
Coloring Complex Networks

Bachelor Thesis of

Klaus Lukas Hübner

At the Department of Informatics
Institute for Theoretical Computer Science, Algorithmics II

Supervisors: Prof. Dr. Peter Sanders
Dr. Christian Schulz

Submission Date: 24.09.2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben,
was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.

. .

Ort, Datum (Klaus Lukas Hübner)

Abstract

In this thesis an overview over existing graph coloring algorithms and their applicabil-
ity to complex graphs representing social networks is given. Based on the observation
that for a small k, the k-core of these graphs consists of very few vertices, two new
algorithms to color social network graphs are proposed. Both try to color a k-core of
the graph using an expensive heuristic and then coloring the remaining graph using
a fast heuristic. The running time and number of colors used by the two proposed
algorithms on social networks is then tested and compared to various other heuristics
and a parallel version of LDF. LDF and the parallel version Parallel LDF proved
very well. They where the fastest algorithms tested and used as many colors as
Dsatur for most of the graphs.

Zusammenfassung

In dieser Thesis wird ein Überblick über existierende Graphfärbungsalgorithmen
und deren Anwendbarkeit auf Soziale Netzwerk Graphen gegeben. Basierend auf
der Beobachtung, dass für ein relativ kleines k der k-core eines solchen Graphen aus
sehr wenigen Knoten besteht, werden zwei neue Algorithmen zur Färbung Sozialer
Netzwerk Graphen vorgeschlagen. Beide färben zunächst den k-core eines Graphen
mit einer laufzeitintensiven Heuristik und den den verbleibenden Graphen mit einer
schnellen Heuristik. Die Laufzeit und Anzahl der benutzten Farben der beiden
vorgeschlagenen Algorithmen auf Sozialen Netzwerk Graphen wird getestet und mit
anderen Heuristiken sowie einer parallelen Version von LDF verglichen. LDF und
die parallele Version Parallel LDF stellten sich als sehr geeignet heraus. Sie
waren die zwei schnellsten getesteten Algorithmen und erzeugten auf den meisten
Graphen eine Färbung welche genauso wenige Farben benötigte wie die von Dsatur
berechnete.

Acknowledgements

I would like to thank Prof. Dr. Peter Sanders and Dr. Christian Schulz for the
opportunity to write my bachelor thesis on the very interesting subject of developing
and evaluating heuristics for NP-complete problems.

I would also like to thank Kristin Bachmann and Matthias Cipold for proofreading
my thesis, Ilja Kantorovitch for getting me interested in Computer Programming
nearly seven years ago and of cause my parents, which enabled me to study Computer
Science.

Contents

1 Motivation 1
1.1 Contribution . 1
1.2 Overview . 2

2 Preliminaries 3
2.1 Definitions . 3

3 Related Work 5
3.1 LargestDegreeFirst . 5
3.2 SmallestDegreeLast . 6

3.2.1 Matula & Beck . 6
3.3 Dsatur . 7
3.4 Genetic Algorithms . 8
3.5 Other Time-Expensive Metaheuristics 9
3.6 Extracol . 9
3.7 Other Algorithms . 9

4 Coloring Complex Networks 11
4.1 kCoreFirst . 11

4.1.1 SelectXPercentEdges . 13
4.2 SelectedFirst . 14
4.3 Parallel LDF . 14

5 Experimental Results 17
5.1 Experimental Setup . 17
5.2 Graphs used . 18

5.2.1 First Experiment: Matula & Beck 18
5.2.2 Second Experiment: Comparing Graph Coloring Algorithms . 18

x Contents

5.3 Results . 25
5.3.1 Running time . 25
5.3.2 Colors used . 25

5.4 PLDF Evaluation . 27

6 Conclusion 29

Bibliography 31

1. Motivation

The optimization version of the graph vertex coloring problem can be informally
described as: given a graph G = (E, V), assign every vertex v ∈ V a color such that
no adjacent vertices are colored with the same color. Use as few colors as possible.

The graph vertex coloring problem was posed in 1852 by Francis Guthrie. He tried
to color the countries on a map in a way, that no countries sharing a common border
are assigned the same color. He also noted that four colors would suffice to solve
any instance of this problem, which would later be formalized as coloring of planar
graphs. In 1893 Alfred Kempe drew the attention to the general, non-planar case of
the graph coloring problem [29, p. 2]. As an algorithmic problem, graph coloring
has been studied since the early 1970s and is one of the famous 21 NP-complete
problems by Karp (1972) [27].

Today graph coloring is largely used to tackle scheduling problems. Two examples
being assigning aircrafts to flights or allocating bandwidth for radio stations. In the
simplest form, a number of tasks has to be completed as fast as possible. Every task
takes one time unit to complete and there is no restriction on how much tasks can
be worked on at the same time. In this example, tasks are modeled as vertices and
conflicts between tasks, for example the usage of a shared resource, are modeled
using edges. The minimum number of colors needed to color this graph is exactly
the number of time units it takes to complete all tasks.

1.1 Contribution
Until now most of the research in graph coloring has been done on relatively

small graphs (< 4000 vertices). None of the graphs used in the Second DIMACS

2 1. Motivation

Implementation Challenge has more than 1000 edges [17]. Even today most papers
measure their proposed algorithms performance based on test run on the DIMACS’s
and other small graphs. There are however exceptions as for example “Ordering
heuristics for parallel graph coloring” ([30]). The graphs we target in this thesis are
in the order of magnitude of the 10th DIMACS Implementation Challenge graphs.
For example the graph uk-2002, which has ∼ 1.8 ∗ 107 nodes and ∼ 2.6 ∗ 108 edges.
Because coloring general graphs this size would take too long, we restricted the
graphs of interest to those which have a “social network like structure”. These can
be informally defined as graphs consisting of many disjoint subgraphs which are
“dense” and having relatively “few” edges between these subgraphs. A more practical
approach using k-cores is described in Chapter 4.1. A characterization based on the
degree distribution of social networks is also given.

