
Bachelor Thesis

Evolutionary Algorithms For
Independent Sets

Sebastian Lamm

1633214

September 29, 2014

Supervisors:
Prof. Dr. Peter Sanders

Dr. Christian Schulz

Institute of Theoretical Informatics, Algorithmics II
Department of Informatics

Karlsruhe Institute of Technology

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine
anderen, als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder
inhaltlich übernommenen Stellen also solche kenntlich gemacht und die Satzung des
Karlsruher Instituts für Technologie zur Sicherung guter wissenschaftlicher Praxis
in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, 29.09.2014

Sebastian Lamm

Abstract

An independent set of a graph G = (V,E) is a subset S ⊆ V , such that there
are no adjacent nodes in S. The independent set problem is that of finding the
maximum cardinality set among all possible independent sets.

We present a novel evolutionary algorithm for this problem. Our algorithm
starts by generating a population of individuals by using greedy algorithms to create
initial independent sets. We then use tournament selection for picking individuals,
called parents, for mating. We introduce four new ways to combine the selected
individuals. The first procedure creates new individuals by building the overlap of
the parents independent sets. The other schemes make use of graph partitioning to
produce new offsprings applying both 2-way and k-way partitions as well as node
separators. We use them to quickly exchange whole parts of the given independent
sets. For example, we make use of node separators obtained from the partitioner
to generate new independent sets in the first of these combine operators. We also
provide an indirect approach by using vertex covers and partitions in our third
operator. Finally, we use k-way partitions and node separators to build a multiple-
point combination operator. All newly created sets are afterwards improved by
using the fast local search algorithm by Andrade et. al. [1].

We present an experimental evaluation of our algorithm using instances from
the literature as well as ones proposed by Andrade et. al. [1]. Our algorithm
performs particularly well on social network graphs and the meshes which were
introduced by Andrade et. al. [1]. Notable improvements can also be found on
instances from Walshaw’s Partition Archive, which are common benchmarks for
graph partitioners. In the initial phases of almost all test runs we performed, our
algorithm is able to establish better solutions. Additionally, we are able to show
that graph partitioners benefit our algorithm when compared to more simplistic
methods.

Zusammenfassung

Eine unabhängige Menge eines Graphen G = (V,E) ist eine Untermenge S ⊆ V ,
so dass sich in S keine adjazenten Knoten befinden. Das Problem maximaler
unabhängiger Mengen beschreibt die Suche nach der unabhängigen Menge mit
maximaler Mächtigkeit unter allen möglichen unabhängigen Mengen eines Graphen.

Wir präsentieren einen neuen evolutionären Algorithmus für dieses Problem.
Unser Algorithms beginnt mit dem Erzeugen einer Population von Individuen,
indem er mithilfe von Greedy-Algorithmen erste unabhängige Mengen erzeugt.
Wir verwenden anschließend Turnierauswahl, um Individuen, Eltern genannt, zur
Paarung auszuwählen. Wir führen vier neue Wege ein, um die ausgewählten
Individuen zu kombinieren. Die erste Prozedur erzeugt neue Individuen, indem sie
den Schnitt der unabhängigen Mengen der Eltern bildet. Die anderen Schemata
nutzen Graphpartitionierung, um neue Nachkommen zu erzeugen. Hierfür machen
sie sowohl von 2-wege, als auch von k-wege Partitionen und Knotenseparatoren
Gebrauch. Diese dienen uns dazu, schnell ganze Teile der gegebenen unabhängigen
Mengen auszutauschen. Beispielsweise nutzen wir im ersten dieser Operatoren
Knotenseparatoren, die wir vom Partitionierer erhalten, um neue unabhängige
Mengen zu erzeugen. In unserem dritten Operator stellen wir auch einen indirekten
Ansatz zur Verfügung, der Knotenüberdeckungen und Partitionen verwendet. Zu
guter Letzt setzen wir k-wege Partitionen und Knotenseparatoren ein, um einen
Kombinationsoperator zu erzeugen, der in der Lage ist, mehrere Teile von Lösungen
aufeinmal auszutauschen. Sämtliche unabhängige Mengen, die wir auf diese Weise
neu erzeugen, werden anschließend durch die Anwendung der schnellen lokalen
Suche von Andrade et. al. [1] verbessert.

Wir präsentieren eine experimentelle Auswertung unseres Algorithms unter
Verwendung von Instanzen aus der Literatur. Ebenso testen wir einige der In-
stanzen, die bereits von Andrade et. al. [1] genutzt wurden. Unser Algorithmus
liefert vorallem bei den von Andrade et. al. [1] verwendeten Meshes und sozialen
Netzwerken merkbare Verbesserungen. Auch bei Instanzen aus Walshaw’s Partition
Archive sind deutliche Steigerungen erkennbar. In den Anfangsphasen der meisten
Testdurchläufen hat unser Algorithmus bessere Lösungen erzeugt als unsere Konkur-
renz. Zusätzlich werden wir experimentell nachweisen, dass Graph Partitionierer
im Vergleich zu einfacheren Vorgehen, unserem Algorithmus einen Nutzen bringen.

Acknowledgments

I would like to give thanks to everyone who supported and encouraged me during
my work on this thesis. Without all the people that cheered me up after the
occasional setbacks, I wouldn’t have gotten so far.

First of all, I owe special thanks to my supervisors Dr. Christian Schulz and
Prof. Dr. Peter Sanders for the chance of doing research on such an interesting
topic and a lot of good advice. Furthermore, I would like to thank Renato Werneck
for providing me with the source code of their algorithm as well as graph data.
Thanks again to my family and girlfriend for their love and comfort. Last but not
least, I would like to thank my friends for their support and relief. My sincerest
thanks to all of you!

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Overview . 2

2 Preliminaries 3
2.1 Graph Definitions . 3
2.2 Data Structures and Algorithms . 4

2.2.1 Graph Representation . 4
2.2.2 Priority Queues . 5
2.2.3 Breadth First Search . 6
2.2.4 Hopcroft-Karp . 6
2.2.5 König’s Theorem . 6

3 Related Work 7
3.1 Evolutionary Algorithms . 7
3.2 Iterated Local Search . 8

3.2.1 Metaheuristic . 9
3.3 Graph Partitioning . 10

3.3.1 KaHIP . 10

4 EvoMIS 13
4.1 Solution Representation . 13
4.2 Initial Solutions . 14
4.3 Selection . 15
4.4 Combination . 16

4.4.1 Intersection . 18
4.4.2 Node Separator . 18
4.4.3 Vertex Cover . 21
4.4.4 Multiway . 22

4.5 Partition Pool . 23
4.6 Mutation . 24

CONTENTS CONTENTS

4.7 Replacement . 25
4.8 Diversification . 26

5 Experimental Results 31
5.1 Test Graphs . 31
5.2 Methodology . 32
5.3 Parameter Tuning . 33
5.4 Comparison with ILS . 42

6 Conclusion and Future Work 55
6.1 Conclusion . 55
6.2 Future Work . 55

A Algorithms 57

1. Introduction

Over the last few years evolutionary algorithms have expanded their grasp at a
breathtaking rate and our knowledge of the field today is more profound than
some people might have ever imagined. Applying the principles of evolution and
natural selection inspired by Darwin’s theory of evolution has intrigued many
researchers for decades to come. Along the rise of interest came a broader field
of applications. Ranging from all kinds of problems, evolutionary algorithms are
especially prominent in the fields of artificial intelligence and optimization. Even
tough the simplicity of evolutionary algorithms can often be surprising at first, it is
the combination of simple operations that gives them their strength and robustness.

Another important field of research nowadays are graph algorithms. Especially
with the huge impact social networks had on our lives over the last couple of years,
the interest for gaining and extracting information about them had a dramatic
increase. Since a lot of these structures contain a huge amount of data and are fairly
irregular, the room for new optimization methods, that exploit these characteristics,
is being made.

One of these graph optimization problems is the search for the maximum
independent set (MIS). This problem tries to find a maximum set of nodes in a
graph, such that no two of these are connected to each other. Even tough plenty
algorithms are dedicated to finding such a set in a given graph, little effort has
been put into the application of the natural operators evolutionary algorithms have
to offer. The MIS problem deserves our attention, not only because of its numerous
direct applications in computer vision [2], pattern recognition [22], map labeling [30]
and so forth, but also because it closely related to other optimization problems like
finding a maximum clique or a minimum vertex cover. Since all of these problems
are NP-hard [9], we are not able to solve all instances in polynomial time. Therefore,
algorithms, that want to perform well on a broad range of graphs, have to use some
sort of heuristic to get good results in a reasonable time. The problem with these
algorithms is that they often provide insufficient approximations or are designed
for a very specific set of graphs. Again the robustness of evolutionary algorithms
sounds like a good match for this kind of problems. Most algorithms dedicated
to finding a MIS on general graphs use and maintain a single solution and try to

1

1.1. CONTRIBUTION 1. INTRODUCTION

improve it by applying a chosen heuristic. One of these algorithms, which forms
the basis of the evolutionary algorithm presented in this thesis, is the local search
algorithm by Andrade et. al. [1]. This algorithm tries to improve a single solution
by using perturbations and simple 2-improvements. A k-improvement tries to
remove k − 1 nodes from the graph in such a way, that k new nodes can be added
in turn. A method for using 3-improvements is also presented in their work [1],
but will not be discussed much further.

1.1 Contribution

At first this thesis will define and cover the fast local search algorithm for finding
independent sets by Andrade et. al. [1]. This will lay the foundation for the newly
created evolutionary algorithm and help us understand what benefits we get from
it. Additionally, we will briefly discuss the basics of evolutionary algorithms like
selection and combination. In this context we will see how graph partitioners, in
our case the KaHIP-framework (Karlsruhe High Quality Partitioning) by Peter
Sanders and Christian Schulz [26], can help us build natural combine operators. We
then present the evolutionary algorithm in detail ranging from the chosen selection-
schemes to the combine operators and replacement techniques. Our algorithm uses
partitions and node separators to generate sensitive combine operators that ensure
a population of valid independent sets. Since we want to see how the algorithm
works in practical applications, and especially how it compares to the iterated local
search presented by Andrade et al. [1], a large emphasis is put on the experimental
evaluation. To assure a fair competition they were performed on families of the
original instances presented in [14, 32, 28] and extended by Andrade et al. [7, 23]
as well as on some new instances that we added.

1.2 Overview

Section 2 will introduce the notation and necessary definitions this thesis will be
using. Additionally, we present the reoccurring algorithms which are used for
certain parts of our implementation. We will then cover the key aspects on which
our work is based upon and give suggestions for further readings for each of these
topics in Section 3. The main algorithm in all its details will be presented in
Section 4. Section 5 concerns itself with the results of the experimental evaluation
of our work in contrast to the iterated local search algorithm. Finally, we will
conclude this thesis in Section 6 and present some possibilities for future work.

2

2. Preliminaries

This section introduces the basic algorithms, data structures and notation on which
our evolutionary algorithm is build upon.

2.1 Graph Definitions

A graph G is a set of objects, called nodes (vertices), that are connected via
edges. We define V (G) = {1, . . . , n} as the set of nodes belonging to a graph G
and E(G) ⊆ V (G) × V (G) as its edges. Therefore, a graph can be written as a
tuple G = (V,E). We denote the number of nodes as n = |V | and m = |E| as
the number of edges. Two nodes u, v ∈ V are connected if there exists an edge
e ∈ E with e = (u, v). Such an edge is called directed. Since our main focus is on
undirected graphs, we denote edges as sets e = {u, v}, meaning that u is connected
to v and vice versa. The set of neighbours for any node v ∈ V (G) is defined as
N(v) = {u ∈ V (G) | ∃e ∈ E(G) : e = {u, v}}. The degree of a node is denoted
as ∆(v) = |N(v)| and the maximum degree of G as ∆ or ∆(G). Furthermore,
an undirected graph is called connected, if for any given nodes u, v ∈ V there
exists a path of edges from one node to the other. Throughout this thesis we limit
ourselves to simple graphs, thereby leaving self-loops and parallel edges between
nodes aside. The complement of a graph G is defined as G = (V,E) with E being
the complement of E.

