigger memory
consumption compared to its competitors.

3.3 Graph Partitioning using Deep Learning

3.3.1 Generalizable Approximate Graph Partitioning Framework

One of the first approaches to applying deep learning methods to conventional graph
partitioning is described by Nazi et al. [10]. One of its big benefits is the utilization of
graph embedding techniques to be able to learn and adapt to the underlying structure of
the graphs. This makes it possible for the model to generalize over different graphs with
similar structures during prediction without having seen them directly during training.
The Generalizable Approximate Graph Partitioning Framework (GAP) is capable to
transfer such learned patterns and principles from smaller training graphs with around
1000 nodes to much larger graphs with up to 27 000 nodes.

The training is done in an unsupervised manner. Nazi et al. introduce a custom
differentiable loss function, which is a continuous relaxation of the normalized cut
objective

Ncut(V1, V2, . . . , Vk) =
k

∑
i=1

cut(Vi, V /Vi)
vol(Vi)

with the volume of a block being defined as vol(Vi) = ∑v∈Vi
deg(v). To transform the

objective into a continuous space, the following steps are done.

First, cut(Vi, V /Vi) can be transformed into the term ∑reduce−sum Y (1 − Y )T ⊙ A with
Y ∈ Rn×k and A ∈ Rn×n. Yik describes the output of the model, which is the probability of
node i to belong to block k, A is the adjacency matrix, and the operator ⊙ performs an
element-wise multiplication (Hadamard product). The reduce-sum operation sums up
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the elements inside the resulting matrix and gives the final expected total cut size of the
prediction.

Next, to formulate vol(Vi) a new variable Γ = Y TD is introduced with D ∈ N≥0 being the
row vector of all node degrees. Adding an element-wise division by Γ brings us to the
final formulation of the continuous relaxation of the expected normalized cut objective:

E[Ncut(V1, V2, . . . , Vk)] = ∑
reduce−sum

(Y ⊘ Γ)(1 − Y )T ⊙A.

Nazi et al. enrich this formulation with an additional squared error term to also consider
the balance of blocks, which gives the final loss function

L = ∑
reduce−sum

(Y ⊘ Γ)(1 − Y )T ⊙A + ∑
reduce−sum

(1TY − n
k
)2

with 1TY being the expected number of nodes in each block.

The model of GAP consists of a graph embedding module and a concatenated graph
partitioning module. As the embedding module Nazi et al. utilize a selection of either
a 3-layer Graph Convolutional Network (GCN) inspired by Kipf and Welling [41] or
the already introduced GraphSAGE framework by Hamilton et al. [32] using the max
pooling aggregator with 5 layers and 512 units. The partitioning module is a simple
3-layer fully-connected network with a hidden dimensionality of 64 followed by a softmax
function to output the block assignment probabilities for each node.

Figure 3.1: Comparison of the fraction of cut edges over k on random graphs between GAP
and hMETIS [10]
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In a direct comparison for balanced graph partitioning against hMETIS [42], GAP
outperforms hMETIS, especially on dense graphs like the artificially generated random
graphs as seen in Figure 3.1 provided by Nazi et al. [10]. On sparse real-world TensorFlow
computation graphs, the GAP framework matches the performance of hMETIS and even
outperforms hMETIS on VGG by 1%. For the real-world graphs, only a 3-partition
setting is evaluated, for the random graphs, experiments for k = 2 up to k = 10 blocks
are executed. Both GAP and hMETIS produce 99% balanced partitions in the reported
experiments with the balancedness measured as one minus the mean squared error of the
number of nodes in every block and a completely balanced block (nk ). Note that GAP is
optimized for each individual graph to give the best possible result.

When investigating the generalization capability of GAP, one recognizes that general-
ization works well for unseen graphs with the limitation that the unseen graphs need to
be similar to the graphs seen during training. The real-world TensorFlow computation
graphs have a very similar degree distribution and so do the generated scale-free and
random graphs. Hang et al. come to the conclusion that the Jaccard similarity correlates
with lower total cut sizes. For the real-world graphs, training on a graph covering only
1 325 nodes is enough to make decent predictions for a larger graph with 27 114 nodes.
There is just a 2% loss in performance compared to optimizing directly on the unseen
graph used during prediction. For the generalization experiments on real-world graphs,
the TensorFlow operation types are used as the sole node feature leading to a one-hot
encoded feature vector of size 1 518. On random graphs, GAP performs almost equally
to hMETIS, but is 10-100 times faster. The reason why such a great boost in prediction
time can be achieved is not further investigated. As random graphs do not own features,
node features are generated by applying Principal Component Analysis (PCA) to the
adjacency matrix.

To summarize, GAP gives an initial idea of how to approach graph partitioning with
deep learning techniques. It introduces a loss function for graph partitioning and a model
architecture that is capable to generalize to unseen graphs to a limited degree.

What remains in order to be applicable for the problem setting of this work is to apply
such a deep learning model to streamed, non-attributed graphs. Such graphs also tend
to be multiple orders of magnitude larger than the ones presented by Nazi et al. Also,
we would like to generalize over graphs with different underlying degree distributions,
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which might also be graphs from the same application domain (but with different degree
distributions not as in Nazi et al.), but also graphs of totally different origin.

3.3.2 Deep Learning and Spectral Embedding for Graph Partitioning

Another approach to applying deep learning methods to conventional graph partitioning
is described by Gatti et al. [11]. It represents a modification to the previously explained
GAP model [10] and is the first of its kind to bisect non-attributed graphs. It takes a
more global approach compared to GAP by using spectral graph partitioning theory.
Still, it also subdivides the model into an embedding and a partitioning module. Both
modules incorporate a multilevel algorithm inspired by the multigrid algorithm [43].

The goal of the embedding module is to predict an approximate Fiedler vector f [44],
the eigenvector to the smallest non-trivial eigenvalue of the normalized graph Laplacian
matrix L̃ = D−1(D −A) with D being the degree matrix and A the adjacency matrix.
From spectral graph partitioning theory, we know that L̃ can be used to express the
normalized cut objective as

fT L̃f = 4∣{{u, v} ∈ E ∣u ∈ V1, v ∈ V2}∣
∑i∈V1 deg(vi)

and that the Fiedler vector in the continuous relaxation of the problem minimizes this
term. Therefore the output of the embedding module should already give an approximate
Fiedler vector and therefore an approximate spectral graph partitioning.

First, the input graph is coarsened using a heavy edge matching algorithm until only two
nodes are left. On every level, the matrix F ∈ Rn×d is predicted holding the eigenvectors
to the d smallest eigenvalues (including 0) for the graph having n nodes on the current
level. Gatti et al. sets d = 2 such that f1 is the constant one vector 1 and f2 represents
the Fiedler vector. The prediction on each level is done using multiple layers of PyTorch
Geometric’s SAGEConv layer [45], an implementation of GraphSAGE’s sample and
aggregate methodology. Nevertheless, the aggregator used is different from the ones
introduced in Section 2.6

hkv ← Tanh((W1h
k−1
v +W2 ⋅Mean({hk−1

u ,∀u ∈ N(v)})).
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with hv having just two components. Input to the SAGEConv layers is the interpolated
matrix F from the previous layer, which is chosen as the identity matrix on the very
coarsest level. The exact same SAGEConv layers are used on every level of the multilevel
algorithm, such that the trainable parameters remain independent of the graph size. On
the finest level, several dense layers are applied before standardizing the final embeddings
F using QR-factorization. The loss function used for training the embedding module
minimizes the residual to the eigenvectors of the normalized graph Laplacian matrix
and minimizes the total cut size by minimizing the eigenvalues of the normalized graph
Laplacian matrix:

L = ∥L̃F −ΛF ∥ +
d

∑
i=1
λi.

The eigenvalues are computed as λi = F T
∶,iL̃F∶,i with F being orthogonal and normalized

after the QR-factorization and Λ = diag(λ1, . . . , λd) being the diagonal matrix of the
eigenvalues. Before passing the Fiedler vector as the approximate spectral partitioning
to the partitioning module, it is again normalized according to

F∶,2 = f2 =
√

∣V ∣(f2 −
∑∣V ∣

i (f2)i
∣V ∣

)

to have zero mean and unit variance.

The partitioning module uses the provided matrix of eigenvectors F and assigns each
node the corresponding row of F . Again a multilevel scheme is applied, this time also
applying several layers of the aggregator function before every coarsening step using the
heavy edge matching heuristic. On every level, the feature tensor F l is first stored and
then passed from the coarsening routine to the uncoarsening routine on the same level.
The interpolated feature tensor F̃ l coming from the coarser level subtracts the residual
error from F l such that the approximate Fiedler vector F l

∶,2 is refined more and more to
approach the optimum. Again the same SAGEConv layers are applied on every level to
keep the model size fixed. On the finest level again several dense layers are applied before
creating block assignment probabilities for each node using the softmax function. The
loss function used for training the partitioning module is the same as from Nazi et al. [10]
but neglects the balance term.
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Summarizing the architecture, the embedding module alone learns to approximate a
spectral graph partitioning and the partitioning module tries to correct the errors of
the embedding module regarding the spectral graph partitioning and outputs a final
probability distribution for every node. Looking at the output of the embedding module
alone can give an approximate spectral bisection by assigning V1 = {vi ∈ V ∣Fi,2 < ci} and
V2 = V /V1 with ci chosen as the Fi,2 minimizing the normalized cut or the median of F∶,2
for balanced partitions.

The experiments report a decent approximation of the exact spectral partitioning from
the embedding module with the worst performing graph instance having a 7% higher
normalized cut and 11% higher imbalance. The overall model is indeed capable to
outperform METIS [46] and Scotch [47] on some chosen graph instances. It also corrects
the high imbalance that would have been produced by an approximate spectral partitioning
from the embedding module on another graph instance. Nevertheless, not always does
the final model give the desired result.

(a) Normalized Cut (b) Time

Figure 3.2: Performance profile ratios for the SuiteSparse instances [11, 48]

In Figure 3.2 by Gatti et al. the purple line indicated as “GAP” is the final model
from Gatti et al. We see that the final model cannot always correct the errors from the
embedding module. The curve from the approximated spectral partitioning that the
embedding module outputs is consistently over the one from “GAP”. Regarding the running
times, the final model as expected always runs faster than true spectral partitioning and
in most cases also faster than METIS, but slower than Scotch. Gatti et al. also state
well generalization capabilities of the final model without much further investigation.
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3.4 Streaming Graph Partitioning using Deep Learning

Inspired by GAP from Nazi et al. [10], and based on the preliminary work by Zwolak [49],
Abbas [12] and Zwolak et al. [13] introduce the first and to the best of their and
our knowledge only online graph partitioning deep learning model called GCNSplit.
Traditional streaming graph partitioning algorithms like High Degree Replicated First
(HDRF) from Petroni et al. [50] make use of an unbounded state of size O(∣V ∣), which
is why they are impractical for unbounded streams as the allocated memory is growing
and needs to be updated frequently. GCNSplit on the other hand is a stateless fixed-size
model and is able to handle unbounded graph streams.

In Abbas [12], GCNSplit is applied to unbounded edge streams. Its architecture is
basically equal to GAP and based on an embedding module and a partitioning module.
As the embedding module GraphSAGE with the max pooling aggregator and just two
aggregation layers is used to encode attributed nodes into the latent embedding space.
The partitioning module is a 3-layer fully-connected network with a final softmax layer
to output block assignment probabilities. The dimensionality of the hidden layers for
both modules is set to 64. The input feature vector of each node can have up to 2 500
components in the experiments performed by Abbas (see Twitch graphs). When an edge
is streamed, both edge endpoints’ feature vectors are fed consecutively (unsupervised
model) or concatenated (supervised model) into GCNSplit to give a prediction. The
probabilities received are input to the final block assignment heuristic1. Here Abbas
differentiates between the HighestOrLeastLoaded heuristic, which assigns an edge to the
block receiving the highest probability or to the least loaded block in case the balance
constraint would get violated, and the HighestAvailable heuristic, which always chooses
the most probable block which is not overloaded yet. In the case of the unsupervised
model, where both nodes are fed consecutively into the model, the block is determined
by the highest of both nodes’ output block probabilities. Interestingly, Abbas reports a
50 - 226% higher imbalance of GAP compared to GCNSplit which extends GAP by its
balance heuristic. Such high imbalances are not directly reported by Nazi et al. [10].

GCNSplit is trained offline in either a supervised or an unsupervised manner. Inde-
pendently from the training mode, both modules are trained jointly using the same

1In the following always referred to as balance heuristic
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loss function and mini-batch gradient descent. The unsupervised training is performed
using the same loss function as GAP [10], but additional coefficients α for the expected
normalized cut term and β for the balance error term resulting in

L = α ∑
reduce−sum

(Y ⊘ Γ)(1 − Y )T ⊙A + β ∑
reduce−sum

(1TY − n
k
)2.

For supervised training labels from the HDRF edge streaming graph partitioning algo-
rithm [50] are used. The standard cross-entropy loss function is used to optimize the
model. The training graph is typically a fixed-sized snapshot of the evolving target
graph that should be partitioned online during prediction, but it can also be a different
graph that has the same node features and a similar structure as the target graph.
GCNSplit’s generalization capability can therefore be compared to GAP [10]. Regarding
the partitioning quality and applicability, Abbas notes:

“As a result, we expect GCNSplit to be particularly effective on graph streams
whose structural characteristics and feature distribution remain relatively
stable over time. Nevertheless, if GCNSplit is applied on a graph stream with
major concept drift, it will - in the worst case - behave like hash partitioning.”

Hash partitioning is a stateless streaming graph partitioning algorithm that assigns edges
with unique identifiers uniformly at random to blocks by applying a hashing function
onto the edges. This typically leads to high replication factors.

In the case of the unsupervised model, online edge partitioning inference is performed by
predicting the block assignments of both edge endpoints consecutively. On the other hand,
the feature vectors of the nodes are concatenated and fed together into GCNSplit in the
case of the supervised model, which was trained to output edge assignment probabilities
instead of node assignment probabilities because of using HDRF’s edge partitioning labels
for training.

The experiments regarding partitioning quality show, that GCNSplit can well keep up with
the HDRF baseline algorithm while being a fixed-size stateless model2. The unsupervised
model turns out to work better than the supervised model as producing lower replication
factor scores for the edge partitioning setting. Also, the HighestOrLeastLoaded balance

2While GCNSplit takes just 115KB to partition a large random graph with 1.3B edges, 930M nodes,
and 64 random features per node, HDRF would need more than 116GB.
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heuristic consistently achieves better results than the HighestAvailable balance heuristic.
Applying the trained model to a different graph of the same application domain, i.e.,
training on the Twitch-DE graph and applying the model to the Twitch-ES graph during
prediction for instance, still results in high-quality partitions. Nevertheless, once the
evolving graph develops further away from the snapshot the model was trained on,
partitioning quality also decreases. GCNSplit only works in environments with stable
graph structures and feature distributions over time. Else, Abbas also states that online
training would need to be necessary to counter this issue.

To summarize, GCNSplit is an extension of GAP [10] to be applicable for unbounded
edge streams. It introduces new balance heuristics to enforce hard balance constraints
and also generalizes to unseen graphs, but is limited to graphs with a similar structure
and originating from the same application domain.

What remains is to engineer a model and streaming approach, that is capable to par-
tition non-attributed, featureless graphs. This way, one could also enlarge the area of
generalization capability beyond just graphs from the same application domain. What
needs to be evaluated is, whether graphs of different structures and origins can also be
partitioned using such a machine learning or deep learning model as a heuristic.
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CHAPTER 4
Streaming Graph Partitioning
Framework

4.1 Overview

For the task of streaming graph partitioning, we first introduce our buffered streaming
model in Section 4.2. It supports modes for both node and edge streaming, whereas our
experiments in Chapter 5 mainly focus on node streams. Once the nodes or edges are
streamed into the buffer, we need to build features for each node, which are necessary
to make predictions about the block assignment of each node or edge. Therefore, we
introduce different groups of features in Section 4.3 that we will later on empirically
evaluate for each model. As a core conceptual novelty that comes with our framework,
prediction propagation is explained in Section 4.4. It serves to propagate information
through the buffer to build better features that consecutively result in better partitions.
The different machine learning models, their configuration and architecture are introduced
in Section 4.5. Last but not least, two balance heuristics inspired by Abbas [12] and
Zwolak et al. [13] are presented to ensure balanced partitions in Section 4.6.

The high-level structure of the streaming graph partitioning routine for node streams, that
we mainly focus on in this work, is given in Algorithm 3. After having built the buffer, we
stream nodes in a sliding-window based fashion by the natural order of nodes. Every time
new nodes are added to the buffer, they are added to the prediction propagation queue.
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For all nodes inside this queue, feature vectors are (re)generated, optionally normalized
and standardized, and predictions regarding a block assignment are done while taking
balance heuristics into consideration. In the case that the block assignment changes or is
initially set, neighboring buffer nodes are added to the prediction propagation queue of
the following round until all specified prediction propagation rounds are performed. This
continues until the entire graph is streamed and partitioned.

Algorithm 3 Structure of the streaming graph partitioning routine
Build initial buffer
while Graph not entirely streamed do

Add step size new nodes to the buffer and the pred. prop. queue
Optional: Enrich buffer nodes with additional features
for Pred. prop. rounds do

while Current pred. prop. queue not empty do
Pop node from current pred. prop. queue
Construct the node’s feature vector
Optional: Normalize and standardize the feature vector
if Feature vector changed then

Assign new feature vector to node
Predict the node’s block while considering the balance heuristic
if Block assignment changed then

Add neighboring buffer nodes to the next pred. prop. queue
Update the buffer

For a more visual explanation of the prediction phase of node streams, Figure 4.1 can be
used. It represents a streaming graph partitioning scenario with k = 4 perfectly balanced
blocks. The buffer contains 16 nodes and the step size is chosen as four nodes at a time.
As the previous two blocks, disregarding the way how they were built, already reached
their maximum load, node 25 is given a new block assignment by the chosen balance
heuristic. Subsequently, node 21 is added to the next prediction propagation queue again,
as it might want to choose a better block assignment. The next node in the current
prediction propagation queue is node 26. Auxiliary nodes in the current buffer are never
added to a prediction propagation queue.
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Figure 4.1: Overall streaming algorithm during the prediction phase. We use a sliding-window
based streaming algorithm with a fixed buffer size b = 16 and a fixed step size s = 4.
Once new nodes are added to the buffer, their features get constructed and block
assignment predictions are made while regarding balance heuristics to ensure a
hard balance constraint. Subsequently, the newly predicted block assignments are
propagated to neighboring buffer nodes, which might improve their feature vectors
and the block assignment predictions built upon these feature vectors.
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4.2 Buffered Streaming Model

The node stream is implemented in a sliding window based buffered streaming fashion.
The scalar s stands for the step size in this model, whereas b denotes the buffer size.
Both scalars are parameters of the algorithm. Note that the problem allows us to have
O(∣V ∣) space available.

We first introduce the buffer as being the subgraph based on b streamed nodes from the
original graph. Every node has a constant number of attributes which are:

Feature Description
nodeID The ID of the node
weight The weight of the node
feature_vector The computed feature vector of the node used for the prediction
block The predicted block of the node
true_block The ground truth block of the node
auxiliary Whether the node is an auxiliary node
community The cluster ID resulting from a label propagation run on the buffer

Table 4.1: Attributes assigned to each node

All nodes are streamed in the natural order of their node IDs. We denote all b nodes
currently inside the buffer as current nodes and all nodes removed from the buffer as
past nodes.

Initially, b nodes are streamed into the buffer. The subsequently induced subgraph by
these current nodes gives us a local view of the entire graph. Next, the training or
prediction routine is run on the entire buffer, which partitions the current nodes in the
buffer. For all subsequent steps, the s oldest nodes by node ID are removed from the
buffer and the next s nodes are streamed into the buffer. Note that current nodes might
have edges towards past nodes, which were already assigned to a block. We solve this by
adding such past nodes as auxiliary nodes to the buffer again, without adding the edges
between such past nodes to the buffer, but only those towards current nodes. This is
especially important for the feature generation of each current node as some features are
based on attributes of neighboring nodes.