We have implemented a few classic graph coloring heuristics such as Largest-
DegreeFirst, Matula & Beck [10] (SmallestDegreeLast) and Dsatur [6].
In this work, we propose two new algorithms which exploit the structural property
described by choosing a subgraph that is “hard” to color, processing it using Dsatur
and then coloring the remaining graph with LDF. A parallel version of LDF has
also been implemented and tested.

1.2 Overview
After the introduction and preliminaries in Chapter 2, an overview of the wide

spectrum of existing algorithms for graph coloring is given in Chapter 3. This includes
implementation details of the algorithms. We also implemented the two proposed
algorithms, kCoreFirst and SelectedFirst. Both algorithms are described in
Chapter 4.

In Chapter 5 we compared the implemented heuristics. The experimental setup,
the graphs used for testing and how they where determined is described. We then
proceed to report our experimental results and conclude in Chapter 6.

2. Preliminaries

In this chapter, we define all concepts used in this thesis, such as graphs, subgraphs,
k-cores and the graph vertex coloring problem.

2.1 Definitions
A graph G = (V,E) is defined as a tuple of two sets. The first set V contains all

vertices, sometimes called nodes, of the graph. As we are only dealing with undirected
graphs in this thesis, the second tuple E ⊂ V × V contains edges e = {u, v}. These
edges describe a “connection” between the two vertices u and v. Note, that we are
not dealing with multigraphs here, there cannot be two edges connecting the same
two vertices. Two vertices v and u are called adjacent if {u, v} ∈ E. The neighbors
of a vertex v are defined as all vertices which are adjacent to v. A color is called
adjacent to a vertex v if one of v’s neighbors is colored with this color. A graph is
called loop free, if ∀{u, v} ∈ E : u 6= v.

The degree d(v) of a vertex v is defined as d(v) = |{e ∈ E | v ∈ e}|. A graph
G′ = (V ′, E ′) is called a vertex induced subgraph of G if V ′ ⊂ V and E ′ = {{u, v} ∈
E | v ∈ V ′, u ∈ V ′}. G−v is the vertex induced subgraph (V ′, E ′) with V ′ = V \{v}.
Two vertex induced subgraphs G and G′ are called disjoint if ∀v ∈ G : v /∈ G′. A
path between two vertices v and u is a sequence of edges which connect a sequence
of vertices starting with v and ending with u. An undirected graph G is called
connected if there exists a path between every two vertices in G. A connected
subgraph G′ = (V ′, E ′) of G is called maximal connected component of G if there is
no other connected subgraph G′′ = (V ′′, E ′′) of G with V ′ ⊂ V ′′.

4 2. Preliminaries

The graph vertex coloring problem, sometimes called only graph coloring problem,
is formally defined as follows: given an undirected, loop free graph G = (V,E), find
a coloring c : V → C ⊂ N such that ∀u, v ∈ E : c(u) 6= c(v) while minimizing |C|.
Graph coloring can be more vividly described as the problem of assigning colors
to the vertices of a graph such that no two adjacent vertices have the same color
assigned to them.

The k-core of a given graph G = (V,E) is defined as the maximal subgraph
Gk = (Vk, Ek) of G with ∀v ∈ Vk : dGk

(v) ≥ k where dGi
(v) denotes the degree of v

in Gi. One can compute the k-core of a graph by iterative removal of all vertices
which have a degree lower than k. In the remaining subgraph all vertices have a
degree of at least k. See Figure 2.1 for an example regarding k-cores. All red vertices
are in the 3-core of the graph, all blue vertices are not. Vertex g is obviously not in
the 3-core because it has a degree of d(g) = 2 < 3. Because g is not in the 3-core of
G, the vertices e and f , despite having a degree of d(e) = d(f) = 3 ≥ 3 in G, cannot
be in the 3-core, because their degree in a subgraph of G without g can be at most 2.
In the V ′ = {a, b, c, d} induced subgraph of G, all vertices have a degree of at least 3.
As all other vertices cannot be in the 3-core of G as outlined above, this subgraph is
also maximal. Therefore the 3-core of G is G3 = {{a, b, c, d}, E3}.

a

b

c

d

e

f

g

Figure 2.1: Red vertices are in the 3-core, blue vertices are not.

3. Related Work

Graph coloring has been studied for more than 40 years and a lot of algorithms have
been developed. As graph coloring isNP-hard [27] there are few exact algorithms and
a lot more heuristics which only solve the problem approximately. Exact algorithms
are too slow to handle the graphs we run our tests on in acceptable time. In the
following section, we are giving an overview over the previous work done on graph
coloring.

3.1 LargestDegreeFirst
The simplest heuristic to color the vertices of a graph is to color them greedy in

whatever order they are present in the underlying data structure. This is called the
Greedy approach. One step up would be to order the vertices somehow and then
color them in this particular order. LargestDegreeFirst (LDF), arranges the
vertices of the graph by degree, in descending order, and then colors them using the
Greedy method.

We have implemented LDF largely as a reference for speed and quality. This
means that we are expecting every other algorithm to be slower but yield a coloring
using fewer colors than LDF.

We also implemented a simple parallel version of LargestDegreeFirst (PLDF),
which is described in Chapter 4.

Implementation

LargestDegreeFirst is trivially implemented by first sorting all nodes by
degree in descending order using Bucket Sort and then iterating over them in this

6 3. Related Work

sorted order, iteratively assigning them the lowest possible color.

This is done using a method lowestValidColor, which returns the lowest color
that can be assigned to v without hurting the graph coloring property, that is
the lowest color none of the neighbors of v has assigned to it. Formally speaking:
lowestValidColor(v) = min{x ∈ N | ∀{v, u} ∈ E : x 6= c(u)}. This runs in O(d(v))
time. Caching the adjacent colors of a vertex would result in no improvement, as the
cache would have to be updated for every coloring of an adjacent node, which also
happens d(v) times, and lowestValidColor is called exactly once per vertex and
coloring. The running time of this operation amortizes and all invocations together
run in Θ(|E|) time. The total running time of LargestDegreeFirst is therefore
Θ(|V |+ |E|).