Given a simple undirected and connected graph G = (V,E), an independent set
is a subset of vertices S ⊆ V , such that there are no two adjacent nodes in S. An
equivalent definition would be that no edge contains more than one start-/endpoint
in S. An independent set is maximal, if it is not a subset of any larger independent
set. Finally, the maximum independent set (MIS) problem is the search for the
independent set that is the largest of these subsets in terms of cardinality. This
problem is NP-hard [9] and therefore finding an optimal solution can take an
exponential amount of time.

As mentioned before, the maximum independent set problem is also closely
related to other common (NP-hard) graph problems like the maximum clique
problem, which is also mentioned in [1]. Among these problems the minimum

3

2.2. DATA STRUCTURES AND ALGORITHMS 2. PRELIMINARIES

vertex cover problem is the one which will be influencing our algorithm the most.
A vertex cover is a subset of nodes C ⊆ V (G), such that every edge e ∈ E is at
least incident to one node within the set. The minimum vertex cover problem,
analogues to the MIS problem, searches for the vertex cover with the least amount
of nodes. The interesting part about the vertex cover problem for our purposes is
the fact that the complement of a vertex cover V \ C always is an independent set
by definition. Furthermore, complementing a minimum vertex cover results in a
maximum independent set.

Another type of graphs that will be used in our algorithm are bipartite graphs.
A bipartite graph consists of two disjoint sets, usually called U and V , which are
independent sets on their own. Therefore, every edge in such a graph connects
a node u ∈ U to a node v ∈ V . Our main point of interest concerning bipartite
graphs are bipartite matchings. A matching is a subset of edges M ⊆ E, such that
no two edges share a common start-/endpoint. A node is called matched, if it is an
start-/endpoint of an edge e ∈M and unmatched otherwise. A maximum matching
is a matching of maximum cardinality, meaning that it contains the largest number
of edges possible. In addition to that, a matching is called perfect, if it matches all
nodes in a given bipartite graph.

2.2 Data Structures and Algorithms

This section describes the data structures and algorithms that are used throughout
this thesis.

2.2.1 Graph Representation

The graph data structure we used in our work is an adjacency structure of the
graph. This structure is a compressed sparse row format, which is a widely used
scheme for storing graphs. Within this data structure nodes are numbered from 0
to n− 1, as opposed to our previous definition.

Given a graph G, that consists of n nodes and m edges, we store its adjacency
structure in two arrays xadj and adjncy. The adjncy array is used to store the
neighbours of every node. It therefore has to contain 2m elements, because we
have to count edges from both directions. The xadj array is used to indicate where
in the adjncy array the neighbours for a certain node are located. For example,
the adjacency list of a node v starts at index xadj[v] and ends at (but not includes)
index xadj[v + 1]. This means that all neighbouring nodes for v can be found by
starting at adjncy[xadj[v]] and continuing until adjncy[xadj[v + 1]− 1]. Since xadj
stores the start and end index for each node it has to be of size n + 1.

4

2. PRELIMINARIES 2.2. DATA STRUCTURES AND ALGORITHMS

The file format we used for reading graphs is a simplification from the one used
by Metis [16], Chaco [11], KaHIP [25] and during the 10th DIMACS Implementation
Challenge. An example for a simple graph and its representation can be seen in
Figure 2.1.

Figure 2.1: Example of a simple graph and its representation.

2.2.2 Priority Queues

A Priority Queue is an abstract data type that acts similar to a regular queue, but
where each elements contains an additional priority. Priority queues are designed
in such a way, that the element with the highest priority is always at the front.
In general, the elements of the queue are sorted according to some strict weak
ordering. The basic operations of a priority queue are:

• push(element, priority) Insert an element with an associated priority to
the queue.

• pop highest priority() Returns the element with the highest priority and
removes it from the queue.

In addition to this, most priority queues offer a peek operation, that allows
to look at the element with the highest priority without removing it. The most

5

2.2. DATA STRUCTURES AND ALGORITHMS 2. PRELIMINARIES

common implementation of a priority queue is using a heap data structure. However,
we decided to use bucket priority queue, which maintains a number of buckets
associated with each priority. This data structure is also used in the original work
by Andrade et. al. [1]. It allows us to easily and efficiently pick a random element
from a number of equally prioritized elements. For more information on priority
queues the reader is referred to [4].

2.2.3 Breadth First Search

Breadth First Search or BFS is a graph search algorithm that starts at a root node
and traverses the graph in a layered manner. BFS is usually implemented using a
FIFO queue. The main algorithm removes the first node s ∈ V (G) from the queue
and then checks if any of the neighbouring nodes has already been looked at. If
this is not the case it is added to the queue and marked as visited. This process is
repeated until the target node has been found or no nodes are left to be added.

2.2.4 Hopcroft-Karp

The Hopcroft-Karp algorithm introduced in [13] is used to find a maximum matching
in a bipartite graph. It uses augmenting paths to procedurally improve an initially
empty matching. The main advantage of the Hopcroft-Karp algorithm to other
augmenting path techniques is that, instead of searching for paths one by one, it
simultaneously looks for several paths at once. This algorithm has the best known
worst-case runtime O(|E|

√
|V |) for the bipartite matching problem.

2.2.5 König’s Theorem

König’s Bipartite Matching Theorem states that for any bipartite graph G the
cardinality of a maximum matching is equal to the cardinality of a minimum vertex
cover. For a proof of this theorem the reader is referred to [17]. This theorem,
combined with the Hopcroft-Karp algorithm, can be very helpful when building
independent sets. We will discuss this aspect further in Section 4.4.3.

6

3. Related Work

3.1 Evolutionary Algorithms

An evolutionary algorithm can be classified as a generic optimization algorithm that
tries to mimic the biological mechanisms of evolution and natural selection. They
are praised for their robustness and universal applicability on different problems
and search spaces alike [10]. Another thing that differentiates them from traditional
optimization methods is that they work with a whole set of solutions as opposed
to a single current solution. Each solution is encapsulated in a so called individual.
The set of individuals on which every evolutionary algorithm is based upon is called
the population.

To reproduce the effects of evolution, these algorithms use a combination of
simple operations, which basically consist of selection, mating or reproduction and
mutation. Newly generated individuals, called offsprings, are then inserted into the
population based on certain criteria. If a certain number of iterations has passed,
the resulting population is usually called a generation. A simple overview over the
main steps of an evolutionary algorithm can be seen in Figure 3.1.

The selection of individuals for reproduction is based on a so-called fitness
function f : P 7→ N0, which returns a numeric value for each individual. After the
best-fit individuals are chosen as parents, they create one or more new offsprings
based on crossover operations. Additionally, the new offsprings are then able
to undergo mutation with a certain probability. Mutation adds some additional
diversity or perturbation to the mating process. The probability for mutation in
evolutionary algorithms is generally very low to reduce the amount of randomness
introduced.

Using these operations evolutionary algorithms enforce strong (well-fit) individ-
uals to contribute their genetic material and weak individuals to slowly fade out of
existence. The algorithm ends when a certain termination criterion is met. This
criterion can be anything from a fixed number of iterations to a time limit. For
more information about evolutionary algorithms and how they work the reader is
referred to [10].

7

3.2. ITERATED LOCAL SEARCH 3. RELATED WORK

Figure 3.1: Overview over a simple evolutionary algorithm.

3.2 Iterated Local Search

One of the foundations of our evolutionary algorithm and our main competitor is
the fast local search for maximum independent sets presented by Andrade et. al. [1].
This natural local search algorithm uses simple 2-improvements or (1, 2)-swaps to
gradually improve a single current solution. The intention of a (j, k)-swap is to
remove j nodes from the solution and then insert k new nodes into it. A (1, 2)-swap
in particular tries to remove a single node from the solution in hopes of adding two
other free nodes instead. A node is called free, if none of its neighbouring nodes
can be found the current solution. We can also define freeness in terms of tightness.
The tightness of a node t(v) is the number of neighbouring solution nodes. Hence,
free nodes can be described as nodes with a tightness of zero. Local search then
basically iterates over all nodes v ∈ V (G) and looks for such a swap. A simplified

8

3. RELATED WORK 3.2. ITERATED LOCAL SEARCH

pseudocode representation of the local search can be seen in Algorithm 1.
The data structure that is used to maintain the current solution consists of an

array that is split into three different blocks. The array is a permutation of all
nodes in our graph. The first block contains the vertices of the solution, whereas
the second block stores any remaining free nodes. Finally, the third block contains
all non-free nodes, that are not in the solution. We explicitly store the position and
tightness of each node. In addition to that, we also store the sizes of the first two
blocks. This data structure allows a node to be moved between blocks in constant
time as well as the insertion and removal of new nodes in time proportional to
their degree.

It is shown, that the local search procedure can find a valid (1, 2)-swap in linear
time O(m), if it exists. We can explain this runtime by looking at the number of
nodes that are processed by the algorithm. A solution node x ∈ V is only examined
if it is a candidate for a 2-improvement. This includes removing and possibly
reinserting it into the solution, which can be done in deg(x) time. A non-solution
node on the other hand is only processed if it becomes free during the algorithm,
which only happens when its unique solution neighbour is examined. This way, each
node is looked at O(1) times. In turn, every edge is also visited O(1) times, which
results in the aforementioned runtime. Different implementations of this procedure
are presented by Andrade et. al. [1]. One of these is an incremental version, which
maintains a list of candidates that is extended and reduced depending on the swaps
made. This version of the local search is also used in this thesis and is known
to run in sublinear time. Furthermore, other methods for improving the solution
using (2, 3)-swaps are also proposed but we limit ourself to the simpler version with
(1, 2)-swaps. This is because the use of 3-improvements is too slow, since there is
no incremental algorithm for this version.

3.2.1 Metaheuristic

The fast local search is tested in a heuristic which is based on a metaheuristic called
the Iterated Local Search (ILS) [8]. This heuristic starts from a random solution S
and repeatedly applies a number of steps until a termination criterion is met. An
overview over the single steps that are used can be seen in Algorithm 2.

The perturbation step is represented by the force(k) routine, which inserts k
nodes to the solution and removes any conflicting neighbouring nodes. Additional
mechanisms are implemented to maintain a certain diversity. The first of these is
soft tabu, which keeps track of the iteration in which each node was inserted into
the solution. If there is more than one possible node to insert, the force routine
basically chooses the one that has not been in the solution for the longest time.
The second mechanism is directly attributed with the local search algorithm. If
the force procedure selected a single node for insertion (k = 1), that node is not

9

3.3. GRAPH PARTITIONING 3. RELATED WORK

allowed to be removed by the following local search iteration. The node can only be
removed if all other possible nodes have already been checked without success. The
ILS then proceeds by applying the local search algorithm. The final step consists
of deciding whether or not to keep the new solution S ′. To avoid straying from any
optimal solutions found so far, the number of times the algorithm is allowed to go
to a worse solution is limited by the current solution size. Interested readers are
referred to the original paper [1] for more detailed explanations.

3.3 Graph Partitioning

The graph partitioning problem takes a graph G and a number k > 1 and tries to
divide the nodes of the graph V (G) into k subsets V1, V2, . . . , Vk, called blocks. This
is done in such a way, that an objective function is minimized. The most common
form of graph partitioning is balanced partitioning, where the blocks should be of
roughly equal size and the number of edges that runs between the individual blocks
is the minimization criterion. A more thorough explanation on graph partitioning
can be found in [27]. Graph partitioning proofed to have many applications ranging
from route planning [6] to VLSI design [15]. In later sections, we will also see
how it can help us find good cuts for the reproduction step of our evolutionary
algorithm. Not only do graph partitioners benefit evolutionary algorithms, they
are also subjects of evolutionary algorithms themselves [24]. Another important
aspect for our work is that graph partitions allow the efficient generation of node
separators. For more information on graph partitioning and its application, we
refer the reader to [3].