32



Streaming Graph Partitioning Framework

After the current buffer is built, nodes can be enriched with additional information.
Currently, the only information added are cluster IDs that result from a label propaga-
tion [51] algorithm run on the current buffer to build a clustering. The number of label
propagation rounds is a parameter of the algorithm.

The buffered streaming model for edge streams is equivalent to the one for node streams.
The buffer contains b edges at a time and removes/adds s new edges on every streaming
step ordered by ascending edge IDs. Auxiliary edges are added between nodes inside
the buffer and nodes outside the buffer, that were already assigned a block. The only
difference is, that the feature_vector attribute is still attached to every node as the block
assignment prediction for every edge is performed by investigating both edge endpoints
to conclude the final block assignment prediction of an edge.

During streaming, we also maintain a partition state, which stores the number of nodes
or edges in each block (block count) and the blocks recent individual nodes or edges
were assigned to (partitioning history). The size of the partitioning history buffer can be
chosen arbitrarily as a parameter of the algorithm.

4.3 Feature Engineering

As we will mainly focus on node streams in the remainder of this work, we will exclusively
explain the following features in the context of node streams but all of them can be easily
mapped to edge streams as well. Once we use edge streams in Section 5.5.4, we will
disclose how to adapt the chosen features.

To predict the block assignment of a node, each node is represented by a feature vector
that needs to be calculated beforehand. We define three different kinds of feature groups,
i.e., statistical features, greedy features and heuristic features.

Statistical features. Statistical features are divided into commonly known node
characteristics (abbreviated NC) and the partitioning history (abbreviated PH). Common
node characteristics used are degree, local clustering coefficient, node clique number, node
ID (which is also the index in the stream when streaming in natural order), percentage
of nodes streamed (to give the node ID a reference value), and the cluster ID that results
from running the label propagation algorithm in the buffer before calculating the feature
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vectors. The local clustering coefficient describes how much a node’s direct neighborhood
is connected and is calculated as Cv = 2Lv

deg(v)(deg(v)−1) with Lv being the number of links
between directly neighboring nodes. The node clique number tells the size of the largest
maximal clique containing an observed node. To add the partitioning history, we append
a vector of size k counting the number of latest assignments to each block from the
partitioning history. The statistical features result in a vector of size k + 6.

Greedy features. The first feature (abbreviated NBC) regards the community a node
gets assigned to after label propagation. By only looking at the direct neighbors of a node
that were assigned to the same community, a k-vector counts for each block the number
of neighbors in the same block. The second feature (abbreviated EC) lists for each block
the number of added cut edges when a node gets assigned to this specific block. The last
k-sized feature (abbreviated NB) simply counts for each block the number of neighbors
that were assigned to this block.

Note that the greedy features are based on previous block assignment predictions. There-
fore, in case the prediction does not perform well, the subsequently calculated features
building upon such predictions will amplify bad prediction performance. Also, the greedy
features become more and more accurate the more the direct neighborhood of a node is
explored, meaning the more neighbors have already been partitioned. To make features
and subsequent predictions more accurate, the concept of prediction propagation is
introduced in Section 4.4.

Heuristic features. Here we use the two heuristics Fennel and LDG, which are
introduced in Section 2.2. Both of them will result in a k-vector with each component
storing the score of the heuristic for the specific block. Just like the greedy features, the
heuristic features also become more accurate through prediction propagation as they also
depend on the block assignments in the direct neighborhood.

4.4 Prediction Propagation

As stated in Section 4.3 some features depend on the block assignments of a node’s
direct neighborhood. The less the block assignments of the direct neighborhood are
already done, the more difficult it is to get accurate features based on this information.
The concept of prediction propagation now has the goal to improve on previous block
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assignment predictions for current nodes inside the buffer in case the feature vectors of
such nodes become more accurate by having more partitioned neighbors.

Once a current node changes or initially receives its block assignment, all neighbors of
this node in the buffer, except auxiliary nodes, are added to the queue for the next
prediction propagation round. Then in the next round, in case the recalculated feature
vector for such a node popped from the queue is now different, its block assignment is
predicted once more. If the block assignment prediction changes, again the neighbors
of such a node are added to the queue for the next prediction propagation round. This
continues for several custom-defined rounds. Note that the more prediction propagation
rounds are performed, the longer a single streaming step takes. All auxiliary nodes inside
the buffer are excluded from prediction propagation, they just serve to make their block
assignment decision available for the feature construction of their direct neighbors, that
are true members of the buffer and whose prediction should possibly improve.

Also, this principle is based on the assumption that the nodes being streamed by their
natural order are not of totally different origins inside the graph. There should be some
locality included in the node stream which will then be reflected also into the buffer. If
this is not the case, then predictions could not be propagated appropriately and therefore
the partitioning quality would suffer.

In the context of edge streaming, prediction propagation means adding outgoing edges
from the source and target node of an edge, whose new block assignment should be
propagated through the buffer, to the prediction propagation queue of the following
round.

4.5 Machine Learning Models

We chose to approach the problem using both models from conventional machine learning
and more advanced deep learning. The conventional models have the advantage to be
faster to train and more explainable. The deep learning models have more degrees of
freedom and therefore need longer to be trained, but should perform more accurately.
Also, they should be better capable of extracting patterns, feature interactions, and
partitioning heuristics as they theoretically can approximate any given function according
to the universal approximation theorem. We will introduce all models in the following.
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Baseline. The baseline algorithm is an implementation of the Fennel heuristic (see
Section 2.2) incorporated into our framework. The block with the maximum Fennel score
gets assigned the currently to be predicted node or edge. This baseline algorithm is used
to compare the machine learning heuristic against the Fennel heuristic.

Logistic Regression. The Logistic Regression model is the simplest classifier from
conventional machine learning techniques. It performs especially well on linearly separable
data. We use the implementation from the scikit-learn1 library [52]. We configure the
Logistic Regression classifier to use the SAGA solver, a variant of the stochastic average
gradient solver, L2-regularization, and a convergence tolerance of 10−4. The best value
for the inverse of the regularization strength C is evaluated in Section 5.4.3.

Gradient Boosted Decision Trees (GBDTs). As a parameter-free model GBDTs
make no assumptions about the given data. Through boosting they can fit very complex
functions very closely which makes them one of the most popular conventional machine
learning classifiers. We use the scikit-learn wrapper implementation from XGBoost2 [20].
The GBDTs hyperparameters are mainly studied in Section 5.4.3, i.e., the number of
estimators to use, the learning rate, the maximum depth of each tree estimator, the
subsampling percentage, and the size of the regularization parameter. No early stopping
is performed.

Support Vector Machine (SVM). The SVM, another representative of the con-
ventional machine learning models, was the main competitor of most neural network
models when their popularity increased again due to the increasing amount of data and
computing power in the early 2000s. The model’s implementation is also taken from
the scikit-learn library [52]. The hyperparameters, namely the kernel and regularization
parameter, are also studied in detail in Section 5.4.3. The convergence tolerance is set to
10−4.

GraphSAGE. In Chapter 3, we mention that GraphSAGE [32] is often used to learn
node embeddings that are used to make block assignment predictions using a separate
partitioning module as a classifier. Nevertheless, GraphSAGE alone can also serve as
a classifier by squashing the final embeddings through a softmax layer to output block
assignment probabilities for each node. After experimentally validating the architecture

1https://scikit-learn.org/stable/
2https://xgboost.readthedocs.io/en/stable/python/
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of GCNSplit from Abbas [12], we take over its configuration parameters. The model
is built using PyTorch Geometric3 [45]. We use two 64-unit SAGEConv layers with
max-pooling aggregators, enabled normalization, and a ReLU non-linearity in between.
The model outputs log-probabilities using the log-softmax function.

Partitioner. The Partitioner model adds an additional partitioning module on top of
the previously introduced GraphSAGE model. It is a dense neural network with three
64-unit linear layers and ReLU non-linearity in between and a final log-softmax layer
to output the block assignment probabilities. Again the architectural configuration was
taken from Abbas [12] after experimental evaluation. The partitioning module was built
with PyTorch4 [53].

The GraphSAGE and Partitioner model are optimized over 2 500 epochs using the Adam
optimizer [54] and a learning rate of 10−5. No weight decay is enabled. As we output log-
probabilities to stronger punish incorrect predictions and for more numerical stability, we
also use the negative log-likelihood loss function for supervised training. We additionally
experimented with the loss function from Nazi et al. [10] for unsupervised training, but
the convergence time takes far too long on our machine. Even if Abbas [12] reports the
unsupervised model to perform better than the supervised model, we believe that this is
due to improvable block labels in the ground truth data as normally supervised learning
tends to work better than unsupervised learning in a direct comparison. We generate block
labels using the sophisticated offline multilevel graph partitioner KaFFPa [14] in the “eco”
configuration. No special weight initialization techniques like Xavier initialization [55] or
He initialization [56] are performed, as the models are converging fast already.

4.6 Balance Heuristics

Inspired by Abbas [12] and Zwolak et al. [13], we also define the same two balance
heuristics applied to node and edge streaming graph partitioning to ensure the balance
constraint when assigning nodes or edges to blocks. For edge partitioning, the received
block probabilities for both edge endpoints are considered together. The firstMostProbable
heuristic always assigns a node or edge to the most probable block given by the machine

3https://pytorch-geometric.readthedocs.io/en/latest/
4https://pytorch.org/docs/stable/
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learning heuristic that does not violate the balance constraint. The second LeastLoaded
heuristic tries to assign a node or edge to the most probable block and in case of an
overload to the least loaded block. Both heuristics apply random tie-breaking in case two
blocks have an equal probability to get the current node or edge assigned.
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CHAPTER 5
Experimental Evaluation

5.1 Overview

After having introduced our framework, we now come to the experimental evaluation.
In Section 5.2 we first introduce the two datasets used and the machine on which the
experiments are run. Also, the initial streaming configuration is presented. Note that
up to Section 5.5.4, we exclusively focus on node streams. The way the training routine
works and the different evaluation methodologies are the subject of Section 5.3.

At the beginning of the tuning phase of Section 5.4, we figure out which features
work best for which model and deep dive into the features of every feature group in
Section 5.4.1. Next, we analyze whether feature vectors should be preprocessed using
feature normalization and standardization in Section 5.4.2. Each model’s hyperparameters
will be tuned in Section 5.4.3. Besides the model tuning, also the two balance heuristics
are compared to each other regarding their performance in Section 5.4.4. When tuning
the streaming mode in Section 5.4.5, we especially focus on the buffer size b, the step
size s, and the number of prediction propagation rounds. We also do an excursus into a
BFS based streaming order and its impact on the partitioning quality. Throughout the
tuning phase, decisions about the configuration parameters of the framework are made
as a conclusion of every section. These configuration parameters then remain fixed for all
upcoming experiments.
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Once the tuning is done, we continue with the final evaluation phase in Section 5.5 and
first evaluate the generalization capabilities of the different models in the framework
in Section 5.5.1. Here we differentiate between two types of generalization. Instance
generalization focuses on generalizing to unseen nodes in evolving graph scenarios and
group generalization serves to generalize to even unseen graphs. In both scenarios, the
models are compared against the Fennel based baseline algorithm. Next, the models’
behaviors for different imbalance settings are studied in Section 5.5.2, followed by running
time experiments regarding training and prediction time in Section 5.5.3. Last but not
least, a comparison to the main machine learning based and an algorithmic competitor
for edge partitioning will be drawn in Section 5.5.4.

5.2 Experimental Setup

To run the experiments we select two disjoint datasets, a small one for tuning the models
and the streaming mode configuration and a bigger one for the final evaluation and
the comparison against the competitor GCNSplit. Each dataset contains graphs from
different groups of graphs, e.g., social graphs, road networks, meshes, etc. Details about
both datasets can be found in Appendix A. The different groups of graphs also represent
different types of degree distributions, i.e., Gaussian-like, more regular, and power-law
based degree distributions.

The graphs originate from the 10th Center for Discrete Mathematics and Theoretical
Computer Science (DIMACS) implementation challenge [57], the well-known Walshaw
benchmark [58], the “network repository” [59], the Stanford Network Analysis Project
(SNAP) [60] and the laboratory for web algorithmics [61].

The artificially generated graphs, i.e., random geometric graphs and graphs from Delaunay
triangulations, are generated by randomly placing points in the unit square. All graphs
were preprocessed such that the final graphs are undirected with unit node and edge
weights. Also, parallel edges and self-loops were removed. Isolated nodes are supported.

For the training phase, we use a machine with two six-core Intel Xeon E5-2630 v2
processors running at a 2.8 GHz base clock and 3.1 GHz turbo clock. It has 64 GB of
main memory and 3 MB of L2-Cache. The machine runs Ubuntu GNU/Linux 20.04.1
and has the Linux kernel version 5.4.0-48-generic.
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For the initial experiments on the tuning dataset, we choose a buffer size of 256, a step
size of 16, and three prediction propagation rounds1. The datasets used allow us to
stream from the main memory, future work should include experiments with huge graphs
that are streamed from the disk. After every streaming step, five label propagation
rounds are performed to build the clusters needed for some features. Initially, every node
is its own cluster, and the cluster IDs from previous streaming steps are always reused
for the current step. As a balance heuristic, we assign nodes to the most probable, still
feasible block. The ten last block assignments are stored in the partitioning history. Note
that the streaming configuration mentioned is also investigated and refined further in
Section 5.4.5.

We perform the tuning phase for a difficult problem setting with k = 16 blocks and ε = 0.0
imbalance. As the remaining experiments in the evaluation phase are more relaxed, we
hope to prepare the algorithms well enough for any such problem setting. The evaluation
phase allows a bigger imbalance by adding experiments with ε = 0.03 imbalance and also
investigates simpler partitioning procedures into fewer blocks.

5.3 Methodology

Each model is trained after performing a streaming routine. During training, the streaming
routine only serves to build the features, the predictions are replaced with the ground
truth block labels computed by KaFFPa [14]. The buffered training data is then used
all at once to train the model after the streaming routine. This approach is again
only possible if the training data fits into the main memory, else one needs to consider
incremental learning or out-of-core learning techniques, which are not supported by all
models.

To average the total cut size results we use the geometric mean. This minimizes the
effect of extreme outliers on the average total cut sizes as not all graphs are located on
the same scale regarding the number of edges.

Throughout the tuning phase, we often utilize a concept called t-Distributed Stochastic
Neighbor Embedding (t-SNE) [62]. This technique is used to visualize high-dimensional
data in just two or three dimensions. Similar points in the original space will also be

1The small road-euroroad graph only allows a buffer size of 128 and a step size of 8.
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similar and nearby in the visualization after applying a t-SNE dimensionality reduction.
We use this concept to visualize the feature space in order to evaluate if features give
well-separable clusters of different classes.

In the evaluation phase, we often utilize performance profile plots among others. Such
a plot compares the performance of the desired algorithm against a baseline algorithm
regarding the total cut size. It shows how many instances in percent are within a factor
of R away from the total cut size reported from the baseline algorithm on a per-instance
level. The more the curve is pushed to the upper left corner, the better the evaluated
algorithm. Note that the plot is especially thought to be used in the case it is already
expected that the algorithm performs far worse than the baseline algorithm, e.g. if the
baseline algorithm is an exact algorithm or the best currently known algorithm.

5.4 Tuning Phase

5.4.1 Feature Selection

Feature selection plays a major role in many supervised machine learning tasks. In the
following series of experiments, we evaluate which set of features works best on which
models while comparing to the Fennel based baseline algorithm.

In the case of conventional machine learning models, the prediction success heavily
depends on which features are given to the model. These features need to be directly
indicative and characteristic towards which block to assign a node. If not, the model
will not be able to learn appropriate decision rules that separate the blocks from each
other. We therefore evaluate the hypothesis, of whether the greedy and heuristic features
perform notably better than the statistical features.

Contrary to conventional machine learning models, deep learning models have the claim
to learn features on their own by just giving the raw data as the input. These models
should be capable to learn partitioning patterns and heuristics by themselves without
guidance, just as Convolutional Neural Networks (CNNs) learn structural patterns in
images to make a classification prediction. Therefore, statistical features should become
more important and helpful for the GraphSAGE and Partitioner model, even though
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not directly indicative towards the blocks. This is to be investigated empirically in this
section.

We run the experiments for the feature selection on the tuning dataset with k = 16 blocks
and ε = 0.0 imbalance. We train on 80% of the nodes uniformly sampled between the
blocks and test on the remaining 20%. The reported total cut sizes are based on the true
block labels of the training nodes and the predicted block labels of the testing nodes.
The (+) symbolizes an increase in total cut size, (−) a decrease in total cut size, and (=)
an equal total cut size, always comparing against using all features of the group. Each
experiment on each graph is repeated five times using different random seeds.

The feature selection experiments have the same structure over all models. First, we
compare the performance of the different feature groups against each other when using
all of their contained features. We then specify which features are the most significant in
each feature group. Lastly, we compare the selected features from each group against
each other and agree on the feature(s) to be used for each model. All reported total cut
sizes can be found in Appendix B.

Logistic Regression. We initially set the inverse of the regularization strength C = 1
for the feature selection experiment, which is the default value chosen by scikit-learn.
Looking at the initial feature group comparison, we can already see that the hypothesis
made for the conventional machine learning models holds true for the Logistic Regression
classifier (see Table B.1). On average the statistical feature group performs far worse
than its greedy and heuristic feature group competitor. Nevertheless, on the email-EuAll
graph and partly on the delaunay_n14 and cond-mat graph the statistical feature group
performs better.

In the statistical feature group, we can conclude that the feature based on the partitioning
history (PH) is less helpful than the node characteristics (NC) feature vector (see
Table B.2). Combining both features together nevertheless seems to give the best results.
For the greedy feature group, we make the observation that only the edge cut (EC)
related feature seems to give the best results (see Table B.3). Combining it with the
second-best neighboring blocks (NB) feature also does not improve the performance. In
the heuristic feature group, we recognize, that a feature based on the Fennel scores alone
is far more helpful than a feature based on LDG scores (see Table B.4). We therefore
also cut the latter out of the heuristic feature group.
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If we now compare the selected best feature from each feature group, we obtain Table B.5.
This makes us conclude that, for the Logistic Regression classifier, the Fennel score
based feature gives the best performance, even slightly better than combining it with
the greedy feature. Unexpectedly, already a simple Logistic Regression model using just
the Fennel score based feature can outperform the Fennel based baseline algorithm on
average. Eight out of ten graphs from the tuning dataset are best partitioned using this
Logistic Regression model. So far the selected greedy and heuristic features perform
notably better than the statistical features with the exception of email-EuAll, where the
node characteristics (NC) feature outperforms the selected features of the greedy and
heuristic feature group in a direct comparison. Also on delaunay_n14 the statistical
features outperform the Fennel score based feature.

GBDTs. We repeat the same process now for the GBDTs. We initially use 100 estimators
with a maximum depth of three and a learning rate of 0.1. Every estimator is trained
on a 50% subsample of the original training dataset, the regularization parameter λ
is set to one. Again we see that the greedy and heuristic feature perform better on
average than the statistical features, with the exception being again delaunay_n14 and
email-EuAll, but also astro-ph, where the greedy and heuristic feature group perform
worse (see Table B.6). Still, the average analysis supports our hypothesis made at the
beginning of this section.

Again the statistical feature based on the partitioning history (PH) does only convince
to be used in practice when combined with the node characteristics (NC) feature as this
gives the best reported total cut size for this feature group (see Table B.7). We recognize
slightly different behaviors in the greedy feature group, where non of the features can
outperform a combination of the edge cut (EC) and neighboring blocks (NB) related
feature (see Table B.8). The heuristic feature group evaluation again shows the Fennel
score based feature to perform best (see Table B.9).