3.2 SmallestDegreeLast
The SmallestDegreeLast heuristic colors the vertices in the reverse order

they where removed from the graph by the Matula & Beck algorithm (see
below) used to build the k-cores of the graph. It is expected to be slower than
LargestDegreeFirst but yield a coloring using fewer colors.

3.2.1 Matula & Beck

Matula & Beck finds the k-cores of a graph in linear time by repeatedly removing
the vertex with the smallest degree. It works as follows:

1. Initialize dv = d(v) for every node v ∈ V . Later dv will be updated to only
represent the degree of v in the current graph (i.e. not counting the edges to
nodes already removed). For nodes no longer in the current subgraph, dv will
be invalid. dv is implemented using an array, this means writing and reading
uses constant time.

2. Initialize a bucket priority queue D, such that D[i] = {v | dv = i}. Later on,
only nodes not already removed from the graph will be in this priority queue.
Only the first element of each bucket D[i] is accessed, we can therefore make
D an array to get access in constant time.

3. Initialize k ← 0, and i← 0. Later, i points to the first non-empty bucket.

4. Repeat |V | times

4.1. If the bucket i points to is empty, search for the first non-empty bucket in
D, start at i. This runs in time linear to the number of buckets which

3.3. Dsatur 7

has been set to the maximum degree of any node in G. Notice that i can
become smaller again when a vertex from the bucket i points to is moved
down and therefore a previously empty bucket is no longer empty.

4.2. Set k ← max{k, i}, all skipped k-cores are set to “empty”. This operation
amortizes over all runs. In total, this step takes Θ(k) time, k being the
largest k for which the k-core of the graph is not empty.

4.3. Remove the first node v from the first non-empty bucket, add it to the
current k-core and invalidate dv. As i points to the desired bucket, this
step runs in O(1).

4.4. Update du and move u to D[du] for all neighbors of v, not including the
already removed ones. We used a secondary data structure, an array, to
save the current index of u in D[du]. This gets updated every time a
node u is moved between buckets. As D[du] is a vector the size of |V |
and has therefore never to be resized, this enables us to move u between
buckets in constant time. As vertices are only moved down and only by
one bucket at a time, we can maintain a valid value for i by decreasing it
by one every time a vertex from the lowest non-empty bucket is moved
one bucket lower. The whole update process over all neighbors of v runs
in O(d(v)) time.

The whole algorithm uses Θ(|V |) space and Θ(|V |+ |E|) time.

3.3 Dsatur
Dsatur [6] is one of the slowest heuristics for coloring the vertices of a graph but

also one of the best regarding number of colors used. We implemented Dsatur as a
reference for speed and quality. We expected all other algorithms to be faster and
produce a coloring using more colors than Dsatur.

The algorithm works by iteratively selecting one of the vertices which have a
maximum saturation degree, that is the number of colors it is adjacent to, and then
color the chosen vertex with the lowest possible color. A tie between multiple vertices
with the same saturation degree is resolved by choosing one with a maximal degree
in the uncolored subgraph. No specifics regarding the implementation is given in the
original work [6].

There also exists a large array of different variations of Dsatur. Two examples
being Pass [22] and Sewell [28], which both propose a different tie breaking strategy
for Dsatur. As they are both algorithms used to find an exact solution, they are
expected to take far too long to produce a result on the graphs we are interested in.

8 3. Related Work

Implementation

Our Dsatur implementation uses two levels of priority bucket queues to select
the next node to color. The first level consists of one priority queue in which the
saturation degree of the vertices is used as the key. In the secondary level, there is
another priority queue for every bucket in the first levels queue. These secondary
priority queues are maintained to contain the same elements as the corresponding
bucket in the primary bucket queue, but with the vertices degree in the uncolored
subgraph as the key.

Dsatur first initializes a vector adjacentColors to contain an empty set for
every vertex. This data structure is used to update the saturation degree of the
nodes in constant time. Next all nodes are inserted into the primary bucket priority
queue, which has max{d(v) | v ∈ V } buckets, using the initial saturation degree
(zero) as the key. Every vertex is also inserted into the secondary bucket queue
corresponding to the first bucket of the primary bucket queue with the initial degree
in the uncolored subgraph (d(v)) as the key. This runs in Θ(|V |) time.

Until the primary priority queue is empty, a vertex with a maximum saturation
degree amongst all vertices is chosen using the primary priority queue. A tie is
resolved by choosing a vertex with the largest degree in the uncolored subgraph using
the secondary level of priority queues. Next, the chosen node is removed from the
priority queues, colored using the lowest available color and the saturation degree of
all adjacent nodes is updated. This is done by checking for every neighboring vertex
if the corresponding entry in its adjacentColors array is set and if not, setting the
entry and moving the vertex to the corresponding bucket.

3.4 Genetic Algorithms
On smaller graphs genetic algorithms are amongst the most successful when

it comes to coloring graphs. Especially hybrid genetic algorithms, which use an
evolutionary approach combined with a local search algorithm in the “mutation”
step, proved very well. Some examples include: Amacol [20], a genetic algorithm
using a proposed UIS as crossover in combination with Tabu Search described in [26],
Macol [31] and many more algorithms, some combining multiple metaheuristics
include: [5], [21], [9], [25], [11], [8], [19] and [18].

Although genetic algorithms generally yield a coloring using less colors than
most other heuristics, they are also known to be relatively slow compared to these
other heuristics. The algorithms above are tested on graphs the size of the Second

3.5. Other Time-Expensive Metaheuristics 9

DIMACS Implementation Challenge graphs (125− 1000 nodes) only. The graphs we
are interested in are much larger and genetic algorithms are known to perform very
poorly on large graphs regarding running time.