3.3.1 KaHIP

The Karlsruhe High Quality Partitioning Framework (KaHIP) is a family of graph
partitioning programs described in [27]. Its main components are:

• KaFFPa, a multilevel graph partitioning framework

• KaFFPaE, a distributed evolutionary algorithm for solving the graph parti-
tioning problem

• KaBaPE, which provides balancing variants for the aforementioned tech-
niques.

It also includes programs that output node separators for a given partition. For
a more detailed explanation the reader is referred to [25]. An overview over the
techniques of the framework can be found in Figure 3.2.

10

3. RELATED WORK 3.3. GRAPH PARTITIONING

input
graph

Output
Partition

contract

... ...

match

partitioning

initial

local improvement

uncontract

[IPDPS10] [ESA11]

[ESA11]
W−F−V−

[IPDPS10]

[SEA12]

cycles a la multigrid

[SEA13]

[DIMACS12]
[ALENEX12]
evol. alg.
distr.

highly balanced:

[UNPUB] [UNPUB] [ALENEX12]

A

C

B

+

edge
ratings

flows etc.
parallel

Multilevel
Graph Partitioning

A B

C
0 −1

−1

0

−1

A B

C
0 −1

−1

0

−10 0

social separatorsbuffoon

Figure 3.2: Overview over the techniques used in the KaHIP framework [26].

11

4. EvoMIS

This section will present our novel evolutionary algorithm (EA) for independent sets
in all its details. We will see, how the previously discussed topics such as graph par-
titioning and the fast local search can help us build good combination operators for
our particular problem domain. Following the general scheme depicted in Figure 3.1
step by step, we explain our choices of algorithms for each stage. Our population
is denoted as P and consists of individuals I1, . . . , Ip, with p = |P | being the total
population size. The notation for an individual and its solution representation,
which is presented in the next section, are used interchangeably throughout this
thesis. When using partitions or node separators for our combination operators we
define B = {V1, . . . , Vk} as the set of blocks created by a k-way partitioning and S
as the resulting separator of size s = |S|. As a stopping criterion for our algorithm
we choose a simple timer, that can be set to an arbitrary time limit.

4.1 Solution Representation

Since we count nodes from 1 to n (V (G) = {1 . . . n}), the most natural represen-
tation of our problem is a string s = {0, 1}n. In this format a 1 at position j
(1 ≤ j ≤ n) means that node j is part of the independent set and a 0 means it is
not. An example for this representation is shown in Figure 4.1. Another possible
way of storing a solution would be a (sorted) list of all the nodes that represent the
independent set. We decided to go with the more natural representation because of
its underlying simplicity, which really benefits us when building advanced combine
operators. Additionally, when using actual bit-vectors to store an independent set,
efficient bitwise operations can be performed on these solutions. An example of
this would be applying the AND operator on two solution representations to get
their intersection.

13

4.2. INITIAL SOLUTIONS 4. EVOMIS

Figure 4.1: Example for the solution representation based on our simple graph
from Section 2.2.1.

4.2 Initial Solutions

The process of creating initial solutions for the independent set problem can be
done in a number of different ways. The three methods we used in our work are
presented in the following.

The first and most simplistic way is to start from an empty (independent) set
and add nodes at random until no further nodes can be added. Before a node can
be added to the solution, we need to make sure it results in a valid independent set.
We do this by simply checking if any of the surrounding nodes have already been
added to the solution. This is essentially the same as checking if the node is not
free. If this is not the case and the node is free, we are able to add the node to the
solution. Despite the straightforwardness of this method, it adds a decent amount
of diversity into the initial stages of the EA, which over an extended period of
time can lead to good solutions. The pseudocode for this procedure can be seen in
Algorithm 3.

The other two options we provide in our EA are taking a greedy approach to the
independent set problem. The first of these two is principally the same as the one
used by Andrade et al. [1]. Starting from an empty solution, we always add the node
with the least residual degree. Given a subgraph G′ = (V ′, E ′) ⊆ G the residual
degree of a node v ∈ V ′ can be defined as degG′(v) = |{u | u ∈ V ′ ∧ {u, v} ∈ E ′}|.
The node that gets added to the independent set therefore is x = minv∈V ′ degG′(v).
We do this by using a bucket priority queue which groups the nodes into buckets
based on their residual degree in the graph. The bucket queue allows us to pick a

14

4. EVOMIS 4.3. SELECTION

random candidate each time multiple nodes share the same residual degree. After
a node has been chosen and added to the solution, we remove all its neighbouring
nodes from our graph G, since they can no longer be part of the independent set.
As a final step we need to decrement the residual degrees of all next neighbours
to leave us with a reduced graph. We then repeat the procedure using this graph,
until our bucket queue is ultimately empty. The pseudocode for this method can
be seen in Algorithm 4.

The second greedy algorithm tries to generate a maximum independent set by
using the detour across vertex covers. We first create a solution C to the minimum
vertex cover problem and then calculate the complement V \ C to reach our goal
of an independent set. By definition of the minimum vertex cover problem this
complement is a valid maximum independent set. The rest of the procedure is
very similar to our first greedy algorithm. The only real difference is that we now
group the nodes in order of the maximum residual degree instead of the minimum
residual degree. The pseudocode for this procedure can be seen in Algorithm 5.

Once we now know how to generate the initial solutions for our individuals,
we can simply repeat the creation process a certain number of times until we
have a population that fits our needs. Each of these methods can also be further
extended by applying the iterated local search algorithm to the resulting solutions.
A comparison between the individual methods can be found in Section 5.

4.3 Selection

After we have established the initial generation of individuals, we focus our attention
on the selection schemes. This step is essential in any EA and can be tackled in
many different ways. We now present the selection scheme we decided to use for
our work.

Deterministic tournament selection selects parents for mating based on a number
of so called tournaments, that are held between the individuals of the current
generation. Each tournament selects a certain number k of random individuals,
who then ”fight” for a mating spot using their fitness function as a weapon. Even
tough the selection of participants is strictly random, the tournament format itself
allows for some variation. Either the amount of desired parents q determines the
number of tournaments or we only schedule one tournament and return q individuals
from it. In the first case, each winner from one of the tournaments is selected as a
mating candidate. In the second case, the q best-placed individuals are selected.
Even tough these two versions follow the same principle, the selection pressure
introduced in the first one is greater than in the second one. Selection pressure
describes any causes that might have an effect on the success of reproduction for a
certain population or individual. An example of the second method is demonstrated

15

4.4. COMBINATION 4. EVOMIS

in Figure 4.2. In our work we decided to go for the first version. In general, the
tournament selection scheme has several benefits for EAs. For example, the selection
pressure can easily be adjusted by choosing different tournament sizes k. More
precisely, bigger tournaments tend to increase the selection pressure, since unfit
individuals are almost certain to lose in the early rounds of the tournament. On the
other hand, smaller tournament sizes reduce the selection pressure. It is notable
that a tournament size of 1 results in a simple random selection. Tournament
selection can also be easily adjusted for the use on parallel architectures and ensures
a certain degree of convergence when used in conjunction with diversification
methods. Additional information on this selection scheme can be found in [21].
Other selection schemes, like linebreeding and random selection, were also tested
during our work, but did not generate a distinct advantage over tournament
selection. For more information about selection schemes in general the reader is
referred to [10].

4.4 Combination

Combination tries to implement the notion of natural reproduction in EAs and
takes the selected parents from the previous section to generate one or more new
offsprings. These offsprings in turn try to spread the genetic material of their
parents throughout the next generations. The operators we use in this stage are
the following:

• Intersection combine, based on the overlap of two parents

• Node separator combine, which uses 2-way node separators

• Vertex cover combine, which uses 2-way partitions and vertex covers

• Multiway combine, which uses k-way partitions or k-way node separators.

We define the set of q parents, that are returned from our selection scheme, as a
subset {P1, . . . ,Pq} ⊆ P . Besides the multiway combine operator, which can take
an arbitrary number of parents, all other operators require exactly two parents for
combination. The resulting offsprings from this step are a set {O1, . . . ,Or} based
on the number of created offsprings r.

Most traditional EAs use a simple crossover operator to combine two parents.
Simple crossover takes the solution representations of the parents, which are in
most cases bit-strings, and selects an arbitrary cutting point. At the selected
point the bit-strings of the parents are swapped and the resulting strings are the
encoded representations of the offsprings [10]. An example of this process can be
seen in Figure 4.3. Since our representation of independent sets underlies certain

16

4. EVOMIS 4.4. COMBINATION

Figure 4.2: Example for tournament selection with one tournament and the selection
of the top candidates.

restrictions, we are not allowed to use such an arbitrary operator on our individuals.
In more detail, neighbouring nodes are not allowed to be in a valid solution and
therefore these nodes cannot be set in the solution representation at the same time.
This could possibly occur when using simple crossover. We therefore need to make
sure that such representations cannot be generated. This can be done in one of
two ways: either through arbitrary crossover and the addition of penalties, which
are placed on invalid individuals, or through more sensitive combination operators.
We decided to go with the second way, because we want to ensure that only valid
solutions are present in our population at any given time.

The general scheme, which all of our combination operators follow, tries to
generate new, not particularly maximal, independent sets, which then undergo a
number of post-processing steps. The first of these is a maximization step, that
tries to add any free nodes that are left in the graph. Afterwards, we apply a single

17

4.4. COMBINATION 4. EVOMIS

Figure 4.3: Example of the simple crossover.

iteration of the fast local search to our solutions to ensure that they reach local
optima [1]. As a final step we encode this newly created solution in an offspring,
which can subsequently be inserted in the population. An overview of this scheme
can be seen in Figure 4.4. The next sections will be concerned with describing all
of the combination operators in detail. Each of these operators is equiprobable to
be chosen for combination.

4.4.1 Intersection

Our first combination operator takes the solution nodes of the two parents P1,P2

and builds their intersection P1 ∩ P2. When using actual bit-vectors for the
solution representation, this operation can be performed in linear time. Building
the intersection of the nodes from two independent sets is guaranteed to return
another valid independent set by definition of the independent set problem. The
major drawback of this method is that the resulting independent set is in most
cases smaller than the ones of the parents, except when P1 = P2. To compensate
for this fact we use our aforementioned post-processing steps. We first maximize
our solution and then apply the fast local search algorithm to make sure we reach
a local optimum. Finally, a new offspring carrying this solution is generated, as
depicted in our general scheme. The pseudocode for this algorithm can be seen in
Algorithm 6. Additionally, an example for the procedure is shown in Figure 4.5.

4.4.2 Node Separator

The next combine operator will show us why graph partitioning is especially useful
when working with context-sensitive (restricted) combine operators on graphs. Like
its name implies, this operator uses node separators, that are obtained from a
graph partitioner or via a simpler BFS, to generate new offsprings. In Section 5 we

18

4. EVOMIS 4.4. COMBINATION

Figure 4.4: Overview of the general combination scheme.

will study what differences result from using each of these methods. For now, we
are primarily concerned on how to generate new and possibly improved solutions
using node separators.

We do this by first creating a node separator S that divides our graph G into
two subsets A and B (V = A ∪B ∪ S). This is done in such a way, that there are
no edges running from A to B or vice versa. S can therefore serve as a crossover
point for our operation. An example of a node separator can be seen in Figure 4.6.
We then generate several new independent sets using S and our two parents P1,P2.
The first of these sets results from using the independent set nodes of our first parent
that are also present in A. We call this set S1. Analogues, we get the second set S2

by using the independent set nodes of P2 that are available in B. We then combine
S1 and S2 by building their union S1∪S2 to get a combined independent set, which
forms the basis of our first offspring O1. Again, this unification can be done in
linear time when using bit-vectors for the solution representation. The validity of
this independent set is directly implied by the definition of a node separator. Since
S1 and S2 are separated by S, there is no possibility of solution nodes interfering

19

4.4. COMBINATION 4. EVOMIS

Figure 4.5: Combination of parents using the intersection combine operator.

with each other. The implied validity is one of the major advantages when working
with this operator to create constrained solutions. The only nodes which are now
left to be added are the nodes of S, because we did not include them in our creation
process. As a result, our offspring is definitely an independent set, but might not be
maximal. To make it so, we use a greedy algorithm similar to one of those discussed
in Section 4.2. We simply put the nodes of S in a priority bucket queue, that is
sorted in order of decreasing residual degree. By always adding the node with the
least residual degree within S, we are able to create our new solution. Following our
general scheme, we then add any free nodes that are left and afterwards perform a
single iteration of the fast local search algorithm. In tandem to the first offsprings,
we create a second offspring O2. This one spawns from the overlap of the first
parents independent set nodes and B as well as the overlap of the second parents
independent set nodes and A. This leaves us with two new offsprings O1 and O2

that can be added to the population. The pseudocode for the whole procedure can
be seen in Algorithm 7. Figure 4.7 shows an example of this combine operator.