This also holds true when comparing the Fennel score based feature to the other winners
of each feature group (see Table B.10). Even combining the best features from the greedy
and heuristic group does not give a performance improvement to just using the Fennel
score based feature alone. So also for the GBDTs classifier, we have to conclude that the
statistical feature group performs notably worse than the other two groups. An exception
is again the email-EuAll graph, where the node characteristics (NC) feature outperforms
the selected features of the greedy and heuristic feature group. Also do the statistical
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features outperform the Fennel score based feature on the delaunay_n14 graph and the
greedy features on the astro-ph graph. Again seven out of ten graphs are partitioned
best using the GBDTs instead of the Fennel based baseline algorithm.

SVM. For the SVM, we choose a generic configuration with a polynomial kernel of third
degree with the regularization parameter set to C = 1 (and the kernel coefficient γ set
to the default configuration, i.e., 1/(#features ⋅ V ar(X))). Also, we cap the number
of training nodes to 10 000 as the quadratically growing training effort through the
kernel matrix would otherwise explode. Surprisingly, the statistical feature group starts
to perform far better compared to being used with the Logistic Regression or GBDTs
classifier (see Table B.11). It even outperforms the greedy feature group on average,
which is why the initial hypothesis cannot be proven for the SVM. Nevertheless, the
heuristic feature group still results in the lowest geometric mean over the total cut size.

As expected from the previous experiments, using node characteristics (NC) seems to
work better than using the partitioning history (PH) as a feature (see Table B.12).
Nevertheless, a combination of both gives better total cut size results than using each of
the features on their own. Looking at the direct comparison between the single features
of the greedy feature group, we conclude the pure edge cut (EC) related feature to be
the best choice this time (see Table B.13). An ablation study on the heuristic features
again results in the tendency to use pure Fennel scores as features instead of using Fennel
or/and LDG scores combined (see Table B.14).

Comparing the best features of all feature groups against each other results again in
the Fennel score based feature being recommended to be used, nevertheless also the
features from the statistical group win on some graphs in a direct comparison against the
Fennel score based feature, namely on the graphs from the artificial and social group (see
Table B.15). Looking at the results on the email-EuAll graph for instance, the statistical
features still perform far better.
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(a) NC+PH on email-EuAll (b) Fennel on email-EuAll

(c) Fennel on fe_sphere

Figure 5.1: SVM feature evaluation: T-SNE visualizations of different feature spaces

By looking at the t-SNE visualizations of the feature spaces in Figure 5.1, we also cannot
directly tell why the statistical features perform better on the email-EuAll graph, no
homogeneous clusters can be determined. But visualizing a high dimensional feature
space with just two dimensions might simply be too difficult, such that the clusters
from the higher dimensional space vanish2. Looking at the feature space build from the
Fennel scores, we can already better recognize cluster-like structures and lines for the
email-EuAll graph even though the Fennel score based feature performs worse regarding
total cut size. Clear cluster-like structures on the other hand can be determined for the
fe_sphere graph, where the Fennel score based feature performs far better than others in
Table B.15.

2Note that the feature space itself might not have well separable point clouds by default, as these often
first appear after applying the kernel trick.
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When combining the statistical features with the Fennel score based feature, we do not
obtain a performance boost. Nevertheless, using the Fennel score based feature, we are
able to outperform six graphs using the SVM compared to the Fennel based baseline
algorithm.

To summarize, our hypothesis that the greedy and heuristic features perform notably
better than the statistical features turned out to be true for the majority of cases for the
conventional machine learning models. Only for the SVM model the statistical features
have a bigger impact and the scale-free email-EuAll graph also seems to be more accessible
for streaming partitioning with statistical features than other graphs. But as adding the
statistical features can also worsen the performance for other graphs, we agree on using
solely the Fennel score based feature for the conventional machine learning models as it
provides the best performance for the majority of graphs. We also need to note that so
far we cannot strictly beat the Fennel based baseline algorithm without further tuning,
nevertheless, such simple conventional models are already sufficient to beat the baseline
algorithm on average.

GraphSAGE. Once more, we report the initial performance of the different groups
of features on the tuning dataset, when using all features contained in each group (see
Table B.16). So far the heuristic features have on average again the most promising
outlook, nevertheless the importance of the statistical features has grown, the artificial
graphs were best partitioned by using the statistical features for instance, and also on
other graphs, models would prefer the statistical features over others. This would support
our hypothesis that for deep learning models the statistical features can be used to extract
patterns and heuristics for streaming graph partitioning.

Looking at the statistical features, different from the results for the conventional machine
learning models, the partitioning history is more useful as a feature than plain node
characteristics (see Table B.17). Nevertheless, combining both features together still tends
to give the best results. A closer investigation of the greedy features shows favor towards
the combination of the edge cut (EC) and neighboring blocks (NB) related feature (see
Table B.18). Also for the last group of features, we again obtain similar results as for the
previous models, there is a clear recommendation to use the Fennel score based feature
over the LDG score based feature or a combination of both (see Table B.19).
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Using GraphSAGE we are able to outperform the Fennel based baseline algorithm already
in six out of ten graphs, not more than with the conventional machine learning models
(see Table B.20). Still, the greedy and heuristic features outperform the statistical
features on average, nevertheless the statistical features become more informative than
in previous conventional machine learning models, especially for the artificial graphs,
astro-ph, and email-EuAll. The deep learning model begins to find partitioning patterns
and heuristics on its own from the raw input feature space, but which is still not enough
to outperform the greedy and heuristic features. This would confirm our hypothesis
that indeed statistical features become more important for GraphSAGE as the first deep
learning model evaluated empirically in this series of experiments in contrast to the
conventional machine learning models. Using a pure Fennel score based feature also
performs better than combining it with the selected greedy features.

Contrary to the SVM a t-SNE visualization also does not need to have clear cluster-like
structures anymore. The aggregator functions that GraphSAGE learns separate the
hyperspace by far more than k hyperplanes. According to the universal approximation
theorem, a neural network can divide a hyperspace into any arbitrary number of subspaces.
When given enough degrees of freedom, it is in theory able to approximate any given
function. This fact would also support the hypothesis of GraphSAGE being a model that
is capable to handle also non directly indicative features like node characteristics (NC).

Partitioner. Again the experiment this time for the Partitioner model leads to the
observation to use the greedy and heuristic features over the statistical features, even
if again the impact of statistical features increases (see Table B.21). Just as for the
GraphSAGE model, the artificial graphs are best partitioned using features from the
statistical group, which again supports our hypothesis made for the deep learning models.

Looking at the statistical feature group first, we obtain that again the partitioning history
(PH) feature wins over the node characteristics (NC) feature, but a combination of both
still performs better than having each feature separated (see Table B.17). This is the
same discovery as made for the GraphSAGE model. The conventional models prefer the
node characteristics (NC) over the partitioning history (PH) in a direct comparison. For
the Partitioner model, the neighboring blocks (NB) feature shows a tendency to be used
over the other two greedy features or a combination of the edge cut (EC) related feature
and the neighboring blocks (NB) feature (see Table B.23). Also for the last model in this
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series of experiments, the Fennel score based feature prevails over the LDG score based
feature or a combination of both features (see Table B.24).

Just as with the GraphSAGE model, the Partitioner model is also able to outperform
the Fennel based baseline algorithm on average when using solely the Fennel score
based feature. Only three out of ten graphs are still best partitioned using the baseline
algorithm (see Table B.25). Supporting our hypothesis, the statistical features develop
more importance for the Partitioner model, but which is still not sufficient to outperform
the greedy and heuristic features on average. Nevertheless, on some graphs, the statistical
features turn out to work really well, like on the artificial Delaunay graphs. Combining the
Fennel score based feature with the neighboring blocks (NB) feature does not outperform
the pure Fennel score based feature.

To summarize our hypothesis, indeed the deep learning models seem to be more suitable
to extract patterns and heuristics out of the statistical feature group. The geometric
mean of the total cut sizes across the experimental graphs is notably smaller than for
the conventional machine learning models. Nevertheless, as the majority of graphs are
partitioned best using the Fennel score based features, we decide to use this feature
for future experiments with the deep learning models. This aligns with the decision
made for the conventional machine learning models, that also use only the Fennel score
based feature in the future. Just like the conventional machine learning models, the deep
learning models are also capable to outperform the Fennel based baseline algorithm on
average. So far nevertheless, the reported geometric mean of the total cut sizes based on
the Fennel score based feature is lowest for the conventional machine learning models
and not for the deep learning models. We will need to evaluate if this persists also after
the tuning phase.

Side notes. We also want to note that the features from the greedy group are somewhat
correlated, which can be seen in the reported total cut sizes that differ just a bit between
the features independent from which model was used. Often the decision of which
random seed is used decides which of the features wins the experiment. Especially if the
neighboring blocks (NB) feature alludes to a specific partition, its matching component
in the edge cut (EC) feature will be low. Also, the feature regarding the neighboring
blocks from the same community (NBC) is just a more restrictive feature than the normal
neighboring blocks (NB) feature.
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The fact that on some specifically chosen graphs the statistical features are also helpful
for the conventional machine learning models, should be based on the high variance of the
degrees found in such graphs. The email-EuAll graph, which is often partitioned better
with the selected statistical features than a greedy or heuristic feature, is a power-law
based scale-free graph and therefore covers a wide range of degrees. Nevertheless, not
all graphs whose degree distributions are power-law based, are partitioned best with the
statistical features.

5.4.2 Feature Normalization and Standardization

In machine learning the quality of the data that is input to a model is essential for
the model’s performance. Preprocessing the input data might help the model to better
recognize structures and patterns in it. Normalizing the data fixes the magnitude of
the feature space to a specific expansion, which helps to make the model invariant to
scaled data. This is especially important for generalization purposes over different-sized
graphs as the previously selected Fennel score based feature can change in magnitude
as it depends on the number of nodes n and edges m. Standardization transforms the
data to have a zero mean and a unit standard deviation such that changes in the feature
values have an equal impact on the model. Especially parametric models, that have
an incorporated assumption about the data, are often dependent on such preprocessing
techniques. The Logistic Regression classifier is such a parametric model as it assumes
the data to be linearly separable. Also, the SVM tries to make the data linearly separable
by using the kernel trick.

To help these models to perform better, we normalize the Fennel scores to be in the interval
[−1, 1] and apply standardization afterwards. In Figure 5.2 we can see which impact this
has on the feature space of k = 2 blocks and k = 16 blocks. The t-SNE visualization for
k = 2 blocks equals the exact feature space, whereas the t-SNE visualization for k = 16
blocks applies dimensionality reduction and puts such data instances close together that
are also nearby in the original feature space.
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(a) k=2 (b) k=2; normalized

(c) k=16 (d) k=16; normalized

Figure 5.2: Effect of feature normalization and standardization on the feature space: T-SNE
visualization of the feature space of delaunay_n13

The non-preprocessed data results in a feature space, that is almost impossible to separate
linearly. Whereas the Logistic Regression classifier would probably fail to do so, the SVM
could still perform better by using the kernel trick. When normalizing and standardizing
the data, one can now clearly separate the data linearly. Nevertheless, we still see that in
such a feature space not all data instances can be classified correctly by using a simple
linear model. Some data instances are put into the wrong cluster.

Parameter-free models on the other hand, i.e., GBDTs, GraphSAGE, and Partitioner,
have more degrees of freedom and can more closely adapt to the feature space and try to
correct the errors that the Fennel heuristic would generate in the feature space. Therefore
it would not be beneficial to narrow down the feature space and make optimization
harder, which is the case when normalizing the data. Instead, the original feature space
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should be passed to such models that has more space to be optimized without forcing the
models to overfit in order to correct the errors of the Fennel heuristic. Still, regularization
needs to be applied to avoid potential overfitting.

5.4.3 Hyperparameter Tuning

The tuning of the hyperparameters is based on the previous feature selection results,
meaning each model uses solely the Fennel score based feature. As each graph has its
individual properties, the optimal hyperparameters will most probably also differ from
one graph to another. This hypothesis will be evaluated for the tuning dataset, again for
k = 16 blocks and ε = 0.0 imbalance. Each of the experiments is performed using five-fold
cross-validation. We use the entire graphs to find the optimal hyperparameters.

Logistic Regression. The only parameter that needs to be tuned here is the regular-
ization parameter C, the inverse of the regularization strength. Therefore we run an
exhaustive grid search on the set of {10i∣ − 3 ≤ i ≤ 1} with the following result:

Graph C
delaunay_n13 1
delaunay_n14 10
astro-ph 0.1
cond-mat 0.1
fe_4elt2 0.1
fe_sphere 0.1
road-minnesota 0.01
road-euroroad 1
email-EuAll 0.1
wordassociation-2011 1

Table 5.1: Logistic Regression hyperparameter evaluation: Regularization C

We see that a clear pattern between the graphs’ structures and their regularization
cannot be recognized. The fe_sphere graph as the most regular graph, but also the
power-law based cond-mat graph both have a very high regularization with C = 0.1
while being completely different in structure. Contrary delaunay_n13 and delaunay_n14,
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two graphs that originate from the same generative model, have different regularization,
with the regularization of delaunay_n14 being more relaxed. We expect this variance in
regularization to come from the natural order of node IDs, which determines the streaming
order and therefore also the prediction outcome. The more noisy the prediction and the
less homogeneous the block assignments, the more regularization is probably necessary
to prevent overfitting. This supports the hypothesis, that the choice of hyperparameters
cannot be generalized easily, but is different from one graph and its characteristics to
another.

GBDTs. Tuning the hyperparameters of the GBDTs model is based on three stages.
First, we tune the trade-off between the number of weak classifiers n_estimators and
the learning rate η. Then we tune tree-specific parameters, i.e., the maximum tree depth
and the subsampled percentage of nodes to train each weak classifier on. Then the
regularization parameter λ is optimized.

We first fix the maximum tree depth to three, the subsampling to 50%, and λ to one. A grid
search is performed for n_estimators ∈ {100,200,300,400,500} and η ∈ {0.05,0.1,0.15,
0.2, 0.25, 0.3}. Based on its results we sequentially first search through the bestmax_depth ∈
{1, 2, 3, 4, 5, 6}, then subsample ∈ {0.5, 0.6, 0.7, 0.8, 1.0} and last but not least λ ∈ {10i∣−3 ≤
i ≤ 1}. After these tuning experiments, we get the following final settings:

Graph #Estimators η max_depth subsample λ

delaunay_n13 100 0.05 1 0.5 0.1
delaunay_n14 100 0.05 1 0.6 0.01
astro-ph 300 0.2 1 1 10
cond-mat 400 0.05 1 0.7 10
fe_4elt2 100 0.15 1 0.6 1
fe_sphere 400 0.1 1 0.5 1
road-minnesota 100 0.05 1 0.5 1
road-euroroad 100 0.05 4 0.7 0.001
email-EuAll 500 0.05 2 0.5 0.001
wordassociation-2011 200 0.05 1 1 0.1

Table 5.2: GBDTs hyperparameter evaluation: #Estimators, η, max_depth, subsample and λ
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Once again, the choice of hyperparameters cannot be generalized easily. First of all, we
recognize that the intuitive assumption that more estimators lead to lower learning rates
does not hold true. The graph astro-ph even shows the complete opposite having the
highest learning rate among all graph instances and yet having 300 estimators considered
best. Most graphs nevertheless seem to need decision stumps as their weak classifier,
with the exception being the scale-free email-EuAll graph with a maximum depth of two
and road-euroroad with a maximum depth of even four. Regarding the subsample of
nodes taken to train each classifier, the percentage differs from graph to graph, for most
graphs between 50% and 70% of the nodes are used for training. The highest subsampling
is used for the two power-law based graphs astro-ph and wordassociation-2011, which
do not subsample at all but take all nodes available for training each weak classifier.
The regularization parameter λ is chosen highest for the artificial and social graphs,
surprisingly also for the road-euroroad graph, and remains at a moderate level of one for
almost all other graphs.

Support Vector Machine. Besides the kernel to use and the kernel-specific parameters
to choose like the degree of the polynomial kernel or the inverse of the radius of influence
of support vectors γ from the RBF kernel, one also needs to evaluate the inverse of the
regularization strength C. Furthermore, specific to scikit-learn, the polynomial kernel
is implemented as K(xi, xj) = (γxTi xj + 1)p with an additional scaling parameter γ that
needs to be determined. Specific to the SVM, we cut the training dataset once the 10 000
node mark is reached as the SVM’s time to fit the training data grows quadratically.
Still, we make sure to have a class-balanced dataset for the following experiments.

We quickly figure out that letting PyTorch decide, which γ to use, is the best choice, the
default configuration scales it as 1/(#features ⋅ V ar(X)).

The next step is to find out which kernel to use. Therefore we fix C to 0.01 and run a
grid search, the default degree of the polynomial kernel is set to three. The last grid
search runs to find the optimal parameter value for C. We specify its search space by the
set of {10i∣ − 3 ≤ i ≤ 1}. The experiments give the following result:

54



Experimental Evaluation

Graph Kernel Degree C
delaunay_n13 rbf 1 1
delaunay_n14 rbf 1 10
astro-ph rbf 1 10
cond-mat rbf 1 1
fe_4elt2 rbf 1 1
fe_sphere rbf 1 0.1
road-minnesota rbf 1 0.1
road-euroroad rbf 1 1
email-EuAll rbf 1 1
wordassociation-2011 rbf 1 10

Table 5.3: SVM hyperparameter evaluation: Kernel, degree and regularization C

We see that all graphs can be best partitioned using the RBF kernel. We know, that the
RBF kernel is capable to fit a much larger function space than any polynomial kernel
would be capable of, for the cost of data and fitting time necessary. As it is therefore
more flexible than a restricted polynomial kernel, the reported results are intuitive.
Nevertheless, different regularization terms show, that due to each graph’s topology,
no common regularization strength can be defined. Because of its completely regular
structure, the graph fe_sphere was expected to have a lower regularization, still, the grid
search returns C = 0.1 which indicates higher regularization. On the other hand, complex
graphs like astro-ph or wordassociation-2011 have really low regularization with C = 10,
where it would be intuitive to have a higher regularization. This supports the hypothesis,
that the choice of hyperparameters cannot be generalized easily.

Side notes. We also experimented with the hyperparameter selection for k = 2, which
leads to different configurations that are still graph-individual. An interesting discovery
on the other hand was that normalized features led to more homogeneous regularization
factors than non-normalized features for the parametric models. One could therefore
say, that the more complex the domain (measured by k and the activation of feature
normalization), the more individual the hyperparameters get in order to fit the domain
closely.
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To summarize, we recognize all graphs have their own specific best hyperparameter
choices and that no general patterns can be derived. We therefore conclude that the
choice of hyperparameters depends a lot on the individual graph’s topology, its natural
order of nodes, and internal structure. We store the above configuration and reuse it for
the following experiments while each time loading a graph’s individual hyperparameters.

5.4.4 Balance Heuristics

A comparison between the two balance heuristics introduced can be found in the table
Table 5.4. We recognize a strong tendency that the MostProbable heuristic outperforms
the LeastLoaded heuristic. This stands in contrast to the findings of Abbas [12], who
reports the opposite but for the edge partitioning scenario on attributed graphs. We will
use the MostProbable heuristic for all future experiments.
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Graph Baseline GBDTs GraphSAGE Partitioner

M
os
tP

ro
ba

bl
e

delaunay_n13 4 381 4 152 4 116.4 4 198.6
delaunay_n14 7 989 7 361 7 323.2 7 351.8
astro-ph 39 642 39 251 39 744.8 40 088.4
cond-mat 11 348 11 737 11 691.2 11 657.8
fe_4elt2 6 115 6 488 6 367.4 6 432.8
fe_sphere 3 885 3 436 3 407.8 3 629
road-minnesota 387 369 386.6 419.8
road-euroroad 260 269 259.4 261.8
email-EuAll 27 662 25 027 26 987.8 28 045
wordassociation-2011 36 168 36 392 36 091.6 36 312.2
Geometric Mean 5 722.45 5 562.83 5 588.05 5 723.00

Le
as
tL

oa
de
d

delaunay_n13 4 381 4 156 4 147.2 4 722.8
delaunay_n14 8 000 7 561 7 374.8 8 270.8
astro-ph 39 657 39 244 39 640.6 39 679
cond-mat 11 361 11 475 11 546.4 11 569.2
fe_4elt2 6 374 6 312 6 616 6 653.6
fe_sphere 3 839 3 526 3 701.2 3 818.8
road-minnesota 388 486 398.6 512.8
road-euroroad 260 267 260.4 271.2
email-EuAll 27 575 24 989 26 420.6 27 469.8
wordassociation-2011 36 252 37 296 36 398.6 36 595
Geometric Mean 5 742.07 5 729.00 5 667.92 6 031.30

Table 5.4: Balance heuristic evaluation: Total cut sizes by balance heuristic. Experiments
run on the tuning dataset with k = 16, ε = 0.0 and using a uniformly sampled 80%/20%
train-test-split. Each experiment on each graph is repeated five times using different random
seeds. The reported total cut sizes are based on the true block labels of the training nodes and
the predicted block labels of the testing nodes.