3.5 Other Time-Expensive Metaheuristics
Other time-expensive meta heuristics that have been applied to graph coloring

include IteratedLocalSearch [16], SimulatedAnnealing [15], TabuSearch
as for example in Tabucol [1] and Partialcol [14], TS-Div and TS-Int [7] as
well as VariableSpaceSearch [2].

We did not implement these because they are not expected to be efficient enough
to handle graphs the size of those we are running our tests on.

3.6 Extracol

Extracol is presented by Q. Wu and J. K. Hao in “Coloring large graphs based
on independent set extraction” [23]. As the title suggests, it uses a new preprocessing
method proposed in the same paper to extract large independent sets from the graph.
The algorithm however has only been tested on graphs the size of 1000-4000 nodes.
Unfortunately, the performance declines rapidly when the graphs get larger. Because
of this, we do not expect an acceptable running time on our test graphs and did not
include Extracol in our experiments.

3.7 Other Algorithms
We also found some other algorithms who may be of interest but are not available

to us ([4]) or are neither available in English nor German ([3]). Others, for example “A
new graph coloring algorithm” [24] have no published test results and are described
only very vague. In this particular case it is suggested that the heuristic has a
polynomial running time, which would be too slow for our purposes.

4. Coloring Complex Networks

Social network graphs, including web graphs, have a very distinct degree distribution
as can be seen in Figure 4.1. Notice that both scales in this figure are logarithmic.
Social network graphs have very few nodes with a very high degree and a lot of
nodes with a very small degree. Drawn with a double logarithmic scale their degree
distribution exhibits a straight, descending line.

Graphs representing a social network, for example all citations from Citeseer, have
an additional structural property. Inside one area of studies, for example Computer
Science, there are a lot of papers who cite each other. Between different area of
studies, for example between Biology and Computer Science, there are not as much
citations to be expected.

In graph terms, this can be formulated as follows: A given graph has a “social-
network like structure” if for a small k ∈ N the k-core of this graphs consists of
multiple disjoint subgraphs which have no edges connecting them.

In this chapter, we propose two new algorithms which try to exploit these character-
istics in order to provide a method to color large social networks using relatively few
colors, while achieving a speed close to that of LDF. We also describe a parallelization
of the LargestDegreeFirst algorithm.

4.1 kCoreFirst

The following kCoreFirst algorithm is based upon the observation regarding
k-cores described above.

12 4. Coloring Complex Networks

Figure 4.1: Degree Distribution of a web graph ([12])

1. Find a suitable k

2. Build the k-core

3. Color the connected components using an expensive heuristic

4. Color the nodes that have been removed when building the k-core in the reverse
order they where removed

Theorem: The degeneracy of a graph is the largest number k for which its k-core
is not empty. A graph with degeneracy k can be colored with at most k + 1 colors.

Proof: Proof by induction over n = |V |: Every graph with n ≤ k + 1 is obviously
k + 1 colorable. Given a graph G = (E, V) with n > k + 1 vertices and degeneracy
of at most k, there must exist at least one vertex v ∈ V with d(v) < k + 1, else the
k + 1 core of this graph would not be empty. The graph G − v has a degeneracy
of at most k and is k + 1 colorable by our induction hypothesis. Insert v into the
colored graph G − v and color it with a non-adjacent color. This color is at most
k + 1 as d(v) < k + 1. ⇒ G is k + 1 colorable.�
The argument for the graph G being a k degenerate subgraph of a larger graph

is analogous. There is always a vertex v with d(v) < k + 1 in the remaining graph
when iteratively coloring and removing these vertices. This implies, that in Step
4 of the kCoreFirst algorithm, no new colors are used, except in the case that
the already colored subgraph used less than k + 1 colors. In this case at most k + 1
colors are used.

4.1. kCoreFirst 13

A suitable k has to be chosen in a way, that on one hand it is large enough that the
amount of vertices in the k-core is crucially reduced and one the other hand is small
enough that a coloring using k + 1 colors in the best case is considered acceptable.
Coloring vertices with a high degree is more difficult than coloring vertices with a
small degree. The chosen subgraph should therefore encompass mostly vertices with
a high degree. We use a modified version of Quickselect which selects the vertices
with the highest degree in the graph until the sum of all adjacent edges of all selected
vertices equals ∼ 10% of all edges in the graph. Then this subgraph is colored using
GreedyColor to get a very coarse estimation on how many colors are needed to
color the whole graph. This number of is then chosen as k. Other heuristics to do
this would be possible.

We have used Dsatur as the expensive heuristic in step three. Other viable options
exist here, too. Step four is done using the GreedyColor heuristic described in
Section 3.1 using the reversed output of the Matula & Beck run obtained when
building the k-core. All already colored nodes are of cause removed first.

4.1.1 SelectXPercentEdges

The purpose of SelectXPercentEdges is to select the nodes with the highest
degree until the sum of the degree of all selected nodes equals ∼ x%. Notice, that
edges may be counted twice if both end nodes are selected.

The algorithm is coarsely based upon the canonical Quickselect. This means
it first chooses a pivot element and then uses the 3-way partition also used in
Quicksort to organize the input vector in three partitions. In the first partition,
all nodes having a degree lower than that of the chosen pivot are located. In the
second partition all nodes have the same degree as the chosen pivot. In the third
partition are all nodes which have a degree larger than the pivot element. While
doing this, we save the sum of all degrees in each of the three partitions.

We then decide which, if any, nodes to select and on which of the three partitions
to recurse. If we would have selected less than x% of all edges if we choose all nodes
in the third partition (higher degree than pivot), we do so. We then continue to
choose all the nodes from the middle partition if this would still give us a total
under x% of all edges. We then would recurse on the first (lower degree than pivot)
partition. If either all edges included in the third or the middle partition would yield
a selection encompassing more than x% of all edges, we recurse on that part. As the
size of each partition has been computed beforehand, we can make this decision in
constant time.