20

4. EVOMIS 4.4. COMBINATION

Figure 4.6: Example of a simple node separator.

4.4.3 Vertex Cover

The third combine operators tries to tackle the MIS problem using an indirect
approach. It does so by taking advantage of the fact that the complement of a
maximal independent set is a minimal vertex cover and vice versa [17]. Thus, by
complementing our solutions, we are able to obtain minimal vertex covers, which
in turn can be combined in different ways to produce new vertex covers. One of
these ways will be discussed in the following. The newly created vertex covers can
then be transformed into new independent sets by building their complements once
again. The combination operator also uses partitions (V = A ∪B) to acquire its
crossover points. The necessary partitions can once more be generated either by a
graph partitioner or via a simple BFS.

Starting from the usual pair of parents P1,P2 and a graph partitioning V =
A ∪B, we first generate the parents complements P1,P2. The complement of an
individual is a new individual that contains the complemented solution represen-
tation of the original one. The bitwise complement of the solution representation
allows us to easily build vertex covers from existing independent sets. We then use
these vertex covers P1 and P2 in a similar fashion as presented in the previous
section to obtain new solutions. These can then be extended to result in valid
minimal vertex covers.

The first offspring is generated by taking the vertex cover nodes of P1, that
are present in A, as well as the vertex cover nodes of P2, that are present in
B. The second offspring is created the other way round using the overlap of P1

and B in combination with the overlap of P2 and A. Unlike the previous section

21

4.4. COMBINATION 4. EVOMIS

where we used a node separator, that separates the blocks A and B, we now use
a partitioning, meaning A and B are connected. This fact can lead to issues at
the partitioning cut. More precisely, the resulting set might consist of too little
nodes to be a valid vertex cover, because some edges between the partitions are not
covered after crossover. To fix this problem, we want to add as little as possible
nodes from the cuts boundary to our newly created sets. We do this by extracting
the bipartite graph that represents the boundary of the cut and then using the
Hopcroft-Karp algorithm to get a minimum vertex cover of it. After fixing the
boundary of the partition cut, we can once again complement our now valid vertex
covers to get a fresh set of independent sets. To continue as before, we then follow
our general scheme by going through the maximization phase and applying the fast
local search to reach a local optimum. Finally, we put our maximum independent
sets in two new offsprings O1 and O2. The pseudocode for this combine operator
can be seen in Algorithm 8. Additionally, an example of this method can be found
in Figure 4.8.

4.4.4 Multiway

Our last and probably most sophisticated operator extends the repertoire of available
combination mechanism by k-way partitions and k-way node separators. In contrast
to the operators discussed so far, which used 2-way partitions and node separators,
it divides the given graph in an arbitrary number of blocks k. This kind of operator
closely resembles the multiple-point crossover or generalized crossover model [10, 5].
More precisely, instead of selecting only a single crossing point, like in simple
crossover, it can select a number of different crossing points at once. In distinction
from to the traditional multiple-point crossover, which often only combines two
parents, we are also able to select an arbitrary number of parents 2 ≤ p ≤ |P |. We
will see in Section 4.8, how this positively affects the diversity of our population.
The k-way partitions and separators used for this procedure are obtained from a
graph partitioner as usual. Generating k-way partitions and separators (k > 2) via
BFS is possible, but requires a more sophisticated procedure than the simple BFS
used so far.

Before the actual combination step, we first have to select a certain number of
parents q. We then take a (random) k-way partition or separator from our pool of
partitions and calculate the score for every possible pair (Pi, Vj) of a parent Pi and
a block Vj . The score of a pair (Pi, Vj) is calculated by counting the number of the
parents solution nodes inside the given block. We then select the parent with the
highest score for each of the blocks. An example of this can be seen in Figure 4.9.

The subsequent procedure is dependent on whether a partition or separator was
selected. Each of these variants is very similar to their respective 2-way combine
operators. If a k-way node separator was chosen, we start by simply taking the

22

4. EVOMIS 4.5. PARTITION POOL

highest scoring parents for each block, like mentioned before, but exclude the
separator itself. We then take their respective solutions nodes and create a new
solution by combining the nodes for each block. Since we left out the separators
nodes, this solution will not be maximal in most cases and we are able to improve
it even further. This can be done by using a bucket queue and the same greedy
algorithm we already used in the node separator combine operator.

Secondly, if a partition was chosen, we start by repeating the same selection
process for the parents that we used for the previous variant. Afterwards, instead
of fixing our solution right away, we complement our newly created solution to
get a set of nodes, that can be transformed into a valid vertex cover. Once again,
we utilize the more or less same greedy algorithm, that helped us to create the
initial solutions based on vertex covers, for fixing the solution. We cannot use the
Hopcroft-Karp algorithm that we mentioned in the vertex cover combine operator.
This is due to the fact, that we cannot be sure that the boundary of the partitioning
cut is a bipartite graph. This reduces the quality of the vertex cover we obtain by
a meager amount, which is comparably small to the overall solution size. We then
once again complement our vertex cover to get a new independent set.

After either of the two methods has finished, we reiterate the usual post-
processing steps. This includes the maximization of our solution and the application
of the local search algorithm. This way we receive our final solution, which can
be forged into an offspring. The pseudocode for these procedures can be found in
Algorithm 9 and Algorithm 10. The differences of the two methods in terms of
performance and solution quality, as well as good choices for the number of parents
and blocks, will be discussed in Section 5.

4.5 Partition Pool

It can be quite costly to generate a new partition/node separator with the graph
partitioner every single time a combination operation is performed. To alleviate
this effect, we can build a number of partitions/node separators in advance and
maintain or refresh them while the evolutionary algorithm takes place. The data
structures that realizes this idea is called the separator pool.

The separator pool generates a number of arrays, that contain all the necessary
partitions and separators for use by the combination operators, including:

• (2-way) partitions for the vertex cover combine,

• (2-way) separators for the node separator combine and

• k-way partitions and separators for the multiway combine.

23

4.6. MUTATION 4. EVOMIS

Each of these arrays can store an individual amount of partitions/separators. A
single partition is represented by an id, the number of blocks k and the actual
partition map of size n = |G|. Analogues, a single separator consists of an id, the
number of blocks k (excluding the separator block itself) and a separator map of
size n. In addition to that, the size of the separator block is also stored explicitly.
The partitions/separators are generated using the KaHIP framework [26] and can
be obtained from the separator pool at random. The pool also offers the possibility
to apply any given partition or separator to the underlying graph data structure.
These methods can be used to quickly prepare the graph for the individual needs
of each combination operator.

A feature that is especially useful for the multiway combine operator is that the
pool is also able to keep track of the scores for every possible combination of an
individual and a block (Ii, Vj) (1 ≤ i ≤ |P |, 1 ≤ j ≤ |B|). This allows us to quickly
retrieve the best candidates within a given set of parents. The scores are calculated
as soon as the pool is initialized in the beginning of the EA and recalculated every
time the pool gets renewed. Additionally, if a new individual is inserted in the
population after combination, it suffices to only calculate the respective scores.
This way we do not have to recompute all scores for every chosen parent if the
multiway combine operator was selected during the evolutionary algorithm, which
benefits its runtime.

The renewal of the pool is dependent on two different aspects. The first is a
threshold, which triggers the replacement of the current (k-way) partitions and
separators. This threshold limits the number of iterations that can pass without
resulting in a new best solution. The second one is a timer, that measures the
time taken for building the pool timebuild as well as the time taken for combi-
nation operations after the pools creation timecombination. Based on a arbitrary
factor r, we refresh the pool if the combination timer exceeds the building timer
(timecombination > r · timebuild).

4.6 Mutation

The next stage we have to examine is the mutation operator. As described in
Section 3.1, this operator is able to make changes to an offspring after the combine
operators. It therefore is able to add additional perturbation and diversity to the
population. Since often times bit-vectors are used for the solution representation
in EAs, the usual mutation operator works as follows: The solution is processed
from front to back and every bit has a certain probability of being flipped. The
probability for flipping a bit is usually very small to limit the effects of randomness
introduced by mutation. For more information on mutation, we refer the reader
to [10]. Since our representation underlies certain restrictions and we want to

24

4. EVOMIS 4.7. REPLACEMENT

have a valid maximum independent set at all stages during our algorithm, we
cannot perform mutation using this simple procedure. Instead we have to design an
operator, that allows the mutation of offsprings and still generates valid maximum
independent sets. The mutation operator we used in our algorithm to facilitate
these characteristics is pretty straightforward. We take our unmutated offspring
and apply another round (or several rounds) of the iterated local search algorithm
to its solution representation. Since a big part of the ILS is the forceful insertion
of new nodes into the solution, this operator generates enough diversion from the
original solution to serve as a good mutation operator. We will later see how
different mutation probabilities effect our algorithm in Section 5.

4.7 Replacement

We now explain the criteria under which an offspring is allowed to contribute its
genetic material to the population. In addition to that, we will be discussing
our strategy for removing individuals from the population, in case an offspring is
successfully selected for insertion.

Traditional EAs often use two overlapping populations as a strategy for estab-
lishing new generations [10]. Overlapping populations work in the following way:
all new offsprings are inserted in one of the two populations. If this first population
is full, we use its individuals to generate new offsprings, which are then put in the
second one. If the second population is full, the first one is emptied, the populations
are swapped and the process repeats. The main advantage of this strategy is that it
removes the necessity for complex replacement methods which can be seen in single
population variants. On the downside, maintaining diversity using overlapping
populations usually needs complex selection schemes. We implemented an option
that allows us to use overlapping populations, but finally decided to go with a
single population and variable replacement schemes. Before we discuss these in
detail, we will explain when an offspring is added to the population anyway.

We start by looking at the currently worst individual, in terms of solution size,
within our population. If our new offsprings solution is greater than this minimum
it is allowed to enter the population for the time being. Depending on the results
of the replacement scheme, the offspring might still be excluded from sharing
its genetic material. The one exception to this, is a threshold on the number of
insertions, that do not result in any new offspring entering the population. If this
threshold is exceeded, the individual is inserted under all circumstances, even if it
is smaller than the current minimum. In this case the minimum will be replaced
by it.

After an offspring is allowed to enter the population, we apply another round of
the ILS to its solution to enforce a stronger convergence of our algorithm. We then

25

4.8. DIVERSIFICATION 4. EVOMIS

concern ourselves with finding an appropriate replacement for our new offspring.
Our first and generally used replacement scheme tries to find the most similar
individual to our offspring in terms of overlapping solution nodes. We achieve
this, by calculating the number of differences between our offspring O and each
individual in our population. This can be done using the Hamming distance. We
then select the individual with the least differences for removal, which is also the
most similar one. The one exception to this procedure is the currently best solution.
The best solution is not allowed to be selected for replacement, because we want
to ensure that our overall solution quality does not degrade over time. After we
are done selecting an individual, we remove it from the population and simply put
the offspring in its place. An pseudocode algorithm for this process is presented in
Algorithm 11. The other two schemes try to maintain a certain level of diversity
in addition to selecting a suitable replacement and will be discussed in the next
section.