5.4.5 Streaming Mode

When tuning the streaming mode, there are three parameters to empirically evaluate.
In the following, we will investigate the buffer size b, the step size s, and the number of
prediction propagation rounds.
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An investigation of the impact of the buffer size on the partitioning quality for the
Partitioner model can be found in Table 5.5. First, we recognize that increasing the
buffer size brings a performance boost as a more global view is given when building the
feature vectors and predicting the block assignments. This performance boost lasts until
a buffer size of b = 256 when the partitioning quality starts to decrease again.

Graph 16 32 64 128
delaunay_n13 4 261 4 111.2 4 213 4 153.4
delaunay_n14 7 633.2 7 386.6 7 239 7 443.6
astro-ph 40 432.6 40 136.2 39 965.6 40 363.4
cond-mat 11 776 11 734.4 11 691.6 11 677.8
fe_4elt2 6 509 6 512.4 6 373.4 6 373.6
fe_sphere 3 778.2 3 599.4 3 656.2 3 520.4
email-EuAll 28 186.6 28 187.4 28 173 28 146.4
wordassociation-2011 36 534 36 032.8 36 252.2 36 063.4
Geometric Mean 11 862.76 11 655.12 11 649.30 11 617.84
Graph 256 512 1024 100%
delaunay_n13 4 149.4 4 153.6 4 182.8 4 706
delaunay_n14 7 318.4 7 075.2 7 456.4 8 525.6
astro-ph 40 145 40 278 39 910.8 40 333.6
cond-mat 11 653.8 11 647.2 11 656 11 877.6
fe_4elt2 6 208.4 6 389.8 6 197.4 6 723.6
fe_sphere 3 516.4 3 573.4 3 556.6 3 957.4
email-EuAll 28 191 28 176 28 223.8 27 489.4
wordassociation-2011 36 100 36 174.4 36 431.6 36 571
Geometric Mean 11 545.15 11 568.79 11 604.38 12 271.17

Table 5.5: Buffer size evaluation: Total cut sizes by buffer size for the Partitioner model.
Experiments run on the tuning dataset with k = 16, ε = 0.0 and using a uniformly sampled
80%/20% train-test-split. Each experiment on each graph is repeated five times using different
random seeds. The reported total cut sizes are based on the true block labels of the training
nodes and the predicted block labels of the testing nodes.

Note that the road networks were not included in this experiment because of their limited
number of nodes, which would not have allowed such big buffers for the test set. Also, we
performed an exhaustive prediction propagation exclusively for this experiment to make
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sure the benefits of bigger buffers can actually be utilized. To explain why the total cut
sizes increase again after b = 256, we have a look at the partition plots of the evaluation
graph rgg_n_2_15_s0 in Figure 5.3, which provides node coordinates for drawing:

(a) b = 256 (b) b = 100%

Figure 5.3: Buffer size evaluation: Partition visualization by buffer size for the Partitioner
model on the rgg_n_2_15_s0 graph

Typical for streaming graph partitioning, we recognize that the blocks are not always a
single unit but rather clustered across the graph. These clusters are slightly smaller and
seemingly more frequent when the buffer size is chosen to match the size of the graph,
which causes the higher total cut size. A real explanation for this phenomenon cannot be
given. We choose a buffer size of 256 for all remaining experiments.

The step size is crucial for the duration of the node stream. To empirically investigate the
impact of the step size on the streaming time, we slightly change the experimental setup.
We now train on the entire email-EuAll graph and store the model parameters instead of
training on only 80% of the nodes. We then take the same graph and predict all block
labels. This way we have a larger number of nodes to run the prediction. Note that
we are only interested in the time needed for streaming and that therefore the quality
improvement that comes from training and predicting on the same graph is irrelevant.
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Figure 5.4: Step size evaluation: Streaming time in seconds by step size for the Partitioner
model on the email-EuAll graph

We see in Figure 5.4 that the bigger the step size the faster the streaming and prediction
routine, except for step size s = 256 where the step size equals the buffer size. We explain
this anomaly as the streaming time being dependent on both the step size and the extent
of prediction propagation to be performed for individual nodes. The bigger the step size,
the more unclassified nodes will be in the buffer, such that the additional neighborhood
feature recalculation and possibly repredictions neutralizes the decreasing effect of the
step size on the streaming time.

On the other hand, the bigger the step size, the noisier the prediction as subsequent
buffers are seen more and more separate when the overlap shrinks. This results in more
restricted views on the overall graph, which impacts the partitioning quality as shown in
Table 5.6:
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Graph 1 4 16 64 256
delaunay_n13 4 111.2 4 260 4 198.6 4 222.6 4 298
delaunay_n14 7 422.8 7 319.6 7 351.8 7 496.8 7 852.2
astro-ph 39 732.8 40 120.4 40 088.4 40 056.8 40 184.6
cond-mat 11 668.6 11 679.8 11 657.8 11 664.4 11 667.4
fe_4elt2 6 369 6 371.6 6 432.8 6 448.4 6 581
fe_sphere 3 450.8 3 575.4 3 629 3 597.2 4 456
email-EuAll 27 972.6 28 135.4 28 045 27 803.6 28 057.6
wordassociation-2011 36 216.4 36 270.6 36 312.2 36 303.4 36 473.2
Geometric Mean 11 542.28 11 651.58 11 665.51 11 679.72 12 149.80

Table 5.6: Step size evaluation: Total cut sizes by step size for the Partitioner model. Experi-
ments run on the tuning dataset with k = 16, ε = 0.0 and using a uniformly sampled 80%/20%
train-test-split. Each experiment on each graph is repeated five times using different random
seeds. The reported total cut sizes are based on the true block labels of the training nodes and
the predicted block labels of the testing nodes.

The worst performance is achieved in case the step size is set equal to the buffer size,
here s = 256, whereas smaller step sizes like s = 1 perform better. We choose a step size
of 16 for all future experiments to achieve a good quality / running time trade-off.

When increasing the prediction propagation rounds, we recognize that more such rounds
improve the partitioning quality. In Table 5.7 having a single prediction round gives
worse results than increasing the prediction propagation rounds to five.
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Graph 1 round 2 rounds 3 rounds 4 rounds 5 rounds
delaunay_n13 4 388.4 4 155.4 4 116.4 4 045.6 4 047.6
delaunay_n14 7 801.6 7 331.2 7 323.2 7 269.2 7 241.8
astro-ph 40 658.6 39 820.4 39 744.8 40 263.4 39 948
cond-mat 11 726 11 648 11 691.2 11 718.2 11 694.6
fe_4elt2 6 601 6 375.2 6 367.4 6 454.4 6 438.2
fe_sphere 4 757.2 3 349.8 3 407.8 3 526.6 3 487.4
road-minnesota 406.8 382.4 386.6 367.6 373.8
road-euroroad 270.6 258.2 259.4 258.4 259.6
email-EuAll 27 075.8 27 248.8 26 987.8 27 439.4 26 952
wordassociation-2011 36 979.4 36 360.8 36 091.6 36 093.6 36 020.4
Geometric Mean 5 959.40 5 584.85 5 588.06 5 588.47 5 574.26

Table 5.7: Prediction propagation evaluation: Total cut sizes by prediction propagation rounds
performed for the GraphSAGE model. Experiments run on the tuning dataset with k = 16,
ε = 0.0 and using a uniformly sampled 80%/20% train-test-split. Each experiment on each graph
is repeated five times using different random seeds. The reported total cut sizes are based on
the true block labels of the training nodes and the predicted block labels of the testing nodes.

Note that after some threshold the predictions have converged to their final settlement
and therefore more prediction propagation rounds do not improve the total cut size result
anymore. Also, we see that there is only a slight variance between the reported total
cut size results between two to five prediction propagation rounds, which is caused by
different random seeds being used for each experiment. Therefore having only three
prediction propagation rounds should be enough to propagate the final block assignment
predictions throughout the graph, which is why we choose this configuration for all
remaining experiments.

We furthermore experiment on the importance of the natural order of nodes. We assume
that the more the natural order of nodes resembles a BFS order, the better the features
can be generated and the more accurate the prediction will be. This can be proved
empirically in Table 5.8 showing far lower total cut sizes when applying a BFS ordering
to the node stream beforehand. Nevertheless, as we cannot enforce such a BFS order in
a given graph that is streamed from the hard disk drive or from a graph in an online
algorithm setting, we will execute all following experiments without additional BFS
preprocessing.
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Graph Baseline GBDTs GraphSAGE Partitioner

N
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delaunay_n13 4 381 4 152 4 116.4 4 198.6
delaunay_n14 7 989 7 361 7 323.2 7 351.8
astro-ph 39 642 39 251 39 744.8 40 088.4
cond-mat 11 348 11 737 11 691.2 11 657.8
fe_4elt2 6 115 6 488 6 367.4 6 432.8
fe_sphere 3 885 3 436 3 407.8 3 629
road-minnesota 387 369 386.6 419.8
road-euroroad 260 269 259.4 261.8
email-EuAll 27 662 25 027 26 987.8 28 045
wordassociation-2011 36 168 36 392 36 091.6 36 312.2
Geometric Mean 5 722.45 5 562.83 5 588.05 5 723.00

BF
S
O
rd
er

delaunay_n13 3 172 3 207 3 286.2 3 590.6
delaunay_n14 5 621 5 117 5 798.6 6 229.6
astro-ph 31 302 32 046 32 120.2 32 142.6
cond-mat 8 372 8 579 8 736.8 8 819.6
fe_4elt2 3 035 3 178 3 255.4 3 373.4
fe_sphere 3 730 3 483 3 448.8 3 583.4
road-minnesota 409 388 394.8 439.6
road-euroroad 203 211 211.4 214.4
email-EuAll 23 231 23 341 23 289.2 23 521.8
wordassociation-2011 33 373 33 348 33 408.8 33 374.8
Geometric Mean 4 499.97 4 469.65 4 561.33 4 735.54

Table 5.8: Node order evaluation: Total cut sizes by node order. Experiments run on the tuning
dataset with k = 16, ε = 0.0 and using a uniformly sampled 80%/20% train-test-split. Each
experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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5.5 Evaluation Phase

5.5.1 Generalization

The previous experiments explored which features to use, which balance heuristic works
best and how to configure the streaming mode. Now that we have all the tuning done,
we can perform a final series of experiments on the separate evaluation dataset to explore
the generalization capabilities of the models. To do this, we construct two generalization
scenarios:

1. Instance: We uniformly split every graph instance by 80% of the nodes for
training and 20% of the nodes for prediction. Also, the reported total cut sizes
are constructed by using the optimal block labels for the 80% training nodes and
the predicted labels for the rest. The experiments are averaged over five runs with
different random seeds for each graph instance.

2. Group: For this experiment, we would like to evaluate the hypothesis, whether the
prediction works well on unseen, structurally similar graphs. Therefore we limit
the training and prediction to equal groups of graphs. We train on all graphs from
the same group in the tuning dataset and predict the partitions of the graphs in
the equivalent group in the evaluation dataset. The experiments are averaged over
five runs with different random seeds for each graph instance.

As we experience faster convergence than expected for the deep learning models, we lower
the number of training epochs from 2 500 to 1 000.

Instance generalization.

The instance generalization experiments are run for k ∈ {2, 4, 8, 16} blocks and ε ∈ {0.0, 0.03}
imbalance. The detailed results are reported in Appendix C. The following analysis
excludes the SVM model as it struggled to keep up with its competitor models, because
of having an upper bound on the data to be used for training. This threshold was
set to 10 000 training instances and turned out to be a major limiting factor for the
performance of the SVM model, but else the training time would have exploded because
of its quadratic scaling factor.
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(a) ε = 0.0 (b) ε = 0.03

Figure 5.5: Instance generalization evaluation: Total cut size ratio between the selected model
and the Fennel based baseline algorithm by number of blocks averaged over all
graphs

We now first would like to investigate the overall average performance of the models over
the different values of k in Figure 5.5. We set the geometric mean over the total cut sizes
in relation to the Fennel based baseline algorithm and recognize that the larger k gets,
the more all models approach the performance of the Fennel based baseline algorithm.

Figure 5.6: Instance generalization evaluation: Performance profile for k = 16 and ε = 0.03
compared to the Fennel based baseline algorithm
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Looking at the performance profile in Figure 5.6, it is hard to determine a clear winner
between the GBDTs model and the deep learning models. For high values of k, the Logistic
Regression model is outperformed by the other models, whereas for lower values of k the
Logistic Regression model might still be the best choice as seen for the perfectly balanced
bisection setting. Here the Logistic Regression classifier manages to be just maximally
1.1 times worse than the Fennel based baseline algorithm compared to the Partitioner
model being approximately 1.3 times worse than the Fennel based baseline algorithm in
the worst case. After a more detailed investigation, the winners are the GraphSAGE and
XGBoost model as not less than 50% of the graph instances are partitioned better than
with the Fennel based baseline algorithm and maximally 1.015 times worse than with the
Fennel based baseline algorithm. The Partitioner model might be up to 1.3 times worse
than the Fennel based baseline algorithm for lower values of k and ε = 0.0 imbalance,
but else has similar performance. This means that, for such graph instances that are
partitioned worse than with the Fennel based baseline algorithm, GraphSAGE alone
is sufficient to make good predictions and that the additional partitioning module (a
densely connected network) that the Partitioner model brings does not add any benefits.
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(a) k=2 (b) k=4

(c) k=8 (d) k=16

Figure 5.7: Instance generalization evaluation: Total cut sizes by evaluation graph instance
normalized to the total cut size provided by the Fennel based baseline algorithm
for ε = 0.03

In the more detailed total cut size plots in Figure 5.7, we can also confirm that the more
complex the problem becomes and the higher k, the more the GBDTs, GraphSAGE and
Partitioner model seem to be the best choice.

To summarize, in case the task of streaming graph partitioning is limited to evolving
graph settings and one only focuses on partitioning quality, low values of k imply no
recommendation to use a specific model while for higher values of k starting from k = 8 a
deep learning model or GBDTs are the best choice.
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Group generalization.

We run the group generalization experiments for all numbers of block k ∈ {2,4,8,16}
and ε ∈ {0.0,0.03} imbalance. When investigating the geometric mean of the total cut
sizes over all graph instances, put into ratio with the Fennel based baseline algorithm, we
obtain Figure 5.8. The exact results are reported in Appendix C.

(a) ε = 0.0 (b) ε = 0.03

Figure 5.8: Group generalization evaluation: Total cut size ratio between the selected model
and the Fennel based baseline algorithm by number of blocks averaged over all
graphs

We recognize that starting from k = 8, almost no model can outperform the Fennel based
baseline algorithm anymore. Among all models, the GBDTs report the best results on
average. The parametric models, i.e., the Logistic Regression classifier and the SVM, can
keep up well with the deep learning models for k = 2 and even outperform them in the
perfectly balanced case. Note that both of them report the same total cut sizes as their
decision boundaries are very similar due to the feature normalization. For bigger values
of k, the deep learning models notably achieve lower total cut sizes on average compared
to the parametric models, but no strict order in performance can be determined between
them.
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(a) k=2 (b) k=4

(c) k=8 (d) k=16

Figure 5.9: Group generalization evaluation: Performance profiles by k for ε = 0.03 compared
to the Fennel based baseline algorithm

By looking at the performance profile plots in Figure 5.9, we see that the curve of XGBoost
is the fastest growing not surpassing R = 1.5. The deep learning models come next that
only surpass R = 1.5 for k = 2. A clear winner between the GraphSAGE model and the
Partitioner model cannot be determined. The worst performance have the parametric
models Logistic Regression and SVM that can be up to 2.5 times worse than the Fennel
based baseline algorithm. We also recognize that compared to instance generalization
the factor R becomes much higher for group generalization.
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Generalization to unseen graphs works best in case the graphs used for training are very
close in structure to the graphs used during prediction, having the same type of degree
distribution alone is not sufficient to guarantee generalization. This is the reason why
on average the Fennel based baseline algorithm still performs best, especially for higher
k. If we can ensure an equal generative model behind graph instances, generalization to
unseen graphs indeed works out. This can best be seen in the delaunay_n15 graph. It
was generated using KaGen3 [63], just as the delaunay graphs used during training.

(a) k=2 (b) k=4

(c) k=8 (d) k=16

Figure 5.10: Group generalization evaluation: Total cut sizes by evaluation graph instance
normalized to the total cut size provided by the Fennel based baseline algorithm
for ε = 0.03

3https://github.com/sebalamm/KaGen

70

https://github.com/sebalamm/KaGen


Experimental Evaluation

Looking at Figure 5.10, we see that delaunay_n15 is always best partitioned using the
GBDTs, which confirms generalization capabilities for unseen graphs. One only needs
to make sure that the generative model behind the graph is very similar to the one
behind the training graphs. This matches the findings in related work like GAP [10] and
GCNSplit [12, 13]. GCNSplit also reports decreasing partitioning performance once the
evolving graphs develop further away from the training graphs.

The hypothesis, that the prediction works well on unseen, structurally equivalent graphs,
can therefore be proved empirically but needs a very strict definition of structural
equivalence. Having a similar degree distribution is not enough to make a generalization
to unseen graphs possible, small changes, e.g., in the degree exponents can lead to a huge
difference. Instead, the generative process behind graphs needs to be the same as seen
for the delaunay_n15 graph.

As a second example besides the GBDTs on the delaunay_n15 graph, also the GraphSAGE
model consistently performs better on the rgg_n_2_15_s0 graph. Already in the feature
space in Figure 5.11, we can see, that the generated Fennel score based features after
prediction propagation lead to a clustered feature space, that enables us to make good
predictions. When comparing the feature space labeled by the predicted block assignments
with the same feature space labeled by the true block assignments, we see that the
prediction comes close to what was expected.

(a) Labeled by predicted block assignments (b) Labeled by true block assignments

Figure 5.11: Group generalization evaluation: T-SNE feature visualization of the generated
features during prediction of the GraphSAGE model for k = 16 and for ε = 0.03
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As the prediction comes close to what an offline graph partitioner like KaFFPa [14] would
do, this might lead to the assumption that the supervised learning approach has an
influence on why the GraphSAGE model and also other models can correct the errors of
the Fennel heuristic. The effect of correcting the errors of the Fennel heuristic becomes
especially clear when investigating the partition visualization in Figure 5.12.

(a) Baseline (k = 2) (b) GraphSAGE (k = 2)

(c) Baseline (k = 16) (d) GBDTs (k = 16)

Figure 5.12: Group generalization evaluation: Generated partitions from the GraphSAGE
model for rgg_n_2_15_s0 and ε = 0.03
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While the Fennel based baseline algorithm tends to produce clustered partitions, this effect
more and more vanishes for the GraphSAGE model the simpler the problem becomes,
i.e., the smaller k becomes. Similar behavior can be observed for the other models.

To summarize, assuming the streamed graph comes from the same generative model as
the training graphs, our models seem to enable group generalization capabilities very well
as seen by the two models GBDTs and GraphSAGE. The GBDTs provide the lowest
total cut sizes on average and should therefore be the model of choice in such settings.

5.5.2 Imbalance

We also experiment with different imbalance parameters to find out how big of an impact
less strict balance constraints have on the models. We therefore use the same experimental
setting as for the group generalization experiments done before but run the experiment
for ε ∈ {0.0,0.03,0.07,0.1} imbalance. This results in the following improvement table,
the detailed results can be found in Appendix D.