14 4. Coloring Complex Networks

4.2 SelectedFirst
SelectedFirst has been implemented as a simplification of kCoreFirst. It

directly uses the nodes selected in the first step as the “hard to color” subgraph and
should therefore be a little bit faster and easier to implement.

1. Select nodes which are expected “hard” to color

2. Color the selected nodes using a expensive heuristic

3. Color the remaining nodes using a cheap heuristic

We used the above mentioned modified version of Quickselect to choose the
nodes which are “hard” to color, then color them with the expensive heuristic Dsatur
and use LDF to color the remaining nodes.

4.3 Parallel LDF
Parallel LDF is a parallelization of the LargestDegreeFirst heuristic. It

works like LDF. First the vertices are sorted by degree in descending order, then
they are colored in this order choosing the color greedily.

Parallel LDF starts with sorting the nodes by degree in parallel. The vertices
are then colored in order by spawning a number of threads which in parallel each try
to color one node at a time. The chunks of work are set to be the size of one node,
which causes the threads to behave as follows: Thread i first colors node number i in
the given ordering. If the thread has colored that node, it proceeds to color node
number i+ #threads and so on, where #threads is the number of threads spawned.
The produced coloring may be incorrect as lowestValidColor(v) does not make a
guaranty about its correctness if any of the nodes adjacent to v changed color while
the function is working. There is also a possibility that two threads are finished with
their call to lowestValidColor() to two adjacent nodes, deciding on the same color
and are then simultaneously both coloring their node. This would also result in an
invalid coloring of these two nodes.

We must therefore check if any nodes are colored invalidly (i.e. at least one
adjacent node has the same color) when all threads are finished. These nodes are
then committed back to the queue of nodes still to be colored and the whole process
is repeated. Checking for a invalid coloring of a node is also done in parallel. To
avoid unnecessary locks, every thread has its own conflict bucket which are then,
in a second step, collected sequentially. Parallelization of the collection step is not
worthwhile as the number of conflicts per run is too small.

4.3. Parallel LDF 15

If a certain stop criterion is reached the remaining invalidly colored nodes are colored
using only one thread. Currently the stop criterion |Ci| < α ∗ |Ci−1| ∨ |Ci| > ε∗|V |

#threads
is used. |Ci| denotes the number of conflicts in the ith run, α and ε where both set
to 0.5.

5. Experimental Results

In this chapter we present our experimental setup and results. Two separate experi-
ments are described. First Matula & Beck is applied to a variety of graphs in
order to select those with the desired structure described in Chapter 4. The second
experiment compares the implemented algorithms, namely LargestDegreeFirst,
Dsatur, kCoreFirst, SelectedFirst and Parallel LDF against each other
based on running time and colors used when coloring the test graphs.

The expected result was that LDF would be by far the fastest algorithm but
produce a coloration which would use the most colors. Dsatur on the other hand
would take a lot longer to run than all other algorithms but provide a coloring using
relatively few colors. It was expected that kCoreFirst would be slower than LDF
but a lot faster than Dsatur and produce a coloring as good as or nearly as good
as Dsatur. We also expected the SelectedFirst algorithm to be slightly faster
than the kCoreFirst algorithm – but of course still slower than LDF – while
producing a coloring which would use somewhere between the number of colors used
by kCoreFirst and LDF.

5.1 Experimental Setup
All experiments except the ones testing only PLDF were run on two Intel Xeon

5355 CPU running at 2.66 GHz with 24 GB of memory. All tests were run sequentially.
The PLDF scaling and variance tests where run on four Intel Xeon E5-4640 at 2.4
GHz and 528 GB of memory. GCC 4.6.3 [13] was used as the compiler with the
–funroll-loops and -O3 flags set.

18 5. Experimental Results

5.2 Graphs used
5.2.1 First Experiment: Matula & Beck

Following graphs were tested for the desired structure described above. This was
done by computing the number of nodes and disjoint connected components in each
k-core of the graph. The Matula & Beck implementation described in Chapter 3
has been used for this.

• Some Street Networks used in the DIMACS 10 Challenge, namely luxembourg
(very small), netherlands (small), germany (medium) and europe (huge)

• Some Matrix graphs also used in the DIMACS 10 Challenge, namely af_shell9,
ecology1, cage15, nlpkkt200 and nlpkkt240

• Various large Social Network graphs used in the DIMACS 10 Challenge:
coAuthorsDBLP, coAuthorCiteseer, coPapersDBLP and citationCiteseer

• Some smaller Social Network graphs used in the DIMACS 10 Challenge: jazz,
email, PGPgiantcompo, cond-mat-200{3,5}, lesmis, dolphins, football, hep-th,
karate, netscience, polblogs and polbooks

• Various Web graphs used in the DIMACS 10 Challenge: cnr-200, eu-2005,
in-2004 and uk-2002

• FEM graphs used in the DIMACS 10 Challenge: hugebubbles-000{00,10,20},
hugetrace-000{00,10,20} and hugetric-000{00,10,20}

• A Power grid graph from the DIMACS 10 Challenge: power

• A graph describing adjacency of Internet routers: caidaRouterLevel

• Two generated graphs form the DIMACS 10 Challenge: smallworld and
G_n_pin_pout

• A lot of instances used in the DIMACS Graph Coloring Challenge taken
from http://mat.gsia.cmu.edu/COLOR/instances/

• All Walshaw graphs found here: http://staffweb.cms.gre.ac.uk/~wc06/
partition/

5.2.2 Second Experiment: Comparing Graph Coloring Algo-
rithms

For every graph listed above all non-empty k-cores were computed, plotting the
number of nodes in each k-core and the number of disjoint connected components

http://mat.gsia.cmu.edu/COLOR/instances/
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://staffweb.cms.gre.ac.uk/~wc06/partition/

5.2. Graphs used 19

over k. In the following, we discuss the results of the first experiment in order to
conclude the selection of graphs used in the second experiment.