4.8 Diversification

Like mentioned before, evolutionary algorithms work by enforcing strong individuals
(in terms of fitness) to share their genetic material and weak individuals to vanish
over time. Strictly following this approach can lead our population to strife in
a certain direction that might lacks distinct traits of weak individuals. However,
these traits could come in handy in a later stage of the algorithm. To attribute
this aspect, we should try to keep a certain portion of weak individuals, if their
solution representation differs distinctly from the stronger ones. The size of this
subpopulation is crucial, since it should be big enough to carry enough diverse
traits, but not to big to disrupt the convergence of the EA. In literature this
process is often denoted as niching and speciation [10]. There are a wide number
of methods for incorporating this concept in practical algorithms, some of which
can also be found in our work.

Crowding is a replacement scheme proposed by De Jong [5] and a generalization
of the similarity based replacement method we described in Section 4.7. Using this
scheme, instead of outright taking the most similar individual, we first selected
a random subpopulation consisting of a certain of number of individuals, called
the crowding factor. We then choose the most similar individual from that sub-
population. Our strict version resembles crowding with a crowding factor of the
population size p. Smaller crowding factors might help a certain species of weak
individuals to occupy a larger portion of the population than they would have
otherwise.

Another well established method of maintaining diversity is to use sharing.
Sharing allows us to form and stabilize different subpopulations over time. To

26

4. EVOMIS 4.8. DIVERSIFICATION

implement this approach in our algorithm, we introduce a sharing function that
calculates the degree of similarity for each individual in our population. The
similarity is measured by calculating the Hamming distance of an individual with
all the others and then summing up these values. Individuals with a high degree of
similarity should then be given a higher chance of being replaced than individuals
with high variousness and lower similarity. To attribute this fact, we simply
divide the fitness value of each individual by its normalized degree of sharing
fsharing(Ii) = f(Ii)

1
p

∑p
j=1 d(Ii,Ij)

. Our modified fitness function is then used in a new

replacement scheme that always chooses the individual with the smallest shared
fitness value for removal. The exception to this is again the currently best individual,
which should not be removed in any case. Besides the increased diversity and
speciation, the major drawback of using sharing mechanisms is that the calculation
of the shared fitness function is rather costly and has to be performed whenever a
new individual is inserted in the population

In addition to the aforementioned two approaches, we added a third replacement
scheme for maintaining diversity. Our scheme creates a subpopulation by selecting
individuals that are in certain range of similarity to our offspring based on an
arbitrary percentage. We again measure similarity using the Hamming distance
of the individuals. From this subpopulation, we then choose an individual for
replacement at random. One issue using this method is that in the beginning the
similarity of individuals might still be too small for a percentage based subpopulation
to form, in which case we simply select the most similar individual.

A more implicit way of generating variousness is the multiway combine operator.
Since the operator can take an arbitrary number of parents and picks the best
parent for each block, overall weak individuals, that still have distinct strong traits
in some regions, are able to be selected to contribute their genetic material for
certain blocks. Instead of having to maintain a niche for weak individuals, which
could be helpful in a later phase of the algorithm, this allows us to select important
traits early on. This way, these individuals can still contribute their genetic material
and be removed as usual, without focusing on keeping them a longer time. This
especially holds true, when selecting a great number of parents for combination.
For further reading on diversification techniques the reader is referred to [10]. The
effects of the different diversification techniques will be discussed in the following
section.

27

4.8. DIVERSIFICATION 4. EVOMIS

Figure 4.7: Combination of parents using the node separator combine operator.

28

4. EVOMIS 4.8. DIVERSIFICATION

Figure 4.8: Combination of parents using the vertex cover combine operator.

29

4.8. DIVERSIFICATION 4. EVOMIS

Figure 4.9: Example of a parent distribution for the multiway combine operator.

30

5. Experimental Results

We now examine the performance of our algorithm on various instances for the
maximum independent set problem. We start by presenting the instances we chose
for our experiments and then describe our efforts to further improve our algorithm
by fine tuning several of its parameters. In the end we will compare the final results
of the tuned evolutionary algorithm with the ones obtained from the ILS algorithm
of Andrade et. al. [1]. The measurements for both algorithm, the ILS and our
EA, do not include reading the graph and building the necessary data structure
associated with it.

5.1 Test Graphs

The families of instances, we chose for our experiments, consist of graphs from
the work of Andrade et. al. [1] (MESH) as well as new instances that we added
(STREET, SOCIAL, WALSHAW, DELAUNAY and GEOMETRIC). The first
family, MESH, was kindly provided by Renato Werneck and consists of the dual
graphs of triangular meshes. The dual graph of a graph G contains nodes for
each face of G and edges for each pair of nodes that corresponds to neighbouring
faces. Their importance for the maximum independent set problem comes from an
application in Computer Graphics described by Sander et. al in [23].

A close relative to the ROAD family, that is used by Andrade et. al. [1], is
the STREET family. It contains road networks of various countries including
Germany and Great Britain. They are unweighted and undirected versions of the
largest strongly connected component of the corresponding Open Street Map road
networks and have been used in the 10th DIMACS Implementation Challenge, on
graph partitioning and graph clustering. Both the ROAD and STREET family gain
their importance for the maximum independent set problem from the application
in map labeling algorithms.

As mentioned in our introduction, the big influence of social networks on our
everyday life cannot be denied. Since they are also an interesting subject for
various problems, including graph partitioning, we added the SOCIAL family to
our experiments. It consists of various social network graphs, including citation

31

5.2. METHODOLOGY 5. EXPERIMENTAL RESULTS

networks from the 10th DIMACS Implementation Challenge, autonomous system
graphs [20] and network graphs from Wikipedia or Google [19, 18].

An often used benchmark for graph partition algorithms is Chris Walshaw’s
graph partitioning archive. Our WALSHAW family consists of instances that
are found in this archive. Many of the graphs in this family come from typical
partitioning applications and because graph partitioners play a big role in our
algorithm we wanted to incorporate it into our work. The graphs were also used
in the 10th DIMACS Implementation Challenge. For more information about the
archive the reader is referred to [31, 29].

The DELAUNAY family features a number of graphs that have been generated
using the Delaunay triangulation of random points in the unit square. A Delaunay
triangulation of points P is a triangulation DT (P), in such a way, that no point of P
is within the circumcircle of any triangle in DT (P). This family has been introduced
by Holtgrewe et. al. [12] and is also part of the 10th DIMACS Implementation
Challenge.

Our last family, GEOMETRIC, consists of random geometric graphs and has
also been introduced by Holtgrewe et. al. [12] and used in the 10th DIMACS
Implementation Challenge. Each graph of this family is made up of n = 2X (in our
case 15 ≤ X ≤ 20) nodes, which are random points in the unit square. In this type

of graph two nodes are connected, if their Euclidean distance is below 0.55 ln(n)
n

.

5.2 Methodology

Our algorithm was implemented using C++ and was compiled using gcc v.4.6.3
with full optimizations turned on (-O3 flag). Each run was made on one core of a
2.4 GHz Intel Xeon E5-4640 CPU with 528 GB of RAM running Ubuntu 12.04.5
LTS 64-bit Edition. The test results for the ILS were obtained by using the original
algorithm from Andrade et. al. [1], which was kindly provided by Renato Werneck.
For our evaluation we present average and maximal values as well as convergence
plots. Convergence plots depict the evolution of the solution quality over time.

To gather our data we used three repetitions (seeds) per instance. Each
repetitions was set to a time limit of ten hours. Average values were obtained
by computing the geometric mean over all repetitions for each instance. For the
generation of the convergence plots we follow the methodology of Peter Sanders and
Christian Schulz [24]: whenever a new best solution was found by our algorithm a
triple (t, solution, seed) is generated. The tuple consists of the current timestamp t,
the newly found optimum solution and the seed that was used. Once the algorithm
is done, we collect all of these triples and put them in a sequence Tseed that is sorted
by timestamp in ascending order. If more than one repetition was used, we merge
the individual sequences together in a new sequence S, which is once again sorted

32

5. EXPERIMENTAL RESULTS 5.3. PARAMETER TUNING

by timestamps. Afterwards, we create a final sequence Sg, that consists of event
based geometric means. This can be done by iterating through S and updating
the geometric mean G alongside. G is initialized by using the first solution value
for each repetitions. When processing a tuple (t, solution, seed) we update G by
replacing the value of Tseed that took place in its initial computation. We then add
the pair (t, G) to Sg.

To generate convergence plots for a whole family we repeat this procedure by
using the sequence Sg of each instance. We start by adding an instance label to
each pair, that indicates which instance it belongs to. After merging these, we sort
the resulting sequence by timestamp in ascending order. Finally, we can calculate
a sequence Sfamily by computing the geometric means of this sequence using the
same approach as presented above.

5.3 Parameter Tuning

Before we can start the experimental evaluation of our algorithm, we have to make
sure the parameters are chosen in a reasonable way. For this purpose, we performed
a number of tuning experiments. The parameters we decided to tune were the
following:

• Population size

• Separator pool sizes

• KaHIP mode

• Initial solutions

• ILS Iterations

• Mutation rate

In addition to that, we also present an evaluation of the performance of each
combine operator on its own and examine the results of our diversification methods.
As a final step, we compare the results of our algorithm to a version that uses
a simple BFS instead of a graph partitioner. Each convergence plot used in this
section also includes a zoomed subplot that shows the last 30% (time-wise) of the
plot in greater detail.

As a starting point for our tests, we used the configuration seen in Table 5.1.
The values for this configuration were chosen based on the observations we made
during the implementation of our algorithm. Finally, the parameter tuning was
conducted on the graphs shown in Table 5.2.

33

5.3. PARAMETER TUNING 5. EXPERIMENTAL RESULTS

Parameter Value
Population size 30
Pool size 15
KaHIP mode fastsocial
Initial solutions Greedy (minimal residual degree)
Mutation rate 10%
ILS iterations 10000
Tournament size 2
Multiway blocks 64
Multiway parents |P |
Insertion threshold 150
Pool threshold 180
Pool renewal factor 10.0

Table 5.1: Starting configuration.

Family Graph
DELAUNAY del n15

GEOMETRIC rgg n15

MESH bunny

SOCIAL skitter

SOCIAL cnr-2000

SOCIAL in-2004

Table 5.2: Graphs used for the parameter tuning.

The first parameter we chose for our tuning experiments was the population
size |P |. Starting from 30 individuals, we tried smaller and bigger populations.
Smaller populations often result in a faster convergence, but most of the time they
lack variety in the later stages of the algorithm. Bigger populations on the other
hand, start off slow, but might have a distinct advantage after a longer period of
time, due to the higher amount of different subpopulations and individuals. Since
we test instances over a long period of time, this effect can also be observed in our
tuning results shown in Figure 5.1. The same principally goes for the separator
pool size. A bigger number of partitions and separators increases the amount of
possible cuts, that each combine operator can choose from. This in term leads to a
bigger variety of resulting individuals and over a longer time to a better solution
quality. On the downside, building a larger number of partitions and separators
also reduces the amount of time spent for the actual combination of individuals.
The effects of different pool sizes can be seen in Figure 5.2.

34

5. EXPERIMENTAL RESULTS 5.3. PARAMETER TUNING

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

Population size

10
30
50

73514

25200 30600 36000
73480

73500

73520

Figure 5.1: Effects of different population sizes. The global maximum is shown at
the right.