Imbalance Baseline Logistic Regression GBDTs
ε = 0.03 0.983 0.997 0.988
ε = 0.07 0.978 0.983 0.977
ε = 0.1 0.977 0.980 0.975
Imbalance SVM GraphSAGE Partitioner
ε = 0.03 0.997 0.979 0.983
ε = 0.07 0.983 0.961 0.973
ε = 0.1 0.980 0.968 0.963

Table 5.9: Imbalance evaluation: Fraction of cut edges compared to perfectly balanced streaming
graph partitioning for k = 16

We recognize that a bigger imbalance does not provide a lot of improvement. A 10%
increase of imbalance only results in approximately 2% - 4% decrease in total cut size for
all models. The biggest improvement is recorded for the Partitioner model with 3.7%.
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(a) Baseline (b) Logistic Regression

(c) GBDTs (d) SVM

(e) GraphSAGE (f) Partitioner

Figure 5.13: Imbalance evaluation: Imbalance distribution aggregated over all graphs for k = 16
and ε = 0.1
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If we would like to investigate, if the additionally allowed imbalance also gets exploited
entirely, we make an interesting discovery. Using the group generalization experimental
setup with k = 16 blocks and ε = 0.1 imbalance, we plot the distribution of resulting block
load ratios compared to the completely balanced block load n

k over all graphs from the
evaluation dataset. We see in Figure 5.13 that the Fennel based baseline algorithm is the
only model that still tries to achieve almost perfectly balanced partitioning, even if more
imbalance is allowed. The Logistic Regression model and the SVM model achieve very
similar distributions and exploit the additionally allowed imbalance maximally, which is
the complete opposite of what the Fennel based baseline algorithm does. The GBDTs
model as well as the deep learning models GraphSAGE and Partitioner also fully exploit
the allowed imbalance, but construct more diversity in the load of blocks.

5.5.3 Running Times

After the extensive series of experiments, we present the running times both for training
and prediction for ε = 0.03 imbalance in Appendix E. The reported running times include
the time needed to generate the features for each node in the streamed graph. On each
of the graphs, both training and prediction are performed as partitioning quality is no
longer focused. As we come to very similar conclusions for all of the selected graph
instances from each group, we choose to use the scale-free as-22july06 graph instance for
explanation purposes in this section as it has a more complex structure than the others.
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K Baseline Logistic Regression GBDTs
2 - / 4.57 1.60 / 21.31 1.92 / 57.16
4 - / 4.88 1.76 / 22.27 4.58 / 57.40
8 - / 5.12 2.01 / 25.01 3.09 / 58.57
16 - / 5.05 3.00 / 29.52 14.55 / 64.46
Geometric Mean - / 4.90 2.03 / 24.33 4.46 / 59.33
K SVM GraphSAGE Partitioner
2 4.79 / 23.93 156.81 / 79.45 155.18 / 82.76
4 9.64 / 28.25 162.27 / 97.17 159.74 / 87.22
8 6.72 / 32.16 157.08 / 87.25 158.26 / 92.47
16 9.44 / 39.75 162.66 / 96.42 168.57 / 104.00
Geometric Mean 7.36 / 30.49 159.68 / 89.77 160.36 / 91.28

Table 5.10: Running time evaluation: Running times for training and prediction by model.
Experiments run on as-22july06 with ε = 0.03. Each experiment is repeated five times using
different random seeds. The entries have the format “training time/prediction time” and are
measured in seconds.

Looking at Table 5.10, clearly, the deep learning models take the longest both during
training and prediction, while not being substantially different from each other. The
Logistic Regression classifier being the most simplistic model is also the fastest model on
average. While the GBDTs are also rather fast to train on, the prediction time is heavily
impacted by the ensemble model character and loses to the SVM and Logistic Regression
model. For all models, we see a slight increase in training and prediction time the higher
k gets. The biggest increase for all models appears when switching the number of blocks
from k = 8 to k = 16.
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Figure 5.14: Running time evaluation: Ratio of average prediction times between the selected
model and the Fennel based baseline algorithm by number of blocks for ε = 0.03

Comparing all models to the Fennel based baseline algorithm in Figure 5.14, we see that
even the most simplistic model, the Logistic Regression classifier, does approximately need
five times the time that the Fennel based baseline algorithm would need for prediction.
The GBDTs being one of the best performing models has the third lowest prediction time
of all models, while the deep learning based models can even take 20 times as much time
as the Fennel based baseline algorithm. This is why in the end we still recommend using
the GBDTs model not just from a partitioning quality standpoint, but also regarding its
running times.

The reason why all models take notably longer for prediction than the Fennel based
baseline algorithm is due to feature normalization, feature standardization, prediction
propagation, and the actual inference with the model. If we disable prediction propagation
and set the buffer size to one, the effect becomes especially clear as the average time
needed for prediction decreases to just 43.13 seconds for the GraphSAGE model and
46.11 seconds for the Partitioner model, so it approximately halves. But as prediction
propagation is especially important to get more accurate features and therefore more
accurate predictions, this imposes a quality / running time trade-off conflict.

77



Experimental Evaluation

5.5.4 Competitor Comparison

To find out how well our framework performs compared to others, we choose two
competitor algorithms. One that is based on a machine learning heuristic and one using
a pure algorithmic heuristic.

As, to the best of our knowledge, the only algorithm that applies machine learning to
streaming graph partitioning is GCNSplit from Abbas [12] and Zwolak et al. [13], we use
this algorithm as the machine learning based competitor. GCNSplit nevertheless takes
some different assumptions than we do with our algorithm so far. First, it is an algorithm
designed for edge streaming which is why we set the task to edge partitioning in this
section. Furthermore, it is applied to attributed graphs, i.e., graphs whose nodes have
application domain-specific features assigned to them. The algorithm does not generate
features from the pure graph structure as we do with our Fennel score based feature
combined with prediction propagation. Also, GCNSplit mainly focuses on unsupervised
training by optimizing the continuous relaxation of the expected normalized cut objective
with an additive balance term. We train our models supervised using block labels
computed with the sophisticated KaFFPa offline multilevel graph partitioner [14]. When
being trained unsupervised, GCNSplit predicts the block assignment of an edge by first
predicting the block assignment probabilities of both the source and the target node of
the edge and then taking the block proposal having the maximum probability in either of
both nodes. This way no edge features are required, the model’s core predictions are still
node based and GCNSplit’s training procedure can optimize the node based continuous
relaxation of the expected normalized cut objective. This also means our supervised
training procedure does not need to be adapted and can continue to use the node based
block labels computed by KaFFPa [14]. Luckily, our framework also already supports
edge streaming.

The prediction logic is performed in the same way as for GCNSplit. The only problem
that arises is building the Fennel score based feature during streaming. Neighboring
nodes can no longer be assigned to just a single block but can be replicated to multiple
blocks instead. As the original formula to calculate Fennel scores (see Section 2.2) is
based on the block assignments of neighboring nodes, which are now not necessarily any
longer unique, we modify the Fennel heuristic to use the block assignments of adjacent
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edges instead of its adjacent neighboring nodes. We keep the parameters α and γ the
same as before.

For the second algorithmic competitor, we decide to compare against 2PS-L, a state-
ful two-phase streaming algorithm at a linear running time for edge partitioning by
Ruben et al. [21]. We shortly outline the algorithm in the following. In the first phase
of the algorithm, an extension of the streaming clustering algorithm proposed by Hol-
locou et al. [64] is used to build a clustering of the entire graph. The extension makes
sure that cluster volumes are bounded and that a re-streaming is possible to improve the
clustering. In the second phase of the algorithm, an edge partitioning is produced by
exploiting the clustering to reduce the search space for possible block assignments to just
two possible blocks. This makes the running time of the algorithm independent of k and
therefore linear in the number of edges. First, the clusters are assigned to blocks such
that each block has approximately the same total volume of clusters. The problem can be
abstracted to the NP-hard makespan scheduling problem on identical machines [65, 66]
and a 4

3 -approximation is received by running Graham’s algorithm first [65]. Then a
pre-partitioning is performed that assigns edges to blocks, where the block assignment of
the edge endpoints’ clusters does not differ. For the remaining edges, a scoring function
is used that accounts for the two edge endpoints’ degrees, the replication state, and the
volume of the two endpoints’ clusters to assign them to a block. A hard balance constraint
makes sure no block is overloaded. By using this two-phase approach a more global view
is obtained over the graph to build pre-partitions which increases the partitioning quality.

After having introduced the two competitors, we now compare our algorithm using the
GBDTs model in a group generalization scenario that originates from Zwolak et al. [13].
We use the exact same graphs as published in GCNSplit’s repository4. We train on the
complete twitch-de graph and predict on the other twitch graphs provided and/or train
on 10 000 edges of the deezer-ro graph and predict on the remaining deezer graphs just
as in Zwolak et al. [13]. All graphs are power-law based graph instances from the same
regime. We set the number of blocks to k = 6, the allowed imbalance to ε = 0.01 and
average the results for each graph over five runs. Note that for the results of GCNSplit,
we are unfortunately forced to use the possibly slightly inexact reported results from
Zwolak et al. [13], as we cannot set up the GCNSplit repository because of build script
execution errors. The authors are aware of this issue but could not provide a working

4https://github.com/CASP-Systems-BU/GCNSplit
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solution so far. The 2PS-L algorithm is run with its default configuration. Furthermore,
the Fennel based baseline algorithm is also added to the comparison. We then obtain the
following replication factor performances:

Figure 5.15: Competitor comparison: Replication factors for k = 6 and ε = 0.01

We can see that using a heuristic feature based on Fennel scores combined with supervised
learning and a GBDTs model, performs between 6.11% to 22.29% better than GCNSplit.
We always outperform our machine learning based competitor by replication factor on
the chosen graph instances. The comparison against 2PS-L is two-fold. On the twitch
graphs, the 2PS-L algorithm gives between 7.46% to 11.83% lower replication factors,
whereas our algorithm reports 9.03% to 13.80% lower replication factors on the bigger
deezer graph instances. This might be because the bigger deezer graphs are more difficult
to cluster for 2PS-L in a single streaming run. This experiment is also another proof that
generalization to unseen graphs does work out, in case the generative model behind the
graphs is exactly the same, here given by having provided graph instances originating
from the same Twitch network dynamics. On the twitch graphs, our algorithm almost
always outperforms the Fennel based baseline algorithm, whereas on the deezer graphs,
our reported replication factors are 8.37% to 16.23% higher. This is possibly because
10 000 edges of the deezer-ro graph, which are less than 8% of its total number of edges,
are not sufficient to learn the partitioning patterns of such graphs. We impose this
restriction in order to be compliant with the experimental setup in GCNSplit’s evaluation
in Zwolak et al. [13].
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CHAPTER 6
Discussion

6.1 Conclusion

In this thesis, we introduce a framework to utilize a variety of machine learning models from
both conventional, explainable machine learning and deep learning origin as a heuristic
for streaming graph partitioning. Our work presents, to the best of our knowledge, the
first machine learning based streaming graph partitioning framework that is applicable to
streams of any non-attributed graph as it constructs features purely from the structural
properties of the graph. We are therefore no longer limited to partitioning solely attributed
graphs or graphs from the same application domain. While the models are optimized for
node streaming graph partitioning, our sliding-window based buffered streaming model
also supports edge streaming. After tuning the framework and selecting the Fennel score
based feature as the winner among all defined features within statistical, greedy, and
heuristic feature groups, our predictions achieve generalization on evolving graph instances
as well as on unseen graph instances that structurally match the training graph instances.
The models’ training and performance are based on supervised learning using block labels
computed by the offline multilevel graph partitioner KaFFPa [14]. Furthermore, our novel
concept of prediction propagation allows us to improve on previous block assignment
predictions throughout the buffer in order to increase partitioning quality even further.
In the end, our framework is able to outperform our main competitor GCNSplit by
providing 6.11% to 22.29% lower replication factors in the given experiments. We recap
all achievements and findings more in detail in the following.
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After explaining the operating principle of all machine learning models available in our
framework, we conduct rich literature research through the field of graph partitioning
going from conventional algorithmic methodologies up to deep learning approaches for
both conventional and streaming graph partitioning. Famous works include LDG [3],
Fennel [4], AKIN [5] and HeiStream [9] from the conventional algorithmic streaming graph
partitioning methods and GAP [10], its variant inspired by spectral partitioning [11], and
GCNSplit [12, 13] from the deep learning approaches.

We introduce a sliding-window based buffered streaming model being able to adapt for
variable buffer sizes and sliding window sizes. It also supports enriching nodes with
additional features like cluster IDs from a label propagation algorithm. The model is
constructed for both node and edge streams. The empirical evaluation shows a good
quality / running time trade-off being achieved for buffer size b = 256, step size s = 16,
and three prediction propagation rounds. During streaming along the natural order of
nodes, features for each node in the buffer are constructed using only the graph itself
and the current partitioning progress. Three feature groups are defined, i.e., statistical
features, greedy features, and heuristic features, whereas the Fennel score based feature
empirically turns out to perform best on average. Deciding for this feature also makes us
combine elements from conventional streaming graph partitioning methods during feature
creation with modern machine learning methods during prediction. As the feature is
based on neighboring block assignments, the feature becomes more accurate the more
the neighborhood is explored. We therefore add the concept of prediction propagation,
meaning once a node gets assigned to a block, all neighboring nodes will update their
feature vectors, their previous prediction will be checked again, and possibly improved.
As the machine learning models cannot ensure balance, we evaluate two balance heuristics
inspired by Abbas [12] and Zwolak et al. [13] that enforce a hard balance constraint and
conclude the heuristic MostProbable to work best.

For the empirical evaluation studies, we construct two rich datasets, one for tuning and
training and one for evaluation. Both of them are constructed to contain graphs from
different groups of graphs having different structural properties and degree distributions.
A degree distribution analysis reveals Gaussian based, regular, power-law based, and
scale-free graphs. We then compare five different machine learning models and compare
them to a Fennel based baseline algorithm. Among these models are the conventional
machine learning models Logistic Regression, SVM and GBDTs and the deep learning
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models GraphSAGE and Partitioner, a model inspired by Nazi et al. [10] and also used by
Abbas [12] and Zwolak et al. [13]. In the rich feature selection experiments, we can confirm
two hypotheses. First, the conventional machine learning models work best for features,
that are directly indicative to which block to assign a node and so do the greedy and
heuristic features outperform the statistical features on average. Second, deep learning
models are capable to learn features on their own by extracting data intrinsic patterns and
heuristics building upon these patterns. For such models, the statistical features notably
become more important, even if not being able to outperform the greedy and heuristic
feature group. In both model groups, the final selected feature is the Fennel score based
feature because of its best performance among all other features on average, which should
not exclude the applicability of other features for certain graph instances, e.g., those with
a high variance in the degree distribution like email-EuAll. After tuning the architectures
and hyperparameters, that do not show common patterns but are rather individual to
each graph instance and its topology, we start the generalization experiments. It turns
out that feature normalization and feature standardization especially helps the parametric
models, which have an incorporated assumption about the data, to better learn their
decision boundaries, whereas such preprocessing restricts the more sophisticated models
to closely match the feature space.

While all models work decently well for instance generalization, group generalization is
limited to such graph instances that are very similar in topology to those seen during the
model training and is more successful the lower the value for the number of blocks k. In
case the same generative model is used, generalization to unseen graphs even works out
for bigger values of k. Generalizing to graphs of totally different origins is not feasible.
For easy, evolving streaming graph partitioning settings with low values of k, one should
preferably choose the more lightweight Logistic Regression classifier while for bigger k
GBDTs achieve the best quality / running time trade-off besides GraphSAGE that gives
comparable results but has longer training and prediction times. In the case of small
datasets up to 10 000 nodes using an SVM instead of a Logistic Regression classifier
also makes sense. In case the data to train on is larger, its quadratically scaling training
effort nevertheless overweights its prediction benefits. The task of group generalization is
always best addressed by the GBDTs using XGBoost’s implementation [20]. In every
case, using labeled data from KaFFPa [14] in a supervised learning setting is shown to
have an influence on the error correction capability of the framework, blocks are less
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clustered as compared to the Fennel based baseline algorithm and occurs more often the
lower the number of blocks k.

In a final comparison to our competitors, we are able to consistently beat our machine
learning based competitor GCNSplit [12, 13] with GBDTs giving between 6.11% to 22.29%
lower replication factors. Compared to the algorithmic competitor 2PS-L [21], we obtain
lower replication factors solely on the deezer graph instances, here the improvements
range between 9.03% to 13.80%.

6.2 Future Work

As having set the requirement that the streaming scenario should act unknowingly of
future nodes to be streamed, we always stream in the natural order of nodes as given
by their node IDs. We know that streaming in BFS order can remarkably improve the
partitioning quality and so future experiments shall explore more streaming orders, like
ambivalence from Awadelkarim and Ugander [7]. In the case of a buffered streaming
model, one might also consider the compromise to stick to the natural order of nodes
during streaming, but execute ordering inside the buffer prior to prediction.

Also, all graphs used throughout this thesis are rather small graphs and enable quick
feedback loops to further improve the algorithms and models. This allows us to stream
the graphs from the main memory, that only partly covers the actual streaming graph
partitioning application domain. Besides being used in online scenarios, partitioning
huge graphs that do not fit into the main memory is the most common application area
of streaming graph partitioning. Therefore, future work shall include experiments with
huge graphs that are streamed from the disk. These experiments shall investigate the
training efforts on the given hardware and the architectural model designs necessary to
predict block assignments of such big graphs.

To speed up training efforts for such huge graphs, one might also investigate the field of
online machine learning or incremental learning, where models are trained continuously
once new data arrives. A discussion about the research opportunities in this area is given
by Gomes et al. [67]. Besides this, there is also the field of out-of-core learning that one
might consider investigating as it tries to learn on data that does not fit into the main
memory.
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Discussion

Last but not least, to further speed up the framework for future experiments, an imple-
mentation in C++ is also imaginable. While especially the deep learning models are very
hard to implement in C++ because of very limited graph based deep learning libraries
available, XGBoost’s implementation of GBDTs [20] is also supported for C++1. Here
parallelization might also be implemented more easily such that a graph is processed
by multiple processes at once that each holds a model for block assignment prediction.
Scikit-learn’s and PyTorch Geometric’s training and prediction routines are already well
parallelized, only the streaming and partitioning routine itself can be further improved
through parallelization. Empirical evaluations of the throughput rate by the number of
processes used would then be an interesting area to investigate further.

1https://xgboost.readthedocs.io/en/stable/
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APPENDIX A
Datasets

In this chapter, we further introduce our two selected datasets for the tuning and evaluation
phase of the experimental evaluation and especially focus on a degree distribution analysis.
The experimental dataset is presented in Table A.1 and contains graphs in the order of
around 10 000 nodes.

Group Graph Nodes Edges
artificial delaunay_n13 8 192 24 547
artificial delaunay_n14 16 384 49 122
coauthorship astro-ph 16 706 121 251
coauthorship cond-mat 16 726 47 594
meshes fe_4elt2 11 143 32 818
meshes fe_sphere 16 386 49 152
road road-euroroad 1 174 1 417
road road-minnesota 2 642 3 303
social email-EuAll 16 805 60 260
social wordassociation-2011 10 617 63 788

Table A.1: Tuning Set

The degree distributions of the graphs inside the tuning dataset are shown below. We
recognize a Gaussian-like distribution on the generated artificial graphs (see Figure A.1)
with a mean of six and a standard deviation of 1.34. The mesh-type graphs (see Figure A.3)
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tend to have a more regular structure, more than 60% of the nodes from fe_4elt2 have
a degree of six and the standard deviation is less than one. Fe_sphere even has solely
nodes of degree six and is therefore a true regular graph. The technical road networks
(see Figure A.4) have a structural limitation by nature, in both of them more than 50%
of the nodes have a degree of two, road-minnesota does not surpass a maximum degree of
five, and the percentage of nodes having a degree higher than five becomes also negligible
for road-euroroad. A power-law degree distribution can be fitted for the coauthorship
graphs (see Figure A.2) as well as for the social graphs (see Figure A.5).