Those algorithms which showed a great decrease in number of nodes as k got
larger, preferably even for a very small (< 10) k are interesting, as they show
the structural property we are trying to exploit. The number of disjoint maximal
connected components the graphs decomposed into is also of interest, as a high
number would provide a leverage point for parallelization.

In the following a selection of graphs, each representing the behavior of a whole
group of graphs, is shown. The blue lines indicated the number of nodes in the k-core
of the graph. The green line indicates the number of disjoint maximal connected
components the k-core of the graph has and the red line indicates the number of
nodes in the biggest of these connected components.

Street Networks

Figure 5.1: Luxembourg OSM

As seen in Figure 5.1, OSM street network graphs have a low chromatic number
and can be easily colored greedily in the order given by Matula & Beck using
very few colors and linear time. They are therefore not of interest to us.

Matrix Networks

Matrix networks where also not expected to have the desired structure. As you can
see in Figure 5.2, the number of nodes in the k-core does not decrease for k ≤ 23 and
then jumps to zero for k = 24. Except for cage15, the other Matrix Graphs behave
similar. Even cage15 is 26 colorable in linear time and therefore of no interest to us.

20 5. Experimental Results

Figure 5.2: af_shell9

Social Networks

Figure 5.3: coAuthorsCiteseer

Social Networks show exactly the results we where hoping for. As it is clearly visible
in the plots for coAuthorsCiteseer (Figure 5.3) and coAuthorsDBLP (Figure 5.4),
the number of nodes in the k-core (blue) decreases rapidly for small k. Although the
number of disjoint maximal connected components (green) would suggest to parallelize
the coloring algorithm, the size of the biggest maximal connected component (red)
indicates, that there is one very large connected component and many very small ones.
Simple parallelization by assigning one thread per disjoint connected component
would therefore be useless as many threads would be finished very quickly and one
thread would take very long to color its subgraph.

5.2. Graphs used 21

Figure 5.4: coAuthorsDBLP

Figure 5.5: cond-mat-2005

As seen in Figure 5.5, cond-mat-2005 behaves in the same way. The only difference
here is, that the number of connected components starts high, in contrast to starting
low in the other two shown plots, and then drops. This can be explained by
cond-mat-2005 being a graph representing collaborations between condensed matter
scientists, cond-mat-2005 could therefore be a typical subgraph of coAuthorsCiteseer
or coAuthrosDBLP.

All other tested social network graphs behaved the same way as described above.
Some of them, for example jazz, email, dolphins and karate where to small to be of
interest and were therefore excluded from the tests.

We decided to include coAuthorsCiteseer, coAuthorsDBLP, cond-mat-2003, cond-
mat-2005, citationCiteseer, coPapersDBLP, hep-th, astro-ph and PGPgiantcompo

22 5. Experimental Results

into our tests.

Net Graphs

Figure 5.6: in-2004

Figure 5.7: uk-2002

Net graphs show a behavior very similar to social networks. There is a significant
decrease in nodes in a k-core even for small k and for all tested graphs the number
of disjoint connected components spikes for a small k and then quickly approaches 1
again. As in social network graphs, naive parallelization is not possible, as there is
one large connected component and many small ones. It has to be noted, that most
net graphs we tested are significantly larger than the tested social network graphs.

We included uk-2002, in-2004, cnr-2000 and eu-2005 in our tests. uk-2002 was
only used when testing PLDF, as running Dsatur on it would take too long.

5.2. Graphs used 23

FEM graphs

Figure 5.8: hugebubbles-00000.jpg

As expected FEM graphs are three colorable in linear time and therefore not of
interest to us. An example can be seen in Figure 5.8.

Power grid graphs

Figure 5.9: power

We only had access to one graph representing a power grid. Although it seems to
be suitable in terms of a small number of nodes in a k-core for a small k, the graph
only has 5000 nodes and is therefore to small to be of interest.

24 5. Experimental Results

Figure 5.10: caidaRouterLevel

Internet Router networks

We also had only one graph available which described a network of Internet routers.
But opposed to power it qualifies for our tests. You can clearly see a decrease of
nodes in the 10-core compared to the 0-core. Therefore we decided to include the
graph caidaRouterLevel into our tests.

Other graphs

Figure 5.11: DSJC1000.1

All other tested graphs, especially the ones designed to be difficult to color, behaved
like the shown DSJC1000.1 in Figure 5.11. You can clearly see that there is not
much of a decrease in number of nodes in the k-core until a relatively high k. These
graphs are therefore not of interest to us.

5.3. Results 25

5.3 Results

5.3.1 Running time

As shown in Figure 5.12, the running time of the algorithms behaved largely as we
had expected. Dsatur was by far the slowest algorithm with running times 3–140
times larger than that of the kCoreFirst algorithm. As expected: The larger the
graph, the more of an advantage kCoreFirst had in running time over Dsatur.

The SelectedFirst algorithm performed better than kCoreFirst on some
graphs and worse on others. It seems to perform better on webgraphs as seen for
in-2004, eu-2005 and cnr-2000 but worse on large social network graphs as seen
for coAuthors* and coPapersDBLP; citationCiteseer being an exception. All these
graphs have between 300000 and 600000 nodes. On smaller social network graphs
like cond-mat-*, hep-th, astro-ph and PGPgiantcompo, which have between 8000 and
40000 nodes, SelectedFirst performed comparable to kCoreFirst.

Dsatur was set to 1 in the plot and all other running times where normalized
using talgo/tDsatur. As expected kCoreFirst run faster than Dsatur and slower
than LDF on nearly all graphs.

LDF was expected to have the fastest running time amongst the non parallel algo-
rithms. It exhibits this behavior on all graphs except coAuthors* and coPaperDBLP,
that is all large social network graphs except citationCiteseer.