Another important aspect for the quality and variety of the partitions/separators
we use comes from the configuration of the graph partitioner itself. This also
influences the time that is used for the separator pool generation. As described in
the KaHIP user guide [25], there are 6 different modes for the KaHIP framework
to choose from. The effects of each of these methods can be seen in Figure 5.3.
We excluded the social network graphs from this experiment, since the KaHIP
framework has problems processing them with the non-social configurations. Our
evaluation shows, that for our purposes the fast and fastsocial configurations are the
best. In addition to testing different modes, we also used a randomized imbalance
(between 3% and 85%) to add further variety. The iterated local search by Andrade
et. al [1] can also be parameterized in a number of ways. We decided to examine
the effects of different numbers of iterations the ILS is able to perform each time
it is invoked. The results of which are shown in Figure 5.4. A higher number
of iterations enables offsprings to climb to better solutions before they enter the
population. On the downside, this again reduces the amount of time we spent
combining individuals. For our initial solutions, we decided to stay with the greedy
algorithm that uses the least residual degree of nodes. The start of the different
methods might differ greatly, but the convergence is fairly similar. This even holds
true when starting from solutions that have an iteration of the ILS applied to them.
The results of using different initial solutions can be seen in Figure 5.5. The last
tuning parameter we mentioned before is the mutation rate. Since we use the ILS

35

5.3. PARAMETER TUNING 5. EXPERIMENTAL RESULTS

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

Pool size

10
20
30

73513

25200 30600 36000
73500

73510

73520

Figure 5.2: Effect of different pool sizes. The global maximum is shown at the
right.

as a mutation operator, we wanted to make sure that the mutation rate is relatively
low. Otherwise, our algorithm spends too much time performing the ILS and too
little time on its core mechanics, like the combination of individuals. As mentioned
in Section 4.6, the mutation rate of evolutionary algorithms should nonetheless be
kept at a low level. We therefore decided to stay with our initial mutation rate.
The plot for this parameter can be found in Figure 5.6. After all necessary tuning
parameters were tested, we settled on the configuration shown in Table 5.3.

We proceed with evaluating the impact each of our diversification methods has
on our algorithm. The results of these experiments can be seen in Figure 5.7. First
of all, it is notable that the version of our algorithm that uses sharing seems to be
inferior to the standard version. This probably results from the fact, that calculating
the shares for each individuals after every insertion takes too much time. Other than
that, crowding and our own replacement procedure, that generates subpopulations
based on a percentage of similarity, seem to be equal to the standard replacement
method. We therefore decided to omit any additional diversification methods in
our evolutionary algorithm. The next experiments were concerned with the effects
of each combine operator when taken as the only possible combination operator.
Figure 5.8 shows, that both versions of the multiway combine operator, based on
partitions as well as separators, seem to have the biggest impact on the solution size
over time. After that, the node separator and vertex cover combine operators seem
to be fairly equal in terms of quality and convergence. The intersection combine

36

5. EXPERIMENTAL RESULTS 5.3. PARAMETER TUNING

10-2 10-1 100 101 102 103 104 105

Time in sec.

12700

12800

12900

13000

13100

13200

13300

S
o
lu

ti
o
n
 s

iz
e

KaHIP mode

eco
ecosocial
fast
fastsocial
strong
strongsocial

13256

25200 30600 36000
13240

13250

13260

Figure 5.3: Evaluation of the different KaHIP modes. The social network graphs
were excluded from this experiment, because the KaHIP framework is not able to
process them with the non-social configurations. The global maximum is shown at
the right.

operator comes in last in this comparison. This most probably results from the fact,
that the intersection of two different independent sets is in most cases relatively
small. Finally, we examine if graph partitioners really benefits our algorithm or if
a simple BFS would be enough for our needs. As seen in Figure 5.9 the positive
impact of using a graph partitioner cannot be denied, especially in the long run. It
has to be noted, that both version were restricted to intersection, node separator
and vertex cover combine operators, since we did not implement a version of the
multiway combine operator that uses a BFS.

37

5.3. PARAMETER TUNING 5. EXPERIMENTAL RESULTS

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

ILS iterations

10000
15000
5000

73517

25200 30600 36000
73500

73510

73520

Figure 5.4: Effects of different numbers of ILS iterations. The global maximum is
shown at the right.

10-3 10-2 10-1 100 101 102 103 104 105

Time in sec.

60000

62000

64000

66000

68000

70000

72000

74000

S
o
lu

ti
o
n
 s

iz
e

Initial solutions

cover
greedy
ils
random

73514

25200 30600 36000
73200

73400

73600

Figure 5.5: Evaluation of the different methods for generating initial solutions. The
global maximum is shown at the right.

38

5. EXPERIMENTAL RESULTS 5.3. PARAMETER TUNING

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600
S
o
lu

ti
o
n
 s

iz
e

Mutation rate

1
3
5

73513

25200 30600 36000
73505

73510

73515

Figure 5.6: Effects of different mutation rates. The global maximum is shown at
the right.

Parameter Value
Population size 50
Pool size 30
KaHIP mode fastsocial
Initial solutions Greedy (minimal residual degree)
Mutation rate 10%
ILS iterations 15000
Tournament size 2
Multiway blocks 64
Multiway parents |P |
Insertion threshold 150
Pool threshold 180
Pool renewal factor 10.0

Table 5.3: Configuration after the parameter tuning.

39

5.3. PARAMETER TUNING 5. EXPERIMENTAL RESULTS

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

Diversification methods

crowding
sharing
subcrowd

73513

25200 30600 36000
73480

73500

73520

Figure 5.7: Impact of the diversification methods. The global maximum is shown
at the right.

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

Combine operators

cover
intersect
multiway
multiway-ns
separator

73501

25200 30600 36000

73400

73600

Figure 5.8: Results of our algorithm using only one combine operator at a time.
The global maximum is shown at the right.

40

5. EXPERIMENTAL RESULTS 5.3. PARAMETER TUNING

10-2 10-1 100 101 102 103 104 105

Time in sec.

71800

72000

72200

72400

72600

72800

73000

73200

73400

73600

S
o
lu

ti
o
n
 s

iz
e

BFS

bfs
partitioner

73468

25200 30600 36000
73300

73400

73500

Figure 5.9: Comparison of our algorithm using the KaHIP framework and a BFS.
The global maximum is shown at the right.

41

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

5.4 Comparison with ILS

In this section, we compare our evolutionary algorithm with the iterated local
search algorithm by Andrade et. al. [1]. We do this by examining the convergence
of both algorithms on the aforementioned graph families.

First off all, we want to take a closer look at the MESH family. On several
instances, most notably bunny and gameguy, EvoMIS surpassed the ILS. As seen
in Figure 5.10 and Figure 5.11 our algorithm starts of slower than the ILS, but is
able to fully unfold its potential in the later stages. The slow start is due to the
fact, that our algorithm first needs to establish a whole population of individuals
that share a similar level of quality. After the population has stabilized, we can
start improving the overall solution quality, which then leads to better individuals.
This aspect holds true for most of our experiments and evolutionary algorithms in
general. As noted by Andrade et. al. both of these instances are highly regular [1].
On irregular instances like buddha or dragon our algorithm falls short. Convergence
plots for these instances can be found in Figure 5.12 and Figure 5.13. A detailed
overview for all instances of this family can be found in Table 5.4.

10-2 10-1 100 101 102 103 104 105

Time in sec.

31200

31400

31600

31800

32000

32200

32400

S
o
lu

ti
o
n
 s

iz
e

bunny

EvoMIS
ILS

Figure 5.10: Comparison of EvoMIS and ILS for the bunny graph.

A family of graphs, our algorithm performs particularly well upon, is the
SOCIAL family. Especially on instances like cnr-2000 and in-2004 it delivers a
distinct advantage over the ILS. On cnr-2000 we are able to improve the maximum
found by the ILS by nearly 100 additional nodes. The convergence plot for this
instance can be found in Figure 5.14. This plot shows, that due to the variety in

42

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

10-2 10-1 100 101 102 103 104 105

Time in sec.

20200

20300

20400

20500

20600

20700

20800

S
o
lu

ti
o
n
 s

iz
e

gameguy

EvoMIS
ILS

Figure 5.11: Comparison of EvoMIS and ILS for the gameguy graph.

starting solutions, we are able to head off from an already better level than our
competitor. In particular, this holds true for most of the large instances, like the
ones from SOCIAL or STREET. Throughout the rest of the test runs we were able
to successfully maintain this advantage. The same goes for the convergence plot of
in-2004, which is shown in Figure 5.15. For the remaining instances of this family
the ILS and our algorithm are mostly equal. The detailed overview for all tested
instances can be found in Table 5.5.

Another family of graphs, were we can report considerable improvements, is
the WALSHAW family. As depicted in Table 5.9 we were able to exceed the ILS or
be at least equal to it, on more than half of the instances from this test set. Some
examples of this are fe ocean, fe rotor and wave. The according convergence
plots can be seen in Figure 5.16, Figure 5.17 and Figure 5.18 respectively. The only
graphs which were losses compared to the ILS in this family are auto (Figure 5.19)
and 598a (Figure 5.20). The significant increase of solution size our algorithm is
able to show in this family, as well as the SOCIAL family, could result from the
fact, that the partitioner we use, processes this kind of instances in a very profitable
way.

On the instances from the GEOMETRIC (Table 5.7), DELAUNAY (Table 5.8)
and STREET family (Table 5.6) the ILS proved to be superior to our evolutionary
algorithm. The STREET family in particular is a clear win for the ILS. Unlike the
SOCIAL family, where we also start from an advantageous point, we are not able
to maintain it over the course of the test runs. For example, this can be seen in the

43

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

10-1 100 101 102 103 104 105

Time in sec.

440000

445000

450000

455000

460000

465000

470000

475000

480000

485000

S
o
lu

ti
o
n
 s

iz
e

buddha

EvoMIS
ILS

Figure 5.12: Comparison of EvoMIS and ILS for the buddha graph.

convergence plot of nl shown in Figure 5.21. In comparison to the SOCIAL family,
street networks usually have a greater diameter and most nodes have a significantly
lower degree. Our algorithm might not be able to handle such instances in a very
good way. This aspect could be attributed in future enhancements of our algorithm.
Our experiments for the MESH family indicated that our algorithm does really
well on regular meshes. Since the GEOMETRIC and DELAUNAY family consist
of fairly regular instances, the advantage the ILS has for these graphs can be
attributed to the fact, that our algorithm was probably not able to fully converge
in the given time limit. This also comes in play for many of the larger instances.
As seen in Table 5.10 and Table 5.11, our algorithm performs really well on the
smaller instances and loses its edge for most of the larger ones. Therefore, longer
test runs for these instances might be necessary.

44

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

10-2 10-1 100 101 102 103 104 105

Time in sec.

63500

64000

64500

65000

65500

66000

66500

67000
S
o
lu

ti
o
n
 s

iz
e

dragon

EvoMIS
ILS

Figure 5.13: Comparison of EvoMIS and ILS for the dragon graph.

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

beethoven 4 419 2 004 2 004 2 004 2 004 2 004 2 004
blob 16 068 7 248 7 249 7 247 7 249 7 250 7 249
buddha 1 087 716 478 713 478 760 478 678 480 883 480 918 480 816
bunny 68 790 32 336 32 341 32 330 32 288 32 292 32 285
cow 5 036 2 346 2 346 2 346 2 346 2 346 2 346
dragon 150 000 66 356 66 365 66 343 66 503 66 505 66 501
dragonsub 600 000 281 190 281 260 281 076 282 029 282 066 282 000
ecat 684 496 322 117 322 182 322 079 322 263 322 290 322 242
face 22 871 10 215 10 216 10 215 10 217 10 217 10 217
fandisk 8 634 4 075 4 075 4 075 4 073 4 074 4 072
feline 41 262 18 847 18 851 18 843 18 846 18 847 18 844
gameguy 42 623 20 726 20 727 20 726 20 669 20 690 20 659
gargoyle 20 000 8 850 8 851 8 849 8 852 8 853 8 852
turtle 267 534 122 275 122 305 122 247 122 504 122 574 122 435
venus 5 672 2 684 2 684 2 684 2 684 2 684 2 684

Table 5.4: Test results for the MESH family.

45

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

10-1 100 101 102 103 104 105

Time in sec.

226500

227000

227500

228000

228500

229000

229500

230000

230500

S
o
lu

ti
o
n
 s

iz
e

cnr-2000

EvoMIS
ILS

Figure 5.14: Comparison of EvoMIS and ILS for the cnr-2000 graph.

100 101 102 103 104 105

Time in sec.

882000

884000

886000

888000

890000

892000

894000

896000

898000

S
o
lu

ti
o
n
 s

iz
e

in-2004

EvoMIS
ILS

Figure 5.15: Comparison of EvoMIS and ILS for the in-2004 graph.