Figure A.1: Degree distributions of the tuning dataset: Artificial graphs

Figure A.2: Degree distributions of the tuning dataset: Coauthorship graphs
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Figure A.3: Degree distributions of the tuning dataset: Mesh graphs

Figure A.4: Degree distributions of the tuning dataset: Road graphs

Figure A.5: Degree distributions of the tuning dataset: Social graphs
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A true scale-free graph classification can only be determined for email-EuAll with an
approximate degree exponent of γ = 2.64. Also one can conclude a few hubs from the tail
of the degree distribution in Figure A.6. The remaining coauthorship graphs and social
graphs are all located in the anomalous regime with a degree exponent γ smaller than
two.

Figure A.6: Fitted scale-free power law distribution for email-EuAll

The dataset used to evaluate the tuned framework from the tuning graphs is given in
Table A.2 and contains slightly larger instances between approximately 20 000 and 40 000
nodes. During the design, it is important to guarantee that these graphs can be assigned
to the same structural and domain-specific groups as seen for the tuning dataset.
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Group Graph Nodes Edges
artificial delaunay_n15 32 768 98 274
artificial rgg_n_2_15_s0 32 768 160 240
coauthorship cond-mat-2003 31 163 120 029
coauthorship cond-mat-2005 40 421 175 691
meshes bcsstk30 28 924 1 007 284
meshes cs4 22 499 43 858
social as-22july06 22 963 48 436
social soc-Slashdot0902 28 550 379 445

Table A.2: Evaluation Set

Again the degree distributions of the different graphs are shown below. Note that we
cannot find road graphs in the same size dimension. Anyways the previous degree
distributions of the road graphs do not differ a lot from, e.g., the artificial graphs, such
that they can mimic their structural properties.

Figure A.7: Degree distributions of the evaluation dataset: Artificial graphs
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Figure A.8: Degree distributions of the evaluation dataset: Coauthorship graphs

Figure A.9: Degree distributions of the evaluation dataset: Mesh graphs

Figure A.10: Degree distributions of the evaluation dataset: Social graphs
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Once more the artificial graphs (see Figure A.7) follow a Gaussian distribution with the
delaunay_n15 graph having a mean of six and a standard deviation of 1.36 and the
rgg_n_2_15_s0 graph with a mean of 9.78 and a standard deviation of 3.16. From the
mesh-type graphs (see Figure A.9), only the cs4 graph seems to have a regular tendency
with more than 84% of the nodes having a degree of four. The bcsstk30 graph on the
other hand, which represent a stiffness matrix, is completely unregular and distributes
the node degrees seemingly randomly over an interval reaching up to a maximum degree
of 218. A power-law based degree distribution can again be fitted for the coauthorship
(see Figure A.8) and social graphs (see Figure A.10).

Figure A.11: Fitted scale-free power law distribution for as-22july06

Figure A.11 shows the fitted power-law distribution for the as-22july06 graph, which is the
only one in the evaluation dataset being scale-free with an approximate degree exponent
of γ = 2.44. The remaining power-law based graphs are again from the anomalous regime.
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Graph KaFFPa Eco Baseline Statistical Greedy Heuristic
delaunay_n13 1 045 4 381 4 387 4 007.8 4 077.8
delaunay_n14 1 462 7 989 7 342 7 202.6 7 792.4
astro-ph 26 066 39 642 40 935 40 352 39 987.4
cond-mat 5 663 11 348 11 886 11 934.6 11 548.2
fe_4elt2 1 127 6 115 7 246.4 6 693 6 373.8
fe_sphere 1 959 3 885 5 857.6 3 763 3 461.8
road-minnesota 141 387 507.4 369 361.8
road-euroroad 100 260 299 253 256.8
email-EuAll 18 378 27 662 25 811 28 495 27 467.8
wordassociation-2011 31 266 36 168 38 103 35 914.6 36 061.8
Geometric Mean 5 722.45 6 304.84 5 655.11 5 590.07

Table B.1: Logistic Regression feature evaluation: Total cut sizes by feature group

Graph Baseline NC+PH NC PH
delaunay_n13 4 381 4 387 4 663.4 (+) 4 500 (+)
delaunay_n14 7 989 7 342 8 529.4 (+) 7 859 (+)
astro-ph 39 642 40 935 40 743 (-) 39 044 (-)
cond-mat 11 348 11 886 12 166.4 (+) 11 786 (-)
fe_4elt2 6 115 7 246.4 7 160.6 (-) 7 470 (+)
fe_sphere 3 885 5 857.6 4 549 (-) 6 086.6 (+)
road-minnesota 387 507.4 561.8 (+) 481 (-)
road-euroroad 260 299 289.2 (-) 296 (-)
email-EuAll 27 662 25 811 25 885 (+) 28 188.2 (+)
wordassociation-2011 36 168 38 103 37 454.4 (-) 38 155 (+)
Geometric Mean 5 722.45 6 304.84 6 316.89 6 388.88

Table B.2: Logistic Regression feature evaluation: Total cut sizes by statistical feature
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Graph Baseline NBC+EC+NB EC+NB
delaunay_n13 4 381 4 007.8 3 972.8 (-)
delaunay_n14 7 989 7 202.6 7 243.8 (+)
astro-ph 39 642 40 352 40 330 (-)
cond-mat 11 348 11 934.6 11 964.4 (+)
fe_4elt2 6 115 6 693 6 705.4 (+)
fe_sphere 3 885 3 763 3 817.2 (+)
road-minnesota 387 369 370 (+)
road-euroroad 260 253 250 (-)
email-EuAll 27 662 28 495 28 505 (+)
wordassociation-2011 36 168 35 914.6 35 617.4 (-)
Geometric Mean 5 722.45 5 655.11 5 659.67
Graph NBC EC NB
delaunay_n13 4 106.8 (+) 3 880 (-) 4 095 (+)
delaunay_n14 7 525.2 (+) 7 256.4 (+) 7 313.2 (+)
astro-ph 40 561.2 (+) 40 127.8 (-) 40 519.2 (+)
cond-mat 11 875.4 (-) 11 856.8 (-) 11 840 (-)
fe_4elt2 6 963.6 (+) 6 819.4 (+) 6 851.2 (+)
fe_sphere 3 976 (+) 3 542.6 (-) 4 009.2 (+)
road-minnesota 394.4 (+) 364.8 (-) 367.4 (-)
road-euroroad 255 (+) 253.6 (+) 256.6 (+)
email-EuAll 27 772.4 (-) 28 443 (-) 27 756 (-)
wordassociation-2011 36 050.2 (+) 35 865.2 (-) 36 142 (+)
Geometric Mean 5 778.38 5 603.88 5 717.37

Table B.3: Logistic Regression feature evaluation: Total cut sizes by greedy feature
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Graph Baseline Fennel+LDG Fennel LDG
delaunay_n13 4 381 4 077.8 4 209 (+) 4 173.4 (+)
delaunay_n14 7 989 7 792.4 7 735.6 (-) 7 386 (-)
astro-ph 39 642 39 987.4 39 855 (-) 40 525 (+)
cond-mat 11 348 11 548.2 11 569.8 (+) 11 926 (+)
fe_4elt2 6 115 6 373.8 6 018.8 (-) 6 829 (+)
fe_sphere 3 885 3 461.8 3 343.4 (-) 4 203.8 (+)
road-minnesota 387 361.8 361.6 (-) 372.4 (+)
road-euroroad 260 256.8 254.4 (-) 256.6 (-)
email-EuAll 27 662 27 467.8 26 668 (-) 28 362 (+)
wordassociation-2011 36 168 36 061.8 36 102.4 (+) 36 539.8 (+)
Geometric Mean 5 722.45 5 590.07 5 530.26 5 790.14

Table B.4: Logistic Regression feature evaluation: Total cut sizes by heuristic feature

Graph Baseline NC+PH EC Fennel EC+Fennel
delaunay_n13 4 381 4 387 3 880 4 209 4 184
delaunay_n14 7 989 7 342 7 256.4 7 735.6 7 679
astro-ph 39 642 40 935 40 127.8 39 855 39 433.8
cond-mat 11 348 11 886 11 856.8 11 569.8 11 511.8
fe_4elt2 6 115 7 246.4 6 819.4 6 018.8 6 435.2
fe_sphere 3 885 5 857.6 3 542.6 3 343.4 3 532.8
road-minnesota 387 507.4 364.8 361.6 361.2
road-euroroad 260 299 253.6 254.4 254.8
email-EuAll 27 662 25 811 28 443 26 668 24 568.2
wordassociation-2011 36 168 38 103 35 865.2 36 102.4 36 023.6
Geometric Mean 5 722.45 6 304.84 5 603.88 5 530.26 5 535.41

Table B.5: Logistic Regression feature evaluation: Total cut sizes by selected features
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Graph KaFFPa Eco Baseline Statistical Greedy Heuristic
delaunay_n13 1 045 4 381 4 521 4 232.4 4 141
delaunay_n14 1 462 7 989 7 110 7 358 7 746
astro-ph 26 066 39 642 40 599 40 854.2 40 763
cond-mat 5 663 11 348 11 943 11 848.4 11 693
fe_4elt2 1 127 6 115 7 106 6 659.8 6 250
fe_sphere 1 959 3 885 6 151 3 891.6 3 493
road-minnesota 141 387 480 375.8 347
road-euroroad 100 260 287.6 256.4 257.4
email-EuAll 18 378 27 662 26 000 26 963.6 27 739
wordassociation-2011 31 266 36 168 37 513 36 107.6 36 353
Geometric Mean 5 722.45 6 255.31 5 707.01 5 595.03

Table B.6: GBDTs feature evaluation: Total cut sizes by feature group

Graph Baseline NC+PH NC PH
delaunay_n13 4 381 4 521 4 504 (-) 4 448 (-)
delaunay_n14 7 989 7 110 7 735 (+) 7 660 (+)
astro-ph 39 642 40 599 40 731 (+) 40 646 (+)
cond-mat 11 348 11 943 12 084 (+) 11 740 (-)
fe_4elt2 6 115 7 106 7 953 (+) 7 533 (+)
fe_sphere 3 885 6 151 4 645 (-) 5 926 (-)
road-minnesota 387 480 533 (+) 476 (-)
road-euroroad 260 287.6 290.2 (+) 299.2 (+)
email-EuAll 27 662 26 000 26 788 (+) 28 500 (+)
wordassociation-2011 36 168 37 513 36 823 (-) 37 735 (+)
Geometric Mean 5 722.45 6 255.31 6 288.10 6 376.71

Table B.7: GBDTs feature evaluation: Total cut sizes by statistical feature
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Graph Baseline NBC+EC+NB EC+NB
delaunay_n13 4 381 4 232.4 4 186 (-)
delaunay_n14 7 989 7 358 6 981 (-)
astro-ph 39 642 40 854.2 40 908 (+)
cond-mat 11 348 11 848.4 11 875 (+)
fe_4elt2 6 115 6 659.8 6 592 (-)
fe_sphere 3 885 3 891.6 3 870 (-)
road-minnesota 387 375.8 376 (+)
road-euroroad 260 256.4 255.6 (-)
email-EuAll 27 662 26 963.6 26 725 (-)
wordassociation-2011 36 168 36 107.6 36 018 (-)
Geometric Mean 5 722.45 5 707.01 5 655.97
Graph NBC EC NB
delaunay_n13 4 323.8 (+) 4 169 (-) 4 309 (+)
delaunay_n14 7 505.8 (+) 7 406 (+) 6 756 (-)
astro-ph 40 483.8 (-) 40 804 (-) 39 920 (-)
cond-mat 11 944.8 (+) 11 897 (+) 11 890 (+)
fe_4elt2 6 972.2 (+) 6 790 (+) 7 061 (+)
fe_sphere 3 964 (+) 3 848 (-) 3 970 (+)
road-minnesota 393.8 (+) 390 (+) 385 (+)
road-euroroad 259 (+) 255.8 (-) 254.2 (-)
email-EuAll 26 782.8 (-) 28 068 (+) 26 663 (-)
wordassociation-2011 36 167.8 (+) 36 368 (+) 36 177 (+)
Geometric Mean 5 796.93 5 755.40 5 705.68

Table B.8: GBDTs feature evaluation: Total cut sizes by greedy feature
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Graph Baseline Fennel+LDG Fennel LDG
delaunay_n13 4 381 4 141 4 063 (-) 4 284 (+)
delaunay_n14 7 989 7 746 7 264 (-) 7 175 (-)
astro-ph 39 642 40 763 40 020 (-) 40 683 (-)
cond-mat 11 348 11 693 11 548 (-) 11 867 (+)
fe_4elt2 6 115 6 250 6 370 (+) 6 860 (+)
fe_sphere 3 885 3 493 3 342 (-) 4 631 (+)
road-minnesota 387 347 373 (+) 372 (+)
road-euroroad 260 257.4 262.2 (+) 264.8 (+)
email-EuAll 27 662 27 739 26 178 (-) 27 776 (+)
wordassociation-2011 36 168 36 353 36 084 (-) 36 944 (+)
Geometric Mean 5 722.45 5 595.03 5 531.65 5 858.82

Table B.9: GBDTs feature evaluation: Total cut sizes by heuristic feature

Graph Baseline NC+PH EC+NB Fennel EC+NB+Fennel
delaunay_n13 4 381 4 521 4 186 4 063 4 050
delaunay_n14 7 989 7 110 6 981 7 264 7 459
astro-ph 39 642 40 599 40 908 40 020 40 722
cond-mat 11 348 11 943 11 875 11 548 11 849
fe_4elt2 6 115 7 106 6 592 6 370 6 473
fe_sphere 3 885 6 151 3 870 3 342 3 688
road-minnesota 387 480 376 373 361
road-euroroad 260 287.6 255.6 262.2 247
email-EuAll 27 662 26 000 26 725 26 178 26 333
wordassociation-2011 36 168 37 513 36 018 36 084 35 923
Geometric Mean 5 722.45 6 255.31 5 655.97 5 531.65 5 581.64

Table B.10: GBDTs feature evaluation: Total cut sizes by selected features
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Graph KaFFPa Eco Baseline Statistical Greedy Heuristic
delaunay_n13 1 045 4 381 3 783.2 4 095 3 797.6
delaunay_n14 1 462 13 880 10 065 12 358.2 11 465.4
astro-ph 26 066 51 123 55 015.4 55 792.6 54 831.8
cond-mat 5 663 15 293 17 850.6 17 838.2 17 213.6
fe_4elt2 1 127 6 322 6 814.2 6 668 6 693.4
fe_sphere 1 959 4 532 4 929 4 843.4 3 858
road-minnesota 141 387 418 425.2 351.6
road-euroroad 100 260 271.6 268.2 264.8
email-EuAll 18 378 35 226 28 046 36 017.6 34 006.6
wordassociation-2011 31 266 36 186 35 915 35 566 36 223.4
Geometric Mean 6 671.60 6 542.20 6 880.00 6 434.77

Table B.11: SVM feature evaluation: Total cut sizes by feature group

Graph Baseline NC+PH NC PH
delaunay_n13 4 381 3 783.2 4 015.2 (+) 4 336.4 (+)
delaunay_n14 13 880 10 065 10 175.8 (+) 10 998 (+)
astro-ph 51 123 55 015.4 54 922 (-) 54 489 (-)
cond-mat 15 293 17 850.6 17 893.2 (+) 18 303.6 (+)
fe_4elt2 6 322 6 814.2 6 840 (+) 7 264.8 (+)
fe_sphere 4 532 4 929 4 906 (-) 8 569 (+)
road-minnesota 387 418 419.6 (+) 494.8 (+)
road-euroroad 260 271.6 268.2 (-) 287.4 (+)
email-EuAll 35 226 28 046 28 270 (+) 37 216.4 (+)
wordassociation-2011 36 168 35 915 35 915 (=) 37 964 (+)
Geometric Mean 6 671.60 6 542.20 6 587.78 7 541.30

Table B.12: SVM feature evaluation: Total cut sizes by statistical feature
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Graph Baseline NBC+EC+NB EC+NB
delaunay_n13 4 381 4 095 4 150 (+)
delaunay_n14 13 880 12 358.2 12 343.6 (-)
astro-ph 51 123 55 792.6 55 654.4 (-)
cond-mat 15 293 17 838.2 17 784.4 (-)
fe_4elt2 6 322 6 668 6 742.2 (+)
fe_sphere 4 532 4 843.4 4 765 (-)
road-minnesota 387 425.2 418.2 (-)
road-euroroad 260 268.2 270.2 (+)
email-EuAll 35 226 36 017.6 35 926.2 (-)
wordassociation-2011 36 186 35 566 35 611.6 (+)
Geometric Mean 6 671.60 6 880.00 6 873.79
Graph NBC EC NB
delaunay_n13 4 239.2 (+) 4 216.6 (+) 4 142.4 (+)
delaunay_n14 12 258.6 (-) 11 992.2 (-) 11 607.8 (-)
astro-ph 55 781.8 (-) 55 852.8 (+) 56 036.6 (+)
cond-mat 17 842.6 (+) 17 815.6 (-) 17 855.8 (+)
fe_4elt2 7 052 (+) 6 790.2 (+) 7 038.4 (+)
fe_sphere 4 932 (+) 4 818.6 (+) 4 758 (-)
road-minnesota 391 (-) 399.6 (-) 390.6 (-)
road-euroroad 253.6 (-) 260.8 (-) 266.6 (-)
email-EuAll 37 156.2 (+) 36 124 (+) 37 221.6 (+)
wordassociation-2011 35 888.8 (+) 35 537 (-) 35 846.4 (+)
Geometric Mean 6 880.70 6 827.98 6 839.09

Table B.13: SVM feature evaluation: Total cut sizes by greedy feature

111



Feature Selection

Graph Baseline Fennel+LDG Fennel LDG
delaunay_n13 4 381 3 797.6 3 895 (+) 4 302 (+)
delaunay_n14 13 880 11 465.4 11 915.8 (+) 11 267 (-)
astro-ph 51 123 54 831.8 54 280.8 (-) 55 422.6 (+)
cond-mat 15 293 17 213.6 16 831.8 (-) 17 938 (+)
fe_4elt2 6 322 6 693.4 6 627.4 (-) 6 925.6 (+)
fe_sphere 4 532 3 858 3 685 (-) 6 163.8 (+)
road-minnesota 387 351.6 332.4 (-) 407.6 (+)
road-euroroad 260 264.8 266 (+) 271 (+)
email-EuAll 35 226 34 006.6 34 069.2 (+) 36 838.2 (+)
wordassociation-2011 36 168 36 223.4 36 159.4 (-) 36 437.4 (+)
Geometric Mean 6 671.60 6 434.77 6 386.04 7 053.90

Table B.14: SVM feature evaluation: Total cut sizes by heuristic feature

Graph Baseline NC+PH EC Fennel NC+PH+Fennel
delaunay_n13 4 381 3 783.2 4 216.6 3 895 3 864.2
delaunay_n14 13 880 10 065 11 992.2 11 915.8 10 221.8
astro-ph 51 123 55 015.4 55 852.8 54 280.8 55 021.2
cond-mat 15 293 17 850.6 17 815.6 16 831.8 17 861.2
fe_4elt2 6 322 6 814.2 6 790.2 6 627.4 6 870.6
fe_sphere 4 532 4 929 4 818.6 3 685 5 076.8
road-minnesota 387 418 399.6 332.4 424.8
road-euroroad 260 271.6 260.8 266 270.4
email-EuAll 35 226 28 046 36 124 34 069.2 28 084
wordassociation-2011 36 168 35 915 35 537 36 159.4 35 915
Geometric Mean 6 671.60 6 542.20 6 827.98 6 386.04 6 600.15