PLDF is the only algorithm tested which uses parallelism and therefore was
expected to be the fastest running algorithm. It is on all but the two smallest graphs
– PGPgiantcompo and hep-th, having 12000 and 8000 nodes respectively. On astro-ph,
which has 15000 nodes, the performance of PLDF is only marginally better than
LDF. PLDF was run on the same machine as the other algorithms for this test and
therefor the number of threads was limited to 8.

5.3.2 Colors used

The numbers of colors used have been given relative to the number of colors
Dsatur used. Against all expectations, only very slight differences in colors used
could be observed. Amongst all sequential algorithms, Dsatur delivered the best
colorings for every graph, as expected. But only for two graphs, cnr-2000 and
caidaRouterLevel, Dsatur did better than LDF.

As a result, the both algorithms combining Dsatur – SelectedFirst and
kCoreFirst – did not produce a coloring having a significant advantage over the

26 5. Experimental Results

hep-th

PGPgiantcompo

astro-ph

cond-mat-2003

cond-mat-2005

caidaRouterLevel

coAuthorsCiteseer

citationCiteseer

coAuthorsDBLP

cnr-2000

coPapersDBLP

eu-2005

in-2004

G
ra

p
h

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Speedup

kC
o
re

First

S
e
le

cte
d
First

D
S
A

T
U

R
LD

F
P
LD

F

hep-th

PGPgiantcompo

astro-ph

cond-mat-2003

cond-mat-2005

caidaRouterLevel

coAuthorsCiteseer

citationCiteseer

coAuthorsDBLP

cnr-2000

coPapersDBLP

eu-2005

in-2004

1 0 1 2 3 4 5 6

Colors used

Figure
5.12:C

om
parison

ofalgorithm
run

tim
e
and

colors
used.

T
he

graphs
are

sorted
by

degree
in

descending
order.

T
he

not-show
n
values

for
the

speedup
on

in-2004
are:

SelectedF
irst:

210,LD
F
:290,P

LD
F
:900

5.4. PLDF Evaluation 27

one produced by LDF. On most of the graphs, all sequential algorithms used up the
same number of colors.

PLDF uses the same number of colors as LDF for 9 out of 13 graphs. On the
remaining four graphs – PGPgiantcompo, caidaRouterLevel, cond-mat-2003 and
eu-2005 – PLDF used one to four colors more than LDF. These four graphs do not
seem to belong to any logical subgroup of the tested graphs.

5.4 PLDF Evaluation
PLDFs running time varies only slightly between runs. Six runs on each of the

13 graphs were done. Except for two instances, the variance of running time was
below 8%. In these two runs the running time differed by 20% and 30% from the
mean. On the largest tested graph, uk-2002, the total running time was ∼ 14.5–14.8
seconds. Every other graph ran in under one second.

The colors used by PLDF in different runs vary by one or zero except on
caidaRouterLevel, where the run using the most colors used six colors more than the
run using the least colors. For ten out of 14 graphs, the different test runs produced
a coloring using exactly the same number of colors. On four more graphs, the colors
used differed only by one.

As seen in Figure 5.13, PLDF scales not so well for most of the tested graphs. The
speedup however does improve with the size of the graph. On uk-2002 the speedup
when using 8 threads is slightly above 4. The problem is mainly the large number of
arising conflicts when two threads color neighboring graphs simultaneously.

28 5. Experimental Results

hep-th

PGPgiantcompo

astro-ph

cond-mat-2003

cond-mat-2005

caidaRouterLevel

coAuthorsCiteseer

citationCiteseer

coAuthorsDBLP

cnr-2000

coPapersDBLP

eu-2005

in-2004

uk-2002

G
ra

p
h

0 1 2 3 4 5 6

Speedup

P
LD

F (1
 th

re
a
d
s)

P
LD

F (2
 th

re
a
d
s)

P
LD

F (4
 th

re
a
d
s)

P
LD

F (8
 th

re
a
d
s)

P
LD

F (1
6

 th
re

a
d
s)

P
LD

F (3
2

 th
re

a
d
s)

hep-th

PGPgiantcompo

astro-ph

cond-mat-2003

cond-mat-2005

caidaRouterLevel

coAuthorsCiteseer

citationCiteseer

coAuthorsDBLP

cnr-2000

coPapersDBLP

eu-2005

in-2004

uk-2002

2 1 0 1 2 3 4 5 6 7

Colors used

Figure
5.13:P

LD
F

scalability,graphs
sorted

ascending
by

num
ber

ofnodes

6. Conclusion

The results are rather astonishing. Nearly every prediction we made about the number
of colors used by the different algorithms was wrong. LargestDegreeFirst scored
best on all but two graphs, tying with the much more time expensive Dsatur. As a
result, both proposed algorithms did also not do noticeably better than Largest-
DegreeFirst.

One possible explanation would be, that nodes present in the chosen k-core are
likely to have a very high degree and therefore are colored first by LDF, too. This
would however not explain why Dsatur does not do better than LDF when run
on the complete graph. This could be explained by LDF and Dsatur choosing a
very similar order in which to color the vertices. This could be caused by the special
structure of the graphs we did our test on. It could also be the case that these graphs
are generally very easy to color. Further tests would be necessary here.

One very interesting aspect of our results is, that LDF was actually slower than
kCoreFirst on three graphs: coAuthorsCiteseer, coAuthorsDBLP and coPapersD-
BLP, the large social network graphs. Further investigation could yield some very
interesting results here, too.

For someone looking to color social network or net graphs, the best recommendation
seems to be LDF for smaller and PLDF for larger graphs. We determined the value
0.5 for both α and ε to yield good results after rudimentary testing.

Bibliography

[1] A. Hertz and D. de Werra. Using Tabu Search techniques for graph coloring.
Springer — Computing, 39:345–351, 1987.