46

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

amazon 735 323 309 721 309 725 309 719 309 792 309 793 309 792
skitter 554 930 328 519 328 520 328 519 328 596 328 614 328 582
citation 268 495 150 380 150 380 150 380 150 380 150 380 150 380
cnr-2000 325 557 230 008 230 016 230 001 229 956 229 965 229 943
coPapers 434 102 47 996 47 996 47 996 47 996 47 996 47 996
enron 69 244 62 811 62 811 62 811 62 811 62 811 62 811
in-2004 1 382 908 896 581 896 585 896 580 896 488 896 495 896 475
gowalla 196 591 112 369 112 369 112 369 112 369 112 369 112 369
google 356 648 174 072 174 072 174 072 174 072 174 072 174 072

Table 5.5: Test results for the SOCIAL NETWORK family.

10-2 10-1 100 101 102 103 104 105

Time in sec.

60000

62000

64000

66000

68000

70000

72000

S
o
lu

ti
o
n
 s

iz
e

fe_ocean

EvoMIS
ILS

Figure 5.16: Comparison of EvoMIS and ILS for the fe ocean graph.

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

ger 11 548 845 5 836 807 5 836 966 5 836 583 5 841 385 5 841 400 5 841 375
gb 7 733 822 3 956 916 3 956 977 3 956 841 3 958 507 3 958 512 3 958 503
italy 6 686 493 3 351 464 3 351 531 3 351 398 3 353 382 3 353 390 3 353 378
lux 114 599 57 663 57 663 57 663 57 663 57 663 57 663
nl 2 216 688 1 116 215 1 116 255 1 116 179 1 116 713 1 116 716 1 116 709

Table 5.6: Test results for the STREET NETWORK family.

47

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

10-2 10-1 100 101 102 103 104 105

Time in sec.

19500

20000

20500

21000

21500

22000

22500

S
o
lu

ti
o
n
 s

iz
e

fe_rotor

EvoMIS
ILS

Figure 5.17: Comparison of EvoMIS and ILS for the fe rotor graph.

10-1 100 101 102 103 104 105

Time in sec.

31000

32000

33000

34000

35000

36000

37000

38000

S
o
lu

ti
o
n
 s

iz
e

wave

EvoMIS
ILS

Figure 5.18: Comparison of EvoMIS and ILS for the wave graph.

48

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

10-1 100 101 102 103 104 105

Time in sec.

70000

72000

74000

76000

78000

80000

82000

84000

86000
S
o
lu

ti
o
n
 s

iz
e

auto

EvoMIS
ILS

Figure 5.19: Comparison of EvoMIS and ILS for the auto graph.

10-1 100 101 102 103 104 105

Time in sec.

19500

20000

20500

21000

21500

22000

S
o
lu

ti
o
n
 s

iz
e

598a

EvoMIS
ILS

Figure 5.20: Comparison of EvoMIS and ILS for the 598a graph.

49

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

100 101 102 103 104 105

Time in sec.

1050000

1060000

1070000

1080000

1090000

1100000

1110000

1120000

S
o
lu

ti
o
n
 s

iz
e

netherlands

EvoMIS
ILS

Figure 5.21: Comparison of EvoMIS and ILS for the nl graph.

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

rgg_n15 32 768 6 977 6 979 6 977 6 974 6 974 6 974
rgg_n16 65 536 13 277 13 278 13 276 13 275 13 277 13 274
rgg_n17 131 072 25 389 25 395 25 384 25 400 25 401 25 399
rgg_n18 262 144 48 570 48 573 48 567 48 638 48 639 48 638
rgg_n19 524 288 93 042 93 072 93 020 93 331 93 335 93 328
rgg_n20 1 048 576 178 561 178 602 178 514 179 322 179 328 179 312

Table 5.7: Test results for the GEOMETRIC family.

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

del_n15 32 768 10 330 10 333 10 328 10 330 10 330 10 330
del_n16 65 536 20 683 20 684 20 682 20 688 20 689 20 688
del_n17 131 072 41 292 41 294 41 289 41 327 41 328 41 326
del_n18 262 144 82 478 82 484 82 475 82 601 82 603 82 600
del_n19 524 288 164 959 164 972 164 949 165 277 165 279 165 276
del_n20 1 048 576 329 768 329 790 329 742 330 599 330 603 330 593

Table 5.8: Test results for the DELAUNAY family.

50

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

4elt 15 606 4 944 4 944 4 944 4 941 4 942 4 940
598a 110 971 21 746 21 761 21 739 21 889 21 891 21 886
auto 448 695 83 726 83 764 83 702 84 428 84 442 84 402
bcsstk30 28 924 1 783 1 783 1 783 1 783 1 783 1 783
bcsstk31 35 588 3 487 3 488 3 487 3 486 3 487 3 486
brack2 62 631 21 413 21 414 21 413 21 415 21 416 21 415
crack 10 240 4 603 4 603 4 603 4 603 4 603 4 603
cs4 22 499 9 155 9 160 9 151 9 172 9 173 9 172
fe_ocean 143 437 71 494 71 587 71 447 71 411 71 614 71 291
fe_pwt 36 519 9 308 9 310 9 308 9 309 9 310 9 308
fe_rotor 99 617 22 006 22 013 21 999 21 949 21 979 21 902
fe_tooth 78 136 27 793 27 793 27 793 27 791 27 792 27 791
vibrobox 12 328 1 851 1 851 1 851 1 850 1 851 1 850
wave 156 317 37 054 37 058 37 050 37 016 37 031 36 999

Table 5.9: Test results for the WALSHAW family.

51

5.4. COMPARISON WITH ILS 5. EXPERIMENTAL RESULTS

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

beethoven 4 419 2 004 2 004 2 004 2 004 2 004 2 004
cow 5 036 2 346 2 346 2 346 2 346 2 346 2 346
venus 5 672 2 684 2 684 2 684 2 684 2 684 2 684
fandisk 8 634 4 075 4 075 4 075 4 073 4 074 4 072
crack 10 240 4 603 4 603 4 603 4 603 4 603 4 603
vibrobox 12 328 1 851 1 851 1 851 1 850 1 851 1 850
4elt 15 606 4 944 4 944 4 944 4 941 4 942 4 940
blob 16 068 7 248 7 249 7 247 7 249 7 250 7 249
gargoyle 20 000 8 850 8 851 8 849 8 852 8 853 8 852
cs4 22 499 9 155 9 160 9 151 9 172 9 173 9 172
face 22 871 10 215 10 216 10 215 10 217 10 217 10 217
bcsstk30 28 924 1 783 1 783 1 783 1 783 1 783 1 783
del_n15 32 768 10 330 10 333 10 328 10 330 10 330 10 330
rgg_n15 32 768 6 977 6 979 6 977 6 974 6 974 6 974
bcsstk31 35 588 3 487 3 488 3 487 3 486 3 487 3 486
fe_pwt 36 519 9 308 9 310 9 308 9 309 9 310 9 308
feline 41 262 18 847 18 851 18 843 18 846 18 847 18 844
gameguy 42 623 20 726 20 727 20 726 20 669 20 690 20 659
brack2 62 631 21 413 21 414 21 413 21 415 21 416 21 415
del_n16 65 536 20 683 20 684 20 682 20 688 20 689 20 688
rgg_n16 65 536 13 277 13 278 13 276 13 275 13 277 13 274
bunny 68 790 32 336 32 341 32 330 32 288 32 292 32 285
enron 69 244 62 811 62 811 62 811 62 811 62 811 62 811
fe_tooth 78 136 27 793 27 793 27 793 27 791 27 792 27 791
fe_rotor 99 617 22 006 22 013 21 999 21 949 21 979 21 902
598a 110 971 21 746 21 761 21 739 21 889 21 891 21 886
lux 114 599 57 663 57 663 57 663 57 663 57 663 57 663
del_n17 131 072 41 292 41 294 41 289 41 327 41 328 41 326
rgg_n17 131 072 25 389 25 395 25 384 25 400 25 401 25 399
fe_ocean 143 437 71 494 71 587 71 447 71 411 71 614 71 291
dragon 150 000 66 356 66 365 66 343 66 503 66 505 66 501
wave 156 317 37 054 37 058 37 050 37 016 37 031 36 999
gowalla 196 591 112 369 112 369 112 369 112 369 112 369 112 369
del_n18 262 144 82 478 82 484 82 475 82 601 82 603 82 600
rgg_n18 262 144 48 570 48 573 48 567 48 638 48 639 48 638
turtle 267 534 122 275 122 305 122 247 122 504 122 574 122 435

Table 5.10: Test results for all graphs sorted by the number of nodes n.

52

5. EXPERIMENTAL RESULTS 5.4. COMPARISON WITH ILS

Graph EvoMIS ILS

Name n Avg. Max. Min. Avg. Max. Min.

citation 268 495 150 380 150 380 150 380 150 380 150 380 150 380
cnr-2000 325 557 230 008 230 016 230 001 229 956 229 965 229 943
google 356 648 174 072 174 072 174 072 174 072 174 072 174 072
coPapers 434 102 47 996 47 996 47 996 47 996 47 996 47 996
auto 448 695 83 726 83 764 83 702 84 428 84 442 84 402
del_n19 524 288 164 959 164 972 164 949 165 277 165 279 165 276
rgg_n19 524 288 93 042 93 072 93 020 93 331 93 335 93 328
skitter 554 930 328 519 328 520 328 519 328 596 328 614 328 582
dragonsub 600 000 281 190 281 260 281 076 282 029 282 066 282 000
ecat 684 496 322 117 322 182 322 079 322 263 322 290 322 242
amazon 735 323 309 721 309 725 309 719 309 792 309 793 309 792
del_n20 1 048 576 329 768 329 790 329 742 330 599 330 603 330 593
rgg_n20 1 048 576 178 561 178 602 178 514 179 322 179 328 179 312
buddha 1 087 716 478 713 478 760 478 678 480 883 480 918 480 816
in-2004 1 382 908 896 581 896 585 896 580 896 488 896 495 896 475
nl 2 216 688 1 116 215 1 116 255 1 116 179 1 116 713 1 116 716 1 116 709
italy 6 686 493 3 351 464 3 351 531 3 351 398 3 353 382 3 353 390 3 353 378
gb 7 733 822 3 956 916 3 956 977 3 956 841 3 958 507 3 958 512 3 958 503
ger 11 548 845 5 836 807 5 836 966 5 836 583 5 841 385 5 841 400 5 841 375

Table 5.11: Test results for all graphs sorted by the number of nodes n. Continuation
of Table 5.10.

53

6. Conclusion and Future Work

6.1 Conclusion

In this thesis we presented a novel evolutionary algorithm for the maximum
independent set problem. In this context, we introduced four new combine operators
to generate independent sets out of existing ones. These operators include methods
that make use of intersections, vertex covers and node separators. For finding good
crossover cuts, we utilized the KaHIP framework by Peter Sanders and Christian
Schulz [26]. To make sure the offsprings of our algorithm are of sufficient quality, we
used the fast local search by Andrade et. al. [1]. Their iterated local search serves
as both, a tool to further improve our offsprings, as well as our main competitor in
the experimental evaluation.

First off, we were able to show that using a partitioner instead of a simple
BFS to acquire (multiple-point) cuts is beneficial for this kind of algorithm. Our
experimental comparison further showed that our algorithm is able to exceed the
ILS on a number of instances, which are interesting for the MIS problem. It
performed especially well on parts of the MESH family, which was introduced by
Andrade et. al. [1] and consists of triangular meshes. Other families that our
algorithm handled very well were the SOCIAL family, which consists of different
types of social networks, as well as the WALSHAW families, which is a well-known
benchmark for graph parititoners. As mentioned before, this could be due to the
fact, that the KaHIP framework really benefits us, when processing this kind of
instances.