Table B.15: SVM feature evaluation: Total cut sizes by selected features
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Graph KaFFPa Eco Baseline Statistical Greedy Heuristic
delaunay_n13 1 045 4 381 4 028.2 4 220.8 4 240
delaunay_n14 1 462 7 989 7 008.2 7 589.4 7 575.6
astro-ph 26 066 39 642 40 276 40 258.8 40 336.8
cond-mat 5 663 11 348 12 003 11 946 11 761.8
fe_4elt2 1 127 6 115 6 757.4 6 827.2 6 203
fe_sphere 1 959 3 885 4 765 3 802.6 3 807.2
road-minnesota 141 387 474 381.2 384.8
road-euroroad 100 260 292.6 263 254.4
email-EuAll 18 378 27 662 28 077.2 28 443 28 229.2
wordassociation-2011 31 266 36 168 37 141.8 36 004.4 36 087
Geometric Mean 5 722.45 6 029.99 5 772.25 5 695.04

Table B.16: GraphSAGE feature evaluation: Total cut sizes by feature group

Graph Baseline NC+PH NC PH
delaunay_n13 4 381 4 028.2 5 247 (+) 4 286.2 (+)
delaunay_n14 7 989 7 008.2 9 672.4 (+) 7 514 (+)
astro-ph 39 642 40 276 42 281.8 (+) 40 860.2 (+)
cond-mat 11 348 12 003 13 600.4 (+) 11 933.4 (-)
fe_4elt2 6 115 6 757.4 7 749.8 (+) 6 911.8 (+)
fe_sphere 3 885 4 929 5 078 (+) 5 360.2 (+)
road-minnesota 387 474 662.4 (+) 491 (+)
road-euroroad 260 292.6 322.4 (+) 288.6 (-)
email-EuAll 27 662 28 077.2 27 970.6 (-) 28 499 (+)
wordassociation-2011 36 168 37 141.8 37 823.4 (+) 36 832 (-)
Geometric Mean 5 722.45 6 029.99 6 940.83 6 219.01

Table B.17: GraphSAGE feature evaluation: Total cut sizes by statistical feature
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Graph Baseline NBC+EC+NB EC+NB
delaunay_n13 4 381 4 220.8 4 163.4 (-)
delaunay_n14 7 989 7 589.4 7 279.2 (-)
astro-ph 39 642 40 258.8 40 298.6 (+)
cond-mat 11 348 11 946 11 886.8 (-)
fe_4elt2 6 115 6 827.2 6 714.6 (-)
fe_sphere 3 885 3 802.6 3 837.8 (+)
road-minnesota 387 381.2 371 (-)
road-euroroad 260 263 258.2 (-)
email-EuAll 27 662 28 443 28 386.6 (-)
wordassociation-2011 36 168 36 004.4 35 884.2 (-)
Geometric Mean 5 722.45 5 772.25 5 704.71
Graph NBC EC NB
delaunay_n13 4 188 (-) 4 107.4 (-) 4 199.4 (-)
delaunay_n14 7 500.4 (-) 7 531.4 (-) 7 356 (-)
astro-ph 40 826.4 (+) 40 546.6 (+) 40 650.2 (+)
cond-mat 11 986.6 (+) 11 886.8 (-) 11 954.8 (+)
fe_4elt2 6 883.8 (+) 6 697.6 (-) 6 832.4 (+)
fe_sphere 3 874.6 (+) 3 820.2 (+) 3 858 (+)
road-minnesota 385.6 (+) 377.4 (-) 377.2 (-)
road-euroroad 261.2 (-) 271.2 (+) 259 (-)
email-EuAll 28 648 (+) 28 355.2 (-) 28 529 (+)
wordassociation-2011 35 952.8 (-) 36 020.6 (+) 36 016.8 (+)
Geometric Mean 5 792.58 5 755.38 5 753.12

Table B.18: GraphSAGE feature evaluation: Total cut sizes by greedy feature
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Graph Baseline Fennel+LDG Fennel LDG
delaunay_n13 4 381 4 240 4 205.6 (-) 4 223.4 (-)
delaunay_n14 7 989 7 575.6 7 555.6 (-) 7 062.2 (-)
astro-ph 39 642 40 336.8 40 295.6 (-) 40 766.6 (+)
cond-mat 11 348 11 761.8 11 716.6 (-) 11 908 (+)
fe_4elt2 6 115 6 203 6 309.4 (+) 6 559.8 (+)
fe_sphere 3 885 3 807.2 3 581.2 (-) 4 056 (+)
road-minnesota 387 384.8 405 (+) 368 (-)
road-euroroad 260 254.4 255.2 (+) 260.8 (+)
email-EuAll 27 662 28 229.2 28 321.6 (+) 28 466.8 (+)
wordassociation-2011 36 168 36 087 35 997.6 (-) 36 224.4 (+)
Geometric Mean 5 722.45 5 695.04 5 692.33 5 729.58

Table B.19: GraphSAGE feature evaluation: Total cut sizes by heuristic feature

Graph Baseline NC+PH EC+NB Fennel EC+NB+Fennel
delaunay_n13 4 381 4 028.2 4 163.4 4 205.6 3 985.8
delaunay_n14 7 989 7 008.2 7 279.2 7 555.6 6 216
astro-ph 39 642 40 276 40 298.6 40 295.6 40 876.4
cond-mat 11 348 12 003 11 886.8 11 716.6 11 973.4
fe_4elt2 6 115 6 757.4 6 714.6 6 309.4 6 573.6
fe_sphere 3 885 4 929 3 837.8 3 581.2 4 140.6
road-minnesota 387 474 371 405 403.8
road-euroroad 260 292.6 258.2 255.2 272.2
email-EuAll 27 662 28 077.2 28 386.6 28 321.6 27 866.6
wordassociation-2011 36 168 37 141.8 35 884.2 35 997.6 36 099.2
Geometric Mean 5 722.45 6 029.99 5 704.71 5 692.33 5 704.56

Table B.20: GraphSAGE feature evaluation: Total cut sizes by selected features

115



Feature Selection

Graph KaFFPa Eco Baseline Statistical Greedy Heuristic
delaunay_n13 1 045 4 381 4 041.2 4 228.6 4 275.2
delaunay_n14 1 462 7 989 6 633 7 674 7 406.4
astro-ph 26 066 39 642 40 543.4 40 450 40 379.6
cond-mat 5 663 11 348 12 003.6 11 895.4 11 876
fe_4elt2 1 127 6 115 6 733.4 6 817.8 6 237.8
fe_sphere 1 959 3 885 4 626.4 3 901.2 3 887.8
road-minnesota 141 387 480.8 379.8 448.8
road-euroroad 100 260 303.4 264.2 261.4
email-EuAll 18 378 27 662 28 200.8 28 464.8 27 484
wordassociation-2011 31 266 36 168 36 843 35 933.4 36 138.2
Geometric Mean 5 722.45 6 011.08 5 793.82 5 797.67

Table B.21: Partitioner feature evaluation: Total cut sizes by feature group

Graph Baseline NC+PH NC PH
delaunay_n13 4 381 4 041.2 5 123.8 (+) 4 275.8 (+)
delaunay_n14 7 989 6 633 9 829.2 (+) 7 296.8 (+)
astro-ph 39 642 40 543.4 42 960.8 (+) 40 982 (+)
cond-mat 11 348 12 003.6 13 546.8 (+) 12 118.6 (+)
fe_4elt2 6 115 6 733.4 7 646.6 (+) 6 983.2 (+)
fe_sphere 3 885 4 626.4 5 183.6 (+) 5 193.6 (+)
road-minnesota 387 480.8 643.8 (+) 520.2 (+)
road-euroroad 260 303.4 326.4 (+) 294.8 (-)
email-EuAll 27 662 28 200.8 27 848.4 (-) 28 366 (+)
wordassociation-2011 36 168 36 843 37 831.2 (+) 36 804.6 (+))
Geometric Mean 5 722.45 6 011.08 6 934.69 6 243.26

Table B.22: Partitioner feature evaluation: Total cut sizes by statistical feature
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Feature Selection

Graph Baseline NBC+EC+NB EC+NB
delaunay_n13 4 381 4 228.6 4 239 (+)
delaunay_n14 7 989 7 674 7 537 (-)
astro-ph 39 642 40 450 40 407.4 (-)
cond-mat 11 348 11 895.4 11 899.6 (+)
fe_4elt2 6 115 6 817.8 6 725.8 (-)
fe_sphere 3 885 3 901.2 3 812.8 (-)
road-minnesota 387 379.8 390.2 (+)
road-euroroad 260 264.2 267.6 (+)
email-EuAll 27 662 28 464.8 28 467.2 (+)
wordassociation-2011 36 168 35 933.4 36 027.2 (+)
Geometric Mean 5 722.45 5 793.82 5 787.88
Graph NBC EC NB
delaunay_n13 4 213.4 (-) 4 294.4 (+) 4 166 (-)
delaunay_n14 7 384.2 (-) 7 658.4 (-) 7 544.6 (-)
astro-ph 40 741.6 (+) 40 489.8 (+) 40 715 (+)
cond-mat 11 960.6 (+) 11 950.8 (+) 11 939.6 (+)
fe_4elt2 6 754.4 (-) 6 830 (+) 6 733.8 (-)
fe_sphere 3 876.8 (-) 3 857.4 (-) 3 944.2 (+)
road-minnesota 398 (+) 390.8 (+) 386.6 (+)
road-euroroad 266.8 (+) 271 (+) 259.8 (-)
email-EuAll 28 304.4 (-) 28 433.6 (-) 28 177 (-)
wordassociation-2011 36 007.4 (+) 36 002.2 (+) 36 203.2 (+)
Geometric Mean 5 798.42 5 831.21 5 779.45

Table B.23: Partitioner feature evaluation: Total cut sizes by greedy feature
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Feature Selection

Graph Baseline Fennel+LDG Fennel LDG
delaunay_n13 4 381 4 275.2 4 223.8 (-) 4 014.6 (-)
delaunay_n14 7 989 7 406.4 7 640 (+) 7 400.6 (-)
astro-ph 39 642 40 379.6 40 072.2 (-) 40 765.8 (+)
cond-mat 11 348 11 876 11 714.4 (-) 11 920.6 (+)
fe_4elt2 6 115 6 237.8 6 384.8 (+) 6 577 (+)
fe_sphere 3 885 3 887.8 3 523.6 (-) 4 017.6 (+)
road-minnesota 387 448.8 409 (-) 376.2 (-)
road-euroroad 260 261.4 262.2 (+) 262.6 (+)
email-EuAll 27 662 27 484 27 888 (+) 28 331.6 (+)
wordassociation-2011 36 168 36 138.2 36 225.2 (+) 36 289.6 (+)
Geometric Mean 5 722.45 5 797.67 5 711.20 5 738.87

Table B.24: Partitioner feature evaluation: Total cut sizes by heuristic feature

Graph Baseline NC+PH NB Fennel NB+Fennel
delaunay_n13 4 381 4 041.2 4 166 4 223.8 4 257.4
delaunay_n14 7 989 6 633 7 544.6 7 640 7 513.6
astro-ph 39 642 40 543.4 40 715 40 072.2 40 148.8
cond-mat 11 348 12 003.6 11 939.6 11 714.4 11 836.4
fe_4elt2 6 115 6 733.4 6 733.8 6 384.8 6 555.4
fe_sphere 3 885 4 626.4 3 944.2 3 523.6 3 657.6
road-minnesota 387 480.8 386.6 409 398.2
road-euroroad 260 303.4 259.8 262.2 264.4
email-EuAll 27 662 28 200.8 28 177 27 888 27 920.2
wordassociation-2011 36 168 36 843 36 203.2 36 225.2 36 169.8
Geometric Mean 5 722.45 6 011.08 5 779.45 5 711.20 5 738.93

Table B.25: Partitioner feature evaluation: Total cut sizes by selected features
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APPENDIX C
Generalization
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Generalization

C.1 Instance Generalization

C.1.1 Perfectly Balanced Partitioning

Graph Baseline Logistic Regression GBDTs
delaunay_n15 6 987 363 5 357
rgg_n_2_15_s0 1 673 376 776
cond-mat-2003 12 148 13 198 12 985.8
cond-mat-2005 18 620 20 489 17 062.8
bcsstk30 23 960 6 901 6 607
cs4 4 756 1 334 3 589.8
as-22july06 8 409 8 365 8 365
soc-Slashdot0902 80 287 56 120 56 120
Geometric Mean 10 928.2 4 470.4 7 522.64
Graph SVM GraphSAGE Partitioner
delaunay_n15 16 686 5 475.4 4 729.6
rgg_n_2_15_s0 994 1 159.6 999
cond-mat-2003 35 670 11 714.4 11 456.4
cond-mat-2005 58 817 17 789.6 17 183.8
bcsstk30 45 240 17 601.4 6 710.4
cs4 15 060 3 006.6 1 907.6
as-22july06 13 839 8 600 8 643.8
soc-Slashdot0902 184 804 79 995.4 104 271.8
Geometric Mean 22 276.07 9 127.45 7 565.42

Table C.1: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 2, ε = 0.0 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 10 754 5 600 9 509.8
rgg_n_2_15_s0 3 073 1 813 2 575
cond-mat-2003 22 145 22 907 22 534.6
cond-mat-2005 33 213 35 176 34 100.8
bcsstk30 79 918 41 587 53 289.4
cs4 7 753 6 590 7 143
as-22july06 13 320 13 466 12 780
soc-Slashdot0902 167 452 136 941 161 205.4
Geometric Mean 20 690.84 15 923.99 18 669.14
Graph SVM GraphSAGE Partitioner
delaunay_n15 19 932 8 302.8 7 622
rgg_n_2_15_s0 2 966 2 655.2 2 745.2
cond-mat-2003 52 569 21 896.8 21 782.4
cond-mat-2005 85 162 33 503.2 33 821.6
bcsstk30 71 501 49 732.8 48 621.8
cs4 17 080.6 6 727.8 6 721
as-22july06 21 844 13 278.4 13 303
soc-Slashdot0902 249 652 171 965.8 176 685
Geometric Mean 33 944.74 18 259.4 18 162.25

Table C.2: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 4, ε = 0.0 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 13 111 10 004 10 712
rgg_n_2_15_s0 4 860 4 046 4 516.8
cond-mat-2003 29 467 30 482 29 734.2
cond-mat-2005 45 073 46 453 45 100.4
bcsstk30 124 795 90 787 77 782
cs4 9 184 10 506 8 576.2
as-22july06 17 669 18 140 17 518.6
soc-Slashdot0902 221 958 208 446.6 220 159.6
Geometric Mean 28 023.96 25 966.82 25 282.42
Graph SVM GraphSAGE Partitioner
delaunay_n15 36 438 11 267.6 11 876
rgg_n_2_15_s0 4 535 4 405.4 3 780.2
cond-mat-2003 61 699 29 985.2 29 856.4
cond-mat-2005 99 967 45 112.2 45 605.4
bcsstk30 134 160 87 753.6 96 837.4
cs4 23 760.2 8 897.2 8 561
as-22july06 27 451 17 503.8 17 588.6
soc-Slashdot0902 288 891 225 028.6 227 224
Geometric Mean 47 465.6 25 963.5 25 900.7

Table C.3: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 8, ε = 0.0 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 14 885 12 610 13 373
rgg_n_2_15_s0 6 654 6 845 6 842
cond-mat-2003 35 365 36 320.2 35 687.4
cond-mat-2005 54 807 55 921.8 55 041
bcsstk30 163 903 154 038 155 017.6
cs4 10 397 11 247.4 10 083
as-22july06 20 441 20 397 20 387.8
soc-Slashdot0902 260 967 264 531.4 256 390.4
Geometric Mean 33 902.21 33 637.03 33 178.52
Graph SVM GraphSAGE Partitioner
delaunay_n15 37 174.4 13 098.2 13 750.2
rgg_n_2_15_s0 8 041 6 091.4 6 682.2
cond-mat-2003 69 904.6 35 502.6 35 875.4
cond-mat-2005 113 545.6 55 167 55 347
bcsstk30 213 668 157 004.8 154 471.2
cs4 25 811.4 10 246.4 10 342
as-22july06 29 801.8 20 516.2 20 484.2
soc-Slashdot0902 325 313.6 263 119 263 099.6
Geometric Mean 57 931.63 32 853.01 33 459.07

Table C.4: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 16, ε = 0.0 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

C.1.2 Imbalanced Partitioning

Graph Baseline Logistic Regression GBDTs
delaunay_n15 6 867.6 10 584 5 354
rgg_n_2_15_s0 1 459.6 918 722.2
cond-mat-2003 12 728 12 423 13 012.8
cond-mat-2005 19 724 22 266 18 829.4
bcsstk30 31 807.8 7 357 6 251
cs4 4 810.2 1 668 3 462
as-22july06 8 676.8 8 561 8 844
soc-Slashdot0902 116 207.2 104 998 104 998
Geometric Mean 11 847.74 8 590.05 8 127.48
Graph SVM GraphSAGE Partitioner
delaunay_n15 43 048 5 625.8 4 376.8
rgg_n_2_15_s0 957 1 177.2 714
cond-mat-2003 26 693 12 069.6 12 289.2
cond-mat-2005 44 338 18 048.4 18 369.2
bcsstk30 46 250 17 241 6 476.4
cs4 14 835 3 497.6 2 044.4
as-22july06 14 392 8 770.6 8 506
soc-Slashdot0902 104 646 111 583.8 105 536
Geometric Mean 21 766.33 9 800.9 7 335.62

Table C.5: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 2, ε = 0.03 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 10 727.6 6 451 9 715
rgg_n_2_15_s0 2 716 2 072 2 403
cond-mat-2003 25 751.8 26 703 25 932
cond-mat-2005 42 807.4 42 625 42 664.4
bcsstk30 72 718.8 45 552 37 079.8
cs4 7 702.4 6 786 7 029
as-22july06 14 026.8 14 016 14 456.2
soc-Slashdot0902 223 495.6 223 368 217 798.6
Geometric Mean 22 075.34 18 663.84 19 533.49
Graph SVM GraphSAGE Partitioner
delaunay_n15 20 118 8 832.2 7 870.6
rgg_n_2_15_s0 2 584.6 2 601.6 2 390.4
cond-mat-2003 47 990 25 373.2 25 349.2
cond-mat-2005 77 955 42 684.4 42 445.4
bcsstk30 84 488 54 373 34 943.8
cs4 20 013 6 912.6 6 347
as-22july06 22 988 13 754 14 080.2
soc-Slashdot0902 247 521 221 448.2 225 957.2
Geometric Mean 34 199.85 20 269.12 18 593.27

Table C.6: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 4, ε = 0.03 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 13 132.4 8 633 11 424
rgg_n_2_15_s0 4 551 4 386.4 4 086
cond-mat-2003 33 672 34 606 34 050.2
cond-mat-2005 55 079.4 55 954 55 384.6
bcsstk30 111 467.8 80 717 78 151
cs4 9 180 10 502 8 604.4
as-22july06 19 295.2 19 388 19 479.8
soc-Slashdot0902 278 370.4 279 372 275 860.6
Geometric Mean 29 723.28 27 599.47 27 404.34
Graph SVM GraphSAGE Partitioner
delaunay_n15 36 239.4 11 203.4 11 908.4
rgg_n_2_15_s0 4 480 3 959.4 3 865.2
cond-mat-2003 61 482 34 050.8 34 091.4
cond-mat-2005 103 566 55 257.6 55 290.6
bcsstk30 139 758 91 235.8 75 933
cs4 23 836.8 8 878.2 8 719
as-22july06 27 392 19 432 19 096
soc-Slashdot0902 304 741 278 536.2 279 333.4
Geometric Mean 48 119.98 27 888.39 27 276.3

Table C.7: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 8, ε = 0.03 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 14 745.2 12 734 13 252.6
rgg_n_2_15_s0 6 409.6 6 933.2 6 386
cond-mat-2003 37 880.8 39 076 38 308.8
cond-mat-2005 61 528 62 753 61 889
bcsstk30 163 109.4 170 763 156 210.8
cs4 10 274 11 106.8 9 964
as-22july06 22 390.4 22 522 22 528
soc-Slashdot0902 301 542.6 302 644 301 752.4
Geometric Mean 35 446.66 35 964.22 34 743.22
Graph SVM GraphSAGE Partitioner
delaunay_n15 36 477.2 13 081 13 546.2
rgg_n_2_15_s0 7 816.8 6 389.6 6 157.2
cond-mat-2003 71 676.8 38 237.2 38 397
cond-mat-2005 114 601.2 61 915.4 62 154.6
bcsstk30 216 431 162 122.8 156 981.8
cs4 25 712.2 10 210 10 279.6
as-22july06 31 865 22 459.8 22 425
soc-Slashdot0902 330 137.2 302 307.4 302 671.4
Geometric Mean 58 497.28 34 945.44 34 858.81

Table C.8: Instance generalization evaluation: Total cut sizes by model. Experiments run on the
evaluation dataset with k = 16, ε = 0.03 and using a uniformly sampled 80%/20% train-test-split.
Each experiment on each graph is repeated five times using different random seeds. The reported
total cut sizes are based on the true block labels of the training nodes and the predicted block
labels of the testing nodes.
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Generalization

C.2 Group Generalization

C.2.1 Perfectly Balanced Partitioning

Graph Baseline Logistic Regression GBDTs
delaunay_n15 17 530 25 457 9 556.4
rgg_n_2_15_s0 3 274 768 2 235.8
cond-mat-2003 13 347 35 252 16 538.6
cond-mat-2005 20 136 50 707 21 629.8
bcsstk30 78 189 24 213 56 122.2
cs4 9 211 13 122 9 148.8
as-22july06 14 210 18 988 18 947
soc-Slashdot0902 155 577 105 974 179 795.4
Geometric Mean 19 896.48 19 662.71 18 440.05
Graph SVM GraphSAGE Partitioner
delaunay_n15 25 457 17 576.8 17 850.4
rgg_n_2_15_s0 768 2 071.6 2 129.8
cond-mat-2003 35 252 16 907 18 770
cond-mat-2005 50 707 27 665.4 27 912
bcsstk30 24 213 53 028 87 532.6
cs4 13 122 15 162.6 16 553.4
as-22july06 18 988 18 839.2 19 199
soc-Slashdot0902 105 974 152 360.4 143 920.2
Geometric Mean 19 662.71 21 101.23 23 052.2

Table C.9: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 2 and ε = 0.0. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.