[2] A. Hertz, M. Plumettaz and N. Zufferey. Variable Space Search for graph
coloring. Discrete Applied Mathematics, 156:2551–2560, 2008.

[3] A. Tehrani. Un algorithme de coloration. Cahiers du Centre d’Études de
Recherche Opérationnelle, 17:395–398, 1975.

[4] C. Morgenstern. Distributed coloration neighborhood search. Proceedings of the
Second DIMACS Implementation Challenge, 26:335–358, 1996.

[5] D. A. Fotakis, S. D. Likothanassis and S. K. Stefanakos. An Evolutionary
Annealing Approach to Graph Coloring. Applications of Evolutionary Computing,
2001.

[6] D. Brélaz. New Methods to Color the Vertices of a Graph. Communications of
ACM, 22:251–256, 1979.

[7] D. C. Porumbel, J. K. Hao and P. Kuntz. A search space ’cartography’ for
guiding graph coloring heuristics. Computers & Operations Research, 37:769–778,
2010.

[8] D. Porumbel, J. K. Hao and P. Kuntz. An Evolutionary Approach with Diversity
Guarantee and Well-Informed Grouping Recombination for Graph Coloring.
Computers & Operations Research, 37:1822–1832, 2010.

[9] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon. Optimization by
Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring
and Number Partitioning. Operations Research, 39:378–406, 1991.

[10] D. W. Matula, L. L. Beck. Smallest-last Ordering and Clustering and Graph
Coloring Algorithms. Communications of ACM, 30:417–427, 1983.

32 Bibliography

[11] E. Malaguti, M. Monaci and P. Toth. A Metaheuristic Approach for the Vertex
Coloring Problem. INFORMS Journal on Computing, 20:302, 2008.

[12] Eötvös University. Erdös WebGraph (http://web-graph.org/index.php/
download).

[13] GCC Team. GNU Compiler Collection (http://gcc.gnu.org/).

[14] I. Blöchliger and N. Zufferey. A Graph Coloring heuristic using partial solutions
and a reactive tabu scheme. Computers & Operations Research, 35:960–975,
2008.

[15] M. Chams, A. Hertz and D. de Werra. Some experiments with simulated
annealing for coloring graphs. European Journal of Operational Research, 32:260–
266, 1987.

[16] M. Chiarandini and T. Stützle. An application of Iterated Local Search to
Graph Coloring Problem. In Proceedings of the Computational Symposium on
Graph Coloring and its Generalizations, pages 112–125, 2002.

[17] M. Trick. Graph Coloring Instances http://mat.gsia.cmu.edu/COLOR/
instances.html.

[18] O. Titiloye and A. Crispin. Graph Coloring with a Distributed Hybrid Quantum
Annealing Algorithm. In Agent and Multi-Agent Systems: Technologies and
Applications, volume 6682, pages 553–562. 2011.

[19] Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring
problem. Discrete Optimization, 8:376–384, 2011.

[20] P. Galinier, A. Hertz and N. Zufferey. An adaptive memory algorithm for the
k-coloring problem. Discrete Applied Mathematics, 156:267–279, 2008.

[21] P. Galinier and J. K. Hao. Hybrid Evolutionary Algorithms for Graph Coloring.
Journal of Combinatorial Optimization, 3:379–397, 1999.

[22] P. S. Segundo. A new DSATUR-based algorithm for exact vertex coloring.
Computers & Operations Research, 39:1724–1733, 2012.

[23] Q. Wu and J. K. Hao. Coloring large graphs based on independent set extraction.
Computers & Operations Research, 39:283–290, 2012.

[24] R. D. Dutton and R. C. Brigham. A New Graph Colouring Algorithm. Compu-
tation Journal, pages 85–86, 1981.

http://web-graph.org/index.php/download
http://web-graph.org/index.php/download
http://gcc.gnu.org/
http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html

Bibliography 33

[25] R. Dorne and J. K. Hao. A new genetic local search algorithm for graph coloring.
In Parallel Problem Solving from Nature, volume 1498, pages 745–754. 1998.

[26] R. Dorne, J. K. Hao, P. Scientifique and G. Besse. A New Genetic Local Search
Algorithm for Graph Coloring. In Parallel Problem Solving from Nature - PPSN
V, 5th International Conference, volume 1498 of LNCS, pages 745–754, 1998.

[27] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. 1972.

[28] Sewell E. An improved algorithm for exact graph coloring. Proceedings of the
Second DIMACS Implementation Challenge, 26:359––73, 1996.

[29] T. R. Jensen, B. Toft. Graph Coloring Problems, Wiley-Interscience, New York.
1995.

[30] W. Hasenplaugh, T. Kaler, T. B. Schardl and C. E. Leiserson. Ordering heuristics
for parallel graph coloring. In Proceedings of the 26th ACM symposium on
Parallelism in algorithms and architectures, pages 166–177.

[31] Z.Lü and J. K. Hao. A memetic algorithm for graph coloring. European Journal
of Operational Research, 203:241–250, 2010.

	Contents
	1 Motivation
	1.1 Contribution
	1.2 Overview

	2 Preliminaries
	2.1 Definitions

	3 Related Work
	3.1 LargestDegreeFirst
	3.2 SmallestDegreeLast
	3.2.1 Matula & Beck

	3.3 Dsatur
	3.4 Genetic Algorithms
	3.5 Other Time-Expensive Metaheuristics
	3.6 Extracol
	3.7 Other Algorithms

	4 Coloring Complex Networks
	4.1 kCoreFirst
	4.1.1 SelectXPercentEdges

	4.2 SelectedFirst
	4.3 Parallel LDF

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Graphs used
	5.2.1 First Experiment: Matula & Beck
	5.2.2 Second Experiment: Comparing Graph Coloring Algorithms

	5.3 Results
	5.3.1 Running time
	5.3.2 Colors used

	5.4 PLDF Evaluation

	6 Conclusion
	Bibliography