6.2 Future Work

A possible extension for our algorithm would be to incorporate the Hopcroft-Karp
algorithm in our multiway combine operator. This would help us to fix the solutions,
that are generated by this operator, in a possibly better way. Another interesting
approach would be to parallelize our algorithm with the goal of further increasing its
performance. During the implementation of our algorithm we kept this possibility

55

6.2. FUTURE WORK 6. CONCLUSION AND FUTURE WORK

in mind and therefore this task should be attended easily. One could also try to
use other graph partitioners besides the KaHIP framework and see if they produce
comparable results. The next step we want to take with our algorithm is to design
combine operators that work recursively on the blocks of a partition or separator.
Another promising idea that we want to try is to break down the graph into smaller
subgraphs, e.g. using a node separator, and then use our algorithm on these
subgraphs to get good partial solutions. Afterwards, these solutions can be put
together and further improved by the ILS. This procedure could also be performed
recursively to get an even smaller set of graphs, for which the MIS problem can
be solved efficiently. The additional granularity an approach like this adds to our
algorithm might allow us to produce even better independent sets. We also want
to try to fine-tune our algorithm for different kinds of graph families and perform
longer test runs.

56

A. Algorithms

Algorithm 1 Pseudocode for the local search

for all nodes n in the solution do
REMOVE n
for all neighbour-pairs (u, v) of n do

if (u, v) can be inserted into the solution then
INSERT (u, v) into the solution

end if
end for
if no new nodes could be added then

REINSERT n
end if

end for

Algorithm 2 Pseudocode for the ILS

while TERMINATION criterion not satisfied do
solution’ ← PERTURB solution
apply LOCAL SEARCH on solution’
if change conditions are satisfied then

solution ← solution’
end if

end while

57

A. ALGORITHMS

Algorithm 3 Pseudocode for random initial solutions

while nodes left in G do
PICK a random node n
if no neighbour of n is in the solution then

ADD n to the solution
end if
REMOVE n from G

end while

Algorithm 4 Pseudocode for greedy initial solution (least residual degree)

INITIALIZE the priority queue with all nodes
while nodes left in the priority queue do

PICK a random node n with least residual degree
REMOVE n from G and the queue
for all neighbours k of n do

REMOVE k from G and the queue
for all neighbours l of k do

UPDATE the degree of l
end for

end for
end while

Algorithm 5 Pseudocode for greedy initial solution (maximum residual degree)

INITIALIZE the priority queue with all nodes
while nodes left in the priority queue do

PICK a random node n with maximum residual degree
REMOVE n from G and the queue
for all neighbours k of n do

if k is completely covered then
REMOVE k from G and the queue

end if
end for

end while
GENERATE the complement of the solution

58

A. ALGORITHMS

Algorithm 6 Pseudocode for the intersection combine operator.

for all nodes n in G do
if n ∈ P1 and n ∈ P2 then

ADD n to the new solution O
end if

end for
O′ ← MAXIMIZE O
O′′ ← LOCAL SEARCH applied to O′

CREATE offspring with O′′

Algorithm 7 Pseudocode for the node separator combine operator.

GENERATE a node separator S
for all nodes n in G do

if n ∈ P1 and n ∈ A then
ADD n to the new solution O1

end if
if n ∈ P2 and n ∈ B then

ADD n to the new solution O1

end if
if n ∈ P1 and n ∈ B then

ADD n to the new solution O2

end if
if n ∈ P2 and n ∈ A then

ADD n to the new solution O2

end if
end for
O′

j ← apply GREEDY heuristic on Oj . j ∈ {1, 2}
O′′

j ← MAXIMIZE O′
j

O′′′
j ← LOCAL SEARCH applied to O′′

j

CREATE offspring with O′′′
j

59

A. ALGORITHMS

Algorithm 8 Pseudocode for the vertex cover combine operator.
GENERATE a partition V = A ∪B
Pj ← COMPLEMENT Pj . j ∈ {1, 2}
for all nodes n in G do

if n ∈ P1 and n ∈ A then
ADD n to the new solution O1

end if
if n ∈ P2 and n ∈ B then

ADD n to the new solution O1

end if
if n ∈ P1 and n ∈ B then

ADD n to the new solution O2

end if
if n ∈ P2 and n ∈ A then

ADD n to the new solution O2

end if
end for
bound← EXTRACT the partitioning cut boundary
H ← apply HOPCROFT-KARP on bound
O′

j ← H ∪ Oj . j ∈ {1, 2}
Oj ← COMPLEMENT O′

j

O′
j ← MAXIMIZE Oj

O′′
j ← LOCAL SEARCH applied to O′

j

CREATE offspring with O′′
j

60

A. ALGORITHMS

Algorithm 9 Pseudocode for the multiway combine operator using partitions.

SELECT a number of parents q
SELECT a number of blocks k
B ← GENERATE a k-way partition . i ∈ {1, . . . , q}
for all parents Pi do . j ∈ {1, . . . , k}

for all blocks Vj ∈ B do
CALCULATE the score of (Pi, Vj)

end for
end for
best← SELECT the best parent for each block . j ∈ {1, . . . , k}
for all blocks Vj ∈ B do

SELECT highest scoring parent from best
ADD nodes of parent inside Vj to new solution O

end for
O ← COMPLEMENT O
O′ ← apply GREEDY algorithm to O
O′ ← COMPLEMENT O′

O′′ ← MAXIMIZE O′

O′′′ ← LOCAL SEARCH applied to O′′

CREATE offspring with O′′′

Algorithm 10 Pseudocode for the multiway combine operator using node separa-
tors.

SELECT a number of parents q
SELECT a number of blocks k
(S,B)← GENERATE a k-way node separator . i ∈ {1, . . . , q}
for all parents Pi do . j ∈ {1, . . . , k}

for all blocks Vj ∈ B do
CALCULATE the score of (Pi, Vj)

end for
end for
best← SELECT the best parent for each block . j ∈ {1, . . . , k}
for all blocks Vj ∈ B do

SELECT highest scoring parent from best
ADD nodes of parent inside Vj to new solution O

end for
O′ ← apply GREEDY algorithm to O
O′′ ← MAXIMIZE O′

O′′′ ← LOCAL SEARCH applied to O′′

CREATE offspring with O′′′

61

A. ALGORITHMS

Algorithm 11 Pseudocode for assuring the similarity of individuals.

Require: Offspring O
best← ACQUIRE the best individuum so far
differences← 0
max differences←MAX INT
replacement found← false
for all individuum Ii in the population do . i ∈ {1, . . . , p}

if Ii == best then
SKIP

end if
for all nodes j in G do

if Ii[j] 6= O[j] then
differences + +

end if
end for
if differences < max differences then

max differences = differences
replacement← indi
replacement found← true

end if
end for

62

Bibliography

[1] Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Wer-
neck. Fast Local Search for the Maximum Independent Set Problem. In
Proceedings of the 7th International Workshop on Experimental Algorithms
(WEA 2008), pages 220–234, 2008.

[2] William Brendel, Mohamed R. Amer, and Sinisa Todorovic. Multiobject
Tracking as Maximum Weight Independent Set. In Proceedings of the 24th
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2011),
pages 1273–1280, 2011.

[3] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. Recent Advances in Graph Partitioning. CoRR, abs/1311.3144, 2013.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[5] Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, 1975. AAI7609381.

[6] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engi-
neering Route Planning Algorithms. In Algorithmics of Large and Complex
Networks - Design, Analysis, and Simulation [DFG priority program 1126],
pages 117–139, 2009.

[7] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. The Shortest
Path Problem: 9th DIMACS Implementation Challenge, volume 74. American
Mathematical Soc., 2009.

[8] Matthijs den Besten, Thomas Stützle, and Marco Dorigo. Design of Iterated
Local Search Algorithms. In Proceedings of the EvoWorkshops 2001: EvoCOP,
EvoFlight, EvoIASP, EvoLearn, and EvoSTIM on Applications of Evolutionary
Computing, pages 441–451, 2001.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

63

BIBLIOGRAPHY BIBLIOGRAPHY

[10] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley, 1989.

[11] Bruce Hendrickson. Chaco. In Encyclopedia of Parallel Computing, pages
248–249. 2011.

[12] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. Engineering a Scalable
High Quality Graph Partitioner. In Proceedings of the 24th IEEE International
Symposium on Parallel and Distributed Processing (IPDPS 2010), pages 1–12,
2010.

[13] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. SIAM Journal on Scientific Computing,
2(4):225–231, 1973.

[14] David S. Johnson and Michael A. Trick. Cliques, Coloring, and Satisfiability:
2nd DIMACS Implementation Challenge, October 11-13, 1993, volume 26.
American Mathematical Soc., 1996.

[15] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
Hypergraph Partitioning: Applications in VLSI Domain. IEEE Trans. VLSI
Syst., 7(1):69–79, 1999.

[16] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing,
20(1):359–392, 1998.

[17] Heinz König. Über das Von Neumannsche Minimax-Theorem. Archiv der
Mathematik, 19(5):482–487, 1968.

[18] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Predicting
Positive and Negative Links in Online Social Networks. In Proceedings of
the 19th International Conference on World Wide Web (WWW 2010), pages
641–650, 2010.

[19] Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Signed Networks
in Social Media. In Proceedings of the 28th International Conference on Human
Factors in Computing Systems (CHI 2010), pages 1361–1370, 2010.

[20] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
Densification Laws, Shrinking Diameters and possible Explanations. In Proceed-
ings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 177–187, 2005.

64

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Brad L. Miller and David E. Goldberg. Genetic Algorithms, Tournament
Selection, and the Effects of Noise. Complex Systems, 9:193–212, 1995.

[22] José Ruiz-Shulcloper and Gabriella Sanniti di Baja, editors. Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications,
volume 8258 of Lecture Notes in Computer Science. Springer, 2013.

[23] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe. Efficient
Traversal of Mesh Edges using Adjacency Primitives. ACM Trans. Graph.,
27(5):144, 2008.

[24] Peter Sanders and Christian Schulz. Distributed Evolutionary Graph Par-
titioning. In Proceedings of the 14th Meeting on Algorithm Engineering &
Experimentation (ALENEX 2012), pages 16–29, 2012.

[25] Peter Sanders and Christian Schulz. Kahip v0.53 - Karlsruhe High Quality
Partitioning - User Guide. CoRR, abs/1311.1714, 2013.

[26] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly
Balanced Graph Partitioning. In Proceedings of the 12th International Sympo-
sium on Experimental Algorithms (SEA 2013), volume 7933 of LNCS, pages
164–175, 2013.

[27] Christian Schulz. High Quality Graph Partitioning. epubli GmbH, Karlsruhe
Institut of Technology, 2013.

[28] N. J. A. Sloane. Challenge Problems: Independent Sets in Graphs, 2000.
http://www.research.att.com/~njas/doc/graphs.html.

[29] Alan J. Soper, Chris Walshaw, and Mark Cross. A Combined Evolutionary
Search and Multilevel Optimisation Approach to Graph-Partitioning. J. Global
Optimization, 29(2):225–241, 2004.

[30] Tycho Strijk, Bram Verweij, and Karen Aardal. Algorithms for Maximum
Independent Set Applied to Map Labelling. Technical report, 2000.

[31] Chris Walshaw. The Graph Partitioning Archive, 2000. http://staffweb.

cms.gre.ac.uk/~wc06/partition/.

[32] K. Xu. BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph
Problems, 2004. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/

graph-benchmarks.htm.

65

http://www.research.att.com/~njas/doc/graphs.html
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

	Introduction
	Contribution
	Overview

	Preliminaries
	Graph Definitions
	Data Structures and Algorithms
	Graph Representation
	Priority Queues
	Breadth First Search
	Hopcroft-Karp
	König's Theorem

	Related Work
	Evolutionary Algorithms
	Iterated Local Search
	Metaheuristic

	Graph Partitioning
	KaHIP

	EvoMIS
	Solution Representation
	Initial Solutions
	Selection
	Combination
	Intersection
	Node Separator
	Vertex Cover
	Multiway

	Partition Pool
	Mutation
	Replacement
	Diversification

	Experimental Results
	Test Graphs
	Methodology
	Parameter Tuning
	Comparison with ILS

	Conclusion and Future Work
	Conclusion
	Future Work

	Algorithms