128



Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 27 786 37 736 21 992.6
rgg_n_2_15_s0 6 087 1 473 5 272
cond-mat-2003 26 502 58 229 29 529.2
cond-mat-2005 42 849 87 455 43 119.2
bcsstk30 139 297 51 676 85 477.6
cs4 14 419 23 677 16 336
as-22july06 19 736 29 278 27 688.8
soc-Slashdot0902 231 569 223 789 256 666.8
Geometric Mean 33 945.57 35 033.6 33 168.88
Graph SVM GraphSAGE Partitioner
delaunay_n15 37 736 29 673.6 27 396.8
rgg_n_2_15_s0 1 473 3 775.4 3 517.4
cond-mat-2003 58 229 33 782.8 29 986
cond-mat-2005 87 455 55 695.6 48 319.2
bcsstk30 51 676 94 056.8 96 381.4
cs4 23 677 21 081.2 18 747.4
as-22july06 29 278 27 228 26 902.8
soc-Slashdot0902 223 789 220 254.4 232 738.8
Geometric Mean 35 033.6 35 471.9 33 482.67

Table C.10: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 4 and ε = 0.0. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 33 059 39 697 22 768
rgg_n_2_15_s0 7 438 2 735 6 847.8
cond-mat-2003 32 397 74 384 42 076.8
cond-mat-2005 51 590 112 236 61 329.6
bcsstk30 210 404 96 640 126 999
cs4 17 810 30 512 22 829.2
as-22july06 26 588 36 038 33 788.6
soc-Slashdot0902 279 331 298 526 307 148.6
Geometric Mean 42 883.71 48 121.28 43 189.17
Graph SVM GraphSAGE Partitioner
delaunay_n15 39 697 34 553.4 35 046.6
rgg_n_2_15_s0 2 735 5 192 5 395
cond-mat-2003 74 384 43 041.2 43 242
cond-mat-2005 112 236 70 470.2 68 268.8
bcsstk30 96 640 130 786.4 121 727
cs4 30 512 25 600.4 22 609.4
as-22july06 36 038 32 317 33 780.4
soc-Slashdot0902 298 526 287 199.4 283 881.4
Geometric Mean 48 121.28 45 031.6 44 261.93

Table C.11: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 8 and ε = 0.0. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 771 40 998 27 674.4
rgg_n_2_15_s0 9 490 5 514 11 352
cond-mat-2003 35 394 82 643 43 333.8
cond-mat-2005 59 755 125 389 68 399
bcsstk30 248 636 151 155 193 439.8
cs4 19 592 34 408 25 343
as-22july06 27 239 40 373 36 861.2
soc-Slashdot0902 304 295 335 363 333 890.4
Geometric Mean 48 170.23 59 864.99 52 323.95
Graph SVM GraphSAGE Partitioner
delaunay_n15 40 998 38 304.2 39 574
rgg_n_2_15_s0 5 514 7 474.8 7 494.8
cond-mat-2003 82 643 47 670.2 51 856.2
cond-mat-2005 125 389 75 793.4 81 159.2
bcsstk30 151 155 187 483.6 197 673.4
cs4 34 408 27 818.6 26 419
as-22july06 40 373 36 548.6 38 776.8
soc-Slashdot0902 335 363 326 692.6 322 893.2
Geometric Mean 59 864.99 53 226.65 54 824.6

Table C.12: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 16 and ε = 0.0. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Generalization

C.2.2 Imbalanced Partitioning

Graph Baseline Logistic Regression GBDTs
delaunay_n15 17 415.6 24 646 6 784.8
rgg_n_2_15_s0 3 584.4 972 2 223.2
cond-mat-2003 15 961.4 34 161 16 512.6
cond-mat-2005 24 661 49 502 24 692
bcsstk30 77 855 29 872 60 460.2
cs4 9 125.4 12 901 8 703.4
as-22july06 13 578 18 431 18 406.4
soc-Slashdot0902 155 251.4 100 330 180 139.6
Geometric Mean 20 928.15 20 302.72 17 940.23
Graph SVM GraphSAGE Partitioner
delaunay_n15 24 646 18 697.6 18 020.6
rgg_n_2_15_s0 972 1 975.4 2 037.2
cond-mat-2003 34 161 18 121 17 691.6
cond-mat-2005 49 502 29 982.2 26 385.2
bcsstk30 29 872 51 235.4 39 721.4
cs4 12 901 11 402.4 14 038.6
as-22july06 18 431 17 911.4 18 302.2
soc-Slashdot0902 100 330 140 275.8 157 519.42
Geometric Mean 20 302.72 20 353.81 20 184.34

Table C.13: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 2 and ε = 0.03. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 27 406 37 394 18 127.8
rgg_n_2_15_s0 5 524.4 1 706 3 941
cond-mat-2003 26 513.6 57 390 29 888.4
cond-mat-2005 40 727.2 86 315 48 065.6
bcsstk30 134 538.6 52 547 82 804.8
cs4 14 535.8 23 651 16 435
as-22july06 19 347.8 28 914 27 089.6
soc-Slashdot0902 234 423.2 219 549 250 297.2
Geometric Mean 33 126.48 35 448.07 31 408.45
Graph SVM GraphSAGE Partitioner
delaunay_n15 37 394 29 799.8 27 304.8
rgg_n_2_15_s0 1 706 3 682.2 3 938.6
cond-mat-2003 57 390 32 303 28 597.2
cond-mat-2005 86 315 49 722.2 46 608.6
bcsstk30 52 547 94 169.4 90 816.8
cs4 23 651 20 405.4 19 231.4
as-22july06 28 914 26 989.2 26 166.4
soc-Slashdot0902 219 549 219 851.2 231 488.4
Geometric Mean 35 448.07 34 505.31 33 312.14

Table C.14: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 4 and ε = 0.03. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.

133



Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 32 888.6 39 791 23 572
rgg_n_2_15_s0 7 002.6 2 992 7 176.6
cond-mat-2003 32 714 73 718 42 050.4
cond-mat-2005 51 238.8 111 757 59 780.2
bcsstk30 207 217.4 95 677 144 442
cs4 17 733.4 30 467 22 529.4
as-22july06 26 259.6 35 697 33 639.6
soc-Slashdot0902 277 672 296 625 304 595.4
Geometric Mean 42 348.15 48 432.17 44 051.17
Graph SVM GraphSAGE Partitioner
delaunay_n15 39 791 34 509 34 469.6
rgg_n_2_15_s0 2 992 5 273.4 4 954.4
cond-mat-2003 73 718 42 589.6 38 954.6
cond-mat-2005 111 757 67 666.2 63 583.4
bcsstk30 95 677 126 124 115 924
cs4 30 467 25 004.4 21 721.8
as-22july06 35 697 32 012 32 300.2
soc-Slashdot0902 296 625 281 752 284 965.4
Geometric Mean 48 432.17 44 331.41 42 065.35

Table C.15: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 8 and ε = 0.03. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Generalization

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 746.6 41 197 27 549.8
rgg_n_2_15_s0 8 751 5 951 11 275
cond-mat-2003 35 907.4 82 382 42 190.6
cond-mat-2005 58 695 125 207 66 560
bcsstk30 239 716 137 929 193 430
cs4 19 496.4 34 449 24 362
as-22july06 27 007.6 40 115 37 146.6
soc-Slashdot0902 303 685.4 334 164 334 461.2
Geometric Mean 47 351.08 59 686.61 51 703.59
Graph SVM GraphSAGE Partitioner
delaunay_n15 41 197 37 303.8 39 786
rgg_n_2_15_s0 5 951 6 865 7 170.2
cond-mat-2003 82 382 47 690.4 51 270
cond-mat-2005 125 207 77 355.8 81 098.4
bcsstk30 137 929 176 805.6 186 042.8
cs4 34 449 27 678.4 26 406
as-22july06 40 115 36 199.2 37 824.6
soc-Slashdot0902 334 164 325 541.8 322 680.4
Geometric Mean 59 686.61 52 123.37 53 888.98

Table C.16: Group generalization evaluation: Total cut sizes by model. Experiments run on
the evaluation dataset with k = 16 and ε = 0.03. Each experiment on each graph is repeated five
times using different random seeds. For every group each model was retrained using all graph
instances from the same group in the tuning dataset.
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Imbalance

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 771 40 998 27 674.4
rgg_n_2_15_s0 9 490 5 514 11 352
cond-mat-2003 35 394 82 643 43 333.8
cond-mat-2005 59 755 125 389 68 399
bcsstk30 248 636 151 155 193 439.8
cs4 19 592 34 408 25 343
as-22july06 27 239 40 373 36 861.2
soc-Slashdot0902 304 295 335 363 333 890.4
Geometric Mean 48 170.23 59 864.99 52 323.95
Graph SVM GraphSAGE Partitioner
delaunay_n15 40 998 38 304.2 39 574
rgg_n_2_15_s0 5 514 7 474.8 7 494.8
cond-mat-2003 82 643 47 670.2 51 856.2
cond-mat-2005 125 389 75 793.4 81 159.2
bcsstk30 151 155 187 483.6 197 673.4
cs4 34 408 27 818.6 26 419
as-22july06 40 373 36 548.6 38 776.8
soc-Slashdot0902 335 363 326 692.6 322 893.2
Geometric Mean 59 864.99 53 226.65 54 824.6

Table D.1: Imbalance evaluation: Total cut sizes by model. Experiments run on the evaluation
dataset with k = 16 and ε = 0.0. Each experiment on each graph is repeated five times using
different random seeds. For every group each model was retrained using all graph instances
from the same group in the tuning dataset.
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Imbalance

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 746.6 41 197 27 549.8
rgg_n_2_15_s0 8 751 5 951 11 275
cond-mat-2003 35 907.4 82 382 42 190.6
cond-mat-2005 58 695 125 207 66 560
bcsstk30 239 716 137 929 193 430
cs4 19 496.4 34 449 24 362
as-22july06 27 007.6 40 115 37 146.6
soc-Slashdot0902 303 685.4 334 164 334 461.2
Geometric Mean 47 351.08 59 686.61 51 703.59
Graph SVM GraphSAGE Partitioner
delaunay_n15 41 197 37 303.8 39 786
rgg_n_2_15_s0 5 951 6 865 7 170.2
cond-mat-2003 82 382 47 690.4 51 270
cond-mat-2005 125 207 77 355.8 81 098.4
bcsstk30 137 929 176 805.6 186 042.8
cs4 34 449 27 678.4 26 406
as-22july06 40 115 36 199.2 37 824.6
soc-Slashdot0902 334 164 325 541.8 322 680.4
Geometric Mean 59 686.61 52 123.37 53 888.98

Table D.2: Imbalance evaluation: Total cut sizes by model. Experiments run on the evaluation
dataset with k = 16 and ε = 0.03. Each experiment on each graph is repeated five times using
different random seeds. For every group each model was retrained using all graph instances
from the same group in the tuning dataset.
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Imbalance

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 745.8 41 036 27 099.6
rgg_n_2_15_s0 8 549.2 5 268 10 208
cond-mat-2003 35 721.8 82 091 41 346.6
cond-mat-2005 58 570.8 124 603 68 592
bcsstk30 238 486.2 144 226 181 857.4
cs4 19 585.4 34 163 26 385
as-22july06 26 699.4 39 784 37 163.4
soc-Slashdot0902 303 043.8 332 505 333 678.2
Geometric Mean 47 086.45 58 863.03 51 126.2
Graph SVM GraphSAGE Partitioner
delaunay_n15 41 036 38 564 39 898
rgg_n_2_15_s0 5 268 6 474.2 7 144.6
cond-mat-2003 82 091 45 544.4 49 610.8
cond-mat-2005 124 603 73 461.6 78 226.4
bcsstk30 144 226 174 297.8 179 464.8
cs4 34 163 27 989 26 714.2
as-22july06 39 784 35 828.4 38 641.6
soc-Slashdot0902 332 505 320 451.6 319 172.4
Geometric Mean 58 863.03 51 140.69 53 328.28

Table D.3: Imbalance evaluation: Total cut sizes by model. Experiments run on the evaluation
dataset with k = 16 and ε = 0.07. Each experiment on each graph is repeated five times using
different random seeds. For every group each model was retrained using all graph instances
from the same group in the tuning dataset.
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Imbalance

Graph Baseline Logistic Regression GBDTs
delaunay_n15 35 774.4 41 050 26 263
rgg_n_2_15_s0 8 602 5 457 11 492
cond-mat-2003 35 876.6 81 981 41 189.6
cond-mat-2005 58 117.2 123 894 66 353
bcsstk30 236 260.6 137 130 193 564.2
cs4 19 564.4 34 147 23 342
as-22july06 26 570.2 39 769 37 241
soc-Slashdot0902 306 495.2 331 1764 331 810
Geometric Mean 47 083.69 58 666.46 51 039.66
Graph SVM GraphSAGE Partitioner
delaunay_n15 41 050 38 284.8 39 439
rgg_n_2_15_s0 5 457 6 413.8 7 129.8
cond-mat-2003 81 981 47 180 48 315.8
cond-mat-2005 123 894 75 922.4 79 129.8
bcsstk30 137 130 175 543.6 177 738.6
cs4 34 147 27 240.8 26 634.4
as-22july06 39 769 36 688 37 219.6
soc-Slashdot0902 331 176 320 883 319 424.2
Geometric Mean 58 666.46 51 504.26 52 811.02

Table D.4: Imbalance evaluation: Total cut sizes by model. Experiments run on the evaluation
dataset with k = 16 and ε = 0.1. Each experiment on each graph is repeated five times using
different random seeds. For every group each model was retrained using all graph instances
from the same group in the tuning dataset.
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Running Times

K Baseline Logistic Regression GBDTs
2 - / 9.58 3.42 / 53.62 4.16 / 143.60
4 - / 12.27 3.69 / 56.68 5.36 / 152.64
8 - / 12.84 4.43 / 64.61 4.34 / 157.08
16 - / 12.93 11.75 / 77.67 7.05 / 162.03
Geometric Mean - / 11.82 5.06 / 62.49 5.12 / 153.69
K SVM GraphSAGE Partitioner
2 5.85 / 67.86 321.81 / 217.52 326.22 / 235.30
4 5.16 / 62.38 343.38 / 294.68 335.58 / 252.65
8 5.37 / 71.13 324.96 / 263.83 334.38 / 274.76
16 6.42 / 90.10 340.03 / 296.41 363.70 / 314.99
Geometric Mean 5.68 / 72.17 332.41 / 266.08 339.68 / 267.82

Table E.1: Running time evaluation: Running times for training and prediction by model.
Experiments run on delaunay_n15 with ε = 0.03. Each experiment is repeated five times using
different random seeds. The entries have the format “training time/prediction time” and are
measured in seconds.

K Baseline Logistic Regression GBDTs
2 - / 7.68 3.17 / 39.63 4.40 / 107.06
4 - / 8.93 3.41 / 41.52 4.21 / 105.48
8 - / 9.17 3.81 / 46.63 5.05 / 108.07
16 - / 9.15 4.91 / 54.98 20.56 / 119.52
Geometric Mean - / 8.71 3.77 / 45.32 6.62 / 109.90
K SVM GraphSAGE Partitioner
2 5.04 / 42.88 363.17 / 128.69 362.35 / 140.09
4 7.97 / 48.33 398.74 / 155.22 378.07 / 144.94
8 7.76 / 54.86 376.49 / 141.28 385.10 / 153.00
16 8.78 / 67.12 398.10 / 155.72 422.20 / 171.53
Geometric Mean 7.23 / 52.55 383.83 / 144.79 386.32 / 151.93

Table E.2: Running time evaluation: Running times for training and prediction by model.
Experiments run on cond-mat-2003 with ε = 0.03. Each experiment is repeated five times using
different random seeds. The entries have the format “training time/prediction time” and are
measured in seconds.
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Running Times

K Baseline Logistic Regression GBDTs
2 - / 4.59 1.73 / 23.25 2.04 / 62.63
4 - / 5.05 1.87 / 24.61 2.73 / 63.05
8 - / 5.25 2.15 / 27.94 4.21 / 65.13
16 - / 5.28 3.28 / 33.48 4.31 / 66.29
Geometric Mean - / 5.03 2.19 / 27.05 3.17 / 64.26
K SVM GraphSAGE Partitioner
2 4.47 / 25.34 165.88 / 54.60 170.76 / 59.09
4 6.64 / 27.33 174.12 / 64.76 178.75 / 61.57
8 12.05 / 33.73 165.6 / 60.01 180.86 / 64.4
16 15.40 / 43.16 172.39 / 64.72 189.02 / 70.24
Geometric Mean 8.61 / 30.49 169.45 / 60.88 179.73 / 63.69

Table E.3: Running time evaluation: Running times for training and prediction by model.
Experiments run on cs4 with ε = 0.03. Each experiment is repeated five times using different
random seeds. The entries have the format “training time/prediction time” and are measured
in seconds.

K Baseline Logistic Regression GBDTs
2 - / 4.57 1.60 / 21.31 1.92 / 57.16
4 - / 4.88 1.76 / 22.27 4.58 / 57.40
8 - / 5.12 2.01 / 25.01 3.09 / 58.57
16 - / 5.05 3.00 / 29.52 14.55 / 64.46
Geometric Mean - / 4.90 2.03 / 24.33 4.46 / 59.33
K SVM GraphSAGE Partitioner
2 4.79 / 23.93 156.81 / 79.45 155.18 / 82.76
4 9.64 / 28.25 162.27 / 97.17 159.74 / 87.22
8 6.72 / 32.16 157.08 / 87.25 158.26 / 92.47
16 9.44 / 39.75 162.66 / 96.42 168.57 / 104.00
Geometric Mean 7.36 / 30.49 159.68 / 89.77 160.36 / 91.28

Table E.4: Running time evaluation: Running times for training and prediction by model.
Experiments run on as-22july06 with ε = 0.03. Each experiment is repeated five times using
different random seeds. The entries have the format “training time/prediction time” and are
measured in seconds.
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